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Abstract

This paper is concerned with the study of the large-time behaviour of the solutions u of a
class of one-dimensional reaction-diffusion equations with monostable reaction terms f ,
including in particular the classical Fisher-KPP nonlinearities. The nonnegative initial
data u0(x) are chiefly assumed to be exponentially bounded as x tends to +∞ and sepa-
rated away from the unstable steady state 0 as x tends to −∞. On the one hand, we give
some conditions on u0 which guarantee that, for some λ > 0, the quantity cλ = λ+f ′(0)/λ
is the asymptotic spreading speed, in the sense that limt→+∞ u(t, ct) = 1 (the stable
steady state) if c < cλ and limt→+∞ u(t, ct) = 0 if c > cλ. These conditions are ful-
filled in particular when u0(x) eλx is asymptotically periodic as x → +∞. On the other
hand, we also construct examples where the spreading speed is not uniquely determined.
Namely, we show the existence of classes of initial conditions u0 for which the ω−limit
set of u(t, ct+ x) as t tends to +∞ is equal to the whole interval [0, 1] for all x ∈ R and
for all speeds c belonging to a given interval (γ1, γ2) with large enough γ1 < γ2 ≤ +∞.

1 Introduction and notion of spreading speeds

We study in this paper the large-time behaviour of the solutions of monostable reaction-
diffusion equations of the type{

∂tu− ∂xxu = f(u), t > 0, x ∈ R,
u(0, x) = u0(x) for a.e. x ∈ R,

(1.1)

where the reaction term f : [0, 1]→ R is a C1 function such that

f(0) = f(1) = 0, f(s) > 0 if s ∈ (0, 1), f ′(0) > 0, (1.2)
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and u0 is a measurable initial datum such that u0 6≡ 0, u0 6≡ 1 and 0 ≤ u0(x) ≤ 1 for almost
every x ∈ R (the quantity u typically stands for a normalized density in the applications in
population dynamics models). Under these hypotheses, the Cauchy problem (1.1) is well-posed,
the solution u is classical for t > 0, and u(t, x) ∈ (0, 1) for all t > 0, x ∈ R.

Such equations have first been investigated by Fisher [7] and Kolmogorov, Petrovski and
Piskunov [12]. Among other results, these authors proved that, when f(s) = s(1− s) and u0

is the Heaviside function, that is u0 = 1 on (−∞, 0) and 0 on (0,+∞), then min
x≤ct

u(t, x)→ 1 as t→ +∞ if c < c∗,

max
x≥ct

u(t, x)→ 0 as t→ +∞ if c > c∗,
(1.3)

with c∗ = 2 in this case. Such properties are called spreading properties and the quantity c∗

is called the spreading speed associated with the initial datum u0. This result has been ex-
tended by Aronson and Weinberger [1] to multidimensional media and positive nonlinearities
satisfying (1.2). In particular, it is proved in [1] that, in dimension 1, formula (1.3) still holds
when u0 is the Heaviside function, for some positive real number c∗ which only depends on f .

For general functions f satisfying (1.2), this threshold c∗ also turns out to be the minimal
speed of existence of travelling fronts solutions of equation (1.1). Namely, we say that a
solution u of (1.1) is a travelling front if it can be written as u(t, x) = Uc(x − ct), with
Uc(−∞) = 1, Uc(+∞) = 0 and 0 < Uc < 1 in R. In this case, we say that c is the speed of
the travelling front solution u. It is well known [1, 8] that if f satisfies (1.2), then there exists
a speed c∗ such that there exists a travelling front solution of (1.1) with speed c if and only if
c ≥ c∗. Furthermore, if f satisfies the now-called Fisher-KPP assumption, that is if

0 < f(s) ≤ f ′(0)s for all s ∈ (0, 1), (1.4)

then c∗ = 2
√
f ′(0). For general functions f satisfying (1.2), one has c∗ ≥ 2

√
f ′(0), see [1, 8].

Lastly, for each c ≥ c∗, the profile Uc associated with the travelling front of speed c is decreasing
on R and unique up to translation and, if c > c∗, there exists M > 0 such that

Uc(z) ∼M e−λz as z → +∞, (1.5)

where

λ =
c−

√
c2 − 4f ′(0)

2

is the smallest root of the equation λ2 − λc+ f ′(0) = 0. Thus, the estimates of the spreading
speeds, as defined below, are expected to be given in terms of the exponential decay rate of
the initial condition.

Before stating our main results in the next section, we define in this section the notions
of minimal and maximal spreading speeds for the solutions u of (1.1), with a class of initial
conditions u0 : R→ [0, 1] which are much more general than the Heaviside function.

Definition 1.1 We say that a function u0 ∈ L∞(R) is front-like if 0 ≤ u0(x) ≤ 1 for
a.e. x ∈ R and there exist x− ∈ R and δ > 0 such that

u0(x) ≥ δ for a.e. x < x− and lim
x→+∞

‖u0‖L∞(x,+∞) = 0.
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The term front-like refers to the fact that the values of u0(x) as x → ±∞ are strictly
ordered, although the front-like initial u0 may not be nonincreasing on R even up to a set of
zero measure. However, these very mild conditions still guarantee that u(t, x)→ 0 as x→ +∞
for every t > 0, from standard parabolic estimates and the maximum principle. For such initial
data, we still expect the solutions of the Cauchy problem (1.1) to spread, that is the stable
state 1 to invade the unstable steady state 0. At first glance, we could think that a property
like (1.3) still holds, where c∗ would in general be replaced with a quantity w > 0 which would
depend on u0. A natural question would then be to compute the speed w of this invasion.
In fact, it turns out that some complex dynamics may occur in general. The mild conditions
in Definition 1.1 give rise to a large variety of propagation phenomena at large time, some of
them being of a completely new type. Thus, in order to quantify the spreading, we are led to
introduce two natural quantities: the minimal and the maximal spreading speeds.

Definition 1.2 For a given front-like function u0, we define the minimal and maximal sprea-
ding speeds w∗(u0) and w∗(u0) of the solution u of (1.1) as

w∗(u0) = sup
{
c ∈ R, inf

x≤ct
u(t, x)→ 1 as t→ +∞

}
,

w∗(u0) = inf
{
c ∈ R, sup

x≥ct
u(t, x)→ 0 as t→ +∞

}
.

It immediately follows from Definition 1.2 that, for any given front-like function u0, one
has

inf
x≤ct

u(t, x)→ 1 as t→ +∞ for all c < w∗(u0)

and
sup
x≥ct

u(t, x)→ 0 as t→ +∞ for all c > w∗(u0)

if w∗(u0) is finite. Actually, we will see below that w∗(u0) can never be −∞, but that w∗(u0),
and w∗(u0), are sometimes equal to +∞.

Let us now give some general comparisons and a list of standard examples for which
these quantities can be explicitly computed. First, when there is a real number A such
that u0(x) = σ ∈ (0, 1] for a.e. x < A and u0(x) = 0 for a.e. x > A, it is then well
known [1, 12] that w∗(u0) = w∗(u0) = c∗, where c∗ is the minimal speed of existence of trav-
elling fronts solutions. Using this fact and the parabolic maximum principle, as any front-like
function is bounded from below by a space shift of the Heaviside function multiplied by some
σ ∈ (0, 1], we get that

c∗ ≤ w∗(u0) ≤ w∗(u0) ≤ +∞ (1.6)

for any front-like initial datum u0. In general, the spreading speeds are strictly larger than c∗.
For example, for any speed c ≥ c∗, if u(t, x) = Uc(x− ct) is a travelling front solution of speed
c, then w∗(u(0, ·)) = w∗(Uc) = w∗(u(0, ·)) = w∗(Uc) = c. Set now

λ∗ = min
{
λ > 0, λ2 − λc∗ + f ′(0) = 0

}
=
c∗ −

√
c∗2 − 4f ′(0)

2
, (1.7)

which is a well defined real number since c∗ ≥ 2
√
f ′(0), consider

u0(x) = min
(
σ, θ e−λx

)
for all x ∈ R (1.8)
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with σ ∈ (0, 1], θ > 0 and λ ∈ (0, λ∗), and define

cλ = λ+
f ′(0)

λ
.

When f satisfies (1.2) and f ′(s) ≤ f ′(0) for all s ∈ [0, 1], it has been proved through proba-
bilistic methods by McKean [16] and through PDE’s methods by Kametaka [11] that the
solution u of (1.1) satisfies

sup
x∈R

∣∣u(t, x)− Ucλ(x− cλt+ x0)
∣∣→ 0 as t→ +∞, (1.9)

where Ucλ is the travelling front profile with speed cλ, satisfying (1.5), and x0 = −λ−1 ln(θ/M).
This property implies that

w∗(u0) = w∗(u0) = cλ = λ+
f ′(0)

λ
. (1.10)

When λ ≥ λ∗ in (1.8), McKean [16] and Kametaka [11] proved a similar convergence, namely

sup
x∈R
|u(t, x)− Uc∗(x− c∗t+m(t))| → 0 as t→ +∞,

where m(t)/t → 0 as t → +∞. This implies (1.3) and leads to w∗(u0) = w∗(u0) = c∗.
These above limits have been extended by Uchiyama [24] to general monostable functions f
fulfilling (1.2) and to front-like initial data satisfying limx→+∞ u0(x+x0)/u0(x) = e−λx0 for all
x0 ∈ R (see also [6, 13, 17, 22, 23] for further results and more precise convergence estimates).
On the other hand, Bramson [4] and Lau [14] investigated spreading properties for more
general front-like initial data, using probabilistic and PDE tools, when f satisfies (1.2) and
f ′(s) ≤ f ′(0). They proved that if u0 is a front-like initial datum such that there exist h > 0
and 0 < λ < λ∗ =

√
f ′(0) such that

lim
x→+∞

1

x
ln

(∫ (1+h)x

x

u0(y)dy

)
= −λ, (1.11)

then w∗(u0) = w∗(u0) = cλ = λ + f ′(0)/λ. This result is more general than the one of
Uchiyama [24], but it requires the nonlinearity f to satisfy f ′(s) ≤ f ′(0). This property
simplifies the analysis since it is known that the linearization near u = 0 does govern the
global dynamics of the equation in this case. Lastly, if u0 is front-like and

u0(x) eεx → +∞ as x→ +∞ for all ε > 0, (1.12)

then it follows from the maximum principle and (1.10) that w∗(u0) ≥ ε+ f ′(0)/ε for all ε > 0,
whence w∗(u0) = w∗(u0) = +∞. In this case, together with the Fisher-KPP assumption (1.4),
Hamel and Roques [9] also computed the position of the level sets of the function u(t, ·) as
t→ +∞, according to the precise asymptotic behaviour of u0 at +∞.

To sum up, the spreading speeds w∗(u0) and w∗(u0) are explicitly known when the front-
like initial data u0 are exponentially decaying near +∞, or when they fulfill (1.11) under the
additional condition that f satisfies f ′(s) ≤ f ′(0) for all s ∈ [0, 1]. It is important to notice
that, in all aforementioned examples, one has w∗(u0) = w∗(u0). This leads to the following
natural questions, that we investigate in the present paper:
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• Is it possible to compute w∗(u0) and w∗(u0) for more general initial conditions, given a
nonlinearity f satisfying (1.2) only?

• Is it always true that w∗(u0) = w∗(u0)?

Remark 1.3 Throughout the paper, the initial conditions u0 are assumed to be front-like in
the sense of Definition 1.1. Obviously, when 0 ≤ u0 ≤ 1, u0 6≡ 0 and u0(x) → 0 as x → ±∞,
then left and right minimal and maximal spreading speeds could be defined and similar results
as the ones stated in the next section could be obtained. One of the reasons lies on the fact that
u(t, x) → 1 as t → +∞ locally uniformly in x ∈ R (as a matter of fact, min|x|≤ct u(t, x) → 1
as t→ +∞ for all c ∈ [0, c∗), see [1]). Thus, the spreading properties to the left and to the right
only depend on the behaviour of the tails of u0 at ±∞. It would also have been natural to con-
sider heterogeneous reaction-diffusion equations as well as equations in higher dimensions. We
chose to present our results in the homogeneous one-dimensional setting for problem (1.1) for
the sake of simplicity of the presentation, and also because this one-dimensional homogeneous
framework already captures new and interesting complex propagation phenomena.

2 Main results

We first consider the class of front-like functions u0 such that

u0(x) = O
(
e−Λ(x)x

)
as x→ +∞

with limx→+∞ Λ(x) = λ ∈ [0,+∞]. We first look for some conditions on u0 which guarantee
that w∗(u0) = w∗(u0) = cλ. In other words, we want to know whether u satisfies the same
spreading property as the solution associated with the initial datum x 7→ min(σ, θ e−λx), for
some σ ∈ (0, 1] and θ > 0. If λ ∈ [λ∗,+∞], where λ∗ > 0 was defined in (1.7), then, as already
emphasized, it follows from the maximum principle and [24] that w∗(u0) = w∗(u0) = c∗ (it is ac-
tually sufficient to suppose that lim infx→+∞ Λ(x) ≥ λ∗). We thus restrict ourselves to the case
0 ≤ λ < λ∗. The condition we will exhibit on u0 depends on the function x 7→ ρ(x) := u0(x) eλx

(for x sufficiently large). Basically, this condition requires the solution of the heat equation
associated with the initial datum ρ (extended by 1 in a neighborhood of −∞) to be away
from 0 along some rays in the (t, x) variables. To make the arguments work, we shall use
an additional assumption on the nonlinearity f near 0, which is fulfilled by C1+γ functions.
Namely, we assume that there exist C > 0, γ > 0 and s0 ∈ (0, 1) so that

∀s ∈ [0, s0], f(s) ≥ f ′(0)s− Cs1+γ. (2.13)

Theorem 2.1 Let f satisfy (1.2) and (2.13), let λ ∈ (0, λ∗) and let u0 be a front-like function
such that there exist x0 ∈ R, a nonnegative bounded function ρ : (x0,+∞) → [0,+∞) and a
function Λ : (x0,+∞)→ R so that

u0(x) = ρ(x) e−Λ(x)x for a.e. x > x0 and Λ(x)→ λ as x→ +∞.

Let ρ : R → [0,+∞) be defined by ρ(x) = 1 for x < x0 and ρ(x) = ρ(x) for x > x0. Lastly,
let ζ be the solution of the heat equation{

∂tζ − ∂xxζ = 0, t > 0, x ∈ R,
ζ(0, x) = ρ(x) for a.e. x ∈ R.

(2.14)
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If there exists µ > 0 such that

lim inf
t→+∞

ζ(t, ct) > 0 for all c ∈ (cλ − 2λ− µ, cλ − 2λ), 1 (2.15)

then

w∗(u0) = w∗(u0) = cλ = λ+
f ′(0)

λ
. (2.16)

Since inft′≥t, x∈R ζ(t′, x) ≥ infx∈R ζ(t, x) for all t > 0, from the maximum principle, an
immediate consequence of Theorem 2.1 is the following

Corollary 2.2 With the same notations as in Theorem 2.1, the conclusion (2.16) holds if,
instead of (2.15), the function ζ is such that there exists T > 0 for which

inf
x∈R

ζ(T, x) > 0. (2.17)

Remark 2.3 In this remark, we discuss the relationship between the assumptions (2.15)
and (2.17) and we give some equivalent formulations. First, condition (2.17) clearly im-
plies (2.15), but these two properties are not equivalent. Namely, one can construct classes of
explicit examples of functions ρ for which the condition (2.15) is fulfilled and (2.17) is not. As
an archetype, choose x0 = 0 and

ρ(x) = 0 for x ∈
⋃
n∈N

(2n5 − n, 2n5 + n)

and ρ(x) = 1 otherwise. One has 0 < ζ(t, x) < 1 for all t > 0 and x ∈ R, and ζ(t, 2n5)→ 0 as
n→ +∞ for all t > 0. Hence,

inf
x∈R

ζ(t, x) = 0

for all t > 0 and condition (2.17) is not fulfilled. On the other hand, for any fixed c ∈ R, there
holds

0 < 1− ζ(t, ct) ≤ 1√
π

∫ +∞

−∞
1∪n∈NIn,t(z) e−z

2

dz for all t > 0,

where In,t is the interval

In,t =
(2n5 − n− ct√

4t
,
2n5 + n− ct√

4t

)
.

Fix ε > 0 and let A > 0 be such that

π−1/2

∫
R\(−A,A)

e−z
2

dz ≤ ε.

If In,t intersects (−A,A), then (2n5 − n − ct)/
√

4t < A, whence n5 ≤ (|c| + 1) t
for large t. Since the length of In,t is n/

√
t, there exists t0 > 0 such that, for all

1Notice that cλ − 2λ =
√
c2λ − 4f ′(0) > 0.
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t ≥ t0, the sum of the lengths of the intervals In,t intersecting (−A,A) is at most
(|c|+ 1)1/5t1/5 × (|c|+ 1)1/5t1/5/

√
t = (|c|+ 1)2/5t−1/10. Thus, for all t ≥ t0,

1√
π

∫ A

−A
1∪n∈NIn,t(z) e−z

2

dz ≤ (|c|+ 1)2/5t−1/10

√
π

,

whence lim supt→+∞ 1−ζ(t, ct)≤ε. Finally,

lim
t→+∞

ζ(t, ct)=1

for every c ∈ R and (2.15) holds. Let us now give some equivalent formulations to (2.15)
and (2.17). Notice that, by definition of ρ, there holds ζ(t, x)→ 1 as x→ −∞ for every t > 0.
Since ζ is continuous and positive on (0,+∞)×R, it follows that condition (2.15) is equivalent
to

lim inf
t→+∞

(
inf
x≤ct

ζ(t, x)
)
> 0 for all c < cλ − 2λ.

Indeed, for every c ∈ (cλ−2λ−µ, cλ−2λ), there are T > 0 and η > 0 such that ζ(t, ct) ≥ η for
all t ≥ T ; even if it means decreasing η > 0, one can assume that ζ(T, x) ≥ η for all x ≤ cT ;
thus the maximum principle yields ζ(t, x) ≥ η for all t ≥ T and x ≤ ct. Actually, the same
arguments imply that (2.15) is fulfilled if

lim inf
t→+∞

u(t, (cλ − 2λ)t) > 0.

Notice also that (2.17) is equivalent to infx∈R ζ(t, x) > 0 for all t > 0: indeed, if there ex-
ist t0 > 0 and a sequence (xn)n∈N of real numbers such that ζ(t0, xn) → 0 as n → +∞,
then the Schauder parabolic estimates and the strong parabolic maximum principle imply
that, up to extraction of a subsequence, ζ(t, x + xn) → 0 as n → +∞ locally uniformly
in (t, x) ∈ (0,+∞) × R. Lastly, observe that, by linearity of the heat equation and by the
maximum principle, conditions (2.15) and (2.17) remain unchanged if the function ρ is set to
be equal to any given positive real number η > 0, instead of 1, on (−∞, x0).

Under only the monostability and behaviour-at-0 properties (1.2) and (2.13), Theorem 2.1
and Corollary 2.2 give sufficient conditions on u0 for the solution u of (1.1) to spread at speed cλ.
Let us now discuss the role of the various assumptions. First, without the boundedness of ρ,
the conclusion (2.16) may not hold: for instance, if ρ(x) = eεx for x > x0 with ε ∈ (0, λ),

then, by writing u0(x) = e−Λ̃(x)x for a.e. x > x0 with Λ̃(x) = Λ(x) − ε, Corollary 2.2 yields
w∗(u0) = w∗(u0) = cλ−ε > cλ. Similarly, without (2.15) or (2.17), (2.16) may not hold: for
instance, if ρ(x) = e−εx for x > x0 with ε ∈ (0, λ∗ − λ), then w∗(u0) = w∗(u0) = cλ+ε < cλ,
whereas conditions (2.15) and (2.17) are not fulfilled since, for every c > 0,

0 < ζ(t, ct) =
1√
4πt

∫ +∞

−∞
e−

(y−ct)2
4t ρ(y)dy =

1√
π

∫ +∞

−∞
e−z

2

ρ(ct+ z
√

4t)dz → 0 as t→ +∞

from Lebesgue’s dominated convergence theorem. However, the conditions (2.15) or (2.17) are
not necessary in general. That is, (2.16) may hold without (2.15) or (2.17): for instance, if ρ
is any positive measurable function on (x0,+∞) such that

ρ(x)→ 0 and | ln ρ(x)| = o(x) as x→ +∞,
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then as above ζ(t, ct)→ 0 as t→ +∞ for all c > 0, whence (2.15) and (2.17) are not fulfilled;
nevertheless conclusion (2.16) still holds since Corollary 2.2 can be applied by writting u0 as

u0(x) = e−Λ̃(x)x for a.e. x ≥ x0 with

Λ̃(x) = Λ(x)− ln ρ(x)

x
→ λ as x→ +∞.

A corollary of Theorem 2.1 concerns the case of functions ρ being asymptotically positive
in average at +∞, by which we mean

lim inf
x→+∞

(
inf

h≥β
√
x
h−1

∫ x+h

x

ρ(z) dz
)
> 0 for some β > 0.

Corollary 2.4 Let f , λ, u0, x0, ρ and Λ be as in Theorem 2.1 and assume that ρ is asymp-
totically positive in average at +∞. Then (2.16) holds.

Let us now give some further applications of the above results. As a particular case,
Corollary 2.4 covers the case of functions ρ which can extended to a uniformly continuous
nonnegative periodic, almost-periodic or uniquely ergodic function ρ ∈ L∞(R) having a positive
average.2 Under the assumptions of Corollary 2.4, it is easy to check that u0 satisfies the
condition (1.11) of Bramson [4] and Lau [14]. Hence, if, in addition to (1.2) and (2.13), the
function f is such that f ′(s) ≤ f ′(0), Corollary 2.4 gives then an alternate approach of that
of Bramson and Lau. Another enlightening application of the above results is the following
one. Let 0<λ1 <λ2 <λ

∗ be fixed, let ρ1 and ρ2 be two given bounded nonnegative periodic
functions with positive averages, let u1,0 and u2,0 be two given front-like functions such that

u1,0(x) = ρ1(x) e−λ1x

and
u2,0(x) = ρ2(x) e−λ2x

for large x, and let u1 and u2 be the solutions of (1.1) with initial conditions u1,0 and u2,0, re-
spectively. It follows from Corollary 2.4 that u1 and u2 spread at the speeds cλ1 = λ1 +f ′(0)/λ1

and cλ2 = λ2 + f ′(0)/λ2, respectively. Let now u0 be a front-like function such that

u0(x) = ρ1(x) e−λ1x + ρ2(x) e−λ2x for large x

and let u be the solution of (1.1) with initial condition u0. Since u0 is equal to a linear
combination of the functions u1,0 and u2,0 near +∞, one could have thought that u would have
spread at a speed which would have been a sort of average of cλ1 and cλ2 . This is actually not
the case, since Theorem 2.1 implies that w∗(u0) = w∗(u0) = cλ1 . In other words, u spreads
at the largest speed, that is the one given only from the slowest exponential decay. Indeed,
for large x, u0(x) = ρ(x) e−λ1x, where ρ(x) = ρ1(x) + ρ2(x) e−(λ2−λ1)x is bounded near +∞;

2A uniformly continuous bounded function ρ is uniquely ergodic if the limit limh→+∞ h−1
∫ x+h
x

F (τzρ)dz
exists uniformly with respect to x ∈ R, where τzρ = ρ(·+ z) and F is any continuous real-valued map defined
on the closure of the set of all functions τzρ in the sense of local uniform convergence, see [3, 18]. The
periodic, almost-periodic or uniquely ergodic functions ρ have a (uniform) average ρm ∈R in the sense that

h−1
∫ x+h
x

ρ(z)dz→ρm as h→ +∞ uniformly in x ∈ R.

8



since ρ ≥ ρ1 ≥ 0 and ρ1 has a positive average, the condition (2.17) is fulfilled and the
conclusion (2.16) holds with λ = λ1.

We point out that, in Theorem 2.1 or Corollaries 2.2 or 2.4, the function ρ may vanish
on sequences of sets with positive measure on [A,+∞) for all large A, in which case the
function u0 cannot be bounded from below by a positive constant times any function e−λx

for large x. A typical example is when ρ is periodic and vanishes periodically. However, for
the conclusion (2.16) to hold, the function ρ cannot be too close to 0 on a too large set, this
is roughly speaking the meaning of the sort of homogenization conditions (2.15) and (2.17).
The simplest example is when ρ is periodic: ρ may vanish periodically but, unless it vanishes
almost everywhere, the spreading speeds w∗(u0) and w∗(u0) are equal to cλ.

When, in Corollary 2.2, the function Λ is equal to the constant λ, the method we use gives
actually more than (2.16), under the assumption (2.17):

Proposition 2.5 Let f , λ, u0, x0, ρ and Λ be as in Corollary 2.2 and assume that Λ = λ
on [x0,+∞) and that (2.17) holds. Then there are x1, x2 ∈ R such that, uniformly in x ∈ R,

Ucλ(x+ x1) ≤ lim inf
t→+∞

u(t, x+ cλt) ≤ lim sup
t→+∞

u(t, x+ cλt) ≤ Ucλ(x+ x2). (2.18)

This result means that the solution u is asymptotically almost trapped between two shifts
of a travelling front moving with speed cλ = λ+f ′(0)/λ. In the case when Λ depends on x, the
conclusion is not true in general, see the comment after Corollary 2.6 on the position of the
level sets of u at large time. However, even when Λ is constant, formula (2.18) does not mean
that u(t, ·+cλt) is truly trapped between two shifts of Ucλ , even for large t. Indeed, for instance,
if 0 < esssupRu0 = M0 < 1, then supR u(t, ·) ≤ M(t) for all t ≥ 0, where Ṁ(t) = f(M(t))
for all t ≥ 0 and M(0) = M0. Since M(t) < 1 for all t ≥ 0 and since Ucλ(−∞) = 1, the
function u(t, ·+ cλt) can never be larger than any shift of Ucλ . Proposition 2.5 does not mean
either that u(t, · + cλt) converges to a shift of the front Ucλ . The solution may well oscillate
without converging between two shifts of the front Ucλ , as proved in [2, 15] when f is concave.

Lastly, when u0 is not exponentially bounded as x → +∞, in the sense of (1.12),
then w∗(u0) = w∗(u0) = +∞, as already noticed. Theorem 2.1 and the condition (2.15)
can be adapted to the case λ = 0, as the following corollary shows.

Corollary 2.6 If, in Theorem 2.1, one sets λ = 0 and (2.15) is replaced with the existence of
a real number γ such that lim inft→+∞ u(t, ct) > 0 for all c > γ, then w∗(u0) = w∗(u0) = +∞.

It is possible to reformulate the above results in terms of the level sets of the solution u of
the Cauchy problem (1.1). Namely, given a front-like initial condition u0, define the level set
of u for a value m ∈ (0, 1) at a time t > 0, as follows:

Em(t) =
{
x ∈ R, u(t, x) = m

}
.

For a given m ∈ (0, 1), this set can be empty, but it is non-empty and compact when t is suf-
ficiently large. From Definition 1.2 and under the hypotheses of Theorem 2.1 with 0 < λ < λ∗

(resp. Corollary 2.6 with λ = 0), we can reformulate the conclusions into:

∀m ∈ (0, 1), lim
t→+∞

1

t
minEm(t) = lim

t→+∞

1

t
maxEm(t) = cλ = λ+

f ′(0)

λ
(2.19)
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with the convention that c0 = +∞. In other words, for any m ∈ (0, 1) and any family of
real numbers (xm(t))t>0 such that u(t, xm(t)) = m for large t, then xm(t)/t→ cλ as t→ +∞.
Thus, the quantity cλ is the asymptotic time-averaged speed of all level sets of u. As far as
Proposition 2.5 is concerned, its conclusion (2.18) implies in particular that, for all m ∈ (0, 1),

lim sup
t→+∞

∣∣maxEm(t)− cλt
∣∣ < +∞ and lim sup

t→+∞

∣∣minEm(t)− cλt
∣∣ < +∞, (2.20)

Property (2.20) is clearly stronger than (2.19). Both (2.19) and (2.20) also yield formula (2.16),
since, as it can be easily seen, lim infx→−∞ u(t, x)→ 1 as t→ +∞ and limx→+∞ u(t, x) = 0 for
all t ≥ 0. However, it is worth noticing here that, in general, the assumptions of Theorem 2.1
do not guarantee that the level sets Em(t) stay at finite distance as t→ +∞ from the position
cλt for each fixed m ∈ (0, 1). For instance, if u0 is front-like and u0(x) = e−Λ(x)x for large x with
limx→+∞ Λ(x) = λ ∈ (0, λ∗) and limx→+∞(Λ(x)− λ)x = +∞ (resp. −∞), then u0(x) ≤ η e−λx

(resp. u0(x) ≥ η e−λx) for x large enough, for every fixed η > 0; thus, it follows from the
comparison principle and the general convergence results (1.9), that

lim sup
t→+∞

(
sup
x∈R

(u(t, x)− Ucλ(x− cλt+ A))
)
≤ 0

(resp.
lim inf
t→+∞

(
inf
x∈R

(u(t, x)− Ucλ(x− cλt+ A))
)
≥ 0)

for every A ∈ R, whence
maxEm(t)− cλt→ −∞

(resp.
minEm(t)− cλt→ +∞)

as t → +∞ for all value m ∈ (0, 1), while w∗(u0) = w∗(u0) = cλ from Theorem 2.1. On the
other hand, if |Λ(x)− λ| = O(x−1) as x→ +∞ and if (2.17) is fulfilled, then Proposition 2.5
and the maximum principle imply that (2.18) holds, whence (2.20).

In all above results, the solutions u of (1.1) have a well defined spreading speed, that is
w∗(u0) = w∗(u0), and this quantity is explicitely expressed in terms of the asymptotic behaviour
of the front-like initial condition at +∞. We now exhibit a class of front-like initial data u0

for which w∗(u0) < w∗(u0), and the difference w∗(u0) − w∗(u0) may actually be arbitrarily
large. We not only prove that for some range of speeds c, the functions t 7→ u(t, ct + x) do
not converge to anything as t → +∞, but also that their ω−limit sets are the whole interval
[0, 1]. We recall that the ω−limit set as t → +∞ of a function t 7→ g(t) ∈ [0, 1] defined in a
neighborhood of +∞ is the set of all s ∈ [0, 1] for which there exists a sequence tn → +∞ such
that g(tn)→ s as n→ +∞. Given a function f satisfying (1.2), we denote

Mf = max
s∈[0,1]

f ′(s) > 0.

From comparisons with KPP-type nonlinearities, it follows that c∗ ≤ 2
√
Mf , where c∗ is the

minimal speed of travelling fronts with nonlinearity f (see also [8]).
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Theorem 2.7 Let f satisfy (1.2) and (2.13) and let γ1 < γ2 be given in the inter-
val [2

√
Mf ,+∞]. Then there exists a front-like function u0 such that

γ1 = w∗(u0) < w∗(u0) = γ2.

Furthermore, for any c ∈ (γ1, γ2), any x ∈ R and any m ∈ (0, 1), the ω−limit set of the
function t 7→ u(t, ct+x) as t→ +∞ is equal to the whole interval [0, 1] and the ω−limit sets of
the functions t 7→ t−1 minEm(t) and t 7→ t−1 maxEm(t) are equal to the whole interval [γ1, γ2].

The initial data u0 are constructed in such a way that they oscillate as x→ +∞ between the
two exponential functions e−λ1x and e−λ2x on larger and larger space-intervals, with γ1 = cλ1
(or λ1 = λ∗ if γ1 = c∗) and γ2 = cλ2 . The proof then shows that the solution u of (1.1)
oscillates on larger and larger time-intervals between two approximate solutions moving with
speeds close to γ1 and γ2, so that the averaged speeds of the level sets, namely minEm(t)/t
and maxEm(t)/t, oscillate infinitely many times between γ1 and γ2. Therefore, the level sets
do not converge in speed to any real number as t → +∞. It is worth noticing that, for
such monostable problems, this completely new and highly non-trivial oscillating dynamics
is present even in the simplest case of the one-dimensional homogeneous equation (1.1). It
holds for general monostable functions f satisfying (1.2) and (2.13), provided that the chosen
speeds γ1 and γ2 are large enough. Notice that, in the case when f ′(s) ≤ f ′(0), then Mf = f ′(0)
and c∗ = 2

√
Mf , whence the speeds γ1 and γ2 can take any values between c∗ and +∞.

The proofs of the above results rely firstly on the maximum principle and on the con-
struction of suitable sub- and supersolutions for the (1.1). The gaussian decay of the heat
kernel plays a crucial role in Theorem 2.7. We have to estimate sharply the time-depending
behaviour of u(t, x) as x → +∞ and we prove that these tails force the solution to spread
at the desired approximated speeds on large time-intervals. We point out that, even if the
spreading properties are determined through the asymptotic behaviour of u(t, x) as x→ +∞,
that is as u→ 0, the function f does not need to be concave or of the KPP type (1.4).

3 The case when the spreading speed is unique

This section is devoted to the proof of Theorem 2.1 and its corollaries. It is based on the con-
struction of sub- and supersolutions moving asymptotically at the speed cλ, and on the basic
interpretation of the solutions of the linearized problem (3.21) below in terms of the solutions
of the heat equation (2.14).

Proof of Theorem 2.1. Let ε ∈ (0, λ) be arbitrary. As 0 < λ − ε < λ < λ∗, one
has (λ − ε)2 − (λ − ε)c∗ + f ′(0) > 0. In other words, cλ−ε > c∗. As recalled in the in-
troduction, there exists a travelling front solution Ucλ−ε(x − cλ−εt) of (1.1) with speed cλ−ε,
and such that Ucλ−ε(x) ∼ M e−(λ−ε)x as x → +∞, for some M > 0. Since ρ is bounded

and Λ(x)→ λ as x→ +∞, there exists M̃ > 0 such that u0(x) ≤ u0(x) for a.e. x ∈ R, where

u0(x) = min
(
1, M̃ e−(λ−ε)x).

Let now u be the solution of (1.1) with initial condition u0. Because of (1.9), there exists a
real number x2 such that

sup
x∈R

∣∣u(t, x)− Ucλ−ε(x− cλ−εt+ x2)
∣∣→ 0 as t→ +∞.

11



But the maximum principle yields u(t, x) ≤ u(t, x) for all t > 0 and x ∈ R. Thus, for any
c > cλ−ε,

0 ≤ lim sup
t→+∞

(
max
x≥ct

u(t, x)
)
≤ lim sup

t→+∞

(
max
x≥ct

u(t, x)
)

= lim sup
t→+∞

(
max
x≥ct

Ucλ−ε(x− cλ−εt+ x2)
)

= lim sup
t→+∞

Ucλ−ε(ct− cλ−εt+ x2) = 0,

whence w∗(u0) ≤ cλ−ε. By passing to the limit as ε→ 0+, one gets that w∗(u0) ≤ cλ.
In order to prove the left inequality in (2.16), fix an arbitrary ε > 0 such that λ + ε < λ∗

and consider the solution ξ of the linear problem{
∂tξ − ∂xxξ = f ′(0)ξ, t > 0, x ∈ R,
ξ(0, x) = ρ(x) e−(λ+ε)x for a.e. x ∈ R.

(3.21)

From the definition of cλ+ε, the maximum principle yields

ξ(t, x) ≤ ‖ρ‖L∞(R) e
−(λ+ε)(x−cλ+εt) for all t > 0 and x ∈ R. (3.22)

The first key-point here is to observe that the function

(t, x) 7→ e−(λ+ε)(x−cλ+εt)ζ(t, x− 2(λ+ ε)t)

solves (3.21), since ζ solves (2.14). Thus, by uniqueness, one has

ξ(t, x) = e−(λ+ε)(x−cλ+εt)ζ(t, x− 2(λ+ ε)t) for all t > 0 and x ∈ R. (3.23)

Set now P (β) = β2 − βcλ+ε + f ′(0) for all β ∈ R. This function P is decreasing on the
interval [0, λ + ε] since λ + ε > 0 is its smallest simple zero, and one has 2(λ + ε) < cλ+ε.
Remember that s0 ∈ (0, 1), γ > 0 and C > 0 are given in (2.13). Choose θ > 0 and κ ∈ (0, 1]
small enough so that

(1 + γ) (λ+ ε) ≥ λ+ ε+ θ

and
(cλ+ε − 2(λ+ ε)− θ) θ ≥ κγ.

Next, let x1 ≥ max(x0, 0) be chosen so that Λ(x) ≤ λ + ε for a.e. x ≥ x1. Owing to (3.22),
choose now A > 0 large enough so that A ≥ C ‖ρ‖1+γ

L∞(R),

∀ (t, x) ∈ (0,+∞)× R,
(
ξ(t, x) > Ae−(λ+ε+θ)(x−cλ+εt)

)
=⇒

(
x ≥ max(cλ+εt, x1)

)
,

and
κ
(
ξ(t, x)− Ae−(λ+ε+θ)(x−cλ+εt)

)
≤ s0 for all t > 0 and x ∈ R.

Lastly, set
u(t, x) = max

(
0, κ

(
ξ(t, x)− Ae−(λ+ε+θ)(x−cλ+εt)

))
(3.24)
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in [0,+∞)× R. It follows that

sup
(t,x)∈(0,+∞)×R

u(t, x) ≤ s0

and
Ω =

{
(t, x) ∈ (0,+∞)× R, u(t, x) > 0

}
⊂

{
(t, x) ∈ (0,+∞)× R, x ≥ max(cλ+εt, x1)

}
.

Let us then check that u is a subsolution for problem (1.1). When (t, x) ∈ Ω, one has

∂tu(t, x)− ∂xxu(t, x)− f ′(0)u(t, x)

=
(
(λ+ ε+ θ)2 − (λ+ ε+ θ)cλ+ε + f ′(0)

)
κA e−(λ+ε+θ)(x−cλ+εt)

= −(cλ+ε − 2(λ+ ε)− θ) θ κA e−(λ+ε+θ)(x−cλ+εt)

≤ −(cλ+ε − 2(λ+ ε)− θ) θ κA e−(1+γ)(λ+ε)(x−cλ+εt)

≤ −κ1+γAe−(1+γ)(λ+ε)(x−cλ+εt)

≤ −C u(t, x)1+γ

from (3.22) and the choice of ε, κ and A. Therefore,

∂tu− ∂xxu ≤ f(u) in Ω

because of (2.13). It also follows from the definition of ξ(0, ·) and from the choices of x1 and A
and the inequality 0 < κ ≤ 1, that u(0, x) ≤ u(0, x) for a.e. x ∈ R. Summing up, as u = 0
in (0,+∞)× R \ Ω, the function u is a subsolution of (1.1). Thus

u(t, x) ≥ u(t, x) for all (t, x) ∈ (0,+∞)× R (3.25)

from the maximum principle.
Observe now that cλ+ε − 2(λ+ ε) < cλ − 2λ and pick any c such that

cλ+ε − 2(λ+ ε) < c < cλ − 2λ.

From assumption (2.15) and Remark 2.3, there holds

ν := lim inf
t→+∞

(
inf
x≤ct

ζ(t, x)
)
> 0.

Take any B ∈ R such that Ae−θB < ν/2. It follows then from (3.23), (3.24) and (3.25) that

lim inf
t→+∞

u(t, cλ+εt+B)

≥ lim inf
t→+∞

u(t, cλ+εt+B)

≥ κ lim inf
t→+∞

ξ(t, cλ+εt+B)− κA e−(λ+ε+θ)B

= κ e−(λ+ε)B
(

lim inf
t→+∞

ζ(t, cλ+εt− 2(λ+ ε)t+B)− Ae−θB
)

≥ κ e−(λ+ε)B(ν − Ae−θB)

> ω :=
κ ν e−(λ+ε)B

2
> 0.
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On the other hand, the maximum principle implies that lim infx→−∞ u(t, x)≥ θ(t) for all
t > 0, where θ̇(t) = f(θ(t)) in [0,+∞) and θ(0) = lim infx→−∞

(
essinf(−∞,x)u0

)
> 0. Hence,

lim inf
x→−∞

u(t, x) ≥ θ(t) > 0 for all t > 0.

Let T > 0 be such that
u(t, cλ+εt+B) ≥ ω for all t ≥ T.

From the previous arguments and the positivity and continuity of u on (0,+∞) × R, there
holds

inf
x≤cλ+εT+B

u(T, x) > 0.

Set
Q =

{
(t, x) ∈ [T,+∞)× R, x ≤ cλ+εt+B

}
and notice that

α := inf
(t,x)∈∂Q

u(t, x) ∈ (0, 1).

Since f(α) > 0, the weak maximum principle yields u ≥ α in Q. Consider now any real
number c such that c < cλ+ε and assume by contradiction that there exist ε0 > 0 and a
sequence (tn, xn)n∈N in (0,+∞) × R such that tn → +∞ as n → +∞, and xn ≤ ctn and
u(tn, xn) ≤ 1− ε0 for all n ∈ N. Set

vn(t, x) = u(t+ tn, x+ xn).

From the Schauder parabolic estimates, the functions vn converge in C1,2
loc (R × R), up to ex-

traction of a subsequence, to a solution v∞ of

∂tv∞ − ∂xxv∞ = f(v∞) in R× R

such that 0 ≤ v∞ ≤ 1. Moreover, for all (t, x) ∈ R × R, there exist n0 ∈ N large enough so
that (t+ tn, x+xn) ∈ Q for all n ≥ n0, since xn ≤ ctn and c < cλ+ε. Thus v∞ ≥ α in R×R. In
particular, it follows from the maximum principle that v∞(t, x) ≥ ω(t− t0) for all t0 ∈ R and
for all (t, x) ∈ [t0,+∞)×R, where ω̇(t) = f(ω(t)) in [0,+∞) and ω(0) = α. Since ω(+∞) = 1,
one concludes, by passing to the limit as t0 → −∞, that v∞(t, x) ≥ 1 for all (t, x) ∈ R × R,
which contradicts v∞(0, 0) ≤ 1− ε0. Thus,

inf
x≤ct

u(t, x)→ 1 as t→ +∞ for all c < cλ+ε.

Since ε was arbitrarily small, one concludes that w∗(u0) ≥ cλ. The proof of Theorem 2.1 is
thereby complete. �

Proof of Proposition 2.5. It follows from the ideas used in the proof of Theorem 2.1. First,
the beginning of the proof of Theorem 2.1 holds with ε = 0, since Λ(x) = λ on [x0,+∞).
Thus, there is x2 ∈ R such that

lim sup
t→+∞

(
sup
x∈R

(u(t, x)− Ucλ(x− cλt+ x2))
)
≤ 0,
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which yields the right-hand side inequality in (2.18).
To prove the left-hand side inequality in (2.18), notice that the proof of the lower

bound w∗(u0) ≥ cλ of Theorem 2.1 holds good with ε = 0, till the inequality (3.25). Let
now τ > 0 be any positive real number and remember from the assumption (2.17) and Re-
mark 2.3 that η := infx∈R ζ(τ, x) > 0. On the other hand, η′ = infx≤0 u(τ, x) > 0, as noticed
in the proof of Theorem 2.1. Finally, it follows from (3.23), (3.24) and (3.25) that

1 ≥ u(τ, x) ≥ v0(x) := η′1(−∞,0](x)

+ max
(
0, κ η e−λ(x−cλτ) − κA e−(λ+θ)(x−cλτ)

)
1(0,+∞)(x)

≥ 0

for all x ∈ R. Let v denote the solution of (1.1) with initial condition v0. The maximum
principle implies that

u(t, x) ≥ v(t− τ, x) for all t ≥ τ and x ∈ R. (3.26)

But v0 is front-like and v0(x) ∼ η′′ e−λx as x → +∞, with η′′ = κ η eλ cλτ > 0. It follows then
from [24] that there exists x̃1 ∈ R such that v(t, x + cλt) → Ucλ(x + x̃1) uniformly in x ∈ R
as t→ +∞. The inequality (3.26) then gives the left inequality in (2.18) with x1 = x̃1 + cλτ .
The proof of Proposition 2.5 is thereby complete. �

Remark 3.1 If, in Theorem 2.1, one further imposes the condition (2.17), then the argu-
ments used in the proofs of Theorem 2.1 and Proposition 2.5 imply immediately that, for
all ε ∈ (0, λ∗ − λ) and for all t > 0, there is a constant Cε,t > 0 such that

u(t, x) ≥ Cε,t min
(
1, e−(λ+ε)x

)
for all x ∈ R. (3.27)

The comparison principle and the known results [24] then yield w∗(u0) ≥ cλ. Furthermore,
condition (2.15) yields (3.27) as well, at least for t > 0 large enough. Let us sketch the proof.
First, up to replacing ε with ε/2, the proof of Theorem 2.1 implies that

u(t, x) ≥ κ e−(λ+ε/2)(x−cλ+ε/2t)
(
ζ(t, x− (2λ+ ε)t)− Ae−θ(x−cλ+ε/2t)

)
(3.28)

for all t > 0 and x ∈ R, for some κ, A and θ > 0. On the other hand, (2.15) gives the existence
of c, T and η > 0 such that ζ(t, ct) ≥ η for all t ≥ T , that is∫

R
e−z

2

ρ(ct+ z
√

4t) dz ≥ η
√
π for all t ≥ T.

Let D > 0 be such that ‖ρ‖L∞(R)

∫
R\(−D,D)

e−z
2
dz ≤ (η/2)

√
π. Since ρ ≥ 0, it follows that, for

all x ≥ cT (> 0), there holds∫ D

−D
ρ(x+ z

√
4x/c) dz ≥

∫ D

−D
e−z

2

ρ(x+ z
√

4x/c) dz ≥ η

2

√
π. (3.29)

Fix now any β ∈ (0,min(ε/2, θ)) and any t > D2/(βc). For all x ≥ cT , one has

ζ(t, x− (2λ+ ε)t) =
1√
π

∫
R
e−z

2

ρ(x− (2λ+ ε)t+ z
√

4t) dz

=

√
x

πct

∫
R
e−
(

(λ+ε/2)
√
t+y
√
x/(ct)

)2
ρ(x+ y

√
4x/c) dy

≥ η

2

√
x

ct
e−
(

(λ+ε/2)
√
t+D
√
x/(ct)

)2
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because of (3.29) and ρ≥0. Thus,

lim
x→+∞

eβxζ(t, x− (2λ+ ε)t) = +∞ for t >
D2

βc
.

Since u(t,·) is positive and continuous, since lim infx→−∞ u(t, x)>0 and since 0<β<min(ε/2, θ),
it follows then that (3.27) holds for some Cε,t > 0, owing to (3.28), whence w∗(u0) ≥ cλ+ε for
all ε > 0 small enough. Summing up, (2.15) and (2.17) give alternate conditions, which are
expressed directly in terms of simple properties of some solutions of the heat equation, to apply
the known results [24] and get w∗(u0) ≥ cλ. In the proof of Theorem 2.1, this inequality was
shown with another method, which is based directly on comparison principles and Liouville
type results and which does not use [24]. Lastly, notice that the conditions (2.15) or (2.17)
are not equivalent to (3.27). For instance, if ρ(x) > 0, ρ(x) → 0 and | ln(ρ(x))| = o(x)
as x → +∞, then u0 can be written as u0(x) = e−(λ+ε)xρ̃ε(x) for all ε > 0 and a.e. x > x0

where ρ̃ε(x) = e(λ+ε−Λ(x))(x)ρ(x) → +∞ as x → +∞; thus, the arguments above yield (3.27);
but neither (2.17) nor even (2.15) holds, as already observed in Section 2 after Remark 2.3.

Proof of Corollary 2.4. Consider the solution ζ of (2.14), where the function ρ is assumed
to be asymptotically positive in average at +∞, that is there are α>0, β>0 and A>0 such
that

h−1

∫ x+h

x

ρ(z)dz ≥ α for all x ≥ A and h ≥ β
√
x.

Let us now check that lim inft→+∞ ζ(t, ct)>0 for all c>0, which will then yield (2.15) and the
desired conclusion from Theorem 2.1. To do so, set

Rx(y) =

∫ y

x

ρ(z)dx

for all (x, y) ∈ R2, and fix a speed c > 0. For all t > 0, one has

ζ(t, ct) =
1√
4πt

∫
R
e−

y2

4t ρ(ct− y) dy =
1√
4πt

∫
R

y

2t
e−

y2

4t Rct(ct+ y) dy

after integrating by parts (notice that |Rct(ct + y)| = O(|y|) as |y| → +∞ for every t > 0).
Since ρ ≥ 0, one has y Rct(ct+y) ≥ 0 for all t > 0 and y ∈ R, whence, for all t ≥ max(A, x0)/c,

ζ(t, ct) ≥ 1√
4πt

∫ +∞

β
√
ct

y2

ct
e−

y2

4t α dy =
4α

c
√
π

∫ +∞

β
√
c/4

z2 e−z
2

dz.

Since the right-hand side is positive and independent of t, the proof is thereby complete. �

Proof of Corollary 2.6. The same kind of argument as in the proof of Theorem 2.1 implies
that for all ε∈(0, λ∗), one has

w∗(u0) ≥ ε+
f ′(0)

ε
.

We get the conclusion by letting ε→ 0+. �
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4 Complex dynamics and intervals of spreading speeds

This section is devoted to the proof of Theorem 2.7. That is, we construct explicit ex-
amples of front-like initial conditions u0 for which the minimal and maximal spreading
speeds w∗(u0) and w∗(u0) are any two given strictly ordered numbers between 2

√
Mf and +∞,

where Mf = maxs∈[0,1] f
′(s). The constructed functions u0 oscillate at +∞ between two expo-

nentially decaying functions, with different exponential rates. The intervals of oscillation are
larger and larger. They are chosen in such a way that, during some suitable time-intervals and
on some space-intervals, the Gaussian estimates of the difference between the solution u and
two approximated fronts is negligible.

Proof of Theorem 2.7. Let γ1 < γ2 be given in the closed interval [2
√
Mf ,+∞] ⊂ [c∗,+∞].

If γ1 > c∗, let λ1 ∈ (0, λ∗) be such that cλ1 = γ1, that is

λ1 =
γ1 −

√
γ2

1 − 4f ′(0)

2
.

If γ1 = c∗, set λ1 = λ∗. Let also λ2 be the unique real number in [0, λ∗) such that cλ2 = γ2

(with the convention that c0 = +∞). In all cases, there holds

0 ≤ λ2 < λ1 ≤ λ∗.

Let (λ2,n)n∈N be the sequence defined by

∀n ∈ N,

 λ2,n = λ2 if λ2 > 0,

λ2,n =
λ1

n+ 2
if λ2 = 0,

and let (xn)n∈N and (yn)n∈N be any two increasing sequences of positive real numbers such that

0 < xn < yn <
λ1

λ2,n

yn < xn+1 − 1 < xn+1 for all n ∈ N

and
lim

n→+∞

yn
xn

= lim
n→+∞

xn+1

(λ1/λ2,n)yn
= +∞. (4.30)

Typical examples are xn = (2n+n0)! and yn = (2n+1+n0)! if λ2 > 0 (resp. xn = ((2n+n0)!)2

and yn = ((2n+ 1 + n0)!)2 if λ2 = 0), for some large enough integer n0.
Given any such sequences (xn)n∈N and (yn)n∈N, we define the function u0 as follows:

u0(x) =



min(1, e−λ1x) if x < x0,

e−λ1x if xn ≤ x < yn,

e−λ1yn if yn ≤ x <
λ1

λ2,n

yn,

e−λ2,nx if
λ1

λ2,n

yn ≤ x < xn+1 − 1,

e−λ1xn+1

+
(
e−λ2,n(xn+1−1) − e−λ1xn+1

)
(xn+1 − x) if xn+1 − 1 ≤ x < xn+1,
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see the joint figure. The function u0 is thus continuous, front-like in the sense of Defini-
tion 1.1, non-increasing in R, and u0(−∞) = 1. Let u be the solution of (1.1) with the initial
condition u0 and let us check that the conclusion of Theorem 2.7 holds with this u0.

The function u0 oscillates between e−λ1x and e−λ2x (or e−λ2,nx if λ2 = 0) as x→ +∞. It is
also glued between these two exponentially decaying functions between yn and (λ1/λ2,n)yn and
between xn+1− 1 and xn+1 in such a way that it is nonincreasing. This monotonicity property
will be inherited at all positive times, which reduces the level sets Em(t) to singletons (and will
then help in the calculations of their positions). Namely, the strong maximum principle implies
that, for every t > 0, the function u(t, ·) is decreasing on R, and u(t,−∞) = 1, u(t,+∞) = 0.
Therefore, for every t > 0 and m ∈ (0, 1), the level set Em(t) reduces to a singleton

Em(t) =
{
xm(t)

}
.

Furthermore, the functions t 7→ xm(t) are all (at least) of class C1 on (0,+∞) from the implicit
function theorem.

Since u0 is front-like and

e−λ1x ≤ u0(x) ≤ e−λ2x for all x ≥ 0,

it follows from the maximum principle, together with [24] (or Corollary 2.2) and the general
comparisons (1.6), that

γ1 ≤ w∗(u0) ≤ w∗(u0) ≤ γ2.

It also follows from the definitions of the spreading speeds that, for every m ∈ (0, 1),

γ1 ≤ w∗(u0) ≤ lim inf
t→+∞

xm(t)

t
≤ lim sup

t→+∞

xm(t)

t
≤ w∗(u0) ≤ γ2. (4.31)

Next, let u0 and u0 be the two functions defined on R by
u0(x) =

{
1 if x < 0,

e−λ1x if x ≥ 0,

u0(x) =

{
1 if x < 0,

e−λ2,nx if xn ≤ x < xn+1.

(4.32)
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Observe that, if λ2 > 0, then u0(x) = e−λ2x for all x ≥ 0. The function u0 is obviously front-
like, as is the function u0 if λ2 > 0. If λ2 = 0, then λ2,n = λ1/(n + 2), whence λ2,nxn → +∞
as n → +∞ (since xn+1/xn → +∞) and u0(x) → 0 as x → +∞. In other words, the
function u0 is front-like whenever λ2 is positive or 0. Let u and u be the solutions of (1.1) with
initial conditions u0 and u0. Since 0 ≤ u0 ≤ u0 ≤ u0 ≤ 1 on R, the maximum principle yields

0 ≤ u(t, x) ≤ u(t, x) ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ R.

Furthermore, as already recalled in Section 1, it follows from Uchiyama [24] that

sup
x∈R

∣∣u(t, x)− Uγ1(x− γ1t+m1(t))
∣∣→ 0 as t→ +∞, (4.33)

where m1(t)/t → 0 as t → +∞ (moreover, if γ1 > c∗, then m1(t) can be chosen to be a
constant real number x1 in the above formula). Similarly, if γ2 < +∞ (that is, λ2 > 0), then
there exists x2 ∈ R such that

sup
x∈R

∣∣u(t, x)− Uγ2(x− γ2t+ x2)
∣∣→ 0 as t→ +∞. (4.34)

Let us now prove that these two approximated travelling fronts Uγ1(x− γ1t+m1(t))
and Uγ2(x− γ2t+ x2) (if γ2 < +∞) are closer and closer to u on some larger and larger
space-intervals during some larger and larger time-intervals. That will be sufficient to get
the conclusion of Theorem 2.7 (at least if γ2<+∞, the case γ2 =+∞ is analysed separately).

To do so, denote

v = u− u ≥ 0 and w = u− u ≥ 0 on [0,+∞)× R.

Choose any sequences (tn)n∈N and (t′n)n∈N of positive real numbers such that

xn < tn ≤ t′n < yn for all n ∈ N and lim
n→+∞

tn
xn

= lim
n→+∞

yn
t′n

= +∞.

Such sequences exist since yn/xn → +∞ as n → +∞. For instance, a particular choice
is: tn = x1−θ

n yθn and t′n = x1−θ′
n yθ

′
n with 0 < θ ≤ θ′ < 1. We now claim that

max
t∈[tn,t′n]

(
max

x∈
[

(2
√
Mf+ε)t,γt

] v(t, x)
)
→ 0 as n→ +∞ (4.35)

for any two positive real numbers ε and γ such that 2
√
Mf + ε ≤ γ. This property will imply

that the solution u is close to u and then to the approximated front Uγ1(x − γ1t + m1(t)) on
sequences of time-intervals [tn, t

′
n] and on some space-intervals, provided that the ratio between

the position and the time belongs to [2
√
Mf + ε, γ]. Since ε > 0 can be arbitrarily small, the

equality w∗(u0) = γ1 will follow.
In order to prove (4.35), let ε > 0 and γ > 0 be as above and denote, for all n ∈ N,

Eε,γ
n =

{
(t, x) ∈ (0,+∞)× R, tn ≤ t ≤ t′n, (2

√
Mf + ε)t ≤ x ≤ γt

}
.
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Observe that

0 ≤ v(0, x) = u0(x)− u0(x) ≤
∑
n∈N

1[yn,xn+1](x) for all x ∈ R

and that

∂tv(t, x)− ∂xxv(t, x) = f(u(t, x))− f(u(t, x)) ≤Mf v(t, x) for all (t, x) ∈ (0,+∞)× R,

owing to the definition of Mf = maxs∈[0,1] f
′(s) and the nonnegativity of v. The maximum

principle implies then that, for all (t, x) ∈ (0,+∞)× R,

0 ≤ v(t, x) ≤ eMf t

√
4πt

∑
n∈N

∫ xn+1

yn

e−
(x−y)2

4t dy. (4.36)

Then, choose n1 ∈ N such that xn ≤ (2
√
Mf +ε) tn ≤ γ t′n ≤ yn for all n ≥ n1. For any n ≥ n1

and (t, x) ∈ Eε,γ
n , one then has

xn ≤ (2
√
Mf + ε) tn ≤ (2

√
Mf + ε) t ≤ x ≤ γ t ≤ γ t′n ≤ yn,

whence

0 ≤ v(t, x) ≤ eMf t

√
4πt
×
(∫ xn

−∞
e−

(x−y)2
4t dy +

∫ +∞

yn

e−
(x−y)2

4t dy
)

=
eMf t

√
π

∫ xn−x√
4t

−∞
e−z

2

dz +
eMf t

√
π

∫ +∞

yn−x√
4t

e−z
2

dz,

(4.37)

from (4.36). But

xn − x√
4t

≤
xn − (2

√
Mf + ε)t
√

4t
= −

√
t×
(√

Mf +
ε

2
− xn

2t

)
≤ −

√
t×
(√

Mf +
ε

2
− xn

2tn

)
and xn/tn → 0 as n→ +∞. Therefore, there exists n2 ≥ n1 such that

xn − x√
4t
≤ −

√
Mf t ≤ −

√
Mf tn < 0 for all n ≥ n2 and (t, x) ∈ Eε,γ

n .

On the other hand,
∫ +∞
A

e−z
2
dz ≤ e−A

2
/(2A) for all A > 0. Therefore,

eMf t

√
π

∫ xn−x√
4t

−∞
e−z

2

dz ≤ eMf t

√
π
×
∫ −√Mf t

−∞
e−z

2

dz

≤ eMf t

√
π
× e−Mf t√

4Mf t
≤ 1√

4πMf tn

(4.38)

for all n ≥ n2 and (t, x) ∈ Eε,γ
n . As far as the second term in the right-hand side of (4.37) is

concerned, one knows that

yn − x√
4t
≥ yn − γt′n

2
√
t′n
≥ yn

4
√
t′n

for all n large enough,
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since yn/t
′
n → +∞ as n→ +∞. Thus, there exists n3 ≥ n2 such that

eMf t

√
π

∫ +∞

yn−x√
4t

e−z
2

dz ≤ eMf t
′
n

√
π

∫ +∞

yn

4
√
t′n

e−z
2

dz ≤ eMf t
′
n

√
π
× e−

y2n
16 t′n × 2

√
t′n

yn
(4.39)

for all n ≥ n3 and (t, x) ∈ Eε,γ
n . Combining (4.37), (4.38) and (4.39), one infers that

max
(t,x)∈Eε,γn

v(t, x) ≤ 1√
4πMf tn

+
eMf t

′
n

√
π
× e−

y2n
16 t′n × 2

√
t′n

yn

for all n ≥ n3. But the right-hand side converges to 0 as n→ +∞, since tn, yn/t
′
n and yn/

√
t′n

all converge to +∞ as n→ +∞. This provides (4.35).
Putting together (4.33), (4.35) and the fact that Uγ1(+∞) = 0, it follows that, for all A ∈ R

and (2
√
Mf ≤) γ1 < c < γ, there holds

max
t∈[tn,t′n]

(
max

x∈[ct+A,γt]
u(t, x)

)
→ 0 as n→ +∞.

In particular,

max
t∈[tn,t′n]

u(t, ct+ x)→ 0 as n→ +∞ for all c > γ1 and x ∈ R. (4.40)

Since u(t, ·) is decreasing for all t > 0, one actually gets that

max
t∈[tn,t′n]

(
max

x∈[ct+A,+∞)
u(t, x)

)
→ 0 as n→ +∞

for all A ∈ R and c > γ1. Therefore, for all m ∈ (0, 1), lim inft→+∞ xm(t)/t ≤ γ1 and eventually

lim inf
t→+∞

xm(t)

t
= γ1 (4.41)

because of (4.31). Furthermore, w∗(u0) ≤ γ1, and (4.31) also yields the equality w∗(u0) = γ1.
Let us now prove that w∗(u0) = γ2 and lim supt→+∞ xm(t)/t = γ2 for all m ∈ (0, 1).

Remember the definition of u0 in (4.32), and that w = u− u ≥ 0 in [0,+∞)×R. Choose any
sequences (τn)n∈N and (τ ′n)n∈N of positive real numbers such that

λ1

λ2,n

yn < τn ≤ τ ′n < xn+1 − 1 for all n ∈ N

lim
n→+∞

τn
(λ1/λ2,n)yn

= lim
n→+∞

xn+1

τ ′n
= +∞.

Such sequences exist because of (4.30). Since w(0, ·) = u0 − u0 = 0 on all the inter-
vals [(λ1/λ2,n)yn, xn+1 − 1] for all n ∈ N, the same arguments as for the function v imply
that

max
t∈[τn,τ ′n]

(
max

x∈
[

(2
√
Mf+ε)t,γt

] w(t, x)
)
→ 0 as n→ +∞ (4.42)

for any two positive real numbers ε and γ such that 2
√
Mf + ε ≤ γ.
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Consider first the case γ2 < +∞ (that is, λ2 > 0). It follows then from (4.34), (4.42)
and Uγ2(−∞) = 1 that, for all A ∈ R and for all 2

√
Mf < c′ < c < γ2, there holds

min
t∈[τn,τ ′n]

(
min

x∈[c′t,ct+A]
u(t, x)

)
→ 1 as n→ +∞.

Since u(t, ·) is decreasing for all t > 0, one actually gets that

min
t∈[τn,τ ′n]

(
min

x∈(−∞,ct+A)
u(t, x)

)
→ 1 as n→ +∞

for all A ∈ R and c < γ2. In particular,

min
t∈[τn,τ ′n]

u(t, ct+ x)→ 1 as n→ +∞ for all c < γ2 and x ∈ R. (4.43)

Furthermore, for all m ∈ (0, 1), lim supt→+∞ xm(t)/t ≥ γ2, whence lim supt→+∞ xm(t)/t = γ2

because of (4.31). Eventually, w∗(u0) ≥ γ2, and (4.31) yields w∗(u0) = γ2.
Lastly, consider the case γ2 = +∞ (that is, λ2 = 0). Let η be any real number in

the interval (0, λ∗). Let nη ∈ N be such that 0 < λ2,n < η for all n ≥ nη. Define the
function uη0 : R→ [0, 1] by

uη0(x) =



1 if x < 0,

0 if 0 ≤ x <
λ1

λ2,nη

ynη ,

e−ηx if
λ1

λ2,n

yn ≤ x < xn+1 − 1 with n ≥ nη,

0 if xn+1 − 1 ≤ x <
λ1

λ2,n+1

yn+1 with n ≥ nη.

From the choice of nη and u0, one has u0 ≥ uη0 on R, whence

u(t, x) ≥ uη(t, x) for all t > 0 and x ∈ R (4.44)

from the maximum principle, where uη denotes the solution of the equation (1.1) with initial
condition uη0. Define now

uη0(x) =


1 if x <

λ1

λ2,nη

ynη ,

e−ηx if x ≥ λ1

λ2,nη

ynη

and let uη be the solution of problem (1.1) with initial condition uη0. Since uη0 ≥ uη0 on R, the
maximum principle yields

wη(t, x) = uη(t, x)− uη(t, x) ≥ 0 for all t > 0 and x ∈ R.

Furthermore, since uη0 = uη0 on the intervals
[
(λ1/λ2,n)yn, xn+1 − 1

)
for all n ≥ nη, the same

arguments as above imply that

max
t∈[τn,τ ′n]

(
max

x∈
[

(2
√
Mf+ε)t,γt

] wη(t, x)
)
→ 0 as n→ +∞
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for all ε > 0 and γ < +∞ such that 2
√
Mf + ε ≤ γ. On the other hand, because of

Uchiyama [24], there exists xη ∈ R such that

sup
x∈R

∣∣uη(t, x)− Ucη(x− cηt+ xη)
∣∣→ 0 as t→ +∞,

where cη = η + f ′(0)/η. Since Ucη(−∞) = 1, one then infers that

min
t∈[τn,τ ′n]

(
min

x∈[c′t,ct+A]
uη(t, x)

)
→ 1 as n→ +∞

for all A ∈ R and 2
√
Mf < c′ < c < cη. Remember now that u ≥ uη from (4.44) and

that u(t, ·) is decreasing for all t > 0. Therefore,

min
t∈[τn,τ ′n]

(
min

x∈(−∞,ct+A]
u(t, x)

)
→ 1 as n→ +∞ (4.45)

for all A ∈ R and c < cη. Since η ∈ (0, λ∗) can be chosen arbitrarily small and cη → +∞
as η → 0+, it follows that (4.45) holds for all c ∈ R and A ∈ R. In particular,

min
t∈[τn,τ ′n]

u(t, ct+ x)→ 1 as n→ +∞ for all c < +∞ and x ∈ R. (4.46)

Moreover, lim supt→+∞ xm(t)/t = +∞ for all m ∈ (0, 1) and w∗(u0) = +∞.
As a conclusion, whenever γ2 is finite or +∞, there always holds w∗(u0) = γ2,

and lim supt→+∞ xm(t)/t = γ2 for all m ∈ (0, 1). Because of (4.41), one concludes that,
for all m ∈ (0, 1), the ω-limit set of the (continuous on (0,+∞)) function t 7→ xm(t)/t
is equal to the whole interval [γ1, γ2]. Lastly, the limits (4.40), (4.43) and (4.46) imply
that, for all c ∈ (γ1, γ2) and x ∈ R, the ω-limit set of the (continuous on (0,+∞)) func-
tion t 7→ u(t, ct+ x) is equal to the whole interval [0, 1]. The proof of Theorem 2.7 is thereby
complete. �

Remark 4.1 If γ1 > c∗, then the quantity m1(t) appearing in (4.33) can be chosen to be
a constant real number x1. Together with the inequality u ≥ u and formula (4.43) applied
with c = γ1 < γ2, it follows that, for each x ∈ R, the ω-limit set of the function t 7→ u(t, γ1t+x)
is equal to the interval [Uγ1(x+ x1), 1]. Similarly, if γ2 < +∞, then (4.34) and formula (4.40)
applied with c = γ2 > γ1 imply that, for each x ∈ R, the ω-limit set of the function
t 7→ u(t, γ2t+ x) is equal to the interval [0, Uγ2(x+ x2)].

Remark 4.2 The complex dynamics shown in Theorem 2.7 for the nonlinear equation (1.1)
resembles that already known for the pure heat equation ∂tζ = ∂xxζ. Namely, there are
initial conditions ζ0 ∈ L∞(R), which oscillate between essinfRζ0 and esssupRζ0 on larger and
larger intervals, and for which the ω-limit set of the function t 7→ ζ(t, x) is equal to the whole
interval [essinfRζ0, esssupRζ0] for each x ∈ R. This phenomenon was first pointed out by Collet
and Eckmann [5]. Somehow, for the nonlinear equation (1.1), the complex dynamics appears
when the initial condition u0 oscillates on larger and larger intervals between two exponentially
decaying functions with different decay rates. For such u0, the proof of Theorem 2.7 shows
that the solution u oscillates between the two nonlinear travelling fronts whose speeds are
different and associated to the two decay rates of u0. Related complex behaviours have also

23



been exhibited for reaction-diffusion equations in bounded domains [19], or in RN [20] with
power-like nonlinearities, where the ω-limit set may be a continuum of equilibria. For (1.1)
in RN with N ≥ 2 and bistable nonlinearities f for which both 0 and 1 are stable, the ω-limit
set may be a continuum of translates of the same travelling front [21], the speed being unique
in this case. Lastly, we refer to [10] for some recent convergence and non-convergence results
to a unique or an interval of speeds of travelling fronts connecting 1 to any constant in [0, θ]
for problem (1.1) with combustion-type nonlinearities f vanishing on [0, θ] with θ ∈ (0, 1).

Acknowledgements. The authors acknowledge the anonymous reviewers for their valuable
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