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Abstract

Let Q be a bounded C? domain in R”, where n is any positive integer, and let Q* be
the Euclidean ball centered at 0 and having the same Lebesgue measure as 2. Consider
the operator L = —div(AV) +v -V + V on Q with Dirichlet boundary condition, where
the symmetric matrix field A is in W1H*°(Q), the vector field v is in L°(Q,R") and V is a
continuous function in Q. We prove that minimizing the principal eigenvalue of L when
the Lebesgue measure of € is fixed and when A, v and V vary under some constraints
is the same as minimizing the principal eigenvalue of some operators L* in the ball *
with smooth and radially symmetric coefficients. The constraints which are satisfied by
the original coefficients in €2 and the new ones in Q* are expressed in terms of some
distribution functions or some integral, pointwise or geometric quantities. Some strict
comparisons are also established when (2 is not a ball. To these purposes, we associate to
the principal eigenfunction ¢ of L a new symmetric rearrangement defined on 2*, which
is different from the classical Schwarz symmetrization, and which preserves the integral of
div(AV ) on suitable equi-measurable sets. A substantial part of the paper is devoted to
the proofs of pointwise and integral inequalities of independent interest which are satisfied
by this rearrangement. The comparisons for the eigenvalues hold for general operators of
the type L and they are new even for symmetric operators. Furthermore they generalize,
in particular, and provide an alternative proof of the well-known Rayleigh-Faber-Krahn
isoperimetric inequality about the principal eigenvalue of the Laplacian under Dirichlet
boundary condition on a domain with fixed Lebesgue measure.
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1 Introduction

Throughout all the paper, we fix an integer n > 1 and denote by a,, = 7"/2/T'(n/2 + 1) the
Lebesgue measure of the Euclidean unit ball in R”. By “domain”, we mean a non-empty open
connected subset of R”, and we denote by C the set of all bounded domains of R™ which are
of class C2. Throughout all the paper, unless otherwise specified, 2 will always be in the class
C. For any measurable subset A C R™, |A| stands for the Lebesgue measure of A. If Q2 € C,
Q" will denote the Euclidean ball centered at 0 such that

7] = 19].

Define also C_’(ﬁ) (resp. C(©,R")) the space of real-valued (resp. R"-valued) continuous
functions on €. For all x € R™ \ {0}, set

er(x) = —, (1.1)



where |z| denotes the Euclidean norm of . Finally, if Q € C, if v : Q@ — R™ is measurable and
if 1 < p < +oo, we say that v € LP(Q,R") if |v| € LP(Q2), and write (somewhat abusively)
[0l or [0l zr(eugn) nstead of [[o]] s

Various rearrangement techniques for functions defined on §2 were considered in the litera-
ture. The most famous one is the Schwarz symmetrization. Let us briefly recall what the idea
of this symmetrization is. For any function u € L'(€2), denote by p, the distribution function
of u, given by

pa(t) = {z € Q; u(z) > t}

for all t € R. Note that p is right-continuous, non-increasing and f,,(t) — 0 (resp. g, (t) — |©2])
as t — +oo (resp. t — —o0). For all x € Q*\{0}, define

U*(I) = sup {t eR; ,uu(t) > |x|n}
The function u* is clearly radially symmetric, non-increasing in the variable |z| and it satisfies
{z €@ u(z) >} = {z e, v(z) >}

for all ¢ € R. An essential property of the Schwarz symmetrization is the following one: if

u € H(Q), then |ul* € H}(Q*) and (see [39])
Hul*ll 2@y = llull 2@y and V]l poqe) < VUl 2q) - (1.2)

One of the main applications of this rearrangement technique is the resolution of optimization
problems for the eigenvalues of some second-order elliptic operators on 2. Let us briefly recall
some of these problems. If \;(€2) denotes the first eigenvalue of the Laplace operator in 2 with
Dirichlet boundary condition, it is well-known that A;(€2) > A;(Q*) and that the inequality is
strict unless €2 is a ball (remember that 2 is always assumed to be in the class C). Since \;(Q2*)
can be explicitly computed, this result provides the classical Rayleigh-Faber-Krahn inequality,

which states that

2/n
Amnzhmw:(éo 02 Gurs1a), (1.3)

where j,,1 the first positive zero of the Bessel function J,,. Moreover, equality in (1.3) is
attained if and only if 2 is a ball. This result was first conjectured by Rayleigh for n = 2
([40] pp. 339-340), and proved independently by Faber ([19]) and Krahn ([28]) for n = 2, and
by Krahn for all n in [29] (see [30] for the English translation). The proof of the inequality
A1(2) > A (Q%) is an immediate consequence of the following variational formula for A;(€2):

\Vo(z)| dx

A(©) =  min (1.4)

Q
ve HE ()\{0} /|v(x)|2dx ’
Q

and of the properties (1.2) of the Schwarz symmetrization.
Lots of optimization results involving other eigenvalues of the Laplacian (or more general
elliptic symmetric operators of the form —div(AV)) on © under Dirichlet boundary condition
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have also been established. For instance, the minimum of A2(€2) (the second eigenvalue of
the Laplace operator in €2 under Dirichlet boundary condition) among bounded open sets of
R™ with given Lebesgue measure is achieved by the union of two identical balls (this result is
attributed to Szegd, see [37]). Very few things seem to be known about optimization problems
for the other eigenvalues, see [17, 23, 37, 38, 47]. Various optimization results are also known for
functions of the eigenvalues. For instance, it is proved in [5] that Aa(£2)/A1(€2) < Ao(2%)/A1(Q*),
and the equality is attained if and only if € is a ball. The same result was also extended in [5]
to elliptic operators in divergence form with definite weight. We also refer to [6, 7, 9, 12, 18,
26, 27, 31, 32, 35, 36, 38] for further bounds or other optimization results for some eigenvalues
or some functions of the eigenvalues in fixed or varying domains of R” (or of manifolds).

Other boundary conditions may also be considered. For instance, if ps(£2) is the first
non-trivial eigenvalue of —A under the Neumann boundary condition, then ps(Q2) < po(2%)
and the equality is attained if, and only if, © is a ball (see [42] in dimension n = 2, and
[46] in any dimension). Bounds or optimization results for other eigenvalues of the Laplacian
under Neumann boundary condition ([38, 42, 46], see also [10] for inhomogeneous problems),
for Robin boundary condition ([15]) or for the Stekloff eigenvalue problem ([16]) have also
been established. We also mention another Rayleigh conjecture for the lowest eigenvalue of
the clamped plate. If Q C R?, denote by A;(2) the lowest eigenvalue of the operator A%
so that A%u; = Ay (Q)uy in Q with u; = v - Vuy; = 0 on 99, where u; denotes the principal
eigenfunction and v denotes the outward unit normal on 0f2. The second author proved in
[33] that A;(£2) > Ay(Q2*) and that equality holds if and only if € is a ball, that is a disk in
dimension n = 2. The analogous result was also established in R? in [8], while the problem is
still open in higher dimensions. Much more complete surveys of all these topics can be found
in [11, 23, 24].

It is important to observe that the variational formula (1.4) relies heavily on the fact that
—A is symmetric on L?(2). More generally, all the optimization problems considered hitherto
concern symmetric operators, and their resolution relies on a “Rayleigh” quotient (that is, a
variational formula similar to (1.4)) and the Schwarz symmetrization. Before going further, let
us recall that other rearrangement techniques than the Schwarz symmetrization can be found
in the literature. For instance, even if this kind of problem is quite different from the ones we
are interested in for the present paper, the Steiner symmetrization is the key tool to show that,
among all triangles with fixed area, the principal eigenvalue of the Laplacian with Dirichlet
boundary condition is minimal for the equilateral triangle (see [39]). Steiner symmetrization
is indeed relevant to take into account the polygonal geometry of the domain.

A natural question then arises: can inequalities on eigenvalues of non-symmetric opera-
tors be obtained ? In view of what we have just explained, such problems require different
rearrangement techniques.

Actually, even for symmetric operators, some optimization problems cannot be solved by
means of the Schwarz symmetrization, and other rearrangements have to be used. For instance,
consider an operator L = —div(AV) on a domain €2 under Dirichlet boundary condition.
Assume that A(z) > A(z)ld on Q in the sense of quadratic forms (see below for precise
definitions; Id denotes the n x n identity matrix) for some positive function A, and that the L!
norm of A~! is given. Then, what can be said about the infimum of the principal eigenvalue of
L under this constraint ? In particular, is this infimum greater than the corresponding one on



Q*, which is a natural conjecture in view of all the previous results 7 Solving such a problem,
which is one of our results in the present paper, does not seem to be possible by means of a
variational formula for \; (although the operator L is symmetric in L*(Q)) and the Schwarz
or Steiner symmetrizations.

More general constraints (given distribution functions; integral, pointwise or geometric
constraints) on the coefficients A, v and V' of non-symmetric operators L of the type L =
—div(AV)+v-V +V under Dirichlet boundary condition will also be investigated. In general,
the operator L is non-symmetric, and there is no simple variational formulation of its first
eigenvalue such as (1.4) —min-max formulations of the pointwise type (see [14]) or of the
integral type (see [25]) certainly hold, but they do not help in our context.

The purpose of the present paper is twofold. First, we present a new rearrangement tech-
nique and we show some properties of the rearranged function. The inequalities we obtain
between the function in 2 and its symmetrization in (2* are of independent interest. Then,
we show how this technique can be used to cope with new comparisons between the principal
eigenvalues of general non-symmetric elliptic operators of the type —div(AV) 4+ v -V + V in
2 and of some symmetrized operators in 2*. Actually, the comparisons we establish are new
even when the operators are symmetric or one-dimensional.

2 Main results

Let us now give precise statements. We are interested in operators of the form
L=—div(AV)+v-V+V

in € C under Dirichlet boundary condition.

Throughout the paper, we denote by S, (R) the set of n x n symmetric matrices with real
entries. We always assume that A : Q — S,(R) is in WH*(Q). This assumption will be
denoted by A = (a;;)1<ij<n € WH*(Q,S,(R)): all the components a;; are in Wh*(Q) and
they can therefore be assumed to be continuous in Q up to a modification on a zero-measure
set. We set

1Al @5, = max flaigllw=(

where

Lo ()

‘ 0%]-

wiee@) = @il zoe ) + Z

1<k<n

Ha’i»j axk

We always assume that A is uniformly elliptic on Q, which means that there exists § > 0 such
that, for all z € Q2 and for all £ € R",

A(z)E-€> 8¢

For B = (b;j)i<ij<n € Sh(R), £ = (&,...,&) € R" and & = (&],...,&,) € R”, we denote
BE-& =) 1< i< bij€;& Actually, in some statements we compare the matrix field A with a
matrix field of the type x — A(z)Id. We call

LE(Q) = {A € L=(Q), essﬂinf./\ > 0},
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and, for A € Wh>(Q,S,(R)) and A € L(Q2), we say that A > A Id almost everywhere (a.e.)
in € if, for almost every x € Q,

VEER", Al@)E-€ > Aw)[¢f.

For instance, if, for each 2 € Q, A[A](z) denotes the smallest eigenvalue of the matrix A(z),
then A[A] € L (€2) and there holds A(x) > A[A](x)Id (this inequality is actually satisfied for
all x € Q).

We also always assume that the vector field v is in L>(£2, R™) and that the potential V' is
in L>°(€2). In some statements, V will be in the space C'(9) of continuous functions on €.

Denote by A1 (€2, A, v, V) the principal eigenvalue of L = —div(AV)+v-V+V with Dirichlet
boundary condition on 2, and g 4, v the corresponding (unique) nonnegative eigenfunction
with L>-norm equal to 1. Recall that the following properties hold for ¢q 4,1 (see [14]):

—div (AVepqasv) +v-Veagasy +Veaaey = M(Q,A,0,V)pqa,.yv in Q,
(2.1)
©o,a0yv > 010 Q, ©q 4.y =0 on 08, ||SOQ,A,v,V||Loo(Q) =1L

and g a0y € W?P(Q) for all 1 < p < +o0o by standard elliptic estimates, whence pq 4.y €
CH(Q) for all 0 < a < 1. Recall also that A\;(Q, A,v,V) > 0 if and only if the operator L
satisfies the maximum principle in €2, and that the inequality

AM(2,A,0,V) > essQinf V

always holds (see [14] for details and further results).

We are interested in optimization problems for A\; (2, A, v, V') when Q, A,v and V' vary and
satisfy some constraints. Our goal is to compare (€2, A, v, V') with the principal eigenvalue
A1 (92, A% v*, V*) for some fields A*, v* and V* which are defined in the ball Q* and satisfy the
same constraints as A, v and V. The constraints may be of different types: integral type, L>
type, given distribution function of V', or bounds on the determinant of A and on another
symmetric function of the eigenvalues of A. Throughout the paper, we denote

s~ = max(—s,0) and sT = max(s,0) for all s € R.

2.1 Constraints on the distribution function of V- and on some
integrals involving A and v

We fix here the L' norms of A™! and |v[*A™!, some L* bounds on A and v, as well as the
distribution function of the negative part of V', under the condition that A;(Q2, A,v,V) > 0.
Then we can associate some fields A*, v* and V* satisfying the same constraints in €2*, and
for which the principal eigenvalue is not too much larger that A\ (2, A,v, V), with the extra
property that A*, |v*| and V* are smooth and radially symmetric.

Theorem 2.1 Let Q € C, A € WH*(Q,S,(R)), A € LY(Q), v € L¥(Q,R") and V € C().
Assume that A > A 1d a.e. in Q, and that \{(2, A,v, V) > 0. Then, for all € > 0, there exist
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three radially symmetric C=(QF) fields A* > 0, w* > 0 and V' < 0 such that, for v* = w*e,
in 2\ {0},
essﬂinf A < min A* <max A" <esssup A, ||(A*)_1||L1(Q*) = HA‘1||L1(Q),
o o Q
10" [[ Lo (@ mmy < ollzoerny, || 10 PA) " Hlz@s = I [WPATH pye), (2.2)
Ky = Hw™y- < pv-,

and

A (5 AT, 0", V) < A (Q, A0, V) +e. (2.3)

There also exists a nonpositive radially symmetric L>(Q*) field V* such that py~ = p_y-,
V<V <0 in Q and A\ (Q*, A*Id, v*, V*) < M\ (Q, A*Id, 0", V) < M(Q, A, 0, V) +¢.

If one further assumes that A is equal to a constant v > 0 in §2, then there exist two radially
symmetric bounded functions wg > 0 and Vi < 0 in 0 such that, for vy = wye,,

V5[ Lo rry < [[v][zoo@rnys (V5] L2 r) < (V]| 22(RR),
4
—max V"~ <V <0 ae in QY ||V |ler@s) S|V e for all 1 < p < 400, (2.4)
Q

and

A (0, AId, v, V) < A, A, v, V). (2.5)

Remember (see [14]) that the inequality A\ (Q, A, v, V) > A\ (Q, A, v, =V ) always holds.
This is the reason why, in order to decrease A;(2, A, v, V'), the rearranged potentials had better
be nonpositive in 2%, and only the negative part of V' plays a role. Notice that the quantities
such as the integral of A=!, which are preserved here after symmetrization, also appear in other
contexts, like in homogenization of elliptic or parabolic equations.

In the case when A is a constant, then the number € can be dropped in (2.3). The price to
pay is that the new fields in 2* may not be smooth anymore and the distribution function of
the new potential V| in " is no longer equal to that of =V ~.

However, in the general case, neither A is constant in {2 nor A* is constant in * (see
Remark 5.5 for details). For instance, as already underlined, an admissible A is the continuous
positive function A[A], which is not constant in general. Actually, even in the case of operators
L which are written in a self-adjoint form (that is, with v = 0), the comparison result stated
in Theorem 2.1 is new.

An optimization result follows immediately from Theorem 2.1. To state it, we need a few
notations. Given

m >0, My>my >0, ac {_ﬂﬂ} M, >0, T€ [O,aﬁi], My >0 (2.6)
LN
and
n € Fomr,(m) = {p:R—[0,m], pis right-continuous, non-increasing,

p=mon (—00,0), p=0on [My,+o0)},



we set, for all open set Q2 € C such that || =

Oxty iy odTo 3y u(Q) = {(4,0,V) € WH(Q, 8, (R)) x L=(Q,R") x C(Q);
JAe LF(Q), A>Aldae. in (Q,

my < essginf A< essgsup A< My, ||A_

||U||L°°(Q,R") S Mm |||U|2A71||L1(Q) =7 and Wy - S Iu}

1HL1(Q) =

and
ANy s ¥ o Wy (§2) = inf M(Q,A,0, V). (2.7)

(A,’U,V)GgﬁA mp o, My, 7, My, ()

Notice that, given p € Fy 37, (m) and Q € C such that [Q = m, there exists V € C(Q) such
that py- < p (for instance, V' = 0 is admissible; furthermore, there is V' € L>(Q) such that
- = p, see Appendix 7.2), and, necessarily, V' > —My in €. It is immediate to see that,
under the conditions (2.6), each set Gyz, . o 37, 777, ,(¢2) is not empty.

Corollary 2.2 Let m, My, my, a, My, 7, My be as in (2.6), pu € Fy37, (m) and Q* be the
Euclidean ball centered at the origin such that || = m. If g7, o o037, 757, ., (§2) = 0 for all
Q € C such that |Q2] = m, then

Qecrfllléllzm AMAvaﬁ!,Mu,T,MVyM(Q) = AMA,mA’a7MU ?7—7MV7N(Q*)' (28)

Furthermore, in the definition of sz, v, o5, -1y ,.(27) tn (2.7), the data A, v and V' can be
assumed to be such that A = A 1d, v = we, = [vle, and V < 0 in Q*, where A, w and V are
C>®(Q*) and radially symmetric.

Let us now discuss about the non-negativity condition (€2, A,v, V) > 0 in Theorem 2.1,
as well as that of Corollary 2.2. We recall (see [14]) that

AM(Q,A,0,V)>min V.
9)

Therefore, the condition A\;(€2, A,v,V) > 0 is satisfied in particular if V' > 0 in Q, and the
condition Ayz, . o077, r37y,.(§2) = 0 in Corollary 2.2 is satisfied if My = 0. Another more
complex condition which also involves A and v can be derived. To do so, assume A > A Id
a.e. in  with mp := ess infq A > 0, and call M, = ||v]|s and my = ming V. Multiply by
© = @ a0y the equation (2.1) and integrate by parts over €. It follows that, for all 5 € (0, 1],

(A, V) / IS / A[Vgl? - / o] [Vl ¢+ my /
Q Q
> (1-5) / AV +my / / [0PA1
Q Q

> (1= B)ymara(Q) +my — (48ma) M) / 2,

where /\1(9) = Al(Q,Id,0,0) = Hlin(ée[{&(ﬂ)7 llplla=1 fQ |v¢|2 If Mv > 0 and ma )\1(9) Z ]\41)7
then the value g = M, /(2ma+/A1(2)) € (0, 1] gives the best inequality, that is A; (2, A, v, V') >
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my ++/A1(Q)(ma+/A1(2)—M,). The same inequality also holds from the previous calculations
if M, = 0. Therefore, the following inequality always holds:

AM(Q, A0, V) > my + /A1(2) x max(0, mpa/ A1 () — M,).
As a consequence, under the notations of Corollary 2.2, it follows from (1.3) that

Aﬁmmmmﬁvmﬁvw(Q) > —My + mfl/n@}/n]’nm—m X maX(OamAmil/nO‘}l/n]’nﬂ—l,l — M,)

for all 2 € C such that [Q2] = m. The conclusion of Corollary 2.2 is then true if the right-hand
side of the above inequality is nonnegative. In particular, for given n € N\{0}, m, > 0,
M, >0 and My > 0, this holds if m > 0 is small enough.

To complete this section, we now give a more precise version of Theorem 2.1 when €2 is not
a ball.

Theorem 2.3 Under the notation of Theorem 2.1, assume that 2 € C is not a ball and let
My>0,my >0, M, >0 and My > 0 be such that

||A||W1,00(Q78n(R)) S MA, eSSQiIlfA Z mA7 ||U||LOO(Q’RTL) S Mv and ||V||LOO(Q’R) S Mv. (29)

Then there exists a positive constant § = 0(,n, M s, my, M,, My) > 0 depending only on
Q, n, Ma, my, M, and My, such that if \\(Q, A,v,V) > 0, then there exist three radially
symmetric C*° (V) fields A* > 0, w* >0, V' < 0 and a nonpositive radially symmetric L ()

field V*, which satisfy (2.2), py+ = p_y—, V* < V" <0 and are such that
—x M (Q,A
AL (QF, AT, v*, V*) < A (QF, A*Id, 0", V) < %

where v* = w¥e, in Q*\{0}.

_ Notice that the assumption A > A Id a.e. in {2 and the bounds (2.9) imply necessarily that
Ma > my.

2.2 Constraints on the determinant and another symmetric func-
tion of the eigenvalues of A

For our second type of comparison result, we keep the same constraints on v and V as in
Theorem 2.1 but we modify the one on A: we now prescribe some conditions on the determinant
and another symmetric function of the eigenvalues of A. We assume in this subsection
that n > 2. If A € S,(R), if p € {1,...,n — 1} and if \[4] < --- < A\,[4] denote the

eigenvalues of A, then we call

o,(A) = > (H by [A]) .

Ic{l,..n}, card()=p \i€l

Throughout the paper, the notation card(/) means the cardinal of a finite set I. If A is
nonnegative, it follows from the arithmetico-geometrical inequality that CP x (det(A))P/" <
o,(A), where C? is the binomial coefficient C? = n!/(p! x (n — p)!).

Our third result is as follows:



Theorem 2.4 Assumen > 2. Let Q € C, A € Wh°(Q,S,(R)), v € L*(Q,R"), V € C(Q)
and let p € {1,...,n—1}, w > 0 and o > 0 be given. Assume that A > ~vId in Q for some

constant v > 0, that _
det(A(z)) > w, o,(A(x)) <o for all z € 1, (2.10)

and that A\ (2, A,v,V) > 0. Then, there are two positive numbers 0 < a; < ag which
only depend on n, p, w and o, such that, for all ¢ > 0, there ewxist a matriz field A* €
C=(Q*\{0},S,(R)), two radially symmetric C*°(Q*) fields w* > 0 and V' < 0, and a nonpo-
sitive radially symmetric L>(Q*) field V*, such that, for v* = w*e, in Q*\{0},

A>ald in Q, A* > aild in QF,
det(A*(z)) = w, 0,(A*(x)) = o for all z € Q*\{0},

o (2.11)

|L°°(Q*,]R") < |U||L°°(Q,R")7 ||U*||£i(9*,R”) = ||U||L2(QVR")’

and
A (QF, A% 0% V) < A (QF, A5 0", V) < M(Q, A, 0, V) + e

Furthermore, the matriz field A* is defined, for all x € Q*\{0}, by:
A*(2)z - = ay|x* and A*(2)y -y = as|y|* for all y L x.

Lastly, there exist two radially symmetric bounded functions wg > 0 and Vi < 0 in Q* satisfying
(2.4) and A\ (25, A% 05, Vi) < M (Q, A v, V), where vf = wie, in QF.

Remark 2.5 Notice that the assumptions of Theorem 2.4 imply necessarily that CPw?/™ < ¢.
Actually, the matrix field A* cannot be extended by continuity at 0, unless a; = as, namely
CPwP/™ = o. As a consequence, A* is not in W= (Q* S, (R)) if CEwP/™ # o, but we can still
define A\ (Q*, A* v*, V*). Indeed, for A = a;Id in Q*, the principal eigenfunction * (resp.
©*) of the operator —div(A*V) + v* -V + V' (resp. —div(A*V) + v* - V 4+ V*) is radially
symmetric and belongs to all WP (Q*) spaces for all 1 < p < +oc. Hence,

AVE = A'VE = Ve

(resp. A*V* = A*Vp* = a;V*). With a slight abuse of notation, we say that p* (resp. ¢”)
is the principal eigenfunction of —div(A*V) +v* -V 4V (resp. —div(A*V) +v* -V + V*)
and we call o B o
A(QF, A% 0" V) = A (0, A% 0", V)
(resp. AL(QF, A% v*, V*) = A (QF, A% 0%, V™).
An interpretation of the conditions (2.10) is that they provide some bounds for the local
deformations induced by the matrices A(z), uniformly with respect to x € 2. Notice that

these constraints are saturated for the matrix field A* in the ball Q*.
As for Theorem 2.1, an optimization result follows immediately from Theorem 2.4.
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Corollary 2.6 Assumen >2. Givenm >0,p€{l,...,n—1},w >0,0 > CPwP/™ M, >0,
7€ [0,/m x M), My >0 and p € Fy37, (m), we set, for all Q@ € C such that || =
gl

pwon TM\/M

Q) = {(4v,V) e Wh(Q,S,(R)) x L=(L,R") x C(Q);
37 >0, A(z) > ~Id for all z € Q,
det(A(x)) > w, 0,(A(x)) <o forallz € Q,

[l @) < Mo, ol zony = ™ and - < p}

and

N Q) = inf A (2, A0, V).
_pwaMUTMVM( ) (A7U7V)EQ;MJ’O.’MU’T’MV’H(Q) 1( )

IfX oty r ity () =0 for all Q € C such that |Y = m, then

inf N - — (Q)= inf A(QF A" vt VT
QecC, \Q|:m—p,w,U7MU,T7Mv7u( ) (0%, V*)EGE ( ) ) ’ )7
Moy, 7, My u

where Q* is the ball centered at the origin such that |Q*| = m, A* is given as in Theorem 2.}
and

Gr = {(v",V*) € L*(Q",R") x C(Q), v* = |[v*|e,, V* <0,

MU,T,MV”LL -
[v*| and V* are radially symmetric and C>(§2*),

||| e (rm) < Mo, [v* )| L2y = T and py- < ,u}

Notice also that a sufficient condition for X' & < () to be nonnegative for all Q € C
PyW, 0, VEy Ty VIV b
such that |Q = m is:

—Mv + m_l/n%l/njn/zfl,l X maX(Oa alm_l/nayl/njn/%l,l - Mv) > 0,

where a; > 0 is the same as in Theorem 2.4 and only depends on n, p, w and o (see Lemma 5.7
for its definition). When n, p, w, o, M, and My are given, the above inequality is satisfied in
particular if m > 0 is small enough.

When 2 € C is not a ball, we can make Theorem 2.4 more precise: under the same notations
as in Theorem 2.4, if M4 > 0, M, > 0 and My > 0 are such that | Al[ w0, @) < M 4,
0] Lo rny < My and |V || = @r) < My, then there exists a positive constant

0 =60(Q,n,pw o, My, M, My) >0

depending only on Q, n, p, w, o, M4, M, and My, such that if A\;(Q, A,v,V) > 0, then
there exist a matrix field A* € COO(Q*\{O} S,(R)) (the same as in Theorem 2.4), two radially
symmetric C°(Q*) fields w* > 0, V' <0 and 2 nonpositive radially symmetric L>(2*) field
V*, which satisfy (2.11), py+ = p_y-, V* < V" <0 and are such that

— A (2, A0,V
>\1<Q*7A*7“*7V*) < Al(Q*’A*’U*’V ) < %7

where v* = w*e, in Q*\{0}. It is immediate to see that this fact is a consequence of Theo-
rems 2.3 and 2.4 (notice in particular that the eigenvalues of A(z) are between two positive
constants which only depend on n, p, w and o).
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2.3 Faber-Krahn inequalities for non-symmetric operators

An immediate corollary of Theorem 2.1 is an optimization result, slightly different from Corol-
lary 2.2, where the constraint over the potential V' is stated in terms of LP norms. Namely,
given m >0, My >m, >0, a € [%,mﬂ/\],ﬂv >0, 7€ [O,QMz],TV >0,1<p< 400 and
Q) € C such that |Q2] = m, set

Hitymy adrm o) = {(4,0,V) € Wh2(Q,8,(R)) x L¥(Q,R") x C();
JAe LF(Q), A>Aldae. in €,

my < essQinf A< esstup A< My,

HU”LOO(Q,Rn) < M,, |||v|2A—1HL1(Q) =7 and HV_HLp(m < Tv}

‘A71HL1(Q) =

and

(Q) = inf (2, A0, V).

EMymy o Morrvp T (A0 V)en

HA,mA,a,ﬁv,T,TV,p(Q
Since, in Theorem 2.1, the L norm of V' is smaller than the one of V'~ (because the distribution
functions of their absolute values are ordered this way), it follows from Theorem 2.1 that

min A (Q)=2A (Q),

Qec, |Q|=m —=Mamp,0,My,7,7v,p =M ,mp 0, My,7,Tv,p

assuming that \_ (Q) > 0 for all Q € C such that |©2] = m. In other words,

=M p,mp,,My,7,Ty,

the infimum of A\ (€2, fﬁl, v, V) oxzjer all the previous constraints when 2 varies but still satisfies
|©2] = m is the same as the infimum in the ball Q*. Observe that we do not know in general if
this infimum is actually a minimum. However, specializing to the case of L*° constraints for v
and V', we can solve a slightly different optimization problem and establish, as an application
of Theorems 2.4 and 6.8 (see Section 6 below), a generalization of the classical Rayleigh-Faber-
Krahn inequality for the principal eigenvalue of the Laplace operator.

Theorem 2.7 Let Q € C, My > 0, my >0, 7, > 0 and 7 > 0 be given. Assume that
is not a ball. Consider A € W°(Q,S,(R)), A € LY(Q), v € L*(Q,R") and V € L>*(Q)
satisfying

A>ANId ae inQ, ||Allwie@s,m) < M4, essQinf A>m,,

H’UHLOO(Q’RH) S T1 and HVHLoo(Q) S T2.

Then there exists a positive constant n = n(Q,n, M, my,71) > 0 depending only on Q, n,
M4, my and 11, and there exists a radially symmetric C*°(Q*) field A* > 0 such that

essQinf A <min A* <max A* <ess sup A, [[(A") i = A i), (2.12)
o OF Q
and
M (AL, me,, —72) < A (2, A0, V) — . (2.13)
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Notice that, as in Theorem 2.3, the assumptions of Theorem 2.7 imply necessarily that
M 4 > m,. Notice also that, in Theorem 2.7, contrary to our other results, we do not assume
that A\ (Q, A,v,V) > 0. In the previous results, we imposed a constraint on the distribution
function of the negative part of the potential and we needed the nonnegativity of A1 (2, 4, v, V).
Here, we first write

)\1 (Q7 Aa U, V) > >\1(Qa Av v, _7—2) = —Ty+ /\1(97 Aa v, 0)

and we apply Theorem 2.3 to A;(£2, A,v,0), which is positive. We complete the proof with
further results which are established in Section 6.

Observe also that, in the inequality (2.13), the constraints 73 and 75 on the L norms of
the drift and the potential are saturated in the ball Q*.

Actually, in Theorem 2.7, if we replace the assumption ||V||zeq) < 72 by ess info V > 73
(where 73 € R), then inequality (2.13) is changed into

M (AT, e, 13) < A (Q, A0, V) — 1.

Since A;(Q*, A*Id, me,, 7) = A\ (2%, A*Id, mpe,.,0) + 7 for all 7 € R, the previous inequality is
better than (2.13). In the following corollary, we choose to compare directly V' with ess infg V.

Corollary 2.8 Let Q € C, A € WH(Q,S,(R)), v € L®(QR") and V € L=(Q). Call
A[A](x) the smallest eigenvalue of the matriz A(z) at each point x € Q and assume that
74 = ming A[A] > 0. Then

(R, A,0,V) > Fy(|92, min A[A], [v]| pe(om), e85 inf V), (2.14)
Q

where F, : (0,400) x (0,400) X [0,400) x R — R is defined by
Fn(m’ 7 &, 6) = Al(BELm/an)l/rm 71d7 a €, 6)

for all (m,~,a,3) € (0,+00) x (0,400) X [0,4+00) X R, and B, sy denotes the Buclidean

ball of R™ with center 0 and radius (m/ay,)'/™. Furthermore, the inequality (2.14) is strict if
Q is not a ball.

In Corollary 2.8, formula (2.14) reduces to (1.3) when A = Id and v = 0, V' = 0. Theo-
rem 2.7 can then be viewed as a natural extension of the first Rayleigh conjecture to more
general elliptic operators with potential, drift and general diffusion. We refer to Remark 6.9
for further comments on these results.

2.4 Some comparisons with results in the literature

If in Theorem 2.1, the function A is identically equal to a constant v > 0 in €2, and if V' > 0,
then inequality (2.5) could also be derived implicitely from Theorem 1 by Talenti [43]. In [43],
Talenti’s argument relies on the Schwarz symmetrization and one of the key inequalities which
is used in [43] is

/ —div(AVep) x p = / AV -V > 7/ |Vl?.
0 0 Q
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This kind of inequality cannot be used directly for our purpose since it does not take into
account the fact that A > A Id a.e. in €2, where the function A may not be constant. The
proofs of the present paper use a completely different rearrangement technique which has its
own interest, and which allows us to take into account any non-constant function A € L3°(€2).
Actually, paper [43] was not concerned with eigenvalue problems, but with various comparison
results for solutions of elliptic problems (see also [2, 3, 4, 44]). Even in the case when A is
constant and V' > 0, proving the inequality (2.5) between the principal eigenvalues of the initial
and rearranged operators by means of Talenti’s results requires several extra arguments, some
of them using results contained in Section 6 of the present paper. We also refer to Section 6.2
for additional comments in the case when A is constant.

But, once again, besides the own interest and the novelty of the tools we use in the present
paper, one of the main features in Theorem 2.1 (and in Theorems 2.3 and 2.7) is that the
ellipticity function A and its symmetrization A* are not constant in general (see Remark 5.5).
Optimizing with non-constant coefficients in the second-order terms creates additional and
substantial difficulties. In particular, the conclusion of Theorem 2.1 does not follow from
previous works, even implicitely and even if the lower-order terms are zero. More generally
speaking, all the comparison results of the present paper are new even when v = 0, namely
when the operator L is symmetric. Moreover, all the results are new also when the operators
are one-dimensional (except Theorem 2.4 the statement of which does make sense only when
n > 2).

The improved version of Theorem 2.1 when €2 is not a ball, namely Theorem 2.3, is also
new and does not follow from earlier results.

As far as Theorem 2.4 is concerned, optimization problems for eigenvalues when the con-
straint on A is expressed in terms of the determinant and the trace, or more general symmetric
functions of the eigenvalues of A, have not been considered hitherto.

Let us now focus on Theorem 2.7 and Corollary 2.8. In a previous work ([21, 22]), we
proved a somewhat more complete version of this Faber-Krahn inequality in the case of the
Laplace operator with a drift term. Namely, let Q be a C?“ non empty bounded domain of
R™ for some 0 < o < 1. For any vector field v € L*>(Q, R™), denote by

)\1(9,1)) = Al(Q,Id,U,O) (215)

the principal eigenvalue of —A 4+ v -V in 2 under Dirichlet boundary condition. Then, the
following Faber-Krahn type inequality holds:

Theorem 2.9 [21, 22] Let Q be a C** non-empty bounded connected open subset of R™ for
some 0 < a <1, let7 >0 andv € L¥(Q,R") be such that [|v]| peciqgny < 7. Then

A(Q2,0) > M (QF, Te,), (2.16)
and the equality holds if and only if, up to translation, 2 = Q* and v = Te,.

Remark 2.10 Here we quote exactly the statement of [21, 22], but actually it is enough to
assume that € is of class C?.
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Notice that we can recover Theorem 2.9 from the results of the present paper. Indeed,
when (2 is not ball, the strict inequality in (2.16) follows at once from Theorem 2.7, and when
2 is a ball (say, with center 0) and v # Te,, this strict inequality will follow from Theorem 6.8
(see Section 6 below). Strictly speaking, the inequality (2.16) could also be derived from
Theorem 2 in [43] (see also [2, 3]) and from extra arguments similar to the ones used in
Section 6.1. But the case of equality is new, while Theorem 2.7 is entirely new. Indeed, an
important feature in Theorem 2.7 is the fact that the diffusion A is assumed to be bounded
from below by A Id where A is a possibly non-constant function, and that A (2, A,v,V)
is compared with A (Q2*, A*Id, ||v]|€r, —||V||o), Where A* is also possibly nonconstant (in
other words, the operator div(A*V) is not necessarily equal to a constant times the Laplace
operator). Furthermore, another novelty in Theorem 2.7 is that, when  is not a ball, the
difference A1 (2, A, v, V) — A\ (Q%, A*Id, ||v||c€r, —||V]|o) is estimated from below by a positive
quantity depending only on €2, n and on some structural constants of the operator. All these
observations imply that Theorem 2.7 is definitely more general than Theorem 2.9 and is not
implicit in [43], or even in more recent works in the same spirit (like [4], for instance).

When the vector field v is divergence free (in the sense of distributions), then A;(2,v) >
A(Q) (multiply —Awqg1d.,0 v Voaldeo = M(2,0)001d.00 DY Pold.o and integrate by
parts over ).} Thus, minimizing A\; (€2, v) when |Q| = m and v is divergence free and satisfies
|v]| Lo () < 7 (With given m > 0 and 7 > 0), is the same as minimizing A (2) in the Rayleigh
conjecture. We also refer to [21] and [22] for further optimization results for Ay (€2, v) with L>
constraints on the drifts.

Remark 2.11 For non-empty connected and possibly unbounded open sets 2 with finite
measure, the principal eigenvalue A\; (2, A, v, V') of the operator L = —div(AV)+v-V+V can
be defined as

M AV V)=sup{AeR, T C*NQ), ¢>0inQ, (~L+N)o <0in Q}.

When (2 is bounded, this definition is taken from [14] (see also [1, 34]), and it coincides with
the characterization (2.1) when 2 € C. It follows from the arguments of Chapter 2 of [14] that

/\1<Q,A,U,V) = IIlf Al(Q,,A|Q/,U|Q/,V|Q/), (217)

Qcc, VeC

where A|g/, v|or, V]q denote the restrictions of the fields A, v and V to . When  is a
general non-empty open set with finite measure, we then define

)\1 (Q, A, v, V) = ]Helg )\1(Qj, A’Qj, 'U’Qj, V|Qj), (218)

where the );’s are the connected components of (2.
Some of the comparison results which are stated in the previous subsections can then be
extended to the class of general open sets 2 with finite measure (see Remarks 5.6, 5.8 and 6.10).

'We refer to [13] for a detailed analysis of the behavior of A;(Q, A, Bv, V) when B — +o0 and v is a fixed
divergence free vector field in L>(Q).
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2.5 Main tools: a new type of symmetrization

As already underlined, the proofs of Theorems 2.1, 2.3, 2.4 and 2.7 do not use the usual
Schwarz symmetrization. The key tool in the proofs is a new (up to our knowledge) rearrange-
ment technique for some functions on €2, which can take into account non-constant ellipticity
functions A. Roughly speaking, given 2, A, v and V such that A > A Id, if ¢ = pga.v
denotes the principal eigenfunction of the operator —div(AV)+v-V +V in Q under Dirichlet
boundary condition (that is, ¢ solves (2.1)), we associate to ¢, A, v and V some rearranged
functions or vector fields, which are called ¢, K, 7 and V. They are defined on 2* and are
built so that some quantities are preserved. The precise definitions will be given in Section 3,
but let us quickly explain how the function ¢ is defined. Denote by R the radius of 2*. For
all 0 <a < 1, define
Qe={x€Q, a<px) <1}

and define p(a) € (0, R] such that || = | B, |, where B, denotes the open Euclidean ball of
radius s > 0 and centre 0. Define also p(1) = 0. The function p : [0,1] — [0, R] is decreasing,
continuous, one-to-one and onto. Then, the rearrangement of ¢ is the radially symmetric
decreasing function @ : Q* — R vanishing on 092* such that, for all 0 < a < 1,

/ div(AVy)(z)dz = /B div(AVP)(z)d

p(a)

(we do not wish to give the explicit expression of the ﬁmction A right now). The fundamental
inequality satisfied by ¢ is the fact that, for all x € Q*,

P(x) = p~ () (2.19)

(see Corollary 3.6 below, and Lemma 4.3 for strict inequalities when 2 is not a ball).

This symmetrization is definitely different from the Schwarz symmetrization since the dis-
tribution functions of ¢ and @ are not the same in general. Moreover, the L' norm of the
gradient of ¢ on * is larger than or equal to that of ¢ on €2, and, when A = ~Id (for a
positive constant «y), the L? norm of the gradient of @ on Q* is larger than or equal to that of
@ on € (see Remark 3.13 below).

Actually, the function ¢ is not regular enough for this construction to be correct, and we
have to deal with suitable approximations of ¢. We refer to Section 3 and the following ones
for exact and complete statements and proofs. Let us just mention that the proof of (2.19)
relies, apart from the definition of ¢, on the usual isoperimetric inequality on R™.

Notice that the tools which are developed in this paper not only give new comparison results
for symmetric and non-symmetric second-order operators with non-constant coefficients, but
they also provide an alternative proof of the Rayleigh-Faber-Krahn isoperimetric inequality
(1.3) for the Dirichlet Laplacian.

Finally, the new rearrangement we introduce in this paper is likely to be used in other
problems involving elliptic partial differential equations.

Let us give a few open problems related to our results. In all our results, several
minimization problems for the principal eigenvalue of a second-order elliptic operator in a
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domain €2 under some constraints have been reduced to the same problems on the ball *
centered at 0 with the same Lebesgue measure and for operators with radially symmetric
coefficients. However, even in the case of the ball and for operators with radially symmetric
coefficients, some of these optimization problems remain open. For instance, in Corollary 2.2,
is it possible to compute explicitly the right-hand side of (2.8) ? An analogous question may
be asked for the other theorems, corresponding to different constraints (even for Theorem 2.7).

When we combine Theorems 2.1 and 2.3, it follows that the inequality (2.5) is strict when
2 is not a ball and A\ (2, A,v,V) > 0. But in Theorem 2.1, when € is a ball, for which A, v
and V' does the case of equality occur in (2.5) ? Does this require that the initial data should
be all radially symmetric 7 The same question can be asked in Theorem 2.4 as well. An answer
to these questions would provide a complete analogue of Theorem 2.9 for general second-order
elliptic operators in divergence form. Furthermore, in Theorem 2.1, in the general case when
A is not constant and even if €2 is a ball, can one state a result without ¢ but with still keeping
the constraints (2.2) ?

When 2 = Q*, A* is fixed and v and V' vary with some constraints on their L> norms, we
prove in Section 6 that there exist a unique v and a unique V' minimizing A;(2*, A*Id, v, V).
In particular, if A* is radially symmetric, then we show that v and V' are given by inequality
(2.13) of Theorem 2.7. Many other optimization results in the ball can be asked if some of
the fields A*,;v* and V* are fixed while the others vary under some constraints. We intend to
come back to all these issues in a forthcoming paper.

Here are some other open problems. In Theorem 2.4, can one replace the determinant of
A by more general functions of the eigenvalues of A, namely o,(A) withp <g<n-—-17

It would also be very interesting to obtain results similar to ours for general second-order

elliptic operators of the form
— Z am&-,j + Z bﬁl + C,
ij i

where the a; ;’s are continuous in 2 (but do not necessarily belong to W1>°(€)), and the b;’s
and ¢ are bounded in  (recall that such operators still have a real principal eigenvalue, see
[14]), and to consider other boundary conditions (Neumann, Robin, Stekloff problems...)

Outline of the paper. The paper is organized as follows. Section 3 is devoted to the precise
definitions of the rearranged function and the proof of the inequalities satisfied by this rear-
rangement, whereas improved inequalities are obtained in Section 4 when € is not a ball. The
proofs of Theorems 2.1, 2.3 and 2.4 are given in Section 5, while the Faber-Krahn inequalities
(Theorem 2.7 and Corollary 2.8) are established in Section 6. Some optimization results in
a fixed domain, which are interesting in their own right and are also required for the proof
of Theorem 2.7, are also proved in Section 6. Finally, the appendix contains the proof of a
technical approximation result (which is used in the proofs of Section 5), a short remark about
distribution functions and some useful asymptotics of A\;(Q2*,7e,) = A (Q%,1d, Te,,0) when
T — +00.

Acknowledgements. The authors thank C. Bandle for pointing out to us reference [43], and
L. Roques for valuable discussions.
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3 Inequalities for the rearranged functions

In this section, we present a new spherical rearrangement of functions and we prove some
pointwise and integral inequalities for the rearranged data. The results are of independent
interest and this is the reason why we present them in a separate section.

3.1 General framework, definitions of the rearrangements and basic
properties

In this subsection, we give some assumptions which will remain valid throughout all Section 3.
Fix Q € C, Ag € C'(, S,(R)), Ag € CH(Q), w € C(Q) and V € C(Q). Assume that
Aq(z) > Ag(z)1d for all x € Q, (3.1)
and that there exists v > 0 such that
Aq(z) > v for all x € Q.
Let 1 be a C'(Q) function, analytic and positive in €2, such that 1 = 0 on 9Q and

Vip(x) # 0 for all x € 09,

so that v- Vi < 0 on 0f2, where v denotes the outward unit normal to 0€2. We always assume
throughout this section that
f = —div(AqVY) in

is a non-zero polynomial, so that ¢ € W2P(Q) for all 1 < p < 400 and 1 € C+*(Q) for all
0<ax<l.
Set
M = max ().

e

For all a € [0, M), define
Qu={z€Q, Y(x)>a}

and, for all a € [0, M], _
Ea:{ZEGQ, ¢(x):a}

The set {x € Q, Vi)(x) = 0} is included in some compact set K C , which implies that the
set

Z={a€0,M], 3z X, Vi(r)=0}
of the critical values of v is finite ([41]) and can then be written as
Z = {ala"' 7am}

for some m € N* = N\{0}. Observe also that M € Z and that 0 ¢ Z. One can then assume
without loss of generality that

O<a < - <a, =M.
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The set Y = [0, M]\Z of the non critical values of 1 is open relatively to [0, M] and can be
written as
Y = [O,M]\Z = [O,al) U (al,aQ) U---u (Clmfl,M).

For all a € Y, the hypersurface ¥, is of class C? (notice also that ¥y = 9Q is of class C? by
assumption) and |V| does not vanish on ¥,. Therefore, the functions defined on Y by

(

g :Y3am [ Vo) doa(y)

Ya

b Ysam / F@)I V()| doa(y) (3.2)

Ya

i Ysar [ douy)
\ a

are (at least) continuous in Y and C' in Y \ {0}, where do, denotes the surface measure on
YoforaeY.

Denote by R the radius of Q* (the open Euclidean ball centered at the origin and such that
|| = [Q], that is Q" = Bg). For all a € [0, M), let p(a) € (0, R] be defined so that

€20l = |By(a)| = anpl(a)”.
Recall that v, is the volume of the unit ball B;. The function p is extended at M by
p(M) = 0.
Lemma 3.1 The function p is a continuous decreasing map from [0, M] onto [0, R].
Proof. The function p : [0, M] — [0, R] is clearly decreasing since
Hx € Q, a<¢(x) <b}| >0

for all 0 < a < b < M. Fix now any a € (0, M]. Since v» € W?P(Q) (actually, for all
1 < p < +00), one has
0% 0
| F—
8@8% % {V=a} 8x,

X 1{y—q) = 0 almost everywhere in (2

for all 1 < 4,5 < n, where 1 denotes the characteristic function of a set E. Therefore,
f X 1gy—q)y = 0 almost everywhere in ). Since f is a nonzero polynomial, one gets that

|X.| = 0 for all a € (0, M].

Notice that |3 = |09 = 0 as well. Lastly, p(0) = R and p(M) = 0. As a conclusion, the
function p is continuous on [0, M| and is a one-to-one and onto map from [0, M] to [0, R]. ©

Lemma 3.2 The function p is of class C' in'Y and

VaeY, pl(a)=—(namp(a)"") "ga) = —(nanp(a)" )" /Z [V (y)| ™ doa(y).
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Proof. Fix a € Y. Let n > 0 be such that [a,a +n] C Y. For t € (0,n),
nlpla-+ 0" = pla)") = Q] = 190] = — [ ds
{a<yp(z)<a+t}

--[7(] o)) )

from the co-area formula. Hence,

anlpla+1)" = p(a)”]

— —g(a) ast— 0"

for all @ € Y, due to the continuity of ¢ on Y. Similarly, one has that
an[p(athZ — @)

for all a € Y\{0}. The conclusion of the lemma follows since Y C [0, M), whence p(a) # 0 for
alla €Y. m

—g(a) ast— 0"

We now define the function {bv in Q*, which is a spherical rearrangement of ¢ by means of a
new type of symmetrization. The definition of ¢ involves the rearrangement of the datum Agq.
First, call
E={ze€Q |z|€pY)}.

The set E is a finite union of spherical shells and, from Lemma 3.1, it is open relatively to Q*
and can be written as

E={zeR", [z € (0,p(an-1))U---U(p(az), p(ar)) U (p(ar), R]}.
with
0= p(am) = p(M) < p(am-1) < - < plar) < R.

Notice that 0 ¢ E.
Next, for all € p(Y), set

/ IV ()|~ dopr
G(r) = —— et 1 >0, (3.3)
/E Aa(y) " [Ve(y)| ™ door

p~1(r)

where p~! : [0, R] — [0, M] denotes the reciprocal of the function p. For all x € E, define
A(z) = G(|z]). (3.4)

The function A is then defined almost everywhere in Q*. By the obervations above and since
Ag is positive and C'(€2), the function A is continuous on E and C* on ENQ*. Furthermore,
A € L®(9*) and

0< mﬁin Ao < es{syinf//{ < es%*sup/A\ < mﬁaXAQ. (3.5)
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For any two real numbers a < b such that [a,b] C Y, the co-area formula gives

/Qa\QbAQ(y)_ldy = /ab (/SAg(y)‘1|V¢(y)|‘1das(y)) ds

" Aa(y) Ve (y)| " do -1 (y)
- / a0 na,t"Ldt.
p(b) /Z IV (y)| " o1 (y)

pL(t)

The last equality is obtained from Lemma 3.2 after the change of variables s = p~!(¢). Since

~

A is radially symmetric, it follows by (3.3-3.4) that

/ Ag(y)ldyz/ A(w)dz,
Qa\ 2 So(b),0(a)

where, for any 0 < s < s, S5 ¢ denotes
Sso ={z €R", s < |z] < §'}.

Lebesgue’s dominated convergence theorem then implies that

/Q Ao(y)"tdy = /Q Rw) (3.6)

Lastly, set F'(0) = 0 and, for all r € p(Y), set

For)— — - /Q div(Ag Vi) () da. (3.7)

n—1
na,r" G (r) .
The function F' is then defined almost everywhere in [0, R].

Lemma 3.3 The function F belongs to L>([0, R]) and is continuous on p(Y)U{0}. Moreover,
F <0 onpY).

Proof. The continuity of F' on p(Y) is a consequence of Lemma 3.1, of the continuity of A on
E and of the fact that div(4qVy) = f in Q, with f continuous and thus bounded in Q.

Observe that, since Ag(z) >~ > 0 for all z € Q, one has A(z) > ~ for all z € E. For
0<r<Rwithrep®) (D(0,p(am-1))), one has

|F(r)| < (naer™ ) fllie@) anr™ = () 7| fll ooy 7

thus F' is continuous at 0 as well and belongs to L* ([0, R]). Finally, for all r € p(Y), since
Y(y) = p~'(r) for all y € X1,y and since ¥ > p~(r) in Q-1 and |Vip(y)| # 0 for all
Y € X)-1(r), one has

Vp=1(r) * Vi) < 0 on Zp—l(r),
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where, for any a € Y, v, denotes the outward unit normal on 02,. Therefore
Vi(y) = = V()| V19 (y) forall 7 € p(Y) and y € X1,

As a consequence, the Green-Riemann formula yields that, for all r € p(Y),

/ div(Ao V) (y)dy = / Aa(y)VY(y) - Vo1 (y)doy-10)(y)

Q1) Zo=1(r)

= - / A1 (Y) - Vo1 (1) V()| dop-1(y (y) <0,

Ep*l(T)

which ends the proof. O

For all 2 € Q*, set

a@:—/zwwﬂ (3.9)

x|
The function @Z is then radially symmetric and it vanishes on 0€2* = 0Bg. From Lemma 3.3,
{/; > 0 in QF,

1 is continuous on Q*, decreasing with respect to |z| in Q*, and C* on E U {0} (remember
that F'(0) = 0). Note that

Y€ HY () N W2 (),
Moreover, the following statement holds true:

Lemma 3.4 The function QZ is of class C* in £ NQ*.

Proof. By definition of zZ and since A is C' in EN ¥, it is enough to prove that the function
;TH/ div(Aa Vi) (x)de :—/ f(w)da
p=1(r) Qp-10)

is of class C' on p(Y). It would actually be enough to prove that z is C' on p(Y)\{R}.
Let r be fixed in p(Y') = (0, p(@m—1))U---U(p(az), p(a1))U(p(ar), R] and let n > 0 be such
that [r —n,r] C p(Y). For t € (0,7n), one has

A== = /{p Lr)<(z)<p=t(r— t)}f(llf)dﬂf

- U rwrevr ) o= /ppl::_”hw)da,

where £ is defined in (3.2). Since p~! is of class C* on p(Y') from Lemma 3.2 and since h is
continuous on Y, it follows that

z(r —1t) — z(r)

-t

= b ) ) = = st o,
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The same limit holds as ¢t — 0~ for all r € p(Y)\{R}. Therefore, the function z is differentiable
on p(Y) and

R e [ 0),

for all r € p(Y).

g(p=H(r))
Since p~! is continuous on [0, R], and g and h are continuous on Y, the function z is of class
C' on p(Y). That completes the proof of Lemma 3.4. O

We now define a rearranged drift © and a rearranged potential V.Forallz € E , define

1/2
/ w(y)*Aa(y) VYY) doy-1 () (v)
() = X1 (1) : er(z), (3.9)
/Z Aa(y) VYY) dop1(ap (y)

p~1(lz])

(remember that e, is defined by (1.1)). The vector field v is then defined almost everywhere in
2. Notice also that |v] is radially symmetric, that v(z) points in the direction e,(x) at each
point z € E, that v belongs to L>(£2*) and that

essQinf\w\ < es%inf]i)\] < ess sup [v] < ess sup |w| = ||w|| Lo (0)- (3.10)
: Q* Q

Furthermore, since A51 and w are continuous in 2, the vector field ¥ is continuous in £, and,
as it was done for (3.6), it is easy to check that

/Q P han) = [ PR (3.11)
Lastly, for all x € F, define

[ VW IR do )
V() = — e tteD : (3.12)
[ 190wl doga )

P12

where V= (y) denotes the negative part of V(y), that is V"~ (y) = max(0, =V (y)). The function
V is then defined almost everywhere in Q*. Observe that V is radially symmetric, nonpositive,
belongs to L>°(Q2*), is continuous in E, and that

— |Vl () < min(=V ™) < es%ianA/ < esssupV < 0. (3.13)
Q ¥ Qx

3.2 Pointwise comparison between ¢ and 1;

The first interest of the spherical rearrangement which was defined in the previous subsection
is that the functions ¢ and i can be compared on the sets X, and 0B,,). Namely, the

function 1; satisfies the following key inequalities, which are summarized in Proposition 3.5
and Corollary 3.6:
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Proposition 3.5 For any unit vector e of R", the function

Uoo,M - Ry
a — P(p(a)e)

is continuous on [0, M|, differentiable on'Y, and
VaeY, U(a)>1. (3.14)

Before giving the proof of Proposition 3.5, let us first establish the following important
corollary.

Corollary 3.6 For all z € Q*, _
v(x) > p~ ' (Ja).

Proof. Since ¥ is continuous on [0, M] and differentiable on [0, M] except on a finite set of
points and since W(0) = 0, the mean-value theorem and (3.14) show that ¥(a) > a for all
a € [0, M], which means that 1(p(a)e) > a for all a € [0, M] and all unit vector e. Since ¥ is
radially symmetric, Corollary 3.6 follows from Lemma 3.1. m

Proof of Proposition 3.5. Let us first observe that the function U is differentiable on Y,
from Lemma 3.2 and the fact that ¢ is C' in F (and even in £ U {0}). Furthermore, since

¥ is radially symmetric, and decreasing with respect to the variable |z| and since p is itself
decreasing, it is enough to prove that

Ve, |d(p(al)] x Vi) > 1. (3.15)

We will make use of the following inequality:

: Ao(Y)Vp-1(a) (YY) * Vo1 (1)) (W) V(Y| dop1 (1)) (v)
Vel et < A(z) V()% (3.16)
[ 190wl doga )

P (E))

where one recalls that v,-1(,) denotes the outward unit normal on 0€2,-1(,). We postpone
the proof of (3.16) to the end of this subsection and go on in the proof of Proposition 3.5.

Fix x € F and set r = |z|. Since p~!(r) € Y, there exists > 0 such that p~'(r —t) € Y
for all ¢t € [0,n]. For t € (0,n], the Cauchy-Schwarz inequality gives

/ vewla) Aaly)dy
-1\ -1ty 210\ =10

<
|21\ 21| - |21 \Qo-10)|

2

(3.17)
/Q Aa(y) |Ve(y)]? dy

p 1)\ 1)
|21\ 1)
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The left-hand side of (3.17) is equal to

2
V(y)|d Vi(y)| d
/ vowlar) (] e

p= 1) =1 () _ «
|10\ 10| pir—t) = p(r) |10\ 10|

2

By the co-area formula,

/ V()] dy
Q

p= 1)\ =100

lim = do -1 (y) = i(p"(r)),
t—0+  p(r—1t)—p7(r) 210 priw) =i (r))
and
=0 =) i ) !

i = —
t=0" ‘prl(r)\prl(r—tﬂ / \V¢(y)]‘1d0p*1(r) (%) na,r™p'(p=1(r))|
)

from Lemma 3.2. By the isoperimetric inequality applied to ¥,-1(,) = 9€,-1(,) and 0B,, one
has

0 < na,r" ' <i(pt(r)) = / do -1 (Y), (3.18)
()

Therefore, one obtains

2
/ V()| dy | 2
lim Q, 1)\ 2,1y > <Z(pl(r))) % 1
t—0+ |21\ Qp1 | 0 (p

noy, "1

IS S
10/ (p= 1 (r)]*

The first factor of the right-hand side of (3.17) is equal to

/ Aal) My [ M)y y
21\ 16y _ 10\ 1 P (r—t)—p ()
|21\ 20| prir—t)—pi(r) |21\ Q11
and the co-area formula therefore shows that

/ Aaly)™"dy
Q-1 \2p=1( 1)

lim = A(z)™! (3.20)
=0t |21\ Q)|

>

9
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from (3.3) and (3.4). Finally, the coarea formula again implies that

J

Aaly) (V) dy / M) [V()]do, 1) (1)

p=1) \p=1(r—1) p—1(r)

lim

t—0+ ‘Qp—l(r)\Qp—l(rft)‘ / |V1/)(y)|_1d0p71(,~)(y)
Zp=1(r)
/z AaW)Vp-1) (V) - Vo1 (W) VY (Y)|do 1) (1) (3.21)
p~1(r)
[ 190l e, )
—~ - p~L(r)
< A(@)| V() ?
by (3.16).

Finally, (3.17), (3.19), (3.20) and (3.21) imply that

1 i(p~"(r))
RO (nanT"‘l) 1)

Therefore, inequality (3.15) holds and so does inequality (3.14). O

7 < IV(z)|* (3.22)

Remark 3.7 Observe that (3.17), (3.20) and (3.21) together with the co-area formula yield

/E 4712 () / ) Vi (y)| dy
p~1(|z]) _ hm p_1(|x|)\ p=1(|z|—1t) S ‘VJ(x” (323)
/ V)| oy ey () T |Qp-1(12) \Qp1 (1) |
L)
forall x € F.

We now give the
Proof of (3.16). Fix z € FE and call r = |z|. Notice first that, as was already observed, for
all y € an—1(T),
Vip(y) = = [V () Vo1 ().

The Green-Riemann formula and the choice of zz therefore yield

/ AWy (Y) - Vo1 W) VY (Y)|dop1n (y) = — / div(AeVY)(y)dy
Ep1(r) _ o=1(r) (3.24)
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By Cauchy-Schwarz,

i(p_l(r))Q - (/ da—pfl(r) (y)>
X1

[2 Aa(Y)vp-1)(Y) - Vo1 () [V (Y) | dop10) (y)

p—L(r)
. / (AaW)Vp10) () Vo1t () V()| o1y ()
Zp=1(r)
Ao()Vp-1) () - Vo1 (y) [V (y)| do -1 (y)

)

X Aa(y) M IVO(y)| " doy-1(y(y)

IN

IA

= K(x)_l X AaWVp-10)(Y) - Vo1 (V) [VO(Y) | dop1() (y)

)
<R d )
p~L(r)

In other words,

/Z AaW)vo1) () - Vo1 () IV ()| dop1) ()

p~1(r)

/E V()™ doyry ()

p~1(r)

/Z Ao()Vp-1)(Y) - Vo1 (y) V0 (y)| dop-1) (1)

< A(z)7tx G ,
= A o)
- (B ) RIvdor
i(p=t(r))
by (3.24). The isoperimetric inequality (3.18) ends the proof of (3.16). O

3.3 A pointwise differential inequality for the rearranged data

In the previous subsection, we could compare the values of ¥ and of its symmetrized function
Y. Here, we prove a partial differential inequality involving ¢» and ¢, as well as the rearranged
data A, v and V.

Proposition 3.8 Let wy € Ry and x € ENQ*. Then, there exists y € Q such that (y) =
p~t(|z]), that is y € X1y, and

—div(AVY)(2) + B(x) - V(x) — wo| V()] + V()i (x)
< —div(AoVY)(y) — |w(y)] x [VY(y)| — wo| VY (y)] + V()L (y).

Notice that O(z) - Vip(z) = —[0(z)| x |Vi(z)].
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Proof. Let x € ENQ*, r = |z] and n > 0 such that S,_,, C ENQ*. As done in the proof of
Proposition 3.5, the co-area formula and Cauchy-Schwarz inequality yield

/ )] % 760 dy
21\ -1y

2

lim
t—0% 121\ Qp1 )|
2
[ wldee
e Epfl(r) (325)
(Vb (y)| = doy-10(y)
)
M) AT oy o) [ AT 00
< 2o-1(r) % 2,10 '
V)| o)) [ 190 e, )
o=l )

Using (3.16), one obtains

/2 AV )ldoy-1(y)

p~1(r)
Vi (y)| " dop-11)(y)
Xp=1(r)
/2 AaY)Vp-1)(Y) - Vo1 (W) VYY) dop1() (9) (3.26)
p—1(r)
IV (y)| doy-1(y)
)

< A@)| V()P
Finally, (3.25) and (3.26), together with definitions (3.3-3.4) and (3.9), give that

/ ) < [Vl dy
lim Q-1 \Lp-1(r )

t—0+ |Qp71(r)\prl(r—t)}

< [3(z)] x |Vi()| = —0(x) - Vi(z).  (3.27)

The last equality follows also from (3.8) and Lemma 3.3.
Remember also from (3.23) that

/ Vu(y)| dy
lim -1\ Q1)

< |V (2)] = —e,(z) - Vb(2). 3.98
0, o\ ] < |Vi(2)| = —er(2) - V() (3.28)
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As far as V' is concerned, for any fixed unit vector e in R™ and for any t € (0,7), it follows
from (3.12) and Lemma 3.2 that

/ V()(y)dy
Q1) \2p=1(r—ty

> ]pi::_t) ( / a(—V‘(y))@D(y) IV (y)| ™ daa(y)) da
-~/ p_l(”)a( vy >rw<y>|—1daa<y>) da

l(r
_ Lo () | LS
L, v, “’(y)) 0o (o)

/ V() V()™ doyso ()
Xp=1(s) ds

/E V()| dors ()

, p~L(s)
= nan/ s" 1N (s)V (se)ds.
r—t

= —nan/ " pi(s)
r—t

Moreover, the radial symmetry of V and 1; yields
[ i =na, [ T
57 t,r r—t

Corollary 3.6 and the facts that |Qp*1(r)\Qp*1(r—t)} = |S,_t,| and that V < 0 therefore show
that

/ V() (y)dy / V()b () dy
Q 1(T)\Q —1(r—t) Sr—t,r
10\ Qprmn| S|

Since V and ibv are continuous in F and radially symmetric, one therefore obtains, together
with the co-area formula,

[ VeewIvewl s, ) / o Vv
> 1)\ 16y

e— (0 = lim
/ IV ()|~ dop-10)(y) =07 192,-10)\Qp-1(—1) | (3.29)
Zo=1(r)

> V(x)i(x).

Let now t be any real number in (0,7). Since QZ (resp. /A\) is radially symmetric, and C?
(resp. C') on S,_;, C ENQ*, the Green Riemann formula gives

/ divAVD) ()dy = / A(y)VI) - v(y)do(y)
Sr—t,r OSr—t,r

N (3.30)
= nap[" G F(r) = (r = )" Gr = F(r — 1)),
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where do and v here denote the superficial measure on 95,_;, and the outward unit normal
to S;_tr, and G and F were defined in (3.3) and (3.7). By definition of F', one gets that

| @V - [ div(AqVe) (y)dy.
Sr—t,r

Q1) \ =1y

whence
div(Ae V) (1) |V (y)|~ doy-14y(y)
Ep—1(r)
Vb (y)| " dop-1) (y)
S, 10 (3.31)
/ div(AqVe) (y)dy
Q 1\ 1, o~
= lim —2—0 Y = div(AVY)(x)
=07 ‘Qp‘l(r)\Qp‘l(T*t) |
since |S,_¢,| = ‘prl(r)\prl(T_t”.

It follows from (3.27), (3.28), (3.29) and (3.31) that

/ AV(AaT8)(0) + ()] X VO] + w0l T = V)] dy
lim et te—n
t=07 ‘prl(r)\prl(r—t) ’

< div(AVY)(x) — B(x) - Vi(x) + wo| Vi ()] = V()i (x).

To finish the proof, pick any sequence of positive numbers (g;),en such that e, — 0 as | — +o0.
Since v is C? in €2, since Ag is C* in © (and even in ) and w and V are continuous in € (and
even in €0), the previous inequality provides the existence of a sequence of positive numbers
(t1)ien € (0,m) such that t; — 0 as | — +o00, and a sequence of points

Y € Q1) \ 1)) € Qprrry) C O
such that
div(AeVY) (y) + lw(y)] X [V (y)] + wol Ve (y)] — V(g (w)

~

< div(AVY)(2) — (@) - Vi (@) + wo| Vi (2)| — V(2)d(z) + &

Since p~1(r) < ¥(y) < p~'(r —t;) and p~! is continuous, the points y; converge, up to the
extraction of some subsequence, to a point y € X,-1(,y such that

div(AoVY)(y) + [w(y)] X [V (y)] + wol Vi (y)| = V(y)d(y)

~

< div(AVY)(2) = B(x) - V(@) + wo| Vi ()| = V(x)i(x),
which is the conclusion of Proposition 3.8. o

Corollary 3.9 If there are wg > 0 and p > 0 such that

—div(AVY)(y) — lw(y)| x [V (y)| — wol VY (y)| + V(y)(y) < pp(y) for ally € Q,
then

—diV(/A\VJ)(-T) +v(x) - VJ(QT) - wo|V1Z(£E)| + ‘A/(JJ)J(:E) < ,IMZ(.CE) for all x € EN Q.

Proof. It follows immediately from Corollary 3.6 and Proposition 3.8. m
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3.4 An integral inequality for the rearranged data

A consequence of the pointwise comparisons which were established in the previous subsections
is the following integral comparison result:

Proposition 3.10 With the previous notations, assume that, for some (wy, i) € R?,
—div(AVY)(z) + 0(z) - Vip(z) — wo| Vib(z)| + V(@)U (z) < pap(x) for all z € ENQ*. (3.32)
Fiz a unit vector e € R™. For all r € [0, R|, define
_ /0 "16(re)| A(re)dr (3.33)
and, for all x € QF, let

U(z) = H(|z|). (3.34)
Then, the following integral inequality is valid:

/ [RA@IVI@)? = wo| V@) () + T (@)d(2)] eV da < g N p(2)%e U @dz. (3.35)

Proof. Note first that, since |[0] and A are radially symmetric and since [0] € L®(Q*) and
A satisfies (3.5), the function H is well-defined and continuous in [0, R]. Furthermore, its
definition is independent from the choice of e. The radially symmetric function U is then
continuous in §2* and, since the radially symmetric functions ¥ = |v]e, and 1/A are (at least)
continuous in FE, the function U is of class C' in FE and

VU (z) = A(z)""0(z) for all z € E. (3.36)

Observe also that the integrals in (3.35) are all well-defined since @Z € H}(2*) and /AX, ‘A/,
U € L*(Q*) (even, U € C(¥)).
Now, recall that the set of critical values of ¢ is Z = {a4, ..., a,} with

o<y < <an,=M

and remember that the function p defined in Subsection 3.1 is continuous and decreasing from
[0, M] onto [0, R], from Lemma 3.1. Fix j € {1,...,m — 1} and r,7’ such that

0 < plaj+1) <r <71 <pla;) <R.

Multiplying (3.32) by the nonnegative function JG*U and integrating over S, s yields
/ —divAVE)(@) +3(x) - V(@) = w0l V()| + V(@)() | dl)e™ Oda
(3.37)

< pu U(z)%e V@ dz,
S,
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Notice that all integrals above are well-defined since @Z in C? in ENQ*, Nis Ctin EN Q% v,
V' are continuous in E, U is continuous in Q* and S,,» C £ N Q*. Furthermore, as in (3.30),
the Green-Riemann formula yields

/ —divAVH) (@) d) e VP da
S

,,.’7./
J

—na (1) GV F () e)e ) 4 nagr™ G F(r)d(re)e ).
By (3.36), it follows then that

A@) |V (z)Pe V@ dg — / Az)p(z)Vi(z) - VU (z)e V@ dx

S,

/S —divAVY)(@) + 3(x) - V(@) = wo V()| + V(2)i(a) | D)™ da

T

— /S [/A\(a:)|V%Z(x)|2 — wo| V()0 (x) + ‘7(93)1}(9:)2} U@ g (3.38)

!

_nan(r/)n—lG(r’)F(ﬂ)J(r/e)e—H(r') + nOénT‘n_lG(T)F(T‘)IZ(T&)G_H(T).
On the other hand, for all s € p(Y),

na,s" tF(s)G(s) = / div(AgVY)(x)dx,
Q,-1(5)
by (3.7). The function
s+ I1(s) = na,s" T F(s)G(s),

which was a priori defined only in p(Y'), can then be extended continuously in [0, R] from the
results in Lemma 3.1 and since div(AqgVe) = —f is bounded in Q. The continuous extension
of I in [0, R] is still called I. Passing to the limit as 7 — p(a;4+1)" and 7’ — p(a;)” in (3.37)
and (3.38) yields, for each 7 € {1,...,m — 1},

/ RIVIE) — ol V@) + P@Tw] e
plajt1)plag) N
~(play)) Blpla)e) e 00D 1 I(play) Flplage)e) e=lern) (3.3
< u . (x)2e V@ g,

plaji1).p(ajs)

Once again, all integrals above are well-defined. Arguing similarly in the spherical shell S,,) r
and since ¥ (Re) = 0, one obtains

/g [R@)IVI@)? — ol Vo) [9) + V() b()] eV da

pla1),R

+1(p(ar)) V(p(ar)e) e Heler) (3.40)
< u U(z)2e U@y,
Sp(ar),R
Summing up (3.39) for all 1 < j < m—1 and (3.40) and using the fact that I(p(a,,)) = I(0) =0
yield (3.35). O
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Corollary 3.11 If there are wg > 0 and p > 0 such that

—div(AaVY)(y) — lw@)] x [VY(y)| = wol Vo) + V(y)e(y) < ply) for ally € Q,

then, under the notation of Proposition 3.10,
/ [K(ac)|V{/;(x)|2 — wol Vi (@) (@) + V(2)d(x)?| eV @de < p [ 4(x)2e V@ da.
o o
Proof. It follows immediately from Corollary 3.9 and Proposition 3.10. O

We complete this section by two remarks which proceed from the previous results and
provide comparisons between some norms of the function ¢) and its symmetrization .

Remark 3.12 The calculations of the previous subsections (see in particular the proof of
Proposition 3.8) and Corollary 3.6 imply that, for any nondecreasing function © : [0, +00) —
[O’ +OO)7

O(y)dy = | O (la])de < | O()(x))da
/Qp1<s>\9p1(r> e /ST ’ /

Sr,s

for all 0 < r < s < R such that [r,s] C p(Y), and then for all 0 < r < s < R from Lebesgue’s
dominated convergence theorem. In particular,

[ @y < [ @i
Q *
for all 0 < p < +00. Remember also (as an immediate consequence of Corollary 3.6) that
max 1) = 1(0) > p~*(0) = max.
o Q

Remark 3.13 For any 0 < r < s < R such that [r,s] C p(Y), it follows from the co-area
formula and a change of variables that

/Q Ao(y)Vi(y) - Vi (y)dy

=19\ 1()
/Z Aa(y)vy10() - Ve )V )01 (9)

= nan/st”_l X =) dt
/

IV (y)| ™~ dop-1 ) (y)

p~1(t)

7\ o 2
</ @i,

where the last inequality is due to (3.16). Asusual, Lebesgue’s dominated convergence theorem

then yields
/Q Aa(y)Vib(y) - Vib(y)dy < / R (@) VI (a)2de

p=1() \p=1(r) Sr.s
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for all 0 <r < s < R, whence

/Q Aa(y)Vib(y) - Vib(y)dy < / R (@) V() Pde.

*

M ~
VY2 mn) < 4= % V]l 1200 )
mp

from (3.1) and (3.5), where My = maxg Ag and mp = ming Ag. In particular, || V|| 2 rn) <
V4[| 2+ mny if A is constant in .
With the same notations as above, it follows from (3.23) that

5 [ doaw
/ VY (y)ldy = nan/ "1 x p— L) gt
Heee ' / \Vw(y)l‘ldap-l(n(y)

Zp-1(t)

As a consequence,

< [ 9@l
Sr,s
The inequality then holds for all 0 < r < s < R, whence

VYl @rm < VYl mn).

4 Improved inequalities when () is not a ball

Throughout this section, we assume that €2 € C is not a ball. Fix real numbers « € (0,1),
N > 0 and 6 > 0. Denote by E, xs(2) the set of all functions ¢ € C**(Q), positive in €,
vanishing on 052, such that

[l cra@ < N and ¢(z) > 6 x d(z,00) for all x € Q, (4.1)

where d(x, 0) = min,epq |r — y| denotes the distance between x and 0€2, and we set

Vi(z) — V(2
[l gre = 1ol + [V g + sup YLEZVOE]

2#£2'€Q |Z - Z/|a

Notice that, for each ¢ € E, ns(2), one has
Vi(y) - v(y) = —[Vi(y)| < =0 for all y € 09,

where v denotes the outward unit normal on 0f2.

Our goal here is to prove stronger versions of Corollary 3.6 and Corollary 3.11, using the
fact that ) is not a ball. In the sequel, unless explicitly mentioned, all the constants only
depend on some of the data €2, n, a, N and §.
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Denote again by R the radius of (2%, so that 2* = Bg. First, the isoperimetric inequality
yields the existence of 8 = (€2, n) > 0 such that

area(0f2) = / doga(y) > (1 + B)na, R" 1, (4.2)
o9
where the left-hand side is the (n — 1)-dimensional measure of 0.
For all v > 0, define B
U,={x€Q, d(z,00) <~}

Since 0N is of class C?, there exists 71 = 11(€2) > 0 such that Q\U,, # () and the segments
ly,y — nv(y)] are included in €2 and pairwise disjoint when y describes 0€2. Thus, for all

v € (0,71], the segments [y, y —yv(y)] (resp. (y,y —v(y)]) describe the set U, (resp. {z € €,
d(z,00) < ~}) as y describes 0.

Lemma 4.1 There exists a constant

Y2 = 72<Qv «, N7 6) € (Oa 71]
such that, for all Y € Eq ns(Q2), one has:

o .
|v¢’ Z 5 m U727

Vi(y —rv(y)) - v(y) < —g for all y € 02 and r € [0,72],

and 5
P > % in Q\U, for all ~ € [0, 2]

Proof. Assume that the conclusion of the lemma does not hold. Then there exists a sequence
of positive numbers (’Yl)leN — 0 and a sequence of functions (wl)leN € E, ns(82) such that one
of the three following cases occur:

1) either for each | € N, there is a point 2! € U such that |Vy!(z!)| < §/2;

2) or for each | € N, there are a point y' € 9Q and a number r' € [0,7'] such that
VYl (y' = rv(y) - v(y') > —6/2;

3) or for each [ € N, there is a point 2! € Q\U,: such that ¢'(z!) < 7'§/2.

Observe first that, by Ascoli theorem, up to the extraction of a subsequence, there exists a
function ¢ € E, ys(£2) such that

Y — ¢ in C1(Q) as | — +oo.

If case 1) occurs, then, up to some subsequence, one can assume without loss of generality

that 2! — 2 € 9Q as | — +o0, and one obtains |V (x)| < §/2, which is impossible since

Y € Eons(Q) and § > 0. Similarly, if case 2) occurs, y' — y € 9Q as | — +oo up to a

subsequence, and one has —|V¢(y)| = V¢ (y) - v(y) > —0/2, which is also impossible.
Therefore, only case 3) can occur. For each [ € N, let y' € 9 be such that

d' = |zt — 4| = d(z",00) >+ > 0.
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Up to extraction of some subsequence, one has
' —x€Qasl— 4ooand Y(r) <0

by passing to the limit as [ — 400 in the inequality ¥'(z!) < 4!§/2. Since
P(x) > 6 d(z,00) > 0 for all x € Q,

it follows that x € 99, whence |2! — y!| — 0 and y' — x as | — +o0o. On the one hand, the
mean value theorem implies that

P(2") = 'y Lo ab—yf
Ty~ V) — V) v@) = V@) as - oo,
where 2! is a point lying on the segment between z! and 3 (whence, 2! — z as | — +0o0). On

the other hand, since ¥ = 0 on 99,

) — ) _ i) A8

|zt — oY d 29 2

Hence, |Vi(z)| < 0/2 at the limit as [ — +oo, which contradicts the positivity of ¢ and the
fact that ¢ € E, ns(2).
Therefore, case 3) is ruled out too and the proof of Lemma 4.1 is complete. m

In the sequel, we assume that ¢ € E, n(€2) and is analytic in §2. The data Ag, Aq, w and
V are as in Section 3. We assume that

div(AqVY) = —f in Q,

where f is a non zero polynomial, and we use the same sets Z, Y, F, (), &, and the same
functions p, ¥, A, v, V and U as in Section 3.

Lemma 4.2 Assume that Q@ € C is not a ball. Then there exists a constant ag =
ao(Q,n,a, N,§) > 0 only depending on Q, n, o, N and 6 such that [0,a0] CY and

i(a) = / do,(y) = area(%,) = <1 + g) noy R™

for all a € [0, ap], where = (3(2,n) > 0 was given in (4.2).

Proof. Let 75 = % (Q,a, N,d) > 0 be as in Lemma 4.1. Since 0 < 75 < 7, it follows that
O\U,, # 0, and

Y20 =
1/127>01HQ\U72

from Lemma 4.1. Therefore,

)
]\/[:mauxwzfyi
Q 2
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and

Sa={z€Q, ¥(@)=a}CU,foralac [O, %5} : (4.3)

Call

)
ag = ag(, o, N, §) = % > 0.

From Lemma 4.1 and the assumptions made on ¢ and 052, one has that |Vi| # 0 everywhere
on the C? hypersurface %, for all a € [0, ap]. Thus,

[0,ag] C Y. (4.4)

On the other hand, for all y € 09, the segment [y, y — 72v(y)] is included in Q and there
exists 0 € [0, 1] such that

Yy —v(y) = v(y) —nr(y) - Vily — 0vv(y) > ER
o

again from Lemma 4.1. Actually, more precisely, for each y € 02, the function

Kt [0,7%] = R, sy —sv(y))

is differentiable and x'(s) > 0/2 for all s € [0,72]. It follows that, for all a € [0, aj] and y € 052,
there exists a unique point

ba(y) € [y, y — v (y)] N Xa.

Moreover, for such a choice of a, the map ¢, is one-to-one since the segments [y, y — Yov/(y)]
are pairwise disjoint (and describe U,,) when y describes 02 (because 0 < 7, < ;). Lastly,

Yo = {¢a(y)a y e aQ} (45)

from (4.3).
Let us now prove that the area of ¥, is close to that of 02 for a > 0 small enough. To do
so, call
B=A{x=(z1,...,2,1), |2'| <1}

and represent 92 by a finite number of C* maps y', ..., y? (for some p = p(Q) € N*) defined
in B, depending only on (2, and for which
Oy (2') x - x Oy (2') #£0 forall 1 <j <panda’ €B.
Here, '
O () = (Op,yl(2)), ..., 009 (2) € R™

foreach 1 <i<n—1,1<j<pand a2’ € B, where y/(2') = (yi(2'), ...,y (z")). The maps
y’ are chosen so that . _
00 ={y'(a'), 1<j<p, o' €B}.
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For each a € [0,a)] and for each 1 < j < p, there exists then a map tJ : B — [0,7,] such
that 4 4 4 B
Py (o)) — (2 )v(y (2)) = a for all 2’ € B, (4.6)
So = {7 (@) -t () (1), 1<j<p o' €B}.
Namely, ‘ ‘ _
Y (2") — (2 (y () = ¢a(3’ (') for all 1 < j < p and 2’ € B.

From the arguments above, each real number #/ (') is then uniquely determined, and #}(z') = 0.
Since the functions 1, y/ and voy’ (for all 1 < j < p) are (at least) of class C! (respectively in
Q, B and B), it follows from the implicit function theorem and Lemma 4.1 that the functions
t (for all @ € [0,a)) and 1 < j < p) are of class C*(B) and that the functions

2 [0,a] — [0,72], a—ti(2')
(for all 1 < j < p and 2’ € B) are of class C*([0,a}]). From the chain rule applied to (4.6), it
is straightforward to check that, for all a € [0,ap], 1 < j <pand 2’/ € B,
-1

(hy)'(a) = S (@) - Vol @) — @ (@) € (0,267°] (from Lemma 4.1),

whence 4 '
0<t(2') =0 (a) <25 "a (4.7)

because h’,(0) = t)(z') = 0. Similarly,
o 1) - 00— B0 )] - TU ) — )
e v(yi(z) - V(y(a') — ta(a")v(y?(2")))

foralla € [0,ah],1<i<n—1,1<j<panda’€B. Foralll1<j<panda' €B,one has
(Y (2)) = 0, whence ;97 (2') - Vip(y? (2')) = 0 (for all 1 < i < n —1). As a consequence,

)
0:7 () - V(i (') — (2" )w(y/ ()] < C1 x (H(a))"
foralla € [0,a)],1<i<n—1,1<j<p, 2 € B, and for some constant C; defined by
0

y \Y% -V !
Cy = max oy’ ()] x sup V() ; vl < +o0.
1<i'<n-1, 1<j'<p, ¢B £2€Q |z — 2|

(4.8)

Observe that Cy = C1(§2, N) only depends on © and N (remember that [|¢[|ciag < N). Call

now

Cy = Co(Q, N) = max |Oy(voy”)(€))] x sup|Ve(2)] < +oo,

1<i’<n—1, 1<j'<p, £§€B 26Q

which also depends on 2 and N only. Together with (4.8) and Lemma 4.1, the above arguments
imply that ‘
|0t ("))

Ziva

< 2071C) x (H(2")* + Cy x (2]
< 207YC) x (267'a)* +2Cy x 67 ta] from (4.7)
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for all a € [0,qp], 1 <i<mn—1, 1<j<pandx € B.
It follows that, for all n > 0, there exists aj = ag(£2, a, N,d,n) € (0,ap] such that, for all
a € [0,ag),
sup 10, (tg, v oy”) ()] <. (4.9)

1<i<n—1, 1<j<p, ='€B

Finally, there are some open sets U, ..., UP C B such that
area(d) Z |81y X Opqy (o)) da,
where the sets {y/(2'), 2’ € U’} for j = 1,...,p are pairwise disjoint and, for any € > 0, there
are some measurable sets V!, ..., V? C B such that
N ={y(2)), 1<j<p, 2/ €V}

and VI D U7, /1vj\Uj (2")dx’ < e for all 1 < j < p. Since all functions y/ and #/ v oy (for
B

all a € [0,a(] and 1 < j < p) are of class C*(B), since each function ¢, is one-to-one and since
(4.5) holds, it follows that

area (X Z |(91 (y) —thvoy) (@) x -+ x Opoi(y) — thv o y?)(2')] da

for all a € [0, ag).

One concludes from (4.9) that, since # = £(2,n) in (4.2) is positive, there exists a positive
constant ag = ag(£2, n, a, N,0) € (0, ay] which only depends on €2, n, o, N and ¢, and which is
such that

g

larea(3,) — area(092)| < §nanR”_1 for all a € [0, ag).

As a consequence, one has
. o ﬁ n—1
i(a) = area(X,) > | 1+ 5 noy, R
for all a € [0,a0]. The area of X, is well-defined for all a € [0, ag] since [0,ao] C [0,af] C Y

because of (4.4).
That completes the proof of Lemma 4.2. O

Lemma 4.3 Assume that Q € C is not a ball. Then, with the notations of Section 8 and

Lemma 4.2, one has
3o 2 (1+5) o7 (e

for all x € Q* such that p(ag) < |z| < R.
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Proof. From Lemma 4.2, one knows that
Sp(ao),R C F.

Notice that 0 < p(ag) < R. Fix any o € Q* such that r = |z| € [p(ao), R] (that is p~}(r) €
[0,a0] CY). Formula (3.22) of Section 3 implies that

) < o o) < 90
But
i(p~'(r) = /Z do,-1(r)(y) = area(S,-1() > (1 + g) nay, "
p~1(r) ﬁ
> (1 - 5) no, ™!
from Lemma 4.2. Thus,
1+ 2 <1 ()] x V()

E =
The conclusion of Lemma 4.3 follows from the above inequality, as in the proof of Corollary 3.6.0

The improved version of Corollary 3.6 is the following:

Corollary 4.4 Assume that € € C is not a ball. Then there exists a positive constant n =
n(Q,n,a, N,§) >0 depending only on Q, n, a«, N and 6, such that

Y(w) = (L+1m) p'(|=))
for all x € Q~.
Proof. Let e be any unit vector in R”. Let @ be the function defined in [0, R] by
®(r) = (re) for all r € [0, R).

This function is continuous in [0, R], differentiable (except at a finite set of points) and de-
creasing in [0, R]. Furthermore, Proposition 3.5 and the fact that p~! is decreasing in [0, R]
imply that p

() 2 (7 () 2 0
forallr € p(Y) = (0, p(am—1))U---U(p(az), p(ar))U(p(a1), R]. As in the proof of Corollary 3.6,
the mean value theorem yields

Ww(re) —(plao)e) > p~*(r) — ag
for all 7 € [0, p(ag)]. For each such a r in [0, p(ag)], one has p~*(r) € [ag, M] C (0, M], whence

i(ﬂ(ao 6) — Qg Bag
1) P ORI
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from Lemma 4.3. Remind that M denotes the maximum of ¢, so that p~(r) < M < N.
Hence, one obtains

U(re) > <1 + %) p~t(r) for all r € [0, p(ag)].
As in the proof of Corollary 3.6, the conclusion of Corollary 4.4 follows from the above
inequality and from Lemma 4.3, with the choice

>0

— s B Pag _5610
U—U(Qa”a@aN,é)—mln(272N _2N

for instance (notice that ag < M < N). O

Lastly, the following corollary is an improved version of Corollary 3.11.
Corollary 4.5 Assume that €2 € C is not a ball. If there are wyg > 0 and p > 0 such that

—div(AoVY)(y) — lw(y)| x [V (y)| — wol VY (y)| + V(y)(y) < pp(y) for ally € Q,

then, under the notation of Section 3,

/ A@)IVH@) = wol V@) [d(@) + V(@)d(@)?] eV da < 1i—n M2)2e V@ dz,

* Q*

where the positive constant n = n(2,n,a, N,0) > 0 is given in Corollary 4.4 and depends only
on Q, n, a, N and .

Proof. Under the assumptions of Corollary 4.5, it follows from Proposition 3.8 and Corol-
lary 4.4 that

~div(AV)(@) +0(a) - V(@) = ol V9(@)| + V@)ila) < o (Jal) < T0()

for all x € E N Q*. The conclusion of Corollary 4.5 then follows from Proposition 3.10. m

5 Application to eigenvalue problems

The present section is devoted to the proofs of some of the main theorems which were stated
in Section 2. We apply the rearrangement inequalities of the previous two sections to get some
comparison results for the principal eigenvalues of operators which are defined in €2 and in ©*.
Here, the data have given averages or given distribution functions, or satisfy other types of
pointwise constraints.

We shall use a triple approximation process. First, we approximate the diffusion and the
drift coefficients in 2 by smooth functions. Second, we approximate the principal eigenfunc-
tions in €2 by analytic functions. Lastly, we approximate the symmetrized data in * by
coefficients having the same distribution functions or satisfying the same constraints as the
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original data in ). Section 5.1 is concerned with the latter approximation process. In Sec-
tion 5.2, we deal with the case of general non-symmetric operators for which the inverse of the
lower bound A of the diffusion matrix field A has a given L! norm, the drift v has a given L?
norm with weight A=! and the negative part of the potential V has a given distribution func-
tion. Lastly, in Section 5.3, we consider diffusion matrix fields A whose trace and determinant
satisfy some pointwise constraints.

5.1 Approximation of symmetrized fields by fields having given dis-
tribution functions

In this subsection, 2 denotes an open connected bounded non-empty C* subset of R” and Q*
is the open Euclidean ball which is centered at the origin and such that |Q*| = |Q2]. In this
subsection we do not require 2 to be of class C?. Call R > 0 the radius of Q*, that is Q* = Bj.
For 0 < s < s’ < R, one recalls that S; ¢ = {z € R", s < |z| < ¢}.

Let ¢ : Q — R be a continuous function. Call

m =minty and M = max1.
Q Q

For all a < b € R, denote
Qu={2€Q, a<y(v)}, Qop={2€Q, a<y(x) <b} and ¥, = {z € Q, ¥(x) = a}.

One assumes that
|Xa] =0 for all a € R. (5.1)

It follows then that m < M. For each a € [m, M|, set

pla) = (\2_7?)1/@

The function p : [m, M] — R is then continuous, decreasing and it ranges onto [0, R].

Lemma 5.1 Under assumption (5.1), let g be in L®(Q,R) and h in L>(Q*,R) and radially
symmetric, and assume that

Vm<a<b<M, / g= h. (5.2)
Qab Sp(b),p(a)

Then there exist a sequence of radially symmetric functions (gr)ren in L>(2",R) and two
sequences of radially symmetric C*(Q2*,R) functions (gk)keN and (Gy,)ken such that

ge = h, g —h and g, —h as k— +00
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in o (LP(Q¥), LY (Q%)) for all 1 < p < 400 (weak convergence, with 1/p+1/p' =1 for1 <p <
+00, and weak-* convergence for p = +oo and p' = 1),? and

([ {2z €Q, g(x) >t} = |{z €Q, gr(x) >t} forallt €R and k € N,

Hzx € Q, g(x) >t} =|{zx € Q*, gr(x) >t} forallteR and k €N,

essQinf 9<9, S g <Gp<esssupg a.e. in Q* for all k € N.
= Q

\

Remark 5.2 The functions g, and g, are actually constructed so that
9 —9g,— 0 and g —g, — 0 as k — +oc in LI(2")
for all ¢ € [1,400) (see the proof of Lemma 5.1).

Remark 5.3 The functions g then have the same distribution function as g and the functions
g, (resp. gj) then have distribution functions which are less than (resp. larger than) or equal to
that of g. Moreover, if one further assumes that g and h are nonnegative almost everywhere in
Q and Q* respectively, then the functions g (resp. 9, J,) are nonnegative almost everywhere

in QO (resp. everywhere in Q*). The same property holds good with nonpositivity instead of
nonnegativity.

In order not to lengthen the reading of the paper, the proof of this lemma is postponed in the
Appendix. To finish this subsection, we just point out an immediate corollary of Lemma 5.1.

Corollary 5.4 In addition to (5.1), assume that v is in C*(Q), ¥ = m on 09, ¥ > m in
Q, and v has a finite number p of critical values a; with m < a; < --- < a, = M. Let
g € L*(Q,R) and g € L>®(Q*,R) be defined by

/E 9 V)] oy ) (9)

jla) = 7L ) (53)
[ v, )
Ep=1(jal)
for almost every x € Q0 such that |x| # p(ay), ..., p(ar), where do, denotes the surface measure

on 3, for a € [m, M] which is not a critical value of 1. Then the conclusion of Lemma 5.1
holds for h =g.

Proof. It is enough to prove that the function g defined by (5.3) is indeed well-defined,
bounded and radially symmetric and that property (5.2) is satisfied with A = g. To do so,
choose first any two real numbers a < b in [m, M| such that a; & [a,b] for all i = 1,... p.
From the co-area formula and Fubini’s theorem, one has

/Q l9(y)ldy = /ab </Z l9(y)| x |Vw(y)]_ldas(y)) ds < +00 (5.4)

2This convention is used throughout the paper.
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and the quantity
[ sl < 196 o)

is therefore finite for almost every s € [a, b]. The quantity

/E 9|V () [1do -1y (1)

P~ ()

/Z V()| o1 (1)

p~L(r)

is then finite for almost every r in [p~'(b), p~!(a)] and for all m < a < b < M such that
{ai,...,a,} N[a,b] = 0. In other words, g is well-defined for almost every z € Q* such that
|z| # p(a1), ..., p(a,). Moreover, the function g is in L>(Q*, R),

ess inf g <essinf g <esssup g <esssup g
Q* Q* QO* QO*

and g is clearly radially symmetric.

On the other hand, the same calculations as the ones which were done in Lemma 3.2 in
Section 3 imply that the function p is actually differentiable at each value a & {a4,...,q,},
with

J(a) = —(nanp(a)™)™ / V(y)| " doa(y).

Coming back to (5.4), the change of variables s = p~!(r) then yields

/Q avbg(y)dy = /p :)a) ( /E

that is

no,r" !

IVip(y)| ™ doy-1y(y)

p=1(r)

dr,

p=1(r)

g(y)lviﬂ(y)rld%l(r)(y)) /

%

/Q iy = / i(w)da

p(5),p(a)
for all a < b in [m, M] such that {a1,...,a,} N[a,b] = 0. Since |X.| = 0 for all ¢ € [m, M]
(and then p is continuous), one gets from Lebesgue’s dominated convergence theorem that

/ g= g
Qab Sp(b),p(a)

for all @ < b in [m, M| and then the conclusion of Corollary 5.4 follows from Lemma 5.1. o

5.2 Operators whose coefficients have given averages or given dis-
tribution functions

In this subsection, we consider operators for which A > A Id, and A and v satisfy some integral
constraints while the negative part of the potential V' will be fixed.
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Proof of Theorem 2.1. It will be divided into several steps. Throughout the proof, we fix
Qecl, Ae W (Q,8,(R)), A € LY(Q), ve L®(QR") and V € C(Q).

Call

0<my= essﬂian <esssupA = My < +o0 (5.5)
Q

and assume that

A>AId ae. in Q. (5.6)

and that
)\1 (Q, A, v, V) Z 0.

Step 1: Approximation of A in Q. Write first
A(x) = (ai;(2))1<ij<n:

Each function a; ; is in W5*(Q) and is therefore continuous in Q (up to a modification on a
zero-measure set). For each x € Q, call A[A](z) the lowest eigenvalue of A(x), that is:

VzeQ, AA(z)= geRIEiE\:l A(x)€ - €.

The function A[A] is then continuous in  and
A[A](z) > A(x) a.e. in

because of (5.6). In particular, A[A](z) > my for all x € Q, where m, > 0 has been defined in
(5.5). There exists then a continuous function A in R”™ such that

A(z) = A[A](z) for all x € Q, and my < A(x) < ||A[A]]| 1= (q) for all z € R™.
We first consider the case when m, < M,. Thus,

/QA(y)l(y)dy > M9,

whence
€= Ma — [|[AM|71 )| € (0, Ma —my].

Pick any € in (0,2). Let J. be the function defined in [0, My — mp — €] by
V7el0,My—mp—c¢|, J.(1) = / max (min(A(y), My — ), mp + 7')71 dy.
Q

This means that the function A is truncated between ma + 7 and M, — . The function J; is
Lipschitz-continuous and nonincreasing in [0, My — my — ¢]. Furthermore,

J.(0) = / min(A(y), M — &) dy > / Aly) ' dy
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since My —e < My = ess supg A, while
TAMy = ma = 2) = (My = 2)7190] < (Ma =)0 = [ M)y
Q

owing to the definition of €. Therefore,

#(€) = min {T €10, My — mn — &, Ju(r) = /QA(y)_ldy}

is well-defined and 0 < 7(g) < My —my —&.
Moreover, we claim that
7(e) - 0T ase — 0. (5.7)

If not, there exist 7, € (0, My — my] and a sequence (e,)pen € (0,€) such that ¢, — 0 and
T(€p) — Teo as p — +00. Then,

/QA(CU)—ldy = J (1(5)) = /max (min(A(y), Ma — €,),ma +7(g,)) " dy
= fmax (min(A(y), Ma), ma + 7o0) " dy,
p=roeJa
whence

[ Ay = [ max(h () ma + ) dy

and A > my + 7o > my a.e. in €2, which is impossible.
Choose a sequence (e)ren of real numbers such that

O<ey<cforall keN, and ¢, — 0 as k — +o0.

For each k € N, call
Tk = T(ex) € (0, My — mp — €x).

It then follows from (5.7) that
7. — 0 as k — 4o0.

Then, for each k € N, denote
Aqr = max (min(A, My — €x), ma + 7%) a.e. in (5.8)
and define the function A, in R™ (almost everywhere) by

) Aarly) ifyeQ,

Aly) = { ma + 7, if y € R™\Q,

and the continuous function A, by

Ax(y) = max(A(y), mp + 73) for all y € R™.
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Notice that
| Aoy = [ Nowto) iy = Tm) = [ M)y (5.9)
Q Q
for each £ € N. Observe also that
0<mp<mp+7, <A, <My—ep <My, A, <Ajae inR”,

and that B
K < max([ALA] 1=y, ma +7) = [A[A]| =y in B,
because ||A[A]]| L) > ess supg A = Mp > mp + 7.
Let (p)wen be a sequence of mollifiers in R™. For each (k, k') € N2, call

_ 1\ 1 _
Ak,k’ = (pk’ * Ak 1) and Ak,k/ = (pk/ * A;l) !

that is

Rearlo) " = [ polaBuly — 2) Mz and o) = [ prel2)ely — 9) s

n

for all y € R™. The functions Ay and A, are of class C*°(R") and they satisfy
0 <mpa <mp+ T SAk,k’(y> < My — e < My

and
Mgy (1) < A (y) < |A[A]]] oo (o for all y € R™.

Furthermore, for each k € N,

Ay — Ayt in LY

loc

(R™) for all 1 <p < 400 as k' — +00 (5.10)

and
App — Ay = max(A[A], my + 73) uniformly in Q as & — +oo.

Actually, since K;l Ny uniformly in R” as k — +oo (because 7, — 0 as k — +oo and
A > my > 0in R"), one even has that

Ap g — Ay — 0 uniformly in Q as (k, k') — (+00, +00). (5.11)
Call, for each (k, k") € N2,
N 1Al @) -0
e = > 0.
Az

Define the function A almost everywhere in R™ by:

A~ A in Q,
= | ma in R"\Q.

Since 0 < mp < A < M, a.e. in R" and €, 7, — 0 as k — 400, it follows that

Ay — Allzoo®ny — 0 and ||A;' — A7 pemn) — 0 as k — +oc.
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Thus,

1AL =AMz < e (A =A@+l ow A =A™ | 1) — 0 as (k, &) — (400, +00),

whence , 1
app —1= HAk,k/HLl(Q) — 1A L1 (o
7 A 21

Furthermore, because of (5.9) and (5.10), there holds

— 0 as (k, k") — (400, +00).

A e — 1A e

— 0 as k' — +oo, for each k € N.
A1)

g — 1

Define now
Apgo (y) = gy, o (y) for all y € Q and (k, k') € N2,

The functions Ay are of class C*°(€2) and they satisfy

/ Ak’k/(y)_ldy = / A(y)_ldy for all (k, k'/> c NZ,
Q Q

and
0 < app X (ma+7) < A < g X (Mp — &) in Q for all (k, k') € N2,
g X (ma + Tk)k — myp + 71 forall k €N,
I 400

Qg X (Mp — Ek)k’:i-ooMA — ¢ forall k € N,

together with
1Ak = A 1y — 0 as (k, k') — (00, +00).

Lastly,
Ak,k’ = O‘k,k’Ak,k’ < OékJ{/Kk’k/ n ﬁ for all (]C, lf/> € N2

and
g Mg — A, — 0 uniformly in Q as (k, k') — (400, +00)

from (5.11) and (5.12).

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
(5.17)

(5.18)

In the case when m, = M), namely when A is equal to a constant (up to modification
on a zero-measure set), then one sets Apw = Ay = Ay = Nap = A, ap = 1, Ay = A,

e = 7, = 0 and properties (5.14), (5.15), (5.16), (5.17) and (5.18) hold immediately.

Step 2: Approximation of A in 2. Let us now approximate the W1 (Q) matrix field A =
(aij)i<ij<n- First, each function a;; can be extended to a W'*°(R") function @;; such that

@i jl| oo gy = l|aijllLo() and [[V@ || o @ny = | Vai j] L~ (@),

whence
1w ny = llaizllwree) < | Allwre @),
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where we recall that [|Allwie) = maxi<;j<n ||aijllwie(). Since the matrix field A =
(@i j)1<ij<n is symmetric, the matrix field (@; ;)1<ij<n can be assumed to be symmetric. For
each 1 <4, j <n, the functions py *@; ; are of class C*°(R") and converge uniformly to a; ; in
Q as k' — +oo. Furthermore,

IV (o # @i j) || Lo gy < (V@i jlLoorry = [[Vaigllie@) < llaijllwre@) < [|Allwre@

for all ¥ € N and 1 < i4,j < n. For each k' € N, the matrix field (pi * @;;)1<ij<n can
be approximated in C'(€) norm by symmetric matrix fields with polynomial entries in €.
Therefore, there exists a sequence of symmetric matrix fields (A} )wen = ((a}s; ) 1<ij<n)ien

in ) with polynomial entries aﬁg,,i,j such that, for all 1 < 14,57 < n,

Ay ;; — @ij uniformly in Q as k' — +o00 (5.19)
and
1i{ﬂiup||va2/,i,j||m(ﬂ) < |[VaillLe@) < [|Allwiee -
Call

Mg = n? X Jpax @k i 5 = @iglle@) + 1Ak — arpbiwllLe@) + T
Because of (5.18), (5.19), and since 7, — 0 as k — +o00, there holds
mew — 0 as (k, k') — (400, +00).
The symmetric matrix fields

!
Appr = A + M Id = (arp i) 1<ij<n

with polynomial entries ay s ;; are such that

ki — a;j uniformly in Q as (k, k') — (+00, +00) (5.20)
and
sup limsup ||Vagw i illre@) < [[Vaij||re@) < [|Allwree@). (5.21)
keN k' —+4oo

Furthermore, for each (k, k') € N?, x € Q and ¢ = (&,...,&,) € R” with |£| = 1, there holds

Appr (2)€ - § — Mg ()
= Z (@, ;(x) — a;j(2)6E + n? x 1I<r;§><<nllaz/,z-,j — @i jl|L~ (@)
1<i,j<n . T Y=
+Ax)E - & — A (35)_+ | Ax — Oéﬁ,k’Ak,k’HLiO(Q) + Tk
> ANA|(z) + 7 — ap A (2) + || Ak — o Ap || Lo (@) (because of (5.17))
>0

because A[A] + 7 > max(A[A],ma + 71.) = Ax in Q. In other words,
Ap () > A (2)Id for all (k, k') € N? and z € €, (5.22)
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in the sense of symmetric matrices.

Step 3: Approximation of v in 2. Call

0<m, = essQinf|v\ < ess sup |v| = [|[v||pe@rn) = [|V]|o0 = My < +o00.
Q

We first consider the case when m, < M, and m, < M,. In particular, it follows
that M, = ||v]|« > 0 and that there exists

g € (0, M, — m,) such that (M, —&)?* x /

RS /Qrv<yﬂ2A<y>-1dy. (5.23)

Call K the function defined for all & € [0,2'] by
K(e') = / [[o(y)* — min ([o(y)]*, (M, = £)*)] x Aly)~"dy.
Q
The function K is continuous and nondecreasing in [0, '], vanishes at 0 and is positive in (0, 2]

due to the definition of M,. Let the sequences of positive numbers (ex)gen and (7% )ken be as
in Step 1. Since max(gy, 1) — 0 as k — +00, one can assume without loss of generality that

Q|M?
i 5= X max(eg, 1) < K (&) for all k € N.
My
For each k£ € N, call
Q| M2
g}, = min {a’ € [0,2], il 5 X max(eg, 7)) = K(a’)} :
My

From the above remarks, ¢} is well-defined and 0 < ¢}, < &. Furthermore, K(c}) =
max(eg, 7) X |QM2m,? — 0 as k — 400, whence

e, — 07 as k — +o0.

Fix now any unit vector e € R". For each k € N| let L; be the function defined for all
7€ [0, M, —m, — €] by

Li(r') = / v () PAcri(y) " dy, (5.24)
Q
where ‘

(M, —e)v(y)| T oly) if Jo(y)] > M, — &,
v(y) if m, +7 < |o(y)| < M, — &,

vor(y) = (Mo 7)) oly) it m, < |u(y)] <m, + 7, (5.25)
(my +7)v(y)| () i Ju(y)| = m, and m, > 0,
(my, +7')e if |v(y)| = 0 and m, = 0.

Each function Ly is Lipschitz-continuous in [0, M, — m, — €,] and
Lu(0) = [ min (jo(y)?, (M ~ £4)°) Aaas)
Q
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whence

L (0) — /Q!v(y)\QA(y)‘ldy = /Qmin (Jo(y) P, (My — £1)?) - (Aaw(y) ™" — Aly) )dy — K(e},)
QM

= 0

X max(ey, 1) — K(g})

due to the definitions of Aqy (see (5.8)) and my, My, M, and ). Furthermore,

Lo(M, —my—el) = (M, —£})? /

Ran(y) 'y = (M, — £, /
(9]

[ Ay tay > / 0(y) PA(y) " dy

from (5.9) and (5.23) (remember that 0 < ¢}, < & < M, —m,, < M,). Therefore, by continuity
of L, the real number

7, = min {7" €0, M, —m, —&}), Lp(7') = /Q |v(y)|2A(y)_1dy} (5.26)

is well-defined and 0 < 7, < M,, — m,, — €. Moreover, 7, — 0 as k — +oo. Otherwise, up to
extraction, there exists 7 > 0 such that 7, — 7 as k — 400, and

Lu(r) — [ max (ju(y)?, (my +7)%) Ay) "y > / [0(y) [PAy) " dy

by definition of m,. This is impossible by definition of 7.
Call now

YOk = VQk,r -

Notice that, for each k € N, the vector field vg is in L>°(£2, R™) and it satisfies

my + 7, < essQinf|v97k| < ess sup lvar| < M, — &,

and

/ oo (9) P A )"y = Li(rl) = / o(y) PA(y)~dy. (5.27)
Q Q

Write now the vector fields v and vg; as v = (v1,...,v,) and v = (Vk1, - - ., Vka), €xtend
all functions v; and v; by 0 in R™\(2, call v; and v, ; these extensions. Set

v=(v,...,0,) and vy = (V1,5 U p)-

One then has that
|lvg, — vl Lo (mn Ry — 0 as k — 400 (5.28)

since (g}, 1) — (0,0) as k — +o0. For each (k, k') € N? denote

U = (P& % Vg1, s P % Vg,
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where (pp)wen is the same sequence of mollifiers as in Step 1. The vector fields vy ;, are then
of class C*°(R"™,R™) and they satisfy

||Qk,k/||Loo(Rn7Rn) S ||Qk||Loo(Rn7Rn) S Mv — 8;6 < Mv = ||U||Oo fOI‘ all (k‘, k’/) € NQ.

For each fixed k € N, the fields v, ;, converge to Upjg = Uk aS k' — +o0 in all spaces LP(f)
for 1 < p < 400. Actually, one also has that

HQ,C’,C/ — UQ,k”LP(Q’Rn) + HQ,C’,C/ — UHLP(QJRTL) — O as (k, k'/) — (+OO, +OO)

because of (5.28). Together with (5.12), (5.15) and (5.16), it follows that
/Q\yk,kf(y)l2/\k,kf(y)ldy — /Q [0()PAly) "' dy as (k, k') — (+00, +00).

Remember that the limit in the right-hand side is positive because M, > 0 here. Then the

positive real numbers
1/2
JEOROR
Q

/ ‘Qk,k/ (?/) |2Ak,kz’ (y)_ldy
Q

are well-defined for k and £’ large enough (one can then assume for all (k, k') € N? without
loss of generality) and Sy — 1 as (k, k') — (400, 4+00). Moreover, for each k € N,

/|Ukk/ NP Mg (y)~ /|Uk )PA, (y) " dy /|UQk WP Aar(y) dy

ﬁk,k’ =

ﬁk_,k/ = . _)+OO =1
JAEORY Jrwese e [ pwPaw
Q

because of (5.10), (5.13) and (5.27).

Set B

Ve () = Brprty o (y) for all y € D and (k, k') € N2,
The vector fields vy, are in C*(€2,R") and they satisfy
[ o P A )y = [ o) PAw) My for all (iKY €N (529)
Q Q

and

||Uk7k/||Loo(Q7Rn) S /Bk7k/||yk7k/||Loo(Rn7]Rn) S ﬁk,k’ X (”v“oo — E;c) fOI‘ all (k?, k'/) & N27
Brr X (||v]|oe — €%) = [|V]loc — €}, a8 k' — 400 for all k € N, (5.30)
vk rr — || Lrorny — 0 as (k, k') — (400, +00) for all 1 < p < +o0.

Consider now the case when m, < M, and m, = M,. Namely, up to modification on
a zero-measure set, A is constant. Choose ' € (0, M, — m,,) such that (5.23) holds, namely

(M, — 2Pl > / o(y) Pdy. (5.31)



Take any sequence (e} )ken in (0,8") such that ¢, — 0 as k — 4o00. For each k € N and
7' € [0, M, —m, —¢}], define Ly(7') as in (5.24) with Ag, = A. Each function Ly, is Lipschitz-
continuous. Moreover,

L(0) = A7 [ min (o), (M, =) dy < A7 [ o)y = [ o)A dy
since 0 < M, — ¢}, < M,, and
Ly(M, —m, —&,) = (M, —&},)?)A7 Q| > (M, —2)2A71Q|
> A )Py = [ [ow)PAG)

from (5.31). Therefore, the real numbers 7, given in (5.26) are well-defined and are such that
0< 7, <M,—m,—c¢, for each k € N. We then keep the same definitions of vq k, v, vy, Uk s
Brr and vy, as above and properties (5.29) and (5.30) hold.

Lastly, in the case when m, = M, = ||v||«, namely when |v| is equal to the constant
|v]loo almost everywhere, then v is kept unchanged. We set v ;. = vpp = v, Bpp = 1, €, = 0,
and properties (5.29) and (5.30) hold.

Step 4: Approximation of the eigenvalue A\;(€2, A,v,V). Consider first the case when
m, < M, = ||v||e. For each k € N, it follows from (5.14), (5.15), (5.22), (5.29) and (5.30) that
there exists an integer k'(k) > k such that the C™ fields

Ay = (ak,i,j)lgi,jgn = Ak,k’(k)a Ay = Ak,k’(k) and vy, = Uk, k! (k)

satisfy, for all k£ € N,

/

/QAk(y)‘ldy = /#(:Wldy,

0<mA§mA+§§Ak§MA_€_2k§MAinﬁa
Ar(y) > Ar(y)Id for all y € Q, (5.32)
[P at) s = [ pwPaw)
Q Q
!

€k
| [kllz=@rn) < [0llzee@rn) = 5 < ollze o).

Notice that this is possible in both cases my < My (then, ¢, and 7, are all positive) or
ma = My (then, e, = 7, = 0 for all k£ € N). Notice also that ¢ > 0 for all £ € N in this case
when m, < M,. Furthermore, the matrix field A is symmetric with polynomial entries ay,; ;
in Q, and, by (5.20), (5.21) and (5.30),

ap;; — a;; uniformly in Q as k — +oo,

lj];:msup||vak7i7j||Loo(Q) < |[|Vai e < |Allwiee) for all 1 <i,j < n, (5.33)
— 400
vk — v||Lr(rny — 0 as k — +oo for all 1 < p < +o0.

In the case when m, = M, = ||v||, then one sets v, = v for all £ € N, and properties
(5.32) and (5.33) still hold (with €}, = 0 in that case).
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Let us now prove that
A (Q, Ag, vk, V) — M (Q, A0, V) as k — +o0. (5.34)

Notice first that each operator —div(AxV) + v - V + V is elliptic because of (5.32). Fix an
open non-empty ball B such that B C 2. It follows from [14] that

min V' < A (Q, Ag, vp, V) < A (B, Ag, v, V) for all k € N, (5.35)
0

Furthermore, properties (5.32) and (5.33) imply that the sequences of matrix fields (Ay)ken
and (A; Ygen are bounded in W1>(Q) (and then in W*°(B)), and that the sequence of vector
fields (vg)gen is bounded in L*>°(Q2), and then in L>°(B). From Lemma 1.1 in [14], there exists
then a constant C' independent from & such that

M (B, Ag, v, V) < C for all k € N,

Together with (5.35), it resorts that the sequence (A;(£2, Ag, vg, V))ken is bounded. Thus, for
a sequence of integers n(k) — +oo as k — 400, one has that

A, Angys Vni), V) = A € Ras k — 4-00.

For each k € N, call ¢, the principal eigenfunction of the operator —div(A;V) + v, -V +V
in 2 with Dirichlet boundary condition, such that maxg ¢, = 1. Namely, each function ¢y

satisfies

—div(ArVr) + vg - Vo + Vg A (Q, Ag, v, Vg, in Q,

v > 0 in €, (5 36)
[kl = 1, '
o = 0 on 0f2.

From standard elliptic estimates, each function ¢y, is in W?2?(Q) for all 1 < p < +oco and in
CH(Q) for all 0 < a < 1. Furthermore, since the eigenvalues A;(Q, Ay, vy, V) are bounded
and [|¢x||ze) = 1, it follows from (5.32) and (5.33) that the sequence (¢;)ren is bounded in
all W2P(Q) and CH*(Q), for all 1 < p < +oo and 0 < a < 1. Up to extraction of another
subsequence, one can assume that there exists ¢, € ﬂ W?2P(Q2) such that

1<p<+oc0

Pn(k) — Poo a8 k — +00, weakly in W?P(2) and strongly in C*(Q)

for all 1 < p < +oo and 0 < a < 1. Notice that (5.33) implies that d,,ax;; — O.,a;; in
o(L>(), LY (Q)) as k — +oo, for all 1 < 4',4,j < n. Multiplying (5.36) for n(k) by any test
function in D(N), integrating over {2 and passing to the limit as k — 400 leads to, because of
(5.32) and (5.33),

—div(AV@e) + 0 Voo + Vipoo = Apso In Q,

together with B
Voo =0 0n 90, o >0in Q and max ., = 1.
Q
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The strong maximum principle and the characterization of the principal eigenvalue and eigen-
function thanks to Krein-Rutman theory imply that A = A\ (€2, A, v, V') and ¢, is the principal
eigenfunction of the operator —div(AV) +v -V + V in Q with Dirichlet boundary condition.
The limiting function ¢, is uniquely determined because of the normalization maxg ¢ = 1.
Since the limits A = A{(2, A, v, V) and ¢, do not depend on any subsequence, one concludes
that (5.34) holds and that the whole sequence (pg)ren converges to ¢., as k — 400, weakly
in W2P(Q) and strongly in C**(Q) forall 1 < p < +ooand 0 < a < 1.

Step 5: Approximation of the principal eigenfunction of ¢y for a large K. Choose any ar-
bitrary € > 0. Let ¢’ € (0,1) be such that

M AU V)+3 +emit + €V e

— <M, A0, V) + e (5.37)
Thanks to (5.34), there exists then K € N such that
M(Q, A, v, V) < M (Q, A0, V) + € (5.38)

Remember that (5.32) holds with k = K. Let ¢k be the (unique) solution (5.36) with k£ = K.
Notice that
v-Vog = —|Veg| <0 on 00

from Hopf lemma.

Call F, F, F, S and £ the functions defined in Q by

F=-Vpg+ )\1(&141(7 vk, V)eK,

F = —vk - Vg, F = |vk| X [Vokl|,

i = é—i— F = —UVK * VQOK — VQOK + )\1(9, AK,UK, V)QOK,
f=F+F = vkl x |[Vok| = Ver + M(Q, Ag, vk, V).

The function F is continuous in Q. There exists then a sequence (F;);en of polynomials such
that B
F; — F uniformly in 2 as [ — +o0.

Observe also that the function JF is in L>=(f2), and that the function F is nonnegative and
continuous in : this is true if m, < M, because vk is then actually of class Cm(ﬁ) and
ox € CHQ); this is also true if m, = M, because vi is then equal to v and |vg| = M, in Q
up to a modification on a zero-measure set. Let Ry > 0 be such that

Qc BRO,

where Bp, is the open Euclidean ball of radius Ry and center 0. Denote by F (With_a slight
abuse of notation) a continuous extension of_ F in R" such that F > 0 in R™ and F = 0 in
R"™\ Bg,. Extend by 0 the function F in R"\Q and still call F this extension. Notice that

F < FinR" (5.39)
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For each [ € N, call (; the function defined in Bsp, by
[(2R0)* — |2
/ [(2Ro)” — |2/7]' d2’
Bag,

G(z) =

Extend the functions ¢; by 0 outside Byg, and still call (; these extensions. In , define the
functions

flzg*zand?l:(l*?for all [ € N.
Owing to the choices of Ry and (;, the functions ., and F; are polynomials in Q. Furthermore,

since £ € L>(R") and F € C(R"), there holds

\|F, — £||Lp(g)l e 0 for all 1 < p < 400 and 7:11 — F uniformly in Q.

——+00

Furthermore,
Fi=0*F<@*F=F inQforalleN

because of (5.39). It follows that

fi=F+F = fin DP(Q)forall 1 <p< oo, f=F+F — funiformlyin@ (5.40)

together with L
J,<F inQforallleN. (5.41)

Remember that the function ¢y satisfies

—diV(AKVg0K> = f n Q,

with = 0 on 0. For each [ € N, call ¢; the solution of

—diV(AKvwl) = i in Q,
{ Y = Ol on 0f2. (542)

Each function ¢, is then analytic in Q (remember that Ay is a field of symmetric positive
definite matrices with polynomial entries, and that each f , is a polynomial in Q). From
standard elliptic estimates, the functions v; converge to the function ¢y asl — +oo in W*P(Q)
and C12(Q) for all 1 < p < +oo and 0 < a < 1. Since pr > 0 in Q and |[Vg| > 0 = ¢k on
0f€), one then has

;> 0in Q and |V| > 0 on 99 for [ large enough. (5.43)
Furthermore, from (5.41), there holds

—diV(AKV@Di) — vk | X [V = |V | + [V — M (2, 4,0, V) — 2'] iy
< fi = |vg| X |V | = |V + [V = M(Q,A 0, V) =24 in Q.
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From (5.40) and the definition of f, it follows that

7[ - |UK| X |v7v/}l| - 5/|V¢l| + [V - Al(Q’A>vv V) - 25/] szl
- P‘l(QvAlOUKaV) - Al(Q,A,U,V) - 6/] YK — €/<|V90K| + QDK)

as | — 400, uniformly in €. Using (5.38) and the properties of ¢, it follows that the
continuous function

[)\I(Qu AK7 VK, V) - /\1(Q7 A7 v, V) - 5/] YK — 8/(‘V¢K| + (PK)
is negative in Q. Therefore, there is L € N large enough so that (5.43) holds with [ = L and
—div(Ax VL) — |vg| x |VL] = €|V + [V = M (Q, A0, V) — 2" ¢, < 0in Q. (5.44)

Step 6: An inequality for the rearranged fields in the ball 2*. Apply then the results of
Section 3 to the function

=1L
and to the data
(AQ7AQ7W7V) - (AKaAKﬂ ‘UK|7V)

From the previous steps, these fields satisfy all assumptions of Section 3. Given 1, one can
then define the sets Z, Y, E and the function p as in Section 3.1. Given ¢ and the data
Ag = Ak, Ag = Ak, w = |vg| and V| one can also define the corresponding rearranged fields
¥, A, 0, V and U given by (3.3), (3.4), (3.7), (3.8), (3.9), (3.12), (3.33) and (3.34).
One recalls that A1(£2, A,v,V) > 0 by assumption. From (5.44) and Corollary 3.11 applied
with wy =& > 0 and
=X A 0, V)+2" >0,

it follows that
/ [K(:cw&(az)ﬁ — V()| () + 17@)&(3;)2} e U@ dr < p | P(x)2eV@dz.  (5.45)
. o

Remember that the function 1Z is radially symmetric, continuous and decreasing with respect
to |z| in Q*, and that ¢ € H}(2*). The field A is radially symmetric and belongs in L°°(*).
Furthermore,

/*K(x)1dﬂf—/ﬂAK(y)1dy—/A(y)1dy (5.46)

Q
from (3.6) and (5.32). On the other hand,

TK

0<mp <mp+ 5 <minAg < es%inf//i < ess sup/A\ <maxAx < My — %( < My (5.47)
Q * Q

Q*

from (3.5) and (5.32).
From (5.45) and (5.47), it follows that

~ A~ A~ ~ / o~ ~ ~
(1— 5’)/ A|Vip|2eY —i—/ ViPe VU < eV + %/ A lyp?e VU < (,u—i—s’m,_\l)/ e Y.
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On the other hand, the field V is radially symmetric, it belongs to L>(£2*), and

—Vloo <min(=V7) < es%inf‘/} <esssupV <0
Q * Q

(see (3.13)). Therefore,
(=) [ (RIVIF+P3) e < o+ md + V) [ e
that is

- - / I —1 / — "
/ (A’VWQ +V¢2) U < M(QA 0, V)42 +e'my + €|V ||l 9 Jre V. (5.48)

1—¢ Q*

Step 7: Approximation of the rearranged fields in Q*. First, define the function E almost
everywhere in R" by:

=)

A(z) if x € O,
(#) =\ min Ag if z € RO,
Q
and then, for each m € N,
~1\ 1
A, = (pm+h) R

where the mollifiers p,, can be assumed to be radially symmetric for all m € N. Next, for

every m € N call
AF )1 .
N (Al P
A= v

and o
A (z) = YA (z) for all x € Q*.

As in Step 1, it follows from the above definitions and from (5.46) and (5.47) that each function
A}, is radially symmetric and of class C'°(€2*), that lim,,— oo ¥m = 1, that

/ Ar (z) e = / A(y)~dy for all m € N (5.49)
* Q
and that
0 < Y X <mA—|—T—K> <min A}, <max A}, <7, X (MA—E—K> for all m € N,
. 2 N . 2 e (5.50)
o (ma+ )z T mx (Ma = ) My

From reciprocal of Lebesgue’s theorem, one can also assume without loss of generality (even
if it means extracting a subsequence) that

-~

A% (x) — A(z) = A(x) as m — +oo for ae. x € Q.

o8



Remember also that if my < My then ex > 0, 7, > 0 and notice that if my = M, then
ex =Tk =0, Y = 1, A%, = my in Q* for all m € N and properties (5.49) and (5.50) hold
immediately.

Next, owing to the definition (3.9), the vector field ¥ can be written as

v(z) = |v(z)| e,(x) in QF,

where |v] is radially symmetric. Furthermore, as in Step 3 and since w = |vg]|, it follows from
(3.10), (3.11) and (5.32) that

o) PR o = [ o) PAico) My = [ o)PAW) My (551
Q* Q Q
and
/
[Bllz=@e ) < ol = lollzx@pn < llx@pn = 5 < [vllz=@zn-  (5:52)
Call

| ()] ifz e QF,
(@) { 0 ifzeR\Q

and, for each m € N,
v () = (pm *xw)(z) e.(z) for all z € R™\{0}.

One has |[v) || ze@rrry < ||w][zoe@rrry < V]| Lo rny and one can assume without loss of
generality that
*

vy (x) — v(x) as m — +oo for a.e. z € Q.

Consider first the case when ||v||Le@rn) > 0. Therefore, for m large enough (one can then
assume that this holds for all m without loss of generality), the real numbers

1/2 N 1/2
/Q o(y) PA(y) " dy [ o)A e

v, (2) PA% (2) "\ de / [t (@) PAL (@) e

S = (5.53)

Q*
are well-defined, positive, and they are such that 9,, — 1 as m — 4o00. Therefore, the vector

fields defined by
vi (2) = 6pul, () for all 2 € O\ {0}

m

are of class C*(Q*\{0}) and converge to ¥(z) as m — +oo for almost every z € Q*. These
fields can be written as

v (x) = |vF, (7)]e,(z) for all € Q*\{0}

and vy, | is radially symmetric, of class C*>(Q*\{0}) and can actually be extended at 0 to a
C>(Q*) function. Furthermore, it follows from (5.52) and (5.53) that

Q*

@) A a) e = [ o) PAG) (554
Q
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and

. . e e
e im0y < Glllmorey < 8 ¢ Bollimiazey = )| = Pollimaze) = . (5.5

Lastly, remember that if m, < M,, then &} > 0, and notice that if m, = M, (this is the case
if ||v]|z(@rny = 0), then e = 0, w = m, in Q, ¥ = v}, = mye, in Q* and properties (5.54)
and (5.55) hold immediately with 4,, = 1.

Fix now an arbitrary unit vector e in R and define, for each m € N,

_ |z
VeeQ, U(x)= / [vZ, (re)| A%, (re) ~tdr.
0

As in Proposition 3.10, the definition of U}, does not depend on the choice of e. Furthermore,
each function U}, is continuous in Q*, radially symmetric, of class C*>°(Q*\{0}) and it satisfies

VU (z) = A (z) ok () e (z) = AF (2) 1o, (z) for all z € Q*\{0}. (5.56)

On the other hand, each function U, is nonnegative in Q* and it follows from (5.50) and (5.55)
that

£

. B / B !
||Um||Loo(Q*) S 5mmA1R X <||U||LOO(Q7]R7L) — 71() m:roo mAlR X (HUHLOO(QJRn) — 7K) . (557)

Moreover, since all fields [v7,|, [3], A%, and A are radially symmetric, it follows from the above
estimates and Lebesgue’s dominated convergence theorem that

U:(z) — U(x) for all z € Q,

m——+00
where U is given in (3.34).
Lastly, Corollary 5.4 applied with ¢ = —V~ and g = V provides the existence of two

=%k

sequences of radially symmetric fields (V;; )men and (V,,)men in 2* such that, for each m € N,
Vi€ L®(Q), V,, € C2(0),

||Vl poo() < min(—=V7) < Vi <V, <0in Q* (5.58)
Q
and the distribution functions of V* and V' satisfy
vy = p-v- and ppe | < py- < gy

Furthermore, the fields V* and V., are constructed so that

—  Vin o(LP(Q), LP ()

m—-+00

ViV

m

forall 1 < p < +oo, with 1/p+1/(p') = 1.
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Step 8: An inequality for the eigenvalue A (2*, A¥ Id, v} 7 ) for large m. Remember first

> Vmo

that the function {/; is continuous nonnegative in Q* and that w( ) > maxg ¢y, > 0 because of
Corollary 3.6 and (5.43). It also follows from Lebesgue’s dominated convergence theorem and
all estimates of Step 7 that

| (AlvoR 4 V) et A|V¢!2+V¢>

Jpee - fo

as m — +o00. Therefore, from (5.48), there exists M € N such that
M AU V)+ 3 +emyt + €|V
1=¢ (5.59)

| (a3IVIP + Vi) et <
Q
X @ZQe_Uif.
Q*
Remember that (5.49) and (5.54) hold with m = M. Furthermore, because of (5.50) and
(5.55), one can choose M large enough so that
ma S A}kw S MA n @ and ||U}k\4HLoo(Q*7Rn) S ||U||LOO(Q,RTL).

Notice that this holds also when my = M} (in this case, A}, = my in Q%) or when m, = M,
(in this case, v;; = mye, in Q*\{0}).
Call now

| (A1vop + Tiye) e i
I = inf - )
$eHY(Q)\{0} / 2e=Uis
Q*

It follows from (5.59) that

M(Q, A0, V) + 3 +emt + €|V ||OO
1—-¢

1<

(5.60)

Furthermore, I is clearly finite and I > mings Vp; > —||V " ||so. It is classical to check that I
is actually a minimum, which is reached at a function ¢35, € H}(2*)\{0} such that ¢3%, > 0
a.e. in 2" and

| (896 Vot Vigeigo) Ui =1 [ gioe i
for all ¢ € H}(Q*). Because of (5.56) with m = M, the change of functions ¢ = ®eVs leads to
A3V, VO + 0k, - Vb, &4 V050, = 1/ )
Q* Q*
for all ® € H}(Q*). From H 2 regularity and WP estimates, it then follows that ¢%, is actually
in all W*P(Q*) and C*(Q*) for all 1 < p < +o0 and 0 < a < 1 and that
—div(A3, Vi) + v Vo + Ve = Iy in @
oy = 0 on 00,
oy = 0 in .
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Since ¢}, # 0, one concludes from Krein-Rutman theory that ¢}, is —up to multlphcatlon by a
positive constant— the principal eigenfunction of the operator —div(A},V)+v}, -V + v,  with
Dirichlet boundary condition, and that I is the principal eigenvalue I = A\ (2%, Aj,1d, vy, V M)
Together with (5.37) and (5.60), it resorts that

M(Q,A 0, V)+ 3" + 5'mX1 + V7|

)\I(Q*u A}F\/[Ida U}k\mvjw) S 1 — 6/

< Al(Q,A,U,V) +e

Lastly, since Vi, <V, in Q (see (5.58) with m = M), if follows from [14] that
A (QF, A% Td, vk, Vi) < A (0, A% Id, vk, Vi) < M(Q,A4,0,V) + &

Step 9: Conclusion. Since € € (0, 1) was arbitrary, the proof of the first part of Theorem 2.1
is complete with the choice

(A*,w*,v*, V*aV*> = (A7\/I> ’U}k\/llvv}kwa Vl\zavj\/ﬂ

Step 10: The case when A is equal to a constant v > 0 in 2. It follows from the previous
steps that A* is equal to the same constant + in Q*. Furthermore, there exists a family
(vE, VZ¥)eso of fields satisfying the same bounds (2.2) as v* and V*, together with

A (%, AId, 0, V) < M (Q, A0, V) + e
for all € > 0. Furthermore, v* = |v*|e,, and |[v*| and V* are C>(Q0*) and radially symmetric.

Take any sequence (ej)reny of positive numbers such that ¢, — 0 as k — 4o0. Up
to extraction of a subsequence, there exist two radially symmetric functions wj > 0 and
Vo' < 0 such that |vf | — wi and V2 — Vi weakly in LP(Q2*) for all 1 < p < +oo and
weak-* in L>(Q*). Furthermore, the fields vj = wie, and V{ satisfy the bounds (2.4).
Since —maxg V™ < A (%, 9Id,vf V) < A(, A0, V) + ¢, for all k& € N, the sequence

€k’ "€k
(AL(Q2",91d,vZ , V2 ) )ren converges, up to extraction of a subsequence, to a real number
Ay € [—maxg VA (Q, A, v, V)]. From standard elliptic estimates, the principal eigenfunc-

tions vr = . AId: ve are bounded independently of k in all W27 (Q*) for 1 <r < oo. Up to
Ek Ek
extraction of a subsequence, they converge weakly in W27 (Q*) for all 1 < r < oo and strongly
in C1(Q*) for all 0 < a < 1 to a solution ¢}, of
—7A@y + 5 - Vip + Vi'pp = Ao in

such that ¢ > 0 in %, ¢ = 0 on 0Q* and ||¢g||z=@+ = 1. By uniqueness, it resorts that
Ay = M (%, 91d, vg, V) and ¢f = P Td ez vy LUS,

)\1 (Q*, ’)/Id, US, VE)*) S )\1(9, A, v, V)

Notice that the radially symmetric fields |v§| and V{ satisfy the bounds (2.4), but may not be
smooth anymore. O

62



Remark 5.5 Assume now that 0 < my < M, and that A = my, in a neighbourhood of 052,
that is A = my in the set {x € Q, d(z,09) < v} for some v > 0. Then, under the notations
of the previous proof, besides the aforementioned conditions of Steps 1 to 5, one can choose
K € N large enough so that [|[A™| 1) < [Q] x (ma + 47x) " and

A =minAg € [mA + %(,mA + 27K
Q
in a (smaller) neighbourhood of dQ. Then, owing to the definition of A in Step 6 (from

Section 3), it follows that A= ming Ax = ess info:A in a neighbourhood of 9Q*. Finally,
besides the conditions of Steps 7 and 8, one can choose M € N large enough so that

A%, =minA, € [my + %K,mA +4TK]
Q*
in a neighbourhood of 9Q*. Since ||[A™Y 1) < [Q] x (ma + 47%)~" and [|(A5) o) =
IA=*|11(q), one concludes that A}, (= A*) is not constant in O*.
It then follows that, in Theorem 2.1, the functions A and A* are not constant in general.
Actually, for the same reason, the same observation is true for Theorems 2.3 and 2.7.

Remark 5.6 Consider now the case when € is a general open subset of R” with finite measure,
and let A € Wh>(Q,S,(R)), v € L®(Q,R"?), V € L*(Q2) N C(Q) be such that A > ~Id in
Q for some constant v > 0. Assume that A\;(Q, A,v,V) > 0, where \;(2, 4,v,V) has been
characterized in Remark 2.11. We claim that we get a similar conclusion as in Theorem 2.1
with A = v. Indeed, for each € > 0, it follows from (2.17) and (2.18) that there exists Q' € C
such that ' CC Q and

0 S >\1<Q,A,U7V) S Al(Q/,A,U,V) S /\1(Q7A,U,V) + €.

To make notations simpler, we use the same symbols for the fields in {2 and their restrictions
in . Apply Theorem 2.1 to € (C Q) and to the fields A, v, V with A = v, and call Q the
ball centered at the origin with the same measure as §)'. There exist two radially symmetric
bounded functions w? > 0 and V* < 0 in QF such that, for v} = wle, in 2,

A (5 AId, 02, V) < M (Q, A0, V) < M (Q,4,0,V) + ¢ (5.61)

)y Yeo
and

|02 || oo @ oy < [[0][Loe (@ rny < (|V][2e@rn), 02l 2202 Ry < (V][ L200 ) < [[Vll22(0R).
—esssup V- < —max V7 <V <0 ae. in QF,

Q Q
IV llzr@s) < V7 llzr@y S IV llLe) for all 1 < p < +oo.

Extend v} by the vector 0 in Q*\Q and extend V* by 0 in Q*\Q too, and still call v} and V*
these extensions, which are now defined in Q* (D ) and satisfy the same bounds as above in
* (remember that Q* denotes the ball centered at the origin and having the same Lebesgue
measure as €)). Furthermore,

A (5 AId, 02, VE) < A (Q5,41d, 0, VE) < M (Q, A0, V) + ¢

s Ve ) Yeo
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because 0 C Q* and because of (5.61). One can then argue as in Step 10 of the proof of
Theorem 2.1 and one can then pass to the limit for a sequence ¢, — 0" as & — +o00. There
exist then two radially symmetric bounded functions wj > 0 and Vi < 0 in £2* such that, for
vy = wpe, in

A (2, yId, vg, V) < A(2, A 0, V)
and the bounds (2.4) are satisfied (with —ess sup,,V ™ instead of —maxg V'~ in (2.4)).

Let us now turn to the proof of Theorem 2.3. It shall use the results of Section 4 and it
follows the same scheme as the one of Theorem 2.1.

Proof of Theorem 2.3. Assume here that Q € C is not a ball. Let A € Wh>(Q,S,(R)),
ANe L), ve L*(Q,R"), Ve C ), My >0, my >0, M, >0 and My > 0 be such that
A>AId ae. in Q and

||A||W1,oo(978n(R)) § MA, eSSQian 2 mAv ||U||LOC(Q7]R71) S Mv and ||V||LOO(Q) S Mv.

Throughout the proof, the notation p = p(€2,n, M 4, m,, M,, M) denotes a constant p which
only depends on Q, n, M 4, m,, M, and My.

Assume that A; (2, A, v, V) > 0 and call ¢ the unique principal eigenfunction of the operator
—div(AV)+v-V+V in Q with Dirichlet boundary condition, such that maxg ¢ = 1. Namely,
the function ¢ satisfies

—div(AVe) +v-Vo+ Ve = M\N(Q,A4,0,V)p in
e >0 in €2,
5.62
lellim = 1. (562)
e =0 on 012,

and it is in W2P(Q) and in CY*(Q) for all 1 < p < +oo and 0 < a < 1.
First, remember that

—My <minV < A\ (Q,A,0,V).
9)

Then, let B be an open ball included in €2. As observed in Step 4 of the proof of Theorem 2.1,
it follows from Lemma 1.1 in [14] that there exists a constant C' > 0 only depending on B, n,
My, my, M, and My, such that

/\1(9, A, v, V) S )\1(3, A, v, V) S C.
From standard elliptic estimates, there exists then a constant
N'= N'(Q,n, Ma,my, M, My) >0

such that
H‘P”chl/?(ﬁ) <N

We now claim the existence of a positive constant

§ =8(Q,n, Ma,my, M,, My) >0

64



such that B
o(x) > 0" x d(x,00) for all z € .

Assume not. Then there is a sequence of fields (A, A,, vy, Vp)pen iIn WH*(Q, S, (R)) x L°(2) x

L>(Q,R") x C(2) such that A, > A, Id a.e. in Q,

| Apllwre .5, ®) < Ma, eSSQianp > mp, Jopllne@rn) < My, [[Vpllze@) < My

for all p € N, and a sequence of points (z,)pen in Q such that

d(zp, 082)

0< <
= Spp(xp) Pt 1

for all p e N, (5.63)

where one calls (A1 (€2, Ap, vy, V,), ) the unique solution of

—div(A4,Ve,) + v, - Vo, + Ve, M(Q, A0, V), inQ,

¢p > 0 in Q,
ool = 1,
¢p = 0 on 0f)

for each p € N. We have already noticed that the sequence (A1 (€2, Ap, vy, V,))pen is bounded.
From standard elliptic estimates, the sequence (¢, )pen is also bounded in W24(2) and CH(Q)
for each 1 < ¢ < 400 and 0 < a < 1. Up to a subsequence, one can assume without loss of
generality that A, — A, (componentwise) uniformly in Q, VA, — VA, (componentwise) in
o(L>®, L), v, = vs (componentwise) in o(L>, L), V, = Vi, in o(L>®, L"), p, — ¢o weakly
in W24(Q) for all 1 < g < 400 and strongly in C1*(Q) for all 0 < o < 1, A\ (Q, Ay, v, V) — A
and z, — T € Q as p — +oo. It follows that

_diV(Aoov@oo) + Voo - VQOOO + VOOQOOO - /\9000 n Qa
Yoo = 0 in €2,
[poollzoe@) = 1,

Yoo = 0 on 0f2.

and Qoo (o) = 0. Since Ay, > myId in Q, the strong maximum principle yields that ¢o, > 0
in Q, whence z,, € 9. On the other hand, (5.63) implies that |V ()| = 0, which is
impossible from Hopf lemma. One has then reached a contradiction.

Therefore, coming back to the fields (A, A,v, V) and to the function ¢ solving (5.62), we

get the existence of &' = (2, n, M 4,m,, M,, M) > 0 such that
o(z) > 8 x d(z,09) for all x € Q.

In other words, the function ¢ is in the set Ey /5 nv5(2).
Call

N =3N"(Q,n, Ma,my, M,, My) >0

and

§'(Q,n, Mg, my, M,, My)

5 —
3

> 0.
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Then, call n > 0 the positive constant which is given in Corollary 4.5, with the choice o = 1/2.
It only depends on €2, N and ¢, and therefore,

n= n(Qa naMAamAaﬁvaﬂ‘/)-

Call now

77(97 n, MAamAa MmMV)

0= G(Q,H,MA,mA,MU,Mv) = 5 > 0.
Then, choose any ¢’ € (0,1) such that
Al(QvA7,U7V) + 2¢' - -
o +e& +emit + €V |l M A0, V)
Ul <o) (5.64)
1—-¢ 146

It is indeed possible to choose such a &’ since A\ (2, A,v,V) >0 and 0 < 0 <.

Under the notation of Step 4 of the proof of Theorem 2.1, there exists a sequence of C'*
fields (Ayg, Ak, vk )ren satisfying (5.32) and (5.33), and such that the solutions ¢y of (5.36)
converge to o as k — oo weakly in W?2P(Q) and strongly in C**(Q) for all 1 < p < 400
and 0 < a < 1. Furthermore, it has been proved that A (Q, A, vk, V) — M (Q, A 0, V) as
k — +o0. Then there exists K € N such that (5.38) holds and

YK € E1/2,2N/,5’/2(Q)-

Under the same notation as in Step 5 of the proot of Theorem 2.1, the functions ¢y converge
to px as | — +oo in WP(Q) and C1*(Q) for all 1 < p < +00 and 0 < a < 1. Therefore, as
in Step 5, there exists L € N such that (5.44) holds and

Y, € E1/2,3N',6'/3(Q) = E1/2,N,6(Q)'

Therefore, all assumptions of Corollary 4.5 are satisfied with
(Aﬂa AQ7 W, V7 ¢7 wo, M) = (AK7 AK7 |UK|7 V? ¢L; gla )‘1(97 A7 v, V) + 25/)'

Notice especially that wy and p are nonnegative. With the same notations as in Sections 3
and 4, it then follows from Corollary 4.5 that

/ B@IVI@P = V@) + V@] e Odr < T | e s

The same calculations as in Steps 6, 7 and 8 of the proof of Theorem 2.1 can be carried out,
where p = A (Q, A, v, V) + 2¢" is replaced by (A (Q, A, v, V) +2¢")/(1 +n) in (5.45). One
then gets the existence of three radially symmetric C>=(Q*) fields A* > 0, w* > 0, V<o
and a nonpositive radially symmetric L>(Q*) field V*, which satisfy (2.2) and are such that
Py = p_y-, V< V" and

A (% AT, 0, V) < A (QF, AId, 0, V)

M (A0, V) + 2
1+n

+e +emy + €IV oo

IA

1—e ’
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where v* = w*e, in Q*. As a consequence, there holds

— o M(Q,A
A (QF, AT, 0%, V) < A (QF, A'Td, 0", T7) < M@, 4,0,V)
1+0
from the choice of €’ in (5.64). The proof of Theorem 2.3 is now complete. O

5.3 Constraints on the eigenvalues of the matrix field A

We now give the proof of Theorem 2.4. The following elementary lemma will be needed:

Lemma 5.7 Letn > 2, pe{l,....n—1}, w >0, 0 > 0 and A € S,(R) be positive definite
such that det(A) > w and 0,(A) < 0. Then, there exist two positive numbers ay, ay which only
depend on n, p, w and o such that det(D) = w, 0,(D) =0, A > a11d and D > a,1d, where D
is the diagonal matriz D = diag(aq, as, ..., as) € Sp(R).

Proof. Notice first that, as already underlined in the introduction, the assumptions of the
lemma imply that C2wP/™ < o. Let f(s) be defined for all s > 0 as

f(s) = wCﬁillsp_" + CP_ s

The function s is continuous and strictly convex in (0, +00). Furthermore, f(0%) = f(+o0) =
+o00 and elementary calculations give:

min  f(s) = f(w¥") = Cf’lw”/” <o.
$€(0,+00)

Call

w

(a2)n—1’ D = diag(ala ag, ... ;a2> € Sn(R)

as =max{s >0, f(s) <o}, a1 =

The real numbers a; and a, are well-defined and positive. They only depend on n, p, w and
o. Furthermore, a; < w'/™ < ay, D € S,(R) and

det(D) =w, 0,(D) = Cﬁ:llal(ag)pfl +CP_(az)? = f(az) = 0.
Denote 0 < \; < --- <\, the eigenvalues of A. Call
1/(n—1)
0< 52 = ( H /\z>
2<i<n

and

0<@ = ‘;)nl < dle_t[(‘i) — A (5.65)
2 i
2<i<n

67



Since w = a3 (a)" "t < Ay (a2)"!, one has

f(@@) = wCl L (@)™ + CP_ (@) < CPZIN x ( 11 /\i> +CP_ x ( 11 )\Z) .

2<i<n
For g=p—1or g = p, call
J,={J Cc{2,...,n}, card(J) = ¢}

and, for all I C {1,...,n},

W[:H/\i.

i€l
Observe that card(7,) = C!_, and that
/P2 1/CPY
H )\Z = H 7TJ — H 7TJ
2<i<n JETy_1 JeTp
Thus,
p—1
(n—l)CfLii ("_1)Cn72
f(ag) < Cﬁ:ll)\l X H Ty -+ szl X H Ty
JeTp-1 JeTp
1/Cn71 1/Cn71
= CZ:ll)\l X H Ty + szl X H Ty
JeTp-1 JeTp
< A X Z T+ ZWJ
JeTp-1 JeTp
= >, W
I1c{1,...n}, card(@)=p
= 0,(A)
< o.
Hence, ay < as and
~ w w

a; = = Q.

@)1~ (ag)

Together with (5.65), it follows that A\; > a;, whence A > a;1d.

|

Proof of Theorem 2.4. Let ), A, v, V, p, w, 0 be as in Theorem 2.4, and let a; > 0 and

as > 0 be given by Lemma 5.7. Therefore,

A(x) > a11d for all x € Q.
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For all x € Q*\{0}, define now A*(x) as in Theorem 2.4. Thus, A*(z) > a;Id and there is an
invertible matrix P(x) of size n x n such that

A*(z) = P(z)DP(x)™",
where D = diag(ay, as, . ..,as) € S,(R). Hence,
det(A*(x)) = det(D) = w and 0,(A*(x)) = 0,(D) = o for all x € Q*\{0}.

Let € > 0 be given. From Theorem 2.1 applied with A equal to the positive constant as,
it follows that there exist two radially symmetric C*(€2*) fields w* > 0 and | V<0, and a
nonpositive radially symmetric L>(2*) field V*, such that, for v* = w*e, in Q*\{0},

{ [0 () < Vil @m)s 0712207y = [[0]l22(9),
pr S v, pye = poy-, VISV

and
A (QF, ayId, v*, V) < A (5, aqId, 0", V) < M (Q, 4,0, V) +¢.

From Remark 2.5, one concludes that
A (0, A% 0" V) < A (QF, A% 0, V) < A (Q, A0, V) F e

Lastly, since A > a;1d in Q and A*V¢ = a1V ¢ for any radially symmetric function ¢ in 2%,
the existence of two radially symmetric bounded functions w§ > 0 and V' < 0 in Q* satisfying
(2.4) and

M (Q5 A ug, V) S M(Q,4,0,V),

where v; = wje, in 2, can be done as in Step 10 of the proof of Theorem 2.1
This completes the proof of Theorem 2.4. O

Remark 5.8 Consider now the case when € is a general open subset of R” with finite measure,
and let (A,v,V) be as in Theorem 2.4, with the extra assumption V' € L*>(£). Since A >
aild in €2, it follows, as in Remark 5.6, that there exist two radially symmetric bounded
functions wi > 0 and V5" < 0 in Q* satisfying (2.4) (with —ess sup,V ~ instead of — maxg V™)
and A\ (Q*, A% 05, V) < M(Q,A,0,V), where vf = wie, in Q and A* is the same as in
Theorem 2.4.

6 The cases of L? constraints
In this section, we focus on optimization and comparison results for A;(€2, A,v, V) when Q
has fixed Lebesgue measure, A satisfies the same constraints as in Theorem 2.1 and v and V'

satisfy LP constraints. We first give in Section 6.1 some optimization results when 2 is fixed.
Then, relying on Theorem 2.1, we derive in Section 6.2 some Faber-Krahn type inequalities.
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6.1 Optimization in fixed domains

In Theorem 2.1, we were able to compare the eigenvalue A1 (2, A, v, V') to Ay (2%, A*Id, v*, V*) in
Q*, where the L' norms of A= (with A > A Id) and |v|*A~! and the distribution function of V'~
were the same as for the new fields in Q* (in particular, all L norms of V'~ were preserved). In
this section, we fix the domain €2 and we minimize and maximize A;(2, A,v,V) when A > A Id
and v and V satisfy some LPN L* constraints with some given weights. Furthermore, we prove
the uniqueness of the optimal fields when A is fixed and v and V' satisfy given L*° constraints.

6.1.1 The case of L? constraints, 1 < p < +o0

Given Qe C, M >0, A € L?(Q), 1 < p,q < 400, Wi p, Wi 0o, Wag, Woeo € LT(Q), T1p, Tio,
Ta.q, T2,00 = 0 such that M > ess supg A, define

AQ’M7A7p7q7w1,val,ooaw2,q,w2,oo77'1,p,7'170¢,TQ,Q,TQ’OC
= {(4,v,V) e WH*(Q,S,(R)) x L*(Q,R") x L=(Q);
||A||W1vOO(Q’Sn(R)) <M, A>AIdae. in Q,

lwrgoll, < 71 01000l < Troes gVl < o w20Vl < Tao

and

A(Q, M7 Aa b, q, wl,p7 wl,om w2,q7 w2,007 T1,py T1,005 72,q5 7—2,oo>

= inf AM(Q,A 0, V),
_ (Avvvv)EAQ,]WaAJ’,QﬂULPawlyooaw2,q7w2,oo1Tl,p’71,00’72,q’72y00 (6 1)
)‘<Qa M> Aa b, q, wl,p7 wl,om w2,q> w2,007 T1,py T1,005 72,q5 7_2,00) '

= sup AM(Q,A 0, V).

(Avvav)EAQ,IW,A,p,q,wl’p,wl,oo,w27q,w2100,7'17p,71’00,TQ’Q,TQ’OO

\
Observe that AQaM7A7p7Q7w1,p7w1,ooaw2,qaw2,oo77—1,p77—1,0077_2,q77—2,oo # @, that

72,00

A(Qa Ma A7p7 q, W1,p, W1,00, W2,qy W2,00y T1,p; T1,007 72,q5 TZ,OO) > — .
ess infows oo

and that

)‘(Qa Ma Av b, q, wl,p> wl,ooa w2,qa w2,ooa T1,p) T1,005 72,95 7—2,00) < 400
by [14].
Our first result deals with the optimization problem for (6.1):

Theorem 6.1 Let Q € C, M > 0, A € LL(Q), 1 < p,qg < 400, Wip, Wio, Wag, Wree €
L(Q) and T1p, Ti oo, Tog: Too = 0 be given such that M > ess supg A. Then,

(1) there ezists (A,0,V) € AQMApgwrpwscomwsgin i pmomgme. SUCh that, if ¢ =
PQLALY
(CL) A(Q, M; A,p, q, wl,pa wl,om w2,q; w2,007 Tl,p7 7—l,oov 7—2,q7 7-2,00) = >\1 (Q; Ay v, K);
(0)

v-Vo=—|v| x ‘Vg‘ a.e. in €2,
() V(z) <0 a.e. in,
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(d) ||w1,py||p = Tip oF [[wi,ect| o, = 100, ”w2,qz||q = Taq 0F [[wo,eV| = T2,00-
Moreover, if (A, 0, V) € AQM A pgwr w1 .cow2.g02,0071p T 00sm2.0m2.00 45 SUCh that
A(Q7 M7 A7 p,q, wl,p7 wl,oo; w?,qa w2,0<>7 Tl,p; 7—1,007 TZ,qu 7—2,00) - A1 (Qa A7 v, V)

and if = po A0y, then properties (b), (c) and (d) hold with ¢, v,V instead of p,v and
Vv

-

(2) there exists (A,U,V) € AQMApguwspwrcows.qwseepmcmgrce SUCh that, if © =

wquVHq = T4 OT ||w2,OOVHOO = T2,00-

MOT60U€T7 Zf (A7/U7 V) S AﬂyM:Avpzqawl,pawl,oo7w2,q7w2,oo7Tl,p77—l,ooy7—2,q77—2,oo s SUCh that

)‘(Qv M, A7 b, q, wl,p7 wl,ooa w2,q7 w2,007 7—1,p; 7—1,007 7—2,q7 7—2,00) == )\1<Q> A7 v, V)

and if ¢ = a4y, then properties (b), (¢) and (d) hold with v,v,V instead of §,7 and
V.

We will use several times in the proof the following comparison result:

Lemma 6.2 Let Q € C, p € R, A € Wh(Q,S,(R)) with A > ~ Id a.e. in Q for some
v>0,v€ L®QR") and V € L*®(Q). Assume that p and ¢ are functions in W?"(Q) for all
1 <r < +oo, satisfying ||¢| = ||1¢]l, and ¢ = =0 on 0. Assume also that ¢ > 0 in ,
¥ >0 1in Q and

—div(AVY) + 0.V + Vip > pp a.e. in ),

—div(AVp) + 0.V + Ve < pp a.e. in Q.

Then ¢ = 1 in Q.
Proof. The proof uses a classical comparison method (this method was used for instance in
[14]). We give it here for the sake of completeness. Since ¢ > 0 in Q and 1) = 0 on 0f2, the
Hopf lemma yields v(z) - Vi)(x) < 0 on 99, where, for all z € 99, v(x) denotes the outward
normal unit vector at x. Since ¢ € C1A(Q) for all 0 < < 1, o > 0in Q and ¢ = 0 on 99, it
follows that there exists v > 0 such that yi) > ¢ in €. Define

v =inf{y >0, v > ¢ in Q}.

One clearly has v*¢ > ¢ in €2, so that v* > 0. Define w = v*¢ — ¢ > 0 and assume that w > 0
everywhere in ). Since

—div(AVw) +v-Vw + Vw — pw > 0 a.e. in (6.2)
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and w = 0 on 0f2, the Hopf maximum principle implies that v - Vw < 0 on 0€). As above,
this yields the existence of k > 0 such that w > ke in Q, whence v*9/(1 + k) > ¢ in Q. This
is a contradiction with the minimality of v*. Thus, there exists xy € €2 such that w(z) = 0
(i.e. v ¢(zo) = @(xp)). Since w > 0 in €, it follows from (6.2) and from the strong maxi-
mum principle, that w = 0 in 2, which means that ¢ and v are proportional. Since they are
non-negative in {2 and have the same L* norm in €2, one has ¢ = v, which ends the proof of
Lemma 6.2. i

For the proof of Theorem 6.1, we will treat the minimization problem only, the maximiza-
tion problem being clearly analogous. It is plain to see that the result is a consequence of the
two following lemmata:

Lemma 6.3 Let Q€ C, M >0, A€ LY(2), 1 <p,q < 400, Wiy, W10, Wag, W € LT ()
and Tip, Tieos Togs T2co > 0 be given such that M > ess supg A. Assume that (A,v, V) €
AQanA:p’%wl,pywl,oo,w2,q,w2,oo77'1,1):7'1,0077'2,q:7'2,oo 7;8 SUCh tha’t

A(Q> M7 Aa b, q, wl,p7 wl,ooa wZ,qa w2,ooa 7-1,107 7-1,<>oa TZ,q, 7—2,00) = )\I(Qa Aa v, K)a (63)
and let o = pq apy. Then, properties (b),(c) and (d) in Theorem 6.1 hold.

Lemma 6.4 Let Q€ C, M >0, A € LY(2), 1 <p,q < 400, Wip, W10, Wag, W € LT(Q)
and Ty p, Ti 0o, T2, T20 > 0 be given such that M > ess supg A. Then, there exists (A,v,V) €
AQvM:A7p7Qaw1,p7w1,oo7w2,q7w2,oo77—1,p77'1,0077'2,q77—2,oo SUCh that (63) hOldS'

Proof of Lemma 6.3. Let A,v,V and ¢ as in Lemma 6.3. Remember that ¢ € CH(Q).
Define, for a.e. x € Q,

V()
— (@)l o= if V() # 0,
i) = o] V¢
0 if Vo(z) =0
so that w - Vi = — |y] x ‘Vg‘ <v-Vgpae. in Q, and set

on = )\I(Q7A7 UJ,K) and 77Z) = PQAwYV-

Notice that |w| < |U| a.c. 1 Q7 whence (Aa w, K) S AQyM7A7p7Q1w1,p7wl,oo7w2,q7w2,oo77—1,p77—1,0077_2,q77—2,oo
and
A = A(Q> Ma A7 b, q, wl,pv wl,ooa w2,qa w2,oo> Tl,pa 7_1,007 7_2,(]’ 7—2,00) S ez

Thus, one has

—div(AVy) +w - Vo + Ve < —div(AVe) +v- Vo + Ve = Ap < pp  ae. in €,
—div(AVY) +w - Vo + Vip = pap a.e. in €,
and Lemma 6.2 yields ¢ = ¢ and therefore p = A and v - Vyp = w - Vp = — || x !Vf! a.e.
in Q.
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As far as assertion (c) is concerned, define, for a.e. z € Q,

_ V() ifV(z) <0,
Wiz) = { 0 if V(z) > 0.

Observe that |[W| < |V] a.e. in ©, whence (A, v, W) € A M pgiwr pwr.cows.gws.c0,m1p,
If p=XM(Q,A v, W) and ¢ = pq 4, w, one therefore has A < p and

T1,00572,q572,00 *

—div(AVY) + v - Vi + Wi = p a.e. in Q,
while, since W < Vo a.e. in ),
—div(AVe) +v - Vo + We < pp ae. in Q.

Lemma 6.2 therefore shows that ) = ¢, and it follows that W = Vi a.e. in {2, which implies
W =V a.e. in Q since » > 0 in 2, and this is assertion (c).
Assume now that [[wypvl|, <71, and [Jwie0v|, < 71,00, and define, for a.e. z € Q,

(@) +2) ;f—m i V() £ 0.

0 if Vp(r) =0,

w(zr) =

where £ > 0 is choosen in such a way that [[wi,w|, < 71, and [Jwieew|, < 71,00, s0 that, if
p=M(2 A w,V), one has A < p. Let ¢ = pg 4, v. Observe that

—div(AVe) +w - Vo + Vo < Ao < pp a.e. in
since w - Vo = — (Ju] + €) V| < —[v] x [Vyg| < v- Vg ae. in Q, while
—div(AVY) +w - Vip + Vap = ) ae. in Q.

Another application of Lemma 6.2 yields that ¢ = ¢ and therefore w - Vi = v - Vi, so that

—€ ‘Vf‘ = 0 a.e. in €2, which is impossible. One argues similarly for V, using the fact that
V <0 a.e. in €. O

Proof of Lemma 6.4. Write
A - A(Qv M? A7 P, q, W1 p, W1,00, W2,q, W2,005 T1,py T1,005 72,5 TQ,OO)'

There exist a sequence (Ay)reny € WH*(Q, S,(R)) with [ Akl s, @) < M and Ay > A 1d
a.e. in Q, a sequence (vg)geny € L®(£2, R™) with Hwvaka < 7 and |lwy k||, < 710y and a
sequence (Vi)ren € L*(€2) with [JwagVill, < 72,4 and [[waeoVill, < 72,00, such that

Ak = A (9, A, v, Vi) — A as B — +oo.
For each k € N, call ¢, = ¢q a, v,.,vi, S0 that

—div(ArVer) + vk - Vo + Vipr = Arpr in Q and ¢ = 0 on 0.

73



By the usual elliptic estimates, the ;s are uniformly bounded in W27 (Q) for all 1 < r < +oo,
and therefore in C*(Q) for all 0 < a < 1. Therefore, up to a subsequence, one may assume
that, for some nonnegative function ¢ € W2r(Q) for all 1 < r < 400, @ — p weakly
in W27(Q) for all 1 < r < +oo and ¢, — ¢ strongly in C**(Q) for all 0 < o < 1, as
k — +o0. Similarly, there exists A € Wh*(Q, S, (R)) such that (up to extraction), A, — A
uniformly in Q and, for each 1 < j < n, 9;Ax — 9;A in o(L>(2), L*(2)) componentwise. In
particular, ||A|lwi=@s,®) < M and A > A Id a.e. in Q. Finally, up to extraction again,
there exists w € L>(Q) such that |v,| — w > 01in o(L7(Q), L™ (Q)) for all 1 < r < 400 (where
1/r 4+ 1/r" = 1) and there exists V. € L>(Q) such that V; — V in o(L"(R), L™ (Q)) for all
1 < r < 4o00. Since, for all £ > 1, by Cauchy-Schwarz,

—div(Angok) - |’Uk| |Vg0k] + Vior < Appr a.e. in €,

one has
—div(AVe) —w ‘Vg‘ + Vo < Apae. in Q.

Define now, for a.e. z € (),

—w(x) Vg(x)

() = V()|
0 if Vio(z)

if Vp(x) # 0,
0,

so that v- Vo = —w |V£| a.e. in €. One therefore has
—div(AVep) +v- Vo + Ve < Ap ae. in Qand ¢ =0 on 99. (6.4)
v,V

)

Observe that <A7 v, K) € AQ7M7A7p7q7w1,p7w1,007w2,q7w2,00»Tl,pyTl,OOaTQ,quQ,OO : Deﬁne now p = )\1 (Q7 A7
and ¢ = @ a,v, so that A < p. It follows from (6.4) that

—div(AVY) +v- Vi + Vi = pp  ae. in
—div(AVy) +v-Vo+ Ve <pp  in Q.

Moreover, ¢ > 0in ©, ¢ > 0in Q, ¢ =9 = 0 on IQ and ||£HOO = ||¢|l, = 1. Lemma 6.2
therefore yields ¢ = 1, hence A = p. This ends the proof of Lemma 6.4. m

Remark 6.5 What happens in Theorem 6.1 if one drops the L* bounds for v or V' 7 Even
if one still assumes that v and V are qualitatively in L> (so that the principal eigenvalue of
—div(AV) +v -V + V is well-defined by [14]), it turns out that the infimum or the supremum
considered there may not be achieved. For instance, fix 1 <p<n, Q€ C, 7> 0, A=1d and
V =0 in Q, and define

MO, 7) = inf A1 (Q,1d, v, 0).

veL>®(QR™), [lv|,<r

Since the operator —A + v - V satisfies the maximum principle in €2, its principal eigenvalue
is positive, for each v € L*(Q,R"), and therefore A(2,7) > 0. We claim that A\(Q2,7) = 0.
Indeed, fix py > 0 such that there exists a ball By with radius pg included in €. Call z its
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center. For all A > 0 large enough, define pa € (0, py) such that A(a,p%)Y? = 7 (recall that
o, is the Lebesgue measure of the Euclidean unit ball in R™), let B4 = B(xg, pa) be the ball
with the same center z( as By and with radius p4, and set v = A x 1g,6,(- — x) in 2, so that
0] oy = T- One has Ai(,1d,v,0) < A1(Ba,1d, Ae, (- — x0),0) since B4 C €2. But

A (B, 1d, Ae, (- — x),0) = 22,

P4

where py = Al(é, Id, Apae,(- — x9),0) is the principal eigenvalue of —A + Apae,.(- — xp) - V
on the ball B with center xo and with radius 1, under Dirichlet boundary condition. Notice
that Apy — 400 as A — 400 since 1 < p < n. Furthermore, ps = A\ (B}, Apae,) under
the notation (2.15), where B} is the Euclidean ball of R” with center 0 and radius 1. It then
follows immediately from Appendix 7.3 that log s ~ —Aps when A — 400 (see also [20] for
related results under stronger regularity assumptions). As a consequence, there exists Ay > 0
such that, for all A > Ay,

—APA/z —Li/n n —p/n
)\1(BA7Id, Aer(- _ 3;'0), O) < e - _ 04721/”7'72p/n142p/n€7(0‘"1/ 7P/m AL=P/1) /9
Pa
and this expression goes to 0 when A — +o00, which proves the claim.
Similarly, one can show that, if Q@ € C, 7 > 0 and 1 < ¢ < n/2 are fixed,
inf A1(9,1d,0,V) = —c0. (6.5)

VeL=(Q); [Vl <t

Y

Indeed, fix py as before, and, for all A large enough, let p4 € (0, pg) such that A%, p% = 79,
and set V' = —A x 1p, where B4 = B(2o, pa) is defined as previously, so that [V ,,q) = 7.
One has

)\1 (Q7 Id7 07 V) S /\1 (BAJ Id7 07 _A) - )\I(BA7 Id7 07 0) —A
= % — A= Ca?nrang2in _ A
Pa
where C' = A(B,1d,0,0) > 0. The right-hand side of (6.6) goes to —oco when A — +o00, due
to the choice of ¢. This ends the proof of the claim (6.5).

(6.6)

6.1.2 The case of L constraints

When solving optimization problems for A\;(£2, A, v, V) if A is fixed and v,V vary and satisfy
L™ bounds, we can precise the conclusions of Theorem 6.1. Fix Q € C and A € W1*°(Q, S,,(R))
such that A > ~Id in Q for some positive real number v > 0. Given 7,7 > 0 and w; € L‘f(Q),
define

AQ,A,U}LTIFQ = {(va) € LOO<Qan) X LOO<Q); Hwﬂf“oo < T, ||VH00 < To, }7

and
AQ A wy, T, 1) = inf (02, A0, V),
B (v,V)EAQ A wy 7,0
/\(QaA,wlyTlﬂb) = sup )\1(Q»A;U,V)-

(U:V)EAQ,A,UJLTLTQ

The optimization results under these constraints are the following ones:
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Theorem 6.6 Let Q € C, A € WH*(Q,S,(R)) such that A > ~+Id in Q for some v > 0,
71,72 > 0 and wy € L(2) be given. Then,

(1) there exist a unique vector field v € L>(Q, R™) with ||wiv|| < 71 and a unique function

V e L*(Q) with | V||, < 7o, such that

M A w1, 72) = M(Q, 4,0, V).
Moreover, if ¢ = po 4.y, one has
-V = —rwy ‘Vg} a.e. in €,
()] w
) =

1(z) =71 a.e inQ,
—Ty a.e. in €2,
Furthermore, Vo(x) # 0 a.e. in Q and v(x) = —rywi(z)"'Ve(x)/|Ve(z)| a.e. in Q.
(2) there exist a unique vector field v € L*>(Q,R") with ||wiv||,, < 71 and a unique function
V € L*(Q) with ||VHOo < 7y, such that
X(Q,A,’wl,Tl,TQ) = )\1(@,14,6,7).
Moreover, if © = pq o573, one has

(a) ¥-Vp =nwi' |Vy|ae. inQ,
(b) [o(x)]w
) =

1(z) =7 a.e. inQ,

(¢) Vi(z
Furthermore, Vg(x) # 0 a.e. in Q and v(z) = +mw;i(2) " 'Ve(x)/|Ve(x)| a.e. in Q.

Ty a.e. in €,

Proof. As in the proof of Theorem 6.1, let us focus on the minimization problem. The
existence of v and V such that A\ (Q, A, v, V) = A(Q, A, wy, 71, 72) is obtained in the same way
as in Lemma 6.4, except that one has to define, for almost every = € €,

V(r)
—nw; (z) == if Vo(x) # 0,
)= T gy YR
0 if Vp(r) =0,
and V(z) = —7 for all x € Q, and that we do not need to introduce the vector field w. To

prove the uniqueness of V', proceed as in the proof of assertion (¢) in Lemma 6.3. We are now
left with the task of proving the uniqueness of v and the fact that wy(z) [v(x)| = 7 for almost
every x € ().
First, arguing as in the proof of Lemma 6.3, one shows that, if v and V' are such that
M(Q A0, V) = ANQ, Ajwy, i, 79) and if ¢ = pg 4.y, then v- Vo = —rw; ! [Vl a.e. in Q.
To conclude, we need the following lemma:
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Lemma 6.7 Let A € R and ¢p € W"(Q) for all 1 < r < +o0, be such that 1 = 0 on 09,
Y >01nQ, ||[¢],, =1 and

—div(AVY) — rywy VY| — 7 = M in Q.

Let v € L>(Q,R") be such that ||wiv] < 1 and M\ (2, A,v,—12) = AQ, A, wy, 71, 72). Then
A=A A wy,m,7) and ¥ = o A —r,-

Proof of Lemma 6.7. Let v be as above and set ¢ = ¢ 44,—r,, SO that
—div(AVp) — riw; ! [Ve| — map = —div(AVp) +v - Vo — 1o = A(Q, A, wy, 71, 72)p in Q

by what we have just seen. Define also

if Vo (x) # 0,

—mw (z) 7!
w(x) =

0 if Vip(x) = 0.
One has ||[wyw]||, = 7 and
—div(AVY) +w - Vi — 1o = —div(AVY) — ryw; VY| — 70 = M in Q,

so that, since ¢ > 0in Q2 and ¥ = 0 on 92, by the characterization of the principal eigenfunction
and the normalization ||¢||« = 1, one has ¢ = vq 4w -, and

A=M(Q, A w,—7) > ANQ, A, wy, 71, 72).
As a consequence,
—div(AVY) +v- Vi) —1pp > —div(AVY) —miwy [V =1 = M > A(Q, A, wy, 71, 7)1 in Q,
while
—div(AVe) +v- Vo — e = M(Q, A v, —1)p = AMQ, A, wy, 71, 72)p in Q

by assumption. Since 1) > 0 in €2, another application of Lemma 6.2 shows that ¢ = ¢ =
0. Av—m, and that A = A\(Q, A, wy, 71, T2). O

With the help of Lemma 6.7, we conclude the proof of Theorem 6.6. Let v; € L>(, R")
and vy € L>(Q,R") with ||wyv1]|, < 7 and |Jwivs||, < 71 be such that

AQ, A wy, 1, m) = M(Q, A 01, —T2) = M (Q, A vy, —To),

and set
P1 = P A, —7 aNd Y2 = OO A vy 7y
Since vy - Vo = —miw; ! |[Ver| and vy - Vipy = —mw; t [Vs| a.e. in Q, one has

{ —le(AVQOl) - le;l |Vg01| — T21 = A(Q, A, wi, 7'1,7'2)@1 in Q,
—div(AVps) — lefl IVo| — mope = MQ, A wy, 171, 72)p2 in
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With 1, 02 € V<o W2(), 01,02 > 00 Q, [l@1]lec = [[@2]lec = 1, and 1 = @2 = 0 0n 9.
Lemma 6.7 shows that ¢1 = 0o 4.4,,—7 = @2 1= @, so that v - Vo = vy - Vp = —nwy [Vl
It follows that v; = vy and |v;| = |vs| = mw;' ae. on the set {xr € Q; Vp(r) #0}. Tt
remains to be observed that Vo(z) # 0 a.e. in Q. Indeed, if £ = {z € Q; Vp(z) =0},
one has div(AVy) = 0 ae. in E, so that —mp = M\ (Q, A,v1,—T)p in E, and since
A (2, A vy, —T2) > —To, one has |E| = 0. O

If, in Theorem 6.6, we specialize to the case when (2 is a ball and the diffusion matrix A is
equal to A Id with A radially symmetric, we obtain a more complete description of the unique
minimizer and maximizer. More precisely, we have:

Theorem 6.8 Assume that Q is a Euclidean ball centered at 0 with radius R > 0, let A €
LY (Q) N Whe(Q) be radially symmetric, set A = AId and use the same notations as in
Theorem 6.6, under the extra assumption that wy is radially symmetric Then, v = Tw] ‘e,
U= —nw; ‘e, a.e. inQ, and w and @ are radially symmetric and decreasing.

Proof. Let ¢ = ¢ = ¢q A1dp,—r Where v is given in Theorem 6.6. One has
—div(AVy) — rw; ' [Vl — o9 = MQ, A, wi, 71, 72)¢ (6.7)

in Q. If S is any orthogonal transformation in R™ and ) = ¢ o S, then ¢ € W?"(Q) for
all 1 < r < +o0, satisfies (6.7), vanishes on 0 and is positive in Q. Lemma 6.7 therefore
yields ¢ = 1), which means that ¢ is radially symmetric, so that there exists a function
u : [0, R] — R such that p(z) = u(|z]) for all z € Q, and u is CH*([0, R]) for all 0 < a < 1.
Let 0 <7 <7y < R. Remind that A\(Q, A, wy, 71, 72) = A\ (Q, A, v, —73) > —75. Since

—div(AVe) +v- Vo = (AQ, A, wy, 71, 72) + T2) > 0 (6.8)

in , the maximum principle applied to ¢ in B,, yields that ¢ > u(rs) in B,,, which means
that u(r;) > wu(ry). Moreover, if u(r;) = u(ry), the strong maximum principle implies that ¢
is constant in B,,, which is impossible because of (6.8). Therefore, u(r1) > wu(ry). Finally, if
0 <17 <71y = R, one has immediately u(ry) > u(ry) = 0. Thus, u is decreasing in [0, R], and
this yields at once v = mw; e, from Theorem 6.6.

The arguments for @ and ¥ are entirely analogous and this completes the proof of Theo-
rem 6.8. O

6.2 Faber-Krahn inequalities
Proof of Theorem 2.7. First, since |V || < 72, it follows from [14] that
/\1(9, A, v, V) > )\1(9, A, v, —Tg) = —To + )\1(9, A, v, O)

But A\ (2, A,v,0) > 0. Theorem 2.3 then yields the existence of a positive constant § =
0(Q2,n, M a,my, 71) > 0 depending only on (§2, n, M 4, m,, 1), and the existence of two radially
symmetric C*(*) fields A* > 0, w* > 0 such that, for v* = w*e, in O,
{ essQinf A <min A* <max A* <esssup A, [[(A) Y@y = A0,
o o Q
[0 | (0 rey < Mvllpoe@ ey, || V2 X (M) pvosy = 11 [0 X A7H |11,
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and

A (9, A,0,0) > A\ (QF, A" Id, v*,0) x (1+6).
Observe that ||v*|| < 7. It follows from Theorem 6.8 (with wy = 1) that

—To + )\1 (Q*, A*Id, U*, 0) = )\1 (Q*, A*Id, U*, —7'2) Z )\1 (Q*, A*Id, T1€Er, —’7'2)
and A\ (Q*, A*Id, v*,0) > A\ (%, A*Id, 1ye,, 0). Therefore,
)\1(9, A, v, V) Z )\1 (Q*, A*Id, T1€r, —’7'2) + 6 x )\1 (Q*, A*Id, T1€r, 0)

since 6 and A\ (Q*, A*Id, 1ye,, 0) are positive.
Let us now estimate A\(Q*, A*Id, me,,0) from below. Call ¢ = Qo As1dre0 A =
>\1<Q*,A*Id,7'1€7~, O) > (0 and

|| _
Uz) = 71/ A*(re)"tdr for all x € QF,
0

where e is an arbitrary unit vector. Multiply the equation
—div(A*Vy) + e, - Vo = Ap in Q

by e~V € HL(Q*) N W(Q*) and integrate by parts over Q*. Tt follows from the definition

of U that
/ A |Vp|?e™V :)\/ eV < )\/ o>
* O* *

The last inequality holds since A > 0, and U > 0 in Q*. But A* > essinfq A > m, > 0,
whence U < 7ym,' R in Q*, where R = aﬁl/n\Q\l/” > 0 is the radius of Q*. Finally,

_ —-1_—1/n 1/n
A/ @* > mye T on I /|V90|2,
* Q

whence

—rm oYM QL/n _ .
A > mye TImy oy |9 % ’Q| Z/n&i/n<]n/2—1,1)2 — k>0

from (1.3) and (1.4). The conclusion of Theorem 2.7 follows with the choice

n :n(QanaMAamA,Tl) =0xkK>0.

Proof of Corollary 2.8. Assume first that 2 is not a ball. Write

AM(Q,A 0, V) > (Q,A40,0)+ essQian.

Under the notations of Corollary 2.8, then Theorem 2.7 applied to A (2, A v,0) with A = 4
clearly gives A* = v, in Q*, so that

A (2, A,0,0) > A (QF, y4ld, ||v]| o€, 0),
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whence

A2, A0, V) > A (QF, vald, ||v]|sc€r, 0) + essQinf V= A (Q", vald, ||v||ooer,essQinf V).

Assume now that €2 is a ball. From Theorem 2.1 applied to A;(2, A,v,0) with A = 4, there
exists v* € L®(2*, R™) such that ||[v*|| L (o rr) < ||V]|Lo(@rn) and

A1 (2, vald, v*,0) < A (€2, A,0,0).

But A (2%, yald, [|v] o (@rmyer, 0) < A1 (25, vald, v*, 0) from Theorem 6.8 with w; = 1. There-
fore,
A (A0, V) > A (0, vald, ||v| Lo o,rm)er, essﬂian).

The conclusion of Corollary 2.8 follows immediately. m

Remark 6.9 If, in Theorem 2.7, we specialize to the case when A = yId and A =~ > 0is a
given constant, then we have immediately

M (2,791d, 0, V) > A (7,71, [[o][cer, =V ]loo)

provided that €2 € C is not a ball. Furthermore, if €2 is a ball, say with center x(, the uniqueness
statement in Theorem 6.8 shows that A;(2,vId, v, V) > A (2,71d, ||v]lcer(- — Z0), —[|V]|0),
where the inequality is strict if v # ||v||e€, (- — 2g) Or V' # —||V||oo. Finally, we obtain that, if
Q) € C, then

A (€,91d, 0, V) = A (@7, y1d, [[o][scer, —[[V]o) (6.9)

and the equality holds if and only if, up to translation, Q@ = Q*, v = ||v[|we, and V = —||V|| .

A rough parabolic interpretation of inequality (6.9) can be as follows: consider the evolution
equation u; = YAu — v - Vu — Vu in §, for t > 0, with Dirichlet boundary condition on 052,
and with an initial datum at ¢ = 0. Roughly speaking, minimizing A; (€2, vId, v, V') with given
measure |2 and with given L> constraints ||v||cc < 7 and ||V« < 72 can be interpreted as
looking for the slowest exponential time-decay of the solution u. The best way to do that is:
1) to try to minimize the boundary effects, namely to have the domain as round as possible,
2) to have —V as large as possible, that is V' as small as possible, and 3) it is not unreasonable
to say that the vector field —v should as much as possible point inwards the domain to avoid
the drift towards the boundary. Of course diffusion, boundary losses, transport and reaction
phenomena take place simultaneously, but these heuristic arguments tend to lead to the optimal
triple (2, —v, =V') = (Q*, —me,, 72) (up to translation).

In Theorem 2.7, it follows from the above proofs that the inequality

A (AT, men, 13) < A (Q,A,0, V) —n

holds if the assumption ||V |l = [|[V||z>(@) < 72 is replaced by: ess infoV > 73. Furthermore,
since A\ (€, A, v, V) > A\ (Q, A, v,ess infoV) = A (Q, A, v,0)+ess infgV with a strict inequality
if V' is not constant (see [14]), it is then immediate to check that formula (6.9) still holds when
—[|[V]|s is replaced by ess infqV, and that the case of equality can be extended similarly.
The parabolic interpretation is the same as above if the condition ||V« < 72 is replaced by:
ess infoV > 73.
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Remark 6.10 If 2 is a general open subset of R™ with finite measure, and if A €
Whe(Q,S,(R)), v € L*(Q,R"), V € L>(Q) are such that A > ~Id in § for some constant
v > 0, then we claim that

A (Q,A,0,V) A (2, ~1d, [|v]] Lo (0, rm)€rs essQinf V)

>
N (6.10)

A1, ol =@ zmer, =V =()-

Indeed, given € > 0, as in Remark 5.6, there exists a non-empty set ' = 2. € C such that
O cc Qand \ (Y, A,0,V) < A\(Q,A,0,V) +e. Then the arguments used in the proof of
Corollary 2.8 (with v instead of 74) imply that

M (A0, V) > A (9%, 41d, H"UHLOO(QV]Rn)er’eSSQin V),
where 2F is the ball centered at the origin with the same measure as €2'. Therefore,
M (A0, V)4+e > M(QLAId, ||v]| Lo (o rmyers essQinf V) > M(Q5, 414, ||v]| Lo (o rmyer, essQinf V)
since QF C Q*, and (6.10) follows immediately. Notice that (6.10) holds in particular with
v = ess info A[A].

7 Appendix

7.1 Proof of the approximation lemma 5.1

Fix k € N. Call _
1R
Tik =
e

fori=0,...,k+1

and

1/n
L
i,k i+1,k .
Ti+1/2,lc = (T) € (ri,k7 7’1‘+17k> for i = 0, ... ,k.

Remember that
|QP71(7’2‘+1,I€):P71(7‘¢,1€)| = an(T’?—&—l,k - T:’fk) = |S7‘i,k77'i+1,k| for all 7 € {07 trt k}

Let us first define the function g almost everywhere in Q*: fori € {0,...,k} and z € S,
such that |z| # 7541/2,k, set

i,koTi+1,k

gr(x) = Gi(|2]),

where
1
Gi(r) = sup {a €R; 5 {2 € Qi gy 9(@) > at| > an [ op — T”!}

for all r € (rig, riz1/26) U (Tig1/2k, Tiv1k)-> It then follows by definition that gy is radially

symmetric, nondecreasing with respect to [z| in S, , ;. ,, and nonincreasing with respect to

3In each shell S, , r,., ., the function g, is then a kind of Schwarz decreasing rearrangement of the function
qg in Qp—l(

ris1n).p—L(rir)s With respect to the inner radius ;112 k.
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|z in Sy, o prisr s and that

H:U < Qp’l(ﬁﬂ,k)vﬂ’l(ri,k)’ g(x) > t}| H:B < Sﬁkﬂ"zﬂk’ gr(x) > t}}

HCE = Qp’l(riqtl,k)w’l(n,k% g(z) > t}| Hx < Snkﬂ"zﬂ k) gr(x) > t}‘

for all i € {0,...,k} and ¢ € R. As a consequence, the restriction of g to Sy, r.,,, is in

o0
L (Sri,kvri+1,k>?

ess inf g < ess inf g= essinf gy < esssup g = ess sup g < esssup g

Q P (i1 k) e (k) Sri kit 1k Srikoriv1k prl(n‘“,k)vpfl(w,k)
and
/ Ik :/ g :/ h (7.1)
S Q Sr

Tiko T4,k p_l(ri_,'_l’k),p_l(ri’k) TikoTi41,k

for all i =0, ..., k, by assumption (5.2). Therefore, g, € L>°(Q*) with

ess inf g = ess inf g < ess sup gp = ess sup g
Q Q* O* Q

and

{z € Q, g(z) >t} = {z € @, gi(x) > t}]

{z €, g(x) 2t} = {z e O, gu(z) = t}]
for all £ € R.
Let us now define the sequence of functions (g Jken- Fix k € N. For each i € {0,...,k}, the
function G}, is by construction nondecreasing in the interval (75, 7i41/2,c) and nonincreasing
in the interval (7412, 7i41,k). Furthermore,

essinf G = essinf Gj = ess inf g > ess inf g.
(P koTi1/2,) (Tit1/2,65Ti+1/2,k) Qo1 g ) L) &

Therefore, in each of the intervals (75, 7i41/2%) and (riy1/2k, Tit1,k), the function Gy can be
approximated uniformly and from below by piecewise constant functions which are larger than
or equal to ess infg g. As a consequence, there exists a piecewise constant function Gy defined
in [0, R] such that

essQinf g < Gy(r) < Gi(r) (< ess sup g) for all r € (0,7126) U U (Thy1/2k, R)  (7.2)
0

and

~ 1
G — G| < —.
R P

Let 0 = por < p1x < -+ < pn.+1,5 = R be a subdivision adapted to ék (with Ny € N),

namely Gy, is equal to a constant m; € [ess infq g, ess supg, g] in each interval (p;x, pj+1.4) for
j=0,..., N. Choose a real number P, such that

(7.3)

- . Ptk — Pik 1
0<p < .
Py, < min (oé?é%k 2 T(Np+1)(k+ 1))
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Let ¢ be a fixed C°(R,R) function such that 0 < ( < 1in R, ( =0 in (—o0,1/3] and ( =1
in [2/3, +00). Denote G|, the function in [0, R] by:

Gy(r) =mop  forr €0, p1p — /_)k]a
Gi(r)=m;, forr € [pji + 00 Ptk _ﬁk] and 1 <j < N —1 (if Ny > 1),
Gi(r) =my, e forr € oy +p, Bl

Mk it mjn < My,
"= Pi+1k TP,

Py
i mjp1e < My,

V1 € [pjsik — Py Piv1 ks

Gi(r) = mjx+ (Mjr1e —myx) X ¢ (

and
iy i mj_1 e = myy
Piktp, —T

Py
if mj—1k < mj k-

V1<j5< N,

Gi(r) = myx+ (mj—1x —mjp) X
\V/TG [pj’k’pj7k+£k]7 —k( ) 7,k ( j—1.k ],k‘) <<

The function G, is well-defined and C'* in [0, R] and

e?g,’lglf Gy = ogl?glvk mjx < G(r) < Gi(r) for all r € (0, p14) U -+ U (pny i, R),

whence B
essﬂinf g <G, <Gp <G <esssup g almost everywhere in [0, R]
Q

by (7.2). The function defined by
g, (z) = Gy(|z]) for all z € Qr
is radially symmetric and of class C*°(€2*) and it satisfies

essﬂinf g<g, < gp<esssup g almost everywhere in Q.
= Q

Fix now ¢ € [1, +00) and let us check that gy — g, — 0 in L?(Q") as k — +00. One has

lgx = g, ooy < NGK(- 1) = Gl Dllzacry + 1Gi( - 1) = Gill - Dllzagar

Oéan 1/q ~
- % + Gk - ) = Gi(l - Dllzscar

by (7.3). On the other hand, the definition of G, and formula (7.2) imply that

|Gk — Gy llL~o,r) = R Im e — mjrk| < 2[|Grllzeo,r) < 2[|9]| (@)
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Using once again the definition of G}, it follows that

IGR(1- 1) = Gl - Dllsoary = [TMMZ(

J=0

[ Gt - iyt

Pj,k

Pj+1,k ~ 1/a
[ Gt - Qk<r>>qr“dr>]

Ji+1,k TPy,
1/q
< [200,(Ne + D B @l m)]
2na, B! ) 1/

< 2 0 X
< 2||gllr=(0) (k+1

from the choice of P, Thus,

(aan)l/q
k+1

2no, RV1

1/q
] ) —0as k — +o0.

gk — g, luoer < + 2glliey X (

Finally, let us check that the sequences (g )ken and (gk)keN converge to h as k — 400 in
LP(2*) weak for all 1 < p < 400 and in L®(Q*) weak-*. Let ¢ be in C(Q*,R) and fix ¢ > 0.
Since the unit sphere S"~! is compact and ¢ is uniformly continuous in ¥, there exists ky € N
and a finite family of measurable pairwise disjoint subsets Ui, ..., U, of S"™! with positive
area, such that S"™' =U; U--- U U, and

_ el =yl | < 7=
|p(z) — o(y)| < e for all z,y € Q*\{0} such that kfg + 1y (7.4)
3 j such that —, — € Uj.

2" |y

Fix any k such that k& > ko. Use the notation x = rf with r = |z| and 6§ = z/|x| for the
points of Q*\{0}. Denote by do the surface measure on S"~'. For all i € {0,...,k} and

je{l,...,q}, call
Ti4+1,k
/ / o(r0) do(0) dr
_ Ti,k U]

- Tit1,k :
/ / do(6) dr
Tik U]

Since gy and h are radially symmetric and satisfy (7.1) for all i = 0,... k, it follows that

Gi;j

/.7“1'+1,k /U(gk<7”9) — h(r&))gbm da(e) dr — 0

for all i € {0,...,k} and j € {1,...,q}. Thus,

/*gm—/*fw:f} q

i=0 j=1

/.mlvk /U.(gk<TQ) — h(rf))(o(rf) — ¢;;) do(0) dr
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and then

k q Tit1,k
/Q g1 — / w\ <Yy / / (gl + Itllzm@) € do(6) dr
* * L]‘7

i=0 j=1vTik

= aR"(||gll~@) + |7l L@r)) €

for all & > ko (remember that ||gx|| Lo+ = ||g]| (). Since € > 0 was arbitrary, one concludes
that

/ 9P — ho as k — +oo0.
* Q*

Since this is true for every ¢ € C(Q*, R), standard density arguments imply then that
/ gkd — | he as k — 4oo, for all ¢ € LP (Q*) and for all p’ € [1, +00), (7.5)
* Q*

namely gp — h as k — 400 in LP(Q2*) weak for all p € (1,400) and in L>*(Q2*) weak-*. Lastly,
since g, — g, — 0 as k — 400 in LP(Q*) for all p € [1,4+00) and since the functions g, are
uniformly bounded in L>*(€2*), it follows from (7.5) and standard density arguments that

/ 9,9 — he as k — 400, for all ¢ € LP () and for all p’ € [1,+o0).
Q o8

Thus, g, — h as k — +00 in o(LP(Q¥), LP' (2%)) for all 1 < p < 4-oc0.
The construction of the functions g, is similar to that of the functions g, , but they approx-
imate the functions g, from above. O

7.2 A remark on distribution functions

Let « < 8 € R and m > 0 be fixed. We extend a definition which we used just before
Corollary 2.2: F, g(m) stands for the set of right-continuous non-increasing functions p : R —
[0,m] such that

wu(t) =m for all t < a and p(t) =0 for all t > f.

In this appendix, we prove the following fact:

Proposition 7.1 Let a < € R, m >0, p € F,3(m) and Q@ € C such that |Q2] = m. Then,
there exists V € L>(Q) such that pn = py .

Proof. This fact is rather classical, but we give here a quick proof for the sake of completeness.
Let ¢ be the solution of
{ —Ap = 1 in €,

¢ = 0 on 0.

Observe that the function ¢ belongs to W*P(Q) for all 1 < p < +oo, to CH7(Q) for all
0 < <1 and is analytic and positive in 2. Let M = maxg ¢ and, for all 0 < a < M, define

(as in Section 3)
Q={2€Q; p(x)>a}.

85



Set also 2y = (). Remember that, for all 0 < a < M, |09,| = 0.
Define now, for all z € €,

V(z) =sup {s € R; u(s) > |Quw)|}-

Notice first that this supremum is well-defined for all x € . Indeed, if x € 2, one has
¢(z) > 0, therefore 0 < |Qu| < Q.

We now claim that V' is measurable and bounded in 2 and that uy = p. Indeed, let ¢ € R.
By definition of V', for all z € €,

V(z) >t < (3s > t such that p(s) > [Qpw)|) < [Qw)| < 1),

where the last equivalence follows from the right-continuity of  and the fact that this function
is non-increasing. Define now, for all0 < a < M, F(a) = |2,|. The previous equivalence yields

py(t) = o € @ Fe(z)) < u(t)}.

Since the function F' : [0, M] — [0, |Q]] is decreasing, one-to-one and onto, one obtains that
{z € Q; V(x) >t} is measurable for all ¢ € R, and that

pv(t) = [{z € p(x) > FH ) }] = [Qp-1uay| = (),

where the last equality uses the definition of F'. Finally, |[{z € Q; V(z) > 8}| = pu(5) = 0 and,
for all s < a,
{z € @ V(z) < s} = [Q] = p(s) =0,

which shows that V' € L>*(Q). O

7.3 Estimates of \(B}, 7e,) as T — +00

We recall that A (€2,v) is defined as A\ (€2, 1d, v,0) for v € L>®(Q,R™). We call B} the open
Euclidean ball of R™ with center 0 and radius R > 0, and we set

Gn(m, T) = )\1 (B’(nm/ozn)l/"’ 7—61”)

for all n € N\{0}, m > 0 and 7 > 0. Notice that G, (m,7) is always positive.
Our goal here is to discuss the behavior of G,(m, 7) for large 7. Indeed, if, in Theorem 2.7,
A is a constant v > 0, then, with the same notations as in Theorem 2.7,

M A0, V) > M(Q9Id, Tie,, —T) = YA (Q51d, 7y 0) — 7
= G2, 7y — T2

The constants v and 5 appear as multiplicative and additive constants in the previous formula.
The function [0,+00) > 7 — Gp(m,7) > 0 is obviously continuous, and decreasing (as a
consequence of Theorem 6.8). However, the behaviour when 7 — 400 is not immediate. It is
the purpose of the following lemma, which was used in Remark 6.5. When A is not constant
in Theorem 2.7 but still satisfies some given lower and upper bounds, the following lemma
provides some bounds of A\ (2%, A*Id, mye,, —72) when 11 — +00.
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Lemma 7.2 For all m > 0, 772¢"™/2G,(m, 1) — 1 as T + 00, and one even has
3Cm)>0,37>0, V7>, |t 2™2G(m,71)—1]<C(m)re ™2 (7.6)

Moreover, for alln > 2 and m > 0, G,(m,7) > G1(2(m/a,)"/",7) for all 7 > 0, and

Unag=tn gs 7 — 400. (7.7)

—7 og G(m, 7) — m'"a;,

In [20], with probabilistic arguments, Friedman proved some lower and upper logarithmic
estimates, as € — 0T, for the first eigenvalue of general elliptic operators —a;;e%9;; + b;0; with
C*' drifts —b = —(by, ..., b,) pointing inwards on the boundary (see also [45]). Apart from the
fact that the vector field e, is not C* at the origin, the general result of Friedman would imply
the asymptotics (7.7) for log G,,(m, T) = log )\I(B?m/an)l/"7 Te,). For the sake of completeness,
we give here a proof of (7.7) with elementary analytic arguments. Lemma 7.2 also provides the
precise equivalent of Gy (m, 7) for large 7. However, giving an equivalent for G,(m, ) when 7

is large and n > 2 is an open question.

Proof of Lemma 7.2. First, to prove (7.6), fix m > 0 and 7 > 0, set Q = (=R, R) with
2R = m, and denote
A=\ (Q,7e,)

and ¢ = Lo Id re,.0° Theorem 6.8 ensures that ¢ is an even function, decreasing in [0, R] and
that
—o"(r) +7¢' (r) = Ap(r) for all 0 < r < R,

with ¢(R) =0, ¢ > 0in (—R, R) and ¢/'(0) = 0 (in particular, the above equality holds in
the classical sense in [0, R]). For all s € [0, 7R], define ¢(s) = ¢(s/7), so that 1 satisfies the

equation
A
—"(s) +'(s) = —(s) for all 0 < s < 7R,
T
with ¥ (TR) = 0 and ¢/(0) = 0. Notice that A\ depends on 7, but since, for all 7 > 0,
0 < X < M((—R, R),0), there exists 75 > 0 such that 72 > 4\ for all 7 > 7y, and we will
assume that 7 > 7y in the sequel. The function ¢ can be computed explicitly: there exist

A, B € R such that, for all 0 < s < 7R,
W(s) = Aet*t" 4+ Bel"

where py = (1 £ /1 —4X/72)/2. Using the boundary values of ¢ and v, one obtains after
straightforward computations:

2
2
v T (1 1B Eer
4 T2

Since A remains bounded when 7 — +o00, it is then straightforward to check that A ~ 72e~ 7%

when 7 — 400, and that (7.6) follows.
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We now turn to the proof of assertion (7.7). Let n > 2, m >0, 7 > 0 and Q2 = B} be such
that |[Q] = m, so that one has R = (m/a,)"/" and G,,(m,7) = A\ (Q, Te,). We first claim that

Gn(m,7) > G1(2R, T).

Indeed, write

A=A\ (Q,7e,) and ¢, = Poldre.0°
Similarly, G1(2R,7) = M((—R,R),Te,), and we denote u = M\ ((—R,R),7e,) and ¢ =
P rr)Idreno (where Id is then understood as the 1 x 1 identity matrix). As before, de-
fine ¥,(y) = @n(y/7) for all y € 7Q = B, and ¢y(r) = ¢i(r/7) for all r € [-7R,TR].
Finally, since 1), is radially symmetric, let w, : [0,7R] — R such that ¥, (y) = u,(|y|) for all
y € 7Q = B7;. One has

-1

1) = TR 0) () = () (0,7
(7.8)

—U(r) + Ui (r) = G (r) in [0,7R),

with u},(0) = u,(7R) = 0, ¥ (0) = ¢1(T7R) = 0.
Assume that A < p. Since u), < 0in (0, 7R] and w, > 0, one obtains
—up (r) +u,(r) < %un(r) in [0, 7R,

(7.9)

—{ () + ¥ (1) = o) in 0,7,

Since ¥} (TR) < 0 by Hopf lemma, while ¢1(r) > 0 in [0,7R), u,(r) > 0 in [0,7R) and
the functions wu, and v, belong (at least) to C''([0,7R]), there exists then v > 0 such that
Y1 (r) > u,(r) for all 0 < r < 7R. Define v* as the infimum of all the v > 0 such that
Y1 > u, in [0,7R), observe that v* > 0 and define z = y*; — u,, which is non-negative in
[0, 7R] and satisfies

—"(r)+2(r)— =z(r) >0 (7.10)

forall 0 <r < 7R and z(TR) = 0.

Assume that there exists 0 < r < 7R such that z(r) = 0. The strong maximum principle
shows that z is identically zero in [0, 7R], which means that v*¢y = w, in [0,7R], and even
that ¢; = w, because 11(0) = u,(0) = 1. But this is impossible according to (7.8) and (7.9).

Thus, z > 0 in (0, 7R). Furthermore, 2'(0) = 0, hence z(0) > 0 from Hopf lemma. Another
application of Hopf lemma shows that z/(7R) < 0. Therefore, there exists £ > 0 such that
z > Ku, in [0, 7R), whence

*

T H@Z)l > u, in [0,7R),

which is a contradiction with the definition of ~*.
Finally, we have obtained that p < A, which means that G, (m,7) > G1(2R, 7).
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We now look for a reverse inequality. To that purpose, let ¢ € (0,1) and Ry > 0 such that
n—1

< e. In the following computations, we always assume that 7R > Ry. Define u,, and A

as ’t())efore. Let R R
o () (o)) o)
T T

and w the normalized corresponding eigenfunction, so that

_w(r) + 71 — ) (r) = pw(r) in {o, R- @] |
W(0) =0, w>0in [O,R—@) w (R—@) —0.

r— R

T

For all Ry <z < 7R, define v(z) = w ( 0), which satisfies

!/

() + (1= () = %v(r) in [Ro,7R),

V'(Rp) =0, v>0in [Ry, 7R), v(TR) = 0.

Assume that A > /. Since (n — 1)/Ry < € and u],(r) < 0 in (0, 7R], one therefore has

/

—u(r) + (L= 2)u(r) = Sun(r)  in [Ro, 7R,

/
—"(r)+ (1 —e)d(r) = %U(T’) in [Ro, TR].
Arguing as before, we see that there exists v > 0 such that yu, > v in [Ry,7R). Define ~*
(> 0) as the infimum of all such +’s and define z = y*u,, — v, which is nonnegative in [Ry, 7 R]
and satisfies —z" + (1 — €)' — (¢//7%)2z > 0 in [Ry, TR).

Assume that z(r) = 0 for some r € (Rp,7R). The strong maximum principle ensures
that z is 0 in [Ry, 7R], which means that u, = v in [Ry, 7R], which is impossible because
ul, (Rp) < 0=12"(Rp).

Therefore, z > 0 everywhere in (Ry,7R). Furthermore, 2'(Ry) < 0, thus z(Ry) > 0. On
the other hand, by Hopf lemma, 2'(TR) < 0. Thus, there exists £ > 0 such that z > kv in
[Ro, TR), whence (v*/(1 + k))u,, > v in [Ry, TR). This contradicts the definition of ~*.

Thus, we have established that A\ < p/. Straightforward computations (similar to those of
the proof of (7.6)) show that

2
2 Ay 7
ven =T (1o oo ) e,

T

and, since A > G1(2R, 1), formula (7.6) and the fact that m = a,, R end the proof of (7.7). o
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