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Abstract

In this paper, we consider shape optimization problems for the principal eigen-
values of second order uniformly elliptic operators in bounded domains of Rn. We
first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of
the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue
measure. We then consider the case of the Laplacian with a bounded drift, that is the
operator −∆ + v ·∇, for which the minimization problem is still well posed. Next, we
deal with more general elliptic operators −div(A∇) + v · ∇+ V , for which the coef-
ficients fulfill various pointwise, integral or geometric constraints. In all cases, some
operators with radially symmetric coefficients in an equimeasurable ball are shown
to have smaller principal eigenvalues. Whereas the Faber-Krahn proof relies on the
classical Schwarz symmetrization, another type of symmetrization is defined to handle
the case of general (possibly non-symmetric) operators.

1 The Rayleigh-Faber-Frahn theorem

Let n ≥ 1 be any integer. For any bounded domain (non-empty connected set) Ω ⊂ Rn, let

0 < λ1(Ω) < λ2(Ω) ≤ . . . ≤ λk(Ω) ≤ . . .

be the sequence of ordered eigenvalues of the Laplacian operator −∆ under Dirichlet bound-
ary condition. Throughout the paper, we only consider smooth domains, that is domains
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whose boundary is of class C2. The principal eigenvalue λ1(Ω), which is positive and is the
smallest one (notice that all eigenvalues are real since the Laplacian is symmetric), is simple
and characterized by the existence of a signed eigenfunction. That is, there is a function ϕ
belonging to the Sobolev spaces W 2,p(Ω) for all 1 ≤ p < +∞, such that

−∆ϕ = λ1(Ω)ϕ a.e. in Ω,

ϕ > 0 in Ω,

ϕ = 0 on ∂Ω.

(1.1)

Question 1.1 Let m > 0. Among all the C2 bounded domains Ω ⊂ Rn with Lebesgue
measure m, for which Ω does λ1(Ω) reach its infimum ?

Notice immediately that, if the infimum is replaced by the supremum, then the question
is ill posed in any dimension n ≥ 2 since it is easy to find a sequence of thiner and thiner
domains (Ωk)k∈N with Lebesgue measure m and for which λ1(Ωk)→ +∞ as k → +∞.

For any bounded domain Ω, let Ω∗ be the Euclidean ball with enter 0 and having the
same Lebesgue measure as Ω, that is |Ω∗| = |Ω|, where |A| denotes the Lebesgue measure
of any measurable subset A ⊂ Rn. The answer to Question 1.1 is given in the following
theorem.

Theorem 1.2 [13, 19, 20, 23] The infimum of λ1(Ω) among all bounded C2 domains of Rn

is reached when Ω is a Euclidean ball, and only in this case. In other words,

λ1(Ω) ≥ λ1(Ω∗), (1.2)

and the equality holds if and only if Ω = Ω∗ up to a shift.

Theorem 1.2 was conjectured by Rayleigh [24] in 1894 when n = 2, that is the disk is
the (unique) domain which minimizes λ1(Ω) over all the domains Ω with given area. The
proof of the inequality (1.2) was given independently by Faber [13] in 1923 and Krahn [19]
in 1925 when n = 2, and later by Krahn [20] in 1926 for all n. It goes through a variational
formulation for λ1(Ω):

λ1(Ω) = min
ϕ∈H1

0 (Ω)\{0}

∫
Ω

|∇ϕ(x)|2dx∫
Ω

|ϕ(x)|2dx
, (1.3)

which holds since −∆ is symmetric on L2(Ω). Notice that the minimum is reached by the
principal eigenfunction ϕ solving (1.1). The proof also makes use of the Schwarz symmetriza-
tion. Namely, if u : Ω→ R is measurable, one can define the Schwarz symmetrization u∗ of
u, as the function u∗ : Ω∗ → R which is radially symmetric, non-increasing with respect to
the Euclidean norm |x| for x ∈ Ω∗ and is such that∣∣∣{x ∈ Ω; u(x) > t}

∣∣∣ =
∣∣∣{x ∈ Ω∗; u∗(x) > t}

∣∣∣
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for all t ∈ R. If u ∈ H1
0 (Ω), then |u|∗ ∈ H1

0 (Ω∗). Furthermore, ‖|u|∗‖L2(Ω∗) = ‖u‖L2(Ω) (since
both |u| and |u|∗ have by definition the same distribution function) and ‖∇|u|∗‖L2(Ω∗) ≤
‖∇u‖L2(Ω), see [23] (the proof of this inequality comes from the classical isoperimetric in-
equality, from the co-area formula and the Cauchy-Schwarz and Young inequalities, as
formulated in [13, 19, 20]). One therefore obtains

λ1(Ω) =

∫
Ω

|∇ϕ(x)|2dx∫
Ω

|ϕ(x)|2dx
≥

∫
Ω∗
|∇ϕ∗(x)|2dx∫

Ω∗
|ϕ∗(x)|2dx

≥ λ1(Ω∗).

The proof of the sharpness of (1.2), that is the study of the case of equality, is more intricate
and requires some smoothness assumption on Ω, see [23]. The now-called Faber-Krahn
inequality (1.2) yields an “explicit” lower bound for λ1(Ω):

λ1(Ω) ≥ |Ω|−2/n α2/n
n (jn/2−1,1)2,

where αn = πn/2/Γ(n/2 + 1) is the Lebesgue measure of the Euclidean unit ball in Rn and
jm,1 denotes the first positive zero of the Bessel function Jm (notice that the right-hand side
of the above inequality only depends on n and |Ω|).

For some surveys on optimization problems of the eigenvalues of the Laplacian and on
further isoperimetric inequalities, we refer to [6, 17, 25] (see also [9, 16] for some results on
the other eigenvalues of the Laplacian, [4, 10, 22] for some results on some functions of the
eigenvalues, [5, 21] for the minimization of the first eigenvalue of ∆2 in dimensions 2 and 3,
and [8, 11, 12, 28] for some results on the eigenvalues of the Laplacian under other boundary
conditions). All the proofs rely on the symmetry of the operator and on some Rayleigh
variational formulation of the eigenvalues. It is thus natural to seek for generalizations
of (1.2) when −∆ is replaced by a more general second order elliptic operator, possibly non-
symmetric. We first focus in Section 2 on a rather simple (but non-symmetric) situation,
that is the case of the Laplacian with drift. We next deal in Section 3 with the case of more
general second order elliptic operators.

2 The case of the Laplacian with drift

Let first Ω be a fixed C2 bounded domain of Rn with n ≥ 1. If 1 ≤ p ≤ +∞ and
v : Ω → Rn is measurable, we say that v ∈ Lp(Ω,Rn) if |v| ∈ Lp(Ω) (|v| denotes the
Euclidean norm of v), and we write ‖v‖p = ‖v‖Lp(Ω,Rn) := ‖|v|‖Lp(Ω). If v ∈ L∞(Ω,Rn),
then the operator −∆+v ·∇ under Dirichlet boundary condition has a principal eigenvalue
λ1(Ω, v) associated with a corresponding eigenfunction ϕ belonging to the Sobolev spaces
W 2,p(Ω) for all 1 ≤ p < +∞, such that

−∆ϕ+ v · ∇ϕ = λ1(Ω, v)ϕ a.e. in Ω,

ϕ > 0 in Ω,

ϕ = 0 on ∂Ω,

(2.4)
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see [7]. Furthermore, λ1(Ω, v) is simple, real, positive (from the maximum principle) and
all other eigenvalues have a real part which is larger than λ1(Ω, v).

Question 2.1 Let Ω be a fixed C2 bounded domain of Rn and let τ ≥ 0 be a fixed nonneg-
ative real number. What can be said about

λ−(Ω, τ) := inf
v∈L∞(Ω,Rn), ‖v‖∞≤τ

λ1(Ω, v)

and
λ+(Ω, τ) := sup

v∈L∞(Ω,Rn), ‖v‖∞≤τ
λ1(Ω, v) ?

It follows from some general bounds on the principal eigenvalues [7] that these two
quantities are real numbers. Furthermore, it turns out that the optimizing vector fields
exist and are unique, as the following theorem from [14, 15] shows.

Theorem 2.2 [14, 15] Let Ω be a C2 bounded domain of Rn and let τ ≥ 0. Then there
exist two unique vector fields v± ∈ L∞(Ω,Rn) such that ‖v±‖∞ ≤ τ and

λ1(Ω, v±) = λ±(Ω, τ).

Furthermore, |v±(x)| = τ for a.e. x ∈ Ω and the principal eigenfunctions ϕ± of the operators
−∆ + v± · ∇ satisfy v± · ∇ϕ± = ±τ |∇ϕ±| a.e. in Ω, that is the functions ϕ± then solve the
following nonlinear problems

−∆ϕ± ± τ |∇ϕ±| = λ±(Ω, τ)ϕ± a.e. in Ω.

When Ω is a ball (without loss of generality, one can then assume that it is centered at
the origin 0), one can give the explicit expression of the optimizing fields v±. For that, we
need an auxiliary notation: for all x ∈ Rn \ {0}, set

er(x) =
x

|x|
.

Theorem 2.3 [14, 15] Assume that Ω is an open Euclidean ball of center 0 and let τ ≥ 0
be fixed. Then v± = ∓τer, and the functions ϕ± are radially decreasing in Ω.

Remark 2.4 The above optimization results do not hold anymore without the bound on
the L∞ norm of the vector field v. More precisely, supv∈L∞(Ω,Rn) λ1(Ω, v) = +∞ and
infv∈L∞(Ω,Rn) λ1(Ω, v) = 0 is not reached. Furthermore, the results do not hold anymore
in general when the L∞ constraints are replaced by other kinds of constraints. For in-
stance, it is immediate to see that, for any 1 < p < n and τ ∈ [0,+∞), the infimum
infv∈Lp(Ω,Rn), ‖v‖p≤τ λ1(Ω, v) is equal to 0 and is then not reached.

In view of Theorem 2.2 and of (1.2), it is natural to let now both Ω and v vary.
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Question 2.5 Let n ≥ 1, m > 0 and τ ≥ 0 be fixed. Among all the C2 bounded
domains Ω ⊂ Rn with |Ω| = m and all the vector fields v ∈ L∞(Ω,Rn) such that
‖v‖∞ = ‖v‖L∞(Ω,Rn) ≤ τ , for which pair(s) (Ω, v) does λ1(Ω, v) reach its infimum ?

Notice immediately that the supremum is +∞ (take v = 0 and remember that
sup|Ω|=m λ1(Ω) = +∞). The answer to Question 2.5 is given in the following theorem.

Theorem 2.6 [14, 15] Let Ω ⊂ Rn be a C2 bounded domain, let τ ≥ 0 and let v ∈
L∞(Ω,Rn) with ‖v‖L∞(Ω,Rn) ≤ τ . Then

λ1(Ω, v) ≥ λ1(Ω∗, τer), (2.5)

and the equality holds if and only if, up to translation, Ω = Ω∗ and v = τer.

The previous result can be reformulated as a Faber-Krahn type inequality. Namely, for
all n ≥ 1, there is a function Fn : (0,+∞)× [0,+∞)→ (0,+∞) such that

λ1(Ω, v) ≥ Fn(|Ω|, ‖v‖∞) = λ1(Ω∗, ‖v‖∞er) (2.6)

for every C2 bounded domain Ω ⊂ Rn and every vector field v ∈ L∞(Ω,Rn). Furthermore,
the equality λ1(Ω, v) = Fn(|Ω|, ‖v‖∞) holds if and only if, up to translation, Ω = Ω∗ and
v = ‖v‖∞er. The function Fn is defined by

Fn(m, τ) := λ1(Bn
Rn,m , τer)

where Bn
Rn,m

denotes the open Euclidean ball of Rn centered at 0 with radius Rn,m =

(m/αn)1/n (that is, |Bn
Rn,m
| = m, with αn = |Bn

1 |). The inequality (2.6) can then be viewed
as an extension of (1.2) to the case of the Laplacian with a bounded drift (however, no
explicit expression of Fn(m, τ) is available when τ > 0, unlike when τ = 0). Since the
principal eigenvalues are non-increasing with respect to the inclusion of domains [7], the
previous results can be reformulated as the following minimization problem: for every n ≥ 1,
m > 0 and τ ≥ 0,

min
|Ω|≤m, ‖v‖L∞(Ω,Rn)≤τ

λ1(Ω, v) = λ1(Bn
Rn,m , τer)

and the couple (Bn
Rn,m

, τer) is the unique minimizer (up to translation), among all the C2

bounded domains Ω ⊂ Rn with Lebesgue measure less or equal to m and the vector fields
v ∈ L∞(Ω,Rn) with ‖v‖L∞(Ω,Rn) ≤ τ .

Finally, notice that the variational formula (1.3) for the Laplacian cannot be extended
to the non-symmetric operator −∆ + v · ∇, even if min-max integral [18] or pointwise [7]
variational formulas exist, but are less easily useable. The proof of Theorem 2.6 does not
rely on the Schwarz rearrangement but on a different symmetrization technique, which will
be described in Section 4. Before doing so, we first consider in the next section several
minimization problems for more general elliptic operators of the type −div(A∇)+v ·∇+V .
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3 Second order elliptic operators

In this section, we consider more general elliptic operators

−div(A∇) + v · ∇+ V

on C2 bounded domains Ω ⊂ Rn under Dirichlet boundary condition. We assume that
A ∈ W 1,∞(Ω,Sn(R)), where Sn(R) denotes the space of symmetric real-valued matrices of
size n× n. We also assume that the operator is uniformly elliptic, in the sense that

inf ess
x∈Ω, ξ∈Rn, |ξ|=1

A(x)ξ · ξ > 0.

For any such matrix field A, there are some ellipticity functions Λ ∈ L∞+ (Ω) := {f ∈ L∞(Ω),
inf essΩf > 0} such that

A ≥ Λ In a.e. in Ω

in the sense of symmetric matrices, where In denotes the identity matrix of size n×n. The
above condition is fulfilled for instance when, for a.e. x ∈ Ω, Λ(x) is the smallest eigenvalue
of the matrix A(x). The vector field v : Ω → Rn and the scalar potential V : Ω → R are
assumed to be bounded. Under these general assumptions, the operator−div(A∇)+v·∇+V
under Dirichlet boundary condition has a principal eigenvalue λ1(Ω, A, v, V ) associated
with a corresponding eigenfunction ϕ which belongs to the Sobolev spaces W 2,p(Ω) for all
1 ≤ p < +∞ and satisfies

−div(A∇ϕ) + v · ∇ϕ+ V ϕ = λ1(Ω, A, v, V )ϕ a.e. in Ω,

ϕ > 0 in Ω,

ϕ = 0 on ∂Ω,

(3.7)

see [7]. Furthermore, λ1(Ω, A, v, V ) is simple, real and all other eigenvalues have a real
part which is larger than λ1(Ω, A, v, V ). It is also known [7] that λ1(Ω, A, v, V ) > inf essΩV
and that λ1(Ω, A, v, V ) > 0 if and only if the operator −div(A∇) + v · ∇ + V satisfies the
maximum principle.

The aim of the following results is to show that, to any such operator

L = −div(A∇) + v · ∇+ V

in Ω under Dirichlet boundary condition, we can associate an operator

L∗ = −div(A∗∇) + v∗ · ∇+ V ∗

in Ω∗ under Dirichlet boundary condition on ∂Ω∗, in such a way that:

• the coefficients of L∗ are radially symmetric,

• some quantities depending on the coefficients (averages, uniform bounds, distribu-
tion functions, determinant and another symmetric function of the eigenvalues of the
second order coefficients) are preserved,
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• the principal eigenvalue of L∗ is not larger than the principal eigenvalue of L, that is

λ1(Ω∗, A∗, v∗, V ∗) ≤ λ1(Ω, A, v, V ).

Let us start with the case of L∞ constraints on v and V and an L1 constraint on Λ−1.

Theorem 3.1 [15] Let Ω ⊂ Rn be a C2 bounded domain which is not a ball. Assume that
‖A‖W 1,∞(Ω,Sn(R)) ≤M , that A ≥ Λ In a.e. in Ω, that inf essΩΛ ≥ m > 0, that ‖v‖L∞(Ω,Rn) ≤
τ and that inf essΩV ≥ κ. Then there exists a positive constant η > 0, which depends only
on n, Ω, M , m and τ , and a positive radially symmetric function Λ∗ ∈ C∞(Ω∗) such that

inf ess
Ω

Λ ≤ Λ∗ ≤ sup ess
Ω

Λ in Ω∗, ‖(Λ∗)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω)

and
λ1(Ω∗,Λ∗In, τer, κ) ≤ λ1(Ω, A, v, V )− η. (3.8)

This result means that the principal eigenvalue of the operator −div(Λ∗∇) + τer ·∇+κ
in Ω∗ under Dirichlet boundary condition on ∂Ω∗ is strictly smaller than that of the operator
−div(A∇) + v · ∇ + V in Ω under Dirichlet boundary condition on ∂Ω. Furthermore, the
gap is quantified by a positive real number η which depends only on some bounds on the
coefficients and on Ω, through the isoperimetric defect Hn−1(∂Ω)/Hn−1(∂Ω∗)−1 > 0, where
Hn−1 denotes the n − 1-dimensional Hausdorff measure. We have assumed that A ≥ Λ In
a.e. in Ω, where the function Λ may not be constant in general. Actually, it turns out from
the proof of the result that, by construction, the function Λ∗ is not constant in general, that
is the principal part −div(Λ∗∇) is not proportional to the Laplacian in general. However,
when Λ is taken as a positive constant (this is of course always possible), then Λ∗ is then
equal to the same constant in Ω∗ and, in this case, the conclusion of Theorem 3.1 easily
recovers that of Theorem 2.6 when Ω is not a ball. The fact that the L1 norms of the
inverses of Λ and Λ∗ are equal also comes from the proof and the construction of Λ∗, which
is defined as a pseudo-rearrangement of Λ through the level sets of ϕ, see Section 4.

When Ω is a ball, then the inequality (3.8) holds without the coefficient η, even if it
means that Λ∗ is not smooth anymore in general. Finally, one obtains a Faber-Krahn type
inequality, that is, for all n ≥ 1, there is a functionGn : (0,+∞)×(0,+∞)×[0,+∞)×R→ R
such that

λ1(Ω, A, v, V ) ≥ Gn

(
|Ω|, inf ess

Ω
Λ[A], ‖v‖L∞(Ω,Rn), inf ess

Ω
V
)

(3.9)

for all Ω, A, v and V as above, where, for a.e. x ∈ Ω, Λ[A(x)] denotes the smallest eigenvalue
of the symmetric matrix A(x), and

Gn(m, γ, τ, κ) = λ1(Bn
Rn,m , γIn, τer, κ) = λ1(Bn

Rn,m , γIn, τer, 0) + κ

for all m > 0, γ > 0, τ ≥ 0 and κ ∈ R. Furthermore, the inequality (3.9) is strict if Ω is
not a ball.
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Remark 3.2 In general, the operators L and L∗ given in Theorem 3.1 are not symmetric
and, as already mentioned, no easily useable variational formulation for λ1(Ω, A, v, V ) exists,
unlike (1.3) for the Laplacian. Therefore, the Schwarz symmetrization does not provide any
immediate lower bound for λ1(Ω, A, v, V ) in terms of the principal eigenvalue of an elliptic
operator in Ω∗ whose coefficients stay in the same class of constraints. Even when L is
symmetric, the Schwarz rearrangement cannot be used to prove Theorem 3.1.

There are other results of the same kind with other types of constraints on the coeffi-
cients. Namely, the following results deal either with some integral constraints on Λ and v
and some constraints on the distribution function of the negative part V − = max(−V, 0)
of V , or with some geometric constraints on the determinant and the trace of the matrices
A(x). For a function f ∈ L∞(Ω), its distribution function µf : R→ [0,+∞) is defined by

µf (t) =
∣∣∣{x ∈ Ω, f(x) > t

}∣∣∣.
Theorem 3.3 [15] Let Ω ⊂ Rn be a C2 bounded domain, A ∈ W 1,∞(Ω,Sn(R)), Λ ∈ L∞+ (Ω),
v ∈ L∞(Ω,Rn) and V : Ω → R be continuous. Assume that A ≥ Λ In a.e. in Ω, and that
λ1(Ω, A, v, V ) ≥ 0. Then, for every ε > 0, there exist two radially symmetric C∞(Ω∗) fields
Λ∗ > 0 and ω∗ ≥ 0, and a radially symmetric function V ∗ ≤ 0 in L∞(Ω∗), such that

inf ess
Ω

Λ ≤ Λ∗ ≤ sup ess
Ω

Λ in Ω∗, ‖(Λ∗)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

‖ω∗‖L∞(Ω∗) ≤ ‖v‖L∞(Ω,Rn), ‖ (ω∗)2(Λ∗)−1‖L1(Ω∗) = ‖ |v|2Λ−1‖L1(Ω),

µV ∗ = µ−V − ,

(3.10)

and
λ1(Ω∗,Λ∗In, ω

∗er, V
∗) ≤ λ1(Ω, A, v, V ) + ε. (3.11)

In the above inequality, the fields Λ∗ and ω∗ are of class C∞(Ω∗). But the price to pay is
the presence of a positive ε term (the fields depend on ε). Without the ε term, an inequality
can still be obtained, but the coefficients of the symmetrized operator in the ball Ω∗ are not
smooth anymore in general. More precisely, under the assumptions of Theorem 3.3, there
are some radially symmetric bounded functions Λ∗0 ∈ L∞+ (Ω∗), ω∗0 ≥ 0 and V ∗0 ≤ 0 such that

inf ess
Ω

Λ ≤ Λ∗0 ≤ sup ess
Ω

Λ a.e. in Ω∗, ‖(Λ∗0)−1‖L1(Ω∗) = ‖Λ−1‖L1(Ω),

‖ω∗0‖L∞(Ω∗) ≤ ‖v‖L∞(Ω,Rn),

‖V ∗0 ‖Lp(Ω∗) ≤ ‖V −‖Lp(Ω) for all 1 ≤ p ≤ +∞, ‖V ∗0 ‖L1(Ω∗) = ‖V −‖L1(Ω),

and
λ1(Ω∗,Λ∗0In, ω

∗
0er, V

∗
0 ) ≤ λ1(Ω, A, v, V ).

Here, λ1(Ω∗,Λ∗0In, ω
∗
0er, V

∗
0 ) is understood in a weak sense.

In the case when Ω ⊂ Rn is not a ball, then a more precise quantified inequality can
be established. Namely, for any constants M > 0, m > 0, τ ≥ 0 and κ ≥ 0, there is a
positive constant θ depending only on Ω, n, M , m, τ and κ such that the following holds: if
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‖A‖W 1,∞(Ω,Sn(R)) ≤ M , A ≥ Λ In a.e. in Ω, inf essΩΛ ≥ m, ‖v‖L∞(Ω,Rn) ≤ τ , ‖V ‖L∞(Ω) ≤ κ

and λ1(Ω, A, v, V ) > 0, then there are two radially symmetric C∞(Ω∗) fields Λ∗ > 0 and
ω∗ ≥ 0, and a radially symmetric function V ∗ ≤ 0 in L∞(Ω∗) satisfying (3.10) and

λ1(Ω∗,Λ∗In, ω
∗er, V

∗) ≤ λ1(Ω, A, v, V )

1 + θ
. (3.12)

The last theorem is concerned with a class of constraints on the trace Tr(A) and the
determinant Det(A) of the matrix field A.

Theorem 3.4 [15] Under the general conditions of Theorem 3.3, assume moreover that
n ≥ 2 and let ρ > 0 and σ > 0 be such that

Det(A) ≥ ρ and Tr(A) ≤ σ a.e. in Ω.

Then there are some constants 0 < a1 ≤ a2 and a matrix field A∗ ∈ C∞(Ω∗\{0},Sn(R))
depending only on n, ρ, σ, such that A ≥ a1In a.e. in Ω,{

A∗ ≥ a1In in Ω∗\{0}, Det(A∗) = ρ, Tr(A∗) = σ in Ω∗\{0},
A∗(x)x · x = a1|x|2 and A∗(x)y · y = a2|y|2 for all y ⊥ x and x ∈ Ω∗\{0},

and, for every ε > 0, there exist a radially symmetric function ω∗ ≥ 0 in C∞(Ω∗) and a
radially symmetric function V ∗ ≤ 0 in L∞(Ω∗) satisfying{

‖ω∗‖L∞(Ω∗) ≤ ‖v‖L∞(Ω,Rn), ‖ω∗‖L2(Ω∗) = ‖v‖L2(Ω,Rn),

µV ∗ = µ−V − ,

and
λ1(Ω∗, A∗, ω∗er, V

∗) ≤ λ1(Ω, A, v, V ) + ε.

Remark 3.5 The same result holds when the trace Tr(A) is replaced by any symmetric
function of order 1 ≤ p ≤ n− 1 of the eigenvalues of the matrix A.

Let us now comment the previous results. First, when the function Λ is taken as a posi-
tive constant γ and when V ≥ 0 (whence λ1(Ω, A, v, V ) > 0), then the proof of Theorem 3.3
implies that

λ1(Ω, A, v, V ) ≥ λ1(Ω∗, γ In, ‖v‖L∞(Ω,Rn)er, 0).

This last inequality could also be derived implicitly from results of Talenti [26] and extra-
arguments based on the strong maximum principle as in [7]. Talenti’s results are concerned
with comparisons of the solutions of some elliptic equations in Ω with the solutions of some
elliptic equations in Ω∗ with symmetrized coefficients (see also [3, 27]). Talenti’s proof is
based on the Schwarz symmetrization and uses the fact that the principal part div(A∇) of
the operator in Ω is compared with a constant times the Laplacian in Ω∗. In particular,
if one takes A = In, Λ = 1 and V = 0, then the aforementioned references provide the
inequality (2.5), the case of equality being actually more intricate and new. In particular,
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the proofs of the quantified improved inequalities (3.8) and (3.12) when Ω is not a ball
require special technical extra-arguments and are completely new, even in the simple case
when Λ is a constant. But we again point out that the function Λ in Theorems 3.1 and 3.3
may not be chosen to be a constant and the function Λ∗ is not constant either in general.
In other words, the principal part div(Λ∗∇) of the symmetrized operator in Ω∗ is not
proportional to the Laplacian in general.

The general conclusion of all above theorems is that when we want to minimize the
principal eigenvalues of elliptic operators in a domain with a fixed Lebesgue measure, under
the aforementioned constraints, we can restrict ourselves to the case of operators with
radially symmetric coefficients in an equimeasurable ball. We point out that, in their
generality, the above results are actually new in dimension 1 and in the case of symmetric
operators (with v = 0). Moreover, the case of operators with constraints on the determinant
and another symmetric function of the eigenvalues of the diffusion matrices A had not been
considered before. The proofs require brand new techniques, which will be described in the
next section.

4 A symmetrization technique

The proofs of the results presented in Sections 2 and 3 are based on a new symmetrization
technique, which is different from the Schwarz symmetrization, and which has its own
interest, independently of the eigenvalue problems. Let us now describe the main lines of
this technique and the key-results associated with it.

Let Ω be a C2 bounded domain of Rn and let ϕ be a C2(Ω)∩W 2,p(Ω) (for all 1 ≤ p < +∞)
function such that

ϕ > 0 in Ω and ∇ϕ 6= 0, ϕ = 0 on ∂Ω.

The function ϕ then belongs to the Hölder spaces C1,α(Ω) for all 0 ≤ α < 1. Call M =
maxΩ ϕ > 0. Assume now that the set

Z =
{
a > 0, ∃x ∈ Ω, ϕ(x) = a, ∇ϕ(x) = 0

}
of critical values of ϕ in Ω is finite, and let Y = [0,M ]\Z be the set of non-critical values
of ϕ. For all a ∈ [0,M), define Ωa as the upper level set of ϕ with level a, that is

Ωa =
{
x ∈ Ω, ϕ(x) > a

}
and, for all a ∈ [0,M ],

Σa =
{
x ∈ Ω, ϕ(x) = a

}
.

Assume that, for all 0 ≤ a ≤ M , |Σa| = 0. Let R = Rn,|Ω| be the radius of Ω∗. For all
a ∈ [0,M), define ρ(a) ∈ (0, R] such that

|Ωa| = |Bn
ρ(a)| = αn ρ(a)n,

and set ρ(M) = 0. It is easy to check that the function ρ : [0,M ] → [0, R] is continuous,
decreasing, one-to-one and onto. Lastly, define

E =
{
x ∈ Ω∗, |x| ∈ ρ(Y )

}
.

10



Given ϕ as above, let now A be a C1
(
Ω,Sn(R)

)
matrix field such that A ≥ Λ In in Ω,

where Λ is a C1(Ω) function with minΩ Λ > 0. For all x ∈ E, set

Λ̂(x) =

∫
Σρ−1(|x|)

|∇ϕ(y)|−1 dσρ−1(|x|)(y)∫
Σρ−1(|x|)

Λ(y)−1 |∇ϕ(y)|−1 dσρ−1(|x|)(y)
=: F (|x|) > 0,

where dσρ−1(|x|) denotes the surface measure on Σρ−1(|x|). One has minΩ Λ ≤ Λ̂ ≤ maxΩ Λ

a.e. in Ω∗. It follows from the co-area formula that ‖Λ̂−1‖L1(Ω∗) = ‖Λ‖L1(Ω). The function Λ̂
is a pseudo-rearrangement of the function Λ with respect to the level sets of ϕ, as in [1, 2].

Given ϕ, A, Λ and Λ̂ as above, we now define the radially symmetric function ϕ̂ ∈
C(Ω∗)∩H1

0 (Ω∗)∩W 1,∞(Ω∗) as the unique radially decreasing function, positive in Ω∗ such

that the integrals of the second order operators div(A∇) and div(Λ̂∇) applied to ϕ and ϕ̂
on the corresponding equimeasurable sets of Ω and Ω∗ are equal, that is∫

Ωa

div(A∇ϕ)(x) dx =

∫
Bρ(a)

div
(
Λ̂∇ϕ̂

)
(x) dx

for all 0 ≤ a < M . In other words we set, for all x ∈ Ω∗,

ϕ̂(x) = −
∫ R

|x|
G(r) dr,

where

G(r) =
1

nαn rn−1F (r)

∫
Ωρ−1(r)

div(A∇ϕ)(z) dz

=
−1

nαn rn−1F (r)

∫
Σρ−1(r)

(
A(y)νρ−1(r)(y) · νρ−1(r)(y)

)
|∇ϕ(y)| dσρ−1(r)(y) < 0

for all r ∈ ρ(Y ), where νρ−1(r) denotes the outward unit normal to Ωρ−1(r) on Σρ−1(r). The
function ϕ̂ is then actually of class C1 in E ∪ {0} and C2 in E ∩ Ω∗.

The first key-point of this symmetrization is the comparison between ϕ and ϕ̂ on the
sets Σa and ∂Bn

ρ(a) for all a ∈ [0,M ].

Theorem 4.1 [15] For all x ∈ Ω∗ and y ∈ Ω such that |x| = ρ(ϕ(y)) (that is ρ−1(|x|) =
ϕ(y)), there holds

ϕ̂(x) ≥ ϕ(y).

The second key-point is a pointwise partial differential inequality involving div(A∇ϕ)

and div(Λ̂∇ϕ̂), as well as some first and zeroth order terms which we define below. Given

ϕ, A, Λ, Λ̂ and ϕ̂ as above, let now v : Ω → Rn and V : Ω → R be two given continuous
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fields. Let us then define a symmetrized drift v̂ and a symmetrized potential V̂ in Ω∗. For
all x ∈ E, set

v̂(x) =


∫

Σρ−1(|x|)

|v(y)|2 Λ(y)−1|∇ϕ(y)|−1dσρ−1(|x|)(y)∫
Σρ−1(|x|)

Λ(y)−1 |∇ϕ(y)|−1 dσρ−1(|x|)(y)


1/2

er(x).

One has ‖v̂‖L∞(Ω∗,Rn) ≤ ‖v‖L∞(Ω,Rn), and ‖ |v̂|2Λ̂−1‖L1(Ω∗) = ‖ |v|2Λ−1‖L1(Ω) from the co-area
formula. Finally, for all x ∈ E, define

V̂ (x) =

−
∫

Σρ−1(|x|)

V −(y) |∇ϕ(y)|−1 dσρ−1(|x|)(y)∫
Σρ−1(|x|)

|∇ϕ(y)|−1 dσρ−1(|x|)(y)
≤ 0.

Theorem 4.2 [15] For all x ∈ E ∩ Ω∗, there exists y ∈ Ω such that ϕ(y) = ρ−1(|x|), that
is y ∈ Σρ−1(|x|), and

−div(Λ̂∇ϕ̂)(x) + v̂(x) · ∇ϕ̂(x) + V̂ (x)ϕ̂(x)

≤ −div(A∇ϕ)(y) + v(y) · ∇ϕ(y) + V (y)ϕ(y).

Theorems 4.1 and 4.2 are fundamental in the proofs of the main results stated in the
previous sections. However, they have their own interest which is independent from the
eigenvalue problems, since they are only related to the symmetrization technique of the
function ϕ and of the coefficients Λ, v and V . The proofs of the two inequalities stated in
Theorems 4.1 and 4.2 use, in particular, the co-area formula, the Cauchy-Schwarz inequality
and the classical isoperimetric inequality in Rn (recall that |Ωa| = |Bn

ρ(a)| for all a ∈ [0,M ],

whence Hn−1(Σa) ≥ Hn−1(Bn
ρ(a)) = nαn ρ(a)n−1).

Finally, given these two theorems, let us sketch the proof of one of the main results stated
in the previous sections, say the inequality (3.11), at least in a rough sense without the ε

term. Given ϕ, A, Λ, Λ̂, ϕ̂, v, V , v̂ and V̂ as above, let us now assume that ϕ solves (3.7),
that is ϕ is the principal eigenvalue associated with the operator −div(A∇) + v · ∇ + V
in Ω under Dirichlet boundary condition on ∂Ω. Assume that the principal eigenvalue
λ := λ1(Ω, A, v, V ) is nonnegative. It follows from Theorems 4.1 and 4.2 that, for all
x ∈ E ∩ Ω∗,

−div(Λ̂∇ϕ̂)(x) + v̂(x) · ∇ϕ̂(x) + V̂ (x)ϕ̂(x) ≤ λϕ(y) ≤ λ ϕ̂(x)

for some y ∈ Σρ−1(|x|). If Λ̂ and ϕ̂ were of class C1(Ω) and C2(Ω) respectively, it would then
follow from the strong maximum principle and from Hopf lemma as in [7] that

λ1(Ω∗, Λ̂ In, v̂, V̂ ) ≤ λ,
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which is almost the required conclusion (3.11) in Theorem 3.3.
However, in general, the set of critical values of ϕ in Ω is not finite (it would be the case

if ϕ were real analytic in Ω) and the coefficients of the operator −div(A∇) + v · ∇+ V and
the function ϕ itself are not smooth enough. The complete proof of the inequality (3.11)
is done by smooth approximations of the coefficients of the operator (by preserving the
constraints) and of the function ϕ. It involves many technicalities.

When Ω is not a ball, improved versions of the previous auxiliary and final inequalities
can be established. In particular, the precised versions of the inequalities stated in Theo-
rems 4.1 and 4.2 are proved to be independent of the approximation process, and they rely
on the fact that Hn−1(∂Ω) > Hn−1(∂Ω∗) and ∇ϕ 6= 0 on ∂Ω. We refer to [15] for complete
proofs of the theorems stated in Sections 2, 3 and 4 and further results and comments.

References

[1] A. Alvino and G. Trombetti, A lower bound for the first eigenvalue of an elliptic
operator, J. Math. Anal. Appl. 94 (1983), 328-337.

[2] A. Alvino and G. Trombetti, Isoperimetric inequalities connected with torsion prob-
lem and capacity, Boll. Union Mat. Ital. B 4 (1985), 773-787.

[3] A. Alvino, G. Trombetti, P.-L. Lions and S. Matarasso, Comparison results for solu-
tions of elliptic problems via symmetrization, Ann. Inst. Henri Poincaré 16 2 (1999),
167-188.

[4] M.S. Ashbaugh and R.D. Benguria, A sharp bound for the ratio of the first two
eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601-628.

[5] M.S. Ashbaugh and R.D. Benguria, On Rayleigh’s conjecture for the clamped plate
and its generalization to three dimensions, Duke Math. J. 78 (1995), 1-17.

[6] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Monographs and Stud-
ies in Math. 7, Boston, 1980.

[7] H. Berestycki, L. Nirenberg and S.R.S. Varadhan, The principal eigenvalue and max-
imum principle for second-order elliptic operators in general domains, Comm. Pure
Appl. Math. 47 (1994), 47-92.

[8] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z.
Angew. Math. Mech. 81 (2001), 69-71.

[9] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Lapla-
cian, Proc. Royal Soc. London Ser. A 456 (2000), 985-996.

[10] S.-Y. Cheng and K. Oden, Isoperimetric inequalities and the gap between the first
and second eigenvalues of an Euclidean domain, J. Geom. Anal. 7 (1997), 217-239.

13



[11] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension,
Math. Ann. 335 (2006), 767-785.

[12] D. Daners and J. Kennedy, Uniqueness in the Faber-Krahn inequality for Robin
problems, SIAM J. Math. Anal. 39 (2007/08), 1191-1207.

[13] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und
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[19] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math.
Ann. 94 (1925), 97-100.
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