
The logarithmic delay of KPP fronts in a periodic medium

François Hamel∗ James Nolen† Jean-Michel Roquejoffre‡ Lenya Ryzhik§

Abstract

We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson
which asserts that, in the case of a spatially homogeneous reaction rate, the time-lag between
the position of an initially compactly supported solution and that of a traveling wave grows
logarithmically in time.

1 Introduction

1.1 Model and question

We study solutions u(t, x) of the initial value problem

ut = uxx + f(x, u) (t > 0, x ∈ R), u(0, x) = u0(x). (1)

The initial datum u0 is nonnegative, nonzero and compactly supported. The function f is of class
C1[0, 1], 1-periodic in x, concave in u, and satisfies f(x, 0) = 0. We also assume that:

1. the first periodic eigenvalue of −∂xx − g(x) is negative, where g(x) = ∂uf(x, 0).

2. We have f(x, u) = g(x)u− q(x, u), with q(x, u) ≥ mu2 for large u.

Thus, f(x, u) < 0 as soon as u is larger than some s0 > 0. We will sometimes say that f satisfies
the KPP assumptions, in reference to the seminal paper of Kolmogorov, Petrovskii, Piskunov [24].
Also note that they do not preclude g to be negative in some regions, this is important for models
in ecology, where the nonlinearity f(x, u) = g(x)u− u2 is of special interest.

Under those, there is (see [6]) a unique positive solution π(x) to −π′′ = f(x, π) on R, which is in
addition 1-periodic. This function π(x) attracts, locally uniformly, the solutions of (1). Thus, there
is a moving transition between the values of u(t, .) that are close to π(x), and those close to 0. We
are going to study how this transition moves to the right, and to this end let us define

X(t) = max{x ≥ 0 : u(t, x) =
1

2
inf
R
π}. (2)

Then (Freidlin-Gärtner [17], Freidlin [15], Weinberger [32], Berestycki-Hamel-Nadin [5]) the function
X(t)/t tends, as t → +∞, a constant c∗ which is the smallest speed of a pulsating front solution
to (1) (we will come back to this definition later, in much more detail). The question we ask is the
following: what can we say about X(t)− c∗t?
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1.2 The case of a homogeneous medium

Here we just mean that f does not depend on x: f(x, u) = f(u). Assumptions 1 and 2 translate
into f ′(0) > 0, π(x) ≡ 1 and f ′(1) < 0. Then, given any c ≥ c∗ = 2, there exists a traveling wave
solution u(t, x) = Uc(x− ct) of (1), which satisfies −cU ′c = U ′′c + f(Uc), Uc(−∞) = 1, Uc(+∞) = 0
and Uc > 0. For c > c∗ the function Uc(x) decays exponentially as x→ +∞: Uc(x) ∼ Ce−λcx, with
the decay rate λc being the smallest positive solution of λ2 − cλ+ 1 = 0.

On the other hand, at c = c∗ the traveling wave asymptotics is Uc∗(x) ∼ Cxe−λ∗x, with λ∗ = 1.
It has been shown in the pioneering work of Bramson [8, 9] that

X(t) = c∗t− 3

2λ∗
log t+O(1) as t→ +∞.

There is even a little more: the region in R+ where u(t, x) transitions from the value u ≈ 1 to u ≈ 0
has a width that is uniformly bounded in time, and is located at the distance (3/2λ∗) log t behind the
location of the traveling wave with minimal speed c∗. Bramson’s proofs were based on probabilistic
techniques, and were later extended by Gärtner to higher dimensions [16], and recently revisited by
Roberts [29], while a PDE proof of this result was later given in [31]. It was extended in [23] with
the additional assumption f ′(s) ≤ f ′(0) on [0, 1], to initial data that decay faster than the wave with
minimal speed. These results were recently revisited in [20], which is actually a companion paper to
the present one.

1.3 Main results

The goal of this paper is to understand whether we can generalize Bramson’s results to the periodic
case (1). While there is, as we just saw, a rather large literature concerning the homogeneous case,
nothing of that sort exists in the case of coefficients that are not space-homogeneous. We are going
to prove that there is still a logarithmic lag in the periodic case, and we will identify it precisely. As
a by-product of our analysis, we will obtain the convergence of the solution to a family of traveling
pulsating waves, in the correct reference frame.

So, let us recall the notion of a pulsating traveling wave that generalizes the notion of a traveling
wave to periodic media. A pulsating front with speed c > 0 is a function Uc(t, x) satisfying

Ut = Uxx + f(x, U), x ∈ R, t ∈ R, (3)

and U(t+1/c, x) = U(t, x−1), as well as the boundary conditions U(t,−∞) = 1, U(t,+∞) = 0. Let
us now recall some of the results about spreading speeds and pulsating traveling waves Uc(t, x) [2,
4, 19, 21, 32, 33] under the given assumptions on f(x, u). It is known that there is a minimal speed
c∗ > 0 such that for each c ≥ c∗, there exists a unique up to time-shifts pulsating traveling front
Uc(t, x), while no pulsating traveling front exists with a speed less than c∗. Furthermore, all pulsating
traveling fronts are necessarily increasing in t. Lastly, the minimal speed c∗ may be characterized as
follows. Given λ > 0, let ψ = ψ(x, λ) > 0 be the principal eigenfunction of the 1-periodic eigenvalue
problem

ψxx − 2λψx + (λ2 + g(x)f ′(0))ψ = γ(λ)ψ, ψ(x+ 1, λ) = ψ(x, λ), ψ(x, λ) > 0, x ∈ R, (4)

and γ(λ) the corresponding eigenvalue. The eigenfunction is normalized so that

∫ 1

0
ψ(x, λ) dx = 1,

for all λ > 0. The minimal wave speed is given by c∗ = min
λ>0

γ(λ)

λ
= c(λ∗). Here λ∗ > 0 minimizes

γ(λ)/λ. In particular, we have γ′(λ∗) =
γ(λ∗)

λ∗
= c∗. Our first main result is as follows.
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Theorem 1.1 Let u(t, x) solve (1) with a nonnegative, nozero, compactly supported initial datum
u0(x). Then for any ε > 0 there exist s(ε) and L(ε) so that

u(t, x) ≥ π(x)− ε for all t > s(ε) and all x ∈
[
0 , c∗t− 3

2λ∗
log t− L(ε)

]
and

u(t, x) < ε for all t > s(ε) and all x ∈
[
c∗t− 3

2λ∗
log t+ L(ε) , +∞

)
.

So, the front is located at distance (3/2λ∗) log t behind the pulsating front.
Let us explain informally, in PDE terms, how the logarithmic decay comes about. The main

observation is that solutions of the nonlinear problem (1) behave very similar to those of the linearized
problem vt = vxx + g(x)v, with the Dirichlet boundary condition v(t, c∗t) = 0 and any rapidly
decaying initial datum. With g(x) ≡ 1, c∗ = 2 and λ∗ = 1, let us write v(t, x) = p(t, x− 2t)e−(x−2t).
Then p(t, x) satisfies the standard heat equation pt = pyy, p(t, 0) = 0. It follows that p(t, y =
1) ∼ t−3/2 as t → +∞, or, in the original variables, v(t, x = 2t + 1) ∼ t−3/2. Assuming that the
solution u(t, x) of the nonlinear problem has the same behavior as v(t, x), and has the exponential
asymptotics u(t, x) ∼ e−(x−X(t)), we deduce that X(t) ∼ 2t− (3/2) log t. For the homogeneous case
g ≡ 1, we have worked out this argument in detail in [20], yielding quite a short proof of the Bramson
shift. This is the idea that we will put to work here, at the unfortunate expense of much heavier
technicalities.

In the proof of Theorem 1.1, one shows actually more precise exponential estimates on u(t, x)
for x ≥ c∗t − (3/(2λ∗)) log t. These estimates imply that the solution u is asymptotically trapped
between two finite space-shifts of the minimal front Uc∗ around the position x = c∗t− (3/(2λ∗)) log t.
Equivalently, u is asymptotically trapped between two finite time-shifts of the minimal front Uc∗

around the time t− (3/(2c∗λ∗)) log t. Then, by passing to the limit along any level set, any limiting
solution is necessarily equal to a shift of the minimal front: this follows from a new Liouville-type
result which is similar to what had already been known in the homogeneous case. So, our result is:

Theorem 1.2 There exist a constant C ≥ 0 and a function ξ : (0,+∞) → R such that |ξ(t)| ≤ C
for all t > 0 and

lim
t→+∞

∥∥∥∥u(t, ·)− Uc∗
(
t− 3

2c∗λ∗
log t+ ξ(t), ·

)∥∥∥∥
L∞(0,+∞)

= 0. (5)

Furthermore, for every m ∈ (0, inf π) and every sequence (tn, xn) such that tn → +∞ and xn−[xn]→
x∞ ∈ [0, 1] as n→ +∞, and u(tn, xn) = m for all n ∈ N, there holds

u(t+ tn, x+ [xn]) −→
n→+∞

Uc∗(t+ T, x) locally uniformly in (t, x) ∈ R2, (6)

where [xn] denotes the integer part of xn and T ∈ R denotes the unique real number such that
Uc∗(T, x∞) = m.

This shows in particular the convergence to the family of minimal fronts along the level sets of u.

1.4 Discussion

To the best of our knowledge, Theorem 1.1 is the first of this type for models with periodic coefficients.
As is well-known, most of the information is retrieved through the analysis of the linearized equation
vt − vxx = g(x)v. The bulk of the proof is in getting the decay estimates for the heat kernel in a
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half space for this equation, with a Dirichlet condition at a boundary moving with speed c∗ to
the right. Heat kernel estimates for second-order linear parabolic equations in the whole space are
well known, starting from the pioneering work of Nash [26] for operators under divergence form -
a different viewpoint being provided by Fabes-Stroock [12] - and extended to general operators by
Norris [28]. However we are not aware of such results in a half space for periodic coefficients. In fact,
although the papers [12] and [28] were crucial to us, we had to introduce a new ingredient. Indeed,
the Fabes-Stroock/Norris proofs need the conservation of the total mass - a trivial but indispensable
property. Nothing of that sort is available here and, as a matter of fact, it should not be expected.

What is true in the homogeneous case is the conservations of

∫ +∞

0
xp(t, x)dx if p(t, x) solves the

heat equation on R+ with Dirichlet boundary conditions. However, we are dealing in the periodic
case with an equation with variable coefficients, so trying to compute the integral of xp does not lead
very far. One of our contributions in this paper is to have identified a family of multipliers which,
integrated against a solution, yield a conserved - or controlled from above and below - quantity.

Turn to theorem 1.2. This is a result of the type ”convergence along level sets”, i.e. it identifies
a limiting profile for the solutions, in the (a priori unknown) reference frame of X(t). The first - and
most famous - one is the KPP theorem [24] for homogeneous equations. For equations with periodic
coefficients, results of this type have been obtained recently in Ducrot-Giletti-Matano [11] for more
general nonlinearities f and Heaviside initial conditions u0 and in Giletti [18] for asymptotically
periodic KPP functions f and compactly supported initial conditions u0. See also Ducrot [10], that
adapts our ideas in [20] to an equation that becomes asymptotical homogeneous in x. The proofs
in [11, 18] are based on the time-decay property of the number of intersections of any two solutions
and on the fact that the minimal fronts are the steepest ones. In particular, they do not identify
whether or not the level sets of the solutions travel at the same speed as those of the travelling waves
or, as opposed to that, if they travel with a time-lag.

When f(u) = u(1− u), there is a well-known connection between solutions of (1) and branching
Brownian motion [8, 25]. Consider a branching Brownian motion with constant branching rate
g > 0. Initially, there is one Brownian particle, X1(0) = 0. At a random time T1, which is an
independent exponential random variable with rate g, this particle gives birth to two independent
Brownian motions and then dies immediately itself. The two new particles start their motions from
the final location of the parent particle. The process continues in this way, each living particle
reproducing and dying at an independent random time, leaving two new Brownian particles as
offspring. As shown by McKean [25], the function u(t, x) = P

(
maxk∈L(t)Xk(t) > x | X1(0) = 0

)
satisfies ut = 1/2uxx + gu(1 − u) and u(0, x) is the Heaviside function. The set L(t) in denotes
the set of indices corresponding to particles that are alive at time t. The zero Dirichlet boundary
condition corresponds to Gärtner’s [16] strategy of killing the branching Brownian motion at a
moving boundary. If f(x, u) has the form g(x)u(1−u), there is a similar interpretation of the solution
u in terms of branching Brownian motion with spatially-variable branching rate g(x). However, our
general assumptions on f also include cases where the solution u seems not to have such a simple
representation.

In a slightly different vein, let us mention the contribution of Fang-Zeitouni [13], where the
medium is taken to be time-dependent, with the diffusion coefficient σ(t) slowly and monotonically
varying between two different values σ1 and σ2. The authors prove, by probabilistic techniques, that
the lag behind X(t) and the traveling front position depends strongly on the respective positions of
σ1 and σ2. In particular, it is shown that it can be of the order t1/3. In [27], we identify the lag to
be ∼ −kt1/3 +O(logt), the constant k being explicitely computed.

We end this section by a discussion of some issues that we are not treating here; they range from
easy generalizations to truly difficult questions. The first one concerns equation (1) with a spatially
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periodic diffusion. We have chosen not to treat it, because it would only make the notations heavier.
The results would be exactly the same. A more interesting question concerns what happens for
equations of the type (1) in cylindrical geometries, or even in cylinders with oscillating boundaries.
Dirichlet or Neumann conditions should be imposed. More than likely the results would not change
too much, but one might expect nontrivial technical issues in the study of the linearized equation. In
the same (we believe) order of difficulty, one may ask about convergence to a single wave, rather than
a family of waves. This is true in the homogeneous case. Moreover some of our intermediate results
- the first moment conservation being one of them - would point towards this. We are not, however,
in a position to be more conclusive. Finally, quite an interesting question is the multi-dimensional
case, i.e. what is the shift in every direction, if the initial datum is compactly supported? There
is at the background a free boundary problem that is less than obvious, and so it is not a mere
adaptation of Theorem 1.1. These last three questions are left for future research.

1.5 Organization of the paper

The proof of Theorem 1.1 is long and technical, so we will try to present it in a way that is the most
reader-friendly as possible. As said before, the main effort is to be concentrated on the linearized
equation vt− vxx = g(x)v: so, in Section 2, we state the main estimates that we would like to prove,

and explain how these estimates entail the sought for time shift: X(t) − c∗t =
3

2c∗λ∗
logt + O(1).

Section 3 is an important part of the paper. We put the linearized equation in an almost self-adjoint
form (as is done in Norris [28]), and we construct multipliers which, integrated against a solution,
will produce conserved (or approximately conserved) quantities. In Section 4, we prove the estimate
on the linearized equation that will entail the lower bound on X(t). In Section 5 we prove the
estimates that will imply the upper bound. Finally, in Section 6, we prove Theorem 1.2.

Acknowledgment. This work was motivated by a series of lectures given by Eric Brunet at Banff
Conference Center in March 2010 on his work with Bernard Derrida concerning KPP and related
particle models. JN was supported by NSF grant DMS-1007572, and LR by NSF grant DMS-
0908507. The research leading to these results has received funding from the French ANR within
the projects PREFERED and NONLOCAL (ANR-14-CE25-0013) and from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement n.321186 - ReaDi - Reaction-Diffusion Equations, Propagation and Modelling. This
work has been carried out in the framework of Archimède Labex (ANR-11-LABX-0033) and of
the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French
Government program managed by the ANR.

2 Computing the time shift from the linearized equation

This section is divided into two sub-sections, the first one dealing with the lower bound on the
front location, the second with the upper bound. Both are organized in the same fashion: in the
first paragraph, we state the linear estimates that we will prove in the sequel. In the subsequent
paragraphs, we explain how these bounds turn into a lower estimate for the front location.

2.1 The lower bound

2.1.1 Estimates on the linearized Dirichlet problem

The proof of the lower bound in Theorem 1.1 is based on the analysis of the linearized equation

wt = wxx + g(x)w (x ≥ c∗t), w(0, x) = u0(x) (x ≥ 0), w(t, c∗t) = 0, t ≥ 0, (7)
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It is convenient to represent w(t, x) in the form w(t, x) = e−λ
∗(x−c∗t)ψ(x, λ∗)p(t, x), where ψ(x, λ∗) is

the normalised eigenfunction of (4), with λ = λ∗ satisfying γ′(λ∗) =
γ(λ∗)

λ∗
= c∗, and p(t, x) satisfies

pt = pxx +
2φx
φ
px, x ≥ c∗t, (8)

p(t, c∗t) = 0, t > 0

p(0, x) = p0(x) = u0(x)eλ
∗x(ψ(x, λ∗))−1, x > 0,

with φ(t, x) = e−λ
∗(x−c∗t)ψ(x, λ∗). The initial data p0(x) is nonnegative and compactly supported

on [0,+∞). For convenience, we define the function

κ(x) =
2φx
φ

= −2λ∗ + 2
ψx(x, λ∗)

ψ(x, λ∗)
, (9)

which is the drift term in (8). This function κ(x) is 1-periodic in x, and is independent of t.
We will need two ingredients. The first one is an upper estimate on the solution p(t, x) of (8).

Lemma 2.1 There exists a constant C > 0 such that

|p(t, x+ c∗t)| ≤ Cx

(t+ 1)3/2

∫ ∞
0

yp0(y) dy (10)

for all t > 0 and x > 0.

For the homogeneous heat equation pt = pxx on R+ (g is constant), with Dirichlet conditions, this is

quite a classical result which can be seen inspection of the solution p(t, x) = (4πt)1/2
∫ t

0
(e−(x−y)

2/4t−

e−(x+y)
2/4t)p(0, y)dy. The second ingredient is a lower bound when x− c∗t is of order

√
t.

Proposition 2.2 There exist constants T0 > 0, σ > 0, and C0 > 0 such that

p(t, c∗t+ σ
√
t) ≥ C0

t
for all t ≥ T0.

Lemma 2.1 will be proved in Section 3, and Proposition 2.2 will be proved in Section 4. For the
homogeneous heat equation, both are once again quite simple results.

2.1.2 From the linearized problem to a subsolution for the nonlinear problem

Given the lower bound of Proposition 2.2, the next step is to construct a subsolution for (1) using
the solution of (7). If w̄(t, x) = a(t)w(t, x), then w̄(t, x) is a subsolution for (1), that is, w̄t ≤
w̄xx + g(x)w̄ − q(x, w̄), with q(x, w̄) = g(x)w̄ − f(x, w̄) = O(w̄2), provided that

a′(t)w(t, x) ≤ −q(x, a(t)w(t, x)). (11)

So, (11) holds provided that
a′(t)w(t, x) ≤ −Ma(t)2w(t, x)2, (12)

with a large enough constant M . From Lemma 2.1, there exists C0 > 0, depending on u0, such that

w(t, x) ≤ C0

(t+ 1)3/2
(13)
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for all t ≥ 0 and x ∈ R (we may define w(t, x) = 0 for x < c∗t). So, given (13), (12) holds provided

that a′(t) ≤ − M

(t+ 1)3/2
a(t)2, and we may take a(t) =

a(0)

1 + 2Ma(0)(1− (t+ 1)−1/2)
, a(0) > 0,

which satisfies
a(0)

1 + 2Ma(0)
≤ a(t) ≤ a(0) for all t ≥ 0. If a(0) < 1, then w̄(0, x) ≤ u0(x) for all

x ∈ R. Therefore, the comparison principle implies u(t, x) ≥ w̄(t, x) = a(t)w(t, x) ≥ Cw(t, x) for all
t ≥ 0 and x ≥ c∗t. In particular, Proposition 2.2 implies that

u(t, ct+ σ
√
t) ≥ Ct−1e−λ∗σ

√
t (14)

for t ≥ T0.

2.1.3 From a lower bound on the far right to the bound at the front

Now we show that (14) implies the lower bound in Theorem 1.1. Let π(x) be the positive steady
solution of (1). Let ε > 0. We want to show that there is a constant L(ε) ∈ R such that, for large t:

u(t, x) ≥ π(x)− 2ε, ∀ x ∈
[
0, c∗t− 3

2λ∗
log t− L(ε)

]
. (15)

The idea is to put a certain translate of the pulsating front Uc∗ below u. However u(t, x) might be a
little below π(x) even in the areas where it should be close to π, we have to slightly deform Uc∗ . For
every λ ≥ 1, consider f(λ, x, u) = g(x)u+ λq(x, u); we have f(1, x, u) = f(x, u) and ∂λf ≤ 0 due to
the assumptions on f . The function f(λ, x, .) is still concave. And we still have ∂uf(λ, x, 0) = g(x).
Let πλ be the unique bounded positive solution of −π′′ = f(λ, x, π), it is still 1-periodic in x. From
the linear stability [6] of πλ with respect to (1), and the strong maximum principle, we have ∂λπ < 0.
Thus, if ε > 0 is small, let λε > 1 be the largest λ such that πλ(x) ≥ π(x) − ε for all x. By the
Harnack inequality, there is δε > 0 such that π(x) − πλ(x) ≥ δε. We fix such a λε, that we denote
by λ for commodity. Because ∂uf(λ, x, 0) = g(x), c∗ is still the minimal speed for the pulsating
traveling front problem, with f(x, u) replaced by f(λ, x, u). Let Uλc∗ be such a traveling front, it
connects monotonically πλ to the left, to 0 to the right.

To show (15), we will bound u from below by the function Ũ(t, x) = Uλc∗(t− r(t), x), r(t) = o(t)
to be chosen. Since ∂tU

λ
c∗(t, x) > 0 we have, provided that r′ ≥ 0:

Ũt − Ũxx − f(x, Ũ) ≤ Ũt − Ũxx − f(λ, x, Ũ) = −r′(t)∂tUλc∗ ≤ 0.

Since the first periodic eigenvalue of −∂xx−g(x) is negative, it is known from [7] that u(t, x)→ π(x)
as t→ +∞ locally uniformly in x ∈ R. Therefore, there exists T1 > 0, depending on u0 and ε, such
that u(t, 0) ≥ π(0) − δε/2 for all t ≥ T1. Therefore, Ũ(t, 0) < π(0) − ε ≤ u(t, 0), for all t ≥ T1. By
taking T1 larger, if necessary, we may assume T1 > T0 so that (14) holds for all t ≥ T1. Therefore,
the maximum principle and (14) imply that the bound

Ũ(t, x) ≤ u(t, x) for all x ∈ [0, c∗t+ σ
√
t], t ≥ T1, (16)

will hold, if the following two equations are satisfied:

Ũ(T1, x) ≤ u(T1, x), x ∈ [0, c∗T1 + σ
√
T1] (17)

Ũ(t, c∗t+ σ
√
t) ≤ C

t
e−λ

∗σ
√
t, t > T1 (18)

We now claim that (17) and (18) hold with r(t) =

(
3

2λ∗c∗

)
log t+L0, if L0 is sufficiently large.

For (17), because of the monotonicity of Uλc∗ , one just has to take L0 large enough. As for (18),
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recall [19] that Uλc∗(t, x) satisfies Uλc∗(t, x) ≤ C(x − c∗t)e−λ
∗(x−c∗t) ≤ C

t
e−λ

∗σ
√
te−λ

∗c∗L0 , for all

t > T1. So, provided that L0 is sufficiently large, we have (18). With this choice of r, the lower
bound of Theorem 1.1 follows from ((16)). �

2.2 The upper bound

As we have seen, the idea behind the (3/2λ∗) log(t) delay is that the evolution is driven by the
behavior of solutions to the Dirichlet problem (7), which is zt − zxx − g(x)z = 0, x > c∗t, with
z(t, c∗t) = 0. The problem is that such solutions that are initially compactly supported will decay in
time like t−3/2, hence they can not serve as super-solutions to the non-linear problem. The correction
to this inconvenience is to devise a reference frame in which the Dirichlet problem will have solutions
that remain bounded both from above and below by positive constants for finite x, and this is exactly
what the 3/(2λ∗) log t shift achieves.

2.2.1 The linearized problem in the logarithmically shifted reference frame

We expect the front to be at x(t) = c∗t− r log t, with r = 3/(2λ∗). For the moment, let us assume
that the constant r is still general, and we will choose r appropriately later. Accordingly, we consider
the Dirichlet problem{

zt − zxx − g(x)z = 0, t > 0, x > c∗t− r log(t+ T ) + r log(T ),

z(t, c∗t− r log(t+ T ) + r log(T )) = 0,

with a given nonnegative continuous compactly supported initial condition z(0, ·) 6≡ 0 in (0,+∞).
Define the new time variable τ by c∗τ = c∗t−r log(t+T )+r log T, and set z̃(τ, x) = z(t, x). Let us

also denote t = h(τ), and choose T > 0 sufficiently large so that the function h(τ) is well defined and
monotonic. Then, set z̃(τ, x) = e−λ

∗(x−c∗τ)ψ(x, λ∗)α(τ)p̃(τ, x), with an increasing function α(τ) > 0
to be determined. Here, as before, ψ(x, λ∗) is the eigenfunction of (4). The function p̃(τ, x) must
satisfy

1

h′(τ)
p̃τ = p̃xx + 2

φx
φ
p̃x +

(
− 1

h′(τ)

α′(τ)

α(τ)
+ λ∗c∗

(
1− 1

h′(τ)

))
p̃ = 0, τ > 0, x > c∗τ, (19)

where 2φx/φ is as in (9). We first compute h′(τ):

1

h′(τ)
= 1− r

c∗(h(τ) + T )
= 1− r

c∗(τ + T ) + r log((t+ T )/T )
= 1− r

c∗(τ + T )
+ β(τ),

with

β(τ) =
r

c∗(τ + T )
− r

c∗(τ + T ) + r log((t+ T )/T )
=

r2 log((t+ T )/T )

c∗(τ + T )(c∗(τ + T ) + r log((t+ T )/T ))
.

Observe that |β(τ)| ≤ C|τ−3/2|, and if r > 0, then h′(τ) > 1 for all τ > 0.
To eliminate the low-order term in (19), we now choose α(τ) so that

α′(τ)

α(τ)
= c∗λ∗(h′(τ)− 1) =

rλ∗

(τ + T )
+O

(
1

(τ + T )3/2

)
,

hence
α(τ) = exp[rλ∗ ln(τ + T ) +O(τ−1/2)] = (τ + T )rλ

∗
(1 +O(τ−1/2)). (20)
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The function p̃(τ, x) then satisfies

1

h′(τ)
p̃τ = p̃xx + 2

φx
φ
p̃x, τ > 0, x > c∗τ, (21)

with the Dirichlet condition p̃(τ, c∗τ) = 0. Observe that if r = 0 (taking no logarithmic shift), and
h′ ≡ 1, this is identical to equation (8) which is satisfied by p(t, x) that was used in the construction
of a sub-solution. However, we can not take r = 0 and use p(t, x) for a super-solution since p(t, x)
decays as t−3/2 as t → +∞ while for a super-solution we need p(t, x) to stay bounded from above
and below for finite values of x.

To bound the function z(t, x) = z̃(τ, x) = e−λ
∗(x−c∗τ)ψ(x, λ∗)α(τ)p̃(τ, x), we need an estimate

on p̃(τ, x) from above and below. The main technical step in the proof of the upper bound in
Theorem 1.1 is the following estimate on p̃(τ, x), which implies that p̃ has the same leading order

behavior as p, even though h′(τ) 6= 1 in (21). Let us set ω(τ) = 1− 1

h′(τ)
=

r

c∗(τ + T )
− β(τ).

Observe that ω(τ) ∼ r/c∗τ as τ → ∞, and |ω(τ)| ≤ C/τ , |ω′(τ)| ≤ C/τ2 for τ > τ0. The linear
estimate that we shall need is the

Proposition 2.3 Let p̃(τ, x) satisfy

(1− ω(τ)) p̃τ = p̃xx + 2
φx
φ
p̃x, x ≥ c∗τ, (22)

with the Dirichlet boundary condition p̃(τ, c∗τ) = 0. Then there exist constants k,K, τ0 > 0 so that

k(x− c∗τ)

τ3/2
≤ p̃(τ, x) ≤ K(x− c∗τ)

τ3/2
,

for all x ∈ (c∗τ, c∗τ + k
√
τ) and all τ > τ0.

2.2.2 Proof of the upper bound in Theorem 1.1, knowing Proposition 2.3

In terms of the function z̃(τ, x), Proposition 2.3 says that

α(τ)

τ3/2
k(x− c∗τ)e−λ

∗(x−c∗τ) ≤ z̃(τ, x) ≤ α(τ)

τ3/2
K(x− c∗τ)e−λ

∗(x−c∗τ)

holds for all x ∈ (c∗τ, c∗τ + k
√
τ) and all τ > τ0, even if it means changing the positive constants

k and K. Expression (20) for α(τ) shows that the choice of r = 3/(2λ∗) gives K1 ≤
α(τ)

τ3/2
≤ K2,

for τ ≥ τ0, and therefore we have k(x − c∗τ)e−λ
∗(x−c∗τ) ≤ z̃(τ, x) ≤ K(x− c∗τ)e−λ

∗(x−c∗τ) for all
x ∈ (c∗τ, c∗τ + k

√
τ) and all τ > τ0.

Now, we go back to the t variable. Since c∗τ = c∗t− r log(t+ T ) + r log T, we get the lower and
upper bounds

z(t, x) ≥ k(x− c∗t+ r log(t+ T )− r log T )e−λ
∗(x−c∗t+r log(t+T )−r log T ),

z(t, x) ≤ K(x− c∗t+ r log(t+ T )− r log T )e−λ
∗(x−c∗t+r log(t+T )−r log T ),

(23)

for all t ≥ h(τ0), in the interval c∗t− r log(t+ T ) + r log T ≤ x ≤ c∗t− r log(t+ T ) + r log T + kt1/2,
even if it means decreasing the positive constant k.

Let π(x) the steady solution of (1). It follows from (23) that there exist x1 > 0 and x2 > 0,
both independent of t ≥ h(τ0) so that if we choose M ≥ ‖π‖∞ large enough, then (i) we have
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Mz(t, c∗t−r log(t+T )+r log T+x1) ≥ 2‖p‖∞ and (ii) Mz(t, c∗t−r log(t+T )+r log T+x) ≤ 1/2 inf
R
π,

for all x > c∗t− r log(t+ T ) + r log T + x2. Then we set

ū(t, x) =

{
π(x), x ≤ c∗t− r log(t+ T ) + r log T + x1

min(π(x),Mz(t, x)), x ≥ c∗t− r log(t+ T ) + r log T + x1.
(24)

for t ≥ h(τ0). Note that ū(t, x) = Mz(t, x) for all x > c∗t − r log(t + T ) + r log T + x2. Moreover,
u(0, x) ≤ ū(h(τ0), x) for all x ∈ R, even if it means increasing the constant M . Therefore, since
ū(t, x) is a supersolution because of the KPP assumption, the maximum principle implies that
u(t, x) ≤ ū(t + h(τ0), x) for all t ≥ 0 and x ∈ R. Therefore, for any γ > 0, we may choose x̄
sufficiently large so that

u(t, x+ c∗t− 3

2λ∗
log(t)) ≤Mz(t+ h(τ0), x+ c∗t− 3

2λ∗
log(t)) < γ

holds for all t > 0 and x ≥ x̄. �

3 Almost self-adjoint form and special solutions for the linearized
equation

The first part of this section is standard, and simply consists in putting (8) under a form that is as
close as possible to self-adjoint, as is done in [28]. This form is the best suited for studying moments
of the solution. In the second part, we generalize to (8) the observation that, for the Dirichlet heat

equation pt = pxx on R+, there is a first moment conservation:

∫ +∞

0
xp(t, x)dx is time-constant.

We are going to show that integrals of the form I(t) =

∫ ∞
c∗t

ν(x)f(t, x)p(t, x)dx, where f(t, x) solves

an adjoint equation, are preserved. A more flexible version of this principle will also be presented,
and will turn out to be useful in the more technical estimates of the solution of the linear equation.
As an application, we will prove the t−3/2 upper bound on the solutions p(t, x).

3.1 The almost self-adjoint form

We summarize everything in the

Lemma 3.1 Let κ(x) = 2φx/φ be defined by (9). There is a unique positive, periodic function ν(x)
with mass 1 over a period, such that for any function p(x),

pxx + κ(x)px =
1

ν(x)

∂

∂x
(ν(x)px)− c∗

ν(x)
px. (25)

Proof. The identity (25) means that

ν ′(x) = κ(x)ν(x)− b̄, (26)

with b̄ = −c∗, and hence νxx − (κ(x)ν)x = 0. This equation has a positive periodic solution: indeed,
ν̃(x) ≡ 1 satisfies the adjoint problem ν̃xx + κ(x)ν̃x = 0, and the Krein-Rutman theorem applies.

To find the constant b̄, observe that the periodic function χ(x) = − 1

ψ(x, λ∗)

dψ(x, λ∗)

dλ
satisfies

χxx + κ(x)χx = −κ(x)− c∗. (27)
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Indeed, differentiating (4) in λ gives the following equation for ψλ = dψ/dλ:

(ψλ)xx − 2λ(ψλ)x + λ2ψλ − 2ψx + 2λψ + g(x)ψλ = γ′(λ)ψ + γψλ.

Then, using the identity γ′(λ∗) =
γ(λ∗)

λ∗
= c∗, we obtain at λ = λ∗, with ψ∗λ(x) = ψλ(x, λ∗):

(ψ∗λ)xx − 2λ∗(ψ∗λ)x + ((λ∗)2 + g(x))ψ∗λ − 2ψ∗x + 2λψ∗ = c∗ψ + c∗λ∗ψ∗λ.

Writing now ψ∗λ = −χ(x)ψ(x, λ∗) and using the definition of κ(x) gives (27). Multiplying (27) by

ν(x) and integrating over the period gives

∫ 1

0
(κ(x) + c∗) ν dx = 0. Therefore, we have, since ν is of

mass 1: −c∗ =

∫ 1

0
κ(x)ν(x) dx. It follows from (26) that b̄ =

∫ 1

0
κ(x)ν(x) dx = −c∗. �

The periodic function χ(x) which satisfies (27) will be useful later. For this reason, let us remark

that there is a unique periodic function χ0(x) which satisfies both χ0
xx + 2

φx
φ
χ0
x = −2

φx
φ
− c in R,

and

∫ 1

0
χ0(x) dx = 0, which is obtained by adding a suitable constant to χ. To end this paragraph,

let us write the system satisfied by p(t, x), the form on which we shall work from now on:

ν(x)pt = (ν(x)px)x − c∗px, c∗t ≤ x (28)

p(t, c∗t) = 0, t > 0

p(0, x) = p0(x) = u0(x)eλ
∗x(ψ(x, λ∗))−1, x ≥ 0.

3.2 Multipliers and approximate multipliers

Let us consider the linear boundary value problem{
ν(x)ft + (ν(x)fx)x + c∗fx = 0, x > c∗t, t ∈ R,
f(t, c∗t) = 0, t ∈ R (29)

and its adjoint form {
ν(x)ζt − (ν(x)ζx)x − c∗ζx = 0, x > c∗t, t ∈ R,
ζ(t, c∗t) = 0, t ∈ R (30)

Lemma 3.2 There is are two functions f(t, x) and ζ(t, x), and a constant m > 0 such that ft <
0, ζt < 0, and

m(x− c∗t) < f(t, x), ζ(t, x) < m−1(x− c∗t), for all x > c∗t, t ∈ R. (31)

Proof. We only provide it for f . Observe that (29) has a solution of the form Y (t, x) = (x− c∗t) +
y(x), where y(x) is periodic and satisfies −c∗ν(x) + (ν(x)(1 + yx))x + c∗(1 + yx) = 0, or

(ν(x)yx)x + c∗yx = c∗(ν(x)− 1)− ν ′(x). (32)

Equation (32) has a periodic solution because the integral of the right side over the period vanishes,
because ν is of mass 1. By subtracting a constant from y, we may assume Y (t, c∗t) ≤ 0. Although
Y (t, x) grows linearly in (x− c∗t) and is a solution of (29) for all t ∈ R and x ∈ R, it may not satisfy
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the desired Dirichlet boundary condition at x = c∗t. On the other hand, if β(t) is the largest zero
of Y then

|β(t)− c∗t| ≤M, (33)

with a constant M that does not depend on t.
A function f(t, x) having the desired properties may be constructed as the limit of the sequence

of functions f (n)(t, x) which satisfy

f
(n)
t +

1

ν(x)

(
ν(x)f (n)x

)
x

+
c∗

ν(x)
f (n)x = 0, x > c∗t, t ≤ n

f (n)(t, c∗t) = 0 t ≤ n,
f (n)(n, x) = max(0, Y (n, x)), x ≥ c∗n.

It follows from the maximum principle and (33) that there exists a constant C, independent of n,
such that

Y (t, x)− C ≤ f (n)(t, x) ≤ Y (t, x) + C, ∀ x ≥ c∗t, t ≤ n. (34)

Using (34), we can find positive constants L, M , m, independent of n, so that

f (n)(t, ct+ L) > M1, for all t ≤ n,

and, in addition, m(x − c∗t) < f (n)(t, x) < m−1(x − c∗t) holds for x > c∗t + L and t < n/2. Then

the strong maximum principle and parabolic regularity imply that f
(n)
x (t, c∗t) > c0 for all t < n/2,

for some positive constant c0 that does not depend on n or t. By parabolic regularity, we may then
extract a subsequence converging to a limit f(t, x) satisfying (29), (31) and the boundary condition

f(t, c∗t) = 0 for all t ∈ R. Note that f
(n)
t ≤ 0 – this follows from the maximum principle since

f (n)(t, x) ≥ 0 and f (n)(t, x) ≥ Y (t, x) for all t ≤ n, and x ≥ c∗t. It follows that in the limit we also
have ft(t, x) ≤ 0. �

Then, we need a more flexible quantity, that we call ηα(t, x), whose role will be to measure
how much the solution p(t, x) of (28) is concentrated in intervals of the form [c∗t, c∗t + σ

√
t] (the

parameter α will, as is often the case, play the role of t−1/2).

Lemma 3.3 There is a constant C > 0 such that for each α sufficiently small there is a constant
µ(α) and a function ηα(t, x) satisfying

ν(x)
∂ηα
∂t

+

(
ν(x)

∂ηα
∂x

)
x

+ c∗
∂ηα
∂x

= µ(α)ν(x)ηα t ∈ R, x ≥ c∗t, t ∈ R, (35)

ηα(t, c∗t) = 0 for t ∈ R, and C
eαx − e−αx

α
≤ ηα(t, x+c∗t) ≤ C−1 e

αx − e−αx

α
for all x ≥ 0 and t ∈ R.

In addition, there exists µ0 > 0 such that

µ(α) = µ0α
2 +O(α3) for all α > 0 sufficiently small. (36)

For the homogeneous medium, ν(x) ≡ 1, and the function ηα(t, x) =
eα(x−c

∗t) − e−α(x−c∗t)

α
,

satisfies (35) with µ(α) = α2. In the general case, the function ηα has exponential asymptotics as

x→ +∞: ηα(t, x) ∼ 1

α
eα(x−c

∗t)η̄α(x)as x→ +∞, where η̄α(x) is a positive periodic solution of(
ν(x)

∂η̄α
∂x

)
x

+ α(ν(x)η̄α)x + (c∗ + αν(x))
∂η̄α
∂x

+ c∗α(1− ν(x))η̄α = (µ(α)− α2)ν(x)η̄α,
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and µ(α) is the corresponding eigenvalue.
Proof of Lemma 3.3. The proof is broken into three steps, each of them corresponding to an item
of the lemma.
1. The eigenvalue asymptotics for α� 1. Consider the periodic eigenvalue problem

(
ν(x)

∂η

∂x

)
x

+ α(ν(x)η)x + (c∗ + αν(x))
∂η

∂x
+ c∗α(1− ν(x))η = γ(α)ν(x)η,

η(x+ 1) = η(x) > 0,

with γ(α) = µ(α) − α2 and the normalization

∫ 1

0
ν(x)η(x) dx = 1. Observe that γ(0) = 0 and

η(x, α = 0) ≡ 1. Moreover, as γ(0) = 0 is a simple eigenvalue, γ(α) is an analytic function of α, for
α sufficiently small. The function η′ = ∂η/∂α satisfies(
ν(x)

∂η′

∂x

)
x

+α(ν(x)η′)x+(c∗+αν(x))
∂η′

∂x
+c∗α(1−ν(x))η′+(νη)x+ν

∂η

∂x
+c∗(1−ν)η = γνη′+γ′νη.

Setting α = 0 we obtain: (
ν(x)

∂η′

∂x

)
x

+ c∗
∂η′

∂x
+ νx + c∗(1− ν) = γ′ν. (37)

Integrating (37), we conclude that γ′(0) = 0. Next, η′′ solves(
ν(x)

∂η′′

∂x

)
x

+ α(ν(x)η′′)x + (c∗ + αν(x))
∂η′′

∂x
+ c∗α(1− ν(x))η′′ + 2(νη′)x + 2ν

∂η′

∂x
+ 2c∗(1− ν)η′

= γνη′′ + 2γ′νη′ + γ′′νη.

So, at α = 0 we have(
ν(x)

∂η′′

∂x

)
x

+ c∗
∂η′′

∂x
+ 2(νη′)x + 2ν

∂η′

∂x
+ 2c∗(1− ν)η′ = γ′′ν.

Integrating this equation, we obtain

γ′′ = 2

∫ 1

0

(
ν
∂η′

∂x
+ c∗(1− ν)η′

)
dx. (38)

Since γ′(0) = 0, (37) implies that c∗(1− ν) = −νx − c∗
∂η′

∂x
−
(
ν
∂η′

∂x

)
x

. Plugging this into (38), we

obtain γ′′(0) = 4

∫ 1

0
ν
∂η′

∂x
dx+ 2

∫ 1

0
ν

(
∂η′

∂x

)2

dx. Since 4y + 2y2 ≥ −2 for all y ∈ R, we conclude

that γ′′(0) ≥ −2

∫ 1

0
ν(x) dx = −2, with equality if and only if ∂η′

∂x ≡ −1. Since η′ is periodic,

∂η′

∂x = −1 cannot hold at all x, so we must have γ′′(0) > −2. Finally, since µ(α) = α2 + γ(α), we
have µ′′(0) = 2 + γ′′(0) > 0, proving (36).

Let us now denote the eigenfunction of (37) by η̄α to indicate its dependence on α.
2. Construction of the function ηα(t, x). We first claim that there is a constant C such that

for all α > 0 sufficiently small, there is β(α) > 0 with µ(−β) = µ(α) and such that

∣∣∣∣βα − 1

∣∣∣∣ ≤ Cα,

and supx |η̄α(x)− 1| ≤ Cα, supx |η̄β(x)− 1| ≤ Cα. Indeed, the existence of such a β follows from
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the fact that µ(α) ∼ Cα2 for α small. The bounds on η̄α and η̄β follow from elliptic regularity and
the fact that for α = 0, η̄0(x) ≡ 1.

So, choose β = β(α) > 0 accordingly, and consider the terminal value problem

ν(x)
∂ηα,T
∂t

+

(
ν(x)

∂ηα,T
∂x

)
x

+ c∗
∂ηα,T
∂x

= µ(α)ν(x)ηα,T t < T, x ≥ c∗t (39)

with the terminal condition ηα,T (T, x) ≥ 0 to be determined. The function ηα(t, x) of Lemma 3.3
will be defined as limT→∞ ηα,T (t, x). Observe that for any constant C, the function

α−1eα(x−c
∗t)η̄α(x)− Cβ−1e−β(x−c∗t)η̄β(x)

satisfies (39), since µ(−β) = µ(α). If we choose the constant Cu =
β

α
min
x

η̄α(x)

η̄β(x)
> 0, then the

function
hu(t, x) = α−1eα(x−c

∗t)η̄α(x)− Cuβ−1e−β(x−c
∗t)η̄β(x)

satisfies hu(t, c∗t) ≥ 0 for all t ∈ R. Similarly, if we choose Cl =
β

α
max
x

η̄α(x)

η̄β(x)
> 0, then the function

hl(t, x) = α−1eα(x−c
∗t)η̄α(x)− Clβ−1e−β(x−c

∗t)η̄β(x) (40)

satisfies hl(t, c
∗t) ≤ 0 for all t ∈ R. Now, if we choose the terminal condition ηα,T (T, x) =

max (0, h`(T, x)) , the maximum principle implies that

hl(t, x) ≤ ηα(t, x) ≤ hu(t, x) (41)

holds for all t ≤ T and x ≥ c∗t. Although the constants Cu and Cl depend on α, we have Cu =
1 +O(α) and Cl = 1 +O(α) as α→ 0.

Now, we claim there are constants L > 0 and M > 0, independent of T , such that

M
eαx − e−αx

α
≤ ηα,T (t, x+ c∗t) ≤M−1 e

αx − e−αx

α
, (42)

for all x > L and t ≤ T , and all α sufficiently small. Given this claim, parabolic regularity and the

maximum principle imply that there is b > 0 universal such that b <
∂ηα,T
∂x

(t, c∗t) < b−1 holds for

all t ≤ T − 1 and α > 0 sufficiently small. Since
d

dx

(
eαx − e−αx

α

) ∣∣∣∣
x=0

= 2, it follows, by parabolic

regularity, that (42) also holds for all x ≥ 0 and t ≤ T − 1, with a constant C that is independent
of T . Then letting T → +∞ we may take a subsequence of functions ηα,Tk(x, t) such that Tk →∞
and ηα,Tk converges locally uniformly to a function ηα(t, x) satisfying all the criteria of Lemma 3.3.
3. The proof of (42). Let us derive the upper bound in (42). Because of (41), it suffices to show
that

hu(t, x+ c∗t) ≤M−1 e
αx − e−αx

α
(43)

holds for all t ∈ R and x ≥ L, with L > 0 and M being independent of α. Let us write hu(t, x) as

hu(t, x+ c∗t) = α−1η̄α(x+ c∗t)

(
eαx − Cu

α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−βx

)
.

Therefore, since η̄α is uniformly bounded in x, independently of α ∈ (0, 1), the upper bound (43)
holds if (

eαx − Cu
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−βx

)
≤M2

(
eαx − e−αx

)
14



for some constant M2, which is equivalent to

e−2αx
(
M2 − Cu

α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−(β−α)x

)
≤M2 − 1. (44)

Since Cu, η̄α, η̄β are positive, this inequality certainly holds if e−2αxM2 ≤M2−1. So, if we setM2 = 2,
then (44) holds for all x ≥ ln(2)/(2α). Now consider (44) for x ≤ ln(2)/(2α). By the beginning of

step 2, Cu
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
= 1 + O(α) as α → 0, uniformly in x and t. Moreover, β − α = O(α2), so

that for x ≤ ln(2)/(2α), we have Cu
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−(β−α)x = (1 + O(α)). Therefore, with M2 = 2

and x ≤ ln(2)/(2α), inequality (44) becomes e−2αx ≤ M2 − 1

M2 − 1 +O(α)
= 1− O(α). Hence there is a

constant L such that (44) holds for all x ≥ L and t ∈ R, and all α sufficiently small. This establishes
the upper bounds in (43) and (42).

In a similar manner, we now we prove the lower bound in (42). It suffices to show that

hl(t, x) ≥M eαx − e−αx

α
(45)

holds for all t ∈ R and x ≥ L. Let us write hl(t, x) as

hl(t, x+ c∗t) = α−1η̄α(x+ c∗t)

(
eαx − Cl

α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−βx

)
.

Therefore, since η̄α(x) is uniformly bounded away from zero, independently of α ∈ (0, 1), the lower
bound (45) holds if

M3

(
eαx − Cl

α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−βx

)
≥ eαx − e−αx

for some constant M3, which is equivalent to

M3 − 1 ≥M3Cl
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−(β+α)x − e−2αx. (46)

This bound certainly holds if

M3 − 1 ≥M3Cl
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−(β+α)x.

By construction of ηα we know that Cl
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
= 1 + O(α) ≤ 2 uniformly in x and t, if α is

sufficiently small. So, if we set M3 = 2, then (46) holds for all x ≥ ln(2)/α.
Now consider (46) for x ≤ ln(2)/α. Recall that, β + α = 2α + O(α2), so that for x ≤ ln(2)/α,

we have

Cl
α

β

η̄β(x+ c∗t)

η̄α(x+ c∗t)
e−(β−α)x = e−2αx(1 +O(α)).

Therefore, withM3 = 2 and x ≤ ln(2)/α, inequality (46) becomesM3−1 ≥ (M3(1 +O(α))− 1) e−2αx,

which is e−2αx ≤ 1

2(1 +O(α))− 1
= 1−O(α). Hence there is a constant L such that (46) holds for

all x ≥ L and t ∈ R, and all α sufficiently small. This proves the lower bound in (45) and in (42).
This completes the proof of Lemma 3.3. �
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Lemma 3.4 (i). There is a constant C > 0 such that |∂τζ(τ, x)| ≤ C for all x > c∗τ .
(ii). There is a consant C such that |∂τηα(τ, x)| ≤ C for all x ∈ (c∗τ, c∗τ + α−1).
(iii). There is a constant C such that |∂τηα(τ, x)| ≤ Cαηα(τ, x) for all x > c∗τ .

Proof. Part (i) just comes from parabolic regularity. As for Part (ii), we come back to the notations
of Lemma 3.3. Consider T > 0, at τ = T we have, just using the equation for ηα:

∂τηα(T, x) = O(eα(x−c
∗T ) + e−α(x−c

∗T )) + dµα(x)

where µα is a measure carried by the (compact) zero set of the function hl, which was defined at
(40), and whose mass is uniformly bounded with respect to α. So, applying the equation for ∂τηα -
recall that it solves the same equation as ηα:

∂τηα(T − 1, x) = O(eα(x−c
∗T ) + e−α(x−c

∗T )) +O(1) = O(eα(x−c
∗T )).

Running the equation for τ ≤ T − 1 yields

|∂τηα(τ, x)| ≤ Ceα(x−c∗τ)η̄α(x),

and so ∂τηα(τ, x) = O(eα(x−c
∗τ)), which is sufficient to prove the claim. �

3.3 Application: the t−3/2 bound

In other words, we are going to give the
Proof of Lemma 2.1. We are working on the almost self-adjoint form of (8), which is (28). We
use a duality argument, and the main step in the argument is to derive the L2 bound(∫ ∞

c∗t
p2(t, x)dx

)1/2

≤ C

t3/4

∫ ∞
0

xp0(x)dx, ∀ t > 0. (47)

It follows from (28) that

1

2

d

dt

∫ ∞
c∗t

ν(x)p2(t, x)dx = −
∫ ∞
c∗t

ν(x)p2x(t, x)dx. (48)

The right side of (48) may be bounded from above by using a Nash-type inequality: there is a
constant C such that ∫ ∞

0
|β(x)|2dx ≤ C

(∫ ∞
0

β2xdx

)3/5(∫ ∞
0

xβ(x)dx

)4/5

(49)

for all functions β ∈ L1([0,∞)) ∩ H1([0,∞)) satisfying β(0) = 0 and β(x) ≥ 0 for x ≥ 0. This
inequality can be verified in the usual manner: if ξ(x) is an odd extension of β(x) to all of R, then∫ ∞

−∞
|ξ(x)|2 = C

∫ ∞
−∞
|ξ̂(k)|2dk, (50)

where ξ̂(k) is the Fourier transform of ξ(x). Note that ξ̂(0) = 0, and

∣∣∣∣ ddk ξ̂(k)

∣∣∣∣ ≤ C ∫ ∞
0

xβ(x)dx,

whence |ξ̂(k)| ≤ C|k|‖xβ‖1. It follows from (50) that for any R > 0 we have∫ ∞
−∞
|ξ(x)|2dx ≤ C

∫
|k|≤R

|ξ̂(k)|2dk + C

∫
|k|≥R

|k|2

R2
|ξ̂(k)|2dk ≤ CR3‖xβ‖21 +

C

R2
‖βx‖22.
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Choosing R =
(
‖βx‖22 / ‖xβ‖21

)1/5
gives (49).

Going back to (48), since ν(x)−1 > 0 is bounded, we conclude that

1

2

d

dt

∫ ∞
c∗t

ν(x)p2(t, x)dx ≤ −C
(∫ ∞

c∗t
(p(t, x))2 dx

)5/3(∫ ∞
c∗t

(x− c∗t)p(t, x) dx

)−4/3
. (51)

Next, we work toward an estimate of the right side of (51). Let us multiply (28) by a function
ν(x)f(t, x), with f(t, c∗t) = 0 and integrate:

d

dt

∫ ∞
c∗t

ν(x)f(t, x)p(t, x) dx =

∫ ∞
c∗t

ν(x)ft(t, x)p(t, x) dx−
∫ ∞
c∗t

ν(x)fx(t, x)px(t, x) dx−c∗
∫ ∞
c∗t

fpx dx.

We choose f to be a solution of the backward equation, as in Lemma 3.2. Recall that the integral

I(t) =

∫ ∞
c∗t

ν(x)f(t, x)p(t, x)dx is preserved: I(t) = I(0) for all t ≥ 0. Moreover, (31) implies that

( ∫ ∞
c∗t

(x− c∗t)p(t, x) dx

)−4/5
≥ C

( ∫ ∞
c∗t

ν(x)f(t, x)p(t, x) dx

)−4/5
= C(I(0))−4/5,

for all t > 0. So, if I2(t) =

∫ ∞
c∗t

ν(x)p2(t, x)dx, we conclude from (51)
dI2(t)

dt
≤ −C (I2(t))

5/3

(I(0))4/3
. It

follows that (I2(t))
−2/3 ≥ Ct(I(0))−4/3 for all t > 0, which implies the L2 bound (47).

The standard duality argument can be now applied. If St is the solution operator mapping p0(·)
to p(t, ·), then the adjoint operator S∗t is of the same form as St except for c∗ replaced by (−c∗)
and changing the direction of time. Hence, the L1 → L2 bound (47) for St implies also the dual

L2 → L∞ bound: |p(t, x)| ≤ C(x− c∗t)
t3/4

‖p0‖L2 , x > c∗t, t > 0. Finally, writing St = St/2 ◦St/2 we

obtain the conclusion of Lemma 2.1. �

4 Estimate from below for the linearized equation

Recall that we are dealing with the almost self-adjoint form (28), and that we wish to prove Propo-
sition 2.2, namely: p(t, x) is larger than O(t−1) if x − c∗t is of order

√
t. We will take three steps:

in the first one, we will show that the estimate is true for a lot of points in the range x− c∗t ∼
√
t;

this will be an integral estimate. This is not good enough to propagate the estimate inside, and
so another step will be to prove a Harnack-type inequality (section 5.2), which will retrieve all the
points of the real line. The last item is proved in section 5.3.

4.1 Proposition 2.2 is true in the integral sense

Proposition 4.1 There exist a time T0 > 0 and constants c0 > 0, β > 0, and N > 0 that depend
only on the initial data so that for any t > T0 there exists a set It ⊂ [c∗t +

√
t/N, c∗t + N

√
t] such

that |It| ≥ β
√
t and

p(t, x) ≥ c0
t
. (52)

holds for all x ∈ It.

Proof. We define the second exponential moment by

Vα(t) =

∫ ∞
c∗t

ν(x)η2α(t, x)p(t, x)q(t, x) dx =

∫ ∞
c∗t

ν(x)η2α(t, x)ζ(t, x)q2(t, x) dx.
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Then

dVα(t)

dt
=

∫ ∞
c∗t

ν(∂tη2α)pq dx+

∫ ∞
c∗t

νη2αptq dx+

∫ ∞
c∗t

νη2αpqt dx.

= µ(2α)Vα(t)−
∫ ∞
c∗t

ν(L∗η2α)pq dx+

∫ ∞
c∗t

νη2αptq dx+

∫ ∞
c∗t

νη2αpqt dx,

where L∗η = ν−1(νηx)x + ν−1c∗ηx. Since pt = Lp, qt = Lq + 2
ζx
ζ
qx we have

V ′α(t) = µ(2α)Vα(t)− 2

∫ ∞
c∗t

νη2αpxqx dx+ 2

∫ ∞
c∗t

νη2αp
ζx
ζ
qx dx. (53)

As p = ζq, we have px = ζxq + ζqx and so p
ζx
ζ
qx = qζxqx = pxqx − ζ(qx)2. Therefore, the last two

terms in (53) reduce to

V ′α(t) = µ(2α)Vα(t)− 2

∫ ∞
c∗t

νη2αζ(qx)2 dx = µ(2α)Vα(t)− 2Dα(t), (54)

where Dα(t) =

∫ ∞
c∗t

νη2αζ(qx)2 dx.

The quantity Vα(t) is the one we need to estimate – we do this by bounding the right side of

(54). We claim that there is a constant C > 0 such that the inequality Dα(t) ≥ C
|Vα(t)|5/3

|Iα(t)|4/3
holds

for all t > 1 and α > 0 sufficiently small. Since ν > 0 is periodic, this is equivalent to the statement
that for any α > 0,(∫ ∞

c∗t
η2αζq

2 dx

)5/3

≤ C
(∫ ∞

c∗t
ηαζq dx

)4/3(∫ ∞
c∗t

η2αζ(qx)2 dx

)
. (55)

By Lemma 3.3 we may compare the function ζ(t, x) to the linear function x − c∗t, and ηα(t, x) to
the function (eαx − e−αx)/α. That is, for α > 0 sufficiently small∫ ∞

c∗t
η2αζq

2 dx ≤ C1

∫ ∞
0

e2αx − e−2αx

2α
xq2(t, x+ c∗t) dx := C1V̂α,∫ ∞

c∗t
ηαζq dx ≥ C2

∫ ∞
0

eαx − e−αx

α
xq(t, x+ c∗t) dx := C2Îα,

and ∫ ∞
c∗t

η2αζ(qx)2 dx ≥ C3

∫ ∞
0

e2αx − e−2αx

2α
x(qx(t, x+ c∗t)2 − α2q(t, x+ c∗t)2) dx := C3D̂α.

The Nash inequality in R3 ([30], Lemma I.1.1.) gives V̂
5/3
α ≤ CÎ4/3α D̂α, and (55) follows for all t > 1.

Returning to (54) we now have

V ′α(t) ≤ µ(2α)Vα(t)− C V
5/3
α (t)

Iα(t)4/3

where I ′α(t) = µ(α)Iα(t). For Vα(t) = eµ(2α)tZα(t), this implies the bound

Z ′α(t) ≤ −C e
−tµ(2α)et5µ(2α)/3(Zα(t))5/3

et4µ(α)/3Iα(0)4/3
= −C (Zα(t))5/3

Iα(0)4/3
etRα (56)
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for t ≥ 1, where Rα =
2

3
µ(2α)− 4

3
µ(α) =

1

3
µ(2α) +O(α3). We used (36) in the last step above. We

deduce from (56) that

Zα(t) ≤ C

(
Iα(0)4/3Rα
etRα − eRα

)3/2

= C
Iα(0)2

(t− 1)3/2

(
tRα −Rα
etRα − eRα

)3/2

. (57)

Note that, since ex is a convex function, we have
b− a
eb − ea

≤ e−a for all b > a. Moreover, Rα > 0 for

α sufficiently small, so Rαt > Rα for t > 1. Hence, (57) implies

Zα(t) ≤ C Iα(0)2

(t− 1)3/2
e−3Rα/2 ≤ CIα(0)2

(t− 1)3/2
.

Therefore, we have Vα(t) ≤ Ceµ(2α)t Iα(0)2

(t− 1)3/2
, which is

(∫ ∞
c∗t

η2α(t, x)ν(x)ζ(t, x)q2 dx

)1/2

≤ C eµ(2α)t

(t− 1)3/4

∫ ∞
0

ηα(0, x)ν(x)ζ(0, x)p0(x) dx.

By Lemma 3.3 and the definition of q(t, x), this implies(∫ ∞
0

e2αx − e2αx

2αx
p2(t, c∗t+ x) dx

)1/2

≤ C eµ(2α)t

(t− 1)3/4

∫ ∞
0

eαx − eαx

α
xp0(x) dx.

From now on, we take α = 1/
√
t. If T0 is sufficiently large, and t > T0, for any x ∈ supp p0 we have

eαx − e−αx

α
≤ 4x. So, for all t > T0 we have

(∫ ∞
0

e2x/
√
t − e−2x/

√
t

2x/
√
t

p2(t, x)dx

)1/2

≤ C

t3/4

∫ ∞
0

xp0(x)dx, (58)

or (∫ ∞
0

e2x/
√
t − e−2x/

√
t

x
p2(t, x)dx

)1/2

≤ C

t

∫ ∞
0

xp0(x)dx. (59)

Let us take N > 1 sufficiently large (but independent of t), then for x > N
√
t we have e2x/

√
t >

2e−2x/
√
t, thus (59) implies

(∫ ∞
N
√
t

e2x/
√
t

x
p2(t, x)dx

)1/2

≤ C

t

∫ ∞
0

xp0(x)dx. Moreover, we have

∫ ∞
N
√
t
xp(t, x)dx ≤

∫ ∞
N
√
t

ex/
√
t

√
x
p(t, x)e−x/

√
tx3/2dx

≤

(∫ ∞
N
√
t

e2x/
√
t

x
p2(t, x)dx

)1/2(∫ ∞
N
√
t
e−2x/

√
tx3dx

)1/2

≤ C

(∫ ∞
0

xp0(x)dx

)(∫ ∞
N

y3e−ydy

)1/2

≤ 2N3e−N/2
∫ ∞
0

xp0(x)dx =
I(0)

4
,
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as long as N > N0 is large enough (but independent of t). Recall now the conservation of

I(t) =

∫ ∞
c∗t

ν(x)f(t, x)p(t, x) dx, together with the fact that m(x − c∗t) ≤ f(t, x) ≤ m−1(x − c∗t)

for some m > 0, and all x ≥ c∗t. It follows that

∫ N
√
t

0
xp(t, x)dx ≥ 3I0

4
. From Lemma 2.1 have∫ √t/N

0
xp(t, x)dx ≤ CN−3I0. Therefore, by taking N larger, if necessary, we have

∫ N
√
t

√
t/N

xp(t, x)dx ≥

I0
2
. For c0 > 0 to be chosen, let H±t be the sets H+

t = {x ∈ [
√
t/N,N

√
t] | p(t, x) ≥ c0/t}, and

H−t = {x ∈ [
√
t/N,N

√
t] | p(t, x) < c0/t}. We have

I0
2
≤
∫
H+
t

xp(t, x)dx+

∫
H−t

xp(t, x)dx ≤
∫
H+
t

xp(t, x)dx+
c0
2
N2.

so that by choosing c0 ≤ I0/(2N2), we have
I0
4
≤
∫
H+
t

xp(t, x)dx. Now, apply Lemma 2.1 again, this

yields
I0
4
≤
∫
H+
t

xp(t, x)dx ≤ CI0

t3/2

∫
H+
t

x2dx ≤ CI0

t3/2
|H+

t |N2t. It follows that |H+
t | ≥

√
t/(4N2C).

This proves Proposition 4.1 �.

4.2 A Harnack type estimate

For R > 0 and ξ ∈ R fixed, let Γ̄(t, x, s, y) = Γ̄(t, x, s, y;R, ξ) denote the heat kernel for νρt −
(νρx)x) + c∗ρx = 0 in the tilted cylinder

T (ξ,R, s) =
{

(t, x) ∈ R2 : |x− ξ − c∗t| < R, t ≥ s
}

with the Dirichlet boundary conditions on the lateral boundary of the cylinder. That is, if s ∈ R and
|y − ξ − cs| < R, Γ̄(t, x, s, y) satisfies the PDE for (t, x) ∈ T (ξ,R, s), with the boundary condition
Γ̄(t, x, s, y) = 0 if |x − ξ − c∗t| = R, and the initial condition lim

t↘s
Γ̄(t, x, s, y) = (ν(y))−1δy(x). The

following lemma gives a lower bound on Γ̄(t, x, s, y), provided that x and y are sufficiently far from
the boundary of T (ξ,R, s). It is directly inspired from Fabes-Stroock [12] (see Lemma 5.1 therein).

Lemma 4.2 For all δ ∈ (0, 1), there are some constants α > 0 and K > 0 such that

Γ̄(t, x, s, y − c∗(t− s);R, ξ) ≥ α

2K(t− s)1/2
e
−K|y−x|

2

(t−s)

holds if R > 0, t ∈ (s, s+R2], and x, y ∈ (c∗t+ ξ − δR, c∗t+ ξ + δR).

Proof. Let Γ(t, x, s, y) denote the free-space heat kernel, and ρ(t, x) =

∫
R

Γ(t, x, s, y)ρ(s, y)ν(y) dy.

for t ≥ s. We have the following estimates of Norris [28], Theorem 1.1: there is a constant K > 0
such that

e−K|x−y|
2/(t−s)

K|t− s|1/2
≤ Γ(t, x, s, y − c∗(t− s)) ≤ Ke−|x−y|

2/K(t−s)

|t− s|1/2
. (60)

holds for all x, z ∈ R, t > s. Obviously, (60) implies the upper bound

Γ̄(t, x, s, y − c∗(t− s);R, ξ) ≤ Γ(t, x, s, y − c∗(t− s)) ≤ K|t− s|−1/2e−|x−y|2/K(t−s).
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It suffices to assume s = 0 and ξ = 0. The first step is the identity

Γ̄(t, x, 0, y) = Γ(t, x, 0, y)−
∫ t

0

(
Γ(t, x, r, c∗r +R)h+(r) + Γ(t, x, r, c∗r −R)h−(r)

)
dr (61)

where h±(r) ≥ 0 depends on y and R, but where

∫ t

0
(h+(r) + h−(r)) dr ≤ 1 always holds. This is

analogous to a statement on p. 335 of [12], obtained by integrating the equation for ρ against a test
function. By combining (61) with the estimate (60) for Γ, we obtain a lower bound on Γ̄:

Γ̄(t, x, 0, y − c∗t) ≥ e−K|y−x|
2/t

Kt1/2
−K sup

0≤τ≤t

e−R
2(1−δ)2/(Kτ)

τ1/2
, (62)

for all x ∈ [−δR, δR], y ∈ [−R,R], t > 0. The unique maximum of the function τ > 0 7→ β(τ) =

e−R
2(1−δ)2/(Kτ)

τ1/2
occurs at the point τ∗ = 2R2(1− δ)2/K. So, if ε2 < 2(1− δ)2/K and t ≤ ε2R2, we

have t ≤ τ∗. In this case, (62) gives us the bound

Γ̄(t, x, 0, y−c∗t) ≥ e−K|y−x|
2/t

Kt1/2
−K sup

0≤τ≤t

e−R
2(1−δ)2/(Kτ)

τ1/2
=
e−K|y−x|

2/t

Kt1/2

(
1−K2e−

R2(1−δ)2
Kt

+
K|x−y|2

t

)
.

If x ∈ [−δR, δR] and |x− y| ≤ εR also hold, and ε2 < (1− δ)2/(2K2) is small enough we have

1−K2e−
R2(1−δ)2

Kt
+
K|x−y|2

t ≥ 1−K2e−t
−1 R

2(1−δ)2
2K ≥ 1−K2e−ε

−2(
(1−δ)2

2K
) > 1/2.

This implies that for any δ ∈ (0, 1) and R > 0, Γ̄(t, x, 0, y− c∗t) ≥ 1

2Kt1/2
e−

K|y−x|2
t if x ∈ [−δR, δR]

and |x − y| ≤ εR, t ≤ ε2R2, and ε is sufficiently small, depending only on δ and K. A chaining
argument, as in [12], now shows that for any δ ∈ (0, 1), there must be a constant α, depending only
on δ and K, such that

Γ̄(t, x, 0, y − c∗t) ≥ α

2Kt1/2
e−

K|y−x|2
t

holds if x, y ∈ [−δR, δR], t ≤ R2 (i.e. rather than just t ≤ ε2R2). Although Γ̄ depends on R, α and
K are independent of R. This finishes the proof of Lemma 4.2. �

4.3 Proof of Proposition 2.2.

By Proposition 4.1 we have p(s, x) ≥ c0
s

for all s ≥ T0 and x ∈ Is, where Is ⊂ [c∗s+N−1
√
s, c∗s+

N
√
s] and |Is| ≥ β

√
s. Let s ≥ T0, R =

√
s(N−1+N)/2, ξ = c∗s+R, and Γ̄ = Γ̄(t, x, s, y;R, ξ) be the

heat kernel in the tilted cylinder T (ξ,R, s) with Dirichlet boundary conditions. For x ∈ [c∗t, c∗t+2R],
t > s, we have

p(t, x) ≥
∫ cs+2R

cs
Γ̄(t, x, s, y)p(s, y)ν(y) dy. (63)

Set δ =
N −N−1

N +N−1
∈ (0, 1). and t = s + R2. Observe that Is ⊂ [c∗s + N−1

√
s, c∗s + N

√
s] =

[c∗s+ (1− δ)R, c∗s+ (1 + δ)R]. By Lemma 4.2, we have

Γ̄(t, x, s, y) ≥ α

2(t− s)1/2
e−

K|x−y|2
t−s =

α

2KR
e−

K|x−y|2

R2
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for all
x ∈ [c∗t+ (1− δ)R, c∗t+ (1 + δ)R] = [c∗t+N−1

√
s, c∗t+N

√
s],

and
y ∈ [c∗s+ (1− δ)R, c∗s+ (1 + δ)R] = [c∗s+N−1

√
s, c∗s+N

√
s].

Therefore, by combining p(s, x) ≥ c0
s

and (63) we obtain

p(t, x) ≥
∫
Is

Γ̄(t, x, s, y)p(s, y)ν(y) dy ≥ |Is|min
y∈Is

Γ̄(t, x, s, y)p(s, y)ν(y) ≥ |Is|
C√
s

min
y∈Is

p(s, y) ≥ C

s
,

for all x ∈ [c∗t+ (1− δ)R, c∗t+ (1 + δ)R]. Since R =
√
s(N−1 +N)/2 and t = s+R2 we have shown

that for σ = 1 + (N−1 +N)2/4, there is C > 0 such that p(t, c∗t+ σ
√
t) ≥ C

s
=
Cσ

t
, for t ≥ σT0. �

5 The perturbed linearized equation in the diffusive range

Recall that the upper bound in Theorem 1.1 was reduced in Section 2.2 to the proof of Proposition 2.3
that we present in this section. Let p̃(τ, x) be as in this proposition, that is

(1− ω(τ)) p̃τ = p̃xx + 2
φx
φ
p̃x, x ≥ c∗τ, (64)

with the Dirichlet boundary condition p̃(τ, c∗τ) = 0. The coefficient ω(τ) satisfies ω(τ) ∼ 3/(2c∗τ)
as τ → ∞, and |ω(τ)| ≤ C/τ , |ω′(τ)| ≤ C/τ2 for τ > τ0. The general philosophy is that the
correction ω(τ) does not play a role in most of the decay estimates, and the function p̃(t, x) behaves
essentially as p(t, x), which is the solution of (64) with ω(τ) = 0, and which we have studied in
detail in the preceding sections. We could think of re-using the arguments already displayed in the
preceding section and, in particular, trying to adapt the proof of Lemma 2.1. However, as far as the
perturbed equation is concerned, we do not have exact linear solutions anymore. As a consequence
the computations of Proposition 2.2 and Lemma 2.1 would yield big errors, which would in the end
yield not sufficiently precise estimates. So, we have chosen a different way, which in turn allows us
to gain a little more insight in the heat kernel.

Proposition 5.1 For any L0 > 0, ε > 0, there is Cε > 0 so that
1

Cετ
≤ p̃(τ, c∗τ +L0 + ε

√
τ) ≤ Cε

τ
for all τ ≥ 1.

This is a direct generalization of Proposition 2.2 and Lemma 2.1 to the case ω(τ) 6= 0. We will
also need a more or less explicit solution of the approximate equation that we will need to compare
to p̃(t, x). It is described in the next proposition.

Proposition 5.2 Let χ̄ ∈ R and let χ(x) = − 1

ψ(x, λ∗)

dψ(x, λ∗)

dλ
. There is a function θapp(τ, x)

such that for any σ > 0, θapp(τ, x) satisfies

(1− ω(τ))
∂θapp

∂τ
− θappxx − 2

φx
φ
θappx = O(τ−3), c∗τ < x < c∗τ + σ

√
τ , τ ≥ 1,

and there is a constant C (depending on σ and m) such that∣∣∣∣θapp(τ, x)− x− c∗τ + χ(x) + χ̄

τ3/2
e
− (x−c∗τ)2

4(1+κ)τ

∣∣∣∣ ≤ Cτ−3/2(x− c∗τ√
τ

)2

+O(τ−2) (65)

holds for all x ∈ [c∗τ, c∗τ + σ
√
τ ] and τ ≥ 1. The constant κ in the exponential factor is defined by

formula (74) below and satisfies 1 + κ > 0.
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Observe that the approximate solution θapp satisfies the conclusion of Proposition 2.3. So, the
last step is to transfer these estimates onto the true solution.

Proposition 5.3 Let σ > 0 be fixed, and let θapp(τ, x) be defined as in Proposition 5.2 for some
χ̄ ∈ R. Let ξ(τ, x) solve

(1− ω(τ))
∂ξ

∂τ
= ξxx + 2

φx
φ
ξx, x ∈ (c∗τ, c∗τ + σ

√
τ), τ > 1 (66)

with the boundary conditions

ξ(τ, c∗τ) = θapp(τ, c∗τ),

ξ(τ, c∗τ + σ
√
τ) = θapp(τ, c∗τ + σ

√
τ). (67)

There is τ0 > 0 such that |ξ(τ, x)− θapp(τ, x)| ≤ Cτ−3/2, for c∗τ < x < c∗τ + σ
√
τ , τ ≥ τ0.

5.1 Proof of Proposition 2.3, admitting Propositions 5.1, 5.2 and 5.3

Observe that by choosing χ̄ > ‖χ‖∞ in Proposition 5.2, we may arrange that θapp(τ, c∗τ) > 0 for τ
suffiently large. Similarly, with χ̄ < −‖χ‖∞, we have θapp(τ, c∗τ) < 0 for τ sufficiently large. Let
us define θapp+ to be a solution with χ̄ = 2‖χ‖∞ and θapp+ (τ, c∗τ) > 0; let θapp− to be a solution with
m = −2‖χ‖∞ and θapp− (τ, c∗τ) < 0. To prove Proposition 2.3, we wish to compare p̃(τ, x) with the

functions θapp± . We know from Proposition 5.2 that

∣∣∣∣θapp± (τ, c∗τ + σ
√
τ)− Cσ

τ

∣∣∣∣ ≤ C

τ3/2
. Combining

this with Proposition 5.1, we see that there must be C1 > 0 such that

p̃(τ, c∗τ + σ
√
τ) ≤ C1θ

app
+ (τ, c∗τ + σ

√
τ), p̃(τ, c∗τ + σ

√
τ) ≥ C−11 θapp− (τ, c∗τ + σ

√
τ),

for all τ ≥ 1. Now if ξ±(τ, x) solve (66) for τ ≥ 1 with the boundary conditions (67) using θapp = θapp± ,
we have

ξ+(τ, c∗τ) = θapp+ (τ, c∗τ) > 0 = C−11 p̃(τ, c∗τ), ξ+(τ, c∗τ+σ
√
τ) = θapp+ (τ, c∗τ+σ

√
τ) ≥ C−11 p̃(τ, c∗τ),

ξ−(τ, c∗τ) = θapp− (τ, c∗τ) < 0 = C1p̃(τ, c
∗τ), ξ−(τ, c∗τ + σ

√
τ) = θapp− (τ, c∗τ + σ

√
τ) ≤ C1p̃(τ, c

∗τ).

The maximum principle implies C−11 ξ−(τ, x) ≤ p̃(τ, x) ≤ C1ξ
+(τ, x), for all τ sufficiently large

and x ∈ [c∗τ, c∗τ + σ
√
τ ]. Proposition 5.3 implies that for any δ > 0 there exists xδ so that

|ξ±(τ, x) − θapp± (τ, x)| ≤ δθapp± (τ, x) for c∗τ + xδ < x < c∗τ + ε
√
τ , if τ ≥ τ0. It follows that

C−11

2
θapp− (τ, x) ≤ p̃(τ, x) ≤ 2C1θ

app
+ (τ, x), for c∗τ + xδ < x < c∗τ + ε

√
τ , and for all τ ≥ τ0.

Proposition 2.3 follows from (65) and parabolic regularity. �

5.2 The proof of Proposition 5.1

The proof of Proposition 5.1 is as in the case ω(τ) = 0 (i.e. Proposition 2.2 and Lemma 2.1) but
a little more technical – we focus only on the differences. The first ingredient needed is a quantity
that is bounded from above and below.

Lemma 5.4 Let p̃(τ, x) be as in Proposition 2.3. There is C > 0 such that

C−1 ≤
∫ +∞

c∗τ
(x− c∗τ)p̃(τ, x) dx ≤ C, ∀ τ ≥ 0.
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Proof. It suffices to bound the integral I(τ) =

∫ +∞

c∗τ
ν(x)(1− ω(τ))f(τ, x)p̃(τ, x) dx, where f(τ, x)

is the function defined in Lemma 3.2, with m(x− c∗τ) ≤ f ≤ m−1(x− c∗τ). In the case ω ≡ 0, I(τ)
is conserved. We compute:

dI

dτ
= −ω′

∫ +∞

c∗τ
νfp̃ dx− ω

∫ +∞

c∗τ
νfτ p̃ dx = O(τ−2)I(τ)− ω

∫ +∞

c∗τ
νfτ p̃ dx. (68)

For an upper bound on I(τ), we treat the spurious term

∫ +∞

c∗τ
νfτ p̃ dx as follows:

∫ +∞

c∗τ
νfτ p̃ dx =

∫ c∗τ+τ1/4

c∗τ
νfτ p̃ dx+

∫ +∞

c∗τ+τ1/4
νfτ p̃ dx := II + III.

By parabolic regularity, there is a constant C > 0 such that |∂τf(τ, x)| ≤ C, hence

|III| ≤ Cτ−1/4
∫ +∞

c∗τ
xp̃ dx ≤ Cτ−1/4

∫ +∞

c∗τ
ν(x)f(τ, x)p̃(τ, x) dx.

Recall that equation (22) for p̃ is equivalent to

(1− ω(τ))p̃τ =
1

ν(x)
(ν(x)p̃x)x −

c∗

ν(x)
p̃x, x > c∗τ (69)

with p̃(τ, c∗τ) = 0. The time change dτ ′ = (1− ω(τ))−1dτ shows the heat kernel bounds of [28] in
the whole space hold (with the time change) for the perturbed equation

(1− ω(τ))Pτ =
1

ν(x)
(ν(x)Px)x −

c∗

ν(x)
Px, x ∈ R.

In particular, we have |P (τ, x)| ≤ Cτ−1/2
∫
R
|P (0, y)|dy. So, because p̃(τ, x) is less than the solution

of (69) in the whole space with the same initial data p̃(0, ·), we have:

|II| ≤ Cτ−1/2
∫ c∗τ+τ1/4

c∗τ

∫
R
|p̃(0, y)| dy dx = Cτ−1/4

∫ +∞

0
p̃(0, x) dx.

Gathering these estimates we conclude I ′(τ) ≤ O(τ−2)I +O(τ−5/4)I +O(τ−5/4), which implies the
existence of C > 0 such that I(τ) ≤ C(1 + I(0)).

For a lower bound, note that fτ ≤ 0, while ν, p̃ ≥ 0. Therefore, the term −ω
∫ +∞

c∗τ
νfτ p̃ dx in

(68) is non-negative. This implies I ′(τ) ≥ O(τ−2)I, so that I(t) ≥ CI(0) > 0, with some universal
constant C > 0. �

We are going to estimate Vα(τ) = (1 − ω(τ))

∫ +∞

c∗τ
ν(x)η2α(τ, x)p̃(τ, x)q(τ, x)dx, which is the

main step in the proof of Proposition 5.1. Here q(τ, x) =
p̃(τ, x)

ζ(τ, x)
and ζ(τ, x) is defined by Lemma

3.2. The function ηα(τ, x) is defined by Lemma 3.3.

Proof of Proposition 5.1. A straightforward computation shows that

dVα
dτ

= (µ(2α)− ω′)Vα + ω

∫ +∞

c∗τ

(
νη2αζτq

2 − ν(∂τη2α)pq
)
dx− 2Dα.
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Here, as in the case ω = 0, we have defined Dα(τ) =

∫
c∗τ

νη2αζq
2
xdx. We now use the following fact:

for all M > 0, there is a constant κM > 0 such that, for all nonnegative functions u(x) ∈ C1([0, 1])

such that |u′(x)| ≤M
∫ 1

0
u(x)dx we have:

∫ 1

0
u(x)dx ≤ κM

∫ 1

0
xu(x)dx. If not, there is a sequence

un of such functions with unit mass and uniformly bounded derivatives whose first moments tend

to 0, an impossibility. Now, from this remark we have ω

∫ +∞

c∗τ
ν|ζτη2α|q2 dx ≤ Cτ−1Vα, and from

Lemma 3.4 we have

ω

∫ +∞

c∗τ
ν|∂τη2α|p̃q dx ≤ Cω

∫ +∞

c∗τ
νη2αp̃q dx ≤ Cτ−1Vα.

Because of Lemma 5.4, we have (following the lines of the proof of Proposition 4.1):

dVα
dτ
≤ (µ(2α) +O(τ−1))Vα(τ)− C V

5/3
α

Iα
4/3

= −C (Vα)5/3

Iα(0)4/3
eτRα + (µ(2α) +O(τ−1))Vα(τ).

Let us choose T > 0 and examine the above differential inequality with α = T−1 and τ ≤ T . For
Λ > 0 large enough, the function Λτ−3/2 is a super-solution for τ ≤ T , showing that Vα(T ) =
O(T−3/2). So, for all τ > 0, we have Vα(τ) ≤ Cτ−3/2, and the rest of the proof of this proposition
follows as in Proposition 4.1.�

5.3 The proof of Proposition 5.2

The proof is by a multiple-scale expansion. We will construct a function θapp having the form
θapp(τ, x) = a(τ)v(τ, (x− c∗τ)/R(τ), x). which satisfies θapp(τ, c∗τ) = 0, with R(τ) = τ1/2. Plugging

this ansatz into (1− ω(τ))θτ = θxx + 2
φx
φ
θx, we see that v(τ, z, x) should satisfy

(1− ω)

[
a′

a
v + vτ −

zR′

R
vz −

c∗

R
vz

]
=

1

R2
vzz +

2

R
vzx + vxx + 2

φx
φ
vx +

2

R

φx
φ
vz.

We will construct an approximate solution given by the expansion

v = v(τ, z, x) = v0(z) +
1

R
v1(z, x) +

1

R2
v2(z, x) +

1

R3
v3(z, x),

where v1(z, x) and v2(z, x) are uniformly bounded in each compact set in z, and x, and are both
periodic in x. Therefore, the desired equality is

(1− ω)
a′

a
(v0 +

1

R
v1 +

1

R2
v2 +

1

R3
v3)− (1− ω)

R′

R2

(
v1 +

2

R
v2 +

3

R2
v3
)

−(1− ω)
zR′

R
(v0z +

1

R
v1z +

1

R2
v2z +

1

R3
v3z)− (1− ω)

c∗

R
(v0z +

1

R
v1z +

1

R2
v2z +

1

R3
v3z)

=
1

R2
v0zz +

1

R3
v1zz +

1

R4
v2zz +

2

R2
v1zx +

2

R3
v2zx +

2

R4
v3zx

+
1

R
v1xx +

1

R2
v2xx +

1

R3
v3xx +

2

R

φx
φ
v1x +

2

R2

φx
φ
v2x +

2

R3

φx
φ
v3x

+
2

R

φx
φ
v0z +

2

R2

φx
φ
v1z +

2

R3

φx
φ
v2z +

2

R4

φx
φ
v3z . (70)
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Let us set a(τ) = τ−m, so that a′/a = −mτ−1 = O(R−2). Now we choose vi, i ∈ {0, ..., 3} so that
terms of order O(R−1), O(R−2) and O(R−3) will cancel. Recall that ω(τ) ∼ 3/(2c∗λ∗τ), so ω will
not play a role until we equate terms of order O(R−3), and even then the only term to contribute is
ωc∗v0z/R. All other terms involving ω(τ) are smaller than O(τ−3/2).

If we equate the leading order terms (of order O(R−1)), we obtain an equation for v1 in terms
of v0:

v1xx + 2
φx
φ
v1x = −

(
2
φx(x)

φ(x)
+ c

)
v0z(z). (71)

Let us re-introduce the solution χ(x) of χxx + 2
φx
φ
χx = −2

φx
φ
− c, we see that (71) has a solution

of the form v1(z, x) = v0z(z)χ
0(x) − p0(z) with χ0(x) = χ(x) + χ̄ being periodic in x, and χ̄ any

constant. For any choice of χ̄ and p0(z), (71) holds and the O(R−1) terms in (70) cancel.
Let us now equate the terms of O(R−2) in (70) to obtain which is:

v2xx + 2
φx
φ
v2x +mv0 +

z

2
v0z + v0zz + cv1z + 2v1zx + 2

φx
φ
v1z = 0. (72)

Consider the operator ρxx + 2φx(x)φ(x) ρx = φ̂−2(φ̂2ρx)x acting on 1-periodic functions, where φ̂ =

e−µxψ(x). We claim that the adjoint operator has one-dimensional kernel. A function η is in the
kernel of the adjoint operator if and only if (φ̂2(φ̂−2η)x)x = 0, which holds if and only if η(x) =

k1φ̂
2(x)

∫ x

0
φ̂−2(s) ds + k2φ̂

2(x) for some constants k1 and k2. If k1 = 0, the function η cannot be

periodic, since φ̂2(x) = e−2µxψ2(x) is not periodic. So, we may assume k1 = 1. However, the function

η(x) = φ̂2(x)

∫ x

0
φ̂−2(s) ds+ k2φ̂

2(x) will be periodic only for k2 =
φ̂2(1)

φ̂2(0)− φ̂2(1)

∫ 1

0
φ̂−2(s) ds > 0.

Any other solution of the equation for φ̂ must be a multiple of this function η. Observe that η > 0
for all x.

If η(x) is 1-periodic and spans the kernel of (φ̂2(φ̂−2η)x)x, then equation (72) is solvable if and

only if the sum mv0 +
z

2
v0z + v0zz + cv1z + 2v1zx + 2

φx
φ
v1z is orthogonal to η(x), for each z ∈ R. Using

v1 = v0z(z)χ(x)− p0(z), we write the sum as

mv0 +
z

2
v0z + v0zz + cv0zzχ

0 + 2v0zzχ
0
x + 2

φx
φ
v0zzχ

0 −
(
c+ 2

φx
φ

)
p0z. (73)

So, the solvability condition is(
mv0 +

z

2
v0z + v0zz

)∫ 1

0
η(x) dx = −

∫ 1

0

(
cv1z + 2v1zx + 2

φx
φ
v1z

)
η(x) dx

= −
∫ 1

0

(
cv0zzχ

0 + 2v0zzχ
0
x + 2

φx
φ
v0zzχ

0

)
η(x) dx.

Here we have used the fact that
∫ 1
0 (c+ 2φxφ )η(x) dx = 0, so that the terms involving p0z cancel after

integration against η. Hence, v0(z) should solve mv0 +
z

2
v0z + (1 + κ)v0zz = 0 where

κ =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0

(
cχ0(x) + 2χ0

x(x) + 2
φx
φ
χ0(x)

)
η(x) dx. (74)
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It is not difficult to show that 1 + κ =

∫
η(1 + χ0

x)2 dx∫
η dx

> 0. In particular, κ is independent of the

normalization of χ0(x) (the choice of χ̄). Thus, we choose v0(z) > 0 to be the principal eigenfunction

of mv0 +
z

2
v0z + (1 + κ)v0zz = 0,z > 0, v0(0) = 0, which forces m = 1, and v0(z) = ze

− z2

4(1+κ) .

The function p0(z) is undetermined so far. With v0(z) chosen in this way, there exists a function
v2(z, x) which is periodic in x and satisfies (72). Thus, the O(R−2) terms cancel. In consideration
of (73) and the definition of v0, we see that (72) is equivalent to

v2xx + 2
φx
φ
v2x = −v0zz(z)

(
cχ0 + 2χ0

x + 2
φx
φ
χ0 − κ

)
−
(
c+ 2

φx
φ

)
p0z.

Therefore, v2(z, x) must have the form v2(z, x) = v0zz(z)v̂
2(x) − p0z(z)χ0(x) + p1(z), where v̂2(x) is

a periodic solution of v̂2xx + 2
φx
φ
v̂2x = −

(
cχ0 + 2χ0

x + 2
φx
φ
χ0 − κ

)
. Finally, equating the R−3 terms

suggests choosing v3(x, z) to satisfy

v3xx + 2
φx
φ
v3x =

3

2λ∗
v0z − (m+ 1)v1 − z

2
v1z − v1zz − (c∗ + 2

φx
φ

)v2z − 2v2zx. (75)

The right hand side is:

3

2λ∗
v0z−2v0zχ

0+2p0−z
2
v0zzχ

0+
z

2
p0z−v0zzzχ0+p0zz−(c∗+2

φx
φ

)
(
v0zzz v̂

2 − p0zzχ0 + p1z
)
−2
(
v0zzz v̂

2
x − p0zzχ0

x

)
.

Therefore, the solvability condition implies that p0(z) should satisfy

2p0 +
z

2
p0z + (1 + κ)p0zz = β1v

0
zzz + β2

z

2
v0zz + (

3

2λ∗
− 2β2)v

0
z

where

β1 =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0

(
χ0 + (c∗ + 2

φx
φ

)v̂2 + 2v̂2x

)
η(x) dx, β2 =

(∫ 1

0
η(x) dx

)−1 ∫ 1

0
χ0η dx,

and we would like to have p0(0) = 0. The p1 term does not appear in the solvability condition.
Therefore, we may take p1(z) ≡ 0. We let p0(z) be the unique solution of the initial value problem

2p0 +
z

2
p0z + (1 + κ)p0zz = β1v

0
zzz + β2

z

2
v0zz + (

3

2λ∗
− 2β2)v

0
z , z > 0

with the initial data initial p0(z) = 0 and p0z(0) = 0.
Having chosen p0 in this way, we take v3 to be a solution of (75), which is unique up to addition

of a function p3(z). So, the O(R−3) = O(τ−3/2) terms have canceled. Our approximate solution is:

θapp(t, x) = τ−1v0(z) + τ−3/2v1(z, x) + τ−2v2(z, x) + τ−5/2v3(z, x),

with

v0(z) = ze
− z2

4(1+κ) , v1(z, x) = χ0(x)e
− z2

4(1+κ) − z2χ0(x)

2(1 + κ)
e
− z2

4(1+κ) − p0(z).

Now, fix a constant σ > 0. Having chosen p0(0) = 0 and p0z(0) = 0, we may choose C1 > 0 so
that |p0(z)| ≤ C1z

2 for all z ∈ [0, σ]. Consequently, there is a constant C2 > 0 such that for all
x ∈ [c∗τ, c∗τ + σ

√
τ ] and τ > 1 we have∣∣∣∣θapp(t, x)− x− c∗τ + χ0(x)

τ3/2
e
− (x−c∗τ)2

4(1+κ)τ

∣∣∣∣ ≤ C2τ
−3/2

(
x− c∗τ√

τ

)2

+O(τ−2)
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The last term O(τ−2) comes from v2 and v3 and the fact that v2 and v3 are uniformly bounded over
(z, x) ∈ [0, σ]× R.

Since the periodic function χ0(x) = χ(x) + χ̄ is unique up to addition of a constant, we may
choose χ̄ < 0 so that maxx χ

0(x) < −1. Then, at the point x = c∗τ we have

θapp(t, c∗τ) ≤ τ−3/2χ0(c∗τ) +O(τ−2) ≤ −τ−3/2 +O(τ−2),

which is negative for all τ > 1 sufficiently large. Alternatively, we could choose χ̄ > 0 so that
minx χ

0(x) > 0. Then we would have θapp(τ, c∗τ) > 0 for all τ sufficiently large. �

5.4 The proof of Proposition 5.3

Using Lemma 3.1 we bring this problem into the form

(1− ω(τ))ξτ =
1

ν(x)

∂

∂x
(ν(x)ξx)− c∗

ν(x)
ξx. (76)

Let Φ(τ, x) = ξ(τ, x)− θapp(τ, x) so that Φ(τ, c∗τ) = 0 and Φ(τ, c∗τ + L0 + ε
√
τ) = 0. We have

(1− ω(τ))ν(x)Φτ = (ν(x)Φx)x − c∗Φx +O(τ−3).

Multiplying by Φ(τ, x) and integrating by parts over the interval I = [c∗τ, c∗τ+L0+ε
√
τ ], we obtain

1

2

d

dτ

∫
I
ν(x)(1− ω(τ))Φ2dx+

ω′(τ)

2

∫
I
ν(x)Φ2dx = −

∫
I
ν(x)Φ2

xdx+O(τ−3)

∫
I

Φdx.

Note that, since Φ(τ, c∗τ) = 0, we have |ω′(τ)|
∫
I νΦ2dx ≤ C

τ2
ε2τ

∫
I
νΦ2

xdx and

|O(τ−3)

∫
I

Φdx| ≤ Cε

τ9/2
+

1

τ

∫
I

Φ2dx ≤ C

τ4
+ Cε2

∫
I
νΦ2

xdx.

If now ε is small enough so that the constant Cε2 is less than 1/4 it follows that, for τ > τ0 large
enough, we have

1

2

d

dτ

∫
I
ν(x)(1−ω(τ))Φ2dx ≤ −1

2

∫
I
ν(x)Φ2

xdx+
C

τ4
≤ − 1

C(L0 + ε
√
τ)2

∫
I
ν(x)(1−ω(τ))Φ2dx+

C

τ4
.

We conclude that, for ε sufficiently small, we have

∫
I
ν(x)Φ2dx ≤ Cε

(1 + τ)1/ε2
+

Cε
(1 + τ)3

. Now,

parabolic regularity implies that |Φ(τ, x)| ≤ C/(1+τ)3/2 for τ > τ0 sufficiently large. This completes
the proof of Proposition 5.3. �

6 Convergence to a family of waves

This section is devoted to the proof of the convergence of the solution u to the family of shifted
minimal fronts Uc∗ . We first remember that u is bounded away from 0 or π(x) around the position
c∗t − (3/(2λ∗)) ln t for large t. To the right of this position, the solution u has the same type of
decay as the critical front Uc∗ , as it follows from the estimates of Sections 2 and 3. Therefore, u is
almost trapped between two finite shifts of the profile of the front Uc∗ . From a Liouville-type result,
similar to that in [3] and based on the sliding method, the convergence to the shifted approximated
minimal fronts will follow. First, we derive from Sections 2 and 3 some exponential bounds of u to
the right of the position c∗t− (3/(2λ∗)) log t.
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Lemma 6.1 Let σ > 0 be as in Proposition 2.2. There are two constants 0 < κ ≤ ρ such that

κ y e−λ
∗y ≤ u

(
t, c∗t− 3

2λ∗
log t+ y

)
for all t ≥ 1 and 0 ≤ y ≤ σ

√
t (77)

and

u
(
t, c∗t− 3

2λ∗
log t+ y

)
≤ ρ y e−λ∗y for all t ≥ 1 and y ≥ 1. (78)

Proof. The lower bound (77) is a simple consequence of (16). On the other hand, it follows
from (23), (24) and the fact that u(t, x) is below one of its translates in time, that there exist some
positive constants T , y and ρ such that u

(
t, c∗t − (3/(2λ∗)) log t + y

)
≤ ρ y e−λ

∗y for all t ≥ T and
y ≥ y, hence the inequality (78) for a possibly different ρ. �

The main ingredient of the proof of Theorem 1.2 is a Liouville type lemma, whose proof is
postponed at the end of the section.

Lemma 6.2 For any solution 0 ≤ u∞(t, x) ≤ π(x) of (83) in R2 satisfying (84) and (85) for some
positive constants κ and ρ, there is ξ0 ∈ R such that u∞(t, x) = Uc∗(t+ ξ0, x) for all (t, x) ∈ R2.

Proof of Theorem 1.2. First, let σ > 0 and 0 < κ ≤ ρ be given as in the previous lemma. Write
the pulsating front Uc∗ as

Uc∗(t, x) = φc∗(x− c∗t, x), (79)

where 0 < φc∗(s, x) < π(x) is continuous in R×R, 1-periodic in x, and φc∗(−∞, ·) = π, φc∗(+∞, ·) =
0. From [19], there is a constant B > 0 such that

φc∗(s, x) ∼ B ψ(x, λ∗) s e−λ
∗s as s→ +∞, uniformly in x ∈ R. (80)

Choose now any real number C̃ ≥ 0 so that

B maxψ(·, λ∗) e−c∗λ∗C̃ ≤ κ ≤ ρ eλ∗ ≤ B minψ(·, λ∗) ec∗λ∗C̃ . (81)

Let us prove that (5) holds with the choice of C = C̃ + 1/c∗. Assume not. There are then ε > 0
and a sequence of positive times (tn)n∈N such that tn → +∞ as n→ +∞ and

min
|ξ|≤C̃+1/c∗

∥∥∥∥u(tn, ·)− Uc∗
(
tn −

3

2c∗λ∗
log tn + ξ, ·

)∥∥∥∥
L∞(0,+∞)

≥ ε

for all n ∈ N. Since φc∗(−∞, ·) = π, φc∗(+∞, ·) = 0 uniformly in R and φ(s, x) is 1-periodic in x, it
follows from (79) and Theorem 1.1 that there exists a constant θ ≥ 0 such that

min
|ξ|≤C̃

(
max
|y|≤θ

∣∣∣u(tn, y +
[
c∗tn −

3

2λ∗
log tn

])
− Uc∗(ξ, y)

∣∣∣) ≥ ε (82)

for all n ∈ N, where [c∗tn − 3/(2λ∗) log tn] denotes the integer part of c∗tn − 3/(2λ∗) log tn.
For each n ∈ N, set un(t, x) = u

(
t+ tn, x+

[
c∗tn− 3

2λ∗ log tn
])
. Up to extraction of a subsequence,

the functions un converge locally uniformly in R2 to a solution u∞ of

(u∞)t = (u∞)xx + f(x, u∞) in R2 (83)

such that 0 ≤ u∞(t, x) ≤ π(x) in R2. Furthermore, Theorem 1.1 implies that

lim
A→+∞

(
sup

(t,x)∈R2, x≥c∗t+A
u∞(t, x)

)
= 0 and lim

A→−∞

(
sup

(t,x)∈R2, x≤c∗t+A
(π(x)− u∞(t, x))

)
= 0. (84)
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On the other hand, for each fixed t ∈ R and y > 2, and n large enough, write

un(t, c∗t+ y) = u
(
t+ tn, c

∗(t+ tn)− 3

2λ∗
log(t+ tn) + y + γn

)
,

where γn =
[
c∗tn−(3/(2λ∗)) log tn

]
−
(
c∗tn−(3/(2λ∗)) log(t+tn)

)
. There holds t+tn ≥ 1 and 1 ≤ y+

γn ≤ σ
√
t+ tn for n large enough, whence κ (y+γn) e−λ

∗(y+γn) ≤ un(t, c∗t+y) ≤ ρ (y+γn) e−λ
∗(y+γn)

for n large enough, from Lemma 6.1. Since −1 ≤ lim infn→+∞ γn ≤ lim supn→+∞ γn ≤ 0, it follows
that

κ (y − 1) e−λ
∗y ≤ u∞(t, c∗t+ y) ≤ ρ y e−λ∗(y−1) for all t ∈ R and y ≥ 2. (85)

Now, it follows from Lemma 6.2, from (79), from (85) and from the exponential decay (80) of
φc∗ , that κ ≤ Bmaxψ(·, λ∗) ec∗λ∗ξ0 and Bminψ(·, λ∗) ec∗λ∗ξ0 ≤ ρ eλ

∗
, whence |ξ0| ≤ C̃ from (81).

But since (at least for a subsequence) un → u∞ locally uniformly in R2, it follows in particular that
un(0, ·)− Uc∗(ξ0, ·)→ 0 uniformly in [−θ, θ], that is

max
|y|≤θ

∣∣∣u(tn, y +
[
c∗tn −

3

2λ∗
log tn

])
− Uc∗(ξ0, y)

∣∣∣→ 0 as n→ +∞.

Since |ξ0| ≤ C̃, one gets a contradiction with (82). Therefore, (5) is proved.
Let us now turn to the proof of (6). Let m ∈ (0,minR π) be fixed and let (tn)n∈N and (xn)n∈N

be two sequences of positive real numbers such that tn → +∞ as n → +∞ and u(tn, xn) = m for
all n ∈ N. Set Xn = [xn] −

[
c∗tn − (3/(2λ∗)) log tn

]
. Theorem 1.1 implies that the sequence of

integers (Xn)n∈N is bounded, and may then be assumed to be equal to a constant integer X∞, up
to extraction of a subsequence. Under the notations of the previous paragraphs, the functions

vn(t, x) = u(t+ tn, x+ [xn]) = u
(
t+ tn, x+X∞ +

[
c∗tn −

3

2λ∗
log tn

])
= un(t, x+X∞)

converge locally uniformly in R2, up to extraction of another subsequence, to the function

v∞(t, x) = u∞(t, x+X∞) = Uc∗(t+ ξ, x+X∞) = Uc∗
(
t+ ξ − X∞

c∗
, x
)

for some real number ξ. Since vn(0, xn−[xn]) = m for all n ∈ N and xn−[xn]→ x∞ as n→ +∞, one
gets that Uc∗(ξ−X∞/c∗, x∞) = m, that is ξ−X∞/c∗ = T , where T is the unique real number such
that Uc∗(T, x∞) = m. Finally, the limit v∞ is uniquely determined and the whole sequence (vn)n∈N
therefore converges to the pulsating front Uc∗(t + T, x). The proof of Theorem 1.2 is thereby com-
plete. �

Proof of Lemma 6.2. In the homogeneous case, the function u∞ is assumed to be trapped between
two shifts of the minimal traveling front, then the conclusion follows directly from Theorem 3.5 of [3].
In our periodic case, the comparisons (85) and the exponential behavior (80) of the minimal front Uc∗

imply that u∞ is actually trapped between two finite time-shifts of Uc∗ in the region
{
x− c∗t ≥ 0

}
.

In the region where x−c∗t is very negative, u∞(t, x) is close to π(x) and the maximum principle can
be applied since f(x, s)/s is decreasing with respect to s > 0, at least when s is close to π(x). The
solution u∞ can then be compared to some of its shifts in this region. We finally complete the proof
of the lemma by using a sliding method: we shift the function u∞(t, x + 1) in time, we compare it
with the function u∞, and we show that u∞(t + 1/c∗, x + 1) = u∞(t, x) in R2. Together with (84)
and (85), this will mean that u∞ is a pulsating front. From the uniqueness of the pulsating fronts
up to time-shifts [21], the conclusion of the lemma will follow. More precisely, for all ξ ∈ R and
(t, x) ∈ R2, we set vξ(t, x) = u∞(t + ξ, x + 1). We shall compare vξ to u∞ and prove that vξ ≥ u∞
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in R2 for all ξ large enough. We will then prove that vξ ≡ u∞ in R2 for the smallest such ξ, and
finally that this critical shift is equal to 1/c∗.

To do so, we first notice that, for all a ≤ b ∈ R, there holds

inf
(t,x)∈R2, a≤x−c∗t≤b

u∞(t, x) > 0 and inf
(t,x)∈R2, a≤x−c∗t≤b

(π(x)− u∞(t, x)) > 0. (86)

This a consequence of the strong maximum principle, parabolic regularity, and the fact the solution
0 < u∞(t, x) < π(x) converges to two different limits (0 and π(x)) as x− c∗t→ ±∞. Now, if f(x, s)
is of the type f(x, s) = g(x) f̃(s) with, for instance, f̃ concave and f̃(1) = 0, there is δ ∈ (0, 1) such
that f̃(s)/s is decreasing in [1− δ, 1]; by defining f(x, s) = 0 for all (x, s) ∈ R× (1,+∞), it follows
that s 7→ f(x, s)/s is nonincreasing on [1− δ,+∞) for every x ∈ R. Whether f(x, s) be of the type
g(x) f̃(s) or not, one then gets from the general assumptions of Section 1 and from the definition of
π(x) that s 7→ f(x, s)/s is nonincreasing on [(1− δ)π(x),+∞) for every x ∈ R. From (84) and the
fact that minR π > 0, there is A > 0 such that

u∞(t, x) ≥ (1− δ)π(x) for all (t, x) ∈ R2 such that x− c∗t ≤ −A. (87)

As far as the region
{
x− c∗t ≥ −A

}
is concerned, we claim that there is ξ ∈ R such that

vξ(t, x) = u∞(t+ ξ, x+ 1) ≥ u∞(t, x) for all x− c∗t ≥ −A and ξ ≥ ξ. (88)

Assume not. Then there exist some sequences (ξn)n∈N in [0,+∞) and (tn, xn)n∈N in R2 such that
limn→+∞ ξn = +∞, while xn− c∗tn ≥ −A and u∞(tn + ξn, xn + 1) = vξn(tn, xn) < u∞(tn, xn) for all
n ∈ N. Because of (84), (85) and (86), the sequence (xn− c∗tn− c∗ξn)n∈N is bounded from below by
a constant M . Thus, (85) and (86) provide the existence of some positive constants κ̃ and ρ̃ such
that

κ̃ (xn − c∗tn − c∗ξn −M + 1) e−λ
∗(xn−c∗tn−c∗ξn)

≤ u∞(tn + ξn, xn + 1) < u∞(tn, xn) ≤ ρ̃ (xn − c∗tn +A+ 1) e−λ
∗(xn−c∗tn)

(89)

for all n ∈ N. On the other hand,

xn−c∗tn+A+1 = (xn−c∗tn−c∗ξn−M+1)+(c∗ξn+M+A) ≤ 2 (xn−c∗tn−c∗ξn−M+1) (c∗ξn+M+A)

for n large enough. Putting this into (89) and passing to the limit as n → +∞ (with ξn → +∞ as
n→ +∞) leads to a contradiction. Thus, the claim (88) is proved.

Without loss of generality, one can assume that ξ ≥ 1/c∗. In this paragraph, we fix ξ in the
interval [ξ,+∞). Set

ε∗ = min
{
ε ≥ 0, (1 + ε) vξ(t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 such that x− c∗t ≤ −A

}
.

Notice first that vξ is bounded from below by a positive constant in the region {x − c∗t ≤ −A}
by (84) and (86), while u∞ is bounded from above, whence ε∗ is a nonnegative real number. Let
us prove that ε∗ = 0. Assume that ε∗ > 0. Since u∞ is globally Lipschitz continuous and since
vξ ≥ u∞ on

{
x − c∗t = −A

}
by (88) and both functions vξ(t, x) and u∞(t, x) converge to π(x) as

x− c∗t→ −∞, there are a sequence (εn)n∈N of positive real numbers, a sequence (tn, xn)n∈N in R2

and a real number y∞ < −A such that

εn → ε∗, xn − c∗tn → y∞ as n→ +∞ and (1 + εn) vξ(tn, xn) < u∞(tn, xn) for all n ∈ N.
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Without loss of generality, one can also assume that xn−[xn]→ x∞ and tn−[xn]/c∗ → τ as n→ +∞,
with y∞ = x∞−c∗τ . Up to extraction of a subsequence, the functions Un(t, x) = u∞(t+[xn]/c∗, x+
[xn]) converge locally uniformly in R2 to a solution 0 ≤ U∞ ≤ π of (83) satisfying (84) and (85). Set
V ξ(t, x) = U∞(t+ξ, x+1) for all (t, x) ∈ R2. Therefore, (1+ε∗)V ξ(t, x) ≥ U∞(t, x) for all (t, x) ∈ R2

such that x − c∗t ≤ −A, with equality at the point (τ, x∞) such that x∞ − c∗τ = y∞ < −A. On
the other hand, for all (t, x) ∈ R2 such that x− c∗t ≤ −A, there holds (1 + ε∗)V ξ(t, x) ≥ V ξ(t, x) ≥
(1 − δ)π(x) from (87), the definition of the functions V ξ and Un, and the assumption ξ ≥ 1/c∗.
Consequently,

(1 + ε∗)V ξ
t (t, x)− (1 + ε∗)V ξ

xx(t, x) = (1 + ε∗) f(x, V ξ(t, x)) ≥ f(x, (1 + ε∗)V ξ(t, x))

for all (t, x) ∈ R2 such that x− c∗t ≤ −A, since s 7→ f(x, s)/s is nonincreasing on [(1− δ)π(x),+∞)
for every x ∈ R. Since U∞ solves (83), it follows from the strong parabolic maximum principle that
(1 + ε∗)V ξ(t, x) = U∞(t, x) for all (t, x) ∈ R2 such that x − c∗t ≤ −A and t ≤ τ . The positivity
of ε∗ is in contradiction with the fact that V ξ(t, x) and U∞(t, x) converge to π(x) > 0 uniformly as
x− c∗t→ −∞. Therefore, ε∗ = 0, whence

vξ(t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 such that x− c∗t ≤ −A. (90)

Together with (88), one gets finally that vξ ≥ u∞ in R2 for all ξ ≥ ξ.
Set now ξ∗ = min

{
ξ ∈ R, vξ′ ≥ u∞ in R2 for all ξ′ ≥ ξ

}
, which is a well defined real number

such that ξ∗ ≤ ξ (notice that vξ(t, x)→ 0 as ξ → −∞ for each fixed (t, x) ∈ R2, while u∞ > 0 in R2).
Our goal is to prove that ξ∗ ≤ 1/c∗, which will then yield v1/c

∗ ≥ u∞ and a symmetric argument will
then give the desired conclusion. Assume then by way of contradiction that ξ∗ > 1/c∗. Remember
that vξ∗ ≥ u∞ in R2 by definition of ξ∗. We first claim that, for any a ≤ b in R,

inf
(t,x)∈R2, a≤x−c∗t≤b

(
vξ∗(t, x)− u∞(t, x)

)
> 0. (91)

Otherwise, by a usual limiting argument, there would exist a solution 0 ≤ U∞ ≤ π of (83) satis-
fying (84) and (85), and such that U∞(t + ξ∗, x + 1) ≥ U∞(t, x) for all (t, x) ∈ R2 with equality
somewhere. From the strong maximum principle and the uniqueness of the solutions of the Cauchy
problem associated with (83), it would then follow that U∞(t+ξ∗, x+1) = U∞(t, x) for all (t, x) ∈ R2

and then U∞(t + kξ∗, x + k) = U∞(t, x) in R2 for all k ∈ N. Since one has assumed that ξ∗ > 1/c∗

and since U∞ satisfies (84), the limit as k → +∞ implies that U∞(t, x) = π(x) for all (t, x) ∈ R2,
which is clearly impossible, because of property (85) satisfied by U∞.

Therefore, (91) holds. In particular, since u∞ is Lipschitz, there is ξ ∈ (1/c∗, ξ∗) such that

vξ(t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 such that x− c∗t = −A and for all ξ ∈ [ξ, ξ∗].

Furthermore, vξ(t, x) ≥ (1−δ)π(x) for all (t, x) ∈ R2 such that x−c∗t ≤ −A and for all ξ ∈ [ξ, ξ∗] ⊂
[1/c∗,+∞), from (87) and the definition of vξ. As done in the proof of (90), it follows then that

vξ(t, x) ≥ u∞(t, x) for all (t, x) ∈ R2 such that x− c∗t ≤ −A and for all ξ ∈ [ξ, ξ∗]. (92)

On the other hand, the definition of ξ∗ implies that there exist a sequence (ξn)n∈N in (ξ∗− 1, ξ∗)
and a sequence (tn, xn)n∈N in R2 such that

ξn → ξ∗ as n→ +∞ and vξn(tn, xn) < u∞(tn, xn) for all n ∈ N. (93)
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Property (92) yields xn − c∗tn > −A for all n large enough and (91) and (93) imply then that
xn − c∗tn → +∞ as n→ +∞. Up to extraction of a subsequence, one can assume that xn − [xn]→
x∞ ∈ [0, 1] as n→ +∞.

Define now Un(t, x) =
u∞(t+ tn, x+ [xn])

u∞(tn, [xn])
and Vn(t, x) =

vξ∗(t+ tn, x+ [xn])

u∞(t+ tn, x+ [xn])
for all (t, x) ∈ R2

and n ∈ N. From (85) and limn→+∞ xn − c∗tn = +∞, it follows that the sequences (Un)n∈N and
(Vn)n∈N are bounded in L∞loc(R2). From standard parabolic estimates and the fact that u∞(tn, [xn])→
0 as n → +∞, the functions Un converge locally uniformly in R2, up to extraction of a subse-
quence, to a nonnegative classical solution U∞ of (U∞)t = (U∞)xx + g(x)U∞ in R2. Furthermore,
(Un)x → (U∞)x locally in R2 as n → +∞ and U∞(0, 0) = 1, whence U∞ > 0 in R2 from the

maximum principle. In particular, the functions
(u∞)x(t+ tn, x+ [xn])

u∞(t+ tn, x+ [xn])
=

(Un)x(t, x)

Un(t, x)
are locally

bounded. As far as the functions Vn are concerned, they obey

(Vn)t(t, x) = (Vn)xx(t, x) + 2
(Un)x(t, x)

Un(t, x)
(Vn)x(t, x)

+
f(x, u∞(t+ tn, x+ [xn])Vn(t, x))

u∞(t+ tn, x+ [xn])
− f(x, u∞(t+ tn, x+ [xn]))

u∞(t+ tn, x+ [xn])
Vn(t, x)

in R2. Since (Un)x/Un → (U∞)x/U∞ and u∞(t+tn, x+[xn])→ 0 locally uniformly in R2 as n→ +∞,
and since the functions Vn are locally bounded, it follows from standard parabolic estimates that,
up to extraction of a subsequence, the functions Vn converge locally uniformly in R2 to a classical
solution V∞ of

(V∞)t = (V∞)xx + 2
(U∞)x
U∞

(V∞)x in R2. (94)

Owing to the definitions of Vn and ξ∗, one has Vn ≥ 1 whence V∞ ≥ 1 in R2. On the other hand,

Vn(ξn − ξ∗, xn − [xn]) =
vξn(tn, xn)

u∞(tn, xn)
× Un(0, xn − [xn])

Un(ξn − ξ∗, xn − [xn])
≤ Un(0, xn − [xn])

Un(ξn − ξ∗, xn − [xn])

from (93). By passing to the limit as n→ +∞, one infers that V∞(0, x∞) ≤ 1. Finally, V∞(0, x∞) =
1. Therefore, V∞ = 1 in R2 from the strong parabolic maximum principle and the uniqueness of the
Cauchy problem associated with (94).

One has then proved that

u∞(t+ tn + ξ∗, x+ [xn] + 1)

u∞(t+ tn, x+ [xn])
=
vξ∗(t+ tn, x+ [xn])

u∞(t+ tn, x+ [xn])
→ 1 locally uniformly in R2 as n→ +∞.

It follows by immediate induction that, for each p ∈ N, there holds

u∞(t+ tn + pξ∗, x+ [xn] + p)

u∞(t+ tn, x+ [xn])
→ 1 locally uniformly in R2 as n→ +∞.

Fix p ∈ N. Property (85) and the limit limn→+∞ xn − c∗tn = +∞ imply that, for n large enough,

u∞(tn + pξ∗, [xn] + p)

u∞(tn, [xn])
≥
κ
(
[xn] + p− c∗tn − pc∗ξ∗ − 1

)
e−λ

∗([xn]+p−c∗tn−pc∗ξ∗)

ρ ([xn]− c∗tn) e−λ∗([xn]−c∗tn−1)
.

By passing to the limit as n → +∞, one gets that 1 ≥ (κ/ρ) e pλ
∗(c∗ξ∗−1)−λ∗ . Since this inequality

holds for all p ∈ N and since one had assumed that ξ∗ > 1/c∗, one is led to a contradiction. One
concludes that ξ∗ ≤ 1/c∗, whence v1/c

∗ ≥ u∞ in R2.
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By sliding u∞(t, x + 1) in the other t-direction, one can prove similarly that vξ ≤ u∞ in R2

for all ξ ≤ ξ− for some real number ξ−, and that the largest such ξ cannot be smaller than 1/c∗.
Therefore, v1/c

∗ ≤ u∞ in R2.
Finally, v1/c

∗
= u∞ in R2, that is u∞(t + 1/c∗, x + 1) = u∞(t, x) for all (t, x) ∈ R2. In other

words, u∞ is a pulsating front with speed c∗, connecting 0 and π(x). The conclusion follows from
the uniqueness up to time-shifts of the pulsating fronts, for a given speed (see [21]). The proof of
Lemma 6.2 is thereby complete. �
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