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Abstract

This paper is concerned with eigenvalue problems for elliptic operators with
large drifts in bounded domains under Dirichlet boundary conditions. We con-
sider the minimal principal eigenvalue and the related principal eigenfunction
in the class of drifts having a given, but large, pointwise upper bound. We
show that, in the asymptotic limit of large drifts, the maximal points of the
optimal principal eigenfunctions converge to the set of points maximizing the
distance to the boundary of the domain. We also show the uniform asymptotic
profile of these principal eigenfunctions and the direction of their gradients in
neighborhoods of the boundary.

1 Introduction

Throughout this paper, if n > 1, by “domain” of R", we mean an open connected
subset of R™. The set of all bounded domains of R" with C? boundary will be denoted
by O. If 2 € O and z € , define d(x) := d(z, ). For 6 > 0, let

O ={zeQ: dx) <6} (1.1)

be the open neighborhood of 02 of width ¢, relatively to 2. The Euclidean norm
in R” will be denoted by |-|. When v : 2 — R" is a measurable vector field on €,
we say that v € L>(Q,R") if and only if ||v]|, = [[[v][[feq) < +oo. If A C R”
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is measurable, |A| stands for the Lebesgue measure of A. Finally, we let B,.(z)
denote the open Euclidean ball of R® with center x € R™ and radius r > 0, and
we set B, = B,(0). With a slight abuse of notation, we also note By(x) = {z} and
By = {0}.

Let n > 1 and Q € O. Consider a bounded measurable vector field v : Q@ — R™.
We are interested in the principal eigenvalue of the operator —A + v - V in £ under
Dirichlet boundary condition, which will be denoted by A, in the sequelﬂ Recall
([, p. 49]) that \, is real-valued and that the eigenspace corresponding to A, has
dimension 1. Moreover, if ¢ is “the” eigenfunction in L?*(f2) corresponding to the
eigenvalue \,, then (up to normalization) ¢ > 0 in 2. Thus, the function ¢ satisfies

—Ap+v-Vp=XAp inQ,
>0 in €2, (1.2)
=20 on 0f2.

By standard elliptic regularity, ¢ € W?P(Q) for all p € [1,00), which entails that
© € CY(Q) for all a € (0,1). The strong maximum principle also ensures that
Ay > 0.

The main results of the present paper arise from the study of optimization pro-
blems for \,. An archetypical optimization problem is the following question: given
any fixed m > 0 and 7 > 0, among all the domains Q € O with |Q2] = m and all the
vector fields v € L>(Q2,R") with [|v|| , < 7, is the infimum of A, reached for some
and some v 7 When 7 = 0, this amounts to minimizing the principal eigenvalue of —A
in © under Dirichlet boundary condition, and it is a well-known fact ([4] 10} [I1]) that
the infimum is reached if and only if €2 is an Euclidean ball. For 7 > 0, it was proved
by the first and the third author ([9, Theorem 2.9]) that A, reaches its infimum if
and only if, up to translation, €2 is an Euclidean ball centered at 0 and v(z) = T%.
As a matter of fact, the first step of the proof of [9, Theorem 2.9] given in [7, §] is
the solution of an optimization problem for A\, when the domain € is fixed and the
vector field v varies under the constraint ||v||,, < 7. More precisely, given 2 € O,
define, for 7 > 0,

A1) :=inf{\, : |v| <7}, (1.3)

where the infimum is taken over all the vector fields v e L*°(£2, R") such that ||v]|  <T.
Then ([9, Theorem 6.6]), there exists a unique vector field v, € L*(Q,R") with
|lv-|l < 7 such that A(7) = A,.. Moreover, |v-(z)| = 7 for a.e. (almost every)
x € , and, if ¢, is the corresponding eigenfunction of with v = v,, one has
|V, (x)] > 0 for a.e. x € Q and

y Vo,
r = —T
V|

a.e. in €. (1.4)

INote that )\, depends on 2 and v, but the dependence with respect to  will not be explicitly
written down, since the domain  will be given and fixed in most parts of the paper, except in
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Thus, ¢, solves
—Ap; = 7|V = A7) in
0, >0 in Q, (L.5)
or =0 on 0f).

This entails that, for all a € (0,1), Ap, € C%*(Q), so that ¢, € C2%() (if Q is
assumed to be of class C*® for some «a € (0, 1), the function ¢, would then be of
class C*%(Q)). We normalize o, > 0 by setting maxg e, = 1. The function ¢, is
then the unique solution to satisfying this normalization. Notice also that the

equality A\(7) = A, immediately yields
A(T) > 0.

When Q = Bg for some R > 0, then ¢, is radially decreasing and v, (z) = Té—l

for all z € @\ {0} ([9, Theorem 6.8]). Moreover ([9, Lemma 7.2]), when n > 2,
there holds In A(7) ~ —7R when 7 — 400, and, when n = 1, there holds more
precisely A(7) ~ 727 when 7 — +o00. These asymptotics were also proved in [5]
by probabilistic arguments for more general elliptic operators of second order with
C' coefficients (note that 2y is not C' at 0, so that the results of [5] do not exactly
fall into the scope of the problems dealt with in the present paper).

This paper is chiefly devoted to the study of the asymptotic behavior of ¢, as
T — 400 for any domain €2 € O. Our first main result deals with the points where
¢, reaches its maximum (recall that ¢, is continuous in ). When  is a ball, as
recalled before, this maximum is reached at the center of €2, i.e. the point in Q where

d reaches its maximum. In the general case, we establish:

Theorem 1.1. Let Q2 € O. For all 7 > 0, let x; be a point in 2 where o, reaches
its mazximum in 2. Then

d(z;) — maxd asT — +00.
)

We then prove that (. converges to 1 as 7 — 400 locally uniformly in €2, and
give the precise asymptotic profile near 0€:

Theorem 1.2. Let Q2 € O. There holds

o ()

W%l GST—>+OO, (16)
— e~ Td(z

uniformly with respect to x € ).

Finally, we also describe the behavior of Vi, when 7 — +o00. In the case where

2 is a ball Bg, since ¢, is radial, gi—:g' = —y = Vd(z) for all z € Q\{0}. For a
Veor

general domain 2 € O, we compare with Vd near 02 when 7 — +o00. More

. [Veor|
precisely:



Theorem 1.3. Let Q2 € O. For any M > 0, there holds

Vo,
|V907"

min |Vo,| 2 7 and max
QM/T QIW/T

—Vd‘—ﬂ) as¢—>—|—oo

We point out that Vd = —v on 0%, where v(y) denotes the outward unit normal
to €2 at any point y € 0f). Therefore, the second part of the conclusion of Theorem 1.3
implies that the gradient of the optimal eigenfunction ¢, almost points towards the
same direction as the opposite of the normal vector field to €2 in thin neighborhoods
of Q2. We conjecture that, for a general domain 2 € O, the vector fields V., /|V,|
converge to Vd a.e. in 2 as 7 — +00, that is, the minimizing vector fields v, given
by are asymptotically proportional to the opposite of the gradient of the distance
to 092. That problem is still open for general domains 2. However, the property holds
when € is an annulus, say with center 0, that is, Q = By \ B, for some 0 < r < R.

Theorem 1.4. Letn >2,0 <7 < R and Q = Bg \ B,. Then, for every T > 0, the
principal eigenfunction p; solving (1.5)) is radially symmetric, i.e., p.(x) = -(|z])
in 0 for some function ®. : [r, R] — [0,1], and

_vr(x) _ Ve (2) — Vd(z) as T — +oo for all v € Q with |z| #

T V()]

Before going into the proofs, let us give some heuristic analytic and probabilistic
interpretations of these main results. On the one hand, minimizing the principal
eigenvalue A, of ([1.2) means minimizing the deleterious effect of the Dirichlet bound-
ary condition, which makes the solutions of the related Cauchy problem

r+ R

u +v - Vu = Au, ulyg = 0, (1.7)

converge to 0 as t — +oo with at least a rate of the type e ***. The solutions diffuse
and are transported along the vector field v. When v points from the boundary
to the center of the domain, the boundary value 0 tends to be propagated inside
the domain, making the solutions converge to 0 as ¢ — +oo with a faster decay
rate A\,. Therefore, in order to minimize these negative effects, the vector fields
v, = =7V, /|Ve,| minimizing should better point towards the boundary. Our
results make this formal statement rigorous and quantitative: the minimizing vector
fields have the largest possible magnitude and their direction is parallel and opposite
to that of the gradient of the distance to the boundary in neighborhoods of the
boundary. The size of the boundary layer is precisely estimated and the asymptotic
profile is found. Furthermore, outside of this boundary layer, the eigenfunctions
become approximately constant and their maximal points are as far as possible from
the boundary.

On the other hand, coincides with the Kolmogorov equation of the stochastic
differential equation

dX (t) = —vdt +V2dW (2),

*The notation mingsr+|Ve,| 2 7 as 7 — 400 means that there exist C' > 0 and 7o > 0 such

that ming;— |V, | > C7 for all 7 > 7.



subject to absorption on 9€). Namely, the solution of (1.7) with a nonnegative initial
datum wug is given by

u(z,t) = Elug(X (1)) | X(0) = «],

in which the contribution of the trajectories X hitting the boundary of €2 before the
time t is equal to 0. Thus in order to minimize the decay rate A, of u one should
prevent the trajectories from hitting 02. One could think that the best strategy to
do this would be taking —v pointing in the direction opposed to the closest point
of the boundary at the maximum allowed intensity 7, that is, —v, = 7Vd. This is
not the case because the presence of the Brownian motion “deviates” the trajectory
from the imposed drift —v and makes the optimization problem a nonlocal one which
depends on the whole boundary of 2. However, as 7 goes to +oo, the influence
of the Brownian motion becomes negligible compared with the drift, leading to the
conjecture that —uv, aligns with Vd in the limit.

Let us now quickly describe the proofs. For Theorem we compare . with
the function u(z) := 1 — e 7@+ where v > 1 and € > 0. Namely, for all 7
large enough, there holds —Awu — 7|Vu| > y7e777(@+) in the viscosity sense in €.

Then, looking at the points where - reaches its maximum in €2, it follows from

the asymptotic behavior of A\(7) recalled above that, ¢, < % in €2 for 7 large
enough, with R := maxgd. This yields the desired conclusion, since the maximum
of ¢, in Q is 1. The major ingredient in this argument is the semiconcavity of d (see
Section (3| below).

As far as Theorem [1.2] is concerned, one readily deduces from the inequality

or(r) < 11_7‘1_,—?;73 seen before that

lim sup (sup %) <1

rtoo \ze@ 1 —e T4

In order to derive a corresponding lower bound, a preliminary step is to prove that
@, converges to 1 as 7 — 400 locally uniformly in €2. This is first shown in a
neighborhood of z, where ¢ (z,) = 1, by means of a blow-up of the function ¢,
around z, that can be performed thanks to Theorem [I.1} Next we propagate this
convergence result up to a boundary layer of width of order 1/7 using a technical
lemma about the variation of the minimum on concentric spheres, together with a
covering argument. The convergence result in the whole € is eventually obtained by
comparison with a lower barrier function of the type = +— 1 — e~ (@®)—)

Finally, for the proof of Theorem [1.3| we argue by contradiction, using a rescaling
procedure of o, again.

In the present paper we consider the problem of minimizing the principal eigen-
value A, in , but one could also be interested in maximizing such an eigenvalue.
That is, one could define A\(7) by replacing the “inf” with a “sup” in . It turns
out that also A(7) is attained by a unique vector field 7., with the principal eigenfunc-
tions @, satisfying and with —7 replaced by 7. In such case we conjecture
that, after the L normalization, i, converges as 7 — +00 locally uniformly to 0 in
the complement of the set where d reaches its maximum.



The paper is organized as follows. Some basic properties of A(7) are given in
Section [2l We show Theorem in Section [3] Section [4] is devoted to the proof of
the local uniform convergence of ¢, to 1, and the proof of Theorem is completed
in Section [f] Section [6]is concerned with the proof of Theorem We complete the
paper with Section [7] and the proof of Theorem [1.4]in the case when € is an annulus.

2 Preliminary properties of \(7)

We show in this section some basic properties of the minimizing principal eigen-
value A(7), which will be used in the next sections.

Proposition 2.1. There holds

A7) =max {\ :3p € C*Q), ¢ >0 and — Ap —7|Vp| > Ap in Q}
=min{\ :Jp e C*(YNC(Q), ¢ >01inQ, (2.1)

— Ap —7|V| < Ap in Q and p =0 on 00},
Moreover, the max and the min are achieved only by A(T) and the corresponding

functions ¢ must coincide with ¢, up to positive scalar multiples. Finally, () is
strictly decreasing with respect to 7 as well as to the inclusion of domains ).

Proof. Let A € R and » € C*(Q) be such that ¢ > 0 and
—Ap —7|Vp| > Ap in Q.
Then, for any v such that ||v||zeq) < 7 there holds
—Ap+v-Vp>XAp in Q.
By [1], one knows that

Ap = max { 3o e W2(Q), ¢ >0and —Ap+v-Vo > up ae. in Q},

loc

hence A < \,, and that the equality A = A, holds if and only if ¢ is the principal
eigenfunction of (1.2)). Taking v = v, given by we get A < \,_ = A(7) and then
using the fact that the function ¢, satisfies we derive the first equality in .
Moreover, A < A(7) unless ¢ coincides with ¢, up to a scalar multiple.

The first equality in also implies that A(7) is non-increasing with respect to
both 7 and the inclusion of domains 2 (the former also immediately follows from the
definition (L.3)). Consider now 7" € R such that 7/ > 7 and assume by contradiction
that A\(7") = A(7). Since |Vp,/| > 0 a.e. in 2, one then gets

— Apr —7|Vor| > =D — 7|V | = XN7) o = A7) o ae. in Q. (2.2)

Hence, ¢ := ¢,/ is a supersolution of (1.5)) with A := A(7). The conclusion of the
previous paragraph implies that ¢, and ¢, must coincide up to a scalar multiple,
which contradicts the strict inequality in (2.2]). Therefore, A(7') < A(7). Similarly, the
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solution ¢’ of the nonlinear eigenvalue problem ([1.5)) with €2 replaced by a (connected)
domain €' 2 Q and with principal eigenvalue X satisfies —Ay’ — 7|V¢'| = N¢' in Q.
Since maxyg ' > 0, ¢’ does not coincide with o, in € up to a scalar multiple and
we conclude from the previous paragraph that X\ < A(7). This means that the
monotonicities of A(7) with respect to both 7 and Q) are strict.

For the second equality in (2.I)), consider A € R and let ¢ € C*(Q) N C'(Q) be
such that ¢ > 0in Q, —Ap — 7|Vy| < Ap in Q and ¢ = 0 on J2. Define

__Velr)
v(x) = V()]

0 otherwise.

if [V(z)] > 0,

The function ¢ is a positive subsolution of the eigenvalue problem
—Ap+v-Vyp=Ap in ), =0 on JN.

By [1], this means that A\, < X and that equality holds if and only if ¢ is the principal
eigenfunction for the above problem. Since [|v||=) < 7, it follows that A(7) < A
and, by uniqueness of the vector field v minimizing , one infers that equality
A(T) = A holds if and only if ¢ coincides with the principal eigenfunction ¢, up to a
scalar multiple. The proof of Proposition is thereby complete. O

3 Location of maxima

This section is devoted to the proof of Theorem [[.T We first recall from Section
that d : @ — [0, +00) denotes the distance function from 9€2. Then define the open
neighborhood of 992 of width § > 0, relatively to €, as in (1.1]), that is,

QP ={ze: d) <5}

We will make use of some properties of the distance function in order to construct
a family of supersolutions to (1.5). One of them is the semiconcavity, which is a
straightforward consequence of the regularity of d in a neighborhood of 0f2, as shown
for instance in [2]. We include the proof of this fact below because we use a different
notion of semiconcavity, expressed in terms of the second order sub-differential jet.
For a continuous function u at a point x, the latter is defined by

1
Tu(a) = {(p.X) € RY xS uly) > ul@) +p- (y— ) + 5 X(y—2)- (y—2)
+o(ly —x*) asy— x},
where SV denotes the space of N x N symmetric matrices and X z-z denotes Xz-z =

ZlSiJSN Xijzizj for X = (Xij)1<ij<n € SN and z = (2;)1<i<ny € RY. This notion is
used to give a meaning to Vd and D?d in the viscosity sense, see, e.g., [3].



Lemma 3.1. There exists K > 0 such that for all x € Q and all (p, X) € J d(x),
there holds
Ip| =1 and X < K Iy,

where Iy is the identity matriz and < is the usual order on S™.

Proof. First of all, we know from [6, Lemmas 14.16 and 14.17] that there exists § > 0
such that d is of class C?(29) and therefore has bounded Hessian matrix in 9.
Consider now = € Q\ ©° and let z € 9Q be its or one of its projections on 9, that
is, |x — z| = d(x). The function g(y) := |y — z| satisfies g(x) = d(z) and, for all
y €, g(y) > d(y). As a consequence, if there exists (p, X) € J~d(x) then for y € Q
there holds

o(y) 2 d(y) > d(w) +p- (g~ )+ 5X(y ) - (y = ) + olly — )
= g(x) +p- (y— )+ 5X(y— ) (g~ 2) +olly — 2P,

that is, (p, X) € J g(x). Since g is a C? function outside z, we infer that

1
o=z o 2P

Tr—Zz

p = Vg(z) . X =D%(x)= (z—2)® (z - 2).

Tz -2
It follows that X < (d(x))"'Iy < §~'Iy. This concludes the proof of the lemma. [J

Proof of Theorem[1.1. Consider an arbitrary v > 1. For 7 > 0 and ¢ > 0, define the
function
Upe(z) = 1 — e 7(@Fe), (3.1)

If d were a C? function in the whole 2 we would have
—Aur . — 7|V, | = y7e T (— Ad + 47| Vd[* — 7|Vd]).

It is easy to check, using the fact that .. is the composition of the function d with
a strictly increasing smooth function, that the above formal computation holds for
the sub-differential jets, in the sense of multivalued functions, i.e.,

{-TrY —7lg| : (¢.Y) € Jurc(2)}
= {yre @) (—Tr X +~7|p|* — 7lp|) : (p, X) € J-d(z)}

for every z € Q. Owing to Lemma [3.1 and because v > 1, there is 75 > 0 such that,
for every 7 > 79, € Q and (p, X) € J d(x), one has — Tr X +~7|p|* — 7|p| > 1. Tt
follows that —Au, . — 7|Vu,.| > y7e™77(@+9) in QO still in the viscosity sense, that is,

V1 > 19, Ve >0, Ve e Q, V(q,Y) € J ur(x), —TrY—7|q| >n~re md@re) - (3.9)

Next, define

‘4
ke :=sup —.
Q Ure



Because u,. > 0 in Q together with ¢, > 0in © and wr = 0 on 01, the above supre-
mum is actually a maximum, attained at some z,. € (). Namely, the function & Lor
touches u, . from below at z,., whence

ko 2(Vor, D*0r) € J tr ().
We then deduce from that
VT 270, Ve>0, —Ap:(2re) = T|Vpr(2re)| > kpoyreTEEmITE),
this time in the classical sense. On the other hand, by ,

—AQDT(J'T,E) - T‘V@T(xf,€)| = )‘(7)907(55775)7
and therefore

V7 >1, Ve>0, ~remdenadte) < )\(T)M = MT)ure(zre) <A(T). (3.3)

T,E

Now, let us call R := maxgd > 0. By the monotonicity with respect to the inclu-
sion of domains, the quantity A(7) is bounded from above by the one corresponding
to the case = Bpg, and we know from [9, Lemma 7.2] that the logarithm of the latter
behaves like —7R as 7 — +0o. We can then find 7; > 0 such that \(7) < e 78/
for 7 > 7. We can assume without loss of generality that 7 > max(7,1). It then

follows from (3.3)) that

R
Vr>m, Ve>0, dx,.)+e> ol

Recalling the definition of k.., we eventually derive, for all 7 > 7 and € > 0,

o () Or(Trc) 1 1
Ve, <k;p.= = < < )
o Ure(2) = Ur(zr.) T 1 —emldlandte) T 1 — emTR/Y
Whence, passing to the limit as ¢ — 0 yields
1 j— e_’de(x)
VT Z 71, Vz c Q, QDT(.CE) S m (34)

It follows that, for 7 > 7y, the function ¢, cannot attain its maximal value 1 at any
point x with d(x) < R/~% This concludes the proof by the arbitrariness of v > 1. [J

4 Local uniform convergence

In this section we derive the locally uniform convergence of the functions ¢, to 1
as T — +0o (see Lemma [4.3| below), which is part of Theorem To do so, we first
show that the minimum of ¢, in some concentric balls strongly included in €2 can be
controlled by some constants close to 1 as 7 becomes large.

9



Lemma 4.1. Let xp € Q and 0 < R < R’ be such that Br/(xo) C Q and let
e € (0,1/R). Then there ezists 19 > 0, only depending on n, R, R’ and €, such
that

2(n—1) 1—er

<r<r <R, min @, > min ©;. (4.1)

VT Z 70, v el
T dB,(z0) 1 —er 6B, (z0)

Remark 4.2. For any 7 > 0, since the function o, € C%(2) N C(Q) satisfies
—Apr = 7|Vpr |+ A(T)p- >0 in Q,
the maximum principle implies that
mwin or = I%i)n ©r (4.2)

for any non-empty subset w C €. In particular, (4.1) can be rewritten as

for all 7 > 79 and 2(n — 1)/7 <r <" < R.

Proof of Lemmal[{.1. Let us assume for simplicity that 2o = 0 and let R, R’ and ¢
be as in the statement. Consider a smooth function y which is radially symmetric,
nonincreasing in the radial direction and satisfies

x(z) =1 for |z| <R, x(z) =0 for |z| > R'.

Then define
u(x) = x(x) — elz|

for all x € R™. The set where this function is positive is equal to some ball Bg_, with
O<R<R.<R.

Because the gradients of the functions x(x) and —|z| point towards the same direction,
we see that [Vu| > €, and therefore we get in Bp_ \ {0},

—Au—T|Vu|§—Ax—5<T—n_1).

||
In order to estimate the right-hand side, we restrict to the annulus Bg_ \ Batm-1)/r,
getting
ET
—Au —7|Vu| < —=Ay — 5

Then, there exists 79 > 0 large enough, depending on n, R., x and ¢ (hence, depending
on n, R, R and ¢) such that

2(n—1)

< R. and — Au—7|Vu| <0in B_RE\BQ(R,D/T, for all 7 > 79.  (4.3)
-

10



Fix any 7 > 79, any r € [2(n — 1)/7, R] (hence, er < eR < 1), and set

1
min ¢, > 0

k=
1 —er oB.

Suppose by contradiction that ¢, —ku < 0 somewhere in the annulus Bg_\ B,. Since
¢, — ku is nonnegative on the boundary of this set (we recall that u = 0 on 0Bpg,

and u = 1 — er on 0B,), the negative minimum is reached at some interior point
T € Bg_ \ B,, and thus there holds

AT)er(2) = =Ap; (&) — 7|V (2)] < —kAu(E) — kr[Vu(z)] <0
by . This is impossible because A(7) > 0. As a consequence,
0; —ku>0 in Bg_\ B,
from which is readily obtained recalling that y = 1 in Bp. O]

By making use of Theorem[I.1]and Lemma [4.1]together with a covering argument,
the following local uniform limit holds as 7 — +o0:

Lemma 4.3. The family (p;)-0 converges locally uniformly to 1 in 2 as 7 — +o0.

Proof. Let (x;),~0 be a family of maximal points of (¢;),~0, i.e., such that ¢ (z,)=1.
Remember from Theorem [1.1| that d(z,) — maxgd > 0 as 7 4+ oo. Firstly, we show
that ¢, — 1 near x, as 7 — +o0. Consider the family of functions (1, ),~¢ defined by

¢T<w> =Pr (x‘r + ;) .

Since the points x, are bounded away from 0 as 7 — +o00, the functions (1;),>0
are defined in a family of domains which converge to the whole space R" as 7 — 400,
and satisfy there

A(T)

—A@br - |V¢T| = 2 Q/Jr

Therefore, since the eigenvalues A(7) are bounded as 7 — +o0 by Proposition2.1] (and
even converge to 0 as 7 — 400 as recalled in Section , interior elliptic estimatesﬁ
imply that, as 7 — +00, the functions v, converge in C?_(R"), at least for a sequence
(Tn)nen — 400, to some function 1., satisfying

Voo (0) =1 = I%%Xwoo7 —Atho — |Vho| = 0 in R™.

Since the latter equation can be written in linear form, with a bounded first order
coefficient and without zero order term, it follows from the strong maximum principle

30ne first writes the equation in linear form, with first order coefficient equal to —V, /|V), |,
which has L° norm equal to 1, and derives VVIQOS a priori estimates for any p € (1, +00); then, by

Morrey’s inequality, the terms |V, | can be considered as bounded data in Cloo’g‘, for any a € (0, 1),
leading to Cj2% estimates.

11



that ¥ = 1 in R™. By uniqueness of the limit, this means that the whole family
(17)r>0 converges locally uniformly to 1 as 7 — +00. Namely,

VM >0, ||907' - 1||L°°(BM/T(IT)) — 0 as 7 — +oo. (44>

Next, we extend the above convergence to compact subsets of {2 using Lemma
together with a covering argument. Consider now

O\ ={zeQ : d(z)>d}.

Because of the regularity of €2, this compact set is non-empty, smooth and connected
for 6 > 0 sufficiently small. Fix in the sequel any value of § € (0, maxqgd) for which
this holds and take any € > 0 such that

2
0<e<—.
"S5
We now apply Lemmawith this value of €, any point zp =y € Q\Q°, R = §/2
and R’ = ¢. It implies that, for 7 larger than some 71, only depending on n, § and &,
there holds:

2(n—1) , 0 . 0 .
S <r<r<s ming, > (1-3) min g,

VyeQ\ Qv
y & T 9B,1(y) 9B (y)

from which, taking r = 2(n — 1)/7, v’ = 0/2 and using (4.2)), we deduce

J
Vy e\ Q, min @, > (1 - E—) min @, (4.5)
Bs/2(y) Byn—1)/+(¥)

On the other hand, using (4.4) with M = 2(n — 1) we get, for 7 larger than some 75,

min ¢, >1——. (4.6)
Bytn—1y/r(xr)

Finally, because lim,_,, d(z;) = maxgd > §, we can find 73 > 0 such that z, €
Q\ Q° for 7 > 3. As a consequence, for 7 larger than 7 := max{r, 7, 73}, we can

apply (4.5) with y = x, and next (4.6) to derive

5 2
min ¢, > <1 — 8—) : (4.7)
By a(ar) 2

Consider then a covering of Q \ Q2 with balls of radius §/6, i.e.,

Q\Q° C Bss(y1) U U Bsss(Ym)

with y1,...,ym € Q\ Q. Let 7 > 7 be large enough so that 2(n — 1)/7 < §/6.
Using (4.5) we obtain

)
Vi=1,...,m, min @, > (1—€—> min ;. (4.8)
By 2(y;) Bs6(y;)
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Moreover, because z, € Q\ ©°, there exists j; € {1,...,m} such that z, € Bs/s(y;,)
and, in particular, Bs/s(y;,) C Bsj2(z;). Combining (4.7) and (4.8)) we then get

. €0\3
min @, > <1 — —) .
Bs/2(45,) 2

Now, because 2\ € is connected, there exists j, # j; such that

Bg/@(@/ﬁ) N B6/6(yj1) 7é 0

which entails Bj/s(yj,) C Bs/2(yj, ). Thus, as before, we derive

O\ 4
min @, > <1 — 8—) .
B(S/Q(yjz) 2

By a recursive argument we then find a permutation {ji,...,j,} of {1,...,m} satis-
fying the following property:

k-1 | o\ 24k
VE=2....m Bysy,) N (|JBse) | #0 and min ¢, > <1——> :
=1 Bs/a(yjy,) 2

It follows that the estimate

€0\ 2+m
min @, > (1 — —)
Q\Q9 2

holds for 7 sufficiently large, and thus for the lower limit as 7 — 4+o00. Then, letting &
go to 0, we eventually infer that o, converges to 1 uniformly in Q\Q?. This concludes
the proof owing to the arbitrariness of ¢. O

5 Asymptotic profile near the boundary

This section is devoted to the proof of Theorem , namely the limit . Since
Lemma provides the limit in any compact subset of 2, we only have to show the
asymptotic profile in a neighborhood of 92. To do so, we will make use of the
upper bound derived before and of a lower barrier function of the same type as

the upper barrier function (3.1)) used in the proof of Theorem u

Proof of Theorem[1.4 The upper bound follows from (3.4). Indeed, for any given
v > 1, we have that (3.4]) holds for 7, > 0 sufficiently large (depending on 2 and 7).

It follows that ()
) or(x
fim sup (iﬁg = e—Wd(x)> s L

Now, since the function y defined by

x(s) = (5.1)



is increasing on (0,1) and tends to v as s — 17, we deduce that

. pr(x . or(x 1—e7d2)
lim sup (sup %) < lim sup [(sup %) X <sup EEp=—Tr <7,

T—400 zeN 1 T—400 zeN 1 €N 1

which provides us with the desired upper bound, due to the arbitrariness of v > 1.

It remains to derive the lower bound. To do this, from [6l Lemmas 14.16 and
14.17], we fix § > 0 such that d is of class C? in 9, with Q° defined by , and
we consider any 0 < 1 < 1. Then, we define the following family of functions, which
will play the role of lower barriers, for 7 > 0 and € > 0:

Wye(z) =1 — e71md@=e),
These functions satisfy
—Aw,. — 7|Vw,| = nre @) (_Ad + 7 (n — 1)) in Q°.
Therefore, there exists 7y > 0, only depending on €2, 77 and ¢, such that
Vr>1, Ve>0, —Aw,. —7|Vw,| <0 in 09, (5.2)

Let us call
Wre
kre :=sup —=.
Qs Pr
For any 7 > 0 and 0 < £ < §, the function w,. is nonpositive in OQf and positive
in Q9 \ Q¢, thus the above supremum k.. is positive and is actually a maximum,
attained at some z,. such that ¢ < d(z,.) < ¢. We claim that d(z,.) = J for any
T > 1 and € € (0,9). Indeed, otherwise ¢ < d(x,.) < ¢ and the point z,. would
then be a local maximum of the function w, . — k; ¢, which is interior to 00\ Q.
Hence,

_Aw‘r,e(xﬂs) - Tlvw‘r,s(xf,s)’ 2 kT,E( - A@T(x‘r,s) - T’VSOT (-7:7',5)‘)7

whence 0 > k; A7) (z) by (5.2) and (L.5). This contradicts the positivity of k.,
)‘(7—) and 907'(1'7',8)'
Therefore, for all 7 > 7y and € € (0, ), we have that d(x,.) = ¢ and

Wr () Wre(Tre) 1 —e 0

SOT(x) o (107'(377',5) o mind(y)z& (107'(3/)’

Ve,

from which, letting ¢ — 0 we obtain
1 — efm—d(z) 1 — 6*7]75

o-(z) T mingg)=s ¢-(y)

Ve Qs

By Lemma [4.3] the right-hand side converges to 1 as 7 — +o00, and thus

lim inf ( inf 907—(95)) > 1.

Tt \zeqs 1 — e—nmd@) | —
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Finally, using again the monotonicity of the function x defined in (5.1) above, we
easily deduce that

o - (2)
fim Inf (;355 1— erd(x)) =1
Because n < 1 is arbitrary, we can replace it by 1 in the above inequality. This
provides the desired lower bound in €°. Observe that in the set Q\ ©°, the uniform

lower bound (as well as the upper bound) follows immediately from Lemma The
proof of Theorem [1.2]is thereby complete. O

6 Asymptotic behavior of V.

In this section we prove Theorem [1.3] First of all, for any y € 09, we let v(y)
denote the outward unit normal to 2 at y. The proof of Theorem [I.3]is based on the
following lemma.

Lemma 6.1. For any sequence (yx)ren of 02 converging to y € 982 and for any
sequence (Ty)gen of positive real numbers converging to +oo, there holds

Or, (yk + 2) — 1—€""W for all x € R" such that z - v(y) < 0.
T/ k—+oo

Proof. The proof strongly relies on Theorem [I.2] First of all, up to rotation and
translation of the frame, one can assume without loss of generality that

y=0=(0,---,0) and v(y)=(0,---,0,—1).

Fix then any = = (21, -+ ,x,) € R" such that x - v(y) < 0, that is, z,, > 0. Since
v(ye) — v(y) as k — +o0, it follows that yx +2 /7 belongs to 2 for all k large enough
(in particular, d(yx + /1) > 0 for k large enough), and, since y;, € 02,

d(yk+£> SM%O as k — +o0. (6.1)
Tk Tk

From formula (1.6]) in Theorem it is therefore sufficient to show that
T d(yk + £> —x, as k — +oo (6.2)
Tk

in order to conclude the proof of Lemma [6.1}{
Since v(y) = (0,---,0,—1) and 9Q is of class C?, there exist r > 0 and a C?
function g defined in a neighborhood V of (0,---,0) € R*! such that

INB, ={(z',2,) : &' €V, z, =g(a)}
and

dg
8xi

(0)=0 forall 1 <i<n-—1,

15



where, for all points © = (x1, -+ ,2,) € R", we write 2’ = (x1,--+ ,2,_1). Since
yr € 0N for every k € N and limy_, o d(yx + x/7;) = 0, one can assume without loss
of generality that, for every k£ € N, there is a unique point & € 92 such that

d(yk+ ) ’yk+— _fk‘
Notice that, by (6.1]),
2|x|

x x x
€] < ‘ﬁk—yk——‘+‘yk+—‘ §d<yk+—>+\y | + ‘ ’ <lygl+——=0
Tk Tk Tk Tk
as k — +o0o0. For each k£ € N large enough, the non-zero vector y, + z/7 — & is

parallel to the normal v(&;). Since for k € N sufficiently large, the tangent space of €2
at the point & is generated by the vectors

0 .
T‘z(gk’) = (07 a071707"' 707£(§]/c)>7 Z:L"'an_lv

we find that (yx +x/7% — &) - Ti(&) = 0 for all 1 <i <mn — 1, that is,
T . 0g,., Tn
Yki + . - gk,z - 0951 (gk) X <yk,n + . fk,n) .

Therefore,

de<yk+7_£k>—7_k)yk+__§k‘—7'k 1+ > (

1<i<n—1

2 T,
( ;g)> X‘yk,n+ _gk,n (63>
Tk

for all £ € N large enough. Now, since
x x x x
|y — &l < )yk+——§k‘+u=d<yk+—> +—<—
Tk Tk

by (6.1)), it follows in particular that

1
v, — &) = O(—) as k — +o0.
Tk
On the other hand, for £ € N large enough such that yi, & € 92 N B, and the
segment [y, & is included in V', there holds

= ol = lo(0h) — 9(&0)] < ( max [Vg])  lvf — &
Yk k:
Since limy,_, 1 o 4}, = limy_s 1 o &, = 0 and g is (at least) of class C! in V with Vg(0) =
0, one infers that |y, — &.n| = o(1/7) as k — +o0. Finally, using (6.3)), Vg(0) =0
and x,, > 0, one concludes that

de(*yk—i_%) =41+ Z <§_i(€l/c)>2 X ‘Tk(yk,n—fk,n)—l-:cn| — x, as k — +oo0.

1<i<n—1

This is the desired result (6.2)) and the proof of Lemma is thereby complete. [
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Proof of Theorem[1.3 Fix any real number M > 0. Let us first show that
mingy7 V-] 2 7 as 7 — +oo.  Assume not. Then there exist some se-

quences (73 )ren of positive real numbers and (z;)rey in Q such that

_ V.
v € O forall k €N, 7 — +oo and 2T ook oo (64)
Tk
For every k € N large enough, there is a unique
yr € 02 such that d(zy) = |xp — yil- (6.5)

Consider now, for all £ € N large enough, the functions
x
Ur(z) = ¢n, (yk + —), (6.6)
Tk

which are defined in €, with
Qe = (2 — yr)- (6.7)

Up to extraction of a subsequence, one can assume that
yp —y € 00 as k — +o0. (6.8)
Denote H the half-space
H={zeR": z-v(y) <0}. (6.9)

Since 7, — +o00 and v(yx) — v(y) as k — +oo, it follows that, for any compact set
K C H (resp. K C R"\ H), one has K C . (resp. K Ny = 0) for all k large
enough. Furthermore, the functions v, : € — [0, 1] satisfy

)\(Tk) .
A, — |V = O,
U — |V - Py in (6.10)
wk =0 on an,

with A\(7,)/77 — 0 as k — +o0. Since the families (0 N Bg)ren are bounded
in C? for every R > 0, standard elliptic estimates up to the boundary and Sobolev

injections imply that the sequences (||{k|lw2r(@unBr))ren and (|||l cre @) ken
are bounded for every 1 < p < +o00 and 0 < a < 1. From the equations
satisfied by the functions 1, one also infers that, for any compact set K C H, the
functions 1y, are also bounded in C**(K) for k large enough. Therefore, there is a
function ) € C?(H) such that, up to extraction of a subsequence,

Y — 1 in Cf(H) as k — +oo. (6.11)

From the previous observations, the function i) can also be extended as a C’llo’?(ﬁ)
function (for all 0 < a < 1) such that ¢» =0 on 0H and

[Vk(Ek) = V(O] + V(&) = VP(§)] = 0 as k — f00 (6.12)
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for any sequence (£;)ren such that & € Q for all k € Nand &, — € € H as k — +o0.
Consider now, for all £ € N large enough, the points

2 = (ke — Yk) € Q. (6.13)

Since z € QM/™ for all k € N and d(xy) = |z — yi|, it follows that |zx| = Tpd(xy) <
M for all k € N large enough. Therefore, up to extraction of a subsequence, there is
z € H such that

2, — 2 as k — +o0, (6.14)
hence Vi (zx) = Vi(z) as k — +oo by (6.12)). Since
Viop(zx) = M —0 as k — 400
Tk
by (6.4]) and , it follows that Vi(z) = 0. But, finally, Lemma implies that
Y(a) = 1—

for all # € H and then for all z € H by continuity. In particular, |V (z)| = e**®) > 0.
This leads to a contradiction. As a consequence, the assumption is ruled out,
hence mingz7+ [V,| 2 7 as 7 — +o0.

Let us now show that maxgs7r |V, /|Ve,| — Vd| = 0 as 7 — 400. Once again,
argue by way of contradiction and assume that there exist ¢ > 0, a sequence (73 )ren
of positive real numbers converging to +o0o, and a sequence (x)gey in € such that

V- (Ik>
zp € QM/™ and | ———- —Vd(xy)| > e >0 forall k€ N. (6.15)
Vior (1)

Up to extraction of a subsequence, let yk, ¢k, Qr, vy, H, ¥, zx and z be defined as

in (6.5), (6.6), (6-7), (6-8), (6.9), (6.11)), (6.13) and (6.14)). On the one hand, as above

there holds Vi (z1,) — Vib(2) = —e**Wy(y) # 0 as k — 400, hence
Vilar) o (@)
—v(y) and — —v(y) as k — +oo. 6.16
ol Y W@l Y (010
On the other hand, since |ry — yx| = d(zx) — 0 and y, — y € 0f, one infers

that Vd(xy) — Vd(y) = —v(y) as k — +o0o. Together with (6.16), one gets a
contradiction with (6.15). Finally, maxgy+ [V /|Ve,r| — Vd| — 0 as 7 — 400 and
the proof of Theorem [1.3]is thereby complete. O

7 The case of the annulus ) = By \ B,

This section is devoted to the proof of Theorem [I.4l Tt is actually an immediate
consequence of the following proposition.
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Proposition 7.1. Let Q be the annulus Q = Bg\B, with0 < r < R andn > 2. Then,
for every T > 0, the principal eigenfunction . solving (1.5) is radially symmetric,
i.e., pr(x) = O.(|z|) in Q for some function @, : [r, R] — [0,1]. Furthermore, there

exists r- € (r, 52 such that ®, > 0 in [r,r,), ®, <0 in (r., R], and

r+ R

T, — as T — +00.

Remark 7.2. The property that the critical point r, for ¢, is smaller than % is not
contained in Theorem However, it is interesting in itself because it confirms the
heuristic stochastic interpretation of the result described in the introduction. Namely,
though the sphere 0B rin is equidistant from the inner and outer components of the
boundary of €2, a trajectory of the Brownian motion starting from a point xq € 0B rR

is more likely to hit the boundary at 0Bg than at 0B,., because for all p > %{ the
measure of (0B,(xg)) \ Bg is (strictly) larger than the measure of (0B,(z¢)) N B,.
For this reason, in order to prevent the trajectory from hitting the boundary, it is
convenient to have a drift —v,(xo) = 7V, (20)/|Ver(20)| at zo pointing towards the
origin, meaning that @ ((r + R)/2) < 0.

Proof of Proposition[7.1. We know from Proposition that ¢, is the unique so-
lution to satisfying maxg ¢, = 1. Thus, because (2 is invariant by rotation,
the same is true for ¢,. The function ®, : [r,R] > p — ®.(p) € [0,1] defined
by ¢, (z) = ®,(|z|) for every x € Q, is a C%([r, R]) solution of the equation

—1
— ”7@; —7|®L = \(r)®,, pe€[rR], (7.1)

with @, > 0 in (r, R) and ®.(r) = ®,(R) = 0. Since A\(7) > 0 and &, > 0 in (r, R),
we see that @7 < 0 at all interior critical points of ®,, which readily implies the
existence of a unique radius

r. € (r,R)

at which ® changes monotonicity. More precisely, one infers that ®” > 0 in (r,r,)
and . < 0 in (r;,R). The Hopf lemma also yields ®’(r) > 0 and ®/(R) < 0.
Furthermore, Theorem [I.1] implies that

r—+
T, — 5 as 7 + 00.

As a consequence, for any given = € , there holds, for 7 large enough,

z r+ R
— =Vd(z) ifr <|z| < )
ole) Vedw) | T V@ rshl<
R L it <
s

These properties are actually sufficient to get the conclusion of Theorem [T.4]
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In order to complete the proof of Proposition [7.1], let us also show the additional
property 7, < (r + R)/2. To do so, for any given 7 > 0, consider the reflection of @
with respect to r,, i.e.,

- 2 (p) if p € [r,r;]
2olp) = {(I)T(2’I“T —p) ifpe(r.,2r, —r.

The function ®, is of class C([r, 2r, — r]) and it satisfies, for p € (r,, 2r, — 7],

- —1- ~ ~ -1 —1
o TR 18— A\ (n)d, = (” +—
p

' (2r, — p) > 0.
Y aier )

Namely, d, is a strict supersolution of (7.1)) in (r,,2r, — r], that is, the function
957' € CQ(BQTT—T \ Br) defined by

Pr(r) = &)T(|$Da x € By, \ By,

satisfies L
—Ap; = 7|VE:| > A(T)@r in By, \ B,

It also satisfies —A@, — 7|VP,| > A(7)@, in B,_\ B,, where it coincides with ;.
Thus, calling A(7) the eigenvalue given by problem (T.5) with domain B, _, \ B,
and observing that ¢, > 0 in By, _, \E, the first characterization in formula ({2.1])
of Proposition [2.1] yields
A7) > (7).

Then, by the monotonicity of A(r) provided by Proposition , we infer that
J D \E C Br\ B,. Moreover, the inclusion is strict because otherwise, again
by Proposition 2.1} ¢, would coincide with ¢, up to a scalar multiple, but we know
that @, is a strict supersolution of the equation satisfied by o, in By, _, \ B,,. This
shows that 2r, —r < R, that is, v, < (r + R)/2. The proof of Proposition is
thereby complete. O
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