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Abstract

We study a reaction-diffusion model in a binary environment made of habitat and non-
habitat regions. Environmental heterogeneity is expressed through the species intrinsic
growth rate coefficient. It was known that, for a fixed habitat abundance, species survival
depends on habitat arrangements. Our goal is to describe the spatial configurations of
habitat that maximise the chances of survival. Through numerical computations, we
find that they are of two main types - ball-shaped or stripe-shaped. We formally prove
that these optimal shapes depend on the habitat abundance and on the amplitude of the
growth rate coefficient. We deduce from these observations that the optimal shape of
the habitat realises a compromise between reducing the detrimental habitat edge effects
and taking advantage of the domain boundary effects. In the case of an infinite-periodic
environment, we prove that the optimal habitat shapes can be deduced from those in the
case of a bounded domain.

1 Introduction

In the recent literature, the loss of habitat connectivity, also known as environmental fragmen-
tation, has been more and more often cited as a major cause of species endangerment. In the
IUCN Red List of Endangered Species [1], it is shown to be one of the most important threats
on the endangered species.

The main causes of these habitat losses and fragmentation are related to human activities.
For instance, roads create barriers for many animals, and carnivores are particularly vulnerable
to the resulting habitat fragmentation (see e.g. Treves et al. [2]). Agricultural and forestry
activities are the key drivers of habitat loss affecting birds [1]. In freshwater, dam construction
is a well-established cause of ecosystem fragmentation and species extinction (an example is
given by Morita and Yamamoto [3]). Habitat fragmentation can also be the result of climate
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changes. Indeed warming up can reduce the size of the habitat patches for some mountain-
top species; it is also responsible for the shrinking of lakes and rivers, which may disconnect
sub-populations.

Though it seems natural that habitat loss is a major threat to species persistence, the effects
of habitat fragmentation per se, i.e., without habitat loss, depend on the considered ecosystem.
Nevertheless, most theoretical studies involving single-species models (see below for details
and references) predict a negative impact of fragmentation on species persistence. Indeed,
the larger the habitat patches are, the more likely the sub-populations will be important and
therefore less susceptible to internal and external extinction factors. These theoretical results
are supported experimentally for some animals and plants [4, 5]. However, a recent analysis of
several empirical studies, by Fahrig [6], shows that fragmentation per se can also have positive
effects on biodiversity, which is notably explained in her paper by interspecific interactions.
The long-standing debate on “single large or several small” reserves (see Simberloff [7] for a
discussion and further references on this subject) illustrates the complexity of the issue of the
effects of habitat fragmentation.

In addition to the number and area of the habitat patches, their shape can also have an
influence on species persistence. For some species, the habitat’s edge has a detrimental effect,
for instance because of increased predation, or increased risk of accident (see Chalfoun et al. [8]
and Lovejoy et al. [9]). Stripe shaped habitat patches have large edge/area ratios, compared
to round shaped habitat patches. Thus, it seems natural to claim, like Diamond [10], that
species for which the edge has a detrimental effect will be more likely to survive in the latter
case of round shaped habitat patches.

The important question of the effects of habitat fragmentation has stimulated the devel-
opment of numerous population models taking account of environmental heterogeneity. In
individual based models (IBM) each individual interacts with its environment, and simula-
tions are run until a general behaviour of the population can be observed. Typically, with this
approach, With and King [11] showed that the probability of dispersal success increased with
habitat connectivity. In some situations, this kind of models can be advantageous since their
implementation does not require sophisticated mathematical tools while they can incorporate
precise information on the species behaviour. However, they remain limited in terms of general
theoretical analysis [12, 13, 14]. Conversely, diffusion models, although they sometimes make
oversimplifying assumptions about movement of real organisms, provide an excellent tool for
obtaining theoretical and qualitative results on populations dynamics, which can lead to a
better understanding of some ecological processes. The idea of modelling population dynamics
with these models from molecular physics has emerged at the beginning of the 20th century,
with random walk theories of organisms, introduced by Pearson and Blackeman [15]. Then,
Fisher [16] and Kolmogorov et al. [17] used a reaction-diffusion equation as a model for pop-
ulation genetics. Several years later, Skellam [18] used this type of model to study biological
invasions, and he succeeded to propose quantitative explanations of observations, in particular
of spreads of muskrats throughout Europe at the beginning of 20th Century. Since then, these
models have been widely used to explain spatial propagation or spreading of biological species
(bacteria, epidemiological agents, insects, fishes, plants, etc., see the books [19, 20, 21] for
review).

The reaction-diffusion models that we study in this article correspond to a natural extension
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of the Fisher model to heterogeneous environments. This kind of model has been introduced
by Shigesada et al. [22] and studied recently [23, 24, 25, 26], but it already appears that the
heterogeneous character of the coefficients plays an essential role. Indeed, for different spatial
configurations of the environment, the modelled species can tend to extinction or survive,
disperse or not, depending on the arrangement of the habitat, as illustrated by the work of
Roques and Stoica [27]. These models have been considered either in bounded domains Ω or
in an infinite domain. This last case, Ω = RN , is especially helpful when spreading phenomena
are studied since it generates the existence of travelling waves [26, 28, 29, 30].

Cantrell and Cosner [31] have established, in the particular case of a 1-dimensional bounded
domain with reflecting boundary condition, that in a binary environment composed of habitat
and non-habitat patches, it was better to concentrate all the habitat at a boundary of the
domain. Shigesada and Kawasaki [24] proved a comparable result in the case of a 1-dimensional
infinite domain, composed of periodic regions of habitat and non-habitat. They found that
it was better for species persistence to concentrate the habitat patches at the centre of the
period cell. Berestycki et al. [25] then generalised these results to the N-dimensional case, in
both bounded and infinite-periodic situations. To do so, they gave a necessary and sufficient
condition for species survival, based on the instability of the state 0 (where no individuals
are present). This condition is equivalent to the negativity of the smallest eigenvalue λ1 of
the linearised elliptic operator around the 0 state (such a criterion was also used in [31], in
the bounded domain case). Using this criterion, they found a way of rearranging the habitat
that decreases the value of λ1. Thus, given an initial spatial configuration of the habitat,
the rearranged and more aggregated configuration always provides better chances of species
survival for the Shigesada et al. model, while it corresponds to the same habitat’s area. When
the space dimension N is larger than 1, among these aggregated configurations, we do not
know which one minimises λ1.

In the 1-dimensional case, the question of the optimal shape of the habitat is already
solved. As a result of the works [24, 25, 31], this shape is simply an interval. However, even
in the 2-dimensional case, as far as we know, nothing is known about this optimal shape
(even its existence is not established), except that, if it exists, the optimal shape has to be
stable by the above-mentioned rearrangement process, as a consequence of the results in [25].
Mathematically, the problem is the same as minimising the eigenvalue λ1 with respect to a
coefficient of the equation, corresponding to habitat configuration. Thus it is a part of the
vast area of eigenvalue minimisation problems, among which the most celebrated is surely the
Rayleigh problem [32] of minimising the lowest frequency of a membrane. It says that, in the
simple homogeneous Fisher’s case, in bounded domain with lethal boundary and fixed area A,
the principal eigenvalue λ1 of the Dirichlet Laplacian is minimal when Ω is a ball. Thus if the
modelled species survives in a domain of area A, then it automatically survives in a ball-shaped
domain of area A, while in other domains of area A, the species may go to extinction. This
result is a consequence of the classical Rayleigh-Faber-Krahn inequality [33, 34, 35, 36].

In this paper, we address the question of finding an optimal habitat configuration in
bounded environments with reflecting (also called “Neumann”) boundary conditions and in
infinite-periodic environments. We prove the existence of an optimal configuration. Then,
in the 2-dimensional case, we approximate it thanks to new numerical computations, which
exhibit two thresholds in the habitat abundance. Between these two thresholds, the optimal
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configuration has the shape of a “stripe”. These numerical results lead to new questions: (i) is
there a relation between the shapes of the optimal configurations in the bounded and periodic
cases? (ii) does the optimal configuration depend on the equation coefficients amplitude be-
tween the habitat and non-habitat regions? (iii) in the particular situation of an environment
composed of stripes, are large habitat stripes separated with large gaps better than thin stripes
with thin gaps? We solve these questions analytically, in any space dimension; however, for
the sake of clarity, most of our statements are presented in the 2-dimensional case.

2 Model formulation and preliminary mathematical re-

sults

2.1 Formulation of the model

The classical reaction-diffusion model in homogeneous environments of Fisher and Kolmogorov
et al. corresponds to the following equation,

∂u

∂t
= D∇2u+ u (µ− νu) in Ω ⊆ RN . (2.1)

The unknown u = u(t, x) corresponds to the population density at time t and position
x = (x1, . . . , xN ). The number D > 0 measures the dispersion rate and ∇2 stands for the
spatial dispersion operator ∇2u =

∑N
i=1

∂2u
∂x2

i

, N being the spatial dimension. The constant

real numbers µ > 0 and ν respectively correspond to the intrinsic growth rate of the modelled
species and to its susceptibility to crowding.

The extension of this model to heterogeneous environments that we study in this paper
(Shigesada et al. model) can be written as follows,

∂u

∂t
= D∇2u+ u (µ(x) − ν(x)u), in Ω ⊆ RN . (2.2)

We assume that µ(x) takes two values µ+ or µ−, depending on x, with µ+ > µ−. Regions
where µ(x) = µ+ correspond to “habitat” and are favourable zones, whereas regions where
µ(x) = µ− are less favourable for the species (“non-habitat” regions). When µ− < 0, it means
that the birth rate is less than the mortality rate in the non-habitat region. In this case, as
proved in [25], the species may tend to extinction.

The function ν is bounded, ν ≥ 0 in Ω and ν is not equal to 0 almost everywhere, which
corresponds to the classical negative density-dependence.

We consider two kinds of domains: the bounded case, where Ω is a piecewise C1 bounded do-
main; and the periodic case, with Ω = RN and the coefficients µ(x) and ν(x) are periodic in the
sense that there exist L1, . . . , LN > 0 such that µ(x1 + k1L1, . . . , xN + kNLN) = µ(x1, . . . , xN)
and ν(x1 + k1L1, . . . , xN + kNLN) = ν(x1, . . . , xN ) for all integers k1, . . . , kN ∈ Z and for all
(x1, . . . , xN) in RN . We denote L = (L1, . . . , LN) and we say that µ and ν are L-periodic. The
period cell C is defined by

C := [0, L1| × · · · × [0, LN ]. (2.3)
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In the bounded case, we assume that we have Neumann boundary conditions:
∂u

∂n
= 0 a.e. on

∂Ω, where n is the outward unit normal to ∂Ω.
Note that the study in RN with periodic coefficients cannot reduce to a study on a torus

since the solution u of (2.2) is not periodic as soon as the initial condition u(0, x) is not periodic.
In the periodic case, C is defined by (2.3). In the bounded case, we set C := Ω. Moreover,

in both cases, we assume that

there exist two Borel sets C+, C− ⊂ C, s.t.







µ(x) = µ+ if x ∈ C+,
µ(x) = µ− if x ∈ C−,
C = C+ ∪ C−,

(2.4)

so that C+ corresponds to the habitat regions and C− to the non-habitat regions.

Definition 2.1 Let µ be a function satisfying (2.4). We say that C+(µ) := C+ is the habitat
configuration associated to the growth rate function µ.

2.2 A criterion for species persistence

The necessary and sufficient condition of species survival that we use in this work is based on
the sign of an eigenvalue λ1.

This number λ1 is the principal eigenvalue of the linear operator −D∇2 −µ(x) and can be
defined as the unique real number such that there exists a function Φ > 0 which satisfies

L0Φ := −D∇2Φ − µ(x)Φ = λ1Φ in Ω, Φ > 0 in Ω, (2.5)

either with L-periodicity in the periodic case, or with the boundary condition
∂Φ

∂n
= 0 a.e.

on ∂Ω in the bounded case (Φ is also unique up to multiplication by positive numbers, see
Amann [37] for further details). As we can see on formula (2.5), λ1 does not depend on the
coefficient ν. When necessary, we shall distinguish the principal eigenvalues in the periodic and
bounded cases by denoting them λ1,p and λ1,b respectively. Furthermore, in order to emphasise
the dependency of λ1 with respect to µ, we shall sometimes write λ1(µ) for λ1. Note that,
given a function µ satisfying (2.4), the set C+ is uniquely defined. Reciprocally, the “patch
function” µ is uniquely defined by C+, µ+ and µ−, and, in the periodic case, the periodicity
conditions. Thus, for fixed values of µ+ and µ−, we note

λ1[C
+] := λ1(µ).

Since the operator L0 is self-adjoint, it is well-known that λ1 satisfies the following formula:

λ1(µ) = min
ϕ∈G\{0}

∫

C

D|∇ϕ|2 − µ(x)ϕ2

∫

C

ϕ2
, (2.6)

where G is defined by G := H1
per =

{

ϕ ∈ H1
loc(R

N) such that ϕ is L-periodic} in the periodic
case and G := H1(C) in the bounded case.
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Given a bounded continuous nonnegative initial datum u(0, x) = u0(x), the behaviour of
the solution u(t, x) of (2.2) in the periodic case is given in [25], Theorem 2.6. Namely, if
λ1 ≥ 0, then u(t, x) → 0 uniformly in RN , thus the species tends to extinction, whereas if
λ1 < 0, u(t, x) → p(x) (uniformly on all compacts sets of RN), where p(x) is the unique
positive and bounded stationary solution of (2.2) i.e. p satisfies

D∇2p(x) + p(x) (µ(x) − ν(x)p(x)) = 0, x ∈ RN . (2.7)

The existence, uniqueness and periodicity of p are proved in [25], Theorems 2.1 and 2.4.
In the bounded case, a similar result holds. Its proof, which is more classical, can be viewed

as a straightforward adaptation of the results in [25] (see also Berestycki [38] for an analysis
in the case of Dirichlet boundary conditions). Moreover, in the bounded case, the convergence
to the stationary state, u(t, x) → p(x) as t→ ∞, is uniform in Ω.

2.3 Mathematical formulation of the optimisation problem

The habitat proportion h ∈ [0, 1] being fixed, we define the family of habitat configurations
with proportion h by:

Sh := {Borel sets C+ ⊂ C, such that |C+| = h|C|}, (2.8)

where |E| denotes the Lebesgue measure of a set E.
This habitat proportion h and the values µ+ and µ− of the growth rate in the habitat and

nonhabitat regions being fixed, our goal is to describe the optimal habitat configurations for
species survival, that is, the sets C+ ∈ Sh which minimise λ1[C

+]. For given values of µ+ and
µ−, we denote the optimal value of λ1[C

+] by

λ1 := min
C+∈Sh

λ1[C
+],

and by Sh,µ+,µ− the set of optimal habitat configurations:

Sh,µ+,µ− := {C+ ∈ Sh, such that λ1[C
+] = λ1}. (2.9)

Remark 2.2 For a fixed h value, λ1 depends on µ+ and µ−. Moreover, as we will see in the
next sections, the set Sh,µ+,µ− may also depend on µ+ and µ− as soon as N ≥ 2.

The existence of such optimal configurations is given by:

Theorem 2.3 For all µ+ > µ− in R, and for all h ∈ [0, 1], the set Sh,µ+,µ− is not empty.

Proof. This result is proved rigourously in Appendix A. �

When needed, we may distinguish in the sequel the sets of optimal habitat configurations
in the bounded and periodic cases, denoting them by Sbh,µ+,µ−

and Sp
h,µ+,µ−

, respectively.

Remark 2.4 Actually, the minimum of λ1(µ) among the functions µ in {µ ∈ L∞(C), µ− ≤
µ ≤ µ+ a.e. and 1

|C|

∫

C
µ = hµ+ +(1−h)µ−} is attained on a “patch function” satisfying (2.4).

This result, which says that the optimal configuration is of “bang-bang” type, is proved in
Nadin [39].
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Figure 1: An example of a configuration C+ ∈ Sh, with h = 0.2, in the particular case of
a domain C = [0, 1]2, covered by n = 225 disjoint rectangles, and where C+ is the union of
n+ = 45 of these rectangles. The habitats regions are depicted in black.

2.4 A numerical method for finding an optimal habitat configura-

tion in the bounded case

We consider here the two-dimensional bounded case with C = [0, L1] × [0, L2]. The domain
is covered by n disjoint rectangles, and C+ is the union of n+ of these rectangles (see Fig.
1). Moreover, we set n = nr × nc where nr is the number of rows and nc is the number of
columns in C. We have numerically computed the value of λ1 for different configurations of C+

and C−. Among the huge number of possible configurations (Cn+

n = n!/(n+!(n − n+)!)), the
optimal ones can be sought in a smaller subset of admissible configurations. Indeed, consider
the configuration C+,∗

nr,nc
obtained with the following algorithm: 1. on each row, the rectangles

that belong to C+ are moved to the left; 2. then, on each column the rectangles that belong
to C+ are moved down. The old and new habitat configurations C+ and C+,∗

nr,nc
have the same

area and it follows from Theorem 6.3 in [25], that λ1[C
+,∗] ≤ λ1[C

+]. Thus, we only have to
look for the optimal configuration among the habitat which are stable through this algorithm,
that is, habitats concentrated in a corner of the domain. The number of configurations Nconf

corresponds to the number of ways of writing the integer n+ as a sum of nc integers, each
one being smaller than or equal to nr. It can be computed in a similar way as the “partition
function” (see e.g. [40]). For our computations, we fixed C = [0, 1]× [0, 1], µ+ = 10, µ− = −1,
nr = nc = 15, n = 15×15 = 225, and n+ varies between 0 and 225, to investigate all the levels
of habitat proportion. The number Nconf varies between 1 (n+ = 0, 1, 224, 225) to 2, 527, 074
(for n+ = 112, 113; compare with C112

225 ≃ 2.8 · 1066).
As the mesh is refined i.e. when nr and nc increase, the “discrete” optimal habitat

configurations C+,∗
nr,nc

, obtained by the above process, converge to an optimal configuration
C+,∗ ∈ S

h= n+

n
,µ+,µ−

. Indeed, let us define the distance between two subsets A1 and A2 of C by

the measure of the symmetric difference of A1 and A2 ,

dset(A1, A2) = |(A1 ∪A2) − (A1 ∩ A2)|, (2.10)

and the distance between a subset A ⊂ C and the family of subsets Sh,µ+,µ− by

dset(A, Sh,µ+,µ−) = inf
K∈S

h,µ+,µ−

dset(A,K), (2.11)

then, we have the following
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Proposition 2.5 As nr,nc → +∞, dset(C
+,∗
nr,nc

, Sh,µ+,µ−) → 0 as nr, nc → +∞.

Proof. This result is proved in Appendix B. �

2.5 Deducing the periodic optimal configuration from the bounded

case

With a numerical method comparable to that of §2.4, using Theorem 2.11 in [25], we could
compute an optimal habitat configuration in the periodic case. However, the computations
would be lengthy whereas we can directly deduce it from the bounded case. Indeed,

Theorem 2.6 For fixed numbers µ+, µ− ∈ R, with µ+ > µ−, and h ∈ [0, 1], let C+,∗
b be an

optimal habitat configuration in Sbh,µ+,µ−
in the bounded case. Assume that C+,∗

b is stable by

monotone rearrangement with respect to each variable, with C = [0, L1| × [0, L2]. Let C+,∗
p be

the set obtained by reflecting C+,∗
b with respect to each axis:

C+,∗
p := C+,∗

b ∪ R1[C
+,∗
b ] ∪ R2[C

+,∗
b ∪R1[C

+,∗
b ]],

where Ri is the reflection with respect to the axis {xi = Li}, for i = 1, 2. Then C+,∗
p is an

optimal periodic configuration in Sp
h,µ+,µ−

on C̃ = [0, 2L1| × [0, 2L2].

Proof. In the bounded case, the existence of an optimal configuration, stable by monotone
rearrangement with respect to each variable, follows from the proof of Theorem 2.3. The
remaining part of the proof is given in Appendix C. We have proved a comparable result in
any space dimension N . �

Thus, using our numerical computations in the bounded case, and from Proposition 2.5,
we can derive an approximation of the optimal configuration in the periodic case.

3 Results

Both numerical and analytical results are presented in this section, in the bounded and periodic
cases.

3.1 The bounded case

Using the numerical method presented in §2.4, we obtained that, when the proportion of

habitat h =
n+

n
is small, the optimal habitat regions have the shape of a quarter of disc (Fig. 2).

When this proportion is close to 1, these optimal configurations look like the complement of
a quarter of disc. When h is not too small nor too large, the optimal configurations are
stripe-shaped, and are aggregated along a side of the boundary of the domain.

In the particular case of striped configurations, we have proved the following result:

Theorem 3.1 Let µ+ > µ−, and h ∈ [0, 1]. Assume that L1 6= L2, and let Ss
h be the subset of

Sh made of striped configurations. Then min
C+∈Ss

h

λ1[C
+] is attained for the striped configuration

concentrated along the smallest side of the domain.
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1

(a) n+ = 15

0 1

1

(b) n+ = 45

0 1

1

(c) n+ = 75

0 1

1

(d) n+ = 80

0 1

1

(e) n+ = 82

0 1

1

(f) n+ = 83

0 1

1

(g) n+ = 85

0 1

1

(h) n+ = 90

0 1

1

(i) n+ = 120

0 1

1

(j) n+ = 150

0 1

1

(k) n+ = 180

0 1

1

(l) n+ = 210

Figure 2: The optimal habitat configuration in terms of the number n+ of habitat cells in the
case of a bounded environment with Neumann boundary conditions. The black cells correspond
to habitat and the white cells to non-habitat.

Proof. See Appendix D.�
This result is illustrated on Fig. 3.
When the habitat shape C+ is fixed a priori as a ball, it is proved in [41] that the optimal

position of the ball has to be tangent to the boundary of the domain, as depicted in Fig. 4.
However, this configuration is never optimal among all habitats of fixed area when the shape
of the habitat is not fixed a priori:

Proposition 3.2 Let µ+ > µ−, and h ∈ [0, 1]. Assume that C+ ∈ Sh is tangent to a boundary
of the domain, in the sense that there exist a point x0 ∈ ∂C and a ball B ⊂ C+ such that
x0 ∈ ∂B ∩ ∂(C\C+)◦. Then λ1[C

+] > λ1. Equivalently, this means that C+ 6∈ Sh,µ+,µ−.

Proof. This is a consequence of Steps 2 and 3 of Appendix E. See Remark 4.1. �

3.2 The periodic case

As in the bounded case, when the proportion of habitat is small, the optimal configuration
of C+ is disc-shaped (Fig. 5). Then, for a larger proportion, it takes the form of a stripe,
and when the proportion of habitat approaches 1, it looks like the complement of a disc.
When the habitat region is stripe-shaped, and when the period cell is not a square, two types
of configurations exist. Similarly to Theorem 3.1, we formally prove in Appendix D that the
configuration with wide stripes of habitat and wide gaps is always better than the configuration
with narrow stripes and narrow gaps between the stripes.
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0 L
1

L
2

(a)

0 L
1

L
2

(b)

Figure 3: Two striped configurations. The habitat regions are depicted in black. In the
bounded and periodic cases, the configuration (b), where the habitat C+ is aggregated along
the smallest side of the domain provides lower values of λ1 than the configuration (a), inde-
pendently of the habitat proportion h, and of µ+ and µ−.

Figure 4: A configuration which is not optimal in the bounded case. The habitats regions C+

are depicted in black.

0 2

2

(a) h = 0.2

2

0 2

(b) h = 0.4

2

20

(c) h = 0.6

2

20

(d) h = 0.8

Figure 5: Approximation of an optimal habitat configuration in the periodic case, with a period
cell of size 2 × 2, in terms of the habitat abundance h = |C+|/|C|, with µ− = −1, µ+ = 10.
The black regions correspond to habitat and the white regions to non-habitat. The figures are
assumed to extend in all direction indefinitely.

10



These computations show that the shape of the optimal habitat configuration is highly
dependent on the proportion of habitat, even if two types of optimal shapes (disc and stripe)
are numerically observed. This result rules out the attractive conjecture of the optimality
of the striped configurations for all habitat abundance. Actually, we can prove formally the
following result:

Theorem 3.3 Assume that N = 2. Let µ+ > µ− be fixed.

(a) The disc configuration is not always optimal: assume that h = π(min{L1,L2})2

4|C|
, and that

C+ is a disc in Sh. Then λ1[C
+] > λ1.

(b) The stripe configuration is not always optimal: there exist L1, L2 > 0 and h ∈ [0, 1]
such that for all stripe C+ in Sh, λ1[C

+] > λ1.

Proof. Part (a) follows from Appendix E, Steps 2 and 3, and Part (b) follows from Appendix F.
We proved similar results in any space dimension N ≥ 2. �

From Theorem 2.6, it follows that these results are also true in the bounded case, with, for
Part (a), a quarter of disc instead of a disc.

3.3 Dependence of the optimal shape with respect to the difference

between the growing rates µ+ and µ−

Let the proportion of habitat h be fixed. It then turns out that the optimal habitat con-
figuration does not depend directly on the values of µ+ and µ−, but only on the difference
b := µ+ − µ−. Indeed, as a consequence of formula (2.6), for all constant k ∈ R, we obtain

λ1(µ− k) = λ1(µ) + k. (3.12)

Thus, we may note Sh,b the set of optimal habitat configurations, with b = µ+ − µ−, instead
of Sh,µ+,µ− .

In dimension 1, when C := [0, L1], the optimal habitat shape is in fact totally independent
of µ+ and µ−. Indeed, in the periodic case, and up to a shift of the period cell, there is an
unique configuration where C+ is connected, which is therefore the optimal one (see [25]). A
similar result holds in the bounded case, where the optimal habitat configuration is an interval
situated at either end of [0, L1].

However, in dimension 2 or higher, given the proportion of habitat h, we prove that the
optimal shape of the habitat does truly depend on the amplitude b of the growth rate µ:

Theorem 3.4 Assume that N ≥ 2. There exists h ∈ [0, 1] such that, for all C+ ∈ Sh, there
exists b > 0 such that C+ 6∈ Sh,b.

Proof. This is proved in Appendix E. The proof relies on the fact that (i) when the amplitude
tends to infinity, the optimal habitat in the periodic case tends to aggregate in a ball; (ii) from
Theorem 3.3, Part (a), the ball-shaped configuration of Fig. 6 is never optimal whatever the
positive number b is. �

This result of dependence with respect to amplitude is also true in the bounded case.
Nevertheless, the transition between disc-shaped and stripe-shaped configurations as the pro-
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Figure 6: A periodic configuration which is not optimal. The habitats regions are depicted in
black.

0 0.2 0.4 0.6

20

40

60

80

100

Habitat abundance h

b Quarter disc configuration Striped configuration

Figure 7: Comparison between the quarter disc configuration and the striped configuration,
in the bounded case of a square C = [0, 1] × [0, 1], in terms of the amplitude of the difference
between the growth rates b, and of the habitat abundance h = |C+|/|C|. In the shadowed
area, the quarter disc configuration provides lower values of λ1, while in white zone the striped
configuration gives lower λ1 values.

portion of habitat increases seems to hold for a wide range of values of b, as observed numeri-
cally in dimension 2. As the amplitude b increases, the ball configuration becomes better than
the striped configuration for a wider range of habitat proportion (Fig. 7).

4 Discussion

We have numerically derived the optimal configurations of the habitat in the case of a 2-
dimensional patchy environment, constituted of cells of habitat and non-habitat regions, dis-
tributed on a grid. As the size of the elementary cells decrease, these numerical configurations
converge to an optimal habitat configuration for fixed values of habitat abundance and growth
rates. This configuration is a global minimiser of λ1, contrary to most of the numerical meth-
ods for minimising eigenvalues under geometrical constraints (see e.g. [42, 43]). The shape of
these optimal configurations was not known before for dimensions higher than 1.

In rectangular bounded domains of R2, with reflecting boundaries, we have observed a
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transition effect from “quarter of disc” to “striped” and to “complement of a quarter of disc”
optimal configurations as the proportion of habitat increases. The same phenomenon occurs
in infinite periodic environments, with discs instead of quarter of discs. The transition occurs
abruptly, and the striped configurations remain optimal for a substantial range of habitat
proportion.

Actually, we have proved that the optimal configurations in the bounded and periodic cases
can be deduced from each other. This means that, in a period cell, the role played by the
proximity of the habitat patches lying in the other period cells is similar to the boundary
effects of the bounded case.

From Theorem 6.3 in [25], and as recalled in the introduction of this paper, λ1 decreases,
and thus the chances of survival increase, when the habitat is rearranged in a monotone way,
with respect to each space variable. Thus, the optimal configurations are always aggregated
against the domain boundary. This underlines the favourability of the boundary effects. From
an animal point of view, these effects can be interpreted as follows: the individuals situated
in the habitat which try to cross the boundary are rejected into the habitat; therefore, the
average time spent in the habitat region by each individual is larger when the habitat is
closer to a boundary. From a vegetal viewpoint less descendants disperse in the unfavourable
regions. Conversely, the edge of the habitat seems to have detrimental effects. This can again
be illustrated with Theorem 6.3 in [25]. Indeed, in the rearranged configurations the habitat
has a small perimeter compared to situations where the habitat is more “fragmented”.

Hence, the optimal configuration is a compromise between lessening the detrimental habitat
edge effects, which means that the perimeter of the habitat has to be minimal and leads to disc
shapes, and taking advantage of the domain boundary (or the proximity of other patches in
the periodic case), leading to striped shapes. However, both phenomena cannot be optimised
simultaneously. When the habitat abundance is low, the optimal configuration looks like a
quarter of disc in the bounded case, and looks like a disc in the periodic case; in these situation,
the edge of the habitat is reduced, but the population does not take full advantage of the
domain boundary. When the habitat abundance increases, the optimal configuration becomes
stripe-shaped, and is concentrated along a side of the boundary of the domain. Thus, in that
case, the positive influence of the boundary effects is important, compared to the detrimental
habitat edge effects. However, when the domain (or period cell in the periodic case) is not
a square, we prove formally that the best striped habitat configuration is aggregated along
the smallest side of the domain. Thus this configuration reduces the edge in contact with
non-habitat regions, while it does not take full advantage of the boundary, still realising a
compromise between these edge and boundary effects. In the periodic case, this means that
the configuration with wide stripes is always better than the one with narrow stripes. This
gives an element of explanation of the observation of Kinezaki et al. [30] that, in a periodic
environment composed of stripes, when the scale of fragmentation is enlarged without changing
the habitat proportion, the spreading speed of the modelled species increases.

We have proved that this equilibrium between boundary and edge effects also depends on
amplitude of the difference between the growth rates in the habitat and non-habitat regions.
As this amplitude grows, the detrimental effects of the habitat edge become more important
compared to the favourable boundary effects, resulting in ball-shaped optimal configurations
in highly contrasted environments. Nevertheless, for a wide range of values of the growth
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rate function, we observed the same transition behaviour between disc-shaped and striped
configurations as the habitat abundance increases.

Our results in the bounded case largely depend on the reflecting (Neumann) boundary
conditions. These boundary conditions mean that individuals encountering the boundary are
reflected inside the domain. They can be encountered in many real-world situations, at different
scales, corresponding, for instance, to the walls of a laboratory arena for small terrestrial species
(see e.g. the experiment of Hannunen and Ekbom [44]), to fences or rivers surrounding gardens,
forests or natural parks [24, 45] for larger species. This type of boundary conditions can also
correspond to coasts, in the case of aquatic species. They can also be used for modelling plant
dispersal, particularly when the seeds are dispersed by animals. Of course, other boundary
conditions could have been envisaged. Of particular practical interest are also the absorbing
(Dirichlet) conditions, that we briefly discussed in the introduction section. These conditions,
where the domain’s boundary “absorbs” all individuals encountering it, are often envisaged for
species with passive movement, such as plants. Although most of the methods developed in
this paper still work under these conditions, we have not considered here the issue of finding
an optimal habitat configuration in this case. Firstly, because some numerical and theoretical
results already exist in the mathematical literature [42]. Moreover, the question of optimal
configuration should be of less interest in this case. Indeed, due to the negative effect of the
domain’s boundary, the habitat will concentrate at the centre of the domain. Therefore we
cannot expect great changes in the topology of the optimal habitat configuration with respect
to the model parameters.

A natural question arises: what is the interest of minimising λ1 as soon as λ1 < 0, since
species survival is already granted? The answer is partially given by (3.12): λ1(µ − k) =
λ1(µ) + k for all k ∈ R. Thus, a species in an environment with smaller values of λ1 will be
more robust to perturbations in its habitat. Moreover, as shown by [46] it is also more robust
to external perturbations corresponding for instance to harvesting, in the sense that δ can be

chosen higher in
∂u

∂t
= D∇2u+ u (µ(x) − ν(x)u) − δ, without risking the species extinction.

Another natural question is: when the environmental heterogeneity also concerns the motil-
ity of the individuals, what results can be expected? Consider the equation

ut = ∇2(D(x)u) + u (µ(x) − ν(x)u), (4.13)

where the diffusion term ∇2(D(x)u) is in the Fokker-Planck form. The coefficient D(x) cor-
responds to the species motility (see e.g.[19, 21]). Setting v(t, x) := D(x)u(t, x), and using
some results of [25], we can obtain that the equation (4.13) exhibits the same behaviour as
(2.2), replacing the initial growth term µ(x) by µ(x)/D(x). Thus, our above optimisation re-
sults also hold for equation (4.13), when D(x) is rearranged along with µ(x), and in the same
way. Such a rearrangement is biologically meaningful, since the motility and the growth terms
are generally associated with a certain type of habitat, and are therefore spatially correlated.
Note that, for most species that engage in active habitat selection, such as birds, mammals
of amphibians, D(x) is all the smaller as µ(x) is large, since they tend to slow down as they
encounter favourable areas (e.g. [44]). Thus the functions µ and µ/D vary in the same way.
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Appendices

This section is devoted to the proofs of the mathematical results which were stated throughout
this paper. The results of the appendices A,B,D,E,F are true in both periodic case and bounded
case when Ω is a rectangle. However, we decided, for the sake of simplicity, and since the proof
in one case can easily be adapted to the other, to prove each result in only one case.

A. Existence of an optimal configuration

The existence of at least one optimal configuration that maximises the chances of species
persistence is proved in the periodic case. For another proof, in the Dirichlet case, see [42].

Let µ− < µ+ be two given real numbers, L1, . . . , LN be N given positive real numbers, and
h ∈ [0, 1]. Call L = (L1, . . . , LN) and

C :=

[

−
L1

2
,
L1

2

]

× · · · ×

[

−
LN

2
,
LN

2

]

.

For the sake of simplicity of the following calculations, the cell C has been centred at the
origin. Let Ph be the set of measurable functions defined by:

Ph := {µ satisfying (2.4) with |C+| = h|C|}, (4.14)

and
λ1 := inf

µ∈Ph

λ1(µ) = inf
C+∈Sh

λ1[C
+],

where λ1(µ) denotes the principal eigenvalue of the operator −D∇2 − µ with L-periodicity
in the variables x1, . . . , xN (each function µ in Ph can be extended by L-periodicity). By
definition of λ1, there exists a sequence (µn)n∈N in Ph, such that λ1(µn) → λ1 as n → +∞.
Since, for all n ∈ N, λ1(µ

∗
n) ≤ λ1(µn) and µ∗

n ∈ Ph, we also have

λ1(µ
∗
n) → λ1 as n→ +∞,

where µ∗
n is the symmetric decreasing Steiner rearrangement of µn with respect to each variable

x1, ..., xN in the cell C (see [25] for details). Up to a change on a set of zero measure, the
functions µ∗

n can be constructed so that, for each 1 ≤ i ≤ N and (x1, . . . , xi−1, xi+1, . . . , xN) ∈
[−L1/2, L1/2]×· · ·× [−Li−1/2, Li−1/2]× [−Li+1/2, Li+1/2]×· · ·× [−LN/2, LN/2], there exists
a ∈ [0, Li/2] such that the function s 7→ µ∗

n(x1, . . . , xi−1, s, xi+1, . . . , xN) is equal to µ+ in
[−a, a] and to µ− in [−Li/2, Li/2]\[−a, a].

Up to the extraction of some subsequence, µ∗
n(x) → µ∗(x) ∈ {µ−, µ+} as n → +∞, for all

x in the countable set QN ∩ C. Let Ω+ be the closure of {x ∈ QN ∩ C, µ∗(x) = µ+}. We
extend the function µ∗ to C by setting µ∗(x) = µ+ if x ∈ Ω+ and µ∗(x) = µ− otherwise; next,
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µ∗ is extended by L-periodicity in RN . From the construction of the functions µ∗
n, the function

µ∗ satisfies the same symmetry properties as µ∗
n, in the sense that if x = (x1, . . . , xN) ∈ Ω+,

then µ∗(y) = µ+ for all y ∈ [−|x1|, |x1|] × · · · × [−|xN |, |xN |]. Observe also that the boundary
of Ω+ has a zero N -dimensional Lebesgue measure.

Let x = (x1, . . . , xN) be an interior point of C \ Ω+. There exists y = (y1, . . . , yN) another
interior point in this set, such that y ∈ QN and

|yi| < |xi| for all i = 1, . . . , N. (4.15)

Since x, y 6∈ Ω+, µ∗(x) = µ∗(y) = µ−. Moreover, by pointwise convergence, µ∗
n(y) = µ− for n

large enough. From the symmetry properties of µ∗
n, and from (4.15), we have µ∗

n(y) ≥ µ∗
n(x),

therefore, µ∗
n(x) = µ− (= µ∗(x)) for n large enough. If now x = (x1, . . . , xN) is an interior

point of Ω+, there exists another point y in this set such that y ∈ QN and |yi| > |xi| for
all i = 1, . . . , N , and we similarly obtain µ∗

n(x) = µ+ (= µ∗(x)) for n large enough. The
above observations imply that µ∗

n(x) → µ∗(x) as n → +∞ almost everywhere in C. Since
the functions µ∗

n are uniformly bounded, Lebesgue’s dominated convergence theorem yields
µ∗

n → µ∗ in L1(C) as n→ +∞. Therefore, µ∗ ∈ Ph.
Define, for all ϕ ∈ H1

per\{0} and µ ∈ Ph,

Qµ(ϕ) =

∫

C

D|∇ϕ|2 − µ(x)ϕ2

∫

C

ϕ2
. (4.16)

Then,

Qµ∗(ϕ) ≤ Qµ∗

n
(ϕ) +

∫

C

|µ∗ − µ∗
n|ϕ

2

∫

C

ϕ2

for all ϕ ∈ H1
per\{0}.

Call Φn the principal eigenfunction associated to µ∗
n, with the normalisation condition

||Φn||∞ = 1. That is, Φn is L-periodic, positive, and it satisfies

−D∇2Φn − µ∗
nΦn = λ1(µ

∗
n)Φn in RN . (4.17)

By multiplying this equation by Φn and integrating over C, we get Qµ∗

n
(Φn) = λ1(µ

∗
n). Hence,

Qµ∗(Φn) ≤ λ1(µ
∗
n) +

∫

C

|µ∗ − µ∗
n|

∫

C

Φ2
n

,

and since λ1(µ
∗) = minϕ∈H1

per\{0}Qµ∗(ϕ),

λ1(µ
∗) ≤ λ1(µ

∗
n) +

∫

C

|µ∗ − µ∗
n|

∫

C

Φ2
n

. (4.18)
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Moreover, since µ− ≤ µ∗
n ≤ µ+ in RN and −µ+ ≤ λ1(µ

∗
n) ≤ −µ−, the normalisation condition

‖Φn‖∞ = 1 together with standard elliptic estimates (see Gilbarg and Trudinger [48]) imply
that the sequence (Φn)n∈N is bounded in C1(RN ) (at least), whence infn∈N ‖Φn‖L2(C) > 0.
Thus, passing to the limit as n→ +∞ in (4.18), we get, since µ∗

n → µ∗ in L1(C), λ1(µ
∗) ≤ λ1.

It then follows from the definition of λ1 that λ1(µ
∗) = λ1. Since µ∗ ∈ Ph, the associated

habitat configuration C+,∗, defined by (2.4), belongs to Sh, and λ1[C
+,∗] = λ1, therefore C+,∗

is an optimal configuration. The infimum in the definition of λ1 is then a minimum.

B. Convergence of the computed configurations to opti-

mal configurations as the mesh is refined

This time, the proof is done in the bounded case of a rectangle. We assume that

C := [0, L1] × · · · × [0, LN ] .

Let µ+, µ− ∈ R, and fix the habitat proportion h =
n+

n
. Let Ph be defined by (4.14), and set

C+(σ) := {x ∈ C, σ(x) = µ+}, for σ ∈ Ph.
From the result of Appendix A, there exists a function µ∗ ∈ Ph such that λ1(µ

∗) = λ1. Let
Φ∗ ∈ H1(C) ⊂ L2p(C) for some p > 1, be the eigenfunction associated to the eigenvalue λ1,
with Neumann boundary conditions. Let P nr,nc

h be the set of all elements σnr ,nc
of Ph such

that C+(σnr ,nc
) belongs to the grid of size n = nr × nc. For all ε > 0, and for nr and nc large

enough, it is easily seen that there exists µnr,nc
∈ P nr,nc

h such that ||µ∗−µnr ,nc
||Lp′(C) < ε (with

1
p
+ 1

p′
= 1). Let Φnr,nc

be the principal eigenfunction associated to µnr,nc
and λ1(µnr,nc

). Using

formula (2.6), and since, when µ = µ∗, the minimum in this formula is precisely attained for
Φ = Φ∗, we obtain

λ1(µnr,nc
) ≤ λ1(µ

∗) +

∫

C

|µnr,nc
− µ∗|(Φ∗)2

∫

C

(Φ∗)2

≤ λ1(µ
∗) + ε‖Φ∗‖2

L2p(C)‖Φ
∗‖−2

L2(C), (4.19)

from Hölder inequality. Setting α := ‖Φ∗‖2
L2p(C)‖Φ

∗‖−2
L2(C) we get λ1(µnr,nc

) ≤ λ1(µ
∗) + αε.

Since P nr,nc

h ⊂ Ph, we therefore have λ1(µnr,nc
) ∈ [λ1(µ

∗), λ1(µ
∗) + αε]. Let µ∗

nr,nc
be a

function which minimises λ1 in P nr,nc

h ; up to a rearrangement we can assume that µ∗
nr,nc

is
nonincreasing with respect to each variable x1, · · · , xN . Then λ1(µ

∗) ≤ λ1(µ
∗
nr,nc

) ≤ λ1(µnr,nc
);

thus, λ1(µ
∗
nr,nc

) ∈ [λ1(µ
∗), λ1(µ

∗) + αε], and λ1(µ
∗
nr,nc

) → λ1(µ
∗) = λ1 as n→ ∞.

From this convergence result, and using the same arguments as in Appendix A, we know
that, up to the extraction of some subsequence, µ∗

nr,nc
→ µ∗

∞ in L1(C) as nr, nc → +∞, where
µ∗
∞ ∈ Ph satisfies λ1(µ

∗
∞) = λ1. Let us define the set of “optimal functions” µ by:

P h := {µ ∈ Ph, such that λ1(µ) = λ1}. (4.20)

Since we can construct a converging subsequence from every subsequence of (µ∗
nr,nc

)nr ,nc∈N, the
computed configuration µ∗

nr ,nc
is as close as we want to the set P h for nr, nc large enough, in
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the sense that
distL1(C)(µ

∗
nr,nc

, P h) → 0 as nr, nc → +∞. (4.21)

Let C+,∗
nr,nc

be the habitat configuration associated to µ∗
nr,nc

by (2.4). Then

distL1(C)(µ
∗
nr,nc

, P h) = |µ+ − µ−|dset(C
+,∗
nr,nc

, Sh,µ+,µ−),

where Sh,µ+,µ− is defined by (2.9) and dset(C
+,∗
nr,nc

, Sh,µ+,µ−) is defined by (2.10-2.11). Since
µ+ 6= µ−, dset(C

+,∗
nr ,nc

, Sh,µ+,µ−) → 0 as nr, nc → +∞.

C. Deducing periodic optimal configurations from bounded

optimal configurations

Let C = [0, L1] × · · · × [0, LN ] , µ+, µ− ∈ R, and h ∈ [0, 1]. Set C̃ := [0, 2L1] × · · · × [0, 2LN ].
Let Ph be defined by (4.14), and let P̃h be the set of functions defined by (4.14) but with C̃
instead of C. For a function σ in P̃h, we denote by C̃+(σ) := {x ∈ C̃, σ(x) = µ+}. Let λ1,b(µ)
denote the Neumann principal eigenvalue of −D∇2 − µ in C, and λ1,p(σ) denote the periodic
principal eigenvalue of −D∇2 − σ in C̃.

From Appendix A, we know that there exists a function µ∗
b in P h, nonincreasing with respect

to each variable x1, · · · , xN . Let us show that µ∗
p(x1, · · · , xN) := µ∗

b(|x1 − L1|, · · · , |xN − LN |)

minimises λ1,p in P̃h.
Indeed, let us set λ1,b := min

σ∈Ph

λ1,b(σ) and λ1,p := min
σ∈P̃h

λ1,p(σ), and

P̃ h := {µ ∈ P̃h, such that λ1,p(µ) = λ1,p}.

Let µp be a symmetric nonincreasing function in P̃ h and Ψp be the corresponding symmetric

nonincreasing eigenfunction (see [25]). Set

Ψb(x1, · · · , xN) := Ψp(x1 + L1, · · · , xN + LN).

The function Ψb is well defined on C, and by symmetry and periodicity properties of Ψp, it is

of class C1(C) and it satisfies Neumann boundary conditions. Moreover, Ψb > 0,

−D∇2Ψb − µp(x1 + L1, · · · , xN + LN )Ψb = λ1,pΨbin C,

and µp(· + L1, · · · , · + LN ) ∈ Ph. By definition of λ1,b, we get λ1,p ≥ λ1,b.
Let Φb be the eigenfunction corresponding to λ1,b with the configuration µ∗

b . Let us define

Φp(x1, · · · , xN) := Φb(|x1 − L1|, · · · , |xN − LN |) in C̃,

and let µ∗
p(x1, · · · , xN) = µ∗

b(|x1 − L1|, · · · , |xN − LN |). Then, from the Neumann boundary
conditions satisfied by Φb, it follows that Φp is a weak solution of −D∇2Φp−µ

∗
p(x)Φp = λ1,bΦp

in C̃ with periodic boundary conditions. Since

|C̃+(µ∗
p)| =

1

µ+

∫

C̃∩{µ∗

p=µ+}

µ∗
p =

2N

µ+

∫

C∩{µ∗

b
=µ+}

µ∗
b = 2N |C+(µ∗

b)| = h|C̃|,
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it follows that µ∗
p ∈ P̃h. Thus, we get λ1,p ≤ λ1,b, and finally λ1,p = λ1,b. As a conclusion,

we obtain that µ∗
p ∈ P̃ h, and therefore that C̃+(µ∗

p) is an optimal habitat configuration in the

periodic case, with period cell C̃. Note that C̃+(µ∗
p) simply corresponds to successive reflections

with respect to each axis {xi = Li}, for i = 1 . . .N starting from the optimal configuration
C+(µ∗

b) in the bounded case.

D. Proof of the comparison principle between the striped

configurations

The proof is done in the periodic case. Let λV be the value of λ1 in the case of the vertical
configuration depicted in Fig. 3 (a), and λH be the value of λ1 for the horizontal configuration
depicted in Fig. 3 (b). Then, a simple change of variable leads to λV [L1, L2] = λH [L2, L1] (in
λV [X, Y ] and λH [X, Y ], X corresponds to the length of the period cell in the x1 direction and
Y corresponds to the length of the period cell in the x2 direction). Since L1L2 = |C|, we get

λV [L1, |C|/L1] = λH [|C|/L1, L1]. (4.22)

Let us now prove that λV [L1, |C|/L1] decreases with L1. Assume that we are in the config-
uration of the vertical stripe. Then µ(x1, x2) does not depend on x2. Set µ̃(x1) := µ(x1, 0).
The function µ̃ is L1-periodic and, in the period cell [0, L1], µ̃ is equal to µ+ on an interval
of length l1 = |C+|/L2, and it is equal to µ− on an interval of length L1 − l1. Let Φ and
λV = λ1 be defined by equation (2.5). Actually, since Φ is uniquely determined by (2.5) and
the periodicity conditions, it depends on x1 only. Set ψ(x1) := Φ(x1, 0). Then ψ and λV satisfy
the following one-dimensional equation:

−Dψ′′(x1) − µ̃(x1)ψ(x1) = λV ψ(x1), x1 ∈ R, ψ > 0 in R (4.23)

and ψ is L1-periodic. Now, set µ̂(y) := µ̃(yL1). The function µ̂ is 1-periodic and, in the period
cell [0, 1], µ̂ is equal to µ+ on an interval of length l′1 = l1/L1 = |C+|/(L1L2) = |C+|/|C| ∈
(0, 1), and it is equal to µ− on an interval of length 1− l′1. The function µ̂ does not depend on
L1. The 1-periodic function ξ defined by ξ(y) = ψ(yL1) satisfies

−(L1)
−2Dξ′′(y) − µ̂(y)ξ(y) = λV ξ(y), y ∈ R, ξ > 0 in R. (4.24)

Then, since the operator ϕ 7→ −(L1)
−2Dϕ′′− µ̂ϕ is self-adjoint, we have the following formula:

λV = min
ϕ∈H1

per\{0}









1

L2
1

×

∫ 1

0

D(ϕ′)2(y)dy

∫ 1

0

ϕ2(y)dy

−

∫ 1

0

µ̂(y)ϕ2(y)dy

∫ 1

0

ϕ2(y)dy









, (4.25)

where H1
per denotes here the set of H1

loc(R) functions which are 1-periodic. From (4.25), we get
that λV = λV [L1, |C|/L1] is decreasing with respect to L1. Notice that the strict monotonicity
follows from the fact that the minimum in (4.25) is reached at the function ξ, which is not
constant since µ̂ is not constant. As a conclusion, using (4.22), it follows that λV [L1, L2] >
λH [L1, L2] if L1 < L2.
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E. Dependence of the optimal configuration on the am-

plitude of the variations of the environment

We consider here the periodic case. We fix N ≥ 2. In the sequel, for any Borel set C+ ⊂ C◦ :=
(0, L1) × · · · × (0, LN) and for any real numbers µ− < µ+, we call

λ1[C
+, µ+, µ−] = min

ϕ∈H1
per\{0}

∫

C

D|∇ϕ|2 −

∫

C

µ(x)ϕ2

∫

C

ϕ2
(4.26)

the principal eigenvalue of the operator −D∇2 − µ(x) in RN with L-periodicity conditions,
where µ(x) = µ+ in C+, µ(x) = µ− in C− = C\C+, and µ is extended in RN by L-periodicity.

Integrating equation (2.5) over the cell C and using the periodicity of Φ, we get

−

∫

C

µ(x)Φ(x)dx = λ1[C
+, µ+, µ−]

∫

C

Φ(x)dx. (4.27)

Since µ ≥ µ−, it follows that λ1[C
+, µ+, µ−] ≤ −µ−. Next, multiply (2.5) by Φ and integrate

by parts over C, we get
∫

C

D|∇Φ|2(x)dx−

∫

C

µ(x)Φ2(x)dx = λ1[C
+, µ+, µ−]

∫

C

Φ2(x)dx,

and since µ ≤ µ+, we get λ1[C
+, µ+, µ−] ≥ −µ+. Finally,

−µ+ ≤ λ1[C
+, µ+, µ−] ≤ −µ−.

Step 1: limit of λ1[C
+, 0,−n] when C+ is fixed and n→ +∞. Let C+ be a fixed Borel subset

of C◦ whose N -dimensional Lebesgue measure belongs to the interval (0, |C|). For n ∈ N\{0},
call µn the L-periodic function such that

µn(x) = 0 if x ∈ C+, and µn(x) = −n if x ∈ C− = C\C+.

Call λ1,D[C+] the quantity defined by

λ1,D[C+] = min
ϕ∈H1

0,per(C+)\{0}

∫

C+

D|∇ϕ|2

∫

C+

ϕ2

, (4.28)

where H1
0,per(C

+) denotes the set of H1
per functions which vanish almost everywhere in C−.

When C+ is a smooth open set, λ1,D is the principal eigenvalue of the operator −D∇2 in C+

with Dirichlet boundary condition on ∂C+ ∩ C and L-periodicity. Since µn = 0 in C+, it
follows from (4.28) and (4.26) with µ = µn that

λ1[C
+, 0,−n] ≤ λ1,D[C+] (4.29)
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for all n ∈ N\{0}. Call Φn the principal eigenfunction of the operator −D∇2 − µn with
L-periodicity, with the normalisation ‖Φn‖L2(C) = 1. One has

λ1[C
+, 0,−n] =

∫

C

D|∇Φn|
2 + n

∫

C−

Φ2
n. (4.30)

From (4.29) and (4.30), it follows that the sequence (‖∇Φn‖L2(C))n∈N\{0} is bounded and that
‖Φn‖L2(C−) → 0 as n → +∞. Therefore, there exist a subsequence (Φn′) and a function
ϕ ∈ H1

0,per(C
+) such that Φn′ → Φ as n′ → +∞ strongly in L2

loc(R
N) and weakly in H1

loc(R
N).

In particular, ‖Φ‖L2(C+) = ‖Φ‖L2(C) = 1. Furthermore, since λ1[C
+, 0,−n′] ≥ D‖∇Φn′‖2

L2(C),
it follows that

lim inf
n′→+∞

λ1[C
+, 0,−n′] ≥ D‖∇Φ‖2

L2(C) = D‖∇Φ‖2
L2(C+).

As a consequence, lim infn′→+∞ λ1[C
+, 0,−n′] ≥ λ1,D[C+] from (4.28), whence λ1[C

+, 0,−n′] →
λ1,D[C+] as n′ → +∞, from (4.29). Eventually, since the limit is uniquely determined, one
concludes that the whole sequence converges, that is

λ1[C
+, 0,−n] → λ1,D[C+] as n→ +∞.

Step 2: A pointwise inequality for the principal eigenfunction associated to an optimal con-
figuration. Let µ− < µ+ and h ∈ (0, 1) be fixed. From Appendix A, there exists a Borel set
C+ ⊂ C◦ such that C+ ∈ Sh,µ+,µ− (Sh,µ+,µ− is defined by (2.9)). Notice that the set C+ could
be chosen to be symmetric with respect to the hyperplanes {xi = Li/2} for all 1 ≤ i ≤ N , but
this property is not needed here. Call µ the L-periodic function which is equal to µ+ in C+ and
to µ− in C− = C\C+. Let Φ be the (unique up to multiplication) principal eigenfunction of
the operator −D∇2−µ with L-periodicity. The function Φ is positive, it belongs to all Sobolev
spaces W 2,p

loc (RN) for 1 ≤ p < +∞ (in particular, it is of class C1,α(RN) for all 0 ≤ α < 1) and
it satisfies

−D∇2Φ − µ(x)Φ = λ1[C
+, µ+, µ−]Φ.

The goal of this step is to prove that

inf
(C+)◦

Φ = sup
(C−)◦

Φ. (4.31)

It is enough to prove that
Φ(x0) ≥ Φ(y0) (4.32)

for all x0 and y0 which are interior points of C+ and C− respectively. There exists ε0 > 0 such
that Bε(x0) (resp. Bε(y0)) is included in the interior of C+ (resp. in the interior of C−) for
all 0 < ε < ε0, where Br(x) denotes the open Euclidean ball of centre x and radius r > 0. For
ε ∈ (0, ε0), call

C+
ε =

(

C+\Bε(x0)
)

∪ Bε(y0) and C−
ε = C\C+

ε .

By construction, the Borel set C+
ε is included in C◦ and its Lebesgue measure is equal to h|C|.

Let µε be the L-periodic function which is equal to µ+ in C+
ε and to µ− in C−

ε , and let Φε

be the principal eigenfunction of −D∇2 − µε with L-periodicity. Call λ = λ1[C
+, µ+, µ−] and

λε = λ1[C
+
ε , µ

+, µ−] (for 0 < ε < ε0). By definition of λ, there holds

λ ≤ λε. (4.33)
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The functions Φ and Φε are positive and L-periodic solutions of
{

−D∇2Φ − µ(x)Φ = λΦ
−D∇2Φε − µε(x)Φε = λεΦε

in RN (4.34)

and up to normalisation, one can assume that ‖Φ‖∞ = ‖Φε‖∞ = 1. The families (λε)0<ε<ε0
and

(µε)0<ε<ε0
are bounded in R and L∞(RN) respectively. From standard elliptic estimates, the

family (Φε)0<ε<ε0
is then bounded in all W 2,p

loc (RN) spaces with 1 ≤ p < +∞. Furthermore, the
family (µε)0<ε<ε0

converges to µ as ε → 0 in all Lp
loc(R

N) spaces with 1 ≤ p < +∞. Standard
arguments (see for instance [25]) imply then that λε → λ and Φε → Φ in C1(RN) (at least) as
ε→ 0. Multiply now the first equation of (4.34) by Φε and the second one by Φ and subtract
and integrate over C the two quantities. It follows that

−

∫

C

(µ− µε)ΦΦε = (λ− λε)

∫

C

ΦΦε ≤ 0

from (4.33) and the positivity of Φ and Φε. In C, the function µ − µε is equal to µ+ − µ− in
Bε(x0), to µ− − µ+ in Bε(y0) and to 0 otherwise. Since µ+ > µ−, it follows that

∫

Bε(x0)

ΦΦε ≥

∫

Bε(y0)

ΦΦε.

By dividing the previous inequality by αNε
N (where αN denotes the Lebesgue measure of the

unit Euclidean ball in RN) and passing to the limit as ε → 0, one concludes that Φ(x0)
2 ≥

Φ(y0)
2. Since Φ is positive, the inequality (4.32) follows and the claim (4.31) is proved.

Notice that the inequality (4.31) implies in particular that the function Φ is constant on
∂(C+)◦ ∩ ∂(C−)◦. This property was observed in the numerical computations which were
carried out in Section 3.
Step 3: Conclusion. Up to rotation of the frame, one can assume that L1 = min(L1, . . . , LN).
Call r = L1/2 and c = (L1/2, . . . , LN/2) the centre of the cell C. The ball Br(c) is included
in C and it is tangent to the two hyperplanes {x1 = 0} and {x1 = L1}, like the black region
in Fig. 6. Call αNr

N the Lebesgue measure of this ball, and assume that

h =
αNr

N

|C|
.

Assume now that there is a Borel set C+ ⊂ C◦ such that C+ ∈ Sh,0,−n for all n ∈ N\{0}.
In other words, we assume that

λ1[C
+, 0,−n] = min

K∈Sh

λ1[K, 0,−n] for all n ∈ N\{0}. (4.35)

From this assumption, we claim that there exist a point x ∈ C and a zero-measure set E such
that

C+ ⊂ Br(x) ∪E.

If not, since the ball Br(c) has the same measure as C+ and is included in C, it follows from
the definition of λ1,D[C+] in Step 1 and from Schwarz rearrangement inequalities that

λ1,D[C+] > λ1,D[Br(c)]. (4.36)
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Indeed, let Φ be a minimiser of (4.28), call Φ its restriction in C and call BR(c) the open
ball of centre c and radius R > r which has the same measure as C. The Schwarz decreasing
symmetric rearrangement Φ∗ of Φ with respect to the point c is in H1

0 (BR(c)) and it is such
that Φ∗ = 0 in BR(c)\Br(c) and

∫

Br(c)

D|∇Φ∗|2

∫

Br(c)

(Φ∗)2

<

∫

C+

D|∇Φ|2

∫

C+

Φ2

= λ1,D[C+]

since C+ is not included in any ball of radius r, up to a zero-measure set. Notice in particular
that the restriction of Φ∗ to Br(c) is in H1

0 (Br(c)). Now define Φ
∗

= Φ∗ in Br(c) and Φ
∗

= 0 in
C\Br(c), and extend Φ

∗
in RN by L-periodicity. The function Φ

∗
is then in H1

0,per(Br(c))\{0},
whence

λ1,D[Br(c)] ≤

∫

Br(c)

D|∇Φ
∗
|2

∫

Br(c)

(Φ
∗
)2

=

∫

Br(c)

D|∇Φ∗|2

∫

Br(c)

(Φ∗)2

< λ1,D[C+],

which yields (4.36). Step 1 yields λ1[C
+, 0,−n] > λ1[Br(c), 0,−n] for n large enough, which

is in contradiction with (4.35), since Br(c) is included in C and has the same measure h|C| as
C+.

As a consequence, the set C+ is included in a ball of radius r, up to a set of zero measure.
Up to a shift and a modification with a zero-measure set, one can then assume without loss of
generality that

C+ = Br(c).

Fix now any n0 ∈ N\{0}. Call µ the L-periodic function which is equal to 0 in Br(c) and
to −n0 in C\Br(c), and call Φ the principal eigenfunction of the operator −D∇2 − µ with
L-periodicity. Call λ = λ1[Br(c), 0,−n0] the principal eigenvalue. The function Φ is (at least)
of class C1(RN) and it is positive in RN . From Step 2, the function Φ is equal to a constant
β > 0 on ∂Br(c), and it is larger than or equal to β in Br(c). In Br(c), the function Φ solves
−D∇2Φ = λΦ and the function ψ = Φ − β satisfies







−D∇2ψ − λψ = λβ > 0 in Br(c),
ψ ≥ 0 in Br(c),
ψ = 0 on ∂Br(c)

since 0 < λ (< n0). It follows from the strong maximum principle and Hopf lemma that ψ > 0
in Br(c) and

∂ψ

∂x1
(a) > 0.

where a = (0, L2/2, . . . , LN/2) ∈ ∂Bc(r). Therefore, the partial derivative of Φ with respect
to x1 at the point a is positive. But since the function µ is symmetric with respect to x1 in
RN (because r = L1/2, see Fig. 6), the function Φ is also symmetric with respect to x1, by
uniqueness. Therefore, ∂Φ

∂x1
(a) = 0, a contradiction has been reached.
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As a conclusion, the assumption (4.35) cannot hold, which means that the optimal habitat
configurations depend on the difference between the growth rates in habitat and non-habitat
regions in general.

Notice that, under the notations in Step 3, the above arguments imply that the ball Br(c)

is never in Sh,µ+,µ−, for all µ+ > µ−, when h = αN rN

|C|
. In particular, this shows rigourously

that ball-shaped configurations are not always optimal for species persistence.

Remark 4.1 In the bounded case, under the assumptions of Proposition 3.2, if we assume
that λ1[C

+] = λ1, it follows from Step 2 that Φ(x) > Φ(x0) for all x ∈ B◦. Then, as in Step 3,
applying Hopf’s lemma at the point x0, we get that ∂Φ

∂n
(x0) < 0. This is in contradiction with

the boundary conditions.

F. Stripe-shaped configurations are not always optimal

We prove here that stripe-shaped configurations are not always optimal for species persistence.
The proof is done in the periodic case, in dimension N = 2, but it can be adapted immediately
in higher dimensions.

Fix two real numbers µ− < µ+. Call λD(BR(x)) the principal eigenvalue of −D∇2 in the
ball BR(x) with Dirichlet boundary conditions on ∂BR(x). Since λD(BR(x)) = R−2λD(B1(0)),
we can fix R > 0 large enough such that

λD(BR(x)) <
µ+ − µ−

2
, for all x ∈ R2. (4.37)

Call A+ = πR2, fix two positive real numbers l1 and l2, and a positive real number β0 such
that β2

0 l1l2 > A+. We will compare the two stripe-configurations which are depicted in Fig. 3,
where L1 = βl1 and L2 = βl2, with the one for which the habitat is a disc a radius R in the
cell C = Cβ = [0, L1] × [0, L2], for β large. The two stripe-configurations and the disc-shaped
configurations are constructed so that the habitat be of fixed area A+ in C. We will prove
that the disc-shaped habitat is better when β is large.

Pick any β ≥ β0, and let x be a point such that BR(x) ⊂ [0, L1] × [0, L2]. From [47], it is
known that λ1[BR(x), µ+, µ−] is less than the principal eigenvalue of the operator −D∇2−µ in
the ball BR(x) with Dirichlet boundary condition on ∂BR(x). Since −µ = −µ+ in the habitat
BR(x), it follows that

λ1[BR(x), µ+, µ−] < λD(BR(x)) − µ+ < −
µ+ + µ−

2
(4.38)

from our choice of R in (4.37).
Let us now estimate λβ := λV [L1, L2] = λV [βl1, βl2], for β ≥ β0. From the arguments

used in Appendix E, there exists a positive function ψβ defined in R, which is L1-periodic and
satisfies

−Dψ′′
β − µβ(x1)ψβ = λβψβ almost everywhere in R

where the function µβ is L1-periodic and, up to shift, one can assume without loss of generality
that

{

µβ(x1) = µ+ if 0 ≤ x1 ≤ A+/L2 = A+/(βl2),
µβ(x1) = µ− if A+/(βl2) < x1 < L1 = βl1.
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The function ψβ is in all spaces W 2,p
loc (R) for 1 ≤ p < +∞ and one can assume, up to normal-

isation, that ‖ψβ‖∞ = 1. Furthermore, ψβ is analytic in the open intervals (0, A+/(βl2)) and
(A+/(βl2), L1). If ψβ reaches its maximum at a point x0 ∈ (A+/(βl2), L1), then −ψ′′

β(x0) ≥ 0,
whence λβ ≥ −µβ(x0) = −µ−, which is impossible since −µ+ < λβ < −µ−. Therefore,
the maximum of ψβ is reached in the interval [0, A+/(βl2)].

1 Since the families (λβ)β≥β0
and

(µβ)β≥β0
are bounded in R and L∞(R) respectively, the functions (ψβ)β≥β0

are bounded in all
W 2,p

loc (R) for 1 ≤ p < +∞. There exist then a sequence βn → +∞ and a function ψ∞ which
is in all W 2,p

loc (R) for 1 ≤ p < +∞, such that λβn
→ λ∞ ∈ [−µ+,−µ−] and the functions ψβn

converge (at least) in C1
loc(R) to ψ∞ as n → +∞. Furthermore, since µβn

(x) → µ− almost
everywhere in R (the convergence holds for all x 6= 0), the function ψ∞ satisfies

−Dψ′′
∞ − µ−ψ∞ = λ∞ψ∞ almost everywhere in R.

The function ψ∞ is then of class C2(R). Furthermore, ψ∞(0) = 1 = maxR ψ∞, whence
λ∞ ≥ −µ−. As a consequence, λ∞ = −µ− and by uniqueness of the limit, the whole family
(λβ = λV [βl1, βl2])β≥β0

converges to −µ− as β → +∞. Similarly, λH [βl1, βl2] → −µ− as
β → +∞.

Together with (4.38), we conclude that

λ1[BR(x), µ+, µ−] < min (λV [βl1, βl2], λH [βl1, βl2])

when β is large. This means that the two stripe-configurations are not optimal for species
persistence when β is large and A+ is fixed.
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Sinauer Associates, Inc, Sunderland, MA, 1986, pp. 257-285.

[10] J.M. Diamond, The island dilemma: Lessons of modern biogeographic studies for the
design of natural reserves, Biol. Conserv. 7 (1975) 129-146.

[11] K.A. With, A.W. King, Extinction thresholds for species in fractal landscapes. Conserva-
tion Biology 13 (1999) 314-326.

[12] P.M. Kareiva, N. Shigesada, Analyzing insect movement as a correlated random walk,
Oecologia 56 (1983) 234-238.

[13] L.M. Marsh, R.E. Jones, The form and consequences of random walk movement models,
J. Theor. Biol. 133 (1988) 113-131.

[14] L.J. Gross, K.A. Rose, E.J. Rykiel, W. Van Winkle, E.E. Werner, Individual-based mod-
eling, in: D.L. DeAngelis, L.J. Gross, (Eds.), Summary of a workshop. Individual-based
Models and Approaches in Ecology: Populations, Communities, and Ecosystems, Rout-
ledge, Chapman and Hall, New York, 1992, pp. 511-552.

[15] K. Pearson, J. Blakeman, Mathematical Contributions of the Theory of Evolution, XV,
A Mathematical Theory of Random Migration, Drapersi Company Research Mem. Bio-
metrics Series III, Dept. Appl. Meth. Univ. College, London, 1906.

[16] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937) 355-369.

[17] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, Étude de l’équation de la diffusion avec
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