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Constraints on the real locus

X projective variety defined over R, dimX = n
X (R) := real locus of X

If X is non singular and if X (R) 6= ∅

⇒

{
X and X (R) are compact C∞-manifolds
dimR X (R) = dimC X = n

Example of constraint for n = 2 :

Theorem (Comessatti, 1914)
X geometrically rational non singular surface
(= C-birational to P2

C)
L ⊂ X (R) an orientable connected component
⇒ L is homeomorphic to the sphere S2 or to the torus S1 × S1

Question :
What topology for the real locus when X "close" to Pn ?



Uniruled and rationally connected varieties
X projective variety defined over R, dimX = n

Definition
X geometrically rational ⇔ C-birational to Pn

C

X rationally connected (r. c.)
⇔ ∀x , y ∈ X , ∃ rational curve C ⊂ X such that x , y ∈ C

X uniruled ⇔ ∀ x ∈ X , ∃ rational curve C ⊂ X such that x ∈ C

Remarks
I geometrically rational ⇒ r. c. ⇒ uniruled.
I X → B with uniruled general fiber ⇒ X uniruled,
I If n < 4, X uniruled ⇔ kod(X ) = −∞.

Examples
Pn, hypersurfaces in Pn+1 of degree ≤ n + 1,
Fano, conic fibrations, rational surface fibrations. . .



n = 2, uniruled surfaces

Theorem (Comessatti, 1914)
X uniruled non singular projective surface
L ⊂ X (R) an orientable connected component ⇒ g(L) < 2

i.e., if L = Λ\H2 orientable and X uniruled, then L 6⊂ X (R)

where Λ < Isom(H2) discrete subgroup acting without fixed point

Conversely, if L = S2, S1 × S1 or a non orientable surface, there
exists a rational surface X such that X (R) ∼ L.
Consider S2, S1× S1 = {(x , y , z , t) ∈ P3(R), x2 + y2± z2 = t2},
BPS2 = RP2, BQRP2 = Klein bottle, then iterate. . .



n = 3, history

1. Kollár (∼ 1999) theorems and conjectures
I MMP over R −→ Mori fibrations
I conic fibrations
I del Pezzo fibrations

2. Viterbo, Eliashberg (1999)

Λ\Hn≥3 6⊂ X (R) if X uniruled non singular projective manifold
3. Huisman, M– (2005, 2005)

uniruled models of Seifert manifolds and of #lens spaces
4. Catanese, M– (2008, 2009)

constraints if X r. c. + Comessatti’s thm. for singular surfaces
5. M–, Welschinger (2011)

Λ\Sol 6⊂ X (R) if X del Pezzo fibration



n = 3, uniruled threefolds
L compact topological manifold without boundary of dimension 3

I L := Seifert manifold ⇔ ∃g : L→ F , locally trivial S1-fibration
up to a finite number k of multiple fibers (multiplicities kj)

I L := lens space ⇔ L cyclic quotient of S3 by some Zkj

Theorem (Kollár, 1999)
X non singular projective threefold such that X (R) orientable
L ⊂ X (R) connected component

1. X uniruled
⇒ up to connected sums with RP3 and S1 × S2, up to finitely
many exceptions, and up to infinitely many torus bundles and
Z/2-quotients of them,
L is a Seifert manifold or a connected sum of lens spaces

2. Let k := #{multiple fibers} or #{lens spaces}
X rationally connected ⇒ k ≤ 6



n = 3, uniruled threefolds, converse result

Theorem (Huisman, M–, 2005)
L any connected sum of RP3 and S1 × S2 with a Seifert manifold
or with any connected sum of lens spaces

⇒ ∃ uniruled real projective threefold X such that L ⊂ X (R)



n = 3, rationally connected threefolds

X −→ S
P1-fibred projective threefold, X (R) orientable
L ⊂ X (R) connected component k := k(L), kj , j = 1 . . . k
multiplicities

Theorem (Catanese, M–, 2007, 2008)
X r. c. (⇔ S geometrically rational) ⇒

I k(L) ≤ 4,
I
∑

(1− 1
kj

) ≤ 2,

I L→ S1 × S1 Seifert ⇒ k(L) = 0.



Suspension of a diffeomorphism of the torus S1 × S1

S1 := {|z | = 1} ⊂ C , S1 × S1 := {|u| = 1, |v | = 1} ⊂ C× C

Gl2(Z) acts on S1 × S1 by
(
a b
c d

)
7−→ [(u, v) 7→ (uavb, ucvd )]

For M ∈ Gl2(Z), let
L :=

(
S1 × S1)× [0, 1]/((u, v), 0) ∼ (M · (u, v), 1)

p : L→ S1 = [0, 1]/(0 ∼ 1) is then a torus bundle.
Let λ be an eigenvalue of M
• |λ| = 1, M periodic ⇒ L = Λ\E3 and is also Seifert fibred
• |λ| = 1, M non periodic ⇒ L = Λ\Nil and is also Seifert fibred
• |λ| 6= 1, i.e. M hyperbolic ⇒ L = Λ\Sol is NOT Seifert fibred



Sol-manifolds
The Lie group Sol is the set R3 endowed with the semi-direct
product induced by the action :
R× R2 → R2, (z , (x , y)) 7→ (ezx , e−zy)
The group law is :

((α, β, λ), (x , y , z)) 7→
(
eλx + α, e−λy + β, z + λ

)
Definition
L is a Sol-manifold
⇔ ∃Λ ⊂ Isom(Sol) discrete subgroup of isometries acting without
fixed point such that

L = Λ\Sol

Classification of closed Sol-manifolds

1. Suspensions of hyperbolic diffeomorphisms e.g.
(
1 1
1 2

)
2. Sapphires L→ [0, 1], Z/2-quotients of case 1.



n=3, Homogeneous differentiable manifolds

Recall:
Let G be a Lie group corresponding to one of the eight Thurston’s
geometries, Λ ⊂ Isom(G ) discrete subgroup of isometries acting
without fixed point, L = Λ\G
⇒ L is Seifert fibred, or G = Sol, or G = H3.

Theorem (M–, Welschinger, 2011)
An orientable closed Sol-manifold does not embed in the real locus
of a projective threefold fibered over a curve with rational fibers.



n = 3 collect results
Recall:
L is Seifert fibred
⇒ L = Λ\G such that G = S3, S2 × E1,E3,H2 × E1, SL(2,R)

Theorem

1. X non singular projective threefold, X (R) orientable
L ⊂ X (R) connected component

1.1 X uniruled
⇒ up to finitely many exceptions,
L is a connected sums of RP3’s and S1 × S2’s with a Seifert
manifold or with a connected sum of lens spaces

1.2 X rationally connected and L→ B Seifert with orientable
orbit space
⇒ L is not Λ\H2 × E1 nor Λ\ SL(2,R)

2. L any connected sum of RP3 and S1 × S2 with any Seifert
manifold or with any connected sum of lens spaces
⇒ ∃ uniruled real projective threefold X such that L ⊂ X (R)



n = 2, Comessatti’s thm. for singular surfaces

manifold = charts are diffeomorphisms
orbifold = charts are finite coverings
Du Val singularities = canonical singularities for surfaces
= quotients of C2 by finite subgroups of SL2(C)
X geometrically rational surface
M ⊂ X (R) a connected component of the topological normalization

Theorem (Comessatti, 1914)
X nonsingular and M orientable
⇒ M is a sphere or a torus

Theorem (Catanese, M–, 2008, 2009)
X with Du Val singularities and M orientable orbifold
⇒ M is spherical or euclidean



Uniruled varieties II
X non singular algebraic variety dimC X = n,
W underlying differential manifold dimRW = 2n

X projective variety ⇒ ∃m,W ⊂ Pm(R),
ω = restriction of the standard kähler form of Pm(R)
⇒ (W , ω) symplectic variety

L ⊂ X (R)⇒ L lagrangian ⊂W (⇔ dimR L = n et ω|L ≡ 0)

Definition
Let W be a closed symplectic manifold
W is uniruled iff it has a non vanishing genus 0 mixed
Gromov-Witten invariant 〈[pt]k ; [pt], ωk〉WE , where E ∈ H2(W ,Z),
[pt]k Poincaré dual of the point class inM0,k+1

Theorem (Kollár 1998)
X projective
X uniruled ⇔ ∃E ∈ H2(W ,Z), ∃k such that 〈[pt]k ; [pt], ωk〉WE 6= 0.



Theorem (M–, Welschinger, 2011)
If (W 6, ω) is uniruled
and
if the suspension of a hyperbolic diffeomorphism of the two-torus L
Lagrangian embeds in (W , ω),

then (W , ω) contains a symplectic disc D with ∂D ⊂ L
such that [∂D] 6= 0 in H1(L;Q).



Corollary (Rational surface fibrations)

X → C rational surface fibration, dimC X = 3
Assume that L ⊂ X (R) Sol-manifold

Lemma
If L→ C (R) restriction of X → C then ∃

X ′ −−−−→ Xy y
C ′ −−−−→ C

L′ ⊂ X ′(R), L′ Sol-torus bundle

such that g(C ′) > 0 and H1(L′,Q) ↪→ H1(C ′,Q) ↪→ H1(X ′,Q)

We deduce :
If D disc in X ′ with boundary in L′

⇒ ∂D vanishes in H1(X ′,Q)
⇒ ∂D vanishes in H1(L′,Q)
⇒ contradiction by the main theorem


