Topology of uniruled real algebraic threefolds

Frédéric Mangolte

Université d'Angers

Rennes, June 23, 2011

Constraints on the real locus

X projective variety defined over \mathbb{R} , dim X = n $X(\mathbb{R}) := real \ locus \ of \ X$

If X is non singular and if
$$X(\mathbb{R}) \neq \emptyset$$

$$\Rightarrow \begin{cases} X \text{ and } X(\mathbb{R}) \text{ are compact } \mathcal{C}^{\infty}\text{-manifolds} \\ \dim_{\mathbb{R}} X(\mathbb{R}) = \dim_{\mathbb{C}} X = n \end{cases}$$

Example of constraint for n = 2:

Theorem (Comessatti, 1914)

 $\begin{array}{l} X \hspace{0.2cm} \textit{geometrically rational non singular surface} \\ (= \mathbb{C} \text{-birational to } \mathbb{P}^{2}_{\mathbb{C}}) \\ L \subset X(\mathbb{R}) \hspace{0.2cm} \textit{an orientable connected component} \\ \Rightarrow L \hspace{0.2cm} \textit{is homeomorphic to the sphere } S^{2} \hspace{0.2cm} \textit{or to the torus } S^{1} \times S^{1} \end{array}$

Question :

What topology for the real locus when X "close" to \mathbb{P}^n ?

Uniruled and rationally connected varieties

X projective variety defined over \mathbb{R} , dim X = n

Definition

X geometrically rational $\Leftrightarrow \mathbb{C}$ -birational to $\mathbb{P}^n_{\mathbb{C}}$

- X rationally connected (r. c.)
- $\Leftrightarrow \forall x,y \in X \text{, } \exists \text{ rational curve } \mathcal{C} \subset X \text{ such that } x,y \in \mathcal{C}$
- *X* uniruled $\Leftrightarrow \forall x \in X$, \exists rational curve $C \subset X$ such that $x \in C$

Remarks

- geometrically rational \Rightarrow r. c. \Rightarrow uniruled.
- $X \rightarrow B$ with uniruled general fiber $\Rightarrow X$ uniruled,
- If n < 4, X uniruled $\Leftrightarrow \operatorname{kod}(X) = -\infty$.

Examples

 \mathbb{P}^n , hypersurfaces in \mathbb{P}^{n+1} of degree $\leq n+1$, Fano, conic fibrations, rational surface fibrations...

n = 2, uniruled surfaces

Theorem (Comessatti, 1914)

X uniruled non singular projective surface $L \subset X(\mathbb{R})$ an orientable connected component $\Rightarrow g(L) < 2$ i.e., if $L = \bigwedge \mathbb{H}^2$ orientable and X uniruled, then $L \not\subset X(\mathbb{R})$ where $\Lambda < \operatorname{Isom}(\mathbb{H}^2)$ discrete subgroup acting without fixed point Conversely, if $L = S^2, S^1 \times S^1$ or a non orientable surface, there exists a rational surface X such that $X(\mathbb{R}) \sim L$. Consider $S^2, S^1 \times S^1 = \{(x, y, z, t) \in \mathbb{P}^3(\mathbb{R}), \quad x^2 + y^2 \pm z^2 = t^2\},$ $B_P S^2 = \mathbb{R}\mathbb{P}^2, B_Q \mathbb{R}\mathbb{P}^2 = Klein bottle, then iterate...$

n = 3, history

1. Kollár (\sim 1999) theorems and conjectures

- MMP over $\mathbb{R} \longrightarrow$ Mori fibrations
- conic fibrations
- del Pezzo fibrations
- 2. Viterbo, Eliashberg (1999) $\Lambda \setminus \mathbb{H}^{n \geq 3} \not\subset X(\mathbb{R})$ if X uniruled non singular projective manifold
- 3. Huisman, M- (2005, 2005) uniruled models of Seifert manifolds and of #lens spaces
- Catanese, M- (2008, 2009) constraints if X r. c. + Comessatti's thm. for singular surfaces
- 5. M–, Welschinger (2011) $\Lambda Sol \not\subset X(\mathbb{R})$ if X del Pezzo fibration

n = 3, uniruled threefolds

L compact topological manifold without boundary of dimension 3

- ► L := Seifert manifold $\Leftrightarrow \exists g : L \to F$, locally trivial S^1 -fibration up to a finite number k of multiple fibers (multiplicities k_i)
- L := lens space $\Leftrightarrow L$ cyclic quotient of S^3 by some \mathbb{Z}_{k_i}

Theorem (Kollár, 1999)

X non singular projective threefold such that $X(\mathbb{R})$ orientable $L \subset X(\mathbb{R})$ connected component

1. X uniruled

 \Rightarrow up to connected sums with \mathbb{RP}^3 and $S^1 \times S^2$, up to finitely many exceptions, and up to infinitely many torus bundles and $\mathbb{Z}/2$ -quotients of them,

L is a Seifert manifold or a connected sum of lens spaces

2. Let k := #{multiple fibers} or #{lens spaces}
X rationally connected > k ≤ 6

X rationally connected $\Rightarrow k \leq 6$

n = 3, uniruled threefolds, converse result

Theorem (Huisman, M-, 2005)

L any connected sum of \mathbb{RP}^3 and $S^1 \times S^2$ with a Seifert manifold or with any connected sum of lens spaces

 $\Rightarrow \exists$ uniruled real projective threefold X such that $L \subset X(\mathbb{R})$

n = 3, rationally connected threefolds

 $X \longrightarrow S$ \mathbb{P}^1 -fibred projective threefold, $X(\mathbb{R})$ orientable $L \subset X(\mathbb{R})$ connected component k := k(L), k_j , $j = 1 \dots k$ multiplicities

Theorem (Catanese, M-, 2007, 2008) X r. c. (\Leftrightarrow S geometrically rational) \Rightarrow $k(L) \le 4$, $\sum (1 - \frac{1}{k_j}) \le 2$, $L \rightarrow S^1 \times S^1$ Seifert $\Rightarrow k(L) = 0$.

Suspension of a diffeomorphism of the torus $S^1 imes S^1$

$$\begin{split} S^1 &:= \{ |z| = 1 \} \subset \mathbb{C} , \quad S^1 \times S^1 := \{ |u| = 1, |v| = 1 \} \subset \mathbb{C} \times \mathbb{C} \\ \text{Gl}_2(\mathbb{Z}) \text{ acts on } S^1 \times S^1 \text{ by } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto [(u, v) \mapsto (u^a v^b, u^c v^d)] \\ \text{For } M \in \text{Gl}_2(\mathbb{Z}), \text{ let} \\ L &:= (S^1 \times S^1) \times [0, 1]/((u, v), 0) \sim (M \cdot (u, v), 1) \\ p \colon L \to S^1 = [0, 1]/(0 \sim 1) \text{ is then a torus bundle.} \\ \text{Let } \lambda \text{ be an eigenvalue of } M \end{split}$$

•
$$|\lambda| = 1$$
, *M* periodic $\Rightarrow L = \bigwedge \mathbb{E}^3$ and is also Seifert fibred

•
$$|\lambda| = 1$$
, *M* non periodic $\Rightarrow L = \Lambda$ Nil and is also Seifert fibred

•
$$|\lambda| \neq 1$$
, i.e. *M* hyperbolic $\Rightarrow L = \Lambda Sol$ is NOT Seifert fibred

Sol-manifolds

The Lie group Sol is the set \mathbb{R}^3 endowed with the semi-direct product induced by the action :

 $\mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ (z, (x, y)) \mapsto (e^z x, e^{-z} y)$ The group law is :

$$((\alpha, \beta, \lambda), (x, y, z)) \mapsto (e^{\lambda}x + \alpha, e^{-\lambda}y + \beta, z + \lambda)$$

Definition

L is a Sol-manifold

 $\Leftrightarrow \exists \Lambda \subset \mathsf{Isom}(\mathrm{Sol})$ discrete subgroup of isometries acting without fixed point such that

$$L = \Lambda Sol$$

Classification of closed Sol-manifolds

- 1. Suspensions of hyperbolic diffeomorphisms e.g. $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$
- 2. Sapphires $L \to [0, 1]$, $\mathbb{Z}/2$ -quotients of case 1.

n=3, Homogeneous differentiable manifolds

Recall:

Let G be a Lie group corresponding to one of the eight Thurston's geometries, $\Lambda \subset \text{Isom}(G)$ discrete subgroup of isometries acting without fixed point, $L = \Lambda \setminus G$

 \Rightarrow *L* is Seifert fibred, or *G* = Sol, or *G* = \mathbb{H}^3 .

Theorem (M-, Welschinger, 2011)

An orientable closed Sol-manifold does not embed in the real locus of a projective threefold fibered over a curve with rational fibers.

n = 3 collect results

Recall: *L* is Seifert fibred $\Rightarrow L = \bigwedge G$ such that $G = S^3, S^2 \times \mathbb{E}^1, \mathbb{E}^3, \mathbb{H}^2 \times \mathbb{E}^1, SL(2, \mathbb{R})$ Theorem

- 1. X non singular projective threefold, $X(\mathbb{R})$ orientable $L \subset X(\mathbb{R})$ connected component
 - 1.1 X uniruled
 - \Rightarrow up to finitely many exceptions,

L is a connected sums of \mathbb{RP}^3 's and $S^1\times S^2$'s with a Seifert manifold or with a connected sum of lens spaces

- 1.2 X rationally connected and $L \to B$ Seifert with orientable orbit space $\Rightarrow L \text{ is not } \Lambda \setminus \mathbb{H}^2 \times \mathbb{E}^1 \text{ nor } \Lambda \setminus SL(2, \mathbb{R})$
- L any connected sum of RP³ and S¹ × S² with any Seifert manifold or with any connected sum of lens spaces
 ⇒ ∃ uniruled real projective threefold X such that L ⊂ X(R)

n = 2, Comessatti's thm. for singular surfaces

manifold = charts are diffeomorphisms orbifold = charts are finite coverings Du Val singularities = canonical singularities for surfaces = quotients of \mathbb{C}^2 by finite subgroups of $SL_2(\mathbb{C})$ X geometrically rational surface $M \subset \overline{X(\mathbb{R})}$ a connected component of the topological normalization

Theorem (Comessatti, 1914)

X nonsingular and M orientable \Rightarrow M is a sphere or a torus

Theorem (Catanese, M-, 2008, 2009)

X with Du Val singularities and M orientable orbifold \Rightarrow M is spherical or euclidean

Uniruled varieties II

X non singular algebraic variety $\dim_{\mathbb{C}} X = n$, W underlying differential manifold $\dim_{\mathbb{R}} W = 2n$

X projective variety $\Rightarrow \exists m, W \subset \mathbb{P}^m(\mathbb{R})$, $\omega = \text{restriction of the standard kähler form of } \mathbb{P}^m(\mathbb{R})$ $\Rightarrow (W, \omega)$ symplectic variety

$$L \subset X(\mathbb{R}) \Rightarrow L$$
 lagrangian $\subset W$ ($\Leftrightarrow \dim_{\mathbb{R}} L = n$ et $\omega|_L \equiv 0$)

Definition

Let W be a closed symplectic manifold W is uniruled iff it has a non vanishing genus 0 mixed Gromov-Witten invariant $\langle [pt]_k; [pt], \omega^k \rangle_{\underline{E}}^W$, where $E \in H_2(W, \mathbb{Z})$, $[pt]_k$ Poincaré dual of the point class in $\overline{\mathcal{M}}_{0,k+1}$

Theorem (Kollár 1998)

X projective

X uniruled $\Leftrightarrow \exists E \in H_2(W, \mathbb{Z}), \exists k \text{ such that } \langle [pt]_k; [pt], \omega^k \rangle_E^W \neq 0.$

Theorem (M–, Welschinger, 2011) If (W^6, ω) is uniruled and if the suspension of a hyperbolic diffeomorphism of the two-torus L Lagrangian embeds in (W, ω) ,

then (W, ω) contains a symplectic disc D with $\partial D \subset L$ such that $[\partial D] \neq 0$ in $H_1(L; \mathbb{Q})$.

Corollary (Rational surface fibrations)

 $X \to C$ rational surface fibration, dim_{$\mathbb{C}} X = 3$ Assume that $L \subset X(\mathbb{R})$ Sol-manifold</sub>

Lemma
If
$$L \to C(\mathbb{R})$$
 restriction of $X \to C$ then \exists
 $X' \longrightarrow X$
 $\downarrow \qquad \downarrow \qquad L' \subset X'(\mathbb{R}), L'$ Sol-torus bundle
 $C' \longrightarrow C$

such that g(C') > 0 and $H_1(L', \mathbb{Q}) \hookrightarrow H_1(C', \mathbb{Q}) \hookrightarrow H_1(X', \mathbb{Q})$

We deduce :

If D disc in X' with boundary in L'

- $\Rightarrow \partial D$ vanishes in $H_1(X', \mathbb{Q})$
- $\Rightarrow \partial D$ vanishes in $H_1(L', \mathbb{Q})$
- \Rightarrow contradiction by the main theorem