Topology of uniruled real algebraic threefolds

Frédéric Mangolte

Université d'Angers

Rennes, June 23, 2011

Constraints on the real locus

X projective variety defined over $\mathbb{R}, \operatorname{dim} X=n$
$X(\mathbb{R}):=$ real locus of X
If X is non singular and if $X(\mathbb{R}) \neq \emptyset$
$\Rightarrow\left\{\begin{array}{l}X \text { and } X(\mathbb{R}) \text { are compact } \mathcal{C}^{\infty} \text {-manifolds } \\ \operatorname{dim}_{\mathbb{R}} X(\mathbb{R})=\operatorname{dim}_{\mathbb{C}} X=n\end{array}\right.$
Example of constraint for $n=2$:
Theorem (Comessatti, 1914)
X geometrically rational non singular surface
($=\mathbb{C}$-birational to $\mathbb{P}_{\mathbb{C}}^{2}$)
$L \subset X(\mathbb{R})$ an orientable connected component
$\Rightarrow L$ is homeomorphic to the sphere S^{2} or to the torus $S^{1} \times S^{1}$
Question:
What topology for the real locus when X "close" to \mathbb{P}^{n} ?

Uniruled and rationally connected varieties

X projective variety defined over $\mathbb{R}, \operatorname{dim} X=n$

Definition

X geometrically rational $\Leftrightarrow \mathbb{C}$-birational to $\mathbb{P}_{\mathbb{C}}^{n}$
X rationally connected (r. c.)
$\Leftrightarrow \forall x, y \in X, \exists$ rational curve $C \subset X$ such that $x, y \in C$
X uniruled $\Leftrightarrow \forall x \in X, \exists$ rational curve $C \subset X$ such that $x \in C$

Remarks

- geometrically rational \Rightarrow r. c. \Rightarrow uniruled.
- $X \rightarrow B$ with uniruled general fiber $\Rightarrow X$ uniruled,
- If $n<4, X$ uniruled $\Leftrightarrow \operatorname{kod}(X)=-\infty$.

Examples

\mathbb{P}^{n}, hypersurfaces in \mathbb{P}^{n+1} of degree $\leq n+1$,
Fano, conic fibrations, rational surface fibrations...

$n=2$, uniruled surfaces

Theorem (Comessatti, 1914)
X uniruled non singular projective surface
$L \subset X(\mathbb{R})$ an orientable connected component $\Rightarrow g(L)<2$
i.e., if $L=\Lambda \backslash \mathbb{H}^{2}$ orientable and X uniruled, then $L \not \subset X(\mathbb{R})$
where $\Lambda<\operatorname{Isom}\left(\mathbb{H}^{2}\right)$ discrete subgroup acting without fixed point Conversely, if $L=S^{2}, S^{1} \times S^{1}$ or a non orientable surface, there exists a rational surface X such that $X(\mathbb{R}) \sim L$.
Consider $S^{2}, S^{1} \times S^{1}=\left\{(x, y, z, t) \in \mathbb{P}^{3}(\mathbb{R}), \quad x^{2}+y^{2} \pm z^{2}=t^{2}\right\}$, $B_{P} S^{2}=\mathbb{R P}^{2}, B_{Q} \mathbb{R P}^{2}=$ Klein bottle, then iterate. \ldots

$n=3$, history

1. Kollár (~ 1999) theorems and conjectures

- MMP over $\mathbb{R} \longrightarrow$ Mori fibrations
- conic fibrations
- del Pezzo fibrations

2. Viterbo, Eliashberg (1999)
$\backslash \backslash \mathbb{H}^{n \geq 3} \not \subset X(\mathbb{R})$ if X uniruled non singular projective manifold
3. Huisman, $\mathrm{M}-(2005,2005)$ uniruled models of Seifert manifolds and of \#lens spaces
4. Catanese, $\mathrm{M}-(2008,2009)$ constraints if X r. c. + Comessatti's thm. for singular surfaces
5. M -, Welschinger (2011)
Λ Sol $\not \subset X(\mathbb{R})$ if X del Pezzo fibration

$n=3$, uniruled threefolds

L compact topological manifold without boundary of dimension 3

- $L:=$ Seifert manifold $\Leftrightarrow \exists g: L \rightarrow F$, locally trivial S^{1}-fibration up to a finite number k of multiple fibers (multiplicities k_{j})
- $L:=$ lens space $\Leftrightarrow L$ cyclic quotient of S^{3} by some $\mathbb{Z}_{k_{j}}$

Theorem (Kollár, 1999)

X non singular projective threefold such that $X(\mathbb{R})$ orientable
$L \subset X(\mathbb{R})$ connected component

1. X uniruled
\Rightarrow up to connected sums with $\mathbb{R} \mathbb{P}^{3}$ and $S^{1} \times S^{2}$, up to finitely many exceptions, and up to infinitely many torus bundles and $\mathbb{Z} / 2$-quotients of them, L is a Seifert manifold or a connected sum of lens spaces
2. Let $k:=\#\{$ multiple fibers $\}$ or $\#\{$ lens spaces $\}$ X rationally connected $\Rightarrow k \leq 6$

$n=3$, uniruled threefolds, converse result

Theorem (Huisman, M-, 2005)
L any connected sum of $\mathbb{R} \mathbb{P}^{3}$ and $S^{1} \times S^{2}$ with a Seifert manifold or with any connected sum of lens spaces
$\Rightarrow \exists$ uniruled real projective threefold X such that $L \subset X(\mathbb{R})$

$n=3$, rationally connected threefolds

$X \longrightarrow S$
\mathbb{P}^{1}-fibred projective threefold, $X(\mathbb{R})$ orientable
$L \subset X(\mathbb{R})$ connected component $k:=k(L), k_{j}, j=1 \ldots k$ multiplicities

Theorem (Catanese, M-, 2007, 2008)
X r.c. $(\Leftrightarrow$ geometrically rational) \Rightarrow

- $k(L) \leq 4$,
- $\sum\left(1-\frac{1}{k_{j}}\right) \leq 2$,
- $L \rightarrow S^{1} \times S^{1}$ Seifert $\Rightarrow k(L)=0$.

Suspension of a diffeomorphism of the torus $S^{1} \times S^{1}$

$S^{1}:=\{|z|=1\} \subset \mathbb{C}, \quad S^{1} \times S^{1}:=\{|u|=1,|v|=1\} \subset \mathbb{C} \times \mathbb{C}$
$G l_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \longmapsto\left[(u, v) \mapsto\left(u^{a} v^{b}, u^{c} v^{d}\right)\right]$
For $M \in \mathrm{Gl}_{2}(\mathbb{Z})$, let
$L:=\left(S^{1} \times S^{1}\right) \times[0,1] /((u, v), 0) \sim(M \cdot(u, v), 1)$
$p: L \rightarrow S^{1}=[0,1] /(0 \sim 1)$ is then a torus bundle.
Let λ be an eigenvalue of M

- $|\lambda|=1, M$ periodic $\Rightarrow L=\Lambda \backslash \mathbb{E}^{3}$ and is also Seifert fibred
- $|\lambda|=1, M$ non periodic $\Rightarrow L=\Lambda \backslash \mathrm{Nil}$ and is also Seifert fibred
- $|\lambda| \neq 1$, i.e. M hyperbolic $\Rightarrow L=\wedge$ Sol is NOT Seifert fibred

Sol-manifolds

The Lie group Sol is the set \mathbb{R}^{3} endowed with the semi-direct product induced by the action :
$\mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(z,(x, y)) \mapsto\left(e^{z} x, e^{-z} y\right)$
The group law is :

$$
((\alpha, \beta, \lambda),(x, y, z)) \mapsto\left(e^{\lambda} x+\alpha, e^{-\lambda} y+\beta, z+\lambda\right)
$$

Definition

L is a Sol-manifold
$\Leftrightarrow \exists \Lambda \subset$ Isom(Sol) discrete subgroup of isometries acting without fixed point such that

$$
L=\Lambda \backslash \mathrm{Sol}
$$

Classification of closed Sol-manifolds

1. Suspensions of hyperbolic diffeomorphisms e.g. $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
2. Sapphires $L \rightarrow[0,1], \mathbb{Z} / 2$-quotients of case 1 .

$\mathrm{n}=3$, Homogeneous differentiable manifolds

Recall:

Let G be a Lie group corresponding to one of the eight Thurston's geometries, $\Lambda \subset \operatorname{Isom}(G)$ discrete subgroup of isometries acting without fixed point, $L=\Lambda \backslash G$
$\Rightarrow L$ is Seifert fibred, or $G=$ Sol, or $G=\mathbb{H}^{3}$.
Theorem (M-, Welschinger, 2011)
An orientable closed Sol-manifold does not embed in the real locus of a projective threefold fibered over a curve with rational fibers.

$n=3$ collect results

Recall:

L is Seifert fibred
$\Rightarrow L=\Lambda \backslash$ such that $G=S^{3}, S^{2} \times \mathbb{E}^{1}, \mathbb{E}^{3}, \mathbb{H}^{2} \times \mathbb{E}^{1}, \operatorname{SL}(2, \mathbb{R})$
Theorem

1. X non singular projective threefold, $X(\mathbb{R})$ orientable
$L \subset X(\mathbb{R})$ connected component
1.1 X uniruled
\Rightarrow up to finitely many exceptions,
L is a connected sums of $\mathbb{R} \mathbb{P}^{3}$'s and $S^{1} \times S^{2}$'s with a Seifert manifold or with a connected sum of lens spaces
1.2 X rationally connected and $L \rightarrow B$ Seifert with orientable orbit space
$\Rightarrow L$ is not $\wedge \backslash \mathbb{H}^{2} \times \mathbb{E}^{1}$ nor $\wedge \backslash \mathrm{SL}(2, \mathbb{R})$
2. L any connected sum of $\mathbb{R} \mathbb{P}^{3}$ and $S^{1} \times S^{2}$ with any Seifert manifold or with any connected sum of lens spaces
$\Rightarrow \exists$ uniruled real projective threefold X such that $L \subset X(\mathbb{R})$

$n=2$, Comessatti's thm. for singular surfaces

manifold $=$ charts are diffeomorphisms
orbifold $=$ charts are finite coverings
Du Val singularities = canonical singularities for surfaces
$=$ quotients of \mathbb{C}^{2} by finite subgroups of $\mathrm{SL}_{2}(\mathbb{C})$
X geometrically rational surface
$M \subset \overline{X(\mathbb{R})}$ a connected component of the topological normalization
Theorem (Comessatti, 1914)
X nonsingular and M orientable
$\Rightarrow M$ is a sphere or a torus
Theorem (Catanese, M-, 2008, 2009)
X with Du Val singularities and M orientable orbifold
$\Rightarrow M$ is spherical or euclidean

Uniruled varieties II

X non singular algebraic variety $\operatorname{dim}_{\mathbb{C}} X=n$, W underlying differential manifold $\operatorname{dim}_{\mathbb{R}} W=2 n$
X projective variety $\Rightarrow \exists m, W \subset \mathbb{P}^{m}(\mathbb{R})$,
$\omega=$ restriction of the standard kähler form of $\mathbb{P}^{m}(\mathbb{R})$
$\Rightarrow(W, \omega)$ symplectic variety
$L \subset X(\mathbb{R}) \Rightarrow L$ lagrangian $\subset W\left(\Leftrightarrow \operatorname{dim}_{\mathbb{R}} L=n\right.$ et $\left.\left.\omega\right|_{L} \equiv 0\right)$

Definition

Let W be a closed symplectic manifold W is uniruled iff it has a non vanishing genus 0 mixed Gromov-Witten invariant $\left\langle[p t]_{k} ;[p t], \omega^{k}\right\rangle_{E}^{W}$, where $E \in H_{2}(W, \mathbb{Z})$, [$p t]_{k}$ Poincaré dual of the point class in $\overline{\mathcal{M}}_{0, k+1}$

Theorem (Kollár 1998)
X projective
X uniruled $\Leftrightarrow \exists E \in H_{2}(W, \mathbb{Z}), \exists k$ such that $\left\langle[p t]_{k} ;[p t], \omega^{k}\right\rangle_{E}^{W} \neq 0$.

Theorem (M-, Welschinger, 2011)
If $\left(W^{6}, \omega\right)$ is uniruled
and
if the suspension of a hyperbolic diffeomorphism of the two-torus L Lagrangian embeds in (W, ω),
then (W, ω) contains a symplectic disc D with $\partial D \subset L$ such that $[\partial D] \neq 0$ in $H_{1}(L ; \mathbb{Q})$.

Corollary (Rational surface fibrations)

$X \rightarrow C$ rational surface fibration, $\operatorname{dim}_{\mathbb{C}} X=3$
Assume that $L \subset X(\mathbb{R})$ Sol-manifold
Lemma
If $L \rightarrow C(\mathbb{R})$ restriction of $X \rightarrow C$ then \exists
$X^{\prime} \longrightarrow X$

such that $g\left(C^{\prime}\right)>0$ and $H_{1}\left(L^{\prime}, \mathbb{Q}\right) \hookrightarrow H_{1}\left(C^{\prime}, \mathbb{Q}\right) \hookrightarrow H_{1}\left(X^{\prime}, \mathbb{Q}\right)$

We deduce :
If D disc in X^{\prime} with boundary in L^{\prime}
$\Rightarrow \partial D$ vanishes in $H_{1}\left(X^{\prime}, \mathbb{Q}\right)$
$\Rightarrow \partial D$ vanishes in $H_{1}\left(L^{\prime}, \mathbb{Q}\right)$
\Rightarrow contradiction by the main theorem

