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Abstract. Let W → X be a real smooth projective threefold fibred by
rational curves. Kollár proved that if W (R) is orientable a connected com-
ponent N of W (R) is essentially either a Seifert fibred manifold or a con-
nected sum of lens spaces. Let k := k(N) be the integer defined as follows:
If g : N → F is a Seifert fibration, one defines k := k(N) as the number
of multiple fibres of g, while, if N is a connected sum of lens spaces, k is
defined as the number of lens spaces different from P3(R). Our Main The-
orem says: If X is a geometrically rational surface, then k ≤ 4. Moreover
we show that if F is diffeomorphic to S1 ×S1, then W (R) is connected and
k = 0.

These results answer in the affirmative two questions of Kollár who
proved in 1999 that k ≤ 6 and suggested that 4 would be the sharp bound.
We derive the Theorem from a careful study of real singular Del Pezzo
surfaces with only Du Val singularities.
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INTRODUCTION

In complex algebraic geometry there is an established principle that the
Kodaira dimension of a smooth complex projective variety W of dimension n
strongly influences the topology of the set W (C) of its complex points. This
principle is clearly manifest already in dimension 1, and related to other points
of view, as the uniformization theorem, and the concept of curvature. This
principle, although in a more difficult and complicated way, still goes on to
hold in higher dimensions.

Let us assume now that W is a smooth real projective variety and let us
consider the topology of the set W (R) of its real points. In dimension 1, the
connected components are just diffeomorphic to the circle S1, and their number
is not dictated by the genus (there is only the Harnack inequality which gives
g + 1 as upper bound for the number of connected components of W (R)).

So, there had been for some time the belief that the Kodaira dimension of
W would not affect at all the topology of a connected component N of W (R).
This belief is contradicted already by the example of real algebraic surfaces of
nonpositive Kodaira dimension (see for instance [Co14], [Sil89], [DIK00] and
[Ko01]).

In a very interesting series of papers ([Ko98, Ko99a, Kol99b, Ko00]) János
Kollár used the recent progress on the minimal model program for threefolds
in order to understand the topology of the connected components N ⊂ W (R),
especially in the case where W has Kodaira dimension −∞.

Our note takes the origin from some questions that Kollár set in the third
article of the series ([Kol99b]), and we prove some optimal estimates that
Kollár conjectured to hold.

The present note is mainly devoted to the proof of the following

Theorem 0.1. Let X be a projective surface defined over R. Suppose that X is
geometrically rational with Du Val singularities. Then a connected component
M of the topological normalization X(R) contains at most 4 Du Val singular
points which are either not of type A− or of type A− but globally separating.

Applying this result to rational curve fibrations over rational surfaces, we
obtain the answer to two of the three questions set by Kollár (remark 1.2 of
[Kol99b]). In a second note, with slightly different methods, we plan to answer
also the third question.

Let us now explain these applications in more detail.

Let f : W → X be a real smooth projective threefold fibred by rational
curves. Suppose that W (R) is orientable. Then, by [Kol99b, Theorem 1.1], a
connected component N ⊂ W (R) is a Seifert fibred manifold, or a connected
sum of lens spaces, or obtained from one of the above by taking connected
sums with a finite number of copies of P3(R) and a finite number of copies of
S1×S2. Note that in [HM05] and [HM05b] it was shown that all the manifolds
N as above do indeed occur.

Note also that the connected sum N1#N2 is taken in the category of oriented
manifolds, where in general N1#N2 is not homeomorphic to N1# − N2. But
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for the particular choice N2 = P3(R) or N2 = S1 × S2, the connected sums
N1#N2 and N1# − N2 are diffeomorphic, see e.g. [Hem76].

Take a decomposition N = N ′#aP3(R)#b(S1 ×S2) with a + b maximal and
observe that this decomposition is unique by a theorem of Milnor [Mil62].

We shall focus our attention on the integer k := k(N) defined as follows:

(1) if g : N ′ → F is a Seifert fibration, k denotes the number of multiple
fibres of g;

(2) if N ′ is a connected sum of lens spaces, k denotes the number of lens
spaces.

Observe that when N ′ is a connected sum of lens spaces, the number k is
well defined (again by Milnor’s theorem).

We can then apply the result of Theorem 0.1 concerning singular rational
surfaces in order to answer one question of Kollár, [Kol99b, Remark 1.2 (1)].

Corollary 0.2. Let W → X be a real smooth projective 3-fold fibred by ra-
tional curves over a geometrically rational surface X. Suppose that W (R) is
orientable. Then for each connected component N ⊂ W (R), k(N) ≤ 4.

Note that Kollár showed in [Kol99b] the optimality of the above estimate in
case 1).

The following theorem answers another question of Kollár, [Kol99b, Remark
1.2 (3)]

Theorem 0.3. Let W be a real smooth projective 3-fold fibred by rational
curves over a geometrically rational surface X. Suppose that the fibration is
defined over R and that W (R) is orientable. Let N ⊂ W (R) be a connected
component which admits a Seifert fibration g : N → S1 × S1. Then g has no
multiple fibres. Furthermore, X is then rational over R and W (R) is connected.

Section 1 is devoted to recalling the basic notions which come into play,
especially the local and global separation properties of Du Val singularities of
types Aµ. Hence the basic invariants mi of a Du Val surface are defined.

Section 2 is the heart of the paper and contains a detailed description of the
topological normalization of a real Du Val Del Pezzo surface with more than
4 singular points. The description is based on the classical representation of
the quadric cone on the plane which transforms the hyperplane sections of the
cone to parabolae whose axis has a given direction.

Section 3 proves Corollary 0.2, while Section 4 is devoted to the proof of
Theorem 0.3.

1. Real Du Val surfaces

The aim of this section is to reduce the proof of Theorem 0.1 to the study
of a certain kind of rational surfaces. The first part is close to the treatment
in [Kol99b, Section 9].

On a surface, a rational double point is called a Du Val singularity. Over C,
these singularities are classified by their Dynkin diagrams, namely Aµ, µ ≥ 1,
Dµ, µ ≥ 4, E6, E7, E8.
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Over R, there are more possibilities. In particular, a surface singularity will
be said to be of type A+

µ if it is real analytically equivalent to

x2 + y2 − zµ+1 = 0, µ ≥ 1 ;

and of type A−

µ if it is real analytically equivalent to

x2 − y2 − zµ+1 = 0, µ ≥ 1 .

The type A+
1 is real analytically isomorphic to A−

1 ; otherwise, singularities
with different names are not isomorphic. For µ odd, there is another real form
of Aµ given by x2 + y2 + zµ+1 = 0. We exclude this type of singular point
because an isolated real point gives rise to ∅ on the minimal resolution.

Definition 1.1. Let X be a projective surface. The surface X is called a Du
Val surface if X has only rational double points as singularities.

We want to use a suitable minimal model for X. In the minimal model
program for real Du Val surfaces, the most useful statement for our purpose
is the following description of the extremal contractions.

Theorem 1.2. [Kol99b, Th. 9.6] Let X be a real Du Val surface, NE(X) be
its cone of curves, and R ⊂ NE(X) be a KX-negative extremal ray. Then R
can be contracted. Furthermore, if c : X → Y is the contraction, c is one of
the following:

• Y is a Du Val surface, c is birational, and ρ(Y ) = ρ(X) − 1,
• Y is a smooth curve, ρ(X) = 2, and c : X → Y is a conic bundle,
• Y is a point, ρ(X) = 1 and X is a Du Val Del Pezzo surface (i.e. −KX

is ample).

To apply the minimal model program for our purposes, we need to under-
stand the behavior of c when c is a birational contraction. We begin with a
typical example.

Example 1.3. Let Y be a real Du Val surface, x ∈ Y be a smooth real point,
and µ > 0 be an integer. Blow-up Y at x, and denote by E0 the exceptional
curve of the blow-up Y0 → Y . Then take repeatedly the blow-up Yl+1 → Yl at a
general point on the exceptional curve El for l = 0, 1, . . . , µ−1. The exceptional
divisor of the composition of blow-ups Yµ → Y is a chain of rational curves
whose configuration is of the form:

Contracting the (−2)-curves Eµ−l, l = 0, 1, . . . , µ − 1, we get a surface X
with a singularity of type A−

µ .

The interesting fact is that the birational contractions of Theorem 1.2 involve
only this kind of construction (see [Kol99b, Th. 9.6]).

As we shall see in Section 3, bounding the number of certain singularities
on X(R) yields a bigger upper bound for k(N) than the one stated in Corol-
lary 0.2. In order to obtain this finer estimate we have to bound this number
on each component of the topological normalization X(R) of X(R), which we
are going now to define.
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Definition 1.4. Let V be a simplicial complex with only a finite number of
points x ∈ V where V is not a manifold. Define the topological normalization

n : V → V

as the unique proper continuous map such that n is a homeomorphism over the
set of points where V is a manifold and n−1(x) is in one-to-one correspondence
with the connected components of a good punctured neighborhood of x in V
otherwise.

Observe that if V is pure of dimension 2, then V is a topological manifold.
Indeed each point of V has a neighbourhood which is a cone over S1.

Definition 1.5. Let X be a real algebraic surface with isolated singularities,
and let x ∈ X(R) be a singular point of type A±

µ with µ odd. The topological

normalization X(R) has two connected components locally near x. We will
say that x is globally separating if these two local components are on different
connected components of X(R) and globally nonseparating otherwise.

One can produce an arbitrarily high number of singular points of type A−

µ

by the construction of Example 1.3, but these singular points are globally
nonseparating. Indeed, when µ is even, the singular point is in fact locally
nonseparating, and when µ is odd, then the inverse image of the last S1 =
Eµ(R) yields a segment in X(R) connecting the two points. The key point for
the sequel is the next lemma.

Definition 1.6. Let X be a real Du Val surface, let

(1) PX := Sing X \
{

x of type A−

µ , µ even
}

\
{

x of type A−

µ , µ odd and x is globally nonseparating
}

.

We have

Lemma 1.7. [Kol99b, Cor. 9.7] Let X be a real Du Val surface, let n : X(R) →
X(R) be the topological normalization, and let M1, M2, . . . , Mr be the connected

components of X(R). The unordered sequence of numbers mi := #(n−1(PX)∩
Mi), i = 1, 2, . . . , r is an invariant of extremal birational contractions of Du
Val surfaces.

By Theorem 1.2 and Lemma 1.7, it suffices to prove Theorem 0.1 in the
case when X is a conic bundle or a Del Pezzo surface with ρ(X) = 1. Conic
bundles were analysed in [Kol99b, Section 9]. The remaining case is when X
is a Del Pezzo surface. We still slightly reduce the problem to the case where
X is a degree 1 Del Pezzo surface.

Lemma 1.8. Let X be a real Du Val Del Pezzo surface possessing a smooth
real point and having ρ(X) = 1. Then there exists a blow-up of X in smooth
points yielding Z which is a conic bundle if deg X ≥ 3. Else we get Z a
singular Del Pezzo surface of degree 1 with ρ(Z) ≤ 2.

Proof. Set d := deg X. If d ≥ 3, blow-up (d − 3) smooth points until you get
a real cubic surface Z. The surface Z contains a real rational line L. We get
L ⊂ Z ⊂ P

3, and πL : P
3 − L → P

2 is a morphism and yields a real conic
bundle. If d = 2 blow-up a smooth real point : ρ(X) increases by 1. �
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2. Singular Del Pezzo surfaces of degree 1

Recall that a Del Pezzo surface X is by definition a surface whose anti-
canonical divisor is ample. We add the adjective Du Val to emphasize that we
allow X to have Du Val singularities (observe that for a Du Val surface, the
canonical divisor is a Cartier divisor). Let X be a real Du Val Del Pezzo sur-
face and let p : S → X be the minimal resolution of singularities. The smooth
surface S has nef anticanonical divisor −KS = p∗(−KX), and is called a weak
Del Pezzo surface by many authors. As we saw in Section 1, we can assume
the Del Pezzo surface X to have degree 1 by blowing up a finite number of
pairs of conjugate imaginary smooth points and some real smooth point (there
are several choices to do this), see Lemma 1.8. The anticanonical model of a
Del Pezzo surface X of degree 1 is a ramified double covering q : X → Q of
a quadric cone Q ⊂ P3 whose branch locus is the union of the vertex of the
cone and a cubic section B not passing through the vertex, see e.g. [Dem80,
Exposé V].

Remark that the pull-back by q of the vertex of the cone is a smooth point of
X and let X ′ be the singular elliptic surface obtained from X by blowing up this
smooth point. We denote by n : X ′(R) → X ′(R) the topological normalization
of the real part.

We shall now make a series of considerations which will later lead to a proof
of the following.

Proposition 2.1. For each connected component M ⊂ X ′(R),

#(n−1(PX′) ∩ M) ≤ 4 .

Recall that Hirzebruch surfaces are the P1-bundles over P1. The surface X ′

is a ramified double covering of the Hirzebruch surface F2 whose branch curve
is the union of the unique section of negative selfintersection, the section at
infinity Σ∞, and a trisection B of the ruling F2 → P1 which is disjoint from
Σ∞.

The cone Q is the weighted projective plane P(1, 1, 2) with coordi-
nates (x0, x1, y2), and X is the hypersurface in P(1, 1, 2, 3) with coordinates
(x0, x1, y2, z) defined by

z2 = y3
2 + p4(x0, x1)y2 + q6(x0, x1) .

We want to explain here the plane model of Q, in which the hyperplane
sections of Q embedded in P3 by H0(OQ(2)) correspond to parabolae tangent
to the line at infinity L∞ = {w = 0} at the point O := {w = x = 0} of
the projective plane with coordinates (x, y, w). In other words, blow-up O
and then the infinitely near point O′ to O corresponding to the tangent of
the line at infinity L∞, and denote by Q̃ the resulting surface. Denote by
E, E ′ the respective total transforms of O, O′, and observe that E = E ′ + E ′′,
E ′′ being a (−2)-curve. The linear system H0(OQ̃(2H − E − E ′)) maps Q̃

birationally onto the quadric cone Q ⊂ P3, contracting the proper transform
L̃∞ of L∞ and E ′′ to points. Since L̃∞ and E ′′ do not meet, first contracting
L̃∞ yields the Hirzebruch surface F2, whose (−2)-section Σ∞ is the image of the
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curve E ′′. Let us write everything using the coordinates (x, y, w) in P2: then
H0(OQ(1)) corresponds to H0(OQ̃(H−E)) spanned by w, x, whereas y2 =: yw

completes w2, wx, x2 to a basis of H0(OQ̃(2H −E −E ′)) ∼= H0(OQ(2)). Thus

the morphism of Q̃ to P(1, 1, 2) is given by x0 := w, x1 := x, y2 := yw.

The elliptic surface X ′ is the double cover of F2 branched on Σ∞ and on
the curve B corresponding to the curve of Q of equation y3 + p4(x0, x1)y +
q6(x0, x1) = 0. Thus the curve B corresponds to the plane curve w3y3 +
p4(w, x)yw + q6(w, x) = 0 whose affine part has equation:

(2) y3 + p4(1, x)y + q6(1, x) = 0 .

Note that any parabola as above, i.e., a curve C ∈ (2H −E −E ′) is disjoint
from E ′′ (mapping to the vertex of the cone) unless it splits into two lines
through the point O. In particular, we may always change coordinates in
the affine plane so that C is transformed into the line y = 0. In order to
understand with coordinates the geometry at infinity of parabolae as above,
let us observe that F2 has two open sets isomorphic to C × P

1. They have
respective coordinates x

w
∈ C, (w, y) ∈ P1, while on the other chart we have

w
x

∈ C, and homogeneous coordinates (x2

w
, y) (in fact x2

w
/w = ( x

w
)2). The

section Σ∞ at infinity corresponds to the curve E ′′ ⊂ X̃ and is defined by w = 0
and x2

w
= 0 on the respective charts. Then a parabola yw = a0w

2+a1xw+a2x
2

is given by the equation

1

η
= a0 + a1

x

w
+ a2(

x

w
)2

on the affine chart with coordinates ( x
w
, w

y
:= η). Using these coordinates at

infinity it will be easy to see when some regions in the plane ”meet” at infinity
in F2.

We shall now look for normal forms of Equation (2). Singular points of X ′(R)
are in one-to-one correspondence with singular points of B(R). The different
cases we shall now consider are distinguished by the number of irreducible
components of the trisection B.

Three components. In this case, we shall see that any connected compo-
nent of the topological normalization of any real double cover ramified over
B will have at most 4 singular points. Observe that at least one of the three
components is real. Equation (2) becomes

(y − α(x))(y − β(x))(y − γ(x)) = 0

and, changing real coordinates for Q = P(1, 1, 2), we may assume γ = 0. The
case β = α where two components are complex conjugate leads to at most 2
singular points: Re α(x) = 0, y = Im α(x). We can therefore assume that the
three components are real. Thus Equation (2) becomes (y − α)(y − β)y = 0
where α(x) = α0 + α1x + α2x

2 and β(x) = β0 + β1x + β2x
2 are polynomials of

degree 2.

• Assume no 2 parabolae are tangent. Then, since we can permute the
3 curves, we can fix the one which is the lowest at infinity (i.e., if we
write the curves as y = a0 +a1x+a2x

2, the one with the smallest value
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of a2). Changing coordinates, we get only the curve y = 0 and two
convex parabolae, i.e. with α2 > 0 and β2 > 0.

The 6 intersection points are distinct and given by

y = α(x)β(x) = 0 , α(x) = β(x) = y .

The curve B is real, thus if one of these points is not real, then the
number of real singular points is bounded above by 4 and we are done.
From now on, we suppose that the six points are real. Set

(3)

{

α(x) = α2(x − a1)(x − a2), a1 < a2 ;

β(x) = β2(x − b1)(x − b2) .

Multiplying y possibly by β2, we may assume β2 = 1. We may reduce
to the case 0 < α2 < 1 by possibly exchanging the roles of α and β.
We can further use a translation in the x axis and assume b1 = −b2,
then (3) becomes:

{

α(x) = α2(x − a1)(x − a2), a1 < a2, 0 < α2 < 1 ;

β(x) = (x2 − b2), 0 < b .

Up to reflection x ↔ −x, this leads to 4 possibilities, namely (see
Figure 1)

b < a1 , −b < a1 < b < a2 , a1 < −b < b < a2 , −b < a1 < a2 < b .

Figure 1. Three parabolae, 6 singular points.

Remark 2.2. Observe that in these figures two components are con-
nected at infinity if their boundaries have two unbounded arcs belonging
to the same pair of parabolae.

• Assume 2 parabolae are tangent. Then we cannot arbitrarily permute
the 3 curves, and we shall have to consider furthermore the cases α2 > 1
and α2 < 0.

Without loss of generality, the two tangent parabolae are given by
y = 0 and y = x2. The third parabola is

y = α2(x − a1)(x − a2), a1, a2 ∈ R
∗, a1 < a2 .
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If α2 > 0, again using the reflection x ↔ −x, we are lead to only
3 possibilities which are degenerate cases of the preceding ones (by
possibly exchanging the roles of α and β). In fact, if a1, a2 have opposite
signs and α2 ≤ 1, then the two parabolae y = x2, y = α2(x−a1)(x−a2)
do not meet in real points.

Figure 2. Three parabolae, 5 singular points.

If α2 < 0 this leads to 2 possibilities, up to reflection x ↔ −x.

Figure 3. Three parabolae, 5 singular points.

Two components. Here, we will see that in most cases, any connected com-
ponent of the topological normalization of any real double cover ramified over
B has at most 4 singular points. There will remain two cases to examine
separately, see Figures 6 and 7. Equation (2) becomes

(y − α(x))(y2 − γ(x)) = 0 .

If the bisection y2 − γ(x) = 0 is smooth, then the number of singular points
is bounded from above by 4. Hence we assume the bisection to have a singular
point O at x = y = 0. To ensure that the bisection and the parabola have
4 real intersection points, the polynomial α(x)2 − γ(x) must have 4 distinct
roots. These roots are all supposed to be real and non vanishing in order that
B have 5 singular points. The singular point O is either nodal or cuspidal.

If O is an ordinary double point, the bisection is given by y2 − x2h(x) =
0 where the quadratic polynomial h is not a square since the bisection is
irreducible. Changing coordinates, we can assume that the parabola is given
by y = 0 and the bisection C by (y + α(x))2 − x2h(x) = 0. Without loss of
generality, α(0) > 0.
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Observe that the leading coefficient of h is non vanishing since the curve C
does not pass through the vertex of Q.

The number of real singularities implies that h is not always negative and
h(0) 6= 0. If h(0) < 0, then O will be isolated in B(R) and gives rise to a
globally nonseparating point of the double covering X ′, in view of the following.

Remark 2.3. Let π : X ′(R) → F (R) be a double cover of a smooth connected
real surface F (R). If b is an isolated point of the real branch curve B(R), then
either p = π−1(b) is an isolated point of X ′(R), or p is a locally separating
point of X ′(R). If however B(R) has a component Γ of dimension 1, then p is
globally nonseparating.

Proof. Take a path connecting b to Γ.

�

If h(0) > 0, and the function h is somewhere negative, observe that y = 0
disconnects the cylinder F2(R)−Σ∞(R). Since the polynomial α(x)2 −x2h(x)
is assumed to have 4 distinct roots, up to taking a projectivity of P1(R) sending
∞ to a finite point, we see that there is only one topological possibility, given
by Figure 4.

Figure 4. Two irreducible components.

If h(x) > 0, for all x, then C is a double cover of P1(R), and we can write C
as Cu ∪ C l, where Cu is the ”upper part”, C l the lower part. Because of our
choice α(0) > 0, Cu ∩ {y = 0} = ∅ ⇒ C ∩ {y = 0} = ∅, hence there are two
cases: #(Cu ∩ {y = 0}) = 2, given by Figure 5, #(Cu ∩ {y = 0}) = 4, given
by Figure 6.

After we describe the branch curve B, observe that we obtain two different
surfaces multiplying the equation of B by ±1. In Figure 5, any connected
component of the topological normalization of any double cover will have at
most 4 singular points. In Figure 6, for only one choice of sign, the topological
normalization of the double cover will have a connected component with 5
singular points. For this double cover however the singular point O turns out
to be a globally nonseparating A1 singular point hence does not belong to PX′ .

Figure 5. Two irreducible components.

If O is a cusp, the equation of B is

(y − α(x))(y2 − x3l(x)) = 0 .
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Figure 6. The point O is a globally nonseparating A1 singular point.

Using a dilatation y 7→ λy and possibly the usual reflection x ↔ −x, we
may assume l(0) = 1 and the equation of the bisection becomes

y2 − x3(1 + ax) = 0 .

To ensure that the bisection and the parabola have 4 real intersection points,
the equation α(x)2 − x3(1 + ax) = 0 must have 4 distinct roots. Possibly
changing the line x = ∞ via a projectivity, we may assume that a > 0 and
indeed a = 1. It is easy then to see that the only possible configuration is
given by Figure 7.

Recall that we obtain two different surfaces multiplying the equation of B
by ±1. For only one choice of sign the topological normalization of the double
cover will have a connected component with 5 singular points. For this double
cover, however, the point O turns out to be of real type A−

2 which does not
belong to PX′ .

Figure 7. The cusp gives rise to a singular point of type A−

2 .

One component. If the trisection is irreducible, then it has at most 4 singular
points, since B(C) has genus 4.

Proof of Proposition 2.1. We proceed according to the number of irreducible
components of B, recalling that the singular points of X correspond to the
singular points of B.

If B is irreducible, we have already seen that B has at most 4 singular points.

If instead B has 2 irreducible components, and B has strictly more than 4
singular points, we have seen that B has exactly 5 singular points, and that the
complement F2(R) \B(R) has one of the topological configurations of Figures
4, 5, 6, 7.

In the case of Figure 4 none of the connected components of the complement
F2(R) \ B(R) contains more than 4 points.

The same occurs for the case of Figure 5, while for Figure 6 there is exactly
one connected component D containing the 5 singular points. However, in this
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case the nodal point of the bisection yields a globally nonseparating singular
point of X ′ for the choice of the positivity region which includes D.

Similarly, for the case of Figure 7 there is exactly one connected component
D containing the 5 singular points. However, in this case the cuspidal point
yields a point of type A−

2 which does not belong to PX′ .

Assume now that B has 3 irreducible components, and at least 5 singular
points.

If there are 6 singular points, the complement F2(R) \ B(R) has one of the
topological configurations of Figure 1, and none of the connected components
of the complement F2(R) \ B(R) contains more than 4 points.

An easy inspection of Figures 2 and 2 reveals that the same holds also in
the remaining cases.

�

Proposition 2.4 (Kollár). Let X be a real conic bundle with X Du Val.

Then mi ≤ 4, i = 1, 2, . . . , r. Moreover, if mi = 4, then n̄(Mi)∩PX contains
4 A1 points. Whereas, if mi = 3, then n̄(Mi) ∩ PX contains at least 2 A1.

Proof. The assertion mi ≤ 4 is the last assertion of the proof of cor. 9.8 of
[Kol99b]. But the same argument proves indeed what we have stated above.

�

Proof of Theorem 0.1. Recall that by 1.7 the numbers m1, . . .mr of Du Val
singular points on the connected components of X(R) which are not of type A−

and globally nonseparating is an invariant by extremal birational contractions.
Hence, by Theorem 1.2 it suffices to consider the case where X is either a conic
bundle or a Del Pezzo surface.

The case of a conic bundle is settled by Proposition 2.4, and by virtue of
Lemma 1.8 it suffices to consider the case where X is a Du Val Del Pezzo
surface of degree 1.

Now it suffices to apply Proposition 2.1.

�

3. Real rationally connected Threefolds

This section is devoted to the proof of Corollary 0.2. We first of all introduce
the concept of a Werther fibration (cf. [HM05b]), which allows us to set the
integer k on an equal footing in both cases 1) and 2).

Let S1 ×D2 be the solid torus, where S1 is the unit circle {u ∈ C | |u| = 1}
and D2 is the closed unit disc {z ∈ C, |z| ≤ 1}. A Seifert fibration of the solid
torus is a differentiable map of the form

fp,q : S1 × D2 → D2 , (u, z) 7→ uqzp ,

where p and q are natural integers, with p 6= 0 and gcd(p, q) = 1. Let N be a
3-manifold. A Seifert fibration of N is a differentiable map f from N into a
differentiable surface S having the following property. Every point P ∈ S has a
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closed neighborhood U such that the restriction of f to f−1(U) is diffeomorphic
to a Seifert fibration of the solid torus.

Let A2 be the half-open annulus {w ∈ C | 1 ≤ |w| < 2}. Let P be the
differentiable 3-manifold defined by P = {((w, z) ∈ A2 × C | |z|2 = |w|2 − 1}.
Let ω : P → A2 be the projection defined by ω(w, z) = w. It is clear that ω
is a differentiable map, that ω is a trivial circle bundle over the interior of A2,
and that ω is a diffeomorphism over the boundary of A2.

Definition 3.1. Let g : N → F be a differentiable map from a 3-manifold N
without boundary into a differentiable surface F with boundary. The map g is
a Werther fibration if

(1) the restriction of g over the interior of F is a Seifert fibration, and
(2) every point x in the boundary of F has an open neigborhood U such

that the restriction of g to g−1(U) is diffeomorphic to the restriction
of ω over an open neighborhood of 1 in A2.

This definition was introduced in [HM05b], and is motivated by the following
theorem.

Theorem 3.2. [HM05b, Theorem 2.6] Let N be a 3-dimensional compact
manifold without boundary. Then N is a Seifert fibred manifold or a connected
sum of finitely many lens spaces if and only if there is a Werther fibration
g : N → F over a compact connected differentiable surface F with boundary.
Furthermore N is Seifert fibred if and only if there exist such a map g : N → F
with ∂F = ∅.

Thanks to the Minimal Model Program over R ([Ko99a]), the original setting
for f : W → X in Corollary 0.2 is replaced by the following: W is a real
projective 3-fold with terminal singularities such that KW is Cartier along
W (R), W (R) is a topological 3-manifold, and f : W → X is a rational curve
fibration over R such that −KW is f -ample.

The following result relates the connected components of W (R) with the

connected components of the topological normalization X(R).

Proposition 3.3. [Kol99b, Cor. 6.8] Let W be a real projective 3-fold with
terminal singularities such that KW is Cartier along W (R). Let f : W → X be
a rational curve fibration over R such that −KW is f -ample. Let N ⊂ W (R)
be a connected component. Then f(N) intersects only one of the connected
components of X(R) \ Sing X.

Let n : W (R) → W (R) be the topological normalization. The following is
the key result which relates the integer k(N) which was defined above to the
numbers mi of the singularities in PX ∩ Mi.

Proposition 3.4. [Kol99b, Th. 8.1(6)] Let W be a real projective 3-fold with
terminal singularities such that KW is Cartier along W (R). Let f : W → X
be a rational curve fibration over R such that −KW is f -ample. Let N be a
connected component of the topological normalization W (R) and assume that N
is an orientable topological 3-manifold. Then there exists a small perturbation
g : N → F of f |n(N) which is a Werther fibration. Furthermore, there is an



REAL SINGULAR DEL PEZZO SURFACES 14

injection from the set of multiple fibres of g to the set of singular points of X
contained in f(n(N)) which are of real type A+

µ , µ ≥ 1. If ∂F = ∅, then g is a
Seifert fibration. If ∂F 6= ∅, then N is a connected sum of lens spaces and the
number of lens spaces is equal to the number of multiple fibres of g.

Proof of Corollary 0.2. We want to show that, for each component N of W (R),
we have k(N) ≤ 4. From the above Proposition 3.4 it follows that k(N) is the
number of multiple fibres of the Werther fibration, hence it suffices to bound
the number of singular points of X contained in f(n(N)) which are of real type
A+

µ . If f(n(N)) is not a connected component of X(R) \ Sing X, then from
[Kol99b, 8.2], N is a connected sum of lens spaces and f(n(N)) may contain
some globally nonseparating singular points of type A+

1 ∼ A−

1 . These produce
double fibres for g, which however correspond to lens space summands P

3(R).
These summands are excluded by the maximality of a in the definition of k(N).
Thus, by Proposition 3.3, it suffices to bound the number of singular points
of X contained in f(n(N)) which are of real type A+

µ and globally separating.
Since however these points are a subset of PX ∩Mi, for some i ∈ {1, . . . r}, the
desired inequality follows from Theorem 0.1.

�

4. Seifert fibrations over a torus

This section is devoted to the proof of Theorem 0.3.

Lemma 4.1. Let r : X → P1
R

be a real conic bundle. Suppose that X is a Du

Val surface. If X(R) has a connected component M diffeomorphic to S1 ×S1,

then r is smooth along X(R) and X(R) ∼ X(R) ∼ S1 × S1.

Proof. We first want to show that rM := r ◦n|M is surjective and that X(R) ∼
S1 × S1. Assume that rM is not surjective. Then Im(rM) is homeomorphic
to a segment [a, b]. The fibres r−1

M (a) and r−1
M (b) are the ends of r−1

M (a, b) and
they have a (punctured) tubular neighbourhood which is homeomorphic to
an annulus. This shows that r−1

M (a), r−1
M (b) are connected. The fibre r−1

M (a)
is a simplicial complex of dimension ≤ 1, and if S1 ⊂ r−1

M (a), then S1 has
a (punctured) tubular neighbourhood which is connected, contradicting the
orientability of M . Hence r−1

M (a), r−1
M (b) have Euler number 1.

It suffices to show that each fibre r−1
M (t), t ∈ (a, b) has Euler number ≥ 0

and we obtain a contradiction to e(M) = 0. Looking at the normal forms for
singular points of type Aµ for conic bundles (given in [Kol99b, Proof of Cor.
9.8]), we see that every fibre of r := r◦n is either a circle (and then r is smooth
on the fibre), or a point, or an interval. Thus rM is surjective.

Again, the Euler number argument shows that all fibres of r are circles,
hence r is smooth on X(R) and M ∼ X(R) ∼ X(R). �

Proposition 4.2. Let X be a real Du Val surface which is rational over C. As-
sume that X(R) contains only singularities of type A+

µ and that X(R) contains

a connected component diffeomorphic to S1 × S1. Then X(R) is connected,

thus X(R) ∼ S1 ×S1. Furthermore, there is a minimal model of X which is a
real conic bundle over P1.
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Proof. Let X be as above. The blow-up of a point of type A+
µ for µ ≥ 2 induces

a homeomorphism between the real parts. Thus there is a surface Z such that
all singular points are of type A1 and Z(R) is homeomorphic to X(R). Let
Z∗ be a Du Val minimal model of Z. Then by [Kol99b, Th. 9.6], π : Z →
Z∗ is the composition of inverses of weighted blow-ups (of smooth points).
Hence π is an isomorphism with the exception of a finite number of smooth
points p1, . . . , ps ∈ Z∗ at which one takes the weighted blow-up which, in local
coordinates (x, y) around pj , has the form {xu − vy2} → {(x, y)}. Since the
weighted blow-up produces globally nonseparating points, there is a bijection
between the connected components of Z(R) and the connected components

Z∗(R). The weighted blow-up followed by topological normalization on a disc
neighbourhood of pj has the effect of replacing pj by a closed segment. Hence

the connected component of Z∗(R) coming from the one of Z(R) diffeomorphic
to S1×S1 is again diffeomorphic to S1×S1. Observe again that the singularities
of Z∗ are only of type A1.

We have two cases:

(1) The minimal model Z∗ is a real Del Pezzo surface of degree 1 or 2;
(2) Z∗ is a real conic bundle.

In case (1), we have a realization of Z∗ as a double cover, and the topological

normalization Z∗(R) can be realized as the real part of a real perturbation Z∗

ε

of Z∗ (by Brusotti’s Theorem, [Bru21]). The surface Z∗

ε is a smooth real Del
Pezzo surface of degree 1 or 2. An orientable connected component of such a
surface is a sphere, see e.g. [Sil89, Chap. 3], so this case does not occur.

Case (2) follows from Lemma 4.1. �

To prove Theorem 0.3, we need the conclusion of Proposition 4.2 in a more
general setting. First, we give a partial generalisation of Brusotti’s theorem in
the case of a Du Val Del Pezzo surface.

Theorem 4.3. Let X be a Du Val Del Pezzo surface. One can obtain, by
a global small deformation of X, all the possible smoothings of the singular
points of X.

Proof. The main theorem on deformations of compact complex spaces was
proven in [Gra74]. Good references are [Pa76] and [Pi81]. The tangent space
to Def(X) is given by Ext1(Ω1

X ,OX), see [Se06, Cor. 1.1.11]. The obstruction
space Ob(X) is given by Ext2(Ω1

X ,OX), see [Se06, Prop. 2.4.8].

By the local to global spectral sequence for Ext, we have the following exact
sequence

H1(X, ΘX) → Ext1(Ω1
X ,OX) → H0(Ext1(Ω1

X ,OX)) → H2(X, ΘX) → 0

and Ob(X) = H2(X, ΘX).

Therefore the vanishing H2(X, ΘX) = 0 implies:

• The local deformation space is smooth
• Global deformations map onto local deformations.
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We use a calculation by Burns and Wahl [BW74, Prop. 1.2], to the effect
that, if S is the minimal resolution of the Du Val singularities of X, then
p∗(ΘS) = ΘX . Whence, H2(X, ΘX) = H2(S, ΘS).

But the dual space of H2(S, ΘS) is H0(S, Ω1
S(KS)). The conclusion follows

from H0(S, Ω1
S(KS)) = 0 since H0(S, Ω1

S) = 0 and H0(S,OS(−KS)) 6= 0.

�

Lemma 4.4. Consider a real singular point of a surface X, of local equation
z2 = f(x, y) where f vanishes at the origin and has there an isolated singular
point which we assume to be a nonisolated real point. Then the topological
normalization of X(R) is locally homeomorphic to the real part Xε(R) of the
surface Xε with equation z2 = f(x, y)− ε, for ε sufficiently small and positive.

Proof. The real curve f(x, y) = 0 has 2m arcs entering into the singular point,
ordered counterclockwise, and the region of positivity consists of m sectors,
which alternate themselves to the m sectors of negativity. Furthermore, we
have m 6= 0 because the origin is a nonisolated real point of the curve. The
smooth curve f(x, y) = ε determines m domains of positivity whose closure
is homeomorphic to the closure of the corresponding sector of positivity of
f(x, y) (where it is contained). It follows right away that the double cover
z2 = f(x, y)−ε replaces the singular point by m points, one for each connected
component of X(R) \ {0}. �

Proposition 4.5. Let X be a real Du Val surface which is rational over C.
Assume that all locally separating singularities are gobally separating and that
X(R) contains a connected component diffeomorphic to S1 × S1. Then X(R)

is connected, thus X(R) ∼ S1 × S1. Furthermore, there is a minimal model of
X which is a real conic bundle over P1.

Proof. The minimal resolution of a singular point of type A−

µ , µ even, induces
a homeomorphism between the real parts, thus as in the proof of 4.2, there is
a surface Z such that

• all singular points are of type A1, or of type A−

µ , µ > 1, µ odd, or not
of type A, and

• Z(R) is homeomorphic to X(R).

Let Z∗ be a Du Val minimal model of Z. Suppose that the minimal model Z∗

is a real Del Pezzo surface of degree 1 or 2. We have then a realization of Z∗ as
a double cover and we can apply Remark 2.3 to exclude singular points which
are isolated real points of the branch curve. By Lemma 4.4 and Theorem 4.3,
the topological normalization Z∗(R) can be realized as the real part of a real
perturbation Z∗

ε of Z∗. The surface Z∗

ε is a smooth real Del Pezzo surface
of degree 1 or 2. An orientable connected component of such a surface is a
sphere, so this case does not occur.

Hence Z∗ is a real conic bundle and the conclusion follows from Lemma 4.1.
�

Proof of Theorem 0.3. The component N of W (R) is Seifert fibred hence f(N)
is the closure of a connected component of X(R)\Sing X (see the statement in
[Kol99b, 8.2] ”so we are in the case (4)”). In the proof of [loc. cit. 6.8], using
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[loc. cit. 4.3], Kollar claims that f(N) cannot map to both local components
of a locally separating singularity. Whence, this singularity must be globally
separating. Thus all singularities of f(N) which are locally separating are
gobally separating. We are now in the situation of Proposition 4.5 whence
X(R) ∼ S1 × S1. Furthermore, the minimal model Z∗ is a real conic bundle
and Lemma 4.1 gives that Z∗ is smooth along Z∗(R), thus Z(R) ∩ PZ = ∅,
hence X(R) ∩ PX = ∅.

Applying Proposition 3.4 on a minimal model of W → X, we get the con-
clusion. �
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