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Abstract. We study the connectedness of the real locus of smooth geometrically
rational Fano threefolds and prove a sufficient criterion of R-rationality.
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1. Introduction

Let X denote a real projective scheme. A general and very hard problem con-
sists in understanding connections between the algebraic properties of X and the
topological properties of its real locus X(R), endowed with the euclidean topology.

A first instance of what Kollár calls the recognition problem in [Kol01] is the
following easy fact: let X be smooth and R-rational (i.e. birational to Pn over R),
then the real locus X(R) is connected.
The classical work of Comessatti [Com12] on the real algebraic surfaces combined
with the MMP for real surfaces shows that, in dimension 2, connectedness of the
real locus characterizes rational varieties among geometrically rational ones (i.e. such
that XC is birational to Pn over C). In [Sil89, III.4], the following result appears.

Theorem (Comessatti). Let X be a smooth real projective surface. Suppose that X
is geometrically rational. Then the following are equivalent:

● X is R-rational;
● X(R) is non-empty and connected.

Very little was known about the topology of the real locus for smooth real algebraic
threefolds before the late 90s. The fundamental work of Kollár [Kol98b, Kol99a,
Kol99b, Kol00] on real uniruled threefolds and the minimal model program (see
also [Kol98a]) and subsequent works on Kollár conjectures [Vit99, EGH00, HM05b,
HM05a, CM08, CM09, MW12] (see also [Man14] for an introduction to the topic)
were major contributions to the field.
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The literature on the explicit topology of the real locus for threefold Mori fiber
spaces (i.e. end products of the minimal model program for uniruled varieties) fo-
cuses on conic bundles and del Pezzo fibrations and leaves aside minimal Fano
threefolds. To our knowledge, the only exceptions are [KS04], [Kra09] and [Kra18].
In any case, even determining the number of connected components for the real loci
of real Fano threefolds is a hard problem in general.

Returning to the rationality problem, it is known that already in dimension three,
the connectedness of the real locus is not enough to guarantee rationality, and, in
recent years, several works appeared to study the obstructions to R-rationality of ge-
ometrically rational threefolds (see [BW20, HT21a, HT21b, BW23, FJ24, FJS+24a,
BP24, CTP24]).

In this paper, we will focus on smooth Fano threefolds and establish a sufficient
criterion for R-rationality.

Theorem (= Theorem 4.3). Let X be a smooth geometrically rational real Fano
threefold with X(R) ≠ ∅. If no complex deformation of XC admits real forms whose
real locus has at least two connected components, then X is rational.

For more details on smooth geometrically rational real Fano threefold for which
some deformation ofXC admit real forms whose real locus has at least two connected
components, see Table 3. The proof is via a case-by-case analysis, exploiting the
classification of complex families of smooth Fano threefold completed by Iskovskih in
[Isk79] when ρ = 1 and by Mori and Mukai for higher Picard rank in [MM86, MM03]
(see also [IP99], [Mat95], [Mat23] and [Bel15]).

For the actual statement of Theorem 4.3, we introduce an invariant sX (see Def-
inition 4.1), which encodes the maximal number of connected components for the
real locus of a variety X, up to complex deformation. We stress that, in general, it
is hard to determine the maximal number of connected components of the real locus
in a given deformation class. For example, this problem is still open for smooth real
quintic surfaces in P3, see [KI96, Ore01].

In the process of proving our main theorem, we reserve special care to mini-
mal (i.e. with real Picard rank 1) smooth geometrically rational Fano threefolds,
which play a central role in the birational classification of algebraic varieties and
the minimal model program. We first survey some known results in the field and
moreover produce few new examples with connected and disconnected real loci, via
birational geometry and smoothing techniques (see Proposition 3.11) or via explicit
computations (see Propositions 3.15 and 3.16).

This paper is organized as follows. In Section 2 we deduce some bounds on the
number of connected components for the real loci of Fano threefolds, as a conse-
quence of the Smith-Thom theory. In Section 3 we study the real locus for minimal
geometrically rational Fano threefolds, producing new examples. The main theorem
is proved in Section 4 and the final table in Secion 5 summarizes the the results
concerning families of Fano threefolds with many connected components.

Unless otherwise stated, all real varieties are geometrically integral and projective.
For the classification of complex families of smooth Fano threefolds, we follow the
Mori–Mukai numbering of the 105 families, and write “family №m.n”, where m is
the rank of the Picard group of the threefold, ranging from 1 to 10, and n is the
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entry number in the list. If X is a smooth real Fano threefold, we will say that X
belongs to family №m.n if XC does. You can go to the webpage [Bel15] to easily go
through the classification.

Acknowledgement. We thank Hamid Abban, Olivier Benoist, Erwan Brugallé,
Fabrizio Catanese, Ivan Cheltsov, Jules Chenal, Ilia Itenberg, Lena Ji, Viatcheslav
Kharlamov, János Kollár, Andrea Petracci, Antoine Pinardin for fruitful discussions.
We thank Zhijia Zhang for creating an explicit example in Proposition 3.16 and
providing the picture. The first author is currently supported by the ANR project
“FRACASSO” ANR-22-CE40-0009-01.

2. Upper bounds on the number of connected components

In this section, we deduce from the classical Smith-Thom theory some upper
bounds for the number of connected components for the real loci.

Let X be a real smooth variety of dimension n. First assume that n = 1, that
is X is a real smooth projective curve of genus g. Then by a famous theorem of
Harnack and Klein1, the number s of connected components of the real locus X(R)
is at most g + 1. Furthermore, for any g ≥ 0, Harnack constructed a real smooth
projective curve of genus g with s = g + 1. The Harnack-Klein inequality s ≤ g + 1
was later generalized for any n. It’s the Smith-Thom inequality on Betti numbers
with coefficients in Z/2:

(A)
n

∑
l=0

bl(X(R),Z/2) ⩽
2n

∑
k=0

bk(X(C),Z/2).

Using Galois cohomology groups, we can refine (A). Let σ = idX ×Spec(z → z̄) be
the anti-regular involution on XC =X ×Spec C and denote by G = Gal(C/R) = ⟨σ⟩ ≃
Z/2 the Galois group. Recall that for a G-moduleM , the Galois cohomology pointed
sets H i (G,M), i > 0, are in fact groups and even Z/2-vector spaces. Moreover,
H2 (G,M) = ker(1 − σ)/ Im(1 + σ) and we have the Borel–Swan inequality :

(B) ∑
l even

bl(X(R),Z/2) ⩽
2n

∑
k=0

dimZ/2H2 (G,Hk(X(C),Z)) .

When X is a Fano variety two inequalities can be deduced from the previous ones.
We denote by hi,j(X) = dimCH i,j(XC) the Hodge numbers of XC.

Proposition 2.1. Let X be a real smooth Fano threefold, and s be the number of
connected components of the real locus X(R). Then
(C) s ⩽ 1 + h1,2(X) + ρ(XC) .
Furthermore letting λX = rk((1 + σ)Pic(XC)), we have

(D) s ⩽ 1 + h1,2(X) + ρ(XC) − 2λX .

Proof. Inequality (C) follows directly from Smith-Thom inequality. Indeed the fol-
lowing holds (see e.g. [IP99]):

(1) The 6-dimensional real manifold X(C) is simply-connected, and its cohomol-
ogy is without torsion;

1For notations and results used in this section, we refer to [Man17, Man20, §3.2 and §3.6].



A Rationality Criterion for Real Fano threefolds 4

(2) H i(XC,OXC) = 0 for i > 0;
(3) H2(X(C),Z) ≃ Pic(XC).

Hence Betti numbers mod 2 are equal to usual Betti numbers and we have

b0(X(C)) = b6(X(C)) = 1, b1(X(C)) = b5(X(C)) = 0,

b3(X(C)) = 2h1,2(X), b2(X(C)) = b4(X(C)) = ρ(XC).
If non empty, the real locus X(R) is a Z/2-oriented compact manifold of real

dimension 3 and, by Poincaré duality, one has s = b0(X(R)) = b3(X(R)) and
b1(X(R)) = b2(X(R)). From (A), we get

2s + 2b1(X(R)) ⩽ 2 + 2ρ(XC) + 2h1,2(X)

hence

s + b1(X(R)) ⩽ 1 + ρ(XC) + h1,2(X) .
We now prove (D) using the inequality (B). The group G acts as orientation-

reversing involution on the 6-dimensional real manifold X(C).
Thus H2 (G,H0(X(C),Z)) ≃ Z/2Z and H2 (G,H6(X(C),Z)) = 0. Recall that

H3(X(C);C) = H2,1(XC) ⊕ H1,2(XC) and σ∗H2,1(XC) = H1,2(XC), see [Man17,
Man20, Proposition D.3.17], then we have

dimZ/2H2 (G,H3(X,Z)) ⩽ h1,2(X) .

Now by definition, we have dimZ/2H2 (G,H4(X(C),Z)) = ρ(X) − λX . Recalling
that Z(1) denotes the G-constant sheaf Z on which σ acts as m ↦ −m, we have by
Poincaré duality in group cohomology,H2 (G,H2(X(C),Z)) ≃H2 (G,H4(X(C),Z(1))).
We deduce that H2 (G,H4(X(C),Z(1))) = ρ(XC) − ρ(X) − λX .
Inequality (B) then gives

s + b1(X(R)) ⩽ 1 + h1,2(X) + ρ(XC) − 2λX .

□

Remark 2.2. In fact, (C) and (D) are in general not sharp. In many cases, s = 1
but h1,2(X) > 0. See also the table in Section 5.

3. Real loci of minimal smooth geometrically rational real Fano
threefolds

In this section we will study smooth real Fano threefold verifying the following
two hypothesis:

(E) X is geometrically rational and ρ(X) = 1.

We refer to them as minimal smooth geometrically rational real Fano threefold
and focus on them separately since play a special role, as end products of the minimal
model program.
We recall here some classification results, starting with a stronger assumption on
our Fano variety X: namely, we require that ρ(XC) = 1 (i.e. X to be geometrically
minimal).
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Lemma 3.1. Let X be a smooth geometrically rational real Fano threefold verifying
ρ(XC) = 1. Then XC belongs to one of the families in Table 1. Moreover, the general
member of the starred families are not rational.

№m.n ι d g h1,2 Description of XC

№1.3⋆ 1 6 4 20 V2,3 ⊂ P5 smooth complete intersection of a quadric
and a cubic

№1.5⋆ 1 10 6 10 Gushel–Mukai 3-fold

(i) section of Plücker embedding of Gr(2,5) by codi-
mension 2 subspace and a quadric

(ii) double cover of №1.15 with branch locus an anti-
canonical divisor

№1.6 1 12 7 7 X12 ⊂ P8, section of OGr+(5,10) ⊂ P15 by a linear
subspace of codimension 7

№1.8 1 16 9 3 X16 ⊂ P10, section of LGr(2,5) ⊂ P13 by a linear sub-
space of codimension 3

№1.9 1 18 10 2 X18 ⊂ P11, section of G2/P ⊂ P13 by a linear subspace
of codimension 2

№1.10 1 22 12 0 X22, zero locus of three sections of Λ2U∨, where U is
the universal sub-bundle on Gr(3,7)

№1.14 2 4 2 V4 ⊂ P5, smooth complete intersection of two quadrics

№1.15 2 5 0 V5 ⊂ P6, section of Gr(2,5) ⊂ P9 by a linear subspace
of codimension 3

№1.16 3 2 0 Q3 ⊂ P4, smooth quadric

№1.17 4 1 0 P3

Table 1. Minimal geometrically rational real Fano threefold with ρ(XC) = 1

Proof. Looking at [IP99, Section 12.2], we can list the families of rational complex
Fano threefolds, which appear in Table 1. □

In general, varieties satisfying (E) do not verify ρ(XC) = 1 (i.e. they are in general
not geometrically minimal). Still, Prokhorov classified in [Pro13] complex Fano
threefolds of high Picard rank endowed with an action of a finite group G on the
Picard group which preserves the intersection form and the anticanonical class and
such that ρ(X)G = 1 (see also [CFST16, CFST18]). When G = Gal(C/R) ≅ Z/2Z,
we obtain the following result.

Lemma 3.2. Let X be a smooth real Fano threefold verifying (E) and such that
ρ(XC) > 1. Then XC belongs to one of the families in Table 2.

Proof. From the eight families appearing in the table in [Pro13] we can eliminate
(1.2.1) and (1.2.5), which are not rational (see [AB92]). Moreover (1.2.6), (1.2.7) and
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(1.2.8) are excluded because G has order 2 (see the proof of [Pro13, Proposition 4.3
- Lemma 4.4]). □

№m.n ι d g h1,2 Description of XC

№2.12 1 20 11 3 X(3,3), smooth intersection of three divisors of degree
(1,1) in P3 × P3

№2.21 1 28 15 0 X(4,4), blow up of Q3 ⊂ P4 along a smooth rational
quartic curve

№2.32 2 6 25 0 X(2,2), smooth divisor of degree (1,1) in P2 × P2

Table 2. Minimal geometrically rational real Fano threefold with ρ(XC) > 1

We need to recall some results about rationality of geometrically rational Fano
threefolds. Many results have been obtained for special families of smooth Fano
threefolds over R and more generally over non-closed fields, via a the study of re-
fined obstruction to rationality introduced by Benoist-Wittenberg and developed
by Hassett-Tscinkel and Kuznetsov-Prokhorov (cf. [CTSSD87], [BW23, BW20],
[HT21a, HT21b, HT22],[KP23, KP24]). We restate here the results about the fami-
lies in Tables 1 - 2, when k = R. In the following, Fd(X) denotes the Hilbert scheme
of degree d genus zero curves on X.

Theorem 3.3 (Benoist-Wittenberg, Hassett-Tscinkel, Kuznetsov-Prokhorov).
Let X be a smooth real Fano threefold verifying (E).

(1) If XC belongs to family №1.15, then X is R-rational.
(2) If XC belongs to family №1.6, №1.10, №1.16 or №1.17, then

X is R-rational ⇐⇒ X(R) ≠ ∅.
(3) If XC belongs to family №1.14, then

X is R-rational ⇐⇒ X(R) ≠ ∅ and F1(X)(R) ≠ ∅.
(4) If XC belongs to family №1.8, then

X is R-rational ⇐⇒ X(R) ≠ ∅ and F3(X)(R) ≠ ∅.
(5) If XC belongs to family №1.9, then

X is R-rational ⇐⇒ X(R) ≠ ∅ and F2(X)(R) ≠ ∅.
(6) If XC belongs to family №2.21 or №2.32, then

X is R-rational ⇐⇒ X(R) ≠ ∅.
(7) If XC belongs to family №2.12, then X is never R-rational.

Moreover, for all previous families, X is R-unirational ⇐⇒ X(R) ≠ ∅.

Proof. The statement is a special case of [KP23, Theorem 1.1] and [KP24, Theo-
rem 1.2]. □
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Corollary 3.4. Let X be a smooth real Fano threefold such that X(R) ≠ ∅ and XC
belongs to family №1.6, №1.10, №1.15, №1.16, №1.17, №2.21 or №2.32. Then X is
rational and, as a consequence, X(R) is connected.

Proof. This is a direct consequence of the previous result and the fact that the
number of connected components of the real locus is a birational invariant for smooth
projective varieties, see e.g. [Man20, Theorem 2.3.12]. □

An easy observation is the following.

Corollary 3.5. Let X be a smooth real Fano threefold such that X(R) ≠ ∅ and
XC belongs to family №1.9. Then X is rational and, as a consequence, X(R) is
connected.

Proof. By Theorem 3.3, it is enough to prove that X contains a real conic, but this
is clear, since the general point of XC has 9 conics passing through it by [Tak89,
Table 2.8.1]. Since X is unirational, there exists a real conic passing through any
general x ∈X(R). □

All members of families №1.3 and 1.5 are conjecturally geometrically irrational,
so they play a marginal role in our analysis. Still, we provide few examples.

Proposition 3.6. There exists smooth real Fano threefolds belonging to family №1.3
whose real loci have exactly s connected components, for s = 1,2 and others belonging
to family №1.5 whose real loci have exactly s connected components, with 1 ≤ s ≤ 10.

Proof. Let Y ⊂ P5 be a smooth real cubic with non connected real locus and let
P,P ′ be two real points belonging to distinct connected components of Y (R). Let
Q ⊂ P5 be a real quadric with nonempty real locus passing through P,P ′. We can
choose Q such that the intersection X = Y ∩ Q is smooth and then X is a real
Fano threefold X in family №1.3 whose real locus has two connected components.
A similar construction provides an example with one connected component.

Let Gr(2,5) ⊂ P9 be the Grassmannian of 2-planes in C5 in its Plücker embedding,
and V be a smooth intersection of Gr(2,5) with a linear subspace of codimension 3.
Then V is the unique smooth complex Fano threefold in the deformation family
№1.15. A general member S of ∣ −KV ∣ is a smooth K3 surface. Let U → V be the
double cover branched over S. Then U is a smooth Fano threefold that belongs
to the deformation family №1.5, actually one of the special members of this family
[Deb20, Theorem 1.1]. Any real forms of V is rational, by Theorem 3.3 (see also
[DK19] for the geometry of these real forms). Choose one of them and denote it by
Z; thus Z(R) is connected. Let T ∈ ∣−KZ ∣ be a real K3 surface such that T (R) has
10 connected components. To prove the existence of such a surface in this linear
system we can follow the same lines as [Har76], see also [Sil89, VIII.4].

The double cover W → Z branched over T has two real forms exchanged by the
deck involution: one of them whose real locus is connected and the other whose real
locus has 10 connected components. Similar constructions gives examples with all
intermediate number of connected components. □

In rest of this section, we will study connectedness of X(R) for the remaining
families, namely №1.14, №1.8, №2.12.
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3.1. Family №1.14: Krasnov’s classification. We recall here some of the results
from [Kra18], where the author classifies topological types for the real locus of three-
dimensional smooth complete intersection of two quadrics over R.

Unirationality is well known (see [CTSSD87, Proposition 2.3]), while the prob-
lem of rationality has been studied in [HT21b] and completely solved in [BW23,
Theorem A] (see the part of Theorem 3.3 on V4).

In order to understand the results in [Kra18], we need to recall here the notion of
isotopy classes. Here we follow [HT21b, Section 11].

Let X ⊂ P5 smooth complete intersection of two quadrics over R, defined by q0
and q1. One can associate a pencil Y ⊂ P5 × P1 defined by

λ0q0 + λ1q1 = 0.
Take the 2 ∶ 1 covering γ∶S1 → P1 and the base-change

Ỹ //

��

Y

��
S1 // P1

Now Ỹ defines a well-defined family of quadratic forms over S1 and one can take
the positive index of inertia

I+∶S1 → Z
computing the number of positive eigenvalues. By construction I+ is piecewise
constant and jumps 2k ≤ 12 times, with height ±1 (here we use that X is smooth).
One says that a point of discontinuity for I+ is positive if the value of the inertia
increases by one as we cross it anti-clockwise. This produces a partition

(F) k = k1 + k2 +⋯ + k2s+1
given by the numbers of consecutive positive points of discontinuity, moving anti-
clockwise on S1. One also quotients out the set of these decompositions by cyclic
permutations or reversal of the order of the sum.

Definition 3.7. Let B3 denote the space of three-dimensional smooth complete
intersection of two quadrics over R. Then the connected components of B3(R) are
called the (rigid) isotopy classes.

Proposition 3.8 (Krasnov). Isotopy classes of smooth three-dimensional complete
intersections of two quadrics correspond to equivalence classes of odd decompositions
(F), where 0 ≤ k ≤ 6 is even.

So we will refer to an isotopy class with its corresponding partition (F): either
(0) or (k1, . . . , k2s+1) with 0 < k1 ≤ k2 ≤ ⋯ ≤ k2s+1.
The following result is a direct consequence of the results in [Kra18].

Proposition 3.9 (Krasnov). Let X be a real form of V4, then

X(R) is disconnected ⇐⇒ #π0(X(R)) = 2 ⇐⇒ X has isotopy class (1,1,4).

Proof. If X has isotopy class (0), then X(R) = ∅. The classification result in [Kra18,
Theorem 5.4] implies the result. □
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3.2. Family №1.8: weak Fano model with quadric fibration. In this part we
produce examples in family №1.8 whose real locus has several connected components,
building on [Tak22, (2.3.8)] and [ACC+23, Example 4.9]. We state here a key lemma
to control the number of connected components of the real locus under smoothing.
We follow [Nam97].

Lemma 3.10. Let X0 be a real singular Fano threefold whose singularities are ordi-
nary double points. Then X0 is smoothable over R. In particular, there exists a real
smooth Fano threefold X of the same degree and same complex Picard number whose
real locus X(R) has at least the same number of connected components as X0(R).
Furthermore, if the real locus is isomorphic locally around all ordinary double points
to the cone over S1 × S1, then #π0(X(R)) =#π0(X0(R)).

Proof. After base-change, we have H2(X0,C, TX0,C) = 0 by [Nam97, Proposition 4],
and [Nam97, Theorem 11] implies that X0,C is smoothable by a flat deformation
and by [Nam97, Proposition 3 and Lemma 12], the Kuranishi space Def(X) is
smooth and universal. Since X0 is defined over R, Def(X) is endowed with an anti-
linear involution whose fixed locus parametrizes real infinitesimal deformations of
X0. Hence X0 is smoothable over R and we get a real smooth Fano threefold X of
the same degree. By Jahnke-Radloff [JR11, Theorem 1.4], the Picard number of XC
is the same as the Picard number of X0,C.

The cone over S2 admits two different smoothing, one of which locally disconnects
the real locus. On the other hand, the cone over S1 ×S1 admits only one smoothing
which is connected. □

Proposition 3.11. There exists a smooth real Fano threefold X belonging to family
№1.8 whose real locus has 3 connected components.

Proof. Let W = P(OP1 ⊕OP1 ⊕OP1(1) ⊕OP1(1)) and let π∶W → P1 be the natural
projection. Denote by H the tautological bundle and by F a fibre of π. Write t0, t1
for the coordinates on P1 and x, y, z,w be coordinates on the fibre with x, y sections
of H and z,w sections of H − F .

Let V be the divisor in ∣2H + F ∣ given by the following equation

(t0 + t1)x2 + (t0 + 2t1)y2 + t1(t1 − t0)(t1 − 2t0)z2 + t0(t1 − 3t0)(t1 − 4t0)w2 = 0
The manifold V is a Picard-rank-two weak Fano threefold with a fibration π ∶=

π∣V ∶V → P1. We have (−KV )3 = 16 and the real locus V (R) has 3 connected
components over the intervals t0 = 1, 1 ≤ t1 ≤ 2, 3 ≤ t1 ≤ 4 and ∞ ≤ t1 ≤ 0 of P1(R).
Here t1 = ∞ is for the point [t0, t1] = [0 ∶ 1]. Let C be the curve on V given by
{z = w = 0}. The anticanonical map of V is small, and C is the only curve with
trivial intersection −KV ⋅C = 0. The curve C is smooth rational and is a bisection
of π. The curve C is the complete intersection of the two surfaces S1 ∶ {z = 0} and
S2 ∶ {w = 0} in V . It is smooth along each plane Si then it is a (−1)-curve in each
plane Si, thus its normal bundle NC/V is isomorphic to OP1(−1)⊕OP1(−1).
The real locus C(R) meets only one connected component of V (R), namely the

one over the interval t0 = 1,−2 ≤ t1 ≤ −1 of P1(R).
Let X0 be the singular Fano threefold obtained by contracting C, then X0 is

a singular Fano threefold of index 1 and genus 9 whose unique singularity is an
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ordinary double point whose real locus is the cone over S1×S1. Its real locus X0(R)
has the same number of connected components as V (R). By Lemma 3.10, we get a
real smooth Fano threefold X in family №1.8 whose real locus X(R) has exactly 3
connected components. □

Remark 3.12. With the same construction, we can produce further examples with
two connected components starting with V given by the equation

(t0 + t1)x2 + (t0 + 2t1)y2 + t1(t1 − t0)(t1 − 2t0)z2 + t0(t21 + t20)w2 = 0

or one connected components with the equation

(t0 + t1)x2 + (t0 + 2t1)y2 + t1(t21 + 2t20)z2 + t0(t21 + t20)w2 = 0.

3.3. Family №2.12: minimal irrational members with connected and dis-
connected real loci. In this part we produce examples of minimal smooth real
Fano threefold belonging to family №2.12, whose real locus is connected or discon-
nected. We recall that Theorem 3.3 implies that any such member is R-irrational.

We recall that over C the elements of family №2.12 can be ralised as smooth
intersection of three divisors of degree (1,1) in P3 × P3, so, in order to construct
explicit examples, we need to recall some well-known facts on real forms of P3 ×P3.
Any real structure on P3 is equivalent to one of the following.

(1) the complex conjugation

σ0∶ [x0 ∶ x1 ∶ x2 ∶ x3]↦ [x̄0 ∶ x̄1 ∶ x̄2 ∶ x̄3]

whose associated real locus is P3(R)
(2) the one given by

σ1∶ [x0 ∶ x1 ∶ x2 ∶ x3]↦ [−x̄1 ∶ x̄0 ∶ −x̄3 ∶ x̄2]

whose associated real locus is empty.

We denote by σtwist the real structure on P3 × P3 given by

([x0 ∶ x1 ∶ x2 ∶ x3], [y0 ∶ y1 ∶ y2 ∶ y3])↦ ([ȳ0 ∶ ȳ1 ∶ ȳ2 ∶ ȳ3], [x̄0 ∶ x̄1 ∶ x̄2 ∶ x̄3]) .

Lemma 3.13. Any real structure on P3 × P3 is equivalent to one of the following

(1) σ0 × σ0 whose associated real locus is P3(R) × P3(R).
(2) σ0 × σ1 whose associated real locus is empty.
(3) σ1 × σ1 whose associated real locus is empty.
(4) σtwist whose real locus is diffeomorphic to the 6-dimensional real manifold

underlying P3(C).

Proof. The four real structures above are pairwise nonequivalent. Conversely, we
have AutC(P3 × P3) ≃ PGL4(C)2 ⋊ Z/2 and the Galois cohomology pointed set
H1(G,AutC(P3 × P3)) has four elements, see e.g. [GS17] for details. □

Remark 3.14. The 6-dimensional real manifolds P3(R) × P3(R) and P3(C) are
orientable.

Starting form [ACC+23, Example 5.4], we show that this construction provides
an interesting example whose real locus has one connected component.



A Rationality Criterion for Real Fano threefolds 11

Proposition 3.15. There exists a minimal (hence R-irrational) smooth real Fano
threefold in family №2.12 with connected real locus.

Proof. Let C ⊂ P3 be the unique PSL2(F7)-invariant smooth curve of degree 6 and
genus 3 which is real by unicity. Let π∶X → P3 be the blow-up of C. Then the
(non-minimal) threefold X belongs to family №2.12, and can be described in P3×P3

by (see [ACC+23, (5.4.3)])

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0y1 + x1y0 −
√
2x2y2 = 0

x0y2 + x2y0 −
√
2x3y3 = 0

x0y3 + x3y0 −
√
2x1y1 = 0

The involution τ ∈ Aut(P3 × P3) given by

([x0 ∶ x1 ∶ x2 ∶ x3], [y0 ∶ y1 ∶ y2 ∶ y3])↦ ([y0 ∶ y1 ∶ y2 ∶ y3], [x0 ∶ x1 ∶ x2 ∶ x3])

leaves X invariant hence induces an element of Aut(X) which we still denote by τ
(this involution is denoted σ in [ACC+23, Example 5.4]).

Then the restriction to XC of the real structure σtwist on P3 × P3 defined before
Lemma 3.13 is also the one obtained by composition of τ and the canonical real
structure σ0 corresponding to the complex conjugation σ0 on P3, lifted through π.
We denote by σ this real structure and by Y the corresponding real form of X.
Let H be an hyperplane in P3. By construction, the real Picard number of X is 2

and Pic(XC)σ0 is generated by π∗H and the π-exceptional surface E. The involution
σ acts on Pic(XC) as follows:

{σ
∗(E) ∼ 8π∗(H) − 3E ,

σ∗(π∗(H)) ∼ 3π∗(H) −E .

Hence −KX = π∗(H) + σ∗(π∗(H)) and Picσ(XC) = Z[−KX] thus the real Picard
number of Y is 1.

The real locus Y (R), is given by the following equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x̄1

y2 = x̄2

y3 = x̄3

2R(x0x̄1) −
√
2 ∣x2∣2 = 0

2R(x0x̄2) −
√
2 ∣x3∣2 = 0

2R(x0x̄3) −
√
2 ∣x1∣2 = 0

Those ones provide 9 equations in real variables.
We show now that Y (R) is connected. First we observe that Y (R) is contained

in the affine chart {x0 ≠ 0} × {y0 ≠ 0}. Indeed, if ([x0 ∶ x1 ∶ x2 ∶ x3], [y0 ∶ y1 ∶ y2 ∶ y3])
belongs to Y (R), and if x0 = 0, then xj = 0 for j = 1,2,3. Thus we can assume
x0 = 1 = y0. The first 6 real equations define a real affine subspace V ⊂ A3 × A3 of
real dimension 6. Letting xj = aj + ibj, aj, bj ∈ R for j = 1,2,3, we get that Y (R) ⊂ V
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is defined by the equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2a1 −
√
2(a22 + b22) = 0

2a2 −
√
2(a23 + b23) = 0

2a3 −
√
2(a21 + b21) = 0

.

Let P = (a1, b1, a2, b2, a3, b3) ∈ Y (R) be a real point and for t ∈ [0,1] define P (t) =
(a1(t), b1(t), a2(t), b2(t), a3(t), b3(t)) where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aj(t) = (1 − t)aj j = 1,2,3
b2(t) =

√
1 − t
√
2a1 − (1 − t)

√
2a22

b3(t) =
√
1 − t
√
2a2 − (1 − t)

√
2a23

b1(t) =
√
1 − t
√
2a3 − (1 − t)

√
2a21

.

Then [0,1] → Y (R), t ↦ P (t) is a continuous path from P (0) = P to P (1) =
(0,0,0,0,0,0) such that P (t) ∈ Y (R) ∀t ∈ [0,1].
Let’s prove that b2(t) is well defined. Indeed, P ∈ Y (R) then 0 ≤

√
2b22 = 2a1−

√
2a22

and for t ∈ [0,1], we get 2a1 − (1− t)
√
2a22 ≥ 0. The same proof shows that b1 and b3

are well-defined. We have proven that Y (R) is path connected. □

The final proposition of this part provides an example with two components,
obtained in the spirit of [CTZ24].

Proposition 3.16. There exists a smooth real Fano threefold belonging to family
№2.12 with disconnected real locus.

Proof. Let Y ⊂ P4 be a real cubic hypersurface whose singular locus is a pair of
conjugated ordinary double points {P, P̄} ⊂ Y (C) ∖ Y (R) and real locus Y (R) has
two connected components. An explicit example of such a cubic is the following:

x2
0x2+x2

1x2+x3
2−4x2

2x3+x0x
2
4+x2x

2
3+x3

3+x2
2x4+x2x3x4+x2

3x4+x1x
2
4+7x2x

2
4+x3x

2
4+x3

4 = 0
where [x0 ∶ x1 ∶ x2 ∶ x3 ∶ x4] are coordinates in P4.
The image of the projection onto P2 with coordinates [x2 ∶ x3 ∶ x4] is given by
−x4

2+4x3
2x3−x2

2x
2
3−x2x3

3+ 1
4x

4
3−x3

2x4−x2
2x3x4−x2x2

3x4−7x2
2x

2
4−x2x3x2

4−x2x3
4+ 1

4x
4
4 = 0.

Figure 1. Image of the projection of X(R) on P2 (in green).

Let π, π̄∶Y ⇢ P3 be the conjugated projections of Y from the singular points
P, P̄ . The product map gives a real rational map f ∶Y ⇢ W where W is the real
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form of P3 × P3 corresponding to the real structure σtwist (see Lemma 3.13). The

image X0 = f(Y ) has a unique ordinary double point which is the result of the
contraction of the line passing through P and P̄ . The real locus X0(R) still has two
connected components because the real locus of the contracted line is connected.
By Lemma 3.10, we get a real smoothing X of X0 which is a real Fano threefold
belonging to family №2.12 with disconnected real locus. □

4. Maximal number of connected components and a rationality
criterion

In this section we discuss an invariant for real varieties, which encodes the maximal
number of connected components in families and prove the main result of this paper.

4.1. The invariant sX. We recall that two smooth complex varieties Y and Z

are deformation equivalent, denoted Y
def∼ Z if there exists a finite chain Y =

Y0, Y1, . . . , Yr = Z of smooth complex varieties such that Yi and Yi−1 are complex
isomorphic to fibers of a smooth morphism over a smooth curve. Note that if

Y
def∼ Z, then Y (C) and Z(C) are C∞-diffeomorphic, by Ehresmann’s theorem.

Definition 4.1. Let X be a smooth real projective variety. Then one defines

sX ∶=max{#π0(X ′(R)) ∣ X ′C
def∼ XC}.

Note that sX is well-defined for any real projective variety by Smith-Thom in-
equality (A). Note that sX is in general hard to determine and known only in few
cases. Here are some examples.

Examples 4.2. (1) Let X,X ′ be real smooth projective curves, then X ′C
def∼ XC if

and only if they have the same genus g. Moreover sX = g+1 by Harnack’s Theorem.
(2) Let Sd be a del Pezzo surface of degree d, then sS1 = 5, sS2 = 4, sS3 = sS4 = 2,

for 5 ≤ d ≤ 9, sSd
= 1, see [Man20, Chapter 4].

(3) Let X ⊂ PN and X ′ ⊂ PN be real smooth hypersurfaces of the same degree,

then X ′C
def∼ XC.

(4) Let Xd ⊂ P3 be a degree-d real smooth surface, then sX1 = sX2 = 1, sX3 = 2,
sX4 = 10, but sX5 is not known.

(5) Let N be an odd integer, and X = PN . There exists a unique non-trivial

Severi-Brauer variety X ′, and by definition X ′C
def∼ XC.

(6) Let X = P1 × P1 and X ′ = P1 ×C be the product of P1 with a pointless conic

C, then X ′ does not admit a real quadric model in P3 but X ′C
def∼ XC.

(7) Let X, X ′ be real smooth Fano threefolds such that XC and X ′C belong to the

same family then X ′C
def∼ XC.

We stress that the number sX is not a birational invariant (see Remark 4.10).
Moreover, in what follows, we will always assume that X(R) ≠ ∅. For the clas-
sification of families containing a member X such that X(R) = ∅, see [ACKM25,
Proposition B].
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4.2. A rationality criterion. We state now the main result of this paper.

Theorem 4.3. Let X be a smooth geometrically rational real Fano threefold with
X(R) ≠ ∅. If sX = 1, then X is rational.

We introduce the following notation.

Definition 4.4. Let X be a geometrically rational smooth real Fano threefold be-
longing to family №m.n. Then one denotes sm.n ∶= sX .

Our strategy consists in going through all families of (sometimes conjecturally)
rational complex Fano threefolds and proving that either sm.n > 1 or the implication
[X(R) ≠ ∅ Ô⇒ X is rational] holds for every real form of a variety belonging to
family №m.n.

Lemma 4.5. Let X be a smooth real Fano threefold such that XC ≅ P1 × Sd where
Sd is a smooth del Pezzo surface of degree d (S8 = F1 or S8 = P1 × P1). Then

(1) X is rational if and only if its real locus is nonempty and connected.
(2) Let sd be the maximal number of connected components of the real locus of

a smooth real del Pezzo surface of degree d. If X belongs to family №m.n, then
sm.n = s11−m.
Proof. As XC is the product of a curve and a surface, X is as well a product, hence
X ≅ U × V where U is a real form of P1 and V is a real form of a del Pezzo surface
of degree 10 −m where m = ρ(XC). Then X is rational if and only if U = P1 and V
is rational. By Comessatti’s Theorem, we get that X is rational if and only if V (R)
is connected if and only if X(R) is connected. □

4.3. The proof of Theorem 4.3. In what follows, letX be a geometrically rational
smooth real Fano threefold. We will study families depending on the Picard rank.

4.3.1. ρ(XC) = 1.
Proposition 4.6. Let X be a geometrically rational smooth real Fano threefold
belonging to family №1.n. Assume that X(R) ≠ ∅. Then X is rational and s1.n = 1,
unless n ∈ {3,5,8,14}.
Proof. There are 17 families of smooth Fano threefolds with Picard number 1.

For n ∈ {1,2,4,7,11,12,13}, no X belonging to family №1.n are geometrically
rational.

For n ∈ {3,5}, the general member in family №1.n is not geometrically rational
and all members are conjecturally not geometrically rational. Any X belonging to
family №1.n, with n ∈ {6,8,9,10,14,15,16,17}, is geometrically rational.
Let X belonging to family №1.n such that X(R) ≠ ∅. By Theorem 3.3 for

n ∈ {6,10,15,16,17} and by Corollary 3.5 for n = 9, X is rational. □

Proposition 4.7. The following holds:

● s1.3 ⩾ 2;
● s1.5 ⩾ 10;
● s1.8 ⩾ 3 ;
● s1.14 = 2.

Proof. This is a consequence of Propositions 3.6, 3.11 and 3.9. □
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4.3.2. ρ(XC) = 2.

Proposition 4.8. Let X be a geometrically rational smooth real Fano threefold
belonging to family №2.n. Assume that X(R) ≠ ∅. Then X is rational and s2.n = 1,
unless n ∈ {10,12,16,18}.

Proof. There are 36 families of smooth Fano threefolds with Picard number 2.
For n ∈ {1,2,3,5,6,8,11}, no X belonging to family №2.n are geometrically

rational. Any X belonging to other family №2.n is geometrically rational. If
n ∈ {4,7,9,13,14,15,17,19,20,22,23,25,26,27,28,29,30,31,33,35}, XC admits an
extremal birational contraction f ∶XC → Y , where Y is P3

C, the quadric Q ⊂ P4
C,

or the quintic V5 ⊂ P6
C (see [MM86, MM03, Mat23]). By [ACKM24, Lemma 2.5],

there exists a birational morphism g∶X → W , where W is a real form of Y . Since
X(R) ≠ ∅, we deduce that W (R) ≠ ∅, and therefore W is rational over R. We
deduce the statement for these values of n.
Assume n = 21: if ρ(X) = 1, then X is rational by Theorem 3.3, if ρ(X) = 2, then
X admits an extremal birational contraction onto a quadric Q ⊂ P4

C with Q(R) ≠ ∅.
We conclude that s2.21 = 1.
Assume n ∈ {24,34,36}: XC has an extremal contraction that produces a P1-bundle
f ∶XC → P2

C, while the second extremal ray corresponds to a conic bundle for n = 24,
a P2-bundle for n = 34 and a divisorial contraction for n = 36, respectively. This
implies that the Galois action cannot exchange the two rays and, as a consequence,
that f descends to a P1-bundle structure over R. We conclude that X is rational
and, therefore, s2.n = 1.
Assume n = 32: if ρ(X) = 1, then X is rational by Theorem 3.3, otherwise, it admits
two P1-bundle structure over P2, hence X is rational and s2.32 = 1. □

We study now the remaining families with geometric Picard rank two.

Proposition 4.9. The following holds:

(i) s2.10 = 2;
(ii) s2.12 ≥ 2;
(iii) s2.16 ≥ 2;
(iv) s2.18 = 3.

Proof. Let X be a geometrically rational smooth real Fano threefold belonging to
family №2.10. By [MM86, MM03, Mat23] and [ACKM24, Lemma 2.5], there exists
a birational morphism f ∶X → Y , where Y is a real form of a quartic V4 and f is
the blow-up of a genus-one curve, intersection of two hyperplanes. This implies that
s2.10 ≤ 2. To show the equality, let Y ′ be a real form of a quartic V4 such that Y ′(R)
has two connected components. Now take two general rational points on the two
connected components and intersect Y ′ with two hyperplanes passing through those
rational points: this produces a genus-one curve C ′ in Y ′ and let X ′ be the blow up
of Y ′ along C ′. By construction, X ′(R) has two connected components. This shows
that s2.10 = 2.
The estimate on s2.12 is a consequence of Proposition 3.16.
We produce now an example in family №2.16 with two connected components. Let
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Q1,Q2 ⊂ P5 be the quadric threefolds given by the equations

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x2

0 = 0

α2(x2
1 + x2

2 + x2
3 + x2

4) + β2x2
5 − x2

0 = 0
where 1 < α and 0 < β < 1. Let Y = Q1∩Q2 be their intersection. For general α and β
the threefold Y is smooth. By construction, Y belongs to family №1.14. Moreover,
all real points are contained in the affine chart x0 ≠ 0, where the equations become

x2
5 = 1 − (x2

1 + x2
2 + x2

3 + x2
4)

β2x2
5 = 1 − α2(x2

1 + x2
2 + x2

3 + x2
4)

One checks that the hyperplane section {x5 = 0} ∩ Y has no real point, since 1 < α,
while each half-space {±x5 > 0} ∩ Y contains real points. Hence Y (R) has two
connected components. Moreover, the following holds:

(1) Y is contained in the quadric given by x2
5 = α2−1

α2−β2x2
0;

(2) Let P be the plane given by {x1 = x2 = 0, x5 =
√

α2−1
α2−β2x0}. The curve Y ∩ P

is a smooth real conic C.

LetX be the blow up of Y along C, thenX is a real smooth Fano threefold belonging
to family №2.16 and X(R) has two connected components. This implies s2.16 ≥ 2.
The family №2.18 was extensively studied in [FJS+24b] and [JJ24]. The construction
given in [JJ24, Example 4.6] implies that s2.18 ≥ 3. One can adapt the argument in
[JJ24, Lemma 2.7] to deduce that, even when the discriminant of the conic bundle
is not smooth, the bound s2.18 ≤ 3 holds true. We conclude that s2.18 = 3. □

Remark 4.10. The previous proposition shows that sX is not a birational invariant.
If X belongs to family №1.14, then sX = 2. If Y is the blowup of X in an elliptic
curve which is an intersection of 2 hyperplanes, i.e. Y belongs to familly №2.10, then
sY = 2. But if Y ′ is the blowup of X in a line, i.e. Y ′ belongs to familly №2.19, then
sY ′ = 1. Indeed X is rational if and only if it contains a real line by Theorem 3.3.

4.3.3. ρ(XC) = 3.

Proposition 4.11. Let X be a geometrically rational smooth real Fano threefold
belonging to family №3.n. Assume that X(R) ≠ ∅. Then X is rational and s3.n = 1,
unless n ∈ {2,3,4}.

Proof. There are 31 families of smooth Fano threefolds with Picard number 3. No
X belonging to family №3.1 are geometrically rational. Any X belonging to other
family №3.n is geometrically rational. The strategy consists in checking for all
families the type of extremal contractions of XC, studied in [MM86, MM03, Mat23].
See also [ACKM24] for details on the geometry of the extremal contractions.

Family №3.5. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1 ≃ P1×P2, while Y2 and Y3 are not Fano, see [Mat95, § III.3, p. 74]. The
Galois action fixes f1, which descends to g1∶X → W1. Since X(R) ≠ ∅, we deduce
that W (R) ≠ ∅, and therefore W is rational over R. This implies that X is rational.
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Family №3.6. XC admits exactly two extremal divisorial contractions fi∶XC → Yi,
where Y1 belongs to family 2.25 and Y2 belongs to family 2.33, see [Mat95, § III.3,
p. 75]. Since they cannot be exchanged by the Galois action, they descend to
gi∶X →Wi, where Wi, i = 1,2, are rational by Proposition 4.8. This implies that X
is rational.

Family №3.7. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1 ≃ Y2 ≃ P1 ×P2 and Y3 belongs to family 2.32, see [Mat95, § III.3, p. 76].
The Galois action fixes f3, which descends to g3∶X → W3, where W3 is rational by
Proposition 4.8. This implies that X is rational.
Family №3.8. XC admits exactly two extremal divisorial contractions fi∶XC → Yi,

where Y1 ≃ P1 × P2 and Y2 belongs to family 2.24, see [Mat95, § III.3, p. 77]. Since
they cannot be exchanged by the Galois action, they descend to gi∶X →Wi, where
Wi, i = 1,2, are rational by Proposition 4.8. This implies that X is rational.

Family №3.9. XC is isomorphic to the blow-up of the cone over the Veronese of
P2 in P5 with center the disjoint union of the vertex and a quartic curve on P2 and
admits exactly two extremal divisorial contractions of the form fi∶XC → Y , i = 1,2,
where Y is the blow-up of the Veronese cone in a quartic curve, see [Mat95, § III.3,
p. 79]. If those two contractions are fixed by the Galois action, they descend to R
and induce birational morphisms hi∶X →W , where W is the Veronese cone over R
(here the relative Picard rank for h1 is 2). This implies that X is rational.
If these two extremal contractions f1 and f2 are exchanged by the Galois action.
Then we still obtain a birational morphism g∶X → W over R, where W is the
Veronese cone over R (in this second case, the relative Picard rank for g is 1). As
before, we conclude that X is rational.

Family №3.10. XC is isomorphic to the blow-up of the quadric Q ⊂ P4
C in two

disjoint conics and admits exactly two extremal divisorial contractions of the form
fi∶XC → Y , i = 1,2, where Y is the blow-up of the quadric Q in one conic, see
[Mat95, § III.3, p. 80]. If those two contractions are fixed by the Galois action, they
descend to R and induce birational morphisms hi∶X → W , where W is a quadric
threefold over R (here the relative Picard rank for h1 is 2). Since X(R) ≠ ∅, we
deduce that W (R) ≠ ∅, and therefore W is rational over R. This implies that X is
rational.
Assume now that these two extremal contractions f1 and f2 are exchanged by the
Galois action. Then we still obtain a birational morphism g∶X →W over R, where
W is a quadric threefold over R (in this second case, the relative Picard rank for g
is 1). As before, we conclude that X is rational.

Family №3.11. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1, Y2 and Y3 belong to the families №2.25, №2.34 and №2.35, respectively,
see [Mat95, § III.3, p. 81]. This implies that the Galois action fixes all of them,
which, as a consequence, descend to gi∶X → Wi over R, where Wi are rational by
Proposition 4.8. This implies that X is rational.
Family №3.12. XC admits exactly three extremal divisorial contractions fi∶XC →

Yi, where Y1, Y2 and Y3 belong to the families №2.27, №2.33 and №2.34, respectively,
see [Mat95, § III.3, p. 83]. This implies that the Galois action fixes all of them,
which, as a consequence, descend to gi∶X → Wi over R, where Wi are rational by
Proposition 4.8. This implies that X is rational.
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Family №3.13. XC admits exactly three extremal divisorial contractions fi∶XC →
Y , where Y belongs to the family №2.32, see [Mat95, § III.3, p. 84]. Since the Galois
group has order two, there exists at least one contraction which is fixed by it, which
descends to g∶X →W over R, where W is rational by Proposition 4.8. Hence X is
rational.

Family №3.14. XC is isomorphic to the blow-up of P3 in the disjoint union of a
plane cubic curve and a point outside the plane and it admits exactly four extremal
divisorial contractions, see [Mat95, § III.3, p. 85]. Three of them are of the form
fi∶XC → Yi, where Y1 ≃ PP2(O⊕O(1)), Y2 ≃ PP2(O⊕O(2)) and Y3 is the blow-up of
P3 in a plane cubic curve, while the last morphism contracts a divisor to a singular
variety. This implies that the Galois action fixes all of them, so they descend to
gi∶X → Wi over R, i = 1,2, where Wi are rational by Proposition 4.8. Hence X is
rational.

Family №3.15. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1, Y2 and Y3 belong to the families №2.29, №2.31 and №2.34, respectively,
see [Mat95, § III.3, p. 87]. This implies that the Galois action fixes all of them,
which, as a consequence, descend to gi∶X → Wi over R, where Wi are rational by
Proposition 4.8. This implies that X is rational.
Family №3.16. XC admits exactly three extremal divisorial contractions fi∶XC →

Yi, where Y1, Y2 and Y3 belong to the families №2.27, №2.32 and №2.35, respectively,
see [Mat95, § III.3, p. 88]. This implies that the Galois action fixes all of them,
which, as a consequence, descend to gi∶X → Wi over R, where Wi are rational by
Proposition 4.8. This implies that X is rational.
Family №3.17. XC admits a P1-bundle structure f ∶XC → P1 × P1, see [Mat95,

§ III.3, p. 89], [BFT23, Lemma 6.5.1]. This P1-bundle structure is unique, so it
descends to g∶X →W over R, where W is a real form of P1 × P1. Since X(R) ≠ ∅,
we deduce that W (R) ≠ ∅, and therefore W is rational over R. This implies that X
is rational.

Family №3.18. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1, Y2 and Y3 belong to the families №2.29, №2.30 and №2.33, respectively,
see [Mat95, § III.3, p. 90]. This implies that the Galois action fixes all of them,
which, as a consequence, descend to gi∶X → Wi over R, where Wi are rational by
Proposition 4.8. This implies that X is rational.
Family №3.19. XC is isomorphic to the blow-up of the quadric Q ⊂ P4

C in two
non-colinear points and admits exactly four extremal divisorial contractions. Two
of them are of the form fi∶XC → Y , i = 1,2, where Y is the blow-up of the quadric Q
in one point, see [Mat95, § III.3, p. 91-p. 92]. If those two contractions are fixed by
the Galois action, they descend to R and induce birational morphisms hi∶X → W ,
where W is a quadric threefold over R (here the relative Picard rank for h1 is 2).
Since X(R) ≠ ∅, we deduce that W (R) ≠ ∅, and therefore W is rational over R.
This implies that X is rational.
Assume now that these two extremal contractions f1 and f2 are exchanged by the
Galois action. Then we still obtain a birational morphism g∶X →W over R, where
W is a quadric threefold over R (in this second case, the relative Picard rank for g
is 1). As before, we conclude that X is rational.
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Family №3.20. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1 and Y2 belong to the family №2.31 and Y3 belongs to the family №2.32,
see [Mat95, § III.3, p. 93]. This implies that the Galois action fixes the third one,
which, as a consequence, descends to g3∶X → W3 over R, where W3 is rational by
Proposition 4.8. This implies that X is rational.
Family №3.21. XC admits a unique extremal divisorial contraction f ∶XC → P1×P2,

see [Mat95, § III.3, p. 94], so it descends to g∶X → P1 ×P2 over R. This implies that
X is rational.

Family №3.22. XC admits exactly two extremal divisorial contractions fi∶XC →
Yi, where Y1 ≃ P1 × P2 and Y2 ≃ PP2(O ⊕ O(2)), see [Mat95, § III.3, p. 96]. Since
they cannot be exchanged by the Galois action, they descend to gi∶X →Wi, where
Wi, i = 1,2, are rational by Proposition 4.8. This implies that X is rational.

Family №3.23. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1 ≃ PP2(O ⊕ O(1)), Y2 belongs to the family №2.30 and Y2 belongs to
family №2.31, see [Mat95, § III.3, p. 97]. Since they cannot be exchanged by the
Galois action, they descend to gi∶X →Wi over R, where Wi, i = 1,2,3, are rational
by Proposition 4.8. This implies that X is rational.
Family №3.24. XC admits exactly two extremal divisorial contractions fi∶XC →

Yi, where Y1 ≃ P1×P2 and Y2 belongs to the family №2.32, see [Mat95, § III.3, p. 98].
Since they cannot be exchanged by the Galois action, they descend to gi∶X → Wi

over R, where Wi, i = 1,2, are rational by Proposition 4.8. This implies that X is
rational.

Family №3.25. XC admits a P1-bundle structure f ∶XC → P1 × P1, see [Mat95,
§ III.3, p. 99], [BFT23, Lemma 6.5.1]. This P1-bundle structure is unique, so it
descends to g∶X →W over R, where W is a real form of P1 × P1. Since X(R) ≠ ∅,
we deduce that W (R) ≠ ∅, and therefore W is rational over R. This implies that X
is rational.

Family №3.26. XC admits exactly three extremal divisorial contractions fi∶XC →
Yi, where Y1 ≃ P1 ×P2, Y2 ≃ PP2(O⊕O(1)), and Y3 is the blow-up of P3 at a line, see
[Mat95, § III.3, p. 100]. Since they cannot be permuted by the Galois action, they
descend to gi∶X →Wi over R, where Wi, i = 1,2,3, are rational by Proposition 4.8.
This implies that X is rational.

Family №3.27. XC = P1 × P1 × P1. By Lemma 4.5, X is rational.
Family №3.28. XC = P1 × F1. By Lemma 4.5, X is rational.
Family №3.29. XC admits exactly two extremal divisorial contractions fi∶XC →

Yi, where Y1 ≃ PP2(O ⊕O(1)) and Y2 ≃ PP2(O ⊕O(2)), see [Mat95, § III.3, p. 45].
Since they cannot be exchanged by the Galois action, they descend to gi∶X → Wi,
where Wi, i = 1,2, are rational by Proposition 4.8. This implies that X is rational.
Family №3.30. XC admits a P1-bundle structure f ∶XC → F1, see [Mat95, § III.3,

p. 103], [BFT23, Lemma 6.5.1]. This P1-bundle structure is unique, so it descends
to g∶X → F1 over R and therefore X is rational.

Family №3.31. XC admits a P1-bundle structure f ∶XC → P1 × P1, see [Mat95,
§ III.3, p. 104], [BFT23, Lemma 6.5.1]. This P1-bundle structure is unique, so it
descends to g∶X → W , where W is a real form of P1 × P1. Since X(R) ≠ ∅, we
deduce that W (R) ≠ ∅, and therefore W is rational over R. This implies that X is
rational.
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□

We study now the remaining families with geometric Picard rank three.

Proposition 4.12. The following holds:

(i) s3.2 ≥ 3;
(ii) s3.3 ≥ 4;
(iii) s3.4 = 3.

Proof. Family №3.2. XC is a divisor from ∣L⊗2 ⊗O(2,3)∣ on the P2-bundle P(O⊕
O(−1,−1)⊕2) over P1 × P1 such that XC ∩ Y is irreducible, L is the tautological
bundle, and Y ∈ ∣L∣. As explained in [Mat95, § III.3, p. 70-p. 71] and in [ACC+23,
Section 5.11], [ACKM24, Lemma 5.11], XC admits a divisorial contraction onto a
non-Q-factorial Fano threefold with one isolated ordinary double point of degree 16:
this is precisely the family of threefolds appearing in the proof of Proposition 3.11.
The same proof implies that s3.2 ≥ 3.
Family №3.3. XC is a divisor on P1 × P1 × P2 of tridegree (1,1,2). Consider the

equations

x3 (−y20 −
1

2
y21 + y22) + x2 (

1

2
y20 + y21 − y22) + (x0 +

1

2
x2) y22 = 0

x2
0 + x2

1 + x2x3 = 0
in P3×P2 with coordinates ([x0 ∶ x1 ∶ x2 ∶ x3], [y0 ∶ y1 ∶ y2]). This defines a (geometri-
cally non-)standard conic bundle over P2, with discriminant of degree 4, defined by
(−y20 − 1

2y
2
1 + y22) (12y20 + y21 − y22)− y42 = 0. One can check that this curve has four con-

nected components and the corresponding threefold verifies #π0(X(R)) = 4. This
implies that s3.3 ≥ 4.

Family №3.4. XC is the blow-up of a theefold Y belonging to family 2.18 in a
smooth fiber of the conic bundle structure over P2. By [Mat95, § III.3, p. 72-p. 73],
the divisorial contraction to Y descends over R, so it is enough to consider a real form
in family 2.18 with three connected components, which exists by Proposition 4.9 and
blow up a smooth fiber with nonempty real locus of the conic bundle structure over
P2. This shows that s3.4 = 3.

□

4.3.4. ρ(XC) = 4,5,6.

Proposition 4.13. Let X be a smooth real Fano threefold such that ρ(XC) = 4,5,6.
Assume X does not belong to family №4.1 and X(R) ≠ ∅, then X is rational and
then sX = 1.

Proof. First assume that ρ(XC) = 4. There are 13 families of smooth complex
Fano threefolds with Picard number 4 and any X belonging to any family №4.n is
geometrically rational. We leave aside n = 1.

If n ∈ {3,4,5,6,8,9,11,12,13}, XC admits, among its extremal divisorial contrac-
tions, a special one f ∶XC → Y , where Y is P3, the quadric Q ⊂ P4, the product
P1 × P1 × P1, the blow up of P3 in two points, the product P1 × F1 or the blow up of
Q in two non-colinear points. From the description of the Mori cone NE(XC) given
in [Mat95, § III.3, p.106-p.123] and [Mat23, Section 4], we deduce that, for every
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such family, this special contraction descends to a birational morphism g∶X → W ,
where W is a real form of Y (the strategy is the same as for the previous results in
lower rank). Since X(R) ≠ ∅, we have W (R) ≠ ∅, and therefore W is rational over
R by Proposition 4.11, hence X is rational.

If n = 2, the description of the Mori cone NE(XC) given in [Mat95, § III.3,
p.107-p.109] shows that XC admits two extremal birational contractions f ∶XC → Y ,
where Y belongs to family №3.31. Looking at the intersection numebers of the
corresponding extremal rays l1 and l2 in the table at [Mat95, p.108], we see that
the Galois action cannot exchange them. Thus X admits an extremal birational
contraction f ∶X → Y , defined over R, where Y belongs to family №3.31. Since
X(R) ≠ ∅, we have Y (R) ≠ ∅, and therefore Y is rational over R by Proposition 4.11.
If n = 7, the description of the Mori cone NE(XC) given in [Mat95, § III.3, p.116-

p.117] shows that X admits a real birational map f ∶X → Y , where Y belongs to
family №2.32. Since X(R) ≠ ∅, we have Y (R) ≠ ∅, and therefore Y is rational over
R by Proposition 4.8.

If n = 10, then XC = P1 × S7. By Lemma 4.5, X is rational.

Now assume ρ(XC) = 5 or 6. There are 4 families of smooth complex Fano
threefolds with Picard number 5 or 6 and any X belonging to one of these families
is geometrically rational. Assume that XC belongs to family №5.1, then it admits
three extremal birational contractions f ∶XC → Y , where Y belongs to family №4.12.
We deduce from the description of the Mori cone NE(XC) given in [Mat95, § III.3,
p.124-p.125] that at least one of them is defined over R. Since X(R) ≠ ∅, then
Y (R) ≠ ∅, thus Y is rational over R by the previous part of the proof.

Assume that XC belongs to family №5.2, then, among its extremal birational
contractions, XC admits a unique one f ∶XC → Y , whose target space Y belongs to
family №4.12 (see the description of the Mori cone NE(XC) given in [Mat95, § III.3,
p.125-p.126]). We deduce that f descends over R. Since X(R) ≠ ∅, then Y (R) ≠ ∅,
thus Y is rational over R by the previous part of the proof.
Assume that XC belongs to family №5.3 or №6.1, then XC = P1 × S11−m and by

Lemma 4.5, X is rational. □

Proposition 4.14. The following holds: s4.1 = 2.

Proof. By [CTZ24, Example 4.3], there exists a smooth real Fano threefold X be-
longing to family №4.1 whose real locus is disconnected, hence s4.1 ≥ 2. Conversely
let X be a smooth real Fano threefold belonging to family №4.1. Then X is a real
form of a degree (1,1,1,1) divisor in P1 × P1 × P1 × P1. In fact, any such form is
a degree (1,1,1,1) divisor in a real form Y of P1 × P1 × P1 × P1. Exactly three of
these forms have real points and X can be non rational iff Y = Q×Q where Q is the
smooth quadric surface whose real locus is a sphere. In this case, we have ρ(X) = 2
and ρ(XC) = 4 and by Proposition 2.1, we get s4.1 ≤ 2 taking into account that
h1,2(X) = 1. □

4.3.5. ρ(XC) ≥ 7.

Proposition 4.15. Let X be a smooth real Fano threefold such that ρ(XC) ≥ 7, then
sX > 1. More precisely, s7.1 = s8.1 = 2, s9.1 = 4, s10.1 = 5.



A Rationality Criterion for Real Fano threefolds 22

Proof. There are 4 families of smooth complex Fano threefolds with Picard number
m ≥ 7 and if X belongs to one of these families, XC = P1 × S11−m thus Lemma 4.5
applies and we get the result by Example 4.2(2). □

4.3.6. Final remarks.

Proof of Theorem 4.3. It follows directly from Propositions 4.6, 4.7, 4.8, 4.9, 4.11,
4.12, 4.13, 4.14 and 4.15. □

Remark 4.16. If m > 6, we have shown above that sm.n > 1 but X is rational if
and only if its real locus is nonempty and connected by Lemma 4.5 and rational
examples exist. Thus, the converse of Theorem 4.3 is not true.

Remark 4.17. We do not know whether, in Theorem 4.3, we can relax the Fano
hypothesis. Indeed in [BP24] one can find a family of real conic bundles over rational
surfaces whose elements are irrational with connected real locus. Namely, let U ∶=
{x2 + y2 = f(u, v)} ⊂ A4 where f ∈ R[u, v] is a polynomial of even degree d ≥ 12 such
that the closure C of {f = 0} in P2 is a nodal rational curve. Blowing up the nodes
of the curve C, we get a rational surface S and a real conic bundle X → S which
is a smooth projective models of U . Then if the real locus X(R) is nonempty, it is
connected but at the same time it is irrational by [BP24, Theorem 4.5].

To prove that the statement of Theorem 4.3 holds true for this family of examples,
one needs to provide a member X of this family of conic bundles with non-trivial
automorphism group and a twisted real form Y of X with non-connected real locus
Y (R).

Question 4.18. Let n ≥ 3 be an integer and X be a smooth geometrically rational
real n-dimensional variety with X(R) ≠ ∅ and assume that sX = 1. Is X rational?

The answer to the same question is positive for n = 1 (trivial), and for n = 2 by
Comessatti’s Theorem.

5. Recap Table

The following table summarizes the results for smooth geometrically rational real
Fano threefold for which some deformation of XC admits a real form whose real locus
has at least two connected components. In particular, columns sm.n ≥ and sm.n ≤
recap the bounds collected in this paper. We deduce the lower bound producing
examples, while the upper bound is the minimum between the Smith-Thom and
Borel-Swan inequalities or via a classification.

We use the following notation: the numbering of families №m.n is the one in
[Bel15], and for X belonging to the family №m.n, ι denotes the Fano index of
XC, d = (−K3

X)/ι3 its degree, h1,2 ∶= h1,2(XC) the corresponding Hodge number,
the definition of the maximal number of connected components sm.n = sX can be
found in Definition 4.4, “∃ IC” stands for the existence of an irrational real Fano
threefold in the family with nonempty connected real locus. The right column gives
a description of XC. Some of those descriptions remain true over R, assuming that
X(R) is non-empty, namely №1.14, 2.10, 2.18, 3.4, 7.1, 8.1, 9.1 and 10.1.
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№m.n ι d h1,2 sm.n ≥ sm.n ≤ ∃ IC Description of XC

1.8 1 16 3 3 5 ? X16 ⊂ P10, section of LGr(2,5) ⊂ P13 by

a linear subspace of codimension 3

1.14 2 4 2 2 2 yes V4 ⊂ P5, smooth complete intersection

of two quadrics

2.10 1 16 3 2 2 yes BlC V4, where C is an elliptic curve

2.12 1 20 3 2 4 yes X(3,3) ⊂ P3 × P3 smooth intersection of

three (1,1)-divisors
2.18 1 24 2 3 3 yes X24, double cover of P1 × P2 branched

at a (2,2)-divisor
3.2 1 14 3 3 7 ? Divisor in ∣L⊗2 ⊗O(2,3)∣ on the

P2-bundle P(O ⊕O(−1,−1)⊕2) over
P1 × P1, with XC ∩ Y is irreducible,

L tautological bundle, Y ∈ ∣L∣
3.3 1 18 3 4 5 ? (1,1,2)-divisor in P1 × P1 × P2

3.4 1 18 2 3 3 yes BlF X24, where F is a smooth fiber of

the composition of the projection to

P1 × P2 with the projection to P2

4.1 24 1 2 2 ? (1,1,1,1)-divisor in (P1)4
7.1 24 0 2 2 no P1 × S4

8.1 18 0 2 2 no P1 × S3

9.1 12 0 4 4 no P1 × S2

10.1 6 0 5 5 no P1 × S1

Table 3. Real geometrically rational Fano threefolds with sm.n > 1
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