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PREFACE

The present volume is a translation of my book "Variétés algébriques réelles"
originally published in French, [Man17b].

Appart from corrections and incorporation of several new bibliographical
references, this translated version is not substantially different from the orig-
inal. In particular, any statement from the original French edition to the
new English one has the same number: Théorème 5.4.16 in [Man17b] is now
Theorem 5.4.16 in this English version.

I wish to thank Catriona MacLean for the quality of her careful translation
of the text which allowed to improve it in several places.

December 2019
Frédéric Mangolte





INTRODUCTION, ALGEBRAIC MODELS OF
SMOOTH MANIFOLDS

"My work always tried to unite the truth with the beautiful, but when I had
to choose one or the other, I usually chose the beautiful."

Hermann Weyl.(1)

"Pessimism of the intelligence, optimism of the will."
Antonio Gramsci.(2)

Mathematicians often consider the set of real roots of a polynomial with real
coefficients: it is just as natural to consider the set of its complex roots. In
this book we will adopt the point of view that a real variety is also a complex
variety.

When I was a doctoral student in the 90s there were essentially three refer-
ence books in real algebraic geometry. As well as Benedetti and Risler [BR90],
there was the general reference, Bochnak Coste and Roy [BCR87](3) and Sil-
hol’s book [Sil89] for the classification of real algebraic surfaces. Since then
[DIK00] by Degtyarev, Itenberg and Kharlamov has appeared, containing the
classification of surfaces of special type summarised in [Sil89] plus the major
progress made in the following decade.

The natural first port of call for a mathematician looking for a reference for
real algebraic geometry is Bochnak, Coste and Roy, but for more information

(1)Attributed to Hermann Weyl (Elmshorn, Allemagne, 1885 - Zurich, 1955). We will men-
tion a fundamental result of Weyl’s in the proof of Theorem E.2.25.
(2)Antonio Gramsci (Ales, Sardaigne, 1891 - Rome, 1937). Taken from a letter written in
prison to his brother Carlo the 19th December 1929 (Selections from the Prison Notebooks,
International Publishers, 1971). My thanks to Michèle Audin who brought this beautiful
motto to my attention.
(3)English translation : [BCR98].
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on surfaces or higher dimensional varieties he or she will need to look elsewhere.
Silhol’s book contains an overview of surfaces which was complete at the time
of publication (1989): more up-to-date information can be found in Degtyarev,
Itenberg and Kharlamov (2000).

It is my belief that a reader discovering real algebraic geometry can com-
pare, contrast and link the different points of view of these three texts only if
they have significant mathematical maturity, and the result is that many foun-
dational results are not easily available. For example, [BCR87] uses germs
of real varieties rather than schemes defined over R: these germs appear in
our text as the real algebraic varieties of Chapter 1. Meanwhile, [Sil89]
adopts the point of view that real algebraic varieties are schemes over R - a
steep learning curve for readers interested in topological applications, since
the link between a scheme over R and a scheme over C with real structure is
not obvious for inexperienced readers. On the other hand, [DIK00] considers
"complex varieties with an anti-holomorphic involution", which appear in this
text in Chapter 2 under the name of R-varieties: this choice makes topological
applications more accessible but is difficilt to link to scheme-theoretic results.

My goal in this book is to present the foundations of real algebraic varieties,
including their topological, geometric and algebraic structures and singular-
ities, from each of the three points of view described above simultaneously.
The first few chapters are intended to be accessible to PhD students and spe-
cialists of other areas. Compared with the three texts mentioned above, this
work presents the proofs of the main theorems of the area in a uniform lan-
guage, supplementary material on the topology and birational geometry of
real algebraic surfaces, and some new work on three-dimensional varieties due
to Kollár et al.

Before getting to the heart of the matter, we begin with a motivating dis-
cussion of the Nash conjectures.

Algebraic models of smooth manifolds. — Any closed smooth curve M
is diffeomorphic as a differential manifold to the circle S1 := {(x, y) ∈ R2, x2 +
y2 = 1}. We say that the manifoldM has a real algebraic model(4)- namely, the
algebraic curve S1. In arbitrary dimension, Nash and Tognoli showed that any
smooth compact manifold has a real algebraic model. More precisely, for any
such manifoldM there are real polynomials P1(x1, . . . , xm), . . . , Pr(x1, . . . , xm)

(4)We will come back to this notion in Chapter 5, see Definition 5.1.1.
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such that their locus of common zeros

X(R) := {x ∈ Rm such that P1(x) = · · · = Pr(x) = 0}

is smooth(5) and diffeomorphic to M (Nash and Tognoli theorem, below.)
Given that the existence of such a model is guaranteed for any M , does

there exist a model which is "simpler(6)" than the others? Let us go back
to the example of a smooth compact curve M . We have seen that S1 is
a possible model for this curve but for any even non-zero integer d the set
Xd := {(x, y) ∈ R2, xd + yd = 1} is obviously another model of M .

X2 = S1 X4

Similarly, the ellipse Y of equation 1
2x

2 + y2 = 1 and the curve Z of quartic
equation −x(1− x− y)3 + y2(1− x− y)2 − 1

2xy
3 = 0 are models of M .

Y Z

We could argue that S1 et Y are "simple" real algebraic models ofM because
their equations are of minimal degree - but an abstract algebraic variety does
not have a well-defined degree. (All the above examples are plane curves.)
We will consider the topology of the associated complex variety instead. For
example, the associated complex variety of S1 is the set {(x, y) ∈ C2, x2+y2 =
1}. This complex curve is not compact but can be made compact by adding
two points at infinity corresponding to the asymptotic directions ±i. The
curve then becomes isomorphic to the Riemann sphere P1(C) whose underlying
smooth manifold is an orientable surface of genus 0. Since the models Y , Xd

(5)By Hironaka’s theorem on the resolution of singularities 1.5.54, we may also suppose that
the set of complex zeros - real or not - is smooth.
(6)See also [Kol01c, LV06].
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and Z are also (up to addition of a few points) irreducible plane curves, the
genus formula g = (d− 1)(d− 2)/2 implies that the genus of Y is 0, X4 and Z
are of genus 3 and the genus of Xd grows quadratically with d. In dimension 1
we will, as in this example, consider that a model is "simple" if its genus is 0.
In higher dimensions manifold topology is more complicated and there is no
longer a single numerical invariant that detects simple real algebraic models.
For curves we have just seen that simple models are "close to" P1(C). In
dimension n the class of rational varieties (defined below and further studied
in Chapter 1, see Definition 1.3.37), which are in a certain sense "close" to Pn,
is a useful generalisation to higher dimensions of the class of algebraic curves
isomorphic to P1 minus a few points.

Nash and Tognoli theorems. — When an algebraic variety X ⊂ Pm(C), de-
fined by homogeneous polynomials with real coefficients, has at least one non-
singular real point then dimRX = 2 dimRX(R). In particular, when the
complex algebraic variety X is smooth and the real locus X(R) = X ∩ Pm(R)
is non-empty the algebraic subsets X ⊂ Pm(C) and X(R) ⊂ Pm(R) come
equipped with the structure of a smooth compact differentiable sub-variety.
(See §1.5 for the definitions of a non-singular point and the dimension of an
algebraic variety.)

Conversely, given a smooth manifold, can it be realised as the set of points
of a smooth algebraic variety ? It is quite clear that a general smooth mani-
fold is not necessarily diffeomorphic to any complex algebraic variety, if only
because any such variety is always orientable and even dimensional. There are
many more sophisticated obstructions to such a realisation - see [FM94], for
example, for some more recent results. On the other hand, Nash proved there
is no obstruction to the realisation of a compact manifold as a real algebraic
variety.

Theorem (Nash 1952). — If M is a smooth connected compact manifold
without boundary, then there is a projective algebraic variety(7) X whose real
locus has a connected component A ⊂ X(R) which is diffeomorphic to M ,

M ≈ A ↪→ X(R).

The reader will find a proof of this theorem in [Nas52], [BCR98, Theorem
14.1.8] or [Kol17, Theorem 2].

(7)Ie. defined by homogeneous real polynomials.
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Following this theorem Nash proposed two conjectures strengthening its
conclusion. The first of these, proved by A. Tognoli in the early seventies,
stated that there is a variety X such that X(R) ≈M .

Theorem (Tognoli 1973). — In the statement of Nash’s theorem, we may
require X(R) to be connected.

The proof ([Tog73] or [BCR98, Theorem 14.1.10]) uses a deep result from
cobordism theory which states that any compact smooth manifold is cobordant
to a compact smooth real algebraic set.

It is then easy to construct a real algebraic variety whose real locus is the
union of the real loci of a set of given varieties.

Corollary (Nash-Tognoli). — If M is a smooth compact manifold without
boundary then there is a projective algebraic variety X whose real locus is
diffeomorphic to M :

M ≈ X(R).

In fact any given manifold has not one but an infinity of possible different
algebraic models. The theorem below is taken from [BK89, Theorem 1.1]
supplemented by [Bal91], see also [BK91].

Anticipating Definition 1.3.27, algebraic sub-varieties X ⊂ Pn(K) and Y ⊂
PN (K) are said to be birationally equivalent if there exist Zariski dense open
subsets U ⊂ X, V ⊂ Y and an isomorphism U

'−→ V defined by rational
functions with coefficients in K.

Theorem. — Let M be a smooth compact manifold without boundary of
strictly positive dimension. There is an uncountably infinite set of real al-
gebraic models for M which are pairwise non-birationally equivalent.

An algebraic variety X ⊂ PN (K) of dimension n is rational over K if and
only if it is birationally equivalent to projective space Pn(K), or in other
words, if there are dense open Zariski subsets U ⊂ X, V ⊂ Pn(K) and an
isomorphism U

'−→ V defined by rational functions with coefficients in K.

Examples. — 1. Blowing up a variety along a subvariety (see Ap-
pendix F) is a birational morphism.

2. The varieties Pn(K) and Kn are rational over K.
3. The surface P1 × P1 with the product real structure such that (P1 ×

P1)(R) ≈ S1 × S1 and the Hirzebruch surfaces Fk with their canonical
real structure (see Definition 4.2.1) are rational surfaces over R.
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Nash’s second conjecture is as follows.

Conjecture (Nash 1952). — For any smooth compact connected manifold
M without boundary there is a rational algebraic variety X whose real locus
is diffeomorphic to M .

We will see in Chapter 1 that when an algebraic variety is irreducible its
ring of rational functions is a field called the function field of the variety and
moreover the function field of a (reduced and irreducible) algebraic variety of
dimension n over K is a finite degree extension of the field of rational functions
in n unknowns K(X1, . . . , Xn). The variety X is then rational if and only if
its field of functions is isomorphic to K(X1, . . . , Xn). Nash’s conjecture is
therefore much stronger than Nash’s theorem, since it claims that we can
choose X with a function field of degree 1 over R(X1, . . . , Xn) for any M .

This conjecture is wrong. We will see a counter-example for surfaces in
Chapter 4 and for higher dimensional varieties, in Chapter 6. There exist
smooth manifolds for which no real algebraic model is rational. In other
words, there is no universal answer to the question ’what is the the "simplest"
real algebraic model of a given smooth manifold ?’ One of the leitmotifs of
this book is a sort of converse to this question: for some given class of real
algebraic varieties, which are the smooth manifolds which can be realised by
models in this class?

Such a class of models may be characterised, as in Nash’s conjecture, by
birational constraints on the abstract real algebraic model. More classically,
we might require that this model be defined by a single equation of given
"small" degree, particularly for planar curves or surfaces in P3. Here are some
examples of specific questions dealt with in this text. What are the possible
topological types of the real locus of a rational surface ? Of a degree 4 surface
in P3 ? Conversely, what is the smallest possible degree of a real algebraic
model in P3 of an orientable surface of genus 11 ? Of a disjoint union of
23 compact connected surfaces ? In a similar vein, in Chapter 3 we discuss
the first part of the Hilbert’s famous sixteenth problem which rounds off the
sections on plane curves in chapters 1 and 2.

Thanks. — Many people have encouraged me over the four years of writ-
ing of this text. Amongst them I would particularly like to thank (in al-
phabetical order) for their rereading, corrections, improvement and support :
Mouadh Akriche, Mohamed Benzerga, Jérémy Blanc, Erwan Brugallé, Fab-
rizio Catanese, Michel Coste, Julie Déserti, Adrien Dubouloz, Denis Eckert,
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Éric Edo, Marianne Fabre, José Fabre, Goulwen Fichou, Michel Granger,
Lucy Halliday, Ilia Itenberg, Viatcheslav Kharlamov, János Kollár, Wojciech
Kucharz, Jacques Lafontaine, Stéphane Lamy, Gustave Mangolte, Jeanne
Mangolte, Jean-Philippe Monnier, Delphine Pol, Ronan Terpereau, Olivier
Wittenberg, Mikhaïl Zaidenberg, Susanna Zimmermann, and the three anony-
mous referees who proposed many improvements on the initial text.





CHAPTER 1

ALGEBRAIC VARIETIES

1.1. Algebraic varieties: points or spectra?

In this chapter we have chosen the naive (as opposed to scheme theoretic)
point of view in which an algebraic variety is a topological space equipped
with a sheaf of functions, called regular functions. The scheme theoretic point
of view starts with a ring (which turns out later to be the ring of regular func-
tions) and constructs from it a topological space called the spectrum. Many
fundamental differences result from this change of perspective. First of all,
the spectrum has more points than the naive space- for example, when the
base field is algebraically closed, the naive space is the set of closed points
of the spectrum (also called the maximal spectrum). When the base field is
not algebraically closed, the situation is even more complicated. For exam-
ple, consider the algebraic set V :=

{
(x, y) ∈ R2 | x2 + y2 = 0

}
which naively

consists of a single point (0, 0). In scheme theory a variety "is" its defining
equation. More precisely, the scheme-theoretic variety would be the union of
two complex lines L and L with equations x − iy = 0 and x + iy = 0 in C2.
In the naive point of view V "is" the point (0, 0) (ie. the intersection of the
lines L and L), which leads us to consider that the real equations of V are
x = 0, y = 0, losing all the information contained in the lines L and L in the
process (see Example 1.5.20).

We will stick with the naive point of view, but from Chapter 2 onwards
we will address its most glaring weaknesses by associating complexifications
to real varieties. We will not, however, bypass sheaf theory, which is both
necessary and reasonably accessible. For the reader’s convenience, a summary
of the necessary results from sheaf theory in provided in Appendix C.
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We have chosen to avoid the arduous "rite of passage" of scheme theory
since we do not believe its refinement to be necessary over C and R, especially
since varieties over these fields have a natural topology which is stronger than
the Zariski topology, and we believe it is helpful to the reader’s intuition to
consider these two topologies on the same naive set. We will come back to the
scheme-theoretic point of view at the end of Chapter 2.

In short, this book is entirely accessible to a reader who does not want
to invest the time and energy required to learn scheme theory. This being
said, any reader intending to make a career in algebraic geometry will need to
understand schemes. We recommend Antoine Ducros’s lecture notes [Duc14]
and Qing Liu’s book [Liu02] for readers looking for an introduction to scheme
theory. We have included many remarks aimed at readers experienced with
schemes.

In this first chapter we review the standard results of algebraic geometry
over an arbitrary field, particularly the real and complex numbers. Many
elementary textbooks on algebraic geometry only deal with algebraically closed
base fields and when non-algebraically closed fields are discussed they are
almost always arithmetic. When the base field R is introduced the reader
is typically assumed to be already familiar with complex algebraic geometry.
In short, our aim in writing this book is to provide the reader with all the
tools needed for algebraic geometry over a non-algebraically closed base field
of characteristic zero, including both the Euclidean topology and the powerful
results of complex algebraic geometry.

We end this introduction with an important remark: over R or C algebraic
varieties are naturally also analytic varieties and it is unsurprising that such
varieties appear throughout this book. We have chosen to summarise the the-
ory of analytic varieties in Appendix D to avoid swamping the inexperienced
reader- the field of study generated by the various different definitions of a "real
algebraic variety" is rich and complicated enough as it is. As with schemes, the
first-time reader can skip the references to analytic varieties, which are only
needed in a handful of proofs in this book. Most of the time we deal only with
smooth projective varieties and the link between projective algebraic varieties
and projective analytic varieties is well understood (see Section D.5) despite
the radical change in topology, since the algebraic variety is equipped with the
Zariski topology (Definition 1.2.3) and the analytic variety with the Euclidean
topology (Definition 1.4.1). Switching from one topology to the other causes
no problems for smooth varieties (a slippery concept, see Section 1.5) but for
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singular varieties it becomes important to distinguish the algebraic and ana-
lytic structures. For example, there are algebraic singularities that are smooth
from an analytic point of view, (see Example 1.5.1).

1.2. Affine and projective algebraic sets

[The results from commutative algebra on which the discussion below relies
are summarised in Appendix A.]

Affine algebraic sets are local models of abstract algebraic varieties. We will
formalise this idea by fixing a base field K and giving a local definition of the
functions (ie. morphisms to K) authorised in the category of algebraic vari-
eties overK. Such functions will be called regular functions (Definition 1.2.33).
When the base field is algebraically closed the regular functions on an alge-
braic subset of a affine space are simply restrictions of polynomial functions
(Theorem 1.2.50). When the base field is R, however, this correspondance
is no longer valid and regular functions are restrictions of rational functions
without real poles (Theorem 1.2.52).

Affine space. — Let K be a field and let n be a natural number. As usual,
we denote by Kn the set of n-tuples of elements of K with its natural K-vector
space structure. (By convention K0 = {0} is the trivial vector space and when
n = 0 the notation K[X1, . . . , Xn] means the ring K of constant polynomi-
als). When K = R or C, we will mostly consider Kn as a finite-dimensional
topological vector space, all norm-induced topologies being equivalent. The
Zariski topology defined immediately below is not induced by a norm, since it
is not even Hausdorff (see Appendix B.1).

Definition 1.2.1. — Let K be a field and let n be a natural number. A
subset F of Kn is an affine algebraic set if F is the zero locus of a set of
polynomials with coefficients in K. In other words a set F is algebraic if and
only if there exist polynomials P1, . . . , Pl ∈ K[X1, . . . , Xn] such that(1)

F = {(x1, . . . , xn) ∈ Kn | P1(x1, . . . , xn) = · · · = Pl(x1, . . . , xn) = 0} .

It is easy to check that algebraic sets are the closed subsets of a topology
called the Zariski topology. The affine space An(K) of dimension n over K is
the set Kn equipped with the Zariski topology. For any F ⊂ An(K) we define

(1)As the ring K[X1, . . . , Xn] is Noetherian we may assume that this family of polynomials
is finite, see A.3.14.
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the Zariski topology on F to be the topology induced by the Zariski topology
on An(K).

Exercise 1.2.2. —
�

Let K be an infinite field. Show that the Zariski
topology on A2(K) is strictly finer than the product of the Zariski topology
on A1(K) with itself. See Appendix B.1, particularly Exercise B.1.4, for a
deeper exploration of this subject.

For any subset U in An(K) we let I(U) be the ideal in K[X1, . . . , Xn] of
polynomials that vanish on U . If F is a closed subset of An(K) then the
quotient K-algebra A(F ) := K[X1, . . . , Xn]/I(F ) is called the the K-algebra
of affine coordinates of F .

Projective space. — Let K be a field and let n be a natural number. Pro-
jective space P(Kn+1) is the set of orbits of the action of the multiplicative
group K∗ on the set Kn+1 \ {0} given by (x0, . . . , xn) 7→ (λx0, . . . , λxn). The
orbit of (x0, . . . , xn) under this action is denoted by (x0 : · · · : xn). A polyno-
mial in n+1 variables does not define a function on P(Kn+1) but the vanishing
locus of a homogeneous polynomial (2) is well defined.

Definition 1.2.3. — Let K be a field and let n be a natural number. A
subset F in P(Kn+1) is said to be a projective algebraic set if F is the zero
locus of a set of homogeneous polynomials with coefficients in K. In other
words the set F is algebraic if and only if there are homogeneous polynomials
P1, . . . , Pl ∈ K[X0, . . . , Xn] such that

F =
{
(x0 : · · · : xn) ∈ P(Kn+1) |

P1(x0, . . . , xn) = · · · = Pl(x0, . . . , xn) = 0
}
.

As in the affine case, the Zariski topology on P(Kn+1) is the topology whose
closed sets are the zero loci of families of homogeneous polynomials. The set
P(Kn+1) with this topology is called the projective space of dimension n over
K and is denoted by Pn(K).

Definition 1.2.4. — If U is a subset of Pn(K) we denote by I(U) the ho-
mogeneous ideal in K[X0, . . . , Xn] of polynomials vanishing on U . If F is a

(2)A homogeneous polynomial does not define a map to K but rather a section of a certain
"K-bundle ", see 2.6.15.
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Zariski closed subset in Pn(K) then the quotient K-algebra

S(F ) := K[X0, . . . , Xn]/I(F )

is called the K-algebra of homogeneous coordinates of F .

Exercise 1.2.5. — Let F ∈ Pn(K) be a projective algebraic set and let I ⊂
S(F ) be a homogeneous ideal. Let

√
I be the radical of I (see Definition A.2.3).

We then have that Z(I) = ∅ (see Definition 1.2.12) if and only if
√
I = S(F )

or
√
I is the homogeneous ideal ⊕d>0Sd.

Remark 1.2.6. — The word dimension appears in Definitions 1.2.1 and
1.2.3. We will define the dimension of an algebraic set further on (see Def-
inition 1.5.9 for the dimension of an affine algebraic set) and we will check
(see Exercises 1.5.16 and 1.5.46) that affine space An(K) and projective space
Pn(K) really are of (algebraic) dimension n. For the moment we simply note
that when K = R the affine and projective spaces An(R) and Pn(R) with their
affine (resp. projective) topology are topological (or differentiable) manifolds
of dimension n. When K = C, on the other hand, the algebraic dimension
is half the topological dimension of the associated manifold. See also Re-
mark 1.5.4 on the finiteness of the dimension.

Algebraic and quasi-algebraic sets. —

Definition 1.2.7. — A set F is an algebraic set over K if it is a Zariski
closed subset in An(K) or in Pn(K) for some integer n. A set U is a quasi-
algebraic set over K if it is a Zariski open subset of an algebraic set over K.
We will say that an open subset of an affine algebraic set is quasi-affine and
that an open subset of a projective algebraic set is quasi-projective.

Remark 1.2.8. — In other words, an algebraic set F over K is a closed sub-
set of either affine space An(K) or projective space Pn(K). We will emphasise
the unusual topology being used by saying that F is Zariski closed in An(K)
(or Pn(K)).

Exercise 1.2.9. — A set U is quasi-algebraic over K if and only if it is a
subset of An(K) or Pn(K) satisfying one of the following equivalent conditions:

1. U is locally closed in the Zariski topology, ie. U is the intersection of a
closed subset and an open subset,

2. U is an open subset of its Zariski closure.
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Definition 1.2.10. — Let f : Kn → K be a function. The vanishing locus
(or zero-set) of f is defined by

Z(f) := {x ∈ Kn | f(x) = 0}

and the non-vanishing locus of f is defined by

D(f) := {x ∈ Kn | f(x) 6= 0} .

Remark 1.2.11. — If the function f in the above definition is polynomial
then Z(f) is Zariski-closed in An(K) and D(f) is Zariski-open in An(K).

Definition 1.2.12. — Let K be a field and let I ⊂ K[X1, . . . , Xn] be an
ideal. The zero-set of I is denoted by

Z(I) := ZK(I) = {x ∈ Kn | ∀f ∈ I, f(x) = 0} .

More generally, if L is an extension of K then the zero-set in Ln of the ideal
I is denoted by

ZL(I) := {x ∈ Ln | ∀f ∈ I, f(x) = 0}
and the ideal of L[X1, . . . , Xn] generated by I is denoted by IL.

In particular, if I is an ideal in R[X1, . . . , Xn] then Z(I) = ZR(I) is the set
of real zeros of the ideal I and ZC(I) = ZC(IC) is the set of its complex zeros.

Remarks 1.2.13 (Zero sets of ideals). — 1. The ideal in L[X1, . . . , Xn]
generated by I turns out to be isomorphic to the tensor product

IL = I ⊗K[X1,...,Xn] L[X1, . . . , Xn] .

(see Proposition A.4.1 defining the tensor product ⊗)
2. As in Remark 1.2.11, Z(I) is obviously Zariski closed in An(K) and
ZL(I) is Zariski closed in An(L).

3. We have that ZL(I) = Z(IL). In particular, if I is an ideal in
R[X1, . . . , Xn] then IC is an ideal in C[X1, . . . , Xn] and ZC(I) =
ZC(IC) = Z(IC). The notation IC denotes an ideal in C[X1, . . . , Xn]
generated by a family of real polynomials.

Exercise 1.2.14. — Let K be a field.
1. Let F be a closed subset of An(K). Prove that

F = Z(I(F )) .

2. Let I ⊂ K[X1, . . . , Xn] be an ideal. Prove that

I ⊆ I(Z(I)) .
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3. Let I ⊂ K[X1, . . . , Xn] be an ideal. Prove that if I is not radical (see
Definition A.2.3) then

I ( I(Z(I)) .

4. Find an example where I ⊂ K[X1, . . . , Xn] is radical but

I ( I(Z(I)) .

[Hint: the Nullstellensatz (see Corollary A.5.13) tells us that any such
example will involve a non-algebraically closed field K.]

Irreducible algebraic sets. —

Definition 1.2.15. — We say that a non-empty subset U of a topological
space X is irreducible if for any pair of closed sets F1 and F2 in X such that
U ⊂ F1 ∪F2 we have that U ⊂ F1 or U ⊂ F2. A subset that is not irreducible
is said to be reducible.

Remark 1.2.16. — Requiring an irreducible subspace to be non-empty is a
convention which corresponds in commutative algebra to the convention that
the zero ring is not an integral domain. See Remark 1.2.31(4).

Exercise 1.2.17. — As an exercise, the reader may wish to prove the fol-
lowing statements.

1. A subspace U ⊂ X is irreducible if and only if it is non-empty and is not
the union of two non-empty closed sets (in the induced topology) which
are strict subsets of U . In particular, X itself is irreducible if and only if
it is non-empty and cannot be written as the union of two closed strict
subsets.

2. If U is irreducible then any non-empty open subset of U is dense in U .

Lemma 1.2.18. — Let ϕ : X → Y be a continuous map. The image under
ϕ of any irreducible subspace of X is an irreducible subspace of Y .

Proof. — Let U ⊂ X be irreducible and let Y1 ∪ Y2 ⊃ ϕ(U) be a union of
two closed sets in Y . The set ϕ−1(Yi) is then closed in X for i = 1, 2 and
ϕ−1(Y1)∪ϕ−1(Y2) ⊃ U . As U is irreducible we may assume that ϕ−1(Y1) ⊃ U
and hence Y1 ⊃ ϕ(U). It follows that ϕ(U) is irreducible.

Remark 1.2.19. — Irreduciblity is only relevant for relatively coarse topolo-
gies such as the Zariski topology. We invite the reader to check that in a
Hausdorff topological space the only irreducible subspaces are isolated points.
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Definition 1.2.20. — The maximal irreducible closed subsets of a topolog-
ical space U are called its irreducible components.

Exercise 1.2.21. — (Note that this exercise is immediate once Proposi-
tion 1.2.30 has been established.) Let n be a non-zero natural number.

1. Let K be an infinite field. Prove the following statements.
(a) Affine space An(K) is irreducible.
(b) Projective space Pn(K) is irreducible.

2. Suppose that K is finite. Prove that the above spaces are reducible.

Definition 1.2.22. — A topological space X is said to be Noetherian (or
has a Noetherian topology) if any decreasing sequence of closed sets stabilises
(or alternatively "if any decreasing sequence of closed sets is stationnary").
This means that for any sequence F1 ⊃ F2 ⊃ . . . of closed subspaces there is
an integer r such that Fr = Fr+1 = . . .

Example 1.2.23. — For any field K the affine space An(K) is Noetherian.
Suppose that F1 ⊃ F2 ⊃ . . . is a decreasing sequence of closed subsets of
An(K). We then have that I(F1) ⊂ I(F2) ⊂ . . . is an increasing sequence of
ideals of K[X1, . . . , Xn] which is Noetherian. This sequence of ideals therefore
stabilises and it follows that F1 ⊃ F2 ⊃ . . . stabilises because for every i we
have that Fi = Z(I(Fi)).

Proposition 1.2.24. — Any non-empty quasi-algebraic set U admits a de-
composition into a finite number of irreducible components, ie.

U = U1 ∪ · · · ∪ Um

where Ui is irreducible for every i and Ui 6⊂ Uj whenever i 6= j. This decom-
position is unique up to permutation of the components.

Proof. — This follows from the fact that the Zariski topology is Noetherian.

Regular functions. —

Definition 1.2.25. — Let K be a field and let U ⊂ An(K) be a
quasi-algebraic set. A function f : U → K is polynomial if there is a
g ∈ K[X1, . . . , Xn] such that for every x ∈ U, f(x) = g(x). We denote the
K-algebra of polynomial functions on U by P(U).
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Remark 1.2.26. — The polynomial g is only determined by the polynomial
function f up to addition of an element in I(U). In particular, if K is finite
the ideal of An(K) is not trivial and a polynomial on Kn is not uniquely
determined by a polynomial function Kn → K.

Let F ⊂ An(K) be an algebraic set and let I(F ) be the ideal of ele-
ments of K[X1, . . . , Xn] which vanish on F . The following proposition en-
ables us to identify P(F ) with the K-algebra of affine coordinates A(F ) :=
K[X1, . . . , Xn]/I(F ).

Proposition 1.2.27. — For any field K and any algebraic set F ⊂ An(K)
the restriction morphism g 7→ g|F induces an isomorphism

A(F ) '−→ P(F ).

Proof. — The proof is immediate and is left as an exercise.

Remark 1.2.28. — In particular, if K is infinite then the ring of polynomial
functions on An(K) is the ring of polynomials in n variables

P(An(K)) = K[X1, . . . , Xn] .

Remark 1.2.29. — Note that for any subset U ⊂ Kn the quotient ring
K[X1, . . . , Xn]/I(U) is reduced because the ideal I(U) is radical (see Defini-
tion A.2.3 and Exercise A.2.4). This "vanishing" multiplicity- which identifies
the algebraic sets V := {x ∈ Kn | f(x) = 0} and W := {x ∈ Kn | f2(x) =
0}(3) for example- is reflected in the differential geometric definition of a man-
ifold as the zero set of a submersion. If K is C or R and if f is a submersion
at every point of V - and hence at every point of W - then W is a differentiable
submanifold of Kn, despite the fact that f2 is not a submersion at any point
of W .

One of our motivations for scheme theory is that it allows us to distinguish
V and W by including nilpotent elements in the associated ring. Another
illustration of the weakness of the naive point of view is provided by the
algebraic set V := {(x, y) ∈ R2 | x2 + y2 = 0}, whose ideal I(V ) = (x, y)
is strictly larger than the ideal generated by its defining equation (x2 + y2).
Compare this with Remark 1.2.31(3).

Proposition 1.2.30. — Let K be a field.

(3)Here f2 is the function whose value at a point is the square of the value of f at that point.
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An algebraic set F ⊂ An(K) is irreducible if and only if its ideal I(F ) is a
prime ideal of K[X1, . . . , Xn] or in other words if and only if its ring of affine
coordinates A(F ) is an integral domain.

An algebraic set F ⊂ Pn(K) is irreducible if and only if its homogeneous
ideal I(F ) is a prime ideal of the graded ring K[X0, . . . , Xn].

Proof. — This is left as an exercise for the reader

Remark 1.2.31 (I(Z(I)) vs. I). — 1. If K is algebraically closed and
I ⊂ K[X1, . . . , Xn] is a prime ideal then Z(I) ⊂ An(K) is an irreducible
space.

2. The polynomial P (x, y) = (x2−1)2 +y2 = x4−2x2 +1+y2 is irreducible
in R[x, y]. Indeed, the rings R[x, y] ⊂ C[x, y] are both factorial and since
P (x, y) = (x2−1+iy)(x2−1−iy) in C[x, y] and the polynomials x2−1±iy
are irreducible in C the polynomial P is irreducible in R[x, y]. On the
other hand Z(P ) is a reducible subspace of A2(R) since

Z(P ) = {(1, 0), (−1, 0)} = Z(x− 1, y) ∪ Z(x+ 1, y) .

3. (See Exercise 1.2.14(4).) The ideal (x2 + y2) is prime in R[x, y] but
I(Z(x2 +y2)) = (x, y). In C[x, y] the ideal (x2 +y2) = ((x− iy)(x+ iy))
is not prime.

4. The ideal I = (x2 + y2 + 1) is prime in R[x, y] but Z(I) = ∅ ⊂ An(R) is
not irreducible since I(Z(I)) = R[x, y] is not a prime ideal in R[x, y].

Exercise 1.2.32. — Following on from Exercise 1.2.14(1): let K be a field.
Show that a subset U in An(K) or Pn(K) is Zariski closed if and only if
U = Z(I(U)).

Definition 1.2.33. — Let K be a field and let U ⊂ An(K) be a quasi-
algebraic set. A function f : U → K is said to be regular at a point x ∈
U if there is a neighbourhood V of x in U and two polynomials g, h ∈
K[X1, . . . , Xn] such that for any y ∈ V, h(y) 6= 0 and f(y) = g(y)

h(y) .

In the following definition, note that the homogeneous polynomials g and h
do not define functions on U but as they have the same degree their quotient
g
h is a well-defined function on U .

Definition 1.2.34. — Let K be a field and let U ⊂ Pn(K) be a quasi-
algebraic set. A function f : U → K is said to be regular at a point x ∈ U
if there is a neighbourhood V of x in U and two homogeneous polynomials



1.2. AFFINE AND PROJECTIVE ALGEBRAIC SETS 21

g, h ∈ K[X0, . . . , Xn] of the same degree such that for any y ∈ V, h(y) 6= 0 and
f(y) = g(y)

h(y) .

Definition 1.2.35. — Let U be a quasi-algebraic set over K. A function
f : U → K is said to be regular if it is regular at every point in U . We denote
by R(U) the K-algebra of regular functions on U .

Remark 1.2.36. — Of course, any polynomial function on an affine algebraic
set F over a field K is regular

A(F ) '−→ P(F ) ↪→ R(F )

but the converse is false if K = R (see Proposition 1.2.38(1)–(3) below and
Exercise 1.2.51(2)).

Exercise 1.2.37. — Check that any regular function f : U → K is continu-
ous with respect to the Zariski topology on U and K = A1(K).

Proposition 1.2.38 (Is the algebra R finitely generated?)
1. Let K be a field. For any Zariski-closed subset F ⊂ An(K) the algebra
A(F ) is a finitely generated K-algebra

2. Similarly, the C-algebra R(Cn) = R(An(C)) is finitely generated
3. On the other hand, the R-algebra R(Rn) = R(An(R)) is not finitely

generated.

Proof. — 1. By definition A(F ) is a quotient ring of the polynomial algebra
K[X1, . . . , Xn] so it is generated by a finite number of elements, namely
the classes of the elements X1, . . . , Xn.

2. By Theorem 1.2.50, for example, R(Cn) is isomorphic to C[X1, . . . , Xn].
3. Let A1, . . . , Al be elements of R(Rn). For any i = 1 . . . l the function
x 7→ 1

1+(x−Ai)2 is a regular function on Rn but does not belong to the
algebra generated by A1, . . . , Al.

Germs of regular functions. — We refer the reader to Appendix C for
basic sheaf theory. The notions of inductive limit (A.1.2) and the stalk of a
sheaf (C.3.1) will be particularly important.

Definition 1.2.39. — Let K be a field and let U be a quasi-algebraic set
over K. The sheaf of regular functions OU on U is the sheaf of K-algebras
whose set of sections over an open set V ⊂ U is the K-algebra R(V ).

Γ(V,OU ) = OU (V ) := R(V ) .
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Definition 1.2.40. — Let K be a field and let U be a quasi-algebraic set
over K. The germ of a K-valued function on U , regular at x, is an equivalence
class of pairs (V, f) where V is an open set of U containing x and f is a regular
function on V . Two pairs (V, f) and (W, g) are equivalent if and only if f = g

on some neighbourhood of x contained in V ∩W .

We denote by Ox := OU,x the K-algebra of germs of K-valued functions on
U which are regular at the point x. The K-algebras OU,x are then the stalks
of the sheaf OU :

OU,x = lim−→
V 3x
OU (V )

where the inductive limit is taken over all open neighbourhoods V of x con-
tained in U (see Definition C.3.1 and Examples A.1.3 and A.1.4.)

Our definition of germs of regular functions is more "local" than the defini-
tion given in [Har77, § I.3, page 16]. When U is irreducible- which is assumed
in [Ibid.]- the two definitions coincide.

Definition 1.2.41. — Let x be a point in a quasi-algebraic set U defined
over a field K and let A be a ring of K-valued functions on U . We denote by
mx := mA

x the maximal ideal in A of functions vanishing at x.

We recall that, as in Definition A.3.1, for any prime ideal p ⊂ A we denote
by Ap the localisation of A with respect to the multiplicative set A \ p.

Exercise 1.2.42. — LetK be a field. Prove that for any x ∈ An(K) the alge-
bra OAn(K),x ⊂ K(X1, . . . , Xn) is isomorphic to the algebra K[X1, . . . , Xn]mx
of fractions g

h such that h(x) 6= 0.

Lemma 1.2.43. — A quasi-affine set U ⊂ An(K) can be seen as a quasi-
projective set j(U) ⊂ Pn(K) where j : An(K) ↪→ Pn(K) is the inclusion

(x1, . . . , xn) 7→ (1 : x1 : · · · : xn).

The morphism of K-algebras j∗ : K[X0, . . . , Xn]→ K[X1, . . . , Xn] which sends
(X0, X1, . . . , Xn) to (1, . . . , Xn) then induces a sheaf isomorphism j∗OU '
Oj(U).

Proof. — Left as an exercise for the reader

Exercise 1.2.44. — Let P ∈ K[X1, X2] be a polynomial of degree d > 1
and let C = Z(P ) ⊂ A2(K) be the corresponding plane curve. The projective
completion Ĉ := j(C)Zar ⊂ P2(K) is the Zariski closure of j(C) in the pro-
jective plane. Prove that Ĉ is the set of zeros of the homogenised polynomial
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P̂ ∈ K[X0, X1, X2]. Here, if aijXi
1X

j
2 is a monomial in P then aijXd−i−j

0 Xi
1X

j
2

is the corresponding monomial in P̂ and Ĉ = Z(P̂ ) ⊂ P2(K).

Proposition 1.2.45. — Let U ⊂ Pn(K) be a quasi-projective set, let x be a
point in U and let H ⊂ Pn(K) be a hyperplane not containing x. The open
set V := Pn(K) \H is then a neighbourhood of x isomorphic to affine space.
(We will see further on that V is a principal open set, see Exercise 1.2.60).
We denote this isomorphism by j : An(K) '−→ V . The K-algebras OU,x and
Oj−1(U∩V ),j−1(x) are then isomorphic.

Proof. — Let (W, f) be a pair representing an element of OU,x. There are
then homogeneous polynomials of same degree g, h ∈ K[X0, . . . Xn] such that
h does not vanish on the open set W and f = g

h on W . We consider the
subset W ′ = j−1(W ∩ V ) in j−1(U ∩ V ). This is a neighbourhood of j−1(x)
contained in j−1(U ∩ V ) and we can assume that j is written in coordinates
as (x1, . . . , xn) 7→ (1 : x1 : · · · : xn). As the polynomials g and h are ho-
mogeneous and of same degree the rational function g(1,X1,...,Xn)

h(1,X1,...,Xn) is in fact a
regular function j∗(f) on W ′. The pair (W ′, j∗(f)) represents an element in
Oj−1(U∩V ),j−1(x).

Conversely, let (W, f = g/h) be a pair representing an element in

Oj−1(U∩V ),j−1(x) .

Set d = max(deg g,deg h): denoting by p̂ the degree d homogenisation with
respect to X0 of a polynomial p ∈ K[X1, . . . Xn], the fraction ĝ/ĥ represents
an element of OU,x.

When F is an algebraic set then for any neighbourhood U of x in F we can
identify OF,x with the localisation of R(U) with respect to the maximal ideal
mRx of regular functions vanishing at x by the following proposition.

Proposition 1.2.46. — Let K be a field and let F be an algebraic set over
K. Let x be a point in F and let U be a neighbourhood of x in F . There is
then a natural isomorphism

OF,x ' R(U)mRx .

If moreover F is affine then we also have a natural isomorphism

OF,x ' P(U)mPx .

Proof. — By Proposition 1.2.45 we can assume in the proof of the first part of
this proposition that F ⊂ An(K) is affine. By the natural map R(U)→ OF,x
sending f to the class of the pair (U ∩D(f), f) the image of a function which



24 CHAPTER 1. ALGEBRAIC VARIETIES

is non zero at x is invertible in OF,x. Indeed, if f /∈ mRx then 1
f is regular on

the neighbourhood U ∩ D(f) of x. By the universal property of localisations
(Proposition A.3.2) this map induces a surjective map β : R(U)mRx → OF,x.
Indeed, consider an element in OF,x represented by (U, f). There is a neigh-
bourhood V ⊂ U de x and polynomials g, h ∈ K[X1, . . . , Xn] such that h
does not vanish on V and g

h = f on V . The rational function g
h represents an

element of R(U)
m
R(U)
x

whose image under β is equivalent to f (see the solution
to Exercise 1.2.42). We now prove that β is injective. If the image of f

g van-
ishes then f vanishes in a neighbourhood V ⊂ U of x. If U is irreducible this
implies that f vanishes on U . Otherwise, decompose U = ∪Uj into irreducible
components. For each component of Uj containing x the function f vanishes
on V ∩Uj and therefore vanishes on Uj . LetW be the union of all components
of U not containing x. There is a h ∈ I(W ) such that h(x) 6= 0. It follows that
the function hf vanishes on U and since h /∈ mRx it is an invertible element of
R(U)mRx . It follows that

f
1 vanishes in R(U)mRx .

(4)

The proof when F is affine is identical, except that we replace R(U)mRx by
P(U)mPx .

Corollary 1.2.47. — Under the hypotheses of Proposition 1.2.46 we have
that

OF,x ' OU,x ' R(U)
m
R(U)
x
' R(F )

m
R(F )
x

and if F is affine,

OF,x ' P(U)
m
P(U)
x
' P(F )

m
P(F )
x

.

Example 1.2.48. — If F ⊂ An(K) is an affine algebraic set then any element
of OF,x is represented by a fraction g

h where g ∈ K[X1, . . . , Xn]/I(F ), h ∈
K[X1, . . . , Xn]/I(F ) and h(x) 6= 0.

Proposition 1.2.49. — Let U be a quasi-algebraic set and let x be a point
of U . The point x belongs to a unique component of U if and only if the local
ring Ox is an integral domain. More generally, Ox is a reduced ring whose
minimal prime ideals can be identified with the irreducible components of U
passing through x.

Proof. — Let V be a neighbourhood of x in U . The ring R(V ) is reduced so
its local rings are also reduced. The prime ideals of R(V )mx correspond to
prime ideals of R(V ) contained in mx. The miminal prime ideals of R(V )mx

(4)If K is infinite, this can also be proved using the avoidance lemma A.3.12.
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then correspond to irreducible components of V containing x. Indeed, the
maps I 7→ Z(I) and F 7→ I(F ) provide a bijection between prime ideals
and irreducible subvarieties and are strictly decreasing for inclusion. The
conclusion follows because any reduced ring with only one minimal prime
ideal is an integral domain. This can be proved as follows- if a ring A contains
only one minimal prime ideal then it must be equal to the intersection I of all
the prime ideals of A. It follows that the ideal I is prime, but I is the radical√

(0) of the zero ideal in A, see [Eis95, Corollary 2.12], which is equal to (0)
if A is reduced. The zero ideal of A is therefore prime, or in other words A is
integral.

When F is an affine algebraic set and K is an algebraically closed field we
usually identify regular functions (locally defined) and polynomial functions
(globally defined) using the following proposition.

Theorem 1.2.50 (K algebraically closed). — If K is algebraically closed
and F is Zariski closed in An(K) then the injection from P(F ) to R(F ) is a
bijection.

A(F ) ' P(F ) ' R(F ).

Proof. — By hypothesis F is algebraic and there is a canonical morphism

ι : K[X1, . . . , Xn]/I(F )→ OF (F ) = R(F )

which is injective by definition of I(F ). By Proposition 1.2.46 we can iden-
tify OF,x with the ring of fractions of P(F ) with respect to the ideal mx of
polynomials which vanish at x.

We will assume that F is irreducible- see [Ser55a, Cor. 3, page 237] for the
general case. In this case, P(F ) is an integral domain and the ringsOF,x can be
considered as subrings of the field of fractions FracP(F ), see Definition A.3.8.
We then have that

(1.1) Γ(F,OF ) =
⋂
x∈F
OF,x .

Any maximal ideal of P(F ) is equal to some mx by Hilbert’s Nullstellensatz
(Theorem A.5.12). It follows immediately that P(F ) =

⋂
x∈F OF,x = Γ(F,OF )

by Proposition A.3.11 and Equation (1.1).

Exercise 1.2.51. — 1. The hypothesis that F is Zariski closed is neces-
sary.
The function f : K2 \ Z(x2 + y2 + 1)→ K, (x, y) 7→ 1

x2+y2+1 is a regular
function that is not the restriction of any polynomial function on K2.
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2. The hypothesis that K is algebraically closed is necessary.
The function g : R2 → R, (x, y) 7→ 1

x2+y2+1 is a regular function not given
by a polynomial function on R2. This follows from the fact that it does
not define a regular complex function on C2.

This last example shows that when K = R the correspondence given in
1.2.50 between polynomial and regular functions no longer holds. In this
example, (x2 +y2 + 1) is a maximal ideal in R[x, y] which does not correspond
to any point in R2.

We cannot develop the theory of algebraic varieties over a non algebraically
closed field exactly as in [Ser55a] because of the non surjectivity of the map
P(F ) ↪→ R(F ). However, over R (and more generally over any real closed
field, see Definition A.5.18) we do still have a global characterisation of regular
functions on quasi-affine algebraic sets. The algebra in question is now an
algebra of rational functions, rather than an algebra of polynomials, and is
no longer finitely generated- see Proposition 1.2.38- but the result has the
advantage of applying to the quasi-algebraic case. This is a very useful result,
notably when applied to a principal open set of the form U = D(f) for some
f ∈ P(F )- see Exercise 1.2.60(1) and Definition 1.3.14, especially since over R
any Zariski open subset is principal - see Proposition 1.2.61.

Theorem 1.2.52 (K a real closed field). — Let U be a quasi-algebraic
set which is an open subset of a closed set F ⊂ An(R). The injection
from the localisation of P(F ) with respect to the multiplicative system
SU := {h ∈ P(F ) | ∀x ∈ U, h(x) 6= 0} into R(U) is a bijection

S−1
U P(F ) ' R(U).

In particular, any regular function f : U → R is the restriction of a global
rational function defined at any point of U . In other words, there are polyno-
mial functions g, h ∈ P(F ) such that h does not vanish at any point of U and
for all x ∈ U , f(x) = g(x)/h(x).

Proof. — Let g ∈ P(F ) and h ∈ P(F ) be functions defined on U and assume
that h does not vanish at any point of U . The function g/h is then clearly
regular everywhere on U . We now show that any regular function U → R
is of this form. Consider an element f ∈ R(U). As U is quasi-compact
(see Definition B.1.5) in the Zariski topology, there is a finite covering of U
by Zariski open sets

⋃l
i=1 Ui = U and polynomial functions gi, hi ∈ P(F ),

hi(x) 6= 0∀x ∈ Ui such that f |Ui = gi/hi. Let si ∈ P(F ) be such that
F \ Ui = {x ∈ F | si(x) = 0}. In other words Ui = D(si). The function
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h :=
∑l
i=1 s

2
ih

2
i is then a polynomial function on F which does not vanish on

U . It will now be enough to prove that

f =
∑l
i=1 s

2
i gihi

h

Consider a point x ∈ U and let Jx ⊂ {1, . . . l} be the set of points such that
x ∈ Ui. For any i ∈ Jx we then have that f(x) = gi(x)/hi(x) and for any
i /∈ Jx we then have that si(x) = 0. In particular(∑l

i=1 s
2
i gihi

h

)
(x) =

∑
i∈Jx s

2
i (x)gi(x)hi(x)∑

i∈Jx s
2
i (x)h2

i (x)
=
∑
i∈Jx s

2
i (x)h2

i (x) gi(x)
hi(x)∑

i∈Jx s
2
i (x)h2

i (x)
.

We choose an index i0 ∈ Jx. For any i ∈ Jx we then have that f(x) =
gi(x)/hi(x) = gi0(x)/hi0(x) and(∑l

i=1 s
2
i gihi

h

)
(x) =

∑
i∈Jx s

2
i (x)h2

i (x) gi0 (x)
hi0 (x)∑

i∈Jx s
2
i (x)h2

i (x)
= gi0(x)/hi0(x) = f(x) .

In Corollary 1.2.66 below we will see the extent to which the ring of regular
functions of an affine algebraic set over R or C characterises the algebraic set.
Over R this result also holds for a projective algebraic set since by Proposi-
tion 1.2.63 any such set is affine. On the other hand, the following theorem
shows that the ring of regular functions of a complex projective set is as simple
as possible.

Theorem 1.2.53. — Let F be a projective algebraic set over a base field K.
If K is algebraically closed and F is irreducible then the only regular functions
on F are the constants, ie.

R(F ) ' K .

Proof. — Assume that F ⊂ Pn(K) and consider the K-algebra of homoge-
neous coordinates S(F ) := K[X0, . . . , Xn]/I(F ) (see Definition 1.2.4) which
is an integral domain because F is irreducible. For any N > 0 let S(F )N
be the K-vector space of homogeneous polynomials of degree N and for any
i = 0, . . . , n let xi be the image in S(F ) of Xi. Using Proposition 1.2.45 we
freely identify the complement of a hyperplane in Pn(K) with affine space
An(K). Let f ∈ R(F ) be a regular function on the whole of F . For any
Ui := D(xi) the function f is regular on Ui ∩ F and since K is algebraically
closed, f ∈ A(Ui∩F ) ' S(F )(xi) by Theorem 1.2.50. It follows that there is a
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natural number Ni and a homogeneous polynomial function gi ∈ S(F )Ni such
that

f = gi

xNii
.

Considering the rings R(F ) and S(F ) as subrings of the field of fractions
FracS(F ) (not to be confused with its subfield K(F ) - see Definition 1.2.69),
we see that for all i the element xNii f is homogeneous of degree Ni. Set
N >

∑n
i=0Ni. TheK-vector space S(F )N is generated by monomials of degree

N in the variables x0, . . . , xn and in each of these monomials at least one of the
variables xi appears with an exponent that is larger than Ni. In particular, for
any homogeneous polynomial h ∈ S(F )N we have that hf ∈ S(F )N . Iterating
we get that for any q > 0, f qS(F )N ⊂ S(F )N . In particular xN0 f q ∈ S(F )N
for any q > 0. The subring S(F )[f ] of FracS(F ) is therefore contained in
x−N0 S(F ) which is a finitely generated S(F )-module. It follows that f is
integral over S(F ) (see Definition A.5.1) or in other words there exist elements
a1, . . . , am ∈ S(F ) such that

(1.2) fm + a1f
m−1 + · · ·+ am = 0 .

Since f is of degree 0, equation (1.2) still holds if we replace each of the ais
by their homogeneous degree 0 components. But now S(F )0 = K so for every
i = 1 . . .m we have that ai ∈ K and f is algebraic over K. Since K is
algebraically closed, f ∈ K.

Regular maps and morphisms of algebraic sets. —

Definition 1.2.54. — Let V and W be quasi-algebraic sets over K. A
morphism of quasi-algebraic sets (or regular map) ϕ : V →W is a continuous
map (with respect to the Zariski topologies) such that for any open set U ⊂W
and any regular function f : U → K the function f◦ϕ : ϕ−1(U)→ K is regular.

A map ϕ : V →W is an isomorphism of quasi-algebraic sets if ϕ is a home-
omorphism and ϕ and ϕ−1 are regular maps.

Remark 1.2.55. — From the sheaf theoretic point of view (see Exam-
ple C.5.3 in Appendix C) the map ϕ is regular if and only if it is continuous
and the image of the pull back map ϕ# : OW → ϕ∗FV (a morphism of
sheaves on W ) is contained in ϕ∗OV . A map ϕ : V → W is an isomorphism
of quasi-algebraic sets if and only if ϕ is a homeomorphism and the induced
maps of sheaves ϕ# : OW

'−→ ϕ∗OV is an isomorphism of K-algebra sheaves.

Exercise 1.2.56 (Morphisms and polynomial functions)
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1. Let F1 ⊂ An(K) and F2 ⊂ Am(K) be two algebraic sets over the same
algebraically closed field K. Using Theorem 1.2.50, prove that a map
ϕ : F1 → F2 is a morphism if and only if there are polynomial functions
f1, . . . , fm ∈ K[x1, . . . , xn] such that for every point (x1, . . . , xn) ∈ F1,

ϕ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

2. Let F1 ⊂ An(R) and F2 ⊂ Am(R) be algebraic sets over the same real
closed field. Using Theorem 1.2.52 prove that a map ϕ : F1 → F2 is
a morphism if and only if there are polynomial functions g1, . . . , gm ∈
R[x1, . . . , xn] and h1, . . . , hm ∈ R[x1, . . . , xn] such that for every point
(x1, . . . , xn) ∈ F1, h1(x1, . . . , xn) 6= 0, . . . , hm(x1, . . . , xn) 6= 0 and

ϕ(x1, . . . , xn) =
(
g1(x1, . . . , xn)
h1(x1, . . . , xn) , . . . ,

gm(x1, . . . , xn)
hm(x1, . . . , xn)

)
.

3. Let F1 ⊂ Pn(K) and F2 ⊂ Pm(K) be algebraic sets over the same alge-
braically closed base field K. A map ϕ : F1 → F2 is a morphism if and
only if there exist homogeneous polynomials f0, . . . , fm ∈ K[x0, . . . , xn]
without common zeros such that for all x = (x0 : · · · : xn) ∈ F1,

ϕ(x) = (f0(x0, . . . , xn) : · · · : fm(x0, . . . , xn)) .

4. The projective real case follows from the affine real case using Proposi-
tion 1.2.63.

Example 1.2.57. — Note that the image of a quasi-algebraic set under an
algebraic morphism is not necessarily quasi-algebraic. The image B ⊂ A2(K)
of the affine plane under the map A2(K) → A2(K), (x, y) 7→ (xy, y) is a
union of the point (0, 0) and the complement of the line y = 0. It is neither
open nor closed in A2(K). The set B, which is the image under an algebraic
map of an affine algebraic set is neither algebraic nor quasi-algebraic, but only
constructible. See [Har77, Exercise II.3.18 & 3.19] for an introduction to this
notion.

Exercise 1.2.58 (Quasi-algebraic sets). — 1. Prove that the quasi-
algebraic set C∗ ⊂ C is isomorphic to an algebraic set.

2. Similarly, prove that the groups GLn(C), which are open subsets of
the spaces Mn(C), are affine algebraic sets. These groups are algebraic
groups.

3. Prove the same results over an arbitrary base field K.



30 CHAPTER 1. ALGEBRAIC VARIETIES

Exercise 1.2.59 (Affine algebraic sets). — 1. LetK be a field and let
H ⊂ Pn(K) be a hypersurface. Prove that the complement Pn(K) \H is
isomorphic to an affine space.

2. Let K be an algebraically closed field. Prove that the quasi-affine set
U := A2(K) \ {(0, 0)} is not isomorphic to an affine algebraic set.

[Hint: prove that any regular function on U extends to a regular func-
tion on the whole of A2(K). If the base field is C this result is a corollary
of Hartog’s theorem [GH78, page 7] on extending holomorphic functions
of two variables.]

3. Let K be an algebraically closed field. Prove that the only irreducible
algebraic set which is both affine over K and isomorphic to a projective
algebraic set over K is a point.

Exercise 1.2.60 (Principal open sets). — Let K be an algebraically
closed field (such as C) or a real closed field- see Definition A.5.18- (such as
R). Let n be a non-zero natural number and let F ⊂ An(K) be an algebraic
set.

1. Using Theorems 1.2.50 and 1.2.52, prove that if f ∈ P(F ) is a poly-
nomial function then the set D(f) of points where f does not vanish
is isomorphic to an affine algebraic set and there is an isomorphism of
K-algebras.

OF (D(f)) ' R(F )[ 1
f

] .

When K is algebraically closed there is in fact an isomorphism

OF (D(f)) ' A(F )[ 1
f

] .

2. Consider the function f : A2(R) → R, (x, y) 7→ x2 + y2. Give an affine
algebraic set which is isomorphic to D(f). Compare with 1.2.59(2).

The following three results illustrate important differences between real and
complex algebraic varieties. We invite the reader to compare them with (2)
and (3) of Exercise 1.2.59. The first property, very different from complex
case, follows from the fact that any real algebraic set can be defined by a
principal ideal.

Proposition 1.2.61. — Any open set in a real affine algebraic set is prin-
cipal.

Corollary 1.2.62. — Any open set in a real affine algebraic set is isomorphic
to a real affine algebraic set.
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Proof. — For any real algebraic set F ⊂ An(R) and any open set U ⊂ F

consider F ′ = F \ U and take a set {P1, . . . , Pl} of generators of I(F ′). We
have that F ′ = Z(P ) where P ∈ R[X1, . . . , Xn] is the polynomial P = P 2

1 +
P 2

2 + · · · + P 2
l . It follows that the open set U in An(R) is isomorphic to the

following closed set in An+1(R){
(x1, . . . , xn, y) ∈ An+1(R) | (x1, . . . , xn) ∈ F et yP (x1, . . . , xn) = 1

}
.

Proposition 1.2.63. — Any real projective algebraic variety is isomorphic
to a real affine algebraic set.

Proof. — Simply note that Pn(R) is isomorphic to the real algebraic vari-
ety Pn(R) \ H, where H is the hypersurface in Pn(R) whose equation is
x2

0 + · · · + x2
n = 0. The space Pn(R) is therefore an affine algebraic set by

Exercise 1.2.59(1).

Theorem 1.2.64. — Let F and F ′ be algebraic sets over the same base field
K. If F ′ is affine then there is a natural bijection

α : Hom(F, F ′) '−→ Hom(A(F ′),R(F ))

where on the left hand side Hom represents the set of morphisms of algebraic
sets, and on the right hand side Hom represents the set of morphisms of K-
algebras.

If the field K is real closed or algebraically closed then there is a natural
bijection

β : Hom(R(F ′),R(F )) '−→ Hom(A(F ′),R(F )) .

We will see a generalisation of this result to abstract varieties in Theo-
rem 1.3.18.

Proof. — We start by defining the map α. Any morphism of algebraic sets
ϕ : F → F ′ induces a morphism of K-algebras ϕ∗ : R(F ′) → R(F ), ϕ∗(f) =
f ◦ ϕ. We set α(ϕ) := ϕ∗|A(F ′). Conversely let h : A(F ′) → R(F ) be a
morphism of K-algebras. We can assume that F ′ is a closed set in AN (K)
and that A(F ′) = K[y1, . . . , yN ]/I(F ′). Let the element ξi ∈ R(F ) be the
image under h of the class in A(F ′) of the polynomial function yi. For any
i, this is a globally defined functions on F . Using these we can construct a
function ψ : F → AN (K) given by ψ(x) = (ξ1(x), . . . , ξN (x)) for any x ∈ F .
Since F ′ = Z(I(F ′)) and h is a morphism of K-algebras it is immediate that
ψ(x) ∈ F ′ for any x ∈ F . Since each of the components ξi of ψ is regular on
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F the map ψ is easily seen to be a morphism and by construction h 7→ ψ is
the inverse of the bijection α.

We define the map β using the injection A(F ′) ↪→ R(F ′) (see Re-
mark 1.2.36) sending the K-algebra of affine coordinates into the K-algebra
of regular functions. Let h : R(F ′) → R(F ) be a morphism of K-algebras
and set β(h) := h|A(F ′). By Theorem 1.2.50 (if K is algebraically closed) or
Theorem 1.2.52 (if K is real closed) every element of R(F ′) is represented by
a global rational function and it easily follows that the map h is determined
by its values on A(F ′).

The following corollaries are immediate. The first of them forms the basis
for the dictionnary between algebraic geometry and commutative algebra. We
will see similar results for abstract varieties in 1.3.19.

Corollary 1.2.65. — Let F and F ′ be affine algebraic sets over the same
base field K. If K is algebraically closed then F is isomorphic to F ′ if and
only if the K-algebras A(F ) and A(F ′) are isomorphic.

Corollary 1.2.66. — Let F and F ′ be affine algebraic sets over the same
base field K. If K is either real closed or algebraically closed then F is iso-
morphic to F ′ if and only if the K-algebras R(F ) and R(F ′) are isomorphic.

Remark 1.2.67. — If we consider polynomial morphisms instead of regular
morphisms then we obtain the same result over R as over C- the set F is
polynomially isomorphic to F ′ if and only if the R-algebras A(F ) and A(F ′)
are isomorphic. See [CLO15, Chapter V, section 4, proposition 8].

Exercise 1.2.68 (Conics). — The full definition of an affine or projective
plane curve will be given in 1.6.1. For now we define a conic to be a degree two
plane curve(5). An affine conic is thus given by a degree 2 polynomial in two
variables. A projective conic is given by a degree 2 homogeneous polynomial
in three variables. If the zero locus of a conic is non singular and non empty
then it is a 1-dimensional variety (see Definitions 1.5.9 and 1.5.43). Abusing
notation, the zero set of a conic will also be called a conic. We will be careful
to keep track of information contained in the equation but lost on passing to
the zero locus. For example, the equation (x + y − 1)2 is a conic called the

(5)More generally, a quadric over a base field K is an equivalence classe of degree 2 poly-
nomials with coefficients in K, where polynomials P and Q are declared to be equivalent if
there is a λ ∈ K∗ such that P = λQ.
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double line but it has the same zero set as the equation (x + y − 1) which is
not a conic.

1. Let P be an irreducible polynomial of degree 2. The set Z(P ) is then
either empty or irreducible. (See Definition 1.2.15).

2. Calculate the rings of affine coordinates of the conics given by the equa-
tions y = x2 and xy = 1 and show that they are not isomorphic.

3. Assume the base field K is algebraically closed.
(a) Prove that any irreducible conic in P2(K) is isomorphic to P1(K).
(b) Prove that A1(K) is not isomophic to A1(K) \ {0}.
(c) Prove that any irreducible conic in A2(K) is isomorphic to A1(K)

or A1(K) \ {0}.
4. Assume that K = C.

(a) Classify up to isomorphism the (possibly reducible) conics in P2(C).
(b) Classify up to isomorphism the (possibly reducible) conics in

A2(C).
5. Assume that K = R.

(a) Construct two degree 2 irreducible polynomials defining non-
isomorphic conics in P2(R) and prove that any conic in P2(R)
defined by an irreducible polynomial is isomorphic to one of them.

(b) Construct four degree 2 irreducible polynomials defining pairwise
non-isomorphic conics in A2(R) and prove that any conic in A2(R)
defined by an irreducible polynomial is isomorphic to one of them.

(c) Classify up to isomorphism the (possibly reducible) conics in P2(R).
(d) Classify up to isomorphism the (possibly reducible) conics in

A2(R).

Rational functions. —

Definition 1.2.69. — Let K be a field and let U be a quasi-algebraic set
over K. The K-algebra of rational functions of U is the K-algebra

K(U) = lim−→
V=U
OU (V )

where the limit is taken over all dense open sets in U . An element of K(U) is
therefore an equivalence class of pairs (V, f), where V is a dense open set in
U , f is a regular function on V , and we identify two pairs (V, f) and (W, g) if
and only if f = g on some dense open set contained in V ∩W . Elements of
K(U) are called rational functions on U .
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Remark 1.2.70. — As K(U) is an inductive limit of K-algebras it is a K-
algebra.

Proposition 1.2.71. — For any dense open set V in U the natural map

K(U) '−→ K(V )

is an isomorphism.

Proof. — By definition of the inductive limit we can take the limit over dense
open sets contained in V .

Proposition 1.2.72. — Let U be a quasi-algebraic set over a field K. If U
is irreducible then K(U) is a field.

Proof. — If (V, f) represents an element of K(U) with f 6= 0 then we can
restrict f to the non-empty open set W = V \ Z(f) which is dense because U
est irreducible. It follows that 1

f is regular on W , and the class of (W, 1
f ) is

the inverse of the class of (V, f) in K(U).

Definition 1.2.73. — Let K be a field and let U be a quasi-algebraic set
over K. If U is irreducible then K(U) is called the field of rational functions
or function field of U .

Remark 1.2.74. — The field of rational functions of V is often denoted by
K(V ) even when the base field is not denoted by K. For example, if V is an
irreducible algebraic set over C then its function field will be denoted either
K(V ) or C(V ).

Proposition 1.2.75. — Let F be an irreducible algebraic set over a field
K. For any point x ∈ F and any neighbourhood U of x in F the canonical
morphisms

R(U) ↪→ OU,x ↪→ K(U)
are injective. Moreover the restriction morphisms

OF,x
'−→ OU,x and K(F ) '−→ K(U)

are isomorphisms.

Proof. — Since the open set U is non-empty it is dense in the irreducible set F
and we have an isomorphism K(U) ' K(F ) by Proposition 1.2.71. The three
injectivity results follow from the fact that any regular function is continuous
for the Zariski topology, so if such a function vanishes on a non-empty open
set in an irreducible space then it vanishes everywhere.
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Remark 1.2.76. — If F is an irreducible affine algebraic set over a field K
and x is a point of F then the natural maps OF (V )→ K(F ), where V is any
open set in F containing x, are injective and the rings OF (V ) can be thought
of as subrings of the field of functions K(F ). By Remark C.3.2 we then have
that

OF,x =
⋃
V 3x
OF (V ) .

Proposition 1.2.77. — Let F be an algebraic set over a field K. For any
dense open set U ⊂ F we then have that

K(F ) ' FracR(U)

where FracA denotes the total ring of fractions of some ring A (see Defini-
tion A.3.8).

Remark 1.2.78. — Note that the analogous statement in complex analytic
geometry is false. For example, the function z 7→ exp 1

z is holomorphic on
C \ {0} but cannot be written as a quotient of two holomorphic functions on
C. (See Appendix D).

Proof. — Since the open set U is dense in F , Proposition 1.2.71 applies and
the map R(U) → K(U) ' K(F ) is injective because a regular function is
continuous in the Zariski topology, so if it vanishes on a dense open subset
it vanishes everywhere. The induced morphism on the total ring of fractions
FracR(U) → K(F ) is therefore also injective. As this map is surjective by
definition of a regular function the result follows.

Corollary 1.2.79. — Let F be an affine algebraic set over a field K which
is either real closed or algebraically closed. We then have that

K(F ) ' FracP(F ).

Proof. — If K is algebraically closed then the above isomorphism follows from
Proposition 1.2.77 and Theorem 1.2.50. If K is real closed then any regular
function f ∈ R(F ) is the restriction of a rational function defined on F by
Theorem 1.2.52. In particular FracR(F ) ' FracP(F ).

Exercise 1.2.80. — Let K be a field which is algebraically closed or real
closed.

1. For any non-zero natural number n we have that

K(An(K)) = K(X1, . . . , Xn).
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2. For any non-zero natural number n we have that

K(Pn(K)) = K(X1, . . . , Xn) = K(An(K)) .

3. Let C = Z(P ) ⊂ A2(K) be a plane curve of equation P (x, y) = 0 where
P ∈ K[x, y] is a polynomial of non-zero degree.
(a) If f1 = x|C and f2 = y|C then P (f1, f2) = 0 in K(f1, f2) and

K(C) = K(f1, f2)

is a finite degree extension of K(X).
(b) If K is algebraically closed then K(C) ' FracK[x, y]/

√
(P ).

1.3. Abstract algebraic varieties

We started by defining algebraic and quasi-algebraic sets as sub-sets of affine
and projective spaces. Once we had introduced the sheaf of regular functions
and defined isomorphisms of algebraic sets we could give a definition of an
algebraic variety which was independent of the surrounding space. As in
differential geometry, we can go further and define algebraic varieties with-
out any reference to an embedding: an abstract algebraic variety is a ringed
space(6) covered by a finite number(7) of open sets that are isomorphic to
affine varieties(8). The class of spaces thus defined is larger than the class of
quasi-projective varieties considered so far. This is an important difference
with differential geometry, where every abstract real differential manifold can
be smoothly embedded in Rn for some n. (See [Hir76, Theorem I.3.4], for
example, for a proof of this classical result).

Most of the time we will only consider varieties that are isomorphic to quasi-
projective varieties. This class includes all projective varieties, affine varieties
and quasi-affine varieties by Lemma 1.2.43. Even when dealing with quasi-
projective varieties, the notion of an abstract variety is useful for varieties
which are not naturally described by a set of homogeneous defining equations,
such as quotient varieties or fibre spaces.

(6)Or in other words, a topological space equipped with a sheaf of rings satisfying certain
properties, see Definition C.5.1.
(7)This is the algebraic analogue of the requirement that the topology on a differential man-
ifold should have a countable basis.
(8)These open sets play the role of local charts in differential geometry.
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Definition 1.3.1. — An (abstract) algebraic variety over a field K is a
pair (X,OX) where X is a topological space (which will turn out to be quasi-
compact, see Definition B.1.5) and OX is a sub-sheaf of the sheaf of K-valued
functions onX such that there is a covering of the spaceX by a finite collection
of open sets Ui such that (Ui,OX |Ui) is isomorphic as a ringed space to an
affine algebraic subset of some Kn with its ring of regular functions (see 1.2.1
and 1.2.33). By analogy with the theory of affine and projective varieties the
topology on X is called the Zariski topology and the sheaf OX is called the
sheaf of regular functions or structural sheaf of X.

Definition 1.3.2. — An open set U ⊂ X such that (U,OX |U ) is isomorphic
as a ringed space to an affine algebraic set is called an affine open set of X
and a covering of X by such open sets is called an affine covering of X.

Remark 1.3.3. — We emphasise the fact that our algebraic varieties are not
assumed irreducible, which is often required, especially in America.

Definition 1.3.4. — If X and Y are algebraic varieties over K, a morphism
(or regular map) ϕ : X → Y is a continuous map such that for any open set
V ⊂ Y and any regular function f : V → K the function f ◦ ϕ : ϕ−1(V )→ K

is regular.

Remark 1.3.5. — (See Example C.5.3 in Appendix C.) A morphism of
algebraic varieties is a morphism of ringed spaces which induces a morphism
of sheaves of K-algebras. In other words, a map ϕ : X → Y is a morphism of
algebraic varieties if and only if it is continuous and the image of the pullback
morphism on sheaves ϕ# : OY → ϕ∗FX is contained in ϕ∗OX .

Let X be an algebraic variety over K and let Y ⊂ X be a locally closed
subset of X. We want to define a structural sheaf on Y such that the inclusion
map is a morphism of varieties. We cannot simply define this sheaf on Y using
only retrictions of regular functions on open sets of X, since this construction
will generally yield a presheaf rather than a sheaf, see [Per95, III.4.8] for
example. We use the fact that OX is a sheaf of functions on X and we set
OY := (OX)Y , which is a sheaf on Y , see C.1.6. We recall the definition of
this sheaf in terms of local sections below.

If Y is open in X we have that OY = OX |Y . Indeed, the pair (Y,OX |Y )
is clearly an algebraic variety over K since the fact that any open set in U

contained in Y is also an open set in X implies that OX |Y (U) = OX(U), see
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Example C.4.9. In general the sections of OY over an open set U in Y are

OY (U) = {f : U → K | ∀x ∈ U,
∃V neighbourhood of x in X and ∃g ∈ OX(V ) | g|V ∩U = f |V ∩U} .

Proposition 1.3.6. — Let X be an algebraic variety over a field K and let
Y be a locally closed subset of X. The pair (Y,OY ) is an algebraic variety and
Y ↪→ X is a morphism of algebraic varieties.

Proof. — Immediate by definition.

Definition 1.3.7. — Let X be an algebraic variety over K and let Y be
a locally closed subset of X. The pair (Y,OY ) is said to be an algebraic
subvariety of (X,OX). If Y is Zariski-closed (resp. open) in X then we will
say that Y is a closed algebraic subvariety (resp. open algebraic subvariety) of
X.

Example 1.3.8. — Consider the case where X = An(K) and Y = F is a
closed subset of An(K). The K-algebra OF (F ) is then the quotient of the ring
OAn(K)(F ) by the ideal I(F ).

Definition 1.3.9. — Let X be an algebraic variety over K. If K = C we
call X a complex algebraic variety (or complex variety if it is clear from the
context that X is algebraic). If K = R we say that X is a real algebraic
variety.

Definition 1.3.1 taken from [Per95, § III.4] was first used by Serre in
[Ser55a, Chapitre II], where it is used for algebraically closed K.(9) As in
[BCR87] our definition 1.3.9 of real algebraic varieties is the same as Serre’s
definition for algebraically closed fields. With this definition, any locally closed
subset U of affine space An(R) is real algebraic variety with induced topology
and sheaf OU as defined in 1.2.39. Similarly, any algebraic projective set over
R (see Definition 1.2.3) is a real algebraic variety. More generally, for any base
field K any algebraic affine set with its sheaf of regular functions (Definitions
1.2.33 and 1.2.39) is an algebraic variety, as is any algebraic projective set with
its sheaf of regular functions (Definitions 1.2.34 and 1.2.39). This inspires the
following definitions.

(9)Note that Serre adds the technical condition that the space should be separated (see
Appendix B.1) which is not used in [BCR87] and [Per95] because all quasi-projective
spaces are separated.
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Definition 1.3.10. — An algebraic variety (Y,OY ) over a field K is said to
be

1. affine if it is isomorphic as a ringed space to an algebraic affine set with
its sheaf of regular functions (see Definitions 1.2.33 and 1.2.39);

2. projective if it is isomorphic as a ringed space to an algebraic projective
set with its sheaf of regular functions (see Definitions 1.2.34 and 1.2.39);

3. quasi-affine (resp. quasi-projective) if Y is a Zariski-open subset of an
affine (resp. projective) variety X and OY = OX |Y is the restriction to
Y of the sheaf OX .

The following result illustrates an important difference between real and
complex algebraic varieties. We invite the reader to compare it with 1.2.61,
1.2.62 and 1.2.63.

Proposition 1.3.11 (Real affine algebraic varieties)
A real algebraic variety is affine if and only if it is quasi-projective.

Proof. — Whatever the field, any affine algebraic variety X is quasi-affine
by definition and any quasi-affine variety is quasi-projective by Lemma 1.2.43.
Conversely, if the base field is R, Proposition 1.2.63 implies the remarkable fact
(which does not hold for complex varieties) that any real projective algebraic
variety is affine. It follows from Corollary 1.2.62 that any open set in an affine
real algebraic variety is a real affine algebraic variety.

By definition, an algebraic variety X over K is affine (resp. projective) if
and only if there exists an integer n and a morphism of algebraic varieties

ϕ : X → An(K) (resp. Pn(K))

such that ϕ(X) is locally closed in the Zariski topology on the target space
and ϕ induces an isomorphism of algebraic varieties between (X,OX) and the
subvariety (ϕ(X),Oϕ(X)) in (An(K),OAn(K)) (resp. (Pn(K),OPn(K))). Such
a morphism is called an embedding.

Definition 1.3.12. — Let X and Y be algebraic varieties over the same
base field K. A morphism ϕ : X → Y is an embedding of X in Y si ϕ(X) is
locally closed in Y and ϕ induces an isomorphism between X and ϕ(X).

Exercise 1.3.13 (Segre embedding). — Consider the map

ϕ :
{

Pr(K)a0:···:ar × Ps(K)b0:···:bs −→ PN (K)
(a0 : · · · : ar)× (b0 : · · · : bs) 7−→ (· · · : aibj : . . . )
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where we set N = rs + r + s and the set (· · · : aibj : . . . ) is ordered lexico-
graphically. Check that ϕ is well-defined and injective and prove that its image
X := ϕ (Pr(K)× Ps(K)) is a subvariety of PN (K) or in other words that ϕ is
an embedding. [Hint- see [Har77, Exercice I.2.14].]

In particular, check that the image of P1(K)× P1(K) under the Segre em-
bedding is a quadric surface in P3(K).

A projective algebraic variety cannot always be embedded in a projective
space of given dimension. In particular, there are smooth irreducible curves
that cannot be embedded in the projective plane. See section 1.6 for more
details.

Note that over R a fibre space whose base and fibre are both real affine
algebraic varieties is not necessarily a real algebraic affine variety. See Ex-
ample 2.5.6 for more details. This is a major obstacle in the theory of real
algebraic varieties.

Definition 1.3.14. — Let I, J ⊂ K[X0, . . . , Xn] be two homogeneous ideals
and let X ⊂ Pn(K) be the quasi-projective variety defined by

X := Z(J) \ Z(I) = D(I) ∩ Z(J) .

An open set U in X is a principal open set of X if there is a function
f ∈ I(Z(I)) such that U is the non-vanishing locus of f in X,

U = D(f) := D(f) ∩ Z(J) .

Exercise 1.3.15 (Affine and principal open sets)
1. All open affine sets in a real quasi-projective algebraic variety are prin-

cipal.
2. Prove that the intersection of two principal open sets in a quasi-projective

variety remains principal.
3. Deduce that in a quasi-projective algebraic variety the principal open

sets are a basis for the Zariski topology (see Exercise 1.2.60).
4. Prove that the intersection of two affine open sets in a quasi-projective

variety remains affine.
5. Let X be a quasi-projective algebraic variety over a base field K and let
f : X → K be a function. Prove that f is regular if and only if there is
an affine covering of X such that the restriction of f to each open affine
set in the covering is regular.

6. Let K be an algebraically closed field and let X = Z(J) \Z(I) ⊂ Pn(K)
be a quasi-projective variety defined by two homogeneous ideals I, J ⊂
K[X0, . . . , Xn]. Let h ∈ I be a homogeneous polynomial function. Every
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regular function on the principal open set D(h) := D(h) ∩ X can be
written in the form g

hk
where g is a homogeneous function and deg g =

k deg h.

Let f be an element of a ring A and recall that as in Definition A.3.1 we
denote by Af the localisation of the ring A with respect to the multiplicative
system of powers of f . The following statement follows from Exercise 1.2.60(1).

Proposition 1.3.16. — Let K be an algebraically closed field (such as C)
or a real closed field (such as R). Let F be an affine algebraic set and let
f ∈ P(F ) be a polynomial function on F . There is then an isomorphism of
K-algebras

OF (D(f)) ' OF (F )f .

By definition, if Y is isomorphic to X then the K-algebras OX(X) and
OY (Y ) are isomorphic, so the algebra of global regular functions is an invariant
of the variety X. Similarly, the algebra of global rational functions is an
invariant of X. Moreover, for any point x ∈ X the algebra OX,x is an invariant
of the pair (X,x) in the following sense: if ϕ : X → Y is an isomorphism then
OX,x and OY,ϕ(y) are isomorphic as algebras.

The algebra of affine coordinates A, the algebra of polynomials P and the
algebra of homogeneous coordinates S may depend on the embedding. For
any affine variety X over an algebraically closed field, the coordinate algebra
A(X) is an invariant by Theorem 1.2.50 whereas for a projective variety X the
ring of homogeneous coordinates S(X) depends on the projective embedding,
see Example 1.3.17 below.

Example 1.3.17. — Consider the embedding (Definition 1.3.12) of P1(K)
as a plane conic (also called the degree 2 Veronese embedding of P1(K)):

ϕ : P1(K)x:y → P2(K)X:Y :Z , (x : y) 7→ (x2 : y2 : xy) .

The image of this map C := ϕ(P1(K)) is a conic of equation XY = Z2.
The ring of homogeneous coordinates of P1(K) is K[x, y], but the ring of ho-
mogeneous coordinates of C, K[C] = K[X,Y, Z]/(XY −Z2) is not isomorphic
to K[x, y] because the space of degree 1 elements in K[C] is of dimension 3.

Theorem 1.3.18. — Let X and Y be algebraic varieties over the same base
field K. If Y is affine there is a natural bijection

α : Hom(X,Y ) −→ Hom(A(Y ),R(X))
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where on the left hand side Hom denotes the set of morphisms of algebraic
varieties and on the right hand side Hom denotes the set of morphisms of
K-algebras.

If moreover the field K is algebraically closed or real closed then there is a
natural bijection

β : Hom(R(Y ),R(X)) −→ Hom(A(Y ),R(X)) .

Proof. — The proof of Theorem 1.2.64 applies on considering an affine alge-
braic set F ′ isomorphic to Y .

Corollary 1.3.19. — Let X and Y be affine varieties over the same base
field K. If K is algebraically closed then X is isomorphic to Y if and only if
the K-algebras A(X) and A(Y ) are isomorphic.

Corollary 1.3.20. — Let X and Y be affine varieties over the same base
field K. If K is algebraically closed or real closed then X is isomorphic to Y
if and only if the K-algebras R(X) and R(Y ) are isomorphic.

We now adapt Definition 1.2.40 for abstract varieties. Let (X,OX) be an
algebraic variety over a base field K. The K-algebra of germs of regular
functions at the point x is the stalk at x of the sheaf OX :

Ox := OX,x = lim−→
V 3x
OU (V )

where the inductive limit is taken over all open neighbourhoods V of x in U .
Similarly, we can adapt Definition 1.2.69 for abstract varieties. The K-algebra
of rational functions of X is given by

K(X) = lim−→
U=X

OX(U)

where U runs over the dense open sets in X. The following result then follows
immediately from Proposition 1.2.77.

Proposition 1.3.21. — Let X be an algebraic variety over K. For any open
dense set U ⊂ X we set

K(X) = FracOX(U) .

This result is particularly useful when U is an open affine set.
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Rational maps. —

Definition 1.3.22. — If X and Y are algebraic varieties over a base field K
a rational map ϕ : X 99K Y is an equivalence class of pairs (U,ϕU ) where U is
a dense open subset of X, ϕU is a map from U to Y and two pairs (U,ϕU ) and
(V, ϕV ) are equivalent if and only if ϕU and ϕV are identical on the intersection
U ∩ V . The rational map ϕ is said to be dominant if for any representative
(U,ϕU ) of ϕ the image of ϕU is dense in Y . The map ϕ is defined at a point
x ∈ X if there is a representative (U,ϕU ) of ϕ such that x ∈ U . There is an
obvious order on the set of pairs representing ϕ and the largest open set on
which ϕ is defined is called the domain of ϕ. We denote it by

dom(ϕ) := {x ∈ X | ϕ is defined at x} .

Remark 1.3.23. — 1. Any morphism is a rational map.
2. We will often use a dotted arrow 99K to emphasise that a rational map
ϕ : X 99K Y is not necessarily defined at every point. Likewise, we will
use the full arrow→ to indicate that a rational map ϕ : X → Y is actually
a morphism.

3. It is obvious that if Y = K then a rational map ϕ : X 99K Y = K is
simply a rational function as defined in 1.2.69.

Exercise 1.3.24. — The given relation is an equivalence relation because
we have required that the open sets should be dense. When X is irreducible
it is enough to require that the open sets should be non empty.

Exercise 1.3.25. — (See Exercise 1.2.56.) Suppose that K = R or C. Let
X ⊂ An(K), and Y ⊂ AN (K) be algebraic sets over K and let

ϕ : X 99K Y

be a rational map. Prove that ϕ is the restriction of a rational map
An(K) 99K AN (K), or in other words that there are polynomials P1, . . . , PN ∈
K[X1, . . . , Xn] with coefficients in K and non zero polynomials Q1, . . . , QN ∈
K[X1, . . . , Xn] with coefficients in K such that for any point (x1, . . . , xn) ∈ X
at which ϕ is well-defined we have that

ϕ(x1, . . . , xn) =
(
P1(x1, . . . , xn)
Q1(x1, . . . , xn) , . . . ,

PN (x1, . . . , xn)
QN (x1, . . . , xn)

)
.

Smooth curves (see Definition 1.3.26) are exceptional in the sense that any
rational map on a smooth curve can be extended to a morphism onto a pro-
jective target.
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Proposition 1.3.26. — Let X be a non-singular curve, let Y be a projective
variety and let ϕ : X 99K Y be a rational map. There is then a regular map
Φ: X → Y extending ϕ, by which we mean that at every point P ∈ dom(ϕ)
we have Φ(P ) = ϕ(P ).

Proof. — See [Har77, Proposition I.6.8].

It is not always possible to compose rational maps, but it is clearly possible
to compose dominant rational maps. There is therefore a well-defined category
of varieties and dominant rational maps. The "isomorphisms" in this category
are called birational maps.

Definition 1.3.27. — If X and Y are algebraic varieties over a base field K,
a birational map ϕ : X 99K Y is a dominant rational map which has a dominant
rational inverse, by which we mean a dominant rational map ψ : Y 99K X such
that ϕ ◦ ψ = idY and ψ ◦ ϕ = idX as rational maps. If there is a birational
map X 99K Y we say that the varieties X and Y are birationally equivalent
or simply birational. A birational morphism is a morphism ϕ : X → Y which
has a dominant rational inverse.

Remark 1.3.28. — In other words, a birational map ϕ : X 99K Y is a bira-
tional morphism if and only if dom(ϕ) ⊃ X.

Example 1.3.29. — The blow-up of a variety along a subvariety (see Ap-
pendix F for details of this construction) is a birational morphism.

Theorem 1.3.30. — Let X and Y be algebraic varieties over the same base
field K. There is a map ϕ 7→ ϕ∗ which associates a K-algebra morphism from
K(Y ) to K(X) to any dominant rational map from X to Y . Moreover, if
X and Y are irreducible this map yields a bijection between the following two
sets:

1. The set of dominant rational maps from X to Y
2. The set of K-algebra morphisms from K(Y ) to K(X).

Proof. — Let ϕ : X 99K Y be a dominant rational map and let (U,ϕU ) be a
pair representing ϕ. Let (V, fV ) be a pair representing an element of K(Y ).
By hypothesis ϕU (U) is dense in Y so ϕ−1

U (V ) is a non-empty open set in X. It
follows that f ◦ϕU is regular on ϕ−1

U (V ) and the pair
(
ϕ−1
U (V ), f ◦ ϕU

)
repre-

sents a rational function onX. This yields aK-algebra morphism ϕ∗ : K(Y )→
K(X).
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Conversely, suppose that X and Y are irreducible and let θ : K(Y )→ K(X)
be a morphism ofK-algebras. We want to define a rational map ϕ fromX to Y
such that ϕ∗ = θ. By definition of a variety, Y can be covered by open affine
subsets. Since Y is irreducible we can therefore assume that Y is a closed
subset of AN (K) and A(Y ) = K[y1, . . . , yN ]/I(Y ) = P(Y ). The functions
yi|Y ∈ P(Y ) are rational functions on Y and their images θ(yi) ∈ K(X) are
rational functions on X. For any i = 1 . . . N let Ui ⊂ X be the domain of θ(yi).
The open set U := ∩Ni=1Ui is non empty because X is irreducible. We define
a map ϕU : U → AN (K) by ϕU = (θ(y1), . . . θ(yN )). Since Y = Z(I(Y )) and
θ is a morphism of K-algebras it follows that ϕU (x) ∈ Y for any x ∈ U ⊂ X.
Since each component θ(yi) of ϕU is regular on U it is easy to check that ϕU
is a morphism. The pair (U,ϕU ) represents a rational map ϕ : X 99K Y such
that ϕ∗ = θ.

Remark 1.3.31. — If X is irreducible and there is a dominant rational map
ϕ : X 99K Y then Y is also irreducible. To prove this, let U ⊂ X be an open
set on which ϕ is defined such that ϕ(U) is dense in Y . Since X is irreducible,
U is also irreducible and by Lemma 1.2.18, ϕ(U) is irreducible.

Proposition 1.3.32. — Let K be a field and let X and Y be two algebraic
varieties over K. If X and Y are irreducible then the following are equivalent.

1. The varieties X and Y are birationally equivalent,
2. There are non-empty open sets U ⊂ X and V ⊂ Y which are isomorphic

as algebraic varieties,
3. The K-algebras FracR(X) and FracR(Y ) are isomorphic,
4. The fields K(X) and K(Y ) are isomorphic as K-algebras.

Proof. — 3 ⇐⇒ 4 by Proposition 1.2.77.
1 =⇒ 2. Let ϕ : X 99K Y and ψ : Y 99K X be inverse rational maps and

consider representatives (U,ϕ) of ϕ and (V, ψ) of ψ. The composition ψ ◦ ϕ
is represented by (ϕ−1(V ), ψ ◦ ϕ) and by hypothesis ψ ◦ ϕ is the identity on
ϕ−1(V ). Similarly, ϕ◦ψ is the identity on ψ−1(U). By construction, the open
sets ϕ−1(ψ−1(U)) in X and ψ−1(ϕ−1(V )) in Y are isomorphic.

2 =⇒ 4 by definition of a function field.
4 =⇒ 1 by Theorem 1.3.30.

Corollary 1.3.33. — Let K be a field and let X and Y be algebraic varieties
over K. Assume that X and Y are irreducible. If the fields K(X) and K(Y )
are isomorphic as K-algebras then there are open sets U ⊂ X and V ⊂ Y such
that U is isomorphic to V .
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Proof. — This result is an immediate corollary of Proposition 1.3.32. There is
also a direct proof for algebraically closed K(10). We can assume that X and Y
are affine and in this case the finitely generatedK-algebrasA(X) andA(Y ) are
sub-algebras of K(X). As K(X) = FracA(Y ) and A(X) is finitely generated,
the primitive element theorem A.5.9 assures us there is a function f ∈ K(X),
f 6= 0 such that A(X) ⊂ A(Y )[ 1

f ]. Similarly there is a g ∈ K(X), g 6= 0 such
that A(Y ) ⊂ A(X)[ 1

g ]. It follows that A(X)[ 1
fg ] = A(Y )[ 1

fg ]. There is an
element a ∈ A(X) and an element b ∈ A(Y ) such that A(X)[ 1

fg ] = A(X)[ 1
a ]

and A(Y )[ 1
fg ] = A(Y )[1

b ]. By Theorem 1.2.50, for any Zariski-closed subset F
we can identify the algebras A(F ) and R(F ) and by Exercise 1.2.60 we have
that A(D(a)) = A(X)[ 1

a ] and A(D(b)) = A(Y )[1
b ]. The algebras A(D(a)) and

A(D(b)) are therefore isomorphic and if K is algebraically closed this implies
that D(a) ⊂ X and D(b) ⊂ Y are isomorphic algebraic varieties.

Definition 1.3.34. — Let X be an abstract algebraic variety. The sheaf of
rational functions on X is the sheaf of K-algebras denotedM :=MX , defined
on any open set of X by :

U 7→ FracOX(U).

For any x ∈ X,Mx is canonically isomorphic to FracOX,x.

Proposition 1.3.35. — For any irreducible algebraic variety X, any non-
empty open set U ⊂ X and any x ∈ U we have that

Mx = FracOX,x =MX(U) = FracR(U) = K(X) .

In particular, the sheafMX is a sheaf of constant ring-valued functions.

Proof. — Since any sheaf of locally constant functions on an irreducible space
is constant, it will be enough to prove the proposition for quasi-affine X. For
quasi-affine X the statement follows directly from Proposition 1.2.77 (see also
Proposition 1.3.21).

Remark 1.3.36. — Let F ⊂ An(K) be an irreducible algebraic set over a
real closed or algebraically closed field. For any x ∈ F , the stalk Mx is iso-
morphic to the field of rational functions K(F ) = FracP(F ) of the irreducible
variety F (see Corollary 1.2.79). The fact that FracP(F ) is a field follows
from the fact that P(F ) is an integral domain because F is irreducible.

(10)This proof is taken from a lecture course by Antoine Chambert-Loir [CL98].
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Rational varieties. — By Proposition 1.3.35, if an algebraic variety X over
a base field K is irreducible its ring of rational functions is a field which we
call the function field. By Noether’s normalisation lemma A.5.6, X (which
is an integral variety and is hence reduced (implicit in Definition 1.3.1) and
irreducible) is a finite degree extension of the field of rational fraction in n

variable K(X1, . . . , Xn) (here n is the dimension of X over K). Classically
we say that the variety X is rational if and only if its field of functions is
isomorphic to K(X1, . . . , Xn). We now give another definition of rationality,
equivalent to this one by Proposition 1.3.32 (exercice).

Definition 1.3.37. — Let K be a field and let K be the algebraic closure
of K.

1. An algebraic variety X of dimension n over K is rational (or rational
over K) if and only if it is birationally equivalent to projective space
Pn(K), or alternatively if there exist dense Zariski open sets U ⊂ X,
V ⊂ Pn(K) and an isomorphism U

'−→ V of K-algebraic varieties.
2. A quasi-projective variety X over K is geometrically rational (or rational

over K) if and only if the variety XK
(11), which is an algebraic variety

over K, is rational or alternatively if there exist dense Zariski open sub-
sets U ⊂ XK , V ⊂ Pn(K) and an isomorphism U

'−→ V of algebraic
varieties over K.

Proposition 1.3.38. — Any rational variety is geometrically rational.

Remark 1.3.39. — The converse of the above proposition is false, as we will
see below.

Exercise 1.3.40. — 1. The algebraic varieties Pn(K) and An(K) are ra-
tional over K.

2. The complex surface P1(C)× P1(C) is rational over C.

Example 1.3.41. — 1. The complex Hirzebruch surfaces Fn (surfaces
fibered over P1(C) with fibre P1(C) see Definition 4.2.1) are rational
complex surfaces.

2. We will see examples in § 4.4.10 of geometrically rational surfaces that
are not rational. In particular, certain conic bundles- notably those of
the form x2 + y2 = P (z) for some P ∈ R[z]- are geometrically rational
but not rational.

(11)Definition of XK : if X is a subvariety of PN (K) the subvariety XK ⊂ Pn(K) is defined
by the same homogeneous ideal as X, see Definition 2.3.1.
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1.4. Euclidean topology

Let X be an algebraic variety over a field K. The set X is then also
a topological space with the Zariski topology. If K = C, X is a complex
algebraic variety and if K = R, X is a real algebraic variety. In both cases, X
is equipped with a natural topology, more refined than the Zariski topology,
called the Euclidean topology(12).

Definition 1.4.1. — Let X be a complex or real algebraic variety. The
Euclidean topology on X is the topology generated by open sets of the form

V (U ; f1, . . . , fr; ε) := {x ∈ U | |fl(x)| < ε, for l = 1, . . . , r}

where U is a Zariski open set in X, r is a natural number, f1, . . . , fr are real
or complex valued regular functions on U and ε > 0 is a real number.

Remark 1.4.2. — Over R the open basis of semi-algebraic sets (Defini-
tion B.2.1) V (U ; f1, . . . , fr; ε) can be replaced by the basis of open sets of the
form:

{x ∈ U | f1(x) > 0, . . . , fr(x) > 0} .

(which are also semi-algebraic).

Exercise 1.4.3. — 1. Prove that any Zariski-closed set is also closed in
the Euclidean topology but the converse does not hold.

2. Prove that the above definition of the Eucliden topology using regular
function is the same as the topology defined in a similar way using C∞
functions.

Exercise 1.4.4. — Prove that any morphism of real or complex varieties
(which is continuous for the Zariski topology by definition) is also continuous
for the Euclidean topology.

Theorem 1.4.5. — Let X be a complex algebraic variety. If X is irreducible
then it is connected for the Euclidean topology.

Proof. — See [Sha94, VII.2, Theorem 1] for example.

Remark 1.4.6. — The converse is obviously false.

(12)Or alternatively, the transcendental topology or the usual topology or sometimes the com-
plex topology if K = C, and so on.
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Remark 1.4.7. — The statement of Theorem 1.4.5 is easily seen to be false
over R, even in dimension 1. Consider an irreducible plane cubic given by
an equation y2 = (x − a)(x − b)(x − c) where a, b, c are pairwise distinct real
numbers. The set of its real points Z

(
y2 − (x− a)(x− b)(x− c)

)
⊂ A2(R)

has two connected components. This cubic is illustrated in Figure 1.1 for
a = 0, b = 1, c = 2.

210

Figure 1.1. y2 − x(x− 1)(x− 2) = 0.

Exercise 1.4.8. — (See [Ser56, Lemma 1 and Proposition 2].)
Let X be a complex quasi-projective algebraic variety and let X ↪→ PN (C)

be a projective embedding. The topology induced on X by the Euclidean
topology on PN (C) is the Euclidean topology on X. Similarly, if X is a
quasi-projective real algebraic variety and X ↪→ PN (R) is an embedding then
the topology induced by the Euclidean topology on PN (R) is the Euclidean
topology on X.

Lemma 1.4.9. — Let X be a real or complex algebraic variety. If X is
projective then X is compact with respect to the Euclidean topology

Proof. — Both real and complex projective space are compact with respect to
the Euclidean topology and X is a closed set in such a projective space.

Remark 1.4.10. — Recall that any quasi-projective real algebraic variety
is affine by Proposition 1.3.11. Let X be a projective real algebraic variety.
There is then an n such that X can be embedded as a Euclidean compact
subset of Rn.



50 CHAPTER 1. ALGEBRAIC VARIETIES

This remark motivates the following definition.

Definition 1.4.11. — A real or complex algebraic variety is said to be com-
plete if it is compact with respect to the Euclidean topology.

Remark 1.4.12. — It turns out to be possible to define completeness of
varieties over any algebraically closed field- see [Har77, II.4] for example.
The key fact about completeness is that any projective variety is complete.

Remark 1.4.13. — In [BCR98, Definition 3.4.10], a real set is said to be
complete if it is "closed and bounded" because unlike compactness this notion
generalises to semi-algebraic sets over real closed fields other than R. Of
course, the two definitions coincide over R.

Proposition 1.4.14. — Let X be a quasi-projective algebraic variety over R
or C.

1. If X is projective then it is complete.
2. If X is non-singular and complete then it is projective.

Remark 1.4.15. — Note that X is assumed quasi-projective. In particu-
lar, there exist complete non-singular complex algebraic varieties that are not
projective. An example of such a variety due to Hironaka is given in [Har77,
Appendix B.3.4.1].

Proof. — The first statement is simply Lemma 1.4.9. The second, whose proof
is explained in Chapter 2, Theorem 2.3.7, is a corollary of Hironaka’s theorem
on resolution of singularities 1.5.54.

1.5. Dimension and smooth points

When the base field is R or C, algebraically "smooth" or "non-singular"
points have certain similarities with points on topological (or differentiable)
manifolds, notably because the only local analytic model is an open subset of
the Euclidean topology on a finite dimensional vector space. The dimension
of this space is determined by the local geometry of the variety. For more
details, see [Mal67, Tou72] and Appendix B. In particular, a complex affine
algebraic set F is non singular at a point x in F if and only if the space F
with its Euclidean topology is an analytic variety in a neighbourhood of x
(Definition 1.4.1).

We can analyse singularities locally without using the Euclidean topology
via ring completions- see [Har77, Thm. 5.3, page 33] for more details. For
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example, (0, 0) is an ordinary double point of the affine plane complex curve
C := Z(xy) and every ordinary double point is locally analytically isomorphic
to C but there is no Zariski open neighbourhood of C containing (0, 0) which
is isomorphic to some Zariski open neighbourhood of (0, 0) in the curve Z(y2−
x2(x+ 1)). See [Har77, Example I.5.6.3] for more details.

As the following example taken from [BCR98, Exemple 3.3.11.b] shows,
this analogy is of limited value over the real numbers. This example is a
key illustration of the theory developped in this section and is completed by
Exercise 1.5.31.

Example 1.5.1. — Consider the polynomial P = y3 + 2x2y − x4 and set
C := {(x, y) ∈ R2 | P (x, y) = 0} .

Figure 1.2. y3 + 2x2y − x4 = 0.

If we consider C as a differentiable subset of R2 (see Figure 1.2) then it
is a C∞ submanifold, but (0, 0) is a singular point (Definition 1.5.27) of the
irreducible algebraic curve (Definition 1.5.9) C = Z(P ).

Indeed, for any (x, y) ∈ C we have that x2 = y(1 +
√

1 + y). In some
neighbourhood of (0, 0), the function y is thus a smooth (and indeed ana-
lytic) function of x by the implicit function theorem. On the other hand,
the partial derivatives of P all vanish at (0, 0). The Zariski tangent space
TZar(0,0)C (Definition 1.5.22) is therefore equal to R2 and the dimension of C is
1 by Definition 1.5.9. The point (0, 0) is therefore a singular point of C by
Definition 1.5.27.
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Definition 1.5.2. — For any set E a chain of length n of subsets of E is a
sequence E0 ( E1 ( · · · ( En where the Ei ⊂ E are all distinct.

Definition 1.5.3. — The dimension (or Krull dimension) of a ring A is
the supremum of the lengths of chains of prime ideals in A.

Remark 1.5.4. — The dimension of a ring can be infinite even if the ring
is Noetherian. See [Eis95, Exercice 9.6, page 229] for Nagata’s example of an
infinite dimensional Noetherian ring. On the other hand, any local (Defini-
tion A.3.7) Noetherian ring is of finite dimension (Exercise).

We recall a fundamental result from commutative algebra. In the theorem
below, trdegK L denotes the transcendance degree of a field extension L|K,
see Definition A.5.7.

Theorem 1.5.5. — Let K be a field and let A be a finitely generated integral
K-algebra. We then have that

dimA = trdegK Frac(A) .

Proof. — By Noether’s normalisation lemma, A.5.6, there is an integer d > 0
and an injective map K[X1, . . . , Xd] ↪→ A which makes A into an integral K-
algebra over K[X1, . . . , Xd], finitely generated as a K[X1, . . . , Xd]-module. It
follows from Proposition A.5.3 that dimA = d and from the fact that FracA
is algebraic over K(X1, . . . , Xd) that trdegK Frac(A) = d.

Exercise 1.5.6. — For any field K we have that dimK[X1, . . . , Xn] = n.

Example 1.5.7. — If A := C[X,Y ] then the Krull dimension of A is 2. A
chain realising this equality is given by (0) ( (X) ( (X,Y ). The transcen-
dance degree of FracA over C is 2 and the transcendance degree of FracA over
R is also 2.

Corollary 1.5.8. — Let A be an affine integral domain and let m ⊂ A be a
maximal ideal in A. We then have that dimAm = dimA.

Proof. — By Definition A.5.5 there is a field K over which A is a finitely
generated integral K-algebra. By Theorem 1.5.5 the dimension of A is the
common length of all maximal chains of prime ideals of A. If m is a maximal
ideal there is therefore a chain of prime ideals contained in m of length dimA.
But the dimension of Am is the length of a maximal chain of prime ideals
contained in m by Proposition A.3.5.
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Definition 1.5.9. — The dimension dim I of an ideal I in K[X1, . . . , Xn]
is the dimension of the quotient ring K[X1, . . . , Xn]/I. The dimension of an
irreducible algebraic set F ⊂ An(K) over a field K is the dimension of its
associated ideal I(F ), or in other words the dimension of its ring of affine
coordinates(13) A(F ) = K[X1, . . . , Xn]/I(F ). We denote this quantity by
dimF or dimK F .

Remark 1.5.10. — We could have used the dimension of the ring R(F )
rather than A(F ) but if K = R (for example) the ring R(F ) is not typically
finitely generated (see Proposition 1.2.38). On the other hand, for any x ∈ F ,
the local ring R(F )mx is of the right dimension, see Proposition 1.5.41.

Remark 1.5.11. — Any ideal in A has a natural A-module structure. The
dimension of the A-module I is equal to the dimension of A whenever A is
an integral domain for example. It is important not to confuse the dimension
of the ideal dim I = dimA/I with the dimension of I as an A-module. See
[Eis95, Chapter 9] for more details.

Definition 1.5.12. — In a ring A the codimension (or height) of a prime
ideal I is the supremum of lengths of chains of prime ideals contained in I. It
is denoted codim I.

Exercise 1.5.13. — (Dimension and codimension of an ideal)
1. It follows from the correspondance theorem (see Proposition A.2.8) that

if I is an ideal of A then dim I is the supremum of lengths of chains of
prime ideals of A containing I.

2. For any prime ideal I in A we have that codim I = dimAI .

Exercise 1.5.14. — Let I be a prime ideal of dimension d in C[X1, . . . , Xn].
If I is generated by polynomials with real coefficients then

dim(I ∩ R[X1, . . . , Xn]) 6 d

as an ideal in R[X1, . . . , Xn].

It turns out we can do better: these two sets are of the same dimension.

Lemma 1.5.15. — Let I be a prime ideal of dimension d in C[X1, . . . , Xn].
The ideal I ∩ R[X1, . . . , Xn] is then a prime ideal of dimension d in
R[X1, . . . , Xn].

(13)See Proposition 1.2.27.
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Proof. — Simply apply Proposition A.5.3 to the integral injective map
R[X1, . . . , Xn]/(I ∩ R[X1, . . . , Xn])→ C[X1, . . . , Xn]/I.

Note that for any given prime ideal I ⊂ K[X1, . . . , Xn] the dimension of
the algebraic set F = Z(I) is equal to the dimension of the ideal I(F ) which
is not necessarily equal to the dimension of I- see Example 1.5.20.

Exercise 1.5.16. — Let K be a field. Deduce from Exercise 1.5.6 that
dimAn(K) = n.

We now give a more direct definition of the dimension of an irreducible
affine algebraic set (Proposition 1.5.19).

Definition 1.5.17. — The dimension of a topological space X is the supre-
mum of the lengths of chains of irreducible closed subsets of X. We denote
this dimension by dimX. If X 6= ∅ then dimX is a natural number or +∞.
By convention we set dim∅ = −∞.

Remark 1.5.18. — This definition is well adapted to coarse topologies such
as the Zariski topology which are almost combinatorical. As an exercise, the
reader may check that any Hausdorff topological space has dimension 0.

For reasonable topological spaces such as topological manifolds (see Ap-
pendix B.5) it is better to define the dimension as being the maximal index of
non-zero cohomological groups with compact support of the space (see Defi-
nition B.6.7).

Proposition 1.5.19. — Let K be a field. The dimension of an irreducible
algebraic set F ⊂ An(K) over K is equal to its dimension as a topological
space with the induced Zariski topology.

When the base field is not algebraically closed this proposition should be
applied to the ideal I(F ), see Example 1.5.20.

Proof. — Left to the reader as an exercise.

Example 1.5.20. — The irreducible affine algebraic set

F := Z(x2 + y2) ⊂ A2(R)

is a single point (0, 0). The dimension of the quotient ring R[x, y]/(x2 + y2)
is equal to 1 (see Example A.2.10). A priori this may seem counter-intuitive
because the dimension of F as a topological space is 0- which is also the
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dimension of the quotient of the ring R[x, y] by the ideal I(F ) = (x, y). We
have that (x, y) = I(Z(x2 + y2)) 6= (x2 + y2) and

R[x, y]
(x, y) = P(F ) 6= R[x, y]

(x2 + y2) .

The situation is better understood by considering the algebraic set Z :=
ZC(x2 + y2) ⊂ A2(C)(14) which is a reducible complex curve. The point (0, 0)
is the intersection of the two irreducible components ZC(x−iy) and ZC(x+iy)
and it is the only real point on the curve Z.

Example 1.5.21. — Consider the affine algebraic set

F := Z(y2 − x2(x− 2)) ⊂ A2(R)

shown in Figure 1.3. It is an irreducible algebraic set of dimension 1 and the
points (0, 0) and (0, 2) are irreducible algebraic sets of dimension 0 contained
in F . The fact that (0, 0) appears isolated may seem at first glance to be
contradictory with the fact that it is a point on a curve.

0 2

Figure 1.3. y2 − x2(x− 2) = 0.

Non-singular points. — As the Example 1.5.21 shows, the meaning ot the
algebraic dimension of an algebraic set is not always obvious. In the following
section, we will define "non-singular" or "smooth" points, where the dimension
can be easily interpreted.

(14)The set ZC(x2 + y2) is the set of complex zeros of x2 + y2, see Definition 1.2.12.
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Definition 1.5.22. — Let K be a field, let F ⊂ An(K) be an algebraic set
and let P1, . . . , Pl be a generating set for I(F ). Consider a point a ∈ F . The
Zariski tangent space to F at the point a, denoted TZara F , is the subspace of
Kn given by

TZara F :=
l⋂

i=1

x ∈ Kn |
n∑
j=1

∂Pi
∂Xj

(a)xj = 0

 =
l⋂

i=1
ker daPi .

Remark 1.5.23. — The partial deriviative of a a polynomial with respect
to one of its variables is well-defined over an arbitrary field, but its behaviour
in nonzero characteristic p can be surprising. For example, if P (X) = Xp then
∂P
∂X = pXp−1 = 0.

Remark 1.5.24 (Notation TZara F ). — If TaF denotes the usual differential-
geometric tangent space to a ∈ F then in Example 1.5.1,

R2 = TZar(0,0)C 6= T(0,0)C = Z(y) ' R .

We will define non-singular points later on. In any such point, the Zariski
tangent space and the usual tangent space coincide.

Proposition 1.5.25. — Let K be a field of characteristic zero and let I
be a prime ideal in K[X1, . . . , Xn]. Set A := K[X1, . . . , Xn]/I. If d is the
dimension of the ring A then for any set of generators (see Example A.3.14)

P1, . . . , Pl of I, the matrix
(
∂Pi
∂Xj

)
i=1...l
j=1...n

has rank n− d over Frac(A).

In particular, for any a ∈ Z(I), rkK

(
∂Pi
∂Xj

(a)
)
i=1...l
j=1...n

6 n− d. Indeed, the

proposition tells us that determinants of all the (n − d + 1) × (n − d + 1)-

sub-matrices of
(
∂Pi
∂Xj

)
i=1...l
j=1...n

vanish over Frac(A) so the determinants of all

(n− d+ 1)× (n− d+ 1)-submatrices of
(
∂Pi
∂Xj

(a)
)
i=1...l
j=1...n

vanish.

Proof. — See [HP52, Chapter 10, § 14, Theorem 1] or [Sam67, Chapter 2,
§ 4.2, lemme 2].

Remark 1.5.26. — By Proposition 1.5.25, if F is irreducible then

dimK T
Zar
a F > dimK F .
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Definition 1.5.27. — Let F ⊂ An(K) be an irreducible algebraic set and
consider a point a ∈ F . We say that a is a non singular point of F if
dimK T

Zar
a F = dimK F . Any point a which is not a non singular point of

F will be said to be a singular point.

Remark 1.5.28. — We set d = dimK F . If P1, . . . , Pl is a generating set for
I(F ), a point a is a non singular point of F if and only if

rkK

(
∂Pi
∂Xj

(a)
)
i=1...l
j=1...n

= n− d .

In particular, if K = R (resp. C), and a is a non singular point of F
then some neighbourhood of a in the subset F ⊂ Kn with its Euclidean
topology (see Definition 1.4.1) is a differentiable submanifold of Kn whose
real dimension is d (resp. 2d).

Proposition 1.5.29. — Let F ⊂ An(R) be an irreducible algebraic set which
in the Euclidean topology is a differentiable submanifold of Rn of dimension
d in a neighbourhood of some point a ∈ F . We then have that dimF = d

as a real algebraic set. In other words, the dimension of F as an algebraic
set, or alternatively as a Zariski closed subset, is equal to its dimension as a
differentiable manifold.

Proof. — We follow the proof given in [BCR98, Proposition 2.8.14]. By
hypothesis, the space TaF is a vector space of dimension d which is also an
affine subspace of Rn. The orthogonal projection (15) pa : F → TaF is a semi-
algebraic map (see Definition B.2.2) which induces a bijection between some
open semi-algebraic neighbourhood U of a in F and a semi-algebraic open set
in TaF . As the map pa is semi-algebraic we have that the dimension associated
to the Zariski topology (Definition 1.5.17) satisfies dimU = dim pa(U) by
[BCR98, Theorem 2.8.8]. Since pa(U) is a non-empty Euclidean open set in
Rd = TaF its Zariski dimension is d. We now prove by induction on d that if
f ∈ R[X1, . . . , Xd] vanishes on a non empty Euclidean open set V then f is
the zero polynomial. If d = 1 then the result is immediate. Suppose now that
d > 1 and our result holds for d − 1. Let f ∈ R[X1, . . . , Xd] be a polynomial
function vanishing on V . We can write

f(X ′, Xd) = X l
dfl(X ′) +X l−1

d fl−1(X ′) + · · ·+ f0(X ′)

(15)By which we mean the restriction to F of the orthogonal projection from Rn → TaF for
some scalar product on Rn.



58 CHAPTER 1. ALGEBRAIC VARIETIES

where X ′ = (X1, . . . , Xd−1), l = deg f and ∀i = 0, . . . , l, fi ∈ R[X1, . . . , Xd−1].
For any X ′ ∈ V ∩Rd−1 the function Xn 7→ f(X ′, Xn) vanishes at every point

of V ∩ R and is therefore the zero polynomial. It follows that the polynomial
functions fi vanish at every point of V ∩ Rd−1 and therefore are identically
zero by the induction hypothesis. Any element f ∈ I(pa(U)) vanishes at every
point of pa(U) so f is a zero function by the above. It follows that I(pa(U)) =
(0) and Z(I(pa(U))) = Ad(R) which has dimension d by Exercise 1.5.16.

Remark 1.5.30. — Example 1.5.1 shows that a point of an algebraic set can
be smooth differentiably but singular algebraically. The above result shows
that despite this, the dimension of an algebraic set as a differentiable manifold
and as an algebraic variety are the same.

Exercise 1.5.31. — We go back to the polynomial

P = y3 + 2x2y − x4

from Example 1.5.1 and consider the complex curve FC := ZC(P ) ⊂ A2(C),
ie. the set of points FC = {(x, y) ∈ C2 | P (x, y) = 0}.

1. Prove that FC is an irreducible algebraic set.
2. Prove that the dimension of FC is 1.
3. Prove that the dimension of TZar(x,y)FC is 1 at every point in (x, y) ∈ FC

other than (0, 0).
4. Deduce that (0, 0) is a singular point of FC.
5. Prove that, unlike the real curve, the complex curve FC is not a C∞

submanfiold of C2 in a neighbourhood of the point (0, 0).

Whilst it is easy to check that the definitions of dimension and singular
points of an affine algebraic set F do not depend on the precise equations
used to define F or on the precise choice of embedding into affine space, it is
still useful to have an intrinsic definition.

Definition 1.5.32. — A Noetherian local ring A of maximal ideal m and
residue field K = A/m is said to be regular if dimA = dimK m/m2, where we
consider the natural K-vector space structure on m/m2.

Proposition 1.5.33. — Let F ⊂ An(K) be an irreducible algebraic set over
a field K. A point a ∈ F is non-singular if and only if the local ring OF,a =
P(F )ma of germs of regular functions at a is regular.

Proof. — We assume that K is of characteristic zero. See [Liu02, Proposi-
tion IV.2.5 and Theorem IV.2.19] for a proof in arbitrary characteristic. Let a
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be the origin in Kn. The ideal ma is formed of polynomials that vanish at a.
Consider the linear map θa : ma → (Kn)∨ sending P ∈ ma to the linear form

x = (x1, . . . , xn) 7→
n∑
j=1

∂P

∂Xj
(a) · xj .

The map θa induces an isomorphism da : ma/m
2
a → (Kn)∨. The dual of

TZara (F ) ⊂ Kn can be identified with a quotient of (Kn)∨ isomorphic via
da to the quotient ma/(m2

a + I(F )). Let mF,a be the maximal ideal of the
local ring OF,a. The K-vector space ma/(m2

a + I(F )) is then isomorphic to
mF,a/m

2
F,a. It follows from Definition 1.5.27 that a is a non-singular point of F

if and only if dimmF,a/m
2
F,a = dimF . We now note that since F is irreducible,

dimOF,a = dimOF by Corollary 1.5.8.

Proposition 1.5.34. — Let F ⊂ An(R) be a real algebraic set and let a be
a point of F . The ring OF,a is then a regular local ring of dimension d if
and only if there exist n − d polynomials P1, . . . , Pn−d ∈ I(F ) and an open
Euclidean set U in Rn containing a such that F ∩ U = Z(P1, . . . , Pn−d) ∩ U
and

rk
(
∂Pi
∂Xj

(a)
)
i=1...n−d
j=1...n

= n− d .

Proof. — To prove that the condition is sufficient we note that the standard
differential-geometric proof remains valid in the setting of semi-algebraic sets.
We can assume that the determinant of the sub-matrix

(
∂Pi
∂Xj

(a)
)
i=1...n−d
j=1...n

is

non zero, so applying the implicit function theorem to (X1 − a1, . . . , Xd −
ad, P1, . . . , Pn−d), we get a semi-algebraic diffeomorphism ϕ : U → V from
U , a semi-algebraic open neighbourhood of 0 in Rn to V , a semi-algebraic
open neighbourhood of a in Rn such that ϕ((Rd × {0}) ∩ U) = F ∩ V . The
Zariski dimension of any irreducible component of F passing through a is
therefore less than or equal to d by [BCR98, Theorem 2.8.8]. The dimension
of the ring OF,a is thus bounded below by d. Moreover, OF,a is a quotient
of ORn,a/(P1, . . . , Pn−d), which is a regular (and in particular integral) local
ring of dimension d, and it follows that OF,a = ORn,a/(P1, . . . , Pn−d). This
completes the proof of the proposition.

Let I be a prime ideal of R[X1, . . . , Xn]. We saw in Example 1.5.20 that
it is possible to have dim I(Z(I)) < dim I. The previous proposition yields a
characterisation of the case where these two dimensions are equal.
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Corollary 1.5.35. — Let I = (P1, . . . , Pl) be a prime ideal in R[X1, . . . , Xn].
We then have that dim(I(Z(I))) = dim I if and only if Z(I) contains a point
a such that

rkR

(
∂Pi
∂Xj

(a)
)
i=1...l
j=1...n

= n− dim I .

Proof. — We set d = dim I. Let a ∈ Z(I) be such that the rank of the matrix(
∂Pi
∂Xj

(a)
)
is n− d. We then have that OF,a is a regular ring of dimension d by

Proposition 1.5.34 and Z(I) is therefore an algebraic set of dimension d or in
other words dim(I(Z(I))) = d.

Proposition 1.5.33 renders the notion of "non singular point" intrinsic and
enables us to generalise it to abstract algebraic varieties.

Definition 1.5.36. — Let X be an algebraic variety over a field K. A point
x ∈ X is said to be non singular (or regular) if the local ring OX,x is a regular
ring. The variety X is said to be non singular if all its points are non singular.
The variety X is said to be singular if it has at least one singular point. We
denote by SingX the locus of singular points (or singular locus) of X and by
RegX := X \ SingX the locus of non singular points (or regular locus) of X.

We recall the definition of a normal point of a variety. For a curve, this
means that there is only one branch (i. e. local irreducible component) of the
curve passing through the point in question.

Definition 1.5.37. — A quasi-projective algebraic variety X over a field
K is said to be normal at x ∈ X if the local ring OX,x is integrally closed
(Definition A.5.2) in K(X). The variety X is said to be normal if it is normal
at every point.

Example 1.5.38. — Let X be a real irreducible quasi-projective algebraic
variety. We know that X is affine and we can therefore assume that X ⊂ Rn
as an algebraic set. Let A be the integral closure of P(X) in its fraction
field. Since A is a finitely generated R-algebra, we can assume that A =
R[X1, . . . , Xp]/I for some ideal I ⊂ R[X1, . . . , Xp]. We set X̃ := Z(I) ⊂ Rp.
The variety X̃ is then normal. We call it the normalisation of X and the
birational map ν : X̃ → X is called the normalisation map.

Exercise 1.5.39. — Let F ⊂ A2(R) be the affine cubic of equation y2 −
x2(x− 2) = 0 representated in Figure 1.3, page 55.
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We then have that F̃ = R and the normalisation map is given as follows:
R −→ R2

t 7−→
(
t2 + 2, t(t2 + 2)

)
.

Proposition 1.5.40. — Let X be a topological space and let X =
⋃k
i=1Xi

be a decomposition of X into not necessarily disjoint closed sets Xi. We then
have that

dimX = sup
i∈{1...k}

dimXi .

Proposition 1.5.41. — Let X be an affine algebraic variety over an infinite
base field K. If X is irreducible then for any x ∈ X we have that dimX =
dimOX,x. If X is not irreducible then the Krull dimension of OX,x is the
maximum of the dimensions of irreducible components of X containing x. We
denote this number by dimxX.

Exercise 1.5.42. — Prove this lemma, starting with the case where K is al-
gebraically closed (see [Per95, IV.2.3 et 2.9]) and the avoidance lemma A.3.12,
using the fact that K is infinite.

Definition 1.5.43. — Let X be an algebraic variety over an infinite field K
and consider a point x ∈ X. The dimension of X at the point x is defined by

dimxX := dimOX,x .

The dimension of X is the supremum of all these dimensions

dimX := sup
x∈X

dimxX .

Remark 1.5.44. — The dimension of an abstract variety at a point can be
calculated in any open affine subset containing the point.

Definition 1.5.45. — An algebraic variety of dimension 1 is called a curve
and an algebraic variety of dimension 2 is called a surface.

Exercise 1.5.46. — Let K be a field. Deduce from Exercise 1.5.16 that
dimPn(K) = n.

Definition 1.5.47. — Let x ∈ X be a non singular point in a variety of
dimension n over a field K. A set of n elements f1, . . . , fn ∈ Ox is said to be
a local system of parameters at x if every fi ∈ mx and the classes f1, . . . , fn
form a basis of the K-vector space mx/m

2
x.

Note that the analytic local inversion theorem fails in the algebraic setting.
The parameters fi only become local coordinates after refining the topology.
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Exercise 1.5.48. — If K = C there is an Euclidean open neighbourhood U
of x (see Definition 1.4.1) on which the restrictiond f1, . . . , fn, seen as functions
on U , form a system of complex local analytic coordinates.

Proposition 1.5.49. — Let x ∈ X be a non singular point on an algebraic
variety of dimension n over a field K. Any system of local parameters at x
generates the maximal ideal mx in Ox.

Proof. — Let f1, . . . , fn ∈ Ox be a local system of parameters at x. We
simply apply Nakayama’s Lemma (A.2.11) to the finitely generatedOx-module
M = mx/〈f1, . . . , fn〉 and the ideal a = mx.

Exercise 1.5.50. — Using Theorem 1.5.5, prove that if X is an irreducible
algebraic variety over a field K then

dimX = trdegK K(X) .

The following theorem tells us that we can calculate the dimension of a
variety X by calculating the dimension of each of its irreducible components
at a non-singular point and taking the maximum of the numbers thus obtained.

Theorem 1.5.51. — Let X be an algebraic variety over a field of character-
istic zero. If X 6= ∅ then the set SingX of singular points of X is a strict
closed subset of X. In other words, the set RegX of non-singular points of X
is a non-empty Zariski open subset.

Proof. — As X is reduced by definition, we may without loss of generality
assume that X is irreducible and affine. Assume that X ⊂ An(K) and set
d := dimX. As the field K is of characteristic zero, Definition 1.5.27 implies
that SingX is algebraic since it is defined as the set of zeros of the ideal
generated by I(X) = (P1, . . . , Pl) and all the determinants of (n−d)×(n−d)-
submatrices of

(
∂Pi
∂Xj

)
i=1...l
j=1...n

. In particular, if I(SingX) = I(X) then the rank

of the matrix (
∂Pi
∂Xj

)
i=1...l
j=1...n

over Frac(K[X1, . . . , Xn]/I(X)) is strictly less than n − d. By Proposi-
tion 1.5.25, the ideal I(SingX) is strictly larger than I(X) and it follows that
SingX = Z(I(SingX)) ( X = Z(I(X)).

Remark 1.5.52. — 1. There is a proof of the same result for algebraically
closed K of arbitrary characteristic in [Har77, Chapitre I, Theorem 5.3].
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2. The theorem holds for an arbitrary field K, see [Liu02, Proposi-
tion IV.2.24 and Corollary VIII.2.40(a)].

Definition 1.5.53. — Let X be an algebraic variety over a field K. A
resolution of singularities of X is a proper birational morphism π : Y → X

which induces a biregular map Y \ π−1(SingX)→ X \ SingX.

Recall that Hironaka’s theorem on the resolution of singularities [Hir64]
(see also [Kol07]) holds over any field of characteristic zero. We refer to
[Wal35] for a proof for surfaces.

Theorem 1.5.54 (Hironaka 1964). — Let X be an algebraic variety over
a field K of characteristic zero. There is then a non singular K-variety Y and
a proper birational morphism π : Y → X which induces a biregular morphism
Y \ π−1(SingX)→ X \ SingX.

Moreover if X is projective we can require the variety Y to be projective.

We end this section with the birational invariance of the number of Eu-
clidean connected components.

Theorem 1.5.55. — Let X and Y be quasi-projective algebraic varieties over
the same base field K which are both complete and non singular. If K = R or
C and X and Y are birationally equivalent over K then they have the same
number of connected components in the Euclidean topology.

Remark 1.5.56. — The normalisation map ν : C̃ → C over a curve C such
that C̃ has two connected components whose images under ν meet in at least
one point illustrates the fact that the "non singular" hypothesis is necessary in
the above result. Consider for example the curve C̃ = Z((x2, x3)∩(x1, x3−x0))
in P3

x0:x1:x2:x3 and let ν be the restriction to C̃ of the projection P3 → P2,
(x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2). The (reducible) curve C̃ is a disjoint union
of two lines- C1, whose equations are x2 = x3 = 0 and C2, whose equations
are x1 = 0, x3 = x0. The curve C := ν(C̃) is connected and singular since
ν(C1) ∩ ν(C2) = {(1 : 0 : 0)}. The hypothesis "complete" is also necessary,
because the ellipse and the hyperbola are birationally equivalent- if E := {x2+
y2 = 1} ⊂ R2

x,y, H := {u2 − v2 = 1} ⊂ R2
u,v and ϕ : E 99K H, (x, y) 799K ( 1

x ,
y
x)

then ϕ is a birational map inducing an isomorphism between the dense open
set E \ {x = 0} in E and H- but #π0(E) = 1 whereas #π0(H) = 2.

Proof. — When K = C this statement is a corollary of Theorem 1.4.5. When
K = R Proposition 1.3.26 implies that two non singular complete curves are
birationally equivalent if and only if they are biregularly isomorphic and the
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theorem follows for curves. For real surfaces, the result follows from the fac-
torisation of birational maps (Corollary 4.3.9) and the explicit description of
the topology of a blow-up (Example 4.2.18). For the general case, see the
proof of Theorem 2.3.12.

Remark 1.5.57. — An alternative proof is given in [DK81, Thm. 13.3]
and there is a sketch proof in [BCR98, Theorem 3.4.12] which remains valid
for a real closed field other than R if we replace "connected Euclidean" by
"semi-algebraically connected".

1.6. Plane curves

This section draws on [Che78] and [Ful89].

Definition 1.6.1. — Let K be a field.
1. We say that two polynomials P,Q ∈ K[X,Y ] are equivalent if there is a

non-zero λ ∈ K∗ such that P = λQ.
2. An affine plane curve defined over K is then an equivalence class of

non-constant polynomials for this relation.
3. Let P ∈ K[X,Y ] be a non-constant polynomial. We say that P de-

termines (or is the equation of) the affine plane curve represented by
P .

4. Similarly, let P (X0, X1, X2) ∈ K[X0, X1, X2] be a non-constant homo-
geneous polynomial in three variables. We say that P determines a
projective plane curve.

5. We say that an affine or projective plane curve is irreducible (resp. re-
duced) over K if P is irreducible over K (resp. has no multiple factors).

Remarks 1.6.2 (Sets of points vs. equations). — 1. If P is an irre-
ducible poynomial then the ideal generated by P is prime and its zero
locus Z(P ) is an irreducible topological space, see Definition 1.2.15. On
the other hand, even though Z(P 2) = Z(P ), the polynomial P 2 is not
irreducible. This illustrates the pitfalls that arise when mixing the two
definitions of a "plane curve" used in this section- the algebraic set or the
equivalence class of polynomials.

2. Consider a given plane curve. As any two equivalent polynomials have
the same zero set C, the plane curve (in the sense of polynomials) de-
termines C. The set C is an algebraic variety over K by definition and
if dimC = 1 it is an algebraic curve as defined in Definition 1.5.45. As
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mentionned in Exercise 1.2.68 on conics, this zero locus is often identified
with the class of polynomials by abuse of notation, which can be risky.

If K = C then there is a one-to-one correspondence between affine
(resp. projective) reduced plane curves and 1-dimensional subvarieties
of A2(C) (resp. P2(C)). The definition given above generalises the no-
tion of a dimension 1 subvariety of the plane by authorising multiple
components- consider the double line of Exercise 1.2.68. Further on we
will return to our original definition (1.3.1) which requires varieties to
be reduced and our "multiple plane curves" will be thought of as special
divisors of the plane. See Definition 2.6.1 for more details.

If K = R the zero locus of an affine plane curve can be empty- consider
x2 + y2 + 1 = 0 for example- or of dimension 0- consider x2 + y2 = 0.
This problem will be resolved in Chapter 2 when we introduce R-curves.

Let An(K) be affine space of dimension n over a field K. An affine change of
coordinates is a bijective polynomial map Φ = (P1, . . . , Pn) : An(K)→ An(K)
such that every Pi is a linear polynomial.

Exercise 1.6.3. — Prove that any such morphism is the composition of a
linear map and a translation.

Let Φ = (P,Q) : A2(K) → A2(K) be an affine change of coordinates, i. e.
P (X,Y ) = a0 + a1X + a2Y , Q(X,Y ) = b0 + b1X + b2Y and

a1b2 − a2b1 6= 0 .

For any f ∈ K[X,Y ] we define fΦ ∈ K[X,Y ] by

fΦ(X,Y ) = f(P (X,Y ), Q(X,Y )) .

The map f 7→ fΦ thus defined is an element of the automorphism group
Aut(K[X,Y ]|K). If C is a plane curve of equation f then we denote by CΦ

the plane curve of equation fΦ.

Exercise 1.6.4. — Describe the elements of Aut(K[X]|K). Describe the
elements of Aut(K[X,Y ]|K).

Definition 1.6.5. — A property of a family of curves f1, . . . , fk and points
p1, . . . , pl is said to be invariant under affine changes of coordinates if for
any affine change of coordinates Φ the property also holds for the families
fΦ

1 , . . . , f
Φ
k and Φ−1(p1), . . .Φ−1(pl).

Exercise 1.6.6. — The degree of a plane curve is invariant under affine
change of coordinates.
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Intersection multiplicity. — Let P ∈ K[X,Y ] be a polynomial whose
constant term is 0. We can then write P = Pµ+Pµ+1 + · · ·+Pd where d is the
degre of P and Pi is the degree i homogeneous part of P , µ 6 d and Pµ 6= 0.

Definition 1.6.7. — The integer µ > 0 is called the multiplicity of P at
(0, 0). Let C be a plane curve and let a be a point of C. After affine change
of coordinate we may assume that a = (0, 0) and hence an equation for C is
a polynomial whose constant term vanishes. The multiplicity, denoted µa(C),
of the curve C at the point a is defined to be the multiplicity of P at (0, 0).
If µa(C) > 1 we say that a is a multiple point of C with multiplicity µa(C).
If µa(C) = 1 then a is a simple point, if µa(C) = 2 it is a double point, if
µa(C) = 3 it is a triple point and so on.

See [Ful89, § 3.2] for a proof of the fact that the above definition is intrinsic
and invariant under affine change of coordinates.

Applied to plane curves, Definition 1.5.27 yields the following.

Lemma 1.6.8. — A point a ∈ C is a singular point of the curve C of equa-
tion P if and only if

∂P

∂x
(a) = 0 et ∂P

∂x
(a) = 0 .

Exercise 1.6.9. — Deduce from Proposition 1.5.33 that the property of
being a singular point of a plane curve is invariant under affine change of
coordinates.

Exercise 1.6.10. — Let C be a plane curve and let a be a point of C. The
point a is a simple point of C if and only if it is a non singular point of C.

Recall that by Exercise 1.2.42, for any a ∈ An(K) the local ring OAn(K),a ⊂
K(X1, . . . , Xn) at a is given by

OAn(K),a =
{
F

G
∈ K(X1, . . . , Xn) | G(a) 6= 0

}
.

Recall that K[X1, . . . , Xn] ⊂ OAn(K),a ⊂ K(X1, . . . , Xn). Let P1, . . . , Pl be
elements of K[X1, . . . , Xn]. To simplify notation, we denote by (P1, . . . , Pl)
the ideal (P1, . . . , Pl)OA2(K),a in OA2(K),a.

Definition 1.6.11. — Let C1 and C2 be two affine plane curves over K of
equations P1(x, y) and P2(x, y) which may be reducible or non-reduced. For
any a ∈ A2(K) we set

(C1 · C2)a := dimK OA2(K),a/(P1, P2) .
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The number thus defined is called the intersection multiplicity of the curves
C1 and C2 at a.

Remark 1.6.12. — This number is invariant under affine changes of coor-
dinates, see [Ful89, § 3.3].

Bézout’s theorem. — We say that the curves C1 and C2 intersect properly
at a if C1 and C2 have no common component passing through a.

Theorem 1.6.13 (Characterisation of intersection multiplicity)
Let C1 and C2 be plane curves. Their intersection number at a has the

following properties, and is moreover uniquely determined by them.
1. (C1 · C2)a is an integer > 0 if C1 and C2 intersect properly at a;
2. (C1 · C2)a = 0 if and only if a /∈ C1 ∩ C2;
3. If Φ is an affine change of coordinates of A2(K) and b = Φ−1(a) then

(CΦ
1 · CΦ

2 )b = (C1 · C2)a;
4. (C1 · C2)a = (C2 · C1)a;
5. (C1 ·C2)a > µa(C1)µa(C2), with equality if and only if the two curves do

not have a common tangent line at a;
6. If C1 = tiCri1,i and C2 = tjC

sj
2,j then

(C1 · C2)a =
∑
i,j

risj(C1,i · C2,j)a ;

7. If P and Q are equations of plane curves then

(P ·Q)a = (P · (Q+AP ))a
for any polynomial A ∈ K[X,Y ].

Proof. — See[Ful89, § 3.3].

Exercise 1.6.14. — If Pi is a homogeneous degree di equation of the pro-
jective plane curve Ci then we have

(C1 · C2)a = dimK OP2(K),a/(
P1
Ld1

,
P2
Ld2

)

where L = 0 is the equation of a line which does not pass through a. Prove
that this number does not depend on the choice of L.

Definition 1.6.15. — Let C1 and C2 be two projective plane curves which
may be reducible or non-reduced. We set

(C1 · C2) :=
∑

a∈P2(K)
(C1 · C2)a.
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This is the intersection number of the curves C1 and C2.

Theorem 1.6.16 (Bézout’s theorem : geometric statement)
Let C1 and C2 be two projective plane curves which may be reducible or

non-reduced, of degrees d1 and d2 respectively. If C1 and C2 are defined over
an algebraically closed field and have no common component then

(C1 · C2) = d1d2

where the intersection points on the left hand side are counted with multiplicity.

Proof. — See [Per95, Chapitre VI].

Genus formula. —

Theorem 1.6.17. — For any positive integer d we set

g(d) := (d− 1)(d− 2)
2 .

Let C be a non singular complex projective plane curve of degree d. If C is
irreducible and of genus g(C) then

g(C) = g(d) .

Proof. — (See [GH78, pages 219-220].)
We project the curve C from a point p to a line L, where the point p should

be chosen neither in C nor in L. After a linear change of coordinates we may
assume that p = [1 : 0 : 0] and L = {X = 0} and we may also suppose
that the line at infinity {Z = 0} is not tangent to C. Let F (X,Y, Z) be a
homogeneous polynomial of degree d defining C. Taking coordinates x = X/Z,
y = Y/Z in the chart Z 6= 0 the affine equation of the curve will be denoted
f(x, y) = F (x, y, 1). Consider the projection πp : C → P1 whose expression in
this open affine set is given by:

πp : (x, y) 7→ y .

The degree of the map πp : C → P1 is d. Close to a point q ∈ C such
that (∂f/∂x)(q) 6= 0 the function y is a local coordinate on C and πp is not
ramified. If (∂f/∂x)(q) = 0 then (∂f/∂y)(q) 6= 0 since C is non singular at q
and the implicit function theorem implies that x is a local coordinate on C in
a neighbourhod of q. We then have a parameterisation x 7→ (x, y) = (x, y(x))
of C in a neighbourhood of q, from which it follows that

f(x, y(x)) ≡ 0
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and hence the chain rule implies that
∂f

∂x
+ ∂f

∂y
· ∂y
∂x
≡ 0 in a neighbourhood of q in C.

It follows that the order of the zero of ∂y∂x at q, which is equal to the branching
order of πp : x 7→ y(x) at q, is equal to the order of the zero of ∂f

∂x at q which
is also equal to the intersection multiplicity of C with the curve of equation
{∂f∂x = 0} at the point q. The equation {∂f∂x = 0} determines a curve of degree
d−1 in P2 so the total intersection multiplicity of this curve with C is d(d−1)
by Bézout’s theorem. By hypothesis there are no points in {∂f∂x = 0} ∩ C on
the line at infinity {Z = 0}.

By the Riemann-Hurwitz theorem (E.2.18) it follows that

g(C) = −d+ 1 + 1
2
∑
q∈C

bπp(q) = 1
2(d− 2)(d− 1) .

Remark 1.6.18. — An important consequence of the genus formula is the
existence of projective curves that cannot be embedded in the projective plane.
For example, an irreducible smooth curve of genus 2 cannot be embedded as
a non-singular plane curve, since for all d ∈ N∗, 1

2(d− 2)(d− 1)) 6= 2.

d 1 2 3 4 5 6

g(d) 0 0 1 3 6 10

Table 1.6.1. Genuses of smooth plane curves of small degree.

1.7. Umbrellas

We end this chapter with a series of images showing some remarkable singu-
lar real algebraic varieties appearing in the article [FHMM16]. These surfaces
are called umbrellas because their real locus consists of a two-dimensional sur-
face attached to a one-dimensional handle. The first two umbrellas in this list
are well known to experts in the field, the others are new.

Remark 1.7.1. — Despite appearances, all the umbrellas in this list are
irreducible in the Zariski topology
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Whitney’s umbrella. — This is the subvariety of R3 whose equation is

zx2 = y2 (figure 1.4).

Figure 1.4. Whitney’s umbrella.

The line {x = y = 0} is the real singular locus of the surface. The half-line
{x = y = 0, z > 0} is contained in the Euclidean closure of the non singular
locus which is simply the open surface {zx2 = y2, x 6= 0, y 6= 0}. The half line
{x = y = 0, z < 0} is contained in the Zariski closure of this surface, but not
in its Euclidean closure.

Cartan’s umbrella. — This is the subvariety of R3 whose equation is

z(x2 + y2) = x3 (figure 1.5).

Once again, the line {x = y = 0} is the real singular locus of this variety,
but this time only the point {x = y = z = 0} is contained in the Euclidean
closure of the non singular locus {z(x2 + y2) = x3, x 6= 0, y 6= 0}.

Kollár’s umbrella. — This is the subvariety of R3 whose equation is

x2 + y2z2 − y3 = 0 (figure 1.6).

see [KN15]).
As for the two next examples, the real singular locus of this umbrella is

the line {x = y = 0} and on this line only the point {x = y = z = 0} is
contained in the Euclidean closure of the non singular locus, which is given by
Reg = {x2 + y2z2 − y3 = 0, x 6= 0, y 6= 0}.
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Figure 1.5. Cartan’s umbrella.

Figure 1.6. Kollár’s umbrella.

Cuspidal umbrella. — This is the subvariety of R3 whose equation is
x2 − y2(y3 − z2) = 0 (figure 1.7).

Horned umbrella. — This is the subvariety of R3 whose equation is
x2 + y2((y − z2)2 + yz3) = 0 (figure 1.8)

which expands to
x2 + y4 + y2z4 + y3z3 − 2y3z2 = 0 .
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Figure 1.7. Cuspidal umbrella.

Figure 1.8. Horned umbrella.

Solutions to exercises of Chapter 1

1.2.2 Consider for example the set F :=
{
(x, y) ∈ K2 | x− y = 0

}
, which

is closed in the Zariski topology on A2(K). Its complement U :={
(x, y) ∈ K2 | x 6= y

}
is not open in the product topology. Any open set

in the product topology contains a product of open sets in A1(K), ie. a
product of complements of finite subsets of K.
1.2.9 1. The set U is quasi-algebraic if and only if U is an open set in an
algebraic set F (ie. a Zariski closed subset of An(K) or Pn(K) for some n)
which by definition of the induced topology is true if and only if there is an
open set V in An(K) or Pn(K) such that U = V ∩ F , ie. U is a locally closed
subset of An(K) or Pn(K).
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2. If U is an open subset of U then by definition of the induced topology
there is an open set V of the larger space such that U = V ∩U so U is locally
closed. We prove the converse by showing that if U is a locally closed subset
of the larger space then there is an open set V such that U = V ∩ U , which
implies that U is open in U .

By 1 we have U = V ∩F for some open V and closed F and hence U ⊂ V ∩U
since U ⊂ V and U ⊂ U . Conversely, U ⊂ F and F is closed so U ⊂ F , hence
V ∩ U ⊂ V ∩ F = U .
1.2.14 1. For any x ∈ F and any f ∈ I(F ) we have that f(x) = 0 by definition
of I(F ) so x ∈ Z(I(F )). Conversely if x ∈ Z(I(F )) and F = Z((f1, . . . , fl))
for some family fi ∈ K[X1, . . . , Xn] then the polynomials fi belong to I(F )
so for any i = 1 . . . n we have that fi(x) = 0 and hence x ∈ F .

3. Consider n = 1 and I = (x2), for example. We then have that Z(I) =
{x ∈ A1(K) | x2 = 0} = {0} and I(Z(I)) = (x) 6= I.

4. Consider K = R and I = (x2 + y2 + 1), for example. We then have that
I(Z(I)) = I(∅) = R[x, y].
1.2.21 We will give the solution to the exercise for affine space. The solution
for projective space is similar.

1.a. Let F and G be two Zariski-closed subsets such that An(K) = F ∪G.
We will prove that at least one of these two subsets is the whole space. There
are polynomials f, g ∈ K[X1, . . . , Xn] such that F ⊂ Z(f) and G ⊂ Z(g) and
hence An(K) = Z(f)∪Z(g) = Z(fg). If both subspaces are not strict we can
assume that f and g are non-zero. The field K is infinite so Z(fg) = An(K)
implies that fg ≡ 0 and hence either f = 0 or g = 0 from which it follows
that either F or G is equal to An(K).

2. If K = {α1, . . . , αr} then f = Π16i6n
16j6r

(xi − αj) satisfies An(K) = Z(f)

and f 6= 0. It follows that An(K) = ∪i,jZ(xi − αj).
1.2.32 See the solution of Exercise 1.2.14(1) for a proof of the fact that the
given condition is sufficient. (The argument given in this exercise remains
valid for Pn(K)). The condition is obviously necessary.
1.2.37 We will show that the inverse image of any closed set in A1(K) is
closed in U . A closed set in A1(K) is either a finite set of points or the whole
of A1(K). It is therefore enough to show that f−1(y) = {x ∈ U | f(x) = y} is
closed(16) in U for any y ∈ A1(K). This is a local condition so we may assume
that U ⊂ An(K) is an open set and consider an open set V in U on which f

(16)Which would be obvious if the topology were Hausdorff!
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can be represented as g
h where g, h ∈ K[X1, . . . , Xn] are such that for all x ∈

V, h(x) 6= 0. We then have that f−1(y)∩V = {x ∈ V | g(x)
h(x) = y}, but g(x)

h(x) = y

if and only if (g(x)− yh(x)) = 0. It follows that f−1(y) ∩ V = Z(g − yh) ∩ V
which is closed in V and hence f−1(y) is closed in U .
1.2.42 We note that the image of a polynomial function which does not vanish
at x under the natural injection K[X1, . . . , Xn]→ OAn(K),x which sends f to
the class of the pair (An(K), f) is invertible in OAn(K),x because if f(x) 6= 0
then 1

f is regular on the neighbourhood D(f) of x. It follows that there is a
morphism

ϕ : K[X1, . . . , Xn]mx → OAn(K),x

which sends the class of g
h to the class of the pair (D(h), gh). This mor-

phism is injective because K[X1, . . . , Xn] → OAn(K),x is injective(17). We
now consider an element of OAn(K),x represented by a pair (U, f). By defini-
tion of a regular map, there is a neighbourhood V ⊂ U of x and polynomials
g, h ∈ K[X1, . . . , Xn] such that h does not vanish on V and g

h = f on V . The
fraction g

h represents an element of K[X1, . . . , Xn]mx whose image under ϕ is
equivalent to f .
1.2.51 1. The function f is regular onK2\Z(x2+y2+1) but is not polynomial-
if there were a p ∈ K[x, y] such that ∀(x, y) ∈ K2 \ Z(x2 + y2 + 1) then we
would have p(x, y) = 1

x2+y2+1 and hence p(x, y)(x2 + y2 + 1) = 1 which is
impossible since for any given y we would have degy p+ 2 = 0 (note that K is
algebraically closed and hence infinite.)

2. See 1, noting that in this case Z(x2 + y2 + 1) = ∅.
1.2.56 1. As ϕ : F1 → F2 is a morphism for any U ⊂ F2 and any regular
function f ∈ OF2(U) we have that f ◦ ϕ ∈ OF1(ϕ−1(U)). In particular for
any global regular function f ∈ OF2(F2), f ◦ ϕ ∈ OF1(F1) - or in other words,
by Theorem 1.2.50 for any f ∈ P(F2) we have that f ◦ ϕ ∈ P(F1). Apply
this to the functions yi|F2 for i = 1 . . .m. We then have that yi ◦ ϕ ∈ P(F1)
or in other words there are functions fi ∈ K[x1, . . . , xn] such that for any
(x1, . . . , xn) ∈ F1, yi ◦ ϕ(x1, . . . , xn) = fi(x1, . . . , xn). The result follows.

2. Similarly, it follows from Theorem 1.2.52 that for any f ∈ S−1
F2
P(F2)

we have that f ◦ ϕ ∈ S−1
F1
P(F1) (where SFk = {h ∈ P(Fk) | ∀x ∈ Fk, h(x) 6=

0}). Consider the functions yi|F2 for any i = 1 . . .m. We then have that
yi ◦ ϕ ∈ S−1

F1
P(F1) or in any words for any i = 1 . . .m there are polynomial

(17)The localisation S−1A is a flat A-module by the universal propety of localisation-, see
Proposition A.3.2.
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functions gi ∈ R[x1, . . . , xn] and hi ∈ R[x1, . . . , xn] such that for any point
(x1, . . . , xn) ∈ F1, hi(x1, . . . , xn) 6= 0 and yi ◦ ϕ(x1, . . . , xn) = gi(x1,...,xn)

hi(x1,...,xn) . The
result follows.
1.2.58 1 & 2 & 3. Denote byH := Z(xy−1) ⊂ A2(K). The mapK\{(0, 0)} →
H, x 7→ (x, 1

x) is an isomorphism.
Similarly, if A and B are matrices inMn then the coefficients of the matrix

AB− In are polynomials in the coefficients of A and B. We set H := Z(AB−
In) ⊂ Mn × Mn ' K2n2 . The map GLn(K) → H, A 7→ (A,A−1) is an
isomorphism.

Note that K∗ and GLn(K) are special cases of principal open sets- see
1.2.60 (1)- where the function f is given by f : z 7→ z, respectively f : A 7→
detA.
1.2.59 1. Let d be the degree of H, ie. H = Z(f) for some homogeneous
polynomial f of degree d. Consider the degree d Veronese embedding,
ϕd : Pn(K) → PN (K) where N =

(n+d
n

)
− 1 which sends (x0 : · · · : xn) to the

N + 1-tuplet of all degree d monomials in the n+ 1 variables x0, . . . , xn. The
image ϕd(H) is then the intersection of a hyperplane H0 in PN (K) with the
image of ϕd and via ϕd, the set Pn(K) \ H is a closed set in PN (K) \ H0.
The result follows because the complement of a hyperplane is affine. Indeed,
consider coordinates on PN (K) such that H0 is the hyperplane of equation
x0 = 0. The map

PN (K) \H0 −→ AN (K)
(x0 : · · · : xN ) 7−→ (x1

x0
, . . . , xNx0

)

is then an isomorphism.
2. To prove that U := A2(K)\{(0, 0)} is not affine, we prove that OA2(K)(U)

is isomorphic to K[x, y] or in other words that every regular function on U

extends to a regular function on A2(K). We cover U with the two open sets
U1 := D(x) and U2 := D(y). Let f : U → K be a regular set. The restriction
of f to U1 is then of the form g1

xn for some polynomial g1 ∈ K[x, y] and
some natural number n. Moreover we can assume that xn does not divide
g1. Similarly, f = g2

ym on U2. Since their restrictions coincide on U1 ∩ U2 we
have that xng2 = ymg1. By the uniqueness of decompositions into irreducible
elements in the factorial ring K[x, y] we deduce that n = m and g1 = g2, from
which the theorem follows.

3. Theorem 1.2.53 tells us that the only regular functions on an irreducible
(or indeed connected) projective algebraic variety are the constant functions
and the Nullstellensatz A.5.12 (or its consequence Theorem 1.2.50) tells us
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that any affine set whose only regular functions are the constant functions is
a point.
1.2.60 1. Consider the affine algebraic set

Z := {x ∈ Kn+1 |
∀g ∈ I(F ), g(x1, . . . , xn) = 0 and xn+1f(x1, . . . , xn)− 1 = 0}.

By Exercise 1.2.56 it is clear that the restriction to Z of the projection
(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn) is an isomorphism to D(f) inducing an
isomorphism of K-algebras R(Z) '−→ OF (D(f)).

Let β : R(F )[ 1
f ] → R(Z) be the following morphism. For any h =∑d

i=0 hi( 1
f )i where each hi ∈ R(F ) the image of h under β is (Z, x 7→∑d

i=0 x
i
n+1hi(x1, . . . , xn)). This morphism is injective, since if

d∑
i=0

xin+1hi(x1, . . . , xn)) ≡ 0

on Z then for any i we have that hi ≡ 0 on F because K is infinite. Consider
an element a ∈ R(Z) and a point x ∈ Z. There is a neighbourhood U of x
in Z such that a = b

c on U where b, c ∈ P(Z) and c does not vanish at any
point of U . We can decompose b(x1, . . . , xn, xn+1) =

∑d1
i=0 x

i
n+1bi(x1, . . . , xn)

and c(x1, . . . , xn, xn+1) =
∑d2
i=0 x

i
n+1ci(x1, . . . , xn). Since f is an invertible

regular function on D(f) we have that a = b′

c′ on U where for any x =
(x1, . . . , xn, xn+1) ∈ Z we set b′(x) =

∑d1
i=0 f(x1, . . . , xn)d2−ibi(x1, . . . , xn) and

c′(x) =
∑d2
i=0 f(x1, . . . , xn)d2−ici(x1, . . . , xn). By contruction c′ is contained in

P(F ) and does not vanish at any point of U and b′ ∈ P(F )[ 1
f ]. If we can show

that it is possible to take U = F then the proof is complete. We know that
this is possible in two cases - if K is algebraically closed by Theorem 1.2.50 or
if K is a real closed field (Definition A.5.18) by Theorem 1.2.52.

2. We have that D(f) ' {(x, y, z) ∈ A3(R) | z(x2 + y2) − 1 = 0}. In
particular, A2(R) \ {(0, 0)} is affine, which is not the case for A2(K) \ {(0, 0)}
for any algebraically closed field K.
1.2.68 1. Let P be an irreducible polynomial of degree 2. If Z(P ) 6= ∅ then
I(Z(P )) is a prime ideal and Z(P ) is irreducible by Proposition 1.2.30.

2. Let A := Z(y − x2) be a parabola and let B := Z(xy − 1) be a hy-
perbola. We have that A(A) = K[x, y]/(y − x2) ' K[x, x2] ' K[x] and
A(B) = K[x, y]/(xy−1) ' K[x, 1

x ] which is the localisation of K[x] at x. Any
morphism of K-algebras h : K[x, 1

x ]→ K[x] must send x to a constant because
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x is invertible in K[x, 1
x ]. It follows that h is not surjective and cannot be an

isomorphism. The two curves A and B are therefore not isomorphic.
3a. Since K is algebraically closed any symmetric matrix S with coefficients

in K is congruent to a diagonal matrix S = tPDP . Any degree 2 polynomial
in three variables is therefore isomorphic to x2 + y2 + z2 or x2 + y2 or x2 after
a linear change of variables. These last two polynomials are reducible so any
projective conic defined by an irreducible polynomial is therefore isomorphic
to Z(xz − y2) which is the image of P1(K) under the degree two embedding
P1(K)→ P2(K), (u : v) 7→ (u2 : uv : v2).

3b. Set U := A1(K) \ {0}. We have that Γ(A1(K),OA1(K)) = K[x]. Since
U is an open set in A1(K) we have the following equality of sheaves

OU = OA1(K)|U .

It follows that

OU (U) = OA1(K)(U)

which by Exercise 1.2.60 is equal to K[x]x = K[x, 1
x ] which is not isomorphic

to K[x]. The result follows by Corollary 1.2.65.
3c. Let P ∈ K[x, y] be a degree 2 irreducible polynomial and consider

C := Z(P ). Its projective closure is Ĉ = Z(Q) ⊂ P2(K) where Q ∈ K[x, y, z]
is the irreducible homogeneous polynomial z2P (xz ,

y
z ). The intersection of the

projective conic Ĉ with the line at infinity L := Z(z) is determined by the
two variables homogeneous polynomial Q(x, y, 0) which factors as the product
of two polynomials of degree 1. If Q(x, y, 0) has a double root then Ĉ meets
Z(z) in a unique point and C = Ĉ \ {pt.} ' P1(K) \ {∞} ' A1(K) by (3a).
Likewise, if Q(x, y, 0) has two distinct roots then C is isomorphic to P1(K)
minus two points, or in other words A1(K) minus a point. Changing the
coordinates so this point is at 0, we get the coordinate ring A(C) = K[x, 1

x ].
See the second line of Figure 1.10.

4a. The classifying invariant is the rank r of the quadratic polynomial. This
can be equal to 1, 2 or 3 and after linear change of coordinates the associated
conics are given by equations x2 = 0 (a double projective line), x2 + y2 = 0
(two projective lines meeting in a point) or x2 + y2 + z2 = 0 (an irreducible
projective conic). See Figure 1.9.

4b. Removing a point from a projective line leaves an affine line. Con-
sidering all possible intersections between the projective conics in the above
classification and the line at infinity yields the following list: a double affine
line, two affine lines meeting in a point, two parallel affine lines, an irreducible
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Figure 1.9. Projective complex conics. By convention, a double
curve is represented by a thickened line. From left to right: r = 1,
x2 = 0, r = 2, x2 + y2 = 0, r = 3, x2 + y2 + z2 = 0.

affine conic which may be an ellipse or a parabola. See Figure 1.10. (Linear
changes of coordinates have been used to make these diagrams clearer.)

L

L

L

L

L

Figure 1.10. Affine complex conics. L is the line at infinity - the
actual affine conic is the complement of L. In order: a double affine
line, two affine lines meeting in a point, two parallel affine lines, an
ellipse and a parabola.

5a. Consider the projective real conics C1 := Z(x2 + y2 + z2) and C2 :=
Z(x2 + y2 − z2). The first is empty and the second is a cercle so they are not
isomorphic.

Any symmetric matrix with real cooefficients is diagonalisable in an or-
thonormal basis so any irreducible homogeneous polynomial of degree 2 in
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three variables with non-empty zero locus can be written x2 ± y2 ± z2 after
linear change of basis. Permuting coordinates, any real projective irreducible
conic is thus isomorphic to C1 or C2, cf. the two right hand conics in Fig-
ure 1.11.

5b. Consider the real affine conics A := Z(x2 − y), B := Z(xy − 1),
C1 := Z(x2 +y2 +1), C2 := Z(x2 +y2−1) et C3 := Z(x2−y2−1). The set C1
is empty. C2 is compact and connected, C3 is neither compact nor connected,
A is not compact but is connected and C3 is isomorphic to B via the change
of variables (x, y) 7→ (x− y, x+ y).

Let C be an affine conic defined by an irreducible polynomial and let Ĉ be
its projective completion. If Ĉ is empty it is isomorphic to Z(x2 + y2 + z2)
and C is isomorphic to C1. If Ĉ is non empty then as in 3c we consider its
intersection with the line at infinity Z(z). This intersection may be empty (two
imaginary points): C then isomorphic to C2. It may contain one real point,
in which case C is isomorphic to P1(R) minus a point, which is isomorphic to
A. Finally, the intersection may contain two real points, so C is isomorphic
to A1(R) minus a point, in which case C is isomorphic to B ' C3. Compare
with the last two lines of Figure 1.12.

5c. The real classifying invariant is the signature (s+, s−) of the quadratic
polynomial. (The rank r is then given by r = s+ + s−). Permuting variables,
there are five possibilities for the conic: {(1, 0), (0, 1)}, {(2, 0), (0, 2)}, {(1, 1)},
{(3, 0), (0, 3)}, {(2, 1), (1, 2)} corresponding respectively, after linear change of
variables, to x2 = 0 (a real projective double line), x2 +y2 = 0 (two imaginary
projective lines meeting in one real point), x2 − y2 = 0 (two real projective
lines meeting in one real point), x2 + y2 + z2 = 0 (an irreducible projective
conic without real points) and x2 +y2−z2 = 0 (an irreducible projective conic
with real points). See Figure 1.11.

5d. We argue as in the complex case, see Figure 1.12.

1.2.80 1. This follows immediately from Corollary 1.2.79, K(An(K)) =
FracP(An(K)) = FracK[X1, . . . , Xn].

2. Consider the inclusion map i : An(K) ↪→ Pn(K), (x1, . . . , xn) 7→ (1 :
x1 : · · · : xn). The set i(An(K)) is a dense open set in Pn(K), since it is
a non-empty open set in Pn(K) which is irreducible since K is infinite by
Exercise 1.2.21(1), so by Proposition 1.2.71, K(Pn(K)) = K(An(K)).

3a. It is immediate that P (f1, f2) = 0 in K(f1, f2), so f2 is algebraic over
K(f1) and hence K(C) = K(f1, f2) is a finite degree extension of K(f1).
Similarly, K(C) is a finite degree extension of K(f2).
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Figure 1.11. Real projective conics. By convention, non-real curves
are drawn as dotted lines. From left to right : x2 = 0, x2 + y2 = 0,
x2 − y2 = 0, x2 + y2 + z2 = 0, x2 + y2 − z2 = 0. Real locus: a real
projective double line, an isolated real point, two non-parallel real
projective lines, ∅, an ellipse.

If f1 is transcendental overK thenK(f1) ' K(x) ' K(X). If f1 is algebraic
over K then f2 is transcendental over K by the hypothesis on the degree of P
and K(f2) ' K(y) ' K(X).

3b. This follows from Corollary 1.2.79 and the Nullstellensatz. See Corol-
lary A.5.13.

1.3.15 1. This is an immediate corollary of Proposition 1.2.61.
2. We use the same notation as in the definition: X = Z(J) \ Z(I). Let f

and g be two functions in I(Z(I)). We then have that D(f)∩D(g)∩Z(J) =
X \ (Z(f) ∪ Z(g)) = X \ (fg).

3. All open sets in X are of the form X \ Z(L) for some ideal L in
K[X0, . . . , Xn]. Let {f1, . . . , fl} be a set of generators of L. We then have
that Z(L) = ∩li=1Z(fi) so X \ Z(L) = ∪li=1D(fi). Note that if X is affine
then OX(X \ Z(L)) = ∩li=1OX(D(fi)).

4. See [Ser55a, Proposition 1, page 234].

1.3.24 It is clear that the relationship ∼ is reflexive and symmetric. We now
show that it is transitive: suppose that (U,ϕU ) ∼ (V, ϕV ) and (V, ϕV ) ∼
(W,ϕW ). We then have that ϕU |U∩V = ϕV |U∩V and ϕV |V ∩W = ϕW |V ∩W
from which it follows that ϕU |U∩V ∩W = ϕW |U∩V ∩W . But V is dense in X so
U ∩V ∩W is dense in U ∩W and hence ϕU |U∩W = ϕW |U∩W or in other words
(U,ϕU ) ∼ (W,ϕW ).

1.3.25 We use that same argument as in Exercise 1.2.56: pulling back the
coordinate functions yields regular functions on some dense open set in X,
namely the open set on which ϕ is defined. If this open set is written in
the form U = X \ Z(I) for some ideal I generated by f1, . . . , fk then U =
∪ki=1D(fi).
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Figure 1.12. Real affine conics. L is the line at infinity and the
actual affine conic is the complement of L. Real locus in order: an
affine double line, an isolated real point, ∅, two non-parallel affine
lines, two affine parallel lines, ∅, ∅, an ellipse, a hyperbola, a
parabola.

1.4.4 In fact the Euclidean topology is the coarsest topology for which all
Zariski-continuous functions f are continuous with respect to the Euclidean
norm on the target space.
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1.5.14 By Lemma A.2.9, IR := I ∩ R[X1, . . . , Xn] is a prime ideal in
R[X1, . . . , Xn] and I = IR ⊗ C[X1, . . . , Xn] by hypothesis. For any chain
of prime ideals of length l, IR = J0 ( J1 ( · · · ( Jl ( R[X1, . . . , Xn]
we have that I = J0 ⊗ C[X1, . . . , Xn] ( J1 ⊗ C[X1, . . . , Xn] ( · · · (
Jl ⊗ C[X1, . . . , Xn] ( C[X1, . . . , Xn] is a chain of prime ideals of length l. It
follows that dim IR 6 dim I by Exercise 1.5.13(1).
1.5.50 Let U ⊂ X be a non-empty affine open set. As X is irreducible, U is
dense and hence K(X) = K(U) by Proposition 1.2.71. As dimX = dimU by
Remark 1.5.44, we simply apply Theorem 1.5.5 to the ring of affine coordinates
of U .



CHAPTER 2

R-VARIETIES

In the introduction to Chapter 1 we warned the reader that our category of
real algebraic varieties was insufficient for certain purposes. In this chapter we
introduce complex varieties with a conjugation map, which Atiyah ([Ati66])
calls “real spaces”.

In this introduction we will assume for simplicity that our varieties are
projective. Let X ⊂ Pn(C) be a complex algebraic set defined by real homo-
geneous equations. The set V ⊂ Pn(R) of real solutions to these equations,
which is simply X ∩ Pn(R), is then a real algebraic set. Both X and V are
sometimes called real varieties in the litterature, depending on the type of
problem being studied. It is tempting to distinguish the objects V and X by
calling V a real algebraic variety (as in Chapter 1) and X an algebraic variety
defined over R. Some authors make this distinction- see [BK99, Hui95] for
example- but not all- see [Sil89, DIK00] for example. It is fairly common
to consider that a “real algebraic variety” and an “algebraic variety defined
over R” are the same thing, namely a complex algebraic variety which has a
set of real defining equations, or alternatively, a complex variety stable under
conjugaison.

In practice we can mostly specify which point of view we are using on a
case by case basis, since many problems require just one point of view or the
other. Occasionally, however, we will need to jump between definitions in
the course of a single argument. We have chosen to call a pair of a complex
algebraic variety and a conjugation map an algebraic R-variety (see Definition
2.1.10) and reserve the expression real algebraic variety for algebraic subsets
of Pn(R). Note that the “real varieties” defined in [Sil89, I.2] and [DIK00]
are our R-varieties.
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This chapter deals with R-varieties and their relationship with the real
algebraic varieties defined in the previous chapter. After defining R-varieties
and studying their main properties in Section 2.1, we explain to what extent an
R-variety determines a real algebraic variety in Section 2.2. In the subsequent
section we will consider the following question: given a real algebraic variety,
does it determine an R-variety? We end Section 2.2 with a summary of the
logical relations between real algebraic varieties, R-varieties and schemes over
R, achieving thereby one of the goals stated in the Introduction. The final
part of this chapter deals with refinements and consequences of this theory.
Section 2.5, which is technically difficult and can be skipped on first reading,
deals with sheaves and bundles, Section 2.6 deals with divisors and Section 2.7
deals with R-plane curves.

2.1. Real structures on complex varieties

In this section we introduce complex varieties to the study of real varieties.
The following example illustrates their usefulness: further on, Example 2.1.29
illustrates the usefulness of abstract real structures on complex varieties.

Example 2.1.1 (Continuation of Example 1.5.20)
Let us return to the real irreducible algebraic variety F := Z(x2 +y2) ⊂

A2(R) which is an isolated point (0, 0). Consider the algebraic set X :=
ZC(x2 + y2) ⊂ A2(C) which is a reducible complex curve. The restriction
of σ : (x, y) 7→ (x, y) to X is an involution sending X to itself: its set of
fixed points is F = Xσ = {(0, 0)}. The complex algebraic curve X has a
unique real point. The point (0, 0) is the intersection of the two irreducible
components ZC(x− iy) and ZC(x+ iy) and it is the only real point of X. We
have dimX = 1 and dimF = 0.

Going further, consider the variety V := Z(x2 + y2 − z) ⊂ A3(R) and the
morphism π : V → A1(R), (x, y, z) 7→ z. For any z0 ∈ A1(R) the fibre π−1(z0)
is an algebraic subset of the affine plane Z((z − z0)) ' A2(R). If z0 > 0,
π−1(z0) is a non singular real curve; π−1(0) ' F on the other hand is a point
and for all z0 < 0, π−1(z0) is empty. Consider Y := ZC(x2 + y2 − z) ⊂ A3(C)
and πC : Y → A1(C), (x, y, z) 7→ z. For any z0 the preimage π−1

C (z0) is an
algebraic subset of the affine plane Z((z − z0)) ' A2(C). Consider a point
z0 ∈ A1(R) ⊂ A1(C). If z0 > 0 then π−1

C (z0) is a non singular complex curve
whose real locus is a non singular real curve. If z0 = 0 then π−1

C (0) ' X is a
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singular complex curve whose real locus is a point. If z0 < 0 then π−1
C (z0) is

a non singular complex curve whose real locus is empty.

The complex variety Y provides a deeper understanding of this example.
The real variety V can be recovered as the set of fixed points of the involution
defined by complex conjugation on C3. More generally, we will seek to imitate
the standard conjugation map. On An(C) = Cn we denote by σA := σAn the
involution

σA :
{

An(C) −→ An(C)
(z1, . . . , zn) 7−→ (z1, . . . , zn) .

In particular, for any z ∈ C, σA1(z) = z. Similarly, on Pn(C) we denote by
σP := σPn the standard conjugation map

σP :
{

Pn(C) −→ Pn(C)
(x0 : x1 : · · · : xn) 7−→ (x0 : x1 : · · · : xn) .

We can recover Rn ⊂ Cn as the set of fixed points of σAn and the real
projective plane Pn(R) ⊂ Pn(C) as the set of fixed points of σPn . We will
generalise this situation to an arbitrary (algebraic or analytic) complex variety.
In other words, we will introduce real structures (analogues of σA and σP) on
complex varieties: see Definition 2.1.10 for more details. We note immediately
that for general X ⊂ Cn it is not enough to consider the restriction of σA to
X for two reasons. Firstly, we have to require that this restriction induces a
morphism from X to X (i. e. σA(X) ⊂ X). Secondly, a given complex variety
X can have several different real forms (see Definition 2.1.13) corresponding to
different real structures. In other words, there are pairs of complex varietiesX1
and X2 defined by real polynomials which are isomorphic as complex varieties
but do not have an isomorphism defined over R: see Example 2.1.29 for an
example.

Let f be a holomorphic function (such as a polynomial) defined in a neigh-
bourhood of z0 = (z0,1, . . . , z0,n) ∈ Cn by

f(z) =
∑
k∈Nn

ak(z1 − z0,1)k1 . . . (zn − z0,n)kn .

There is then a conjugate holomorphic function of f , denoted σf , defined in a
neighbourhood of z0 = (z0,1, . . . , z0,n) ∈ Cn by

σf(z) =
∑
k∈Nn

ak(z1 − z0,1)k1 . . . (zn − z0,n)kn
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or in other words σf = f ◦ σAn = σA1 ◦ f ◦ σAn . If F is a subset of Cn defined
by the vanishing of the functions f1, . . . , fk then

F := {z ∈ Cn|σAn(z) ∈ F}

is the set of common zeros of the functions σf1, . . . ,
σfk. It follows that if

F ⊂ An(C) is a complex algebraic affine set then F ⊂ An(C) is also an
complex algebraic affine set..

Remark 2.1.2. — Note that σf and f are not the same thing. If f is a
holomorphic function then σf is also holomorphic whereas f = σA ◦ f anti-
holomorphic. Passing from f to σf simply involves conjugating coefficients.
If f is a polynomial then σf is also a polynomial, unlike f . The coefficients of
the polynomial f are real if and only if σf = f .

Exercise 2.1.3 (Sheaf on a conjugate algebraic set)
1. Let O be the sheaf of regular functions on An(C) (resp. Pn(C)). We

define a sheaf σO on An(C) (resp. Pn(C)) by setting
σO(U) :=

{
σf | f ∈ O(U)

}
.

for every open set U in An(C) (resp. Pn(C))
Prove that σO = O.

2. Let F ⊂ An(C) be an affine algebraic set. The sheaf of regular functions
on F is denoted OF and the sheaf of regular functions on F is denoted
OF (These are sheaves deduced from O: equipped with these sets, F and
F are sub-varieties of An(C)- see Definition 1.3.7 and Example 1.3.8).

Prove that if F = F then σOF := (σO)F is a sheaf on F which is
equal to OF by the above. We then say that OF is an R-sheaf : see
Definition 2.2.1 for more details.

Proposition 2.1.4. — Let X ⊂ An(C) be an algebraic set. The restriction
of σAn to X is an involution of X if and only if X can be defined by real
polynomials.

Let X ⊂ Pn(C) be an algebraic set. The restriction of σPn to X is an invo-
lution of X if and only if X can be defined by real homogeneous polynomials.

Proof. — If X = Z(P1, . . . , Pl) then by definition we have that X =
Z(σP1, . . . ,

σPl) and the restriction σA|X is an endomorphism of X if
and only if X = X. Suppose that X = X. We then have that
Z(P1, . . . , Pl) = Z(σP1, . . . ,

σPl) = Z(1
2(P1 + σP1), . . . , 1

2(Pl + σPl), 1
2i(P1 −
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σP1), . . . , 1
2i(Pl −

σPl)). The Proposition follows on noting that for any poly-
nomial P with complex coefficients the polynomials 1

2(P +σP ) and 1
2i(P −

σP )
have real coefficients. The converse is immediate.

Similarly, if X is a projective algebraic variety defined in Pn(C) by homo-
geneous polynomial equations

P1(z0, . . . , zn) = · · · = Pl(z0, . . . , zn) = 0 ,

then the varietyX defined by σAn+1P1(z0, . . . , zn) = · · · = σAn+1Pl(z0, . . . , zn) =
0 is an algebraic subvariety of Pn(C). It is easy to check that if P is a ho-
mogeneous polynomial then 1

2(P + σP ) and 1
2i(P −

σP ) are homogenous
polynomials The restriction of σP to X is therefore an endomorphism of X if
and only if X can be defined by real homogeneous polynomials.

Before generalising the above to abstract varieties we need the following
definition.

Definition 2.1.5. — Let L be a sheaf of complex functions over a topological
space X. The anti-sheaf L of L is defined over any open set U in X by

L(U) := {f := σA ◦ f | f ∈ L(U)} .

More generally, let X be a topological space and let L be a sheaf of maps
to Cn(1). We define the sheaf L over any open set U of X by

L(U) := {f := σAn ◦ f | f ∈ L(U)} .

Definition 2.1.6. — Let (X,OX) be a complex algebraic variety (resp. a
complex analytic space(2)). The conjugate variety (resp. the conjugate analytic
space) of X is defined to be the topological space X equipped with the anti-
sheaf of OX

X := (X,OX) .

Exercise 2.1.7. — If F is the subset of Cn defined by the vanishing of
functions f1, . . . , fk then F := {z ∈ Cn|σAn(z) ∈ F} is the vanishing locus of
the functions σf1, . . . ,

σfk. If F ⊂ An(C) is a complex affine algebraic set then
F is a complex affine algebraic set and σA induces an isomorphism of varieties
from (F ,OF ) to the conjugate variety (F,OF ).

(1)Note that L is no longer a sheaf of rings, but a sheaf of vector spaces.
(2)In complex analytic geometry the term variety is usually only used for non singular com-
plex analytic spaces see Appendix D
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Let (X,OX) and (Y,OY ) be complex algebraic varieties (resp. complex
analytic spaces). In particular, OX and OY are sheaves of complex valued
functions. Recall that a map ϕ : X → Y is regular (resp. holomorphic) if and
only if it is continuous and for any function f ∈ OY (V ) the function f ◦ ϕ
belongs to OX(ϕ−1(V )). (See Definition 1.3.4).

Definition 2.1.8. — A map ϕ : (X,OX) → (Y,OY ) is anti-regular (resp.
anti-holomorphic) if and only if it is continuous and for every open set V in
Y and every function f ∈ OY (V ) the function f ◦ ϕ belongs to OX(ϕ−1(V )).

Remark 2.1.9. — If X is a complex algebraic variety (resp. complex ana-
lytic space) and OX is its sheaf of regular functions (resp. holomorphic func-
tions) the anti-sheaf OX is the sheaf of anti-regular (resp. anti-holomorphic)
functions. A continuous map ϕ : X → Y is anti-regular (or anti-holomorphic)
from (X,OX) to (Y,OY ) if and only if it is regular (or holomorphic) when
considered as a map from (X,OX) to the conjugate variety (Y,OY )- see Ex-
ercise 2.1.7.

As promised in the introduction, we now generalise the involutions σA and
σP to complex varieties. (We invite the reader to compare this definition with
Atiyah’s "real structures on a bundle" in [Ati66].)

Definition 2.1.10 (Real structure). — A real structure on a complex
algebraic variety (resp. complex analytic space) X is an anti-regular (resp.
anti-holomorphic) global involution σ on X.

Examples 2.1.11 (Basic examples). — 1. σA on An(C) ;
2. σP on Pn(C) ;
3. (x : y) 7→ (−y : x) on P1(C).

Definition 2.1.12 (R-variety). — In short, we will say that a pair (X,σ)
is an R-variety if X is a complex variety and σ is a real structure on X. If
necessary we will specify whether (X,σ) is an algebraic R-variety or analytic
R-variety. On occasion we will wish to authorise our analytic varieties to be
singular: we will then call them analytic R-spaces.

Definition 2.1.13. — An R-variety (X,σ) is also called a real form of the
complex variety X.

Example 2.1.14. — Real forms of Lie groupes provide a rich family of ex-
amples. See[MT86] for more details.



2.1. REAL STRUCTURES ON COMPLEX VARIETIES 89

Remark 2.1.15. — Generalising R-varieties to complex analytic varieties
is particularly useful when studying real K3 surfaces (Definition 4.5.3), 2-
dimensional complex R-toruses (Definition 4.5.22), real elliptic surfaces (Def-
inition 4.6.1) and real Moishezon varieties (Definition 6.1.4).

Remark 2.1.16. — Let (X,σ) be an R-variety and let U ⊂ X be an
open affine set. The set σ(U) is then also an open affine set, since σ is
a homeomorphism. Moreover, if ϕ : U → An(C) is an embedding of U as
an affine algebraic variety of ideal I = (P1, . . . , Pl) ⊂ C[X1, . . . , Xn] then
σA ◦ϕ◦σ : σ(U)→ An(C) is an embedding of σ(U) as an affine variety of ideal
σI = (σP1, . . . ,

σPl) ⊂ C[X1, . . . , Xn].

Definition 2.1.17. — A pair (Y, τ) is an R-subvariety of (X,σ) if and only
if Y ⊂ X is a complex subvariety of X and τ = σ|Y .

By definition, an R-variety (X,σ) is quasi-affine (resp. affine, resp. quasi-
projective, resp. projective) if the complex variety X has a regular embedding
ϕ : X ↪→ An(C) (resp. ϕ : X ↪→ An(C) with closed image, resp. ψ : X ↪→
Pn(C), resp. ψ : X ↪→ Pn(C) with closed image). The central question is
whether there is always a regular embedding such that ϕ ◦ σ = σA ◦ ϕ (resp.
ψ ◦ σ = σP ◦ ψ). In other words, is (X,σ) isomorphic as a R-variety to a
R-subvariety of (An(C), σA) (resp. (Pn(C), σP))? The answer to this question
is yes: this is one of the main results of the theory. Any quasi-projective R-
variety can be defined by equations with real coefficients: see Theorem 2.1.33.

The well known identification (see [Ser56] for more details) of a complex
projective algebraic variety with an analytic variety is compatible with its real
structure.

Proposition 2.1.18. — Let X be a complex projective algebraic variety. The
variety X then has a real structure if and only if there is an anti-holomorphic
involution on the analytic space underlying X.

Proof. — Let Xh be the underlying analytic space of X, by which we mean
that Xh is the set X with its Euclidean topology and the sheaf OhX of holomor-
phic functions associated to the sheafOX . IfX is projective then the conjugate
variety X is also projective. Let σ : Xh → Xh be an anti-holomorphic invo-
lution and let ψ : Xh → Xh be the canonical map induced by the identity
on topological spaces. The map σ ◦ ψ : Xh → Xh is holomorphic and X is
projective so by Serre’s GAGA theorems [Ser56] it is regular for the Zariski
topology. In other words, σ : X → X is an anti-regular involution.
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Consider X ⊂ Pn(C) and let ψ : X → PN (C) be a morphism of complex
varieties. We denote by σψ := σP ◦ ψ ◦ σP.

Proposition 2.1.19 (Conditions for the existence of a real structure)
If a complex quasi-projective variety X ⊂ Pn(C) has a real structure

then there is an isomorphism ψ : X → X satisfying σψ ◦ ψ = idX .

Proof. — If σ is a real structure on X then we simply set ψ := σ = σP ◦ σ.
We then have that ψ−1 = σ−1 ◦ σP−1 = σ ◦ σP. Moreover, σψ = σP ◦ ψ ◦ σP =
σP ◦ (σP ◦ σ) ◦ σP = σ ◦ σP.

Remark 2.1.20. — We insist on the fact that a real structure σ is an involu-
tion (i. e. σ ◦ σ = id). The following example by Shimura [Shi72a, page 177]
(see also [Sil92, page 152]) shows that a complex variety can be isomorphic
to its conjugate without having a real structure! (The variety in question has
an anti-isomorphism or order 4 but no anti-isomorphism of order 2.)

Exercise 2.1.21 (Curves without real structures)
Let m be an odd number, let a0 ∈ R be a real number and let ak ∈ C\R,

k = 1, . . . ,m be non real complex numbers. Consider the curve Cm,a0,...,am

which is the projective completion (ie. the Zariski closure of the image of the
affine curve under the inclusion j : A2(C) ↪→ P2(C)- see Lemma 1.2.43 and
Exercise 1.2.44) of the affine plane curve of equation

y2 = a0x
m +

m∑
k=1

(
akx

m+k + (−1)kakxm−k
)
.

1. Prove that the curve Cm,a0,...,am is isomorphic to its conjugate via the
map ϕ : (x, y) 7→ (− 1

x ,
i
xm y) for (x, y) 6= (0, 0) and ϕ(0, 0) = (0, 0).

2. Prove that ϕ induces an anti-isomorphism of Cm,a0,...,am of order 4.
3. Assume that the number a0, the numbers ak and the numbers ak are all

algebraically independent over Q.
(a) Prove that the only automorphisms of Cm,a0,...,am are the identity

and ρ : (x, y) 7→ (x,−y). (Use Exercise 1.2.80(3a).)
(b) Deduce that Cm,a0,...,am has no real structure.

See Section 5.5 and [KK02, Theorem 5.1] for examples of complex surfaces
with no real structure, or even with no anti-automorphism.

Definition 2.1.22. — The real locus, or real part of an R-variety (X,σ) is
the set of fixed points Xσ := {x ∈ X | σ(x) = x} of the real structure. By



2.1. REAL STRUCTURES ON COMPLEX VARIETIES 91

analogy with the set of real points of a scheme defined over R the set of fixed
points of σ is often denoted

X(R) := Xσ

when there is no possible confusion.

Remark 2.1.23. — Obviously, if (Y, τ) is an R-subvariety of (X,σ) then
Y (R) ⊂ X(R).

Examples 2.1.24 (Real loci of Examples 2.1.11)
1. An(R) ;
2. Pn(R) ;
3. ∅.

Definition 2.1.25. — Let (X,σ) and (Y, τ) be R-varieties. A morphism of
R-varieties (or regular map of R-varieties) (X,σ) → (Y, τ) is a morphism of
complex varieties ϕ : X → Y which commutes with the real structures

∀x ∈ X, ϕ(σ(x)) = τ(ϕ(x)) .

Remark 2.1.26. — R-varieties (X,σ) and (Y, τ) are therefore isomorphic if
and only if there is an isomorphism X

ϕ
' Y of complex varieties commuting

with the real structures. Indeed, if ϕ : X → Y commutes with the real struc-
tures i. e. ϕ◦σ = τ ◦ϕ then ϕ−1 : Y → X is a morphism of R-varieties; for any
y ∈ Y and x = ϕ−1(y) we have that ϕ(σ(ϕ−1(y))) = ϕ(σ(x)) = τ(ϕ(x)) = τ(y)
and hence σ(ϕ−1(y)) = ϕ−1(τ(y)).

Definition 2.1.27. — Let (X,σ) and (Y, τ) be R-varieties. A rational map
of R-varieties (X,σ) 99K (Y, τ) is a rational map of complex varieties

ϕ : X 99K Y

which commutes with the real structures

∀x ∈ dom(ϕ) ⊂ X, ϕ(σ(x)) = τ(ϕ(x)) .

Remark 2.1.28. — Denoting the Galois group by G := Gal(C|R), the in-
volution σ (resp. τ) equips X (resp. Y ) with a G-action. A regular map of
R-varieties (X,σ) → (Y, τ) is then by definition a G-equivariant regular map
of complex varieties. Similarly, a rational map of R-varieties is a G-equivariant
rational map of complex varieties.

If X is a projective algebraic variety defined in some Pn(C) by homogeneous
polynomial equations

P1(z0, . . . , zn) = · · · = Pl(z0, . . . , zn) = 0 ,
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then, as we have seen above, the variety X has a real structure induced by
σP : Pn(C)→ Pn(C) if and only if we can assume the polynomials Pi have real
coefficients, or in other words if the homogeneous ideal generated by the Pis
has a system of generators with real coefficients. If this is the case then the
real locus of the R-variety (X,σP|X) is simply X(R) = X ∩ Pn(R). Similarly,
if X is an affine algebraic variety defined in An(C) by polynomial equations

P1(z1, . . . , zn) = · · · = Pl(z1, . . . , zn) = 0 ,

then σA : An(C) → An(C) induces a real structure on the complex variety X
if and only if we can assume the polynomials Pi have real coefficients and in
this case the real locus of the R-variety (X,σA|X) is given by

X(R) = X ∩ An(R) .

Note that the variety X may however have other real structures than the
restriction of σP or σA.

Example 2.1.29 (Two distinct real structures on the same complex
variety)

Consider the affine algebraic plane curve C ⊂ A2(C) determined by the
equation y2 = x3 − x. As this equation has real coefficients, the conjugation
σA restricted to C yields a real structure. If we set σ1 := σA|C then (C, σ1) is
an R-variety whose set of real points C(R) = Z

(
y2 − x(x− 1)(x+ 1)

)
∩A2(R)

has two connected components in the Euclidean topology- see Figure 2.1.
Now let us consider σ2, the restriction to C of the anti-regular involution

A2(C) → A2(C), (x, y) 7→ (−x, iy). We check that σ2(C) ⊂ C so the pair
(C, σ2) is an R-variety whose real structure is not induced by σA. Let C ′
be the curve of equation y2 = x3 + x in A2(C) end let ζ be a square root
of −i, ζ2 = −i. The morphism ϕ : A2(C) → A2(C), (x, y) 7→ (ix, ζy) is an
automorphism of A2(C) whose restriction ϕ|C : C → C ′ is an isomorphism
of complex varieties. Set σ′ := ϕ|C ◦ σ2 ◦ ϕ−1|C′ : the R-curves (C, σ2) and
(C ′, σ′) are then isomorphic. It is easy to check that σ′ = σA|C′ . The set of
real points C ′(R) = Z

(
y2 − x(x− i)(x+ i)

)
∩ A2(R) has only one connected

components- see Figure 2.2. The R-varieties (C, σ1) and (C, σ2) are therefore
not isomorphic by Proposition 2.1.38 below.

In the above example, the abstract R-variety (C, σ2) is isomorphic to the
R-variety (C ′, σ′) whose real structure is induced by the real structure on the
surrounding space. The fact that there is always an R-subvariety of some An
isomorphic to a given affine abstract R-variety is guaranteed by the funda-
mental theorem 2.1.30 below. We insist on the fact that the isomorphism of
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Figure 2.1. C : y2 = x(x− 1)(x+ 1).

Figure 2.2. C ′ : y2 = x(x− i)(x+ i).

complex varieties C → C ′ is not always induced by an automorphism of the
surrounding space.

Theorem 2.1.30 (Real embedding of an affine R-variety)
Let (X,σ) be an algebraic R-variety. If the complex variety X is affine,
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X ↪→ Am(C) then there is an affine algebraic set F ⊂ An(C) such that σA(F ) ⊂
F and there is an isomorphism of R-varieties

(F, σA|F ) ' (X,σ) .

In particular, the ideal I(F ) is generated by real polynomials or in other
words there is an ideal I ⊂ R[X1, . . . , Xn] such that I(F ) = IC and A(X) is
isomorphic to A(F ) = (R[X1, . . . , Xn]/I)⊗R C.

Remark 2.1.31. — Note that n 6= m in general.

This theorem is a reformulation- modulo Lemma A.7.3- of the following
result.

Lemma 2.1.32. — Let (X,σ) be an affine algebraic R-variety. There is
then a real affine algebraic set V ⊂ An(R) with defining ideal I = I(V ) ⊂
R[X1, . . . , Xn] such that the R-algebra A(V ) = R[X1, . . . , Xn]/I is isomorphic
to the R-algebra of affine invariant coordinates A(X)σ = {f ∈ A(X) | σf = f}
of X.

Proof. — The above result is a special case of the scheme-theoretic result
stating that there is an equivalence between the data of an affine scheme X
over C with a real structure σ and the data of a real scheme X0, namely that
if X = SpecA then X0 = SpecAσ. See Section 2.4 for more details.

Theorem 2.1.33 (Real embedding of a quasi-projective R-variety)
Let (X,σ) be an algebraic R-variety. If the complex algebraic variety X

is projective (resp. quasi-projective), X ↪→ Pm(C) then there is a projective
(resp. quasi-projective) algebraic set F ⊂ Pn(C) such that σP(F ) ⊂ F and
there is an isomorphism of R-varieties

(F, σP|F ) ' (X,σ) .

Remark 2.1.34. — We insist on the fact that, as in the affine case, n 6= m

in general.

Proof. — The above statement is a special case of the scheme-theoretic state-
ment that there is an equivalence between the data of a quasi-projective scheme
X over C with a real structure σ and the data of a real scheme X0 such that
X0 = X/〈σ〉. See Section 2.4 for more details.

Like many other authors, Silhol [Sil89] states the above result as a spe-
cial case of a general result of the Galois descent theory developped first by
Weil[Wei56, Theorem 7] then Grothendieck [Gro95, Théorème 3]. See also



2.1. REAL STRUCTURES ON COMPLEX VARIETIES 95

Borel-Serre [BS64, Proposition 2.6, page 129]. We give an alternative proof
of Theorem 2.1.33 in Section 2.6, namely Theorem 2.6.44.

In Example 2.1.29, σA and σA
′ : (x, y) 7→ (−x, iy) are distinct real struc-

tures on A2(C). The R-varieties
(
A2(C), σA

)
and

(
A2(C), σA′

)
, however, are

isomorphic via the map ϕ : (x, y) 7→ (ix, ζy). In this situation we say that the
real structures are equivalent.

Definition 2.1.35. — Two real structures σ and τ on a complex variety X
are equivalent if they are conjugate under an automorphism of the complex
variety X or in other words if there is an automorphism ϕ of X such that

σ = ϕ−1 ◦ τ ◦ ϕ

In other words, σ and τ are equivalent if there is an isomorphism of R-
varieties,ϕ : (X,σ)→ (X, τ).

Remark 2.1.36. — Two real forms (see Definition 2.1.13), (X,σ) and (X, τ)
of a complex variety X are isomorphic if and only if the real structures σ and
τ are equivalent.

Example 2.1.37. — It is proved in [Kam75] that all real structures on the
affine complex plane are equivalent.

We recall that for any R-variety (X,σ) we define #π0(Xσ) = #π0(X(R))
to be the number of connected components of the real locus in the Euclidean
topology.

Proposition 2.1.38 (Real locus and isomorphism)
An isomorphism of R-varieties ϕ : (X,σ)→ (Y, τ) induces a homeomor-

phism between Xσ and Y τ in the Euclidean topology. In particular

#π0(Xσ) = #π0(Y τ ) or in other words #π0(X(R)) = #π0(Y (R)) .

Proof. — Start by noting that for a any given real structure the Euclidean
topology on the real locus is simply the topology induced by the Euclidean
topology on the complex variety. As ϕ is a homeomorphism for the Euclidean
topology (see Exercise 1.4.4) and commutes with the real structures, it induces
a bijection Xσ → Y τ between the fixed loci which is a homeomorphism.

Corollary 2.1.39 (Real locus and equivalence)
Let σ and τ be real structures on a complex variety X. If σ and τ are
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equivalent then Xσ and Xτ are homeomorphic for the Euclidean topology and
in particular

#π0(Xσ) = #π0(Xτ ) .

Proof. — The real structures σ and τ are equivalent so there is an isomorphism
of R-varieties ϕ : (X,σ)→ (X, τ).

Example 2.1.40 (Two real forms on the same complex variety)
We return to the two complex algebraic curves C and C ′ studied in

Example 2.1.29 whose equations in A2(C) are y2 = x3 − x and y2 = x3 + x

respectively. It is easy to check that the set of real points of C(R) ⊂ A2(R)
has two connected components, see Figure 2.1, and that the set of real points
of C ′(R) ⊂ A2(R) has only one connected component, see Figure 2.2. In
particular, by Proposition 2.1.38, the R-curves (C, σ1) and (C, σ2) are not
isomorphic.

The complex variety C therefore has two non-equivalent real structures
σ1 = σA|C : (x, y) 7→ (x, y) and σ2 = ϕ−1|C′ ◦σA|C′ ◦ϕ|C : (x, y) 7→ (−x, iy). It
is interesting to note that these non equivalent real structures are restrictions
of real structures σA and ϕ−1 ◦ σA ◦ ϕ on A2(C) which are equivalent by
definition.

Remark 2.1.41 (Non-standard real structure on the projective line)
We have already met the antipodal map on the Riemann sphere:

σP
′ : P1(C)→ P1(C), (x0 : x1) 7→ (−x1 : x0)

which is a real structure on P1(C) whose set of fixed points is empty and which
is therefore not equivalent to σP.

Exercise 2.1.42 (Real structures on a complex torus)
Find four pairwise non-equivalent real structures on P1(C) × P1(C).

(There are in fact exactly four classes of real structures on P1(C)× P1(C).

Remark 2.1.43. — Until recently it was not known whether the number
of equivalence classes of real structures on a given complex variety was finite.
See [DIK00, Appendix D] for a review of this question.

In [Les18], John Lesieutre constructs a variety of dimension 6 with a dis-
crete automorphism group which cannot be generated by a finite number
of generators and which has infinitely many non-isomorphic real forms. In
[DO19], Dinh and Oguiso use different methods to construct examples of
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projective varieties of any dimension greater than one with non-finitely auto-
morphism generated group. Their work also provides examples of real vari-
eties of any dimension greater than one with infinitely many non-isomorphic
real forms. In [DFM18], Dubouloz, Freudenburg and Moser-Jauslin con-
struct affine rational varieties with infinitely many pairwise non-isomorphic
real forms in every dimension ≥ 4.

Surprisingly, this finiteness question is still open for rational surfaces. See
Benzerga’s work [Ben16a, Ben16b, Ben17] for the most recent results on
this question.

2.2. R-varieties and real algebraic varieties

For a given quasi-projective R-variety (X,σ) we seek to define a sheaf of
regular functions on X(R) with which X(R) becomes a real algebraic variety
as in Definition 1.3.9. By Theorem 2.1.33 and Exercise 2.1.3 the structural
sheaf satisfies σOX = OX , which justifies the following definition. Recall that
a real structure is a Zariski homeomorphism and in particular if U is open in
X then so is σ(U). Let L be a sheaf of Cn-valued functions. For any open
set U in X and any map f ∈ L(U) we denote by σf : σ(U) → Cn the map
f ◦ σ = σA ◦ f ◦ σ. We then have that σf ∈ L(σ(U)) which generalises the
notion of conjugate function introduced at the beginning of Section 2.1.

Definition 2.2.1. — Let (X,σ) be an R-variety and let L be a sheaf of
Cn-valued functions. The sheaf σL defined on any open set U of X by

σL(U) := {σf | f ∈ L(σ(U))} .

is a sheaf on X called the conjugate sheaf. We say that L is an R-sheaf if
and only if σL = L. Note that this is required to be an equality, not an
isomorphism.

From a cohomological point of view, the sheaves L and σL are similar. (See
[Liu02, §5.2] for an introduction to sheaf cohomology.) In particular, we have
the following proposition.

Proposition 2.2.2. — Let (X,σ) be an R-variety and let L be a coherent
sheaf (Definition C.6.7) of Cn-valued functions. We then have that

dimCH
k(X, σL) = dimCH

k(X,L) .

Proof. — See [Sil89, I.(1.9)].
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Let (X,σ) be a quasi-projective R-variety. We saw above that the sheaf of
C-algebras OX is an R-sheaf: σOX = OX . In particular, for any open set U
in X, the morphism

OX(U) −→ OX(σ(U))
f 7−→ σf

is a ring isomorphism.

Remark 2.2.3. — We can prove more: this map is an anti-isomorphism of
C-algebras. Let us prove anti-linearity: for any λ ∈ C and for any regular
function f on U we have that σ(λf) = λf ◦ σ = λ(f ◦ σ) = λ(σf).

If A is an R-algebra equipped with a G-action, where G := Gal(C|R), and
σ is the corresponding involution of A then we denote by AG := Aσ = {a ∈
A | σ(a) = a} the sub-algebra of invariants of A (see Definition A.7.2).

Let (X,σ) be an R-variety. A subset U ⊂ X is said to be invariant if
and only if σ(U) = U . Any such subset inherits a G-action: since σ is a
homeomorphism, for any open set U in X the intersection U ∩ σ(U) is an
invariant open set in X. For any invariant open set U we say that a local
section f over U is invariant if σf = f . Let F be an R-sheaf of functions on X.
We denote by FX(R) the sheaf of its restrictions to X(R), see Definition C.1.6
and by FGX(R) its invariant subset. We apply this definition to OX , which is
an R-sheaf of functions on X, and obtain a sheaf

(OX)GX(R) :=
(
(OX)X(R)

)G
of real-valued functions on X(R). It takes some work to prove that these
functions are R-valued, since a priori they are C-valued - see below for the
proof.

Let us describe the local sections of this new sheaf. Let Ω ⊂ X(R) be an
open subset in the induced topology. We check first that any f ∈ (OX)GX(R)(Ω)
is R-valued. As f is invariant, for any x ∈ Ω we have that f(x) = (σf)(x) =
f(σ(x)) and since x is a point in X(R) we have that σ(x) = x so f(x) ∈ R.
By definition of (OX)X(R) there is an open neighbourhood U ⊂ X of x and an
element g ∈ OX(U) such that g|U∩Ω = f |U∩Ω. Replacing U by U ∩ σ(U) and
g by 1

2(g+ σg) we get an element g ∈ (OX(U))G such that g|U∩Ω = f |U∩Ω. In
other words, the local sections of (OX)GX(R) over an open set Ω in X(R) are as
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follows.

(OX)GX(R)(Ω) =
{
f : Ω→ R | ∀x ∈ Ω,

∃U open invariant neighbourhood of x in X and

∃g ∈ (OX(U))G | g|U∩Ω = f |U∩Ω
}
.

We invite the reader to compare the following theorem with Theorem 2.1.30.

Theorem 2.2.4. — Let F ⊂ An(C) be a complex affine algebraic set such
that I(F ) is generated by polynomials with real coefficients. In particular,
F (R) := F ∩ An(R) is a real algebraic affine set.

If F (R) is dense in F with respect to the Zariski topology then

OF (R) ' (OF )GF (R) .

Proof. — Let I ⊂ R[X1, . . . , Xn] be an ideal and let F = ZC(I) ⊂ An(C) be
the complex algebraic set whose ideal is I(F ) = IC and whose sheaf of regular
functions is OF . The set F (R) = F ∩ An(R) = ZR(I) ⊂ An(R) is then a
real algebraic set whose sheaf of regular functions will be denoted by OF (R).
By hypothesis F is stable under σA. By Proposition C.3.12 these sheaves are
isomorphic if and only if their stalks are isomorphic.

Let Ω ⊂ F (R) be a Zariski open subset in An(R) and let f be an element
of OF (R)(Ω). Passing to a smaller open set if necessary, we can assume that
on Ω f = p

q where p, q are polynomials with real coefficients and q does not
vanish at any point of Ω. There is then an open set U of F in An(C) on
which q does not vanish and hence f ∈ OF (R)(Ω) can be extended to a regular
function fC ∈ OF (U) such that σfC = fC. As F (R) is dense in F , the germ of
the extension fC of f is uniquely determined by the germ of f . It follows that
OF (R) ' (OF )GF (R).

Theorem 2.2.4 motivates our next definition.

Definition 2.2.5. — Let (X,σ) be an R-variety. We say that (X,σ) has
enough real points if and only if X(R) is Zariski-dense in X.

Exercise 2.2.6. — Let I ⊂ R[X1, . . . , Xn] be a radical ideal and let F =
ZC(I) ⊂ An(C) be the associated complex algebraic set as in Definition 1.2.12.
Let (F, σA|F ) be the associated affine R-variety.

1. Prove that the R-variety (F, σA|F ) has enough real points if and only if
I(Z(I)) ⊂ I in R[X1, . . . , Xn].

2. Prove that the R-variety (F, σA|F ) has enough real points if and only if
I is a real ideal, see Definition A.5.14.
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Exercise 2.2.7. — Prove that the R-variety (F = ZC(x2 +y2), σA|F )- which
has a non-empty real locus- does not have enough real points. (See Exam-
ple 2.1.1). Further prove that OF (R) 6= (OF )GF (R).

Theorem 2.2.9 below characterises those R-varieties that have enough real
points. In particular, any irreducible non singular R-variety with non-empty
real locus has enough real points.

Lemma 2.2.8. — Let (X,σ) be an algebraic R-variety, let a ∈ X(R) be a
real point and let ma be the maximal ideal of the local ring OX,a. We then have
that

dimCma/m
2
a = dimR((ma/m

2
a)G) .

Proof. — As a is real σ induces an anti-linear involution on OX,a and by
Lemma A.7.3 there is a basis of ma/m

2
a whose elements are all σ-invariant.

Theorem 2.2.9 (Density of the real locus in the complex variety)
1. The space An(R) is dense in An(C) for the Zariski topology.
2. Let V ⊂ An(C) be an irreducible affine algebraic set whose ideal I =
I(V ) is generated by polynomials with real coefficients. The real locus
V (R) = V ∩ An(R) is Zariski dense in V if and only if it contains at
least one non singular point of V .

3. Let (X,σ) be an algebraic R-variety. The real locus X(R) is Zariski
dense in every irreducible component Z of X containing a non singular
real point if and only if X(R) is not contained in the singular locus of
X. In other words, X(R)Zar ∩ Z = Z if and only if (RegZ) ∩ X(R) is
non empty.

Corollary 2.2.10. — Let (X,σ) be an algebraic R-variety. If the complex
variety X is irreducible and non singular and if X(R) 6= ∅ then (X,σ) has
enough real points, or in other words X(R)Zar = X.

The behaviour of the Euclidean topology is very different.

Proposition 2.2.11. — The real locus X(R) of an algebraic R-variety (X,σ)
is closed in X for the Euclidean topology.

Proof. — The real structure σ is continuous for the Euclidean topology and
the real locus X(R) = {x ∈ X | x = σ(x)} is therefore closed in X because
the Euclidean topology is Hausdorff.
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Proof of Theorem 2.2.9. — 1. We reuse the argument of Proposition 1.5.29.
Assume for the moment that we have proved that if a polynomial function
vanishes on all real affine points then it is identically zero- this will be proved
below by induction on the dimension. If Z(I) is a closed subset of An(C)
containing An(R) then for any f ∈ I the function f vanishes on every point
of An(R) and by assumption f is the zero polynomial. It follows that I = (0)
and Z(I) = An(C).

Let us now prove that for any n, any polynomial vanishing on all real affine
points is identically zero. For n = 1, the result is immediate. Suppose that
n > 1 and the induction hypothesis holds for n− 1. Let f ∈ C[X1, . . . , Xn] be
a polynomial function vanishing on Rn. We can write

f(X ′, Xn) = Xd
nfd(X ′) +Xd−1

n fd−1(X ′) + · · ·+ f0(X ′)

whereX ′ = (X1, . . . , Xn−1), d = deg f and ∀i = 0, . . . , d, fi ∈ C[X1, . . . , Xn−1].
For any X ′ ∈ Rn−1 the function Xn 7→ f(X ′, Xn) vanishes at every real

point so f(X ′, Xn) is the zero polynomial for any fixed X ′. It follows that
the polynomial functions fi vanish for every real X ′ ∈ Rn−1 and are therefore
identically zero by the induction hypothesis.

2. As V is irreducible in An(C), I = I(V ) is a prime ideal in C[X1, . . . , Xn]
and IR := I ∩R[X1, . . . , Xn] is a prime ideal in R[X1, . . . , Xn] (Lemma A.2.9).
We then have that V = ZC(IR) and V (R) = Z(IR). Set d = dimC V : by
the Nullstellensatz (Corollary A.5.13), we have that dim I = d (see Defini-
tion 1.5.9) and dim IR = d by Lemma 1.5.15. Note that a priori dimR V (R)
is not necessarily equal to d: see Example 1.5.20 or Example 2.2.15.

We now use the fact that there is a non singular point a = (a1, . . . , an) ∈
(Reg V ) ∩ An(R). By Remark 1.5.28, V is a differentiable submanifold of
dimension 2d 6 2n at a or in other words there is a Euclidean neighbourhood
W of a in Cn such that W ∩ V is a Euclidean neighbourhood of a in V of real
dimension 2d andW∩V (R) is a Euclidean neighbourhhood of a in V (R) of real
dimension d (take an open chart (W,ϕ) where W = σ(W ) and justify that ϕ
can be chosen G-equivariant using Lemma A.7.3 if necessary). The subvariety
V (R) is therefore a submanifold of real dimension d at a. The real algebraic
set V (R) then has Zariski dimension d by Proposition 1.5.29, or in other words
the dimension of the ideal I(V (R)) is equal to d. There is therefore a length d
chain of prime ideals in R[X1, . . . , Xn] containing I(V (R)). As I(V (R)) ⊃ IR
by definition if I(V (R)) were different from IR we would get a chain of length
d+ 1 of prime ideals containing IR, contradicting the fact that dim IR = d. It
follows that I(Z(IR)) = IR and hence V (R) = V by 2.2.6(1).
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3. We can assume that X is irreducible. By definition of a algebraic variety,
X can be covered by open affine subsets. By hypothesis we can therefore chose
an open affine subset U inX such that U∩X(R) is not contained in the singular
locus of X (and in particular, U is not empty and since X is irreducible, U is
Zariski-dense). Replacing U by U ∩σ(U) if necessary we can assume that U is
stable under σ. As U is affine (see Exercise 1.3.15.(4)) the R-variety (U, σ|U ) is
isomorphic to an affine R-variety (V, σA|V ) ⊂ (An(C), σA) by Theorem 2.1.30
so we now simply apply (2) to this affine R-variety. V ∩ An(R) is dense in
V ∩ An(C) = V and we note that U ∩ X(R) = ϕ−1(V ∩ An(R)) for any
R-isomorphism ϕ : U → V .

Example 2.2.12 (Reducible, singular, non empty and non dense)
We return to Example 1.5.20. Consider the reducible affine algebraic

R-variety
(V, σ) := (ZC(x2 + y2), σA|V )

whose real locus is the isolated point a = (0, 0). By definition we have that
OV,a =

(
C[x,y]

(x2+y2

)
(0,0)

whence dimOV,a = dimOGV,a = 1 et dimCmV,a/m
2
V,a =

dimR((mV,a/m
2
V,a)G) = 2, illustrating the fact that a is a real singular point of

the 1-dimensional complex variety. A contrario we have that dimOV (R),a =
dimRmV (R),a/m

2
V (R),a = 0 illustrating the fact that the real algebraic variety

{a} is a zero-dimensional non singular variety.

Example 2.2.13 (Irreducible, singular, dense). — We return to Exam-
ple 1.5.21. Consider the affine algebraic R-curve

(V, σ) := (ZC(y2 − x2(x− 2)), σA|V )

whose real locus is shown in Figure 2.3. The Zariski closure in A2(C) of the
"branch" (Reg V ) ∩ V (R) = V (R) ∩ {x > 1} is V .

Remark 2.2.14. — The point (0, 0) is not, however, contained in the Eu-
clidean closure of the branch V (R) ∩ {x > 1}.

Example 2.2.15 (Irreducible, singular, non empty and non dense)
This is an example of an irreducible singular algebraic set V whose real

locus is neither empty nor Zariski dense in V . Consider

P (x, y) = ((x+ i)2 + y2 − 1)((x− i)2 + y2 − 1) + x2 =
x4 + 2x2y2 + y4 − 4y2 + 4 + x2
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0 2

Figure 2.3. V (R) = {y2 − x2(x− 2) = 0} ⊂ A2(R).

which is a polynomial in R[x, y]. The set V := ZC(P ) ⊂ A2(C) is an irre-
ducible algebraic set and its real locus contains exactly two points. Indeed, let
P1(x, y) = P (x, y)−x2 and set V1 := Z(P1). If (x, y) is a real point of V1 then
y2 = 1−(x+ i)2 or y2 = 1−(x− i)2. As x and y are real, x must be identically
zero so y = ±

√
2 and V1(R) = {(0,

√
2), (0,−

√
2)}. We will now prove that

we also have that V (R) = {(0,
√

2), (0,−
√

2)}. Note that if P (x, y) = 0 for
some real x then this implies that P1(x, y) = x4 + 2x2y2 + y4 − 4y2 + 4 is a
negative or zero real number. Considering P1 as a degree 2 polynomial in the
variable Y = y2 with coefficients in R[x] we see that its discriminant is equal
to −4x2. If x is non zero then this discriminant is strictly negative so for real
x and y, P (x, y) = 0 if and only if P1(x, y) = 0. We leave it as an exercise for
the reader to show that P is irreducible, a long but unsurprising calculation.
(We constructed the polynomial P by starting from the polynomial P1 and
looking for a perturbation of P1 preserving the two real points in V1, whose
existence is guaranteed by Brusotti’s theorem 2.7.10.).

Exercise 2.2.16. — Construct a similar example from the example given in
Remark 1.2.31(2).

Theorem 2.2.17. — Let (X,σ) be a quasi-projective algebraic R-variety. If
the variety (X,σ) has enough real points, or in other words if X(R) is Zariski
dense in X, then the real locus equipped with the restriction of the structural
sheaf,

(
X(R), (OX)GX(R)

)
, is a real algebraic variety as in Definition 1.3.9.
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Proof. — This follows easily from Theorem 2.1.33 and the projective analogue
of Theorem 2.2.4.

Corollary 2.2.18. — Let (X,σ) be a quasi-projective algebraic R-variety.
If the complex variety X is irreducible and non singular and X(R) 6= ∅ then(
X(R), (OX)GX(R)

)
is a real algebraic variety.

Proof. — See Corollary 2.2.10.

The following proposition justifies the introduction of a third type of mor-
phism between R-varieties, somewhere between regular maps 2.1.25 and ratio-
nal maps 2.1.27.

Proposition 2.2.19. — Let (X,σ) and (Y, τ) be R-varieties with enough real
points and let

ψ : (X,σ) 99K (Y, τ)
be a rational map of R-varieties. If the domain of ψ contains the real locus
X(R), then ψ induces by restriction a regular map of real algebraic varieties(
X(R), (OX)GX(R)

)
→
(
Y (R), (OY )GY (R)

)
.

Proof. — See Exercise 2.2.26(2).

Definition 2.2.20. — Let (X,σ) and (Y, τ) be R-varieties.
A rational R-regular map or real morphism

ψ : (X,σ) 99K (Y, τ)

is a rational map of R-varieties such that X(R) ⊂ dom(ψ).

Remark 2.2.21. — A morphism of R-varieties is of course always a rational
R-regular map but the converse is false.

Proposition 2.2.22. — Let (X,σ) and (Y, τ) be quasi-projective R-varieties.
Suppose that these varieties have enough real points. The following then hold.

1. A rational R-regular map of R-varieties (X,σ) 99K (Y, τ) induces a reg-
ular map of real algebraic varieties(

X(R), (OX)GX(R)

)
→
(
Y (R), (OY )GY (R)

)
.

2. Conversely, any regular map of real algebraic varieties(
X(R), (OX)GX(R)

)
→
(
Y (R), (OY )GY (R)

)
is the restriction of an R-regular rational map ψ : (X,σ) 99K (Y, τ).
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3. Any rational map of R-varieties (X,σ) 99K (Y, τ) induces a rational map
of real algebraic varieties(

X(R), (OX)GX(R)

)
99K

(
Y (R), (OY )GY (R)

)
.

4. Conversely, any rational map(
X(R), (OX)GX(R)

)
99K

(
Y (R), (OY )GY (R)

)
is the restriction of a rational map (X,σ) 99K (Y, τ).

Proof. — Left for the reader as an exercise.

Remark 2.2.23. — We insist on (2) in the above proposition: the complex
extension of a real regular map is not generally regular. The map (x, y) 7→

1
x2+y2+1 from A2(R) to A1(R) is a regular map of real algebraic varieties but
does not extend to a morphism of R-varieties.

Remark 2.2.24. — The "isomorphisms" corresponding to R-regular rational
maps are the R-biregular birational maps. Note that it is important the map
be both birational and R-biregular: blowing up a real point (or in other words,
contracting a (−1)-real curve) on an R-surface (see Definition 4.1.26 for more
details) is an R-regular birational map but it is not R-biregular.

Definition 2.2.25. — Let (X,σ) and (Y, τ) be R-varieties.
A R-biregular birational map or real isomorphism

ψ : (X,σ) 99K (Y, τ)

is a birational map of R-varieties inducing a biregular map of real algebraic
varieties (

X(R), (OX)GX(R)

) '−→ (
Y (R), (OY )GY (R)

)
.

Exercise 2.2.26 (Use Exercises 1.2.56 and 1.3.25)
Let F1 ⊂ An(C) and F2 ⊂ Am(C) be affine algebraic sets stable under σA

so that (F1, σA|F1) and (F2, σA|F2) are affine R-varieties and let ϕ : F1 99K F2
be a rational map of complex varieties.

1. Prove that ϕ is a morphism of R-varieties if and only if there are
polynomial functions f1, . . . , fm ∈ R[x1, . . . , xn] such that for any point
(x1, . . . , xn) ∈ F1,

ϕ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

In this case, F1 ⊂ dom(ϕ) and ϕ : F1 → F2 is a morphism of complex
varieties.
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2. Prove that ϕ is an R-regular birational map if and only if there
are polynomial functions g1, . . . , gm ∈ R[x1, . . . , xn] and h1, . . . , hm ∈
R[x1, . . . , xn] such that for every point (x1, . . . , xn) ∈ F1(R), h1(x1, . . . , xn) 6=
0, . . . , hm(x1, . . . , xn) 6= 0 and

ϕ(x1, . . . , xn) =
(
g1(x1, . . . , xn)
h1(x1, . . . , xn) , . . . ,

gm(x1, . . . , xn)
hm(x1, . . . , xn)

)
.

In this case F1(R) ⊂ dom(ϕ) and if F1 and F2 have enough real points
then ϕ|F1(R) : F1(R)→ F2(R) is a regular map of real algebraic varieties
with the induced structure.

Non singular R-varieties. — A non singular complex variety of complex
dimension n is naturally a real differential manifold of dimension 2n with the
Euclidean topology. For example, for any non singular projective algebraic
variety X ⊂ PN (C) we have that X inherits a differential submanifold struc-
ture from PN (C). If X is stable under σP and X(R) 6= ∅ then X(R) is a real
algebraic variety by Corollary 2.2.18. The variety X(R) inherits a Euclidean
topology from PN (R) (the same as in Definition 1.4.1) and can be thought of
as a differential submanifold of PN (R).

Proposition 2.2.27. — Let (X,σ) be an R-variety. If the complex variety X
is non singular and has complex dimension n then the set X with its Euclidean
topology is a differential manifold of real dimension 2n. If moreover X(R) 6= ∅
then the set X(R) with its euclidean topology is a differentiable manifold of real
dimension n.

We invite the reader to compare this result with Remark 1.5.28. We recall
that under the hypotheses of the above proposition, X(R) is Euclidean closed
but Zariski dense in X. See Corollary 2.2.10 and Proposition 2.2.11 for more
details.

Proof. — As we have seen above, as OX is an R-sheaf, the morphism

OX(U) −→ OX(σ(U))
f 7−→ σf

is a ring isomorphism for any open set U inX. As the varietyX is non singular
and of dimension n we can find a local system of parameters {ϕx}x∈X - see
Definition 1.5.47. Exercise 1.5.48 tells us that in terms of local coordinates we
get a set of systems (Ux, ϕx) where ϕx : Ux → Cn is analytic and on refining
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this open cover using Euclidean open sets we can assume that ∀x ∈ X,Uσ(x) =
σ(Ux) and

(2.1) ∀x ∈ X, σ(ϕx) = ϕσ(x) .

where σ(ϕx) = σA ◦ ϕx ◦ σ.
It follows that if (z1, . . . , zn)x is a system of local coordinates satisfying

(2.1), then the system (<(z1),=(z1), . . . ,<(zn),=(zn))x is a system of real
local coordinates for the manifold structure, equivalent to the complex local
system of coordinates (z1, z1, . . . , zn, zn).

The real structure σ then transforms (z1, z1, . . . , zn, zn)x into

(z1, z1, . . . , zn, zn)σ(x) .

In particular, if x ∈ X(R) is a non singular point of X then by (2.1),
σ(ϕx) = ϕσ(x) = ϕx from which it follows that σA ◦ ϕx = ϕx ◦ σ and if
y ∈ Ux ∩ X(R) then ϕx(y) = ϕx(y). The local coordinates of a real point
are therefore real and the restriction of ϕx to X(R) induces a system of real
smooth (and in fact analytic) local coordinates (<(z1), . . . ,<(zn)) on X(R) in
a neighbourhood of x.

Alternatively, we can bypass the first part of this argument by using
Lemma 2.2.8. Let x be a real point of X: there is then a system of local
parameters which is invariant under σ. By Exercise 1.5.48 we can derive from
this an invariant system of local coordinates.

The underlying 2n-dimensional manifold structure on the non singular com-
plex variety X is not only orientable (since a holomorphic change of coordi-
nate map has a positive determinant), but also oriented. Any isomorphism
R2n ' Cn yields an orientation on R2n by pull back and the complex structure
on X yields such an isomorphism. (See Exercise B.5.11 for more details).

Proposition 2.2.28. — Let (X,σ) be a non-singular R-variety. The real
structure σ is a diffeomorphism of the 2n-dimensional oriented manifold X

which preserves the orientation if n is even and reverses it otherwise.

Proof. — This follows immediately from the previous proof. The map σ takes
(z1, z1, . . . , zn, zn)x to (z1, z1, . . . , zn, zn)σ(x), so the determinant of its differ-
ential is (−1)n.

Compatible atlas. —

Exercise 2.2.29. — IfX is a non singular complex analytic variety of dimen-
sion n we can reframe the definition of the conjugate variety using a maximal
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atlas (Ui, ϕi)i determining the complex structure on X: the complex structure
of the conjugate variety (X,OX) is given by the atlas (Ui, σAn ◦ ϕi)i.

Definition 2.2.30. — A compatible atlas on a smooth analytic R-variety
(X,σ) of dimension n is an atlas A = {(Ui, ϕi : Ui → Cn)}i on the complex
analytic variety X satisfying the following conditions. (Recall that σϕi =
σA ◦ ϕi ◦ σ.)

1. The atlas is globally stable for the real structure, or in other words

(Ui, ϕi) ∈ A =⇒ (σ(Ui), σϕi) ∈ A ;

2. If Ui ∩X(R) 6= ∅ then Ui = σ(Ui) and σϕi = ϕi ;
3. If Ui ∩X(R) = ∅ then Ui ∩ σ(Ui) = ∅.

Exercise 2.2.31. — Give a compatible atlas for (P1(C), σP).

Proposition 2.2.32. — Every smooth analytic R-variety has a compatible
atlas.

Proof. — This follows from the existence of local systems of parameters sat-
isfying (2.1).

2.3. Complexification of a real variety

We have seen that the real locus of an R-variety is a real algebraic variety
whenever it is Zariski dense. In this section we will study the converse: given
a real algebraic variety V , is there an R-variety whose real locus is isomorphic
to V ?

Let K be a field and let L ⊃ K be an extension of K. The set An(K) is
then a subspace of An(L) and Pn(K) is a subset of Pn(L).

Definition 2.3.1 (Revisions of Definition 1.2.12)
Let F ⊂ An(K) be an algebraic set over K of ideal I = I(F ) ⊂

K[X1, . . . Xn]. We define the algebraic set FL over L to be the set ZL(I)
of zeros of I in An(L) :

FL := ZL(I) ⊂ An(L) .

Similarly, if F ⊂ Pn(K) is a projective algebraic set of homogeneous ideal
I = I(F ) ⊂ K[X0, . . . Xn] then we define an algebraic set

FL := ZL(I) ⊂ Pn(L) .
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More generally, if U = F \F ′ ⊂ An(K) is a quasi-affine set and I = I(F ) ⊂
K[X1, . . . , Xn] and I ′ = I(F ′) ⊂ K[X1, . . . , Xn] are the associated ideals then
we can define a quasi-affine set

UL := FL \ F ′L = ZL(I) \ ZL(I ′) ⊂ An(L) .

And finally if U = F \ F ′ ⊂ Pn(K) is a quasi-projective algebraic set and
I = I(F ) ⊂ K[X0, . . . , Xn] and I ′ = I(F ′) ⊂ K[X0, . . . , Xn] are the associated
homogeneous ideals then we define a set

UL := FL \ F ′L = ZL(I) \ ZL(I ′) ⊂ Pn(L) .

Any real algebraic set (which here will be assumed affine to simplify the
notation) F ⊂ Rn with vanishing ideal I := I(F ) ⊂ R[X1, . . . , Xn] is therefore
naturally associated to a complexification FC := ZC(I(F )) = ZC(I) ⊂ Cn
which is just the set of complex common zeros of the real polynomials vanishing
on F . Note that the ideal I is made up of polynomials with real coefficients
whereas FC ⊂ Cn is a set of complex points. As FC is defined by polynomials
with real coefficients, σA(FC) ⊂ FC and the restriction σ of the standard real
structure σA : (x1, . . . , xn) 7→ (x1, . . . , xn) to FC is a real structure with which
(FC, σ) is an R-variety. Our initial real algebraic variety can be recovered as
the set of fixed points of F = (FC)σ.

The above construction depends heavily on the equations defining F . The
following definition enables us to consider abstract complexifications, by which
we mean complexifications which are independent of a particular embedding
into affine or projective space, or alternatively independant of a choice of
equations.

Definition 2.3.2. — Let (V,OV ) be a real algebraic variety. A pair
((X,σ), j) is a complexification of V if (X,σ) is an R-variety with enough real
points and j : V → X is an injective map inducing an isomorphism of real
algebraic varieties

(V,OV ) '−→ (X(R), (OX)GX(R)) .

A complexification ((X,σ), j) of a real algebraic variety V is quasi-projective
(resp. non singular) if X is a quasi-projective (resp. non singular) complex
variety.

Let ((X,σ), j) be a complexification of a real algebraic variety V and let
ψ : (X,σ) 99K (Y, τ) be an R-biregular birational map. It is easy to check that
((Y, τ), ψ ◦ j) is then a complexification of V . Indeed, since X(R) is dense in
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X and ψ is birational the set Y (R) = ψ(X(R)) is dense in Y . The following
proposition establishes the converse.

Proposition 2.3.3. — Let V be a real algebraic variety and let ((X,σ), j) be
a complexification of V . Then for any complexification ((X ′, σ′), j′) of V , there
is a unique R-biregular birational map ψ : (X,σ) 99K (X ′, σ′), X(R) ⊂ dom(ψ)
such that the following diagram commutes.

X
ψ // X ′

V

j

OO

j′

88

Proof. — We start by proving the proposition in the case where V , X and
X ′ are affine. The uniqueness of the map for affine varieties will then enable
us to glue complexifications and R-biregular birational maps on open affine
subsets of V to prove the general result. By hypothesis the morphism h =
j′ ◦ j−1 : X(R) → X ′(R) is an isomorphism of real algebraic varieties. By
the solution to Exercise 1.2.56(2), there is a morphism defined on an open
neighbourhood of X(R) in X extending j′ ◦ j−1. As X(R) is dense in X, the
rational map ψ : (X,σ) 99K (X ′, σ′) induced by this extension is an R-biregular
birational map uniquely determined by j′ ◦ j−1.

Proposition 2.3.4. — Any real affine algebraic set has an affine complexi-
fication. Any real projective algebraic set has a projective complexification.

Proof. — Let X ⊂ An(R) be a real affine algebraic set and let I = I(X) ⊂
R[X1, . . . , Xn] be its ideal. The set X is then the set of real zeros of Z(I) ⊂
An(R) and the Zariski closure, XC of X in An(C) is the set of complex zeros
ZC(I) ⊂ An(C) by Remark 1.2.13. By construction the R-variety (XC, σA|XC)
has enough real points; denoting by j : X ↪→ XC the inclusion map, the pair
((XC, σA|XC), j) is then an affine complexification of X. Similarly, if X ⊂
Pn(R) is a real projective algebraic set and I = I(X) ⊂ R[X0, . . . , Xn] is its
homogeneous ideal then we take ZC(I) ⊂ Pn(C), the set of complex zeros of
I.

Remark 2.3.5. — We have seen that any real projective variety is also affine,
and therefore has an affine complexification.

A complex projective algebraic variety is not generally affine, so a projective
R-variety is not typically affine, and neither is a projective complexification.
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Certain real algebraic varieties also have projective complexifications, and
these will be studied in Theorem 2.3.7 below.

Remark 2.3.6. — Let X be a quasi-projective real algebraic variety with
X = V \W ⊂ Pn(R). Let IV ⊂ R[X0, . . . , Xn] be the homogeneous ideal of
V and let IW ⊂ R[X0, . . . , Xn] be the homogeneous ideal of W . The set VC =
ZC(IV ) is a projective complexification of V by the above and WC = ZC(IW )
is a projective complexification of W . The variety XC = VC \WC is therefore
a quasi-projective complexification of X.

We recall Definition 1.4.11 which states that a real algebraic variety is com-
plete if and only if it is compact for the Euclidean topology.

Theorem 2.3.7. — Any non singular complete real affine algebraic variety
has a non singular projective complexification.

Before proving this theorem we state some very useful lemmas concerning
birational morphisms of R-varieties. Let (X,σ) be an R-variety and let x ∈
X(R) be a real point. We denote by Cx the connected component of X(R)
containing x. Throughout this section, connected means connected in the
Euclidean topology.

Lemma 2.3.8. — Let (X,σ) be an R-variety and let x ∈ X(R) ∩ RegX be
a regular real point. The Euclidean connected component Cx ⊂ X(R) is not
then contained in any strict Zariski closed subset of X.

Proof. — By Proposition 1.5.29, x has a connected Euclidean open neighbour-
hood U ⊂ X(R) homeomorphic to a non empty subset of Rn where n is the
Zariski dimension of X at x. As U ⊂ Cx and any strict Zariski closed subset
of X is of strictly positive codimension the result follows.

Lemma 2.3.9. — Let ϕ : (Y, τ) → (X,σ) be a birational morphism of R-
varieties and let Z ⊂ Y be the smallest Zariski closed subset such that ϕ|Y \Z
is an isomorphism onto its image. Consider a point y ∈ Y (R) ∩ Reg Y : the
connected Euclidean component Cϕ(y) is not then contained in ϕ(Z).

Proof. — As codimZ > 0, Cy ∩ (Y \ Z) 6= ∅ by Lemma 2.3.8. It follows
that ϕ(Cy) ∩ (X \ ϕ(Z)) 6= ∅ and as the image of a connected subset under a
continous map is still connected, ϕ(Cy) ⊂ Cϕ(y) and hence Cϕ(y)∩(X\ϕ(Z)) 6=
∅.
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Proposition 2.3.10. — Let (X,σ) be an R-variety and let ϕ : (Y, τ) →
(X,σ) be a resolution of singularities of X. Suppose that the connected com-
ponent of a real singular point x ∈ X(R) is contained in the singular locus
Cx ⊂ SingX. We then have that ϕ−1(x) ∩ Y (R) = ∅.

Proof. — By Theorem 1.5.51, SingX is a strict Zariski closed subset of X.
The result then follows from Lemma 2.3.9 applied to Z = π−1(SingX) using
Definition 1.5.53.

Proof of Theorem 2.3.7. — Let V be a non singular real affine algebraic va-
riety which is compact for the Euclidean topology. By Proposition 2.3.4, V
has an affine complexification ((X,σ), j). By Theorem 2.2.9, X(R) ' V does
not meet SingX. We consider a projective completion (X ′, σ′) of (X,σ): in
particular, X is a subvariety of X ′ and σ = σ′|X . By Hironaka’s resolution
of singularities 1.5.54 there is a non singular projective R-variety (Y, τ) and
a birational morphism π : (Y, τ) → (X ′, σ′) of R-varieties which is an isomor-
phism on π−1(RegX ′) → RegX ′. As X(R) ⊂ RegX, the restriction of the
composition (Y, τ)→ (X,σ) to X(R) is an isomorphism.

As V is compact, X(R) is also compact, so it is closed in X ′(R) for the
Euclidean topology. It follows that for every x ∈ X ′(R) \ X(R) there is an
inclusion Cx ⊂ X ′(R) \X(R) and Proposition 2.3.10 tells us that π−1(X ′(R) \
X(R)) ∩ Y (R) = ∅. We can therefore conclude that ((Y, τ), (π|Y (R))−1 ◦ j) is
a non singular projective complexification of V .

Remark 2.3.11. — In the above proof, X ′(R) \ X(R) may be non empty.
In example 2.6.38, examined in detail below, we consider the set

W := Z(16(x2
1 + x2

2)− (x2
1 + x2

2 + x2
3 + 3)2) ⊂ A3(R) .

and the projective complexification given by

ŴC := Z
(
16(x2

1 + x2
2)− (x2

1 + x2
2 + x2

3 + 3x2
0)2
)
⊂ P3(C) .

The R-variety (ŴC, σP|ŴC
) contains real points that do not belong to the

torus of revolution WC(R) = W . Indeed, if x2
1 + x2

2 6 16 then the point(
0 : x1 : x2 :

√
4
√

(x2
1 + x2

2)− (x2
1 + x2

2)
)

belongs to ŴC(R) \WC(R). The R-

morphism ψ : P1(C)× P1(C)→ ŴC is a resolution of singularities of ŴC.

We use the above results to prove Theorem 1.5.55 for R-varieties.
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Theorem 2.3.12. — Let ϕ : (Y, τ) → (X,σ) be a birational morphism of
non singular R-varieties. If the real loci X(R) et Y (R) are compact for the
Euclidean topology then they have the same number of connected components.

#π0(Y (R)) = #π0(X(R)) .

Proof. — Let Z ⊂ Y be the smallest Zariski closed subset such that ϕ|Y \Z is
an isomorphism onto its image. The map ϕ is continuous for the Euclidean
topology so #π0(Y (R)) > #π0(X(R)). To prove the opposite inequality, as-
sume there are two distinct connected components Y1 and Y2 in Y (R) such
that ϕ(Y1) ∩ ϕ(Y2) is non empty. Let U be an open Euclidean neighbour-
hood of x ∈ ϕ(Y1) ∩ ϕ(Y2) in X(R). We then have that U ∩ ϕ(Y1) 6= ∅ and
U ∩ϕ(Y2) 6= ∅. Indeed for i = 1, 2, ϕ−1(U)∩ Yi is a non empty open space in
Y (R) and as Y is non singular ϕ−1(U)∩ Yi \Z is non empty by Lemma 2.3.8.
As X is non singular we can assume that U is homeomorphic to a non empty
open set in Rn, where n is the dimension of X, which by the above is cut into
two disjoint parts by the algebraic subset ϕ(Z). The codimension of ϕ(Z) is
at least two because ϕ is a birational morphism (see [Sha94, II.4.4, Theorem
2] for example) which contradicts the fact that ϕ(Z) disconnects the open set
U . This yields a contradiction.

The behaviour of an R-variety away from its real points is often irrelevant
for the study of the real locus X(R)- but not always. We saw in Remark 2.3.11
an example where we needed to consider the non real points of the complex
variety.

Definition 2.3.13. — A quasi-algebraic affine or projective set U over K is
said to be geometrically irreducible if the set UK (see Definition 2.3.1) defined
over the algebraic closure K of K is irreducible.

A quasi-projective algebraic set V over K, is said to be geometrically irre-
ducible if the image U of V under embedding into a projective space over K
is geometrically irreducible. Under these circumstances the image under any
projective embedding of V is geometrically irreducible by Exercise 2.3.14.

An R-variety (X,σ) is said to be irreducible if and only if X is irreducible
as a complex variety.

Exercise 2.3.14. — Check that if ϕ : V → PN (K) and ϕ′ : V → PN ′(K)
are two projective embeddings of V then ϕ(V )K is irreducible if and only if
ϕ′(V )K is irreducible.

Proposition 2.3.15. — Let K be a field.
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1. An algebraic set over K which is geometrically irreducible is irreducible.
2. An algebraic variety over K which is geometrically irreducible is irre-

ducible.
3. A real algebraic variety V is geometrically irreducible if and only if it has

an irreducible complexification.
4. Let (X,σ) be a quasi-projective algebraic R-variety with enough real

points. We then have that (X,σ) is irreducible if and only if the real
algebraic variety

(
X(R), (OX)GX(R)

)
is geometrically irreducible.

Proof. — Left as an exercise for the reader.

Remark 2.3.16. — Recall that by Corollary 2.2.10 the real locus of a non
singular irreducible algebraic R-variety is Zariski dense whenever it is non
empty.

Exercise 2.3.17 (Review of Example 2.1.1). — 1. The real alge-
braic set F := Z(x2 + y2) ⊂ A2(R) is geometrically irreducible.

2. On the other hand, the R-variety (V, σ), where V := ZC(x2+y2) ⊂ A2(C)
and σ = σA|V , is not irreducible.

3. This appears to contradict the fact that V σ = F - what is happening?

Rational varieties. —

Definition 2.3.18 (Rational R-varieties). — 1. An R-variety (X,σ)
of dimension n is rational (or R-rational) if it is birationally equivalent
to the R-variety (Pn(C), σP), or in other words if there is a birational
map of R-varieties (X,σ) 99K (Pn(C), σP).

2. An R-variety (X,σ) of dimension n is geometrically rational (or C-
rational) if and only if the complex variety X is rational, or in other
words if there is a birational map of complex varieties X 99K Pn(C).

Remark 2.3.19. — We invite the reader to compare this definition with
Definition 1.3.37 in the first chapter. Note that "geometric" irreducibility and
rationality behave differently: a geometrically irreducible variety is irreducible,
whereas a rational variety is geometrically rational.

Proposition 2.3.20. — Any R-rational R-variety is C-rational

Remark 2.3.21. — The converse of the above proposition is false, an ex-
ample being given by P1(C) with its anti-holomorphic involution z 7→ −1

z̄ .
See Remark 2.1.41 for more details. Chapter 4 contains many 2-dimensional
examples.
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Proposition 2.3.22. — Let (X,σ) be a quasi-projective non singular R-
variety. If (X,σ) is R-rational and has non zero dimension then X(R) is
connected and non empty.

Proof. — This follows from Theorem 2.3.12 since Pn(R) is connected and non
empty for all n > 0.

2.4. R-varieties, real algebraic varieties and schemes over R- a com-
parison

This section reviews the various types of R-varieties met so far and the
logical relationships between them. We have identified two different types of
real variety: real algebraic varieties and R-varieties. In total, there are five
different incarnations of real algebraic varieties:

1. The real locus of a set of real equations.
2a. A complex variety defined by equations with real coefficients.
2b. A complex variety with an anti-regular involution.

These last two cases of special complex varieties are equivalent if we
make the extra assumption that the variety is quasi-projective.

3a. A scheme defined over R.
3b. A scheme defined over C with a real structure.

Once again, these last two cases are equivalent if we make the assump-
tion that the scheme is quasi-projectif.

At the end of the day, the last four definitions are all equivalent for quasi-
projective varieties and only the first is different. A variety of type(1) can be
thought of as the germ of a variety of type (2a) in a neighourhood of the real
locus.

Moreover, any such variety has two topologies and two associated structures

– Zariski topology and algebraic variety structure.
– Euclidean topology and analytic variety structure.

There is a dictionary translating algebraic structures into underlying
analytic structures. For example, the (anti)-regular maps become (anti)-
holomorphic. This "translation" is not however an equivalence unless the
variety is projective. See Appendix D.5 for more details.

Let us examine these structures in more detail.
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1. (Section 1.3) A real algebraic variety (resp. complex algebraic vari-
ety) is a topological space X with a subsheaf OX of the sheaf of func-
tions with a finite covering of affine open sets U , by which we mean
that (U,OX |U ) is isomorphic to the zero set Z(I) ⊂ An(R) of an ideal
I ⊂ R[X1, . . . , Xn] with the sheaf of functions which are locally rational
fractions without real poles (resp. the set of zeros Z(I) ⊂ An(C) of an
ideal I ⊂ C[X1, . . . , Xn] with the sheaf of functions which are locally
rational functions without poles). Varieties X and Y are isomorphic if
and only if there exists a biregular map X → Y .

2. (Section 2.1) An R-variety (X,σ) is a complex variety X with an anti-
regular involution (or in other words a real structure) σ. The R-varieties
(X,σ) and (Y, τ) are isomorphic if there is a biregular isomorphism of
complex varieties that commutes with the real structure. The varieties
(X,σ) and (Y, τ) are birationally R-biregularly isomorphic if there is a
birational map ϕ : X 99K Y commuting with real structure such that
X(R) ⊂ dom(ϕ) and Y (R) ⊂ dom(ϕ−1). (Section 2.3) A complexification
of a real algebraic variety V is an R-variety (X,σ) with enough real points
whose real locus X(R) is isomorphic to V as a real algebraic variety.
(a) (Section 2.1) Any quasi-projective R-variety can be realised as a

variety defined by real coefficients (as can its principal sheaves, see
Section 2.5).

(b) (Section 2.2) A quasi-projective R-variety with enough real points
induces by restriction a real algebraic variety structure on its real
locus. A morphism of quasi-projective R-varieties with enough real
points induces a regular map of real algebraic varieties.

(c) (Section 2.3) Conversely, any quasi-projective real algebraic vari-
ety has a complexification which is an R-variety with enough real
points. Any morphism of quasi-projective real algebraic varieties
can be extended to a rational R-regular map of R-varieties.

(d) (Section 2.3) Two R-varieties which are complexifications of iso-
morphic real algebraic varieties are birationally R-isomorphic but
not generally isomorphic.

3. This paragraph requires some knowledge of schemes- see [Duc14] or
[Liu02] for more details. See also [Ben16b, §3.1] for a more specific
discussion of realisations of schemes over R. We leave it is an exercise
for the reader to check the claims made below.

A scheme over a field K (or a K-schema) is a scheme X with a scheme
morphism (called the structural map) X → SpecK. Throughout this
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paragraph, we assumeX is of finite type overK (or in other words thatX
is covered by a finite number of spectra of finitely generated K-algebras).
Two R-schemesX and Y are birationally R-biregularly isomorphic if there
is a birational map ϕ : X 99K Y of R-schemes such that ϕ is regular
at every R-rational point of X and ϕ−1 is regular at every R-rational
point of Y . Let X be a scheme over C equipped with an involution σ

lifting complex conjugation σ∗A = Spec(z 7→ z̄) : SpecC → SpecC: we
call such an involution a real structure on X. If X is quasi-projective
then by [BS64, Proposition 2.6] there is a scheme Z = X/〈σ〉 over R
and an isomorphism of C-schemes ϕ : X → Z ×SpecR SpecC such that
σ = ϕ−1 ◦ (id×σ∗A) ◦ϕ. Moreover, the pair (Z,ϕ) is uniquely determined
by the pair (X,σ) up to R-isomorphism. For example if X = SpecA is
affine then Z = SpecAσ.

Implicitly, most types of algebraic varieties used in this book are dif-
ferent manifestations of R-schemes of finite type.
(a) The set X(R) of R-rational points of a scheme X over R with

the restriction of the structural sheaf is a real algebraic variety.
A morphism of R-schemes induces a morphism of real algebraic
varieties.

(b) Conversely, any quasi-projective real algebraic variety can be ob-
tained as the set of R-rational points of a scheme X over R. Any
morphism of quasi-projective real algebraic varieties can be ex-
tended to an R-regular map of schemes over R.

(c) Any two schemes over R whose real loci are isomorphic as real
algebraic varieties are birationally R-biregularly isomorphic.

(d) Let Z be a scheme of finite type over R. We can associate to it
the following R-variety: X is the topological space of C-rational
points of the C-scheme Z ×SpecR SpecC, The pair (X,σ) is the
R-variety obtained on equipping X with the real structure σ :=
id×Spec(z 7→ z̄). We denote by X(R) the set of closed points
fixed by σ. If Z(R) is the set of R-rational points of the R-scheme
Z then X(R) = Z(R). A morphism of schemes over R induces a
morphism of R-varieties.

(e) Conversely, if (X,σ) is an R-variety then there is a C-scheme Z
such that Z(C) = X, [Har77, II.2.6] and there is an involutive
morphism σZ : Z → Z lifting σ∗A : SpecC → SpecC such that
σZ |Z(C) = σ. As we have seen above, if X is quasi-projective then
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(Z, σZ) corresponds to an R-scheme. A morphism of R-varieties
induces a morphism of schemes over R.

Real forms of a C-scheme. — By the above, Definition 2.1.13 can be
reformulated scheme theoretically as follows.

Definition 2.4.1. — A real form of a scheme X over C is a scheme X0 over
R whose complexification X0 ×SpecR SpecC is isomorphic to X.

Notations X, X(R), X(C), XC, XR. — We now briefly discuss the various
notations the reader may meet in the litterature.

As in scheme theory, where by abuse of notation the structural morphism
Z → SpecR is often omitted, the abbreviation X for the R-variety (X,σ) is
often used. Consequently, the notation XC for the variety X is often used
to emphasise the fact that we are concentrating on the complex variety and
"forgetting" σ. Some authors, particularly of the Russian school, use the no-
tation XC or CX for the complex locus and XR or RX for the real locus of
R-varieties.

Remark 2.4.2. — In case that wasn’t confusing enough, there is another
object called XR in the litterature, constructed using extension of scalars. In
the embedded case, it simply means separating the real and imaginary parts
of the equations of a complex variety. From the scheme point of view this
corresponds to taking the scheme morphism SpecC → SpecR associated to
the inclusion R ↪→ C and compose maps X → SpecC→ SpecR to see that a
scheme over C is necessarily a scheme over R. For example, if X ⊂ An(C) is
defined by r equations {

Pi(z1, . . . , zn) = 0
}
i=1,...,r

then XR ⊂ A2n(R) is defined by the 2r equations{
<(Pi(x1 + iy1, . . . , xn + iyn) = 0),

=(Pi(x1 + iy1, . . . , xn + iyn) = 0
}
i=1,...,r .

Let X be an algebraic variety defined over C which for simplicity we will
assume to be non singular. Consider the product variety Z := X × X with
the anti-regular involution σZ : (x, y) 7→ (y, x). The set of real points of the
R-variety (Z, σZ) is then a real algebraic variety as in Definition 1.3.9, homeo-
morphic in the Euclidean topology to the topological manifold underlying the
complex variety X. Some authors use XR = Z(R) to denote this underlying
real algebraic variety.
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2.5. Coherent sheaves and algebraic bundles

We will now generalise the above constructions to certain sheaves and vector
bundles needed in the development of the theory.

Coherent R-sheaves. — Let (X,σ) be an R-variety, let L be a quasi-
coherent sheaf of OX -modules (see Theorem C.7.3) and let U be an open
affine set in X. The space of sections M := L(σ(U)) is then an OX(σ(U))-
module. We define an OX(U)-module σM by equipping the group M with
the following OX(U)-twisted action.

(2.2) (f,m) 7→ σf ·m

where
(f,m) 7→ f ·m

denotes the OX(σ(U))-action on M .

Definition 2.5.1. — Let (X,σ) be an R-variety and let L be a quasi-
coherent sheaf of OX -modules. The conjugate sheaf σL is the sheaf of OX -
modules defined over U by declaring σL(U) to be the twisted OX(U)-module
σM . We say that L is an R-sheaf if and only if L = σL. This is required to
be an equality, not simply an isomorphism.

Remark 2.5.2. — These definitions generalise 2.2.1. Indeed, for any open
set U in X, there is an equality of OX(U)-modules σL(U) = L(σ(U)) provided
the right hand side is equipped with the twisted action (2.2). In particular,
if L is a sheaf of Cn-valued functions then σL(U) = {σf | f ∈ L(σ(U))}.
Moreover, L is an R-sheaf if and only if σL(U) = L(U) for any open set U in
X.

Our definition of an R−sheaf is motivated by the following result which
explicits the relationship between R-sheaves on an R-variety (X,σ) and sheaves
of invariant functions. A priori an R-sheaf is only a sheaf which is globally
fixed by σ.

Lemma 2.5.3. — Let (X,σ) be a quasi-projective R-variety and let L be a
quasi-coherent sheaf of OX-modules. If L is an R-sheaf then there is a quasi-
coherent sheaf of OX-modules L0 such that for any open affine subset U ⊂ X,

L(U ∩ σ(U)) ' L0(U ∩ σ(U))⊗R C

and ∀f ∈ L0(U ∩ σ(U)), σf = f . When this is the case we will say that f has
real coefficients.
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Proof. — Recall that by definition σ is a homeomorphism for the Zariski topol-
ogy on X and in particular if U is a Zariski open set in X then the intersection
U ∩ σ(U) is also Zariski open. Moreover, by Exercise 1.3.15.(4), the open set
U ∩ σ(U) is affine. It will therefore be enough to prove the result for an affine
R-variety so by Theorem 2.1.33 we may assume we are in the case where
X ⊂ An(C) and I(X) ⊂ R[X1, . . . , Xn]. Under these hypotheses we have that
σ = σA|X and

OX(X) = A(X) = (R[X1, . . . , Xn]/I(X))⊗R C .

Let M be the A(X)-module of global sections of the OX -module L(X). By
hypothesis, σ induces a Galois action on M for which, on equipping the sub-
group of fixed pointsMG with its natural A(X(R))-module structure, we have
that

M = MG ⊗A(X(R)) (A(X(R))⊗R C) .

We then simply define L0 to be the sheaf associated to the A(X(R))-module
MG. See Definition C.7.2 for more details,

We will make intensive use of coherent R-sheaves, particularly invertible
sheaves, see Definition C.5.8. These are in bijective correspondence with line
bundles, see Corollary 2.5.13.

Let (X,OX) be an affine real or complex algebraic variety and let F be a
quasi-coherent sheaf. The set of global sections Γ(X,F) is then a Γ(X,OX)-
module. If F is locally free then this module is projective, by which we mean
that it is a direct summand of a free Γ(X,OX)-module, see Definition A.4.6.

The next lemma requires us to generalise Definition C.7.2. Let M be a
Γ(X,OX)-module and let OX ⊗Γ(X,OX) M be the sheaf of OX -modules as-
sociated to the presheaf U 7→ OX(U) ⊗Γ(X,OX) M . If (X,OX) is a complex
variety then OX(U) = Γ(X,OX)f for any principal open set U = D(f) and
OX ⊗Γ(X,OX) M can be identified with the sheaf M̃ of Definition C.7.2. In
particular,

(
OX ⊗Γ(X,OX) M

)
(U) = M̃(U) = Mf for any principal open set

U = D(f). If (X,OX) is a real variety then for any open set U in X, OX(U)
can be identified with the inductive limit lim−→D(f)⊃U Γ(X,OX)f of the localisa-
tions Γ(X,OX)f where f runs over the set of regular functions which do not
vanish on any point of U and

(
OX ⊗Γ(X,OX) M

)
(U) ' lim−→D(f)⊃U Mf .

The special case of locally free finitely generated sheaves leads us directly
to vector bundles.
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Lemma 2.5.4. — Let (X,OX) be a real or complex affine algebraic variety.
Let F be a sheaf of finitely generated locally free OX-modules. The Γ(X,OX)-
module Γ(X,F) of global sections of F is then projective and finitely generated.
Conversely, let M be a projective finitely generated Γ(X,OX)-module. The
associated OX-module OX ⊗Γ(X,OX) M is then finitely generated and locally
free.

Proof. — Left as an exercise for the reader.

If (X,OX) is a complex variety then every locally free finitely generated
OX -module F is equal to the sheaf ˜Γ(X,F) associated to its Γ(X,OX)-module
Γ(X,F) of global sections.

Proposition 2.5.5. — If (X,OX) is a complex affine algebraic variety then
the map M 7→ M̃ yields a bijective correspondance between finitely generated
projective Γ(X,OX)-modules and finitely generated locally free OX-modules.

Proof. — See [Har77, Corollary II.5.5].

On the other hand, as the following example shows, if (X,OX) is a real
affine variety then there are finitely generated locally free sheaves which are
not associated to Γ(X,OX)-modules.

Example 2.5.6. — Based on [BCR98, Example 12.1.5], see also [FHMM16,
Exemple 5.35].

Let P ∈ R[x, y] be the polynomial defined by

P (x, y) = x2(x− 1)2 + y2

which has exactly two real zeros, a0 = (0, 0) and a1 = (1, 0). Set Ui = R2\{ai}
for i = 0, 1. The Zariski open subsets U0 and U1 form an open covering
of A2(R). We define a locally free coherent rank 1 sheaf F by gluing the
sheaves OA2(R)|U0 and OA2(R)|U1 over U0 ∩ U1 using the transition function
ψ01 = P on U0 ∩ U1. In other words, two sections s0 ∈ OA2(R)|U0(V0) and
s1 ∈ OA2(R)|U1(V1) on the Zariski open sets V0 and V1 are glued together if
and only if ψ01s1 = s0 over V0 ∩ V1.

The OA2(R)-module F is not generated by its global sections because any
global section s of F vanishes at a1. Indeed, the restriction si of s to Ui is
a regular function on Ui for i = 0, 1. The gluing condition is ψ01s1 = s0
on U0 ∩ U1. Set si = gi/hi where gi, hi ∈ R[x, y], with hi 6= 0 at every
point on Ui and gi, hi coprime for i = 0, 1. The gluing condition implies that
Ph0g1 = g0h1 on R2. As P is irreducible and h1(a0) 6= 0 the polynomial P
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divides g0 or in other words there is an λ ∈ R∗ such that g0 = λPg1 and
h1 = λ−1h0. In particular g0(a1) = 0 and hence s(a1) = 0. It follows that
the quasi-coherent sheaf F on A2(R) is not generated by global sections. A
fortiori, there is no Γ(A2(R),OA2(R))-module whose associated sheaf is F .

Note that the module of global sections Γ(A2(R),F) is isomorphic to
Γ(A2(R),OA2(R)) = R(R2) via the map (s0, s1) 7→ s1 = g1

h1
since h1 = λ−1h0

does not vanish at any point of R2.

Algebraic vector bundles. —

Definition 2.5.7. — Let (X,OX) be an algebraic variety over a field K.
A rank r pre-algebraic vector bundle over X is a K-vector bundle (E, π), see
Definition C.3.5, where E is an algebraic variety over K, π : E → X is a
regular map and the homeomorphisms ψi : π−1(Ui)

'−→ Ui ×Kr are biregular
maps. More generally, a pre-algebraic vector bundle has constant rank on every
connected component of X.

Remark 2.5.8. — On an affine real algebraic variety the vector bundles de-
fined above are called pre-algebraic in [BCR98] but algebraic in the previous
version [BCR87].

Consider a pre-algebraic (resp. rank r) vector bundle on X. Its sheaf of
algebraic local sections is then naturally equipped with a OX -module structure
which is locally free (resp. of rank r).

Proposition 2.5.9. — Let (X,OX) be an algebraic variety over a base field
K. There is a bijective correspondance between the class of finitely generated
locally free (resp. of rank r) coherent sheaves on X and isomorphism classes
of pre-algebraic (resp. rank r) vector bundles on X.

Proof. — See [BCR98, Proposition 12.1.3].

If (X,OX) is a complex variety, pre-algebraic bundles are well behaved, as
we saw in Proposition 2.5.5. If (X,OX) is a real variety, the pre-algebraic
line bundle associated to the sheaf F of Example 2.5.6 is not generated by
its global sections, illustrating the fact that on a real variety the notion of
pre-algebraic vector bundles is not particularly useful and motivating thereby
the following definition.

Definition 2.5.10. — A pre-algebraic vector bundle (E, π) on an affine real
algebraic variety X is said to be algebraic if it is isomorphic to a pre-algebraic
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subbundle of a direct sum of structural sheaves. Similarly, a finitely gener-
ated locally free sheaf is said to be algebraic if its associated vector bundle is
algebraic.

Remark 2.5.11 (Real and complex bundles). — 1. Proposition 2.5.5
implies that any pre-algebraic vector bundle on an affine complex alge-
braic variety is algebraic.

2. On a real affine algebraic variety the vector bundles defined above were
said to be algebraic in [BCR98, Definition 12.1.6] but were strongly
algebraic in [BCR87].

Definition 2.5.12. — A rank one algebraic vector bundle is called a line
bundle.

Corollary 2.5.13. — Let (X,OX) be a real or complex algebraic variety.
There is a bijective correspondance between isomorphism classes of invertible
algebraic sheaves on X and (algebraic) line bundles on X.

Proof. — This follows immediately from Proposition 2.5.9.

Theorem 2.5.14. — Let (X,OX) be a real affine algebraic variety and let
(E, π) be a pre-algebraic vector bundle on X. The bundle E is then algebraic
if and only if there is a finitely generated projective Γ(X,OX)-module M such
that the Γ(X,OX)-module of algebraic sections of (E, π) is isomorphic to the
Γ(X,OX)-module OX ⊗Γ(X,OX) M .

Proof. — See [BCR98, Theorem 12.1.7].

As in [Hui95], we see that Definition 2.5.10 of "nice" vector bundles on a
real algebraic variety V , which may initially seem unnatural, simply says that
"nice" vector bundles are precisely those that can be obtained by restricting
an R-vector bundle on some complexification (X,σ) of V .

Let (X,σ) be a quasi-projective algebraic R-variety with enough real points
(see Definition 2.2.5 and Theorem 2.2.9) and let L be a finitely generated
locally free R-sheaf. It is immediate that the restriction L0|X(R) of the sheaf
L0 defined in Lemma 2.5.3 is a finitely generated locally free sheaf on the real
algebraic variety

(
X(R), (OX)GX(R)

)
.

Theorem 2.5.15. — Let (X,σ) be a quasi-projective algebraic R-variety
with enough real points and let L be a finitely generated locally free R-sheaf.
The finitely generated locally free sheaf L0|X(R) on the real algebraic variety(
X(R), (OX)GX(R)

)
is then algebraic.
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Corollary 2.5.16. — Let (X,σ) be a quasi-projective algebraic R-variety
with enough real points and let (E, π) be a topological vector bundle on the
real algebraic variety

(
X(R), (OX)GX(R)

)
.

The vector bundle (E, π) is then algebraic if and only if there is a pre-
algebraic R-vector bundle (E , η) on (X,σ) whose restriction (E|X(R), η|X(R)) is
isomorphic to (E ⊗ C, π ⊗ C).

Remark 2.5.17. — In other words, a topological R-vector space E on a real
affine algebraic variety V is algebraic if and only if tensoring with C yields
the restriction to V of an algebraic C-vector bundle E equipped with a real
structure on some complexification VC of V .

2.6. Divisors on a projective R-variety

This section draws on [Liu02, Chapter 7], where the interested reader will
find all the proofs left out below. A handful of statements and proofs in his
section require some knowledge of sheaf cohomology, for which we also refer
to [Liu02, §5.2].

Weil divisors. —

Definition 2.6.1. — Let X be a quasi-projective irreducible normal com-
plex algebraic variety (Definition 1.5.37). This is not the weakest possible
hypothesis we could make: everything that follows holds on any variety that
is non singular in codimension 1.

– A prime divisor on X is an irreducible closed subvariety of X of codi-
mension 1.

– A Weil divisor on X is a codimension 1 cycle, ie. a finite formal sum of
prime divisors with integer coefficients

D =
∑

A prime Weil
divisor on X

aAA , aA ∈ Z almost all zero(3).

– Let D =
∑
aAA be a divisor. For any prime divisor A in X, the integer

aA is called the multiplicity, denoted multA(D), of D along A.
– The support of a divisor is the subvariety

SuppD =
⊔
aA 6=0

A .

(3)Or in other words- zero except for a finite number of them.
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– If all the coefficients vanish, ie. SuppD = ∅, we write D = 0.
– If all the coefficients are positive or zero D is said to be effective and we

write D > 0.

We denote by Z1(X) we set of all Weil divisors on X. By definition, Z1(X)
is the free abelian group generated by prime divisors.

Example 2.6.2. — 1. If X is a curve then the prime divisors on X are
the points of X. We define the degree of a Weil divisor

∑s
i=1 aiDi to be

the sum of the coefficients

degD =
s∑
i=1

ai .

2. If X is a projective surface then the prime divisors on X are the irre-
ducible curves in X. There is then no intrinsic definition of the degree
of a divisor but we can define the degree with respect to a choice of very
ample divisor or projective embedding.

3. If X = Pn then prime divisors are irreducible hypersurfaces. The degree
of a hypersurface Di is then well-defined (it is the degree of a polynomial
generating the principal ideal I(Di), see [Har77, Chapitre I]) and the
degree of a Weil divisor

∑s
i=1 aiDi ∈ Z1(Pn) is defined by

degD =
s∑
i=1

ai degDi .

If f ∈ K(X)∗ = C(X)∗ is a rational function not identically zero (see
Definition 1.2.69 and Remark1.2.74) and A is a prime divisor we define the
multiplicity multA(f) of f along A as follows :

– multA(f) = k > 0 if f vanishes along A to order k ;
– multA(f) = −k if f has a pole of order k along A (i. e. if 1

f vanishes
along A to order k ;

– multA(f) = 0 in all other cases.
We can associate to any rational function f ∈ K(X)∗ a divisor div(f) ∈

Z1(X) defined by

div(f) :=
∑

A prime Weil
divisor in X

multA(f)A .

Note that div(f) ∈ Z1(X) since multA(f) vanishes for almost all prime divisors
A. Such divisors are called principal divisors. Since div(fg) = div(f) + div(g)
the set of such divisors is a subgroup P(X) in Z1(X).
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Exercise 2.6.3. — Prove that for any rational function f on Pn we have
that

deg(div(f)) = 0 .

Definition 2.6.4. — Two divisorsD,D′ on a varietyX are said to be linearly
equivalent ifD−D′ is a principal divisor. We denote byD ∼ D′ the equivalence
relation thus defined and by

Cl(X) := Z1(X)/P(X) = Z1(X)/∼

the group of divisors modulo linear equivalence.

Exercise 2.6.5. — Prove that the group Cl(Pn) is isomorphic to Z and it
is generated by the linear class of the divisor 1H associated to a hyperplane
H ⊂ Pn.

Example 2.6.6. — Let C be a projective plane curve of degree d- see Defini-
tion 1.6.1- and let L be a line in P2(C). The curve C is then linearly equivalent
to d times the line L. In particular, any projective conic (see Exercise 1.2.68)
is linearly equivalent to the double line 2L.

Cartier divisors. — Let X be an algebraic variety, let U ⊂ X be an open
subset and let f ∈ K(U)∗ be a rational function which is not identically zero
on U . By definition there is then a dense open subset V ⊂ U such that ∀p ∈ V ,
f(p) = g(p)

h(p) for some g, h ∈ OX(V ).

Definition 2.6.7. — A Cartier divisor (or locally principal divisor) on an
algebraic variety X is a global section of the quotient sheaf arising from the
following exact sequence of multiplicative sheaves

(2.3) 1 −→ O∗X −→M∗X −→M∗X/O∗X −→ 1

where O∗X is the sheaf of regular functions that do not vanish at any point
andM∗X is the sheaf of rational functions that are not identically zero (4) We
denote by

Div(X) := Γ(X,M∗X/O∗X)
the group of Cartier divisors. The group law on Div(X) is abelian and is
written additively.

(4)Of course, M∗X(X) = K(X)∗. The notationMX , chosen to emphasise the fact that the
corresponding analytic sheaf is the sheaf of meromorphic functions, is used to avoid confusion
with the canonical sheaf KX . See Definition 2.6.26 for more details.
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Definition 2.6.8. — A Cartier divisor is said to be principal if it is associ-
ated to a global rational function. We say that two divisors D1 and D2 are
linearly equivalent if D1−D2 is principal. We then write D1 ∼ D2 as for Weil
divisors. The subgroup of Div(X) of principal divisors is isomorphic to P(X)
and we denote by

CaCl(X) := Div(X)/P(X) = Div(X)/∼

the group of Cartier divisors modulo linear equivalence.

Proposition 2.6.9. — Let X be an algebraic variety. The group CaCl(X)
is a subgroup of the cohomology group H1(X,O∗).

Proof. — We consider the long exact sequence associated to the short exact
sequence (2.3). Part of this long exact sequence is given by H0(X,M∗X) f−→
H0(X,M∗X/O∗X) g−→ H1(X,O∗X). By definition, the image of H0(X,M∗X)
under f is the group of principal divisors so g induces an inclusion

CaCl(X) ↪→ H1(X,O∗) .

Let D = (Ui, fi)i ∈ Div(X) be a Cartier divisor described with respect to
an open covering {Ui}i of X. There are therefore germs of regular functions
gi, hi ∈ OX(Ui) such that

fi = gi
hi

and gi
hi
·
(
gj
hj

)−1

∈ O∗X(Ui ∩ Uj).

LetD be a Cartier divisor onX. For any prime divisor A onX we define the
multiplicity multA(D) of D on A as follows. If D is represented by (Ui, fi)i∈I
then we set multA(D) = multA(fi): since by hypothesis fi

fj
is nowhere van-

ishing, the value multA(D) does not depend on i. If a Cartier divisor D is
represented by data (Ui, fi)i∈I then we associate to it a Weil divisor

[D] :=
∑

A prime divisor
on X

multA(D)A

The map Div(X)→ Z1(X), D 7→ [D] thus defined is a group morphism.

Proposition 2.6.10. — Let X be an irreducible complex variety.
1. If X is normal then the map Div(X) → Z1(X), D 7→ [D] is injective

and induces an injective morphism

CaCl(X)→ Cl(X) .
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2. If X is non singular then D 7→ [D] is an isomorphism

Div(X) ' Z1(X)

and the induced morphism

CaCl(X) ' Cl(X) ,

is an isomorphism

Proof. — See [Har77, II.6].

Line bundles. — We recall that an (algebraic) complex line bundle is an al-
gebraic vector bundle of fiber C as in Definition 2.5.7. We further remark that
over C, any pre-algebraic vector bundle is algebraic, as in Remark 2.5.11.(1).
The sheaf of sections of such a bundle is an invertible sheaf, see Defini-
tion C.5.8, and the correspondance thus induced between isomorphism classes
of line bundles and invertible sheaves is one-to-one, see Proposition 2.5.9.

To any Cartier divisor D represented by (Ui, fi)i we can associate the sub-
sheaf OX(D) ⊂ MX defined by OX(D)|Ui = f−1

i OX |Ui . The sheaf OX(D)
is an invertible sheaf over X. By abuse of notation we will also denote by
OX(D) the associated line bundle. More explicitly, the line bundle OX(D) is
given by the data of the open cover {Ui}i∈I of X and the transition functions
fij : Ui ∩ Uj → C∗ where fij = fj |Ui∩Uj ◦ f

−1
i |Ui∩Uj . The total space of the

bundle is the quotient of the disjoint union ti(Ui × C) by the equivalence
relation (x, z) ∼ (x, fjk(x)z) for any pair of open sets Uj , Uk containing x. This
quotient is well defined because these functions satisfy the cocycle condition :

fik = fijfjk sur Ui ∩ Uj ∩ Uk ∀i, j, k .

By construction, D is effective if and only if OX(−D) ⊂ OX . If U is an
open subset of X then OX(D)|U = OU (D|U ).

Definition 2.6.11. — The line bundle OX(D) is the line bundle associated
to D.

We denote by Pic(X) the Picard group of line bundles modulo isomorphism
with group operation given by tensor product and by ρ : Div(X) → Pic(X)
the map associating to a divisor D the isomorphism class of the line bundle
OX(D).

Proposition 2.6.12. — Let X be a complex algebraic variety. The Picard
group Pic(X) is isomorphic to the cohomology group H1(X,O∗).
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Proof. — See [Har77, III, exercise 4.5] or [GH78, §1.1] for an analytic version
of this theorem.

Example 2.6.13. — Consider X = Pn. By Exercise 2.6.5, the group Cl(Pn)
is isomorphic to Z and it is generated by the class of a hyperplane H ⊂ Pn.
The Picard group Pic(Pn) is therefore isomorphic to Z and has a natural
generator, namely the line bundle associated to H. By convention, we denote
this line bundle by OPn(1) := OPn(H). The other generator of Pic(Pn) is its
dual bundle, denoted OPn(−1) := OPn(1)∨.

By extension, we write OPn(k) := OPn(1)⊗k and OPn(−k) := OPn(−1)⊗k
for any positive integer k. In particular, OPn(0) = OPn . It follows that the
line bundle associated to the divisor kH is OPn(k) for any k ∈ Z. See [Ser55a,
Chapitre III, §2] for the original construction of the sheaves O(k).

Definition 2.6.14. — The line bundle OPn(1) is called Serre’s twisting sheaf
and the line bundle OPn(−1) is called the tautological bundle. See Section F.1
for a direct construction of this bundle.

Exercise 2.6.15. — Consider an integer d > 1. Prove that the vector space
Γ(Pn,OnP(dH)) of global sections of the line bundle OPn(d) is exactly the
space of degree d homogeneous polynomials in n + 1 variables. Deduce that
dimH0 (Pn,OnP(d)) =

(n+d
d

)
.

Proposition 2.6.16. — Let X be an irreducible quasi-projective complex
algebraic variety.

1. For any D1, D2 ∈ Div(X) we have that

ρ(D1 +D2) = OX(D1)⊗OX(D2) .

2. The map ρ : Div(X)→ Pic(X) induces an isomorphism

CaCl(X) ' Pic(X) .

Proof. — See [Har77, II.6].

By abuse of notation we will often write D ∈ Pic(X) for the linear class of
a divisor D ∈ Div(X).

Corollary 2.6.17. — Let X be a non singular irreducible quasi-projective
complex algebraic variety. There are isomorphisms :

Cl(X) ' CaCl(X) ' Pic(X) ' Div(X)/P(X) .
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Definition 2.6.18. — Let D be a divisor on an algebraic variety X. The
linear system |D| is the set of effective divisors which are linearly equivalent to
D. We identify this set with the projectivisation of the complex vector space
H0(X,OX(D)) of global sections of OX(D).

We have that H0(X,OX(D)) = {f ∈ K(X)∗ | D + (f) > 0} ∪ {0}. If
this complex vector space is of finite dimension then any basis {s0, . . . , sN} of
H0(X,OX(D)) is a set of global rational functions on X which enables us to
defined a rational map

ϕD :
{
X 99K P(H0(X,OX(D))) = PN (C)
x 799K (s0(x) : · · · : sN (x)) .

Remark 2.6.19. — The map ϕD depends on a choice of basis for
H0(X,OX(D)) and is only determined by D up to automorphism of
P(H0(X,OX(D))).

Definition 2.6.20. — A divisor D on a variety X is very ample if the ra-
tional map ϕD is a morphism embedding X in P(H0(X,OX(D))). A divisor
D is ample if one of its multiples mD, m > 1, is very ample.

Likewise, an invertible sheaf L is very ample if it is associated to a very
ample divisor L = OX(D), and it is ample if L⊗m is very ample for some
m > 1.

Proposition 2.6.21. — An abstract algebraic variety (constructed by "gluing
together" affine algebraic varieties as in Definition 1.3.1) is projective if and
only if it has an ample divisor.

Proof. — Suppose that D is an ample divisor on X. There is then a multiple
mD, m > 1, which is very ample and the associated morphism ϕmD embeds
X as a closed subvariety of projective space. Conversely, let X be a projective
algebraic variety and let ϕ : X → PN be an embedding. For any hyperplane
H in PN the divisor ϕ∗(H) is a very ample divisor on X (or in terms of line
bundles, ϕ∗(OPN (1)) is very ample on X). The divisor ϕ∗(H) is the divisor of
the hyperplane section of X relative to the embedding ϕ.

Definition 2.6.22. — A divisor D on an algebraic variety X (which we will
assume complete in order to be sure that the maps ϕmD exist) is big if there
exists an m > 0 for which the dimension of the image of the rational map
ϕmD : X 99K P(H0(X,OX(mD))) is maximal, or in other words, if

dimϕmD(X) = dimX .
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Likewise, a line bundle L is big if for some m > 0 we have that

ϕL⊗m(X) = dimX .

Example 2.6.23. — 1. Any ample line bundle is of course big.
2. The pull back of an ample line bundle along a generically finite map is a

big line bundle. See [Laz04, §2.2] for more details.

Theorem 2.6.24. — If X is a normal variety (which is the case in particular,
for any non singular variety) then a line bundle L is big if and only if there
is some m > 0 for which the rational map ϕL⊗m : X 99K P(H0(X,OX(mD)))
is birational onto its image.

Proof. — This result follows from the existence of the Iitaka fibration. See
[Laz04, §2.2] for more details.

Remark 2.6.25. — The bigness of a line bundle is invariant under birational
transformations.

If X is a non singular quasi-projective complex algebraic variety then the
sheaf of regular differential forms (see [Liu02, Chapter 6] or [Har77, II.8]
for regular differential forms and Definition D.3.2 for holomorphic differential
forms) of degree 1 on X, denoted ΩX := Ω1

X , is a locally free finitely generated
sheaf. The associated vector bundle, also denoted ΩX , has rank equal to the
dimension of X and its determinant bundle det ΩX is a line bundle.

Definition 2.6.26. — Let X be a non singular quasi-projective complex al-
gebraic variety. The canonical bundle on X is the complex line bundle defined
by

KX := det ΩX =
n∧

ΩX .

The canonical divisor of X denotes any divisor associated to the canonical
bundle

OX(KX) = KX .

It is customary to talk about "the" canonical divisor, even though such
divisors are only defined up to linear equivalence.

Exercise 2.6.27. — Prove that KPn is isomorphic to the line bundle
OPn(−n− 1).
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Exercise 2.6.28 (See [CM09, Theorem 4.3]). — Let X be a non singular
projective variety. Prove that if H0(X,OX(−KX)) 6= 0 and H0(X,Ω1

X) = 0
then H0(X,Ω1

X(KX)) = 0.
Using Serre duality (Theorem D.2.5) deduce that

H2(X,ΘX) = 0

where ΘX is the tangent bundle.

Definition 2.6.29. — A non singular projective variety X is said to be of
general type if its canonical bundle KX is big.

Galois group action on the Picard group. — Let (X,σ) be an R-surface:
we denote by σ the involution induced on the divisor group of X. If D =∑
niDi is a Weil divisor on X then σD :=

∑
niσ(Di). If D = (Ui, fi)i is

a Cartier divisor on X then σD = (σ(Ui), σfi)i. If L is a line bundle on X

with cocycle (Uij , gij) then the conjugate sheaf (Definition 2.5.1) σL is the line
bundle on X of cocycle (σ(Uij), σgij).

Proposition 2.6.30. — Let X be projective. If D is a Cartier divisor and
OX(D) is the associated invertible sheaf then

OX(σD) = σ(OX(D)).

Conversely, if L is an invertible sheaf on X, D is a divisor associated to L
and D′ is a divisor associated to σL then D′ ∼ σD.

Proof. — Let D = (Ui, fi)i be a Cartier divisor. The sheaf OX(D) is deter-
mined by the cocycle (gij)ij = ( fifj )ij . Indeed, Γ(U,OX(D)) = {f ∈ OX(U) |
(f) +D > 0}. Let (si)i be a family of local sections of OX(D). We then have
that

(2.4) ∀i, j, si = gijsj .

By definition of the conjugate sheaf, (σsi)i is a family of local sections of
the sheaf σ(OX(D)) and by (2.4) we have that

(2.5) ∀i, j, σsi = σgij
σsj .

The proof follows on noting that OX(σD) is determined by the cocycle
(σgij)ij = (

σfi
σfj

)ij .

Proposition 2.6.31. — Let D be a divisor invariant under (X,σ). There
is then a basis {s0, . . . , sN} of the complex vector space H0(X,OX(D)) =
{f ∈ K(X)∗ | D + (f) > 0} ∪ {0} consisting of invariant functions σsi = si,
i = 0, . . . , N .
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Proof. — Follows immediately from Lemma A.7.3.

Theorem 2.6.32. — Let (X,σ) be an irreducible non singular complex pro-
jective algebraic R-variety. If X(R) 6= ∅ then for any divisor D linearly
equivalent to σ(D) there is a divisor D′ linearly equivalent to D such that
D′ = σ(D′). In other words(5),

Div(X)G/P(X)G = Pic(X)G .

Proof. — See [Sil89, pages 19–20].

Example 2.6.33 (Div(X)G/P(X)G 6= Pic(X)G). — The example of the
conicX in P2 of equation x2

0+x2
1+x2

3 = 0 shows that whenX(R) = ∅, Pic(X)G
can be larger than Div(X)G/P(X)G. In this example, Pic(X)G = Pic(X) = Z
which is generated by a point, but all the invariant divisors are of even degree
and there is an exact sequence

0→ Div(X)G/P(X)G −→ Pic(X)G −→ Z/2Z→ 0 .

Up till now we have studied the Picard group of linear divisor classes. We
now present another group of divisor classes, the Néron-Severi group.

Definition 2.6.34. — Let X be a non singular complex projective variety
and let Pic0(X) be the connected component of Pic(X) containing the identity
(Pic0(X) is the Picard variety of X, see Definition D.6.6). The Néron-Severi
group NS(X) is the group of components of Pic(X):

0→ Pic0(X) −→ Pic(X) −→ NS(X)→ 0 .

Two divisors in the same class in the Néron Severi group are said to be
algebraically equivalent(6).

Theorem 2.6.35 (Néron-Severi theorem). — Let X be a non singular
complex projective variety. The group NS(X) is then finitely generated.

Proof. — See [GH78, IV.6, pages 461–462].

Definition 2.6.36. — Let X be a non singular complex projective variety.
The rank of the Neron-Severi group ρ(X) := rk NS(X) = rk(Pic(X)/Pic0(X))

(5)Scheme-theoretically, if X is a scheme defined over R satisfying the hypotheses of the
theorem then Pic(X) = Pic(XC)G.
(6)See [GH78, III.5] for an explanation of this term. The term "numerically equivalent" is
also common in the litterature: see [Ful98, §19.3] for more details.
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is called the Picard number of X. Let (X,σ) be a non singular projective R-
variety. If X(R) is non empty then the real Picard number of (X,σ) is the
rank of the real Néron-Severi group ρR(X) := rk(Pic(X)G/Pic0(X)G).

Proposition 2.6.37. — Let X be a non singular complex projective variety
such that q(X) = dimH1(X,OX) = 0. We then have that

NS(X) ' Pic(X) .

Proof. — It follows from the exact sequence (D.3) following Proposition D.6.7
that if q(X) = 0 then the group Pic0(X) is trivial.

Projective embeddings. — We have seen that any compact real affine al-
gebraic variety has a projective complexification. The aim of this section is to
study these projective models using ample divisors.

Example 2.6.38 (R-embedding of the product torus)
This example draws on [BCR98, Ex. 3.2.8]. Let V be the product

torus V := Z
(
t2 + u2 − 1

)
× Z

(
v2 + w2 − 1

)
⊂ A2(R)× A2(R) and let W be

the quartic torus in R3
x1,x2,x3 obtained by rotating the circle of centre (2, 0)

and radius 1 in the (x1, x3) plan around the x3 axis

W := Z(16(x2
1 + x2

2)− (x2
1 + x2

2 + x2
3 + 3)2) ⊂ A3(R) .

Both of these real algebraic sets are diffeomorphic to the torus with the
Euclidean topology V ≈W ≈ S1 × S1.

ConsiderW as a subset of P3(R) via the inclusion R3
x1,x2,x3 ⊂ P3(R)x0:x1:x2:x3 .

The polynomial map
ϕ : V −→ W

(t, u, v, w) 7−→ (1 : t(2 + v) : u(2 + v) : w)

is bijective and its inverse ϕ−1 : W → V ,

ϕ−1(x0 : x1 : x2 : x3) =
(
x1x0/ρ, x2x0/ρ, (ρ− 2x2

0)/x2
0, x3/x0

)
where ρ = (x2

1 + x2
2 + x2

3 + 3x2
0)/4, is a regular map of real algebraic varieties

since W ∩ {x0 = 0} = ∅.
The map ϕ is therefore an isomorphism of real algebraic varieties and the

algebras R(V ) and R(W ) are isomorphic by Corollary 1.3.20: the algebras
P(V ) and P(W ), however, are different, since the first is regular, unlike the
second. Consider the projective complexifications of the toruses V and W :
V C ' P1(C)× P1(C) for the first and the singular quartic hypersurface

ŴC := Z(16(x2
1 + x2

2)− (x2
1 + x2

2 + x2
3 + 3x2

0)2) ⊂ P3(C) .
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for the second. The map ϕ is then the restriction of a birational map of
R-varieties

ψ : P1(C)× P1(C)→ ŴC

which is a resolution of singularities of ŴC.
Note that ψ is a morphism of R-varieties but ψ−1 is only a rational map.

Note also that as ŴC is a quartic in P3(C) which is birational to P1(C)×P1(C)
it must be singular. Indeed, P1(C) × P1(C) is a rational surface whereas a
non singular quartic in P3 is a non rational surface (called a K3 surface, see
Definition 4.5.3). The R-surfaces (P1(C) × P1(C), σP × σP) and (ŴC, σP|ŴC

)
are birationally equivalent but not isomorphic.

Review of Theorem 2.1.33. — We have seen that a varietyX embedded in
Pn(C) and stable by the conjugation σP has a natural real structure σ induced
by σP. Note that if X is a projective complex variety with a real structure σ
then its image under an arbitrary projective embedding is not always stable
under σP, but we can always find a real embedding by Theorem 2.6.44 below.
We will give a proof of this theorem based on the Nakai-Moishezon criterion.
Of course, Theorem 2.6.44 implies Theorem 2.1.33 for which we have only
provided a reference for the proof. In what follows, up to and including the
proof of Theorem 2.6.44, we will not use Theorem 2.1.33.

The key fact to remember is that ifX is a complex projective variety then for
any real structure σ on X the R-variety (X,σ) has an equivariant embedding
in projective space.

Nakai-Moishezon criterion. — See [Har77, Appendix A, page 424] for
the definition and main properties of intersection theory on varieties of arbi-
trary dimension. If the global variety has a real structure then this intersection
theory is compatible with the real structure. If r is the dimension of a non
singular variety Y and D1, D2, . . . , Dr are divisors on Y then their intersection
product (D1 ·D2 · · ·Dr) belongs to Z and only depends on the linear class of
the divisors Di. In particular, if the Dis are hypersurfaces meeting transver-
sally then (D1 ·D2 · · ·Dr) is equal to the number of points in the intersection
of the Dis.

Theorem 2.6.39 (Nakai-Moishezon criterion). — Let D be a Cartier
divisor on a complex projective algebraic variety X. The divisor D is then
ample on X if and only if for any irreducible subvariety Y ⊂ X of dimension
r we have that

(D|Y )r > 0 .
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Proof. — See [Har77, Appendix A, Theorem 5.1, page 434], for example. The
above statement also holds for singular X, but requires a modified intersection
theory. See [Kle66], [Ful98] for more details.

Corollary 2.6.40 (Nakai-Moishezon criterion for surfaces)
A divisor D on a non singular irreducible complex projective algebraic

surface X is ample if and only if (D)2 > 0 and D · C > 0 for any irreducible
curve C in X.

Proof. — Simply set Y = X in the general criterion to obtain (D)2 > 0 and
for any irreducible curve C ⊂ X, D · C > 0.

Definition 2.6.41. — A divisor D on a variety X is nef for numerically
eventually free(7)) if for any irreducible subvariety Y ⊂ X of dimension r we
have that

(D|Y )r > 0 .
Similarly, a line bundle L is nef if and only if it is associated to a nef divisor
L = OX(D).

Remark 2.6.42. — Any ample bundle is of course nef.

Proposition 2.6.43. — Let X be a complex projective variety with a real
structure σ. There is then an ample divisor D such that D = σD.

Proof. — Let H be an ample divisor on X. For any irreducible subvariety
Y ⊂ X of dimension r the conjugate subvariety σY is irreducible and of
dimension r and by the Nakai-Moishezon criterion (Theorem 2.6.39) we have
that (H|σY )r > 0. Since the real structure is involutive, (σH)|Y = σ(H|σY )
and since the real structure is compatible with the intersection product we
get that ((σH)|Y )r = (H|σY )r > 0. By the Nakai-Moishezon criterion, σH is
ample, as is

D := H + σH .

Theorem 2.6.44. — Let (X,σ) be an algebraic R-variety. If the complex
algebraic variety X is quasi-projective then there is an R-embedding

ϕ : (X,σ) ↪→ (PN (C), σP) .

(7)If the linear system |mD| is free for some m > 0 (eventually free), then D is nef. The
incorrect interpretation numerically effective often appears in the literature, but considering
(−1)-curves- see Definition 4.3.2- we see that a divisor can be effective without being either
nef or linearly equivalent to a nef divisor.
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Proof. — We start by assuming X is projective, so by Proposition 2.6.43,
there is an ample divisor D0 and a positive integer m such that D = mD0
is very ample on X and satisfies σD = D. By Proposition 2.6.31, there is a
basis {s0, . . . , sN} of H0(X,OX(D)) such that σsi = si, i = 0, . . . , N . As the
divisor D is very ample, the map

ϕD :
{
X 99K PN (C)
x 799K (s0(x) : · · · : sN (x))

is a morphism which induces an isomorphism of R-varieties

(X,σ) ' (ϕD(X), σP|ϕD(X)) .

Now consider a quasi-projective variety U = X \Y , where X is a projective
R-variety and Y ⊂ X is a closed R-subvariety of X. We have just proved the
existence of an R-embedding; ϕ : (X,σ) ↪→ (PN (C), σP): in particular, ϕ is
a homeomorphism onto its image ϕ(X \ Y ) = ϕ(X) \ ϕ(Y ) and ϕ therefore
induces an embedding of U as a quasi-projective algebraic set

(U, σ|U ) ' (ϕ(X) \ ϕ(Y ), σP|ϕ(X)\ϕ(Y )) .

Degree of a subvariety of projective space. — Classically, we define
the degree of a subvariety of PN using its Hilbert polynomial [Har77, § I.7]
and only subsequently prove that this definition is equivalent to the definition
given below.

Definition 2.6.45 (Degree of a subvariety of projective space)
The degree of an n dimensional subvariety X of PN is the degree of the

0-cycle D := (H ·X) obtained on intersecting X with a general codimension
n projective subspace H in PN .

There is a hidden difficulty in the above definition, namely finding the
coefficients of the 0-cycle D := (H · X) for an arbitrary X. See the section
preceding [Har77, Theorem 7.7, page 53] for more details. If X is complex
and non singular then by Bertini’s theorem D.9.1 if we choose a sufficiently
general H then the 0-cycle D is the sum of all points in H ∩X.

Definition 2.6.46 (Complex degree). — The complex degree of a complex
projective algebraic variety is the smallest degree of any of its embeddings in
a complex projective space PN (C).
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Definition 2.6.47 (Real degree). — Let (X,σ) be a projective R-variety.
The real degree of (X,σ) is the smallest degree of a real embedding in projective
space (PN (C), σP).

The real degree exists by Proposition 2.6.43. As any real embedding is
also a complex embedding, the real degree is not smaller than the complex
degree. The minimal degree of a complex projective embedding is frequently
strictly smaller than the minimal degree of a real projective embedding. The
simplest example is that of conic without real points, whose complex degree
is 1 but whose real degree is 2. Let X be the projective plane curve defined
by the equation x2 + y2 + z2 = 0 with the restriction of σA. The curve X is
isomorphic as an abstract complex curve to the curve P1(C) and has degree
1 embeddings - namely lines- in every Pn(C). None of these embeddings can
be real because any embedding as an R-line has real points. The following
proposition generalises this principle.

Proposition 2.6.48. — Let X ⊂ Pn(C) be a algebraic subvariety, stable
under σP. If the degree of X is odd then X(R) 6= ∅.

Proof. — We can assume that r := n − dimX > 0. Let H be a projective
subspace of dimension r in Pn which is not contained in X. By hypothesis,
the degree of the 0-cycle D := (H ·X) is odd. In particular, the real part of
D has odd degree and its support consists of an odd number of points so it is
non empty.

2.7. R-plane curves

We end this chapter by applying the above theory to plane curves. We refer
to Section 1.6 of the first chapter for the general definitions. Bézout’s theorem
on plane curves, given in Chapter 1, is here applied to R-curves. It will be
generalised to curves on other surfaces in Chapter 4.

Theorem 2.7.1 (Bézout’s theorem for R-plane curves)
Let C1 and C2 be projective plane R-curves of degrees d1 and d2 respec-

tively
1. If C1 and C2 have no common component then

(C1 · C2) = d1d2 .

2. If the intersection C1(R) ∩ C2(R) is finite then

(C1(R) · C2(R)) 6 d1d2 .
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3. If moreover the branches of C1 and C2 are transverse at every point then
the number of intersection points #(C1(R)∩C2(R)) is congruent modulo
2 to the product d1d2.

Proof. — We simply defined the intersection multiplicity modulo 2 at a point
a ∈ A2(R) of two affine plane R-curves C1 and C2 of equations P1(x, y) and
P2(x, y) to be

(C1 · C2)Ra := dimROA2(R),a/(P1, P2) mod 2 ;

and the intersection number modulo 2 to be

(C1 · C2)R :=
∑

a∈C1(R)∩C2(R)
(C1 · C2)Ra mod 2 .

We then apply Theorem 1.6.16 to the complex curves C1 and C2.

We recall the genus formula proved in Chapter 1, Theorem 1.6.17. If C is
a non singular irreducible projective plane curve of genus g = g(C) then

g = (d− 1)(d− 2)
2 .

The real locus of a non singular projective R-curve is a compact differen-
tiable variety of dimension 1. It is therefore homeomorphic to a finite union
of disjoint embedded circles.

Theorem 2.7.2 (Harnack 1876). — Let (C, σ) be a non singular projective
plane R-curve of degree d. Let s be the number of connected components of
C(R). We then have that

(2.6) s 6
(d− 1)(d− 2)

2 + 1 = g(C) + 1 .

Remark 2.7.3. — Further on we will give an elementary proof of this in-
equality based on Bézout’s theorem. It is useful to note that the number
of connected components of a plane curve of degree d is bounded above by
(d−1)(d−2)

2 + 1 even when C is singular. First of all, it is enough to prove the
result when C is irreducible. If not, C is defined by a product of polynomials
of degrees d1 and d2, so that d = d1 + d1 and

(d1 − 1)(d1 − 2)
2 + 1 + (d2 − 1)(d2 − 2)

2 + 1 6
(d− 1)(d− 2)

2 + 1 .

We then show that we can assume that C(R) contains at least one component
of dimension 1 using Brusotti’s theorem 2.7.10 as in Corollary 3.3.20. The
proof then follows the proof for the smooth case given below, see [BR90,
Second proof of 5.3.2].
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Remark 2.7.4. — More generally, for any non singular projective R-
curve(C, σ) (note that C is not assumed to be plane), we have that
s 6 g(C) + 1, where g(C) is the genus of the topological surface C. We
will give two proofs of this in Chapter 3 and Corollary 3.3.7. We will also
see in Chapter 3 that this inequality can be generalised to higher dimension
using Smith theory.

Lemma 2.7.5. — There is a real projective curve of degree d which passes
through any given set of

(d+2
2
)
− 1 = 1

2(d+ 2)(d+ 1)− 1 points in P2(R).

Proof. — The number of degree d monomials in three variables is
(d+2

2
)
. We

deduce from this a bijection between the set of degree d curves in the real
projective plane and a real projective space of dimension 1

2(d+2)(d+1)−1.

Proposition 2.7.6. — For any point p ∈ RP2,

π1(RP2, p) ' Z2 .

Proof. — Consider RP2 as the quotient of S2 by the antipodal map.

Definition 2.7.7. — A simple closed curve in the real projective space is an
oval if it is homotopic to 0 and a pseudo-line if it is not homotopically trivial.

Lemma 2.7.8 (Ovals and pseudo-lines). — Let (C, σ) be a non singular
projective plane R-curve of degree d.

1. If d is even all the connected components of C(R) are ovals.
2. If d is odd then one connected component of C(R) is a pseudo-line and

all the others are ovals.
3. Any curve meets any oval in an even number of intersection points,

counted with multiplicity.

Proof. — The proof is left as an exercise. Use Bézout’s theorem.

Proof of Theorem 2.7.2. — Suppose that d > 2. We argue by contradiction:
suppose that Γ is a non singular irreducible plane R-curve of degree d whose
real locus has at least g(d) + 1 connected components. Let h = g(d) + 1 and
Ω1, . . . ,Ωh be ovals in Γ(R): there is at least one other component in Γ(R).
Choose 1

2d(d− 1)− 1 points on Γ(R). Since 1
2d(d− 1)− 1 > g(d) + 1 for any

d > 2 we can choose one point on each of the ovals Ω1, . . . ,Ωh and the other
points on some other connected component of Γ(R). Consider an R-curve ∆
of degree d − 2 passing through these 1

2d(d − 1) − 1 points. The curves Γ
and ∆ have no common components because Γ is irreducible and the degree
of ∆ is d − 2. By Bézout’s theorem, the number of intersection points of Γ
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with ∆ counted with multiplicity is less than or equal to d(d− 2). If ∆ meets
an oval Ωi with multiplicity 1 then ∆ meets Ωi at some other point, so that
Γ ·∆ > 1

2d(d− 1)− 1 + g(d) + 1 = (d− 1)2 which is larger than d(d− 2). The
theorem follows.

The bound (2.6) is optimal: Harnack’s bound is realised for any degree d :

Proposition 2.7.9. — For any d ∈ N∗ there is a non singular projec-
tive plane R-curve (C, σ) of degree d whose real locus C(R) contains s =
(d−1)(d−2)

2 + 1 connected components.

Proof. — See [BCR98, pages 287–288] or [BR90, 5.3.11] for Harnack’s con-
struction.

The constructions of the curves described above often use explicit deforma-
tions of reducible curves. We can often prove the existence of configurations
of ovals of given degree without explicit constructions using Brusotti’s useful
theorem.

Theorem 2.7.10 (Brusotti’s theorem). — Let C ⊂ P2(R) be a degree
d real plane curve whose singularities are ordinary double points. Suppose
given a local deformation of each of the ordinary double points. There is then
a deformation of the curve C in the space of real curves of degree d which
realises each of the local deformations.

Proof. — See [BR90, § 5.5].

As well as (2.6) which gives a bound on the number of connected compo-
nents, we have restrictions on the positions of ovals of plane R-curves.

Definition 2.7.11. — The complement RP2 \ Ω of a oval in the real pro-
jective plane has two connected components. One of these is diffeomorphic to
the disc and is called the interior of the oval, and the other is diffeomorphic to
a Moebius band. We say that another oval is contained in Ω if it is contained
in its interior. An oval component of a real curve is said to be empty if it does
not contain any other oval component. A family E is said to be a nest of ovals
if and only if it is totally ordered by inclusion.

Definition 2.7.12. — An oval is said to be positive (or even) if it is con-
tained in an even number of ovals and negative (or odd) otherwise(8).

(8)See [Pet38, page 190] for a justification of this terminology.
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Theorem 2.7.13 (Petrovskii’s inequalities). — Let (C, σ) be a non-
singular projective plane R-curve of even degree d = 2k. Let p be the number
of even ovals of C(R) and let n be the number of negative ovals. We then
have that

p− n 6
3
8d(d− 2) + 1 = 3

2k(k − 1) + 1 ;

n− p 6 3
8d(d− 2) = 3

2k(k − 1) .

See [Pet33, Pet38] or [Arn71]. In Chapter 3, Theorem 3.3.14 we prove
these inequalities using double covers.

Corollary 2.7.14. — Let (C, σ) be a non singular projective plane R-curve
of even degree d = 2k. Let p be the number of positive ovals of C(R) and n be
the number of negative ovals. Then we have that

p 6
7
4k

2 − 9
4k + 3

2 ; n 6
7
4k

2 − 9
4k + 1 .

Proof. — For any curve of even degree d = 2k, Harnack’s inequality (2.6)
gives p+ n 6 2k2 − 3k + 2. Adding with the Petrovskii inequalities yields the
desired result.

Remark 2.7.15 (Ragsdale’s conjecture). — A famous, but incorrect,
conjecture by Ragsdale [Rag06] states that p and n actually satisfy the in-
equalities p 6 3

2k(k − 1) + 1, et n 6 3
2k(k − 1). We will come back to this

conjecture in Chapter 3, at the end of Section 3.5.

When the curve does not have a any nest of ovals, all ovals are positive and
Petrovskii’s first inequality gives us the following.

Corollary 2.7.16. — Let C be a non singular projective plane R-curve
of even degree d = 2k without a nest of ovals. The number of ovals s :=
#π0(C(R)) is then bounded by

s 6
3
2k(k − 1) + 1 .

Corollary 2.7.17. — The maximal even degree d curves, by which we mean
the curves with the maximal number of connected components in their real
locus, namely (d−1)(d−2)

2 + 1, (see Definition 3.3.10) have at least one nesting
from degree 6 onwards.
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Solutions to exercises of Chapter 2

2.1.3 1. Let U be an open set in An(C) and consider f ∈ σO(U). By definition
there is a function g ∈ O(σA(U)) such that f = σg so f = g ◦ σA : U → C is
regular and hence f ∈ O(U). The opposite inclusion O(U) ⊂ σO(U) is proved
by a similar argument.

2. Apply Definition 1.3.7 to the sheaf σO and the subspace F to get the
sheaf σOF . If U is an open subset of F then U is an open set of F and hence
of F by hypothesis. A function f : U → C belongs to σOF (U) if and only if
for any point x in U there is a neighbourhood V of x in An(C) and a function
g ∈ σO(V ) such that g(y) = f(y) for any y ∈ V ∩U . By the previous question
g ∈ O(V ) and hence σOF = OF .

2.1.7 The sets F and F are subsets of An(C) and OF = (OAn)F (see Def-
inition 1.3.7). The restriction σA : F → F is clearly bijective. Moreover,
σA is continuous since if Z = Z(I) is a Zariski closed subset of F defined
by an ideal I in C[X1, . . . , Xn] then σA

−1(Z) = σA(Z) = Z = Z(σI) where
σI := {σf | f ∈ I}. Finally, σA|F induces an isomorphism of ringed spaces (see
Exercise C.5.3) (F ,OF ) → (F,OF ) because if U is an open subset of F then
σA(U) is an open subset of F and if f ∈ OF (U) then f ◦ σA : σA(U) → C is
regular or in other words f ◦σA ∈ OF (σA(U)). Indeed, as f ∈ OF (U) there is a
function f0 ∈ OF (U) such that f = f0 and it follows that f◦σA = f0◦σA = σf0.
As f0 is regular on U , σf0 is regular on σA(U).

C

z 7→z
��

F
σA // F

f //

f0
??

C

2.1.21 1. Recall that if C is the zero locus of a polynomial P then C is the zero
locus of σP . A straightforward calculation shows that (ϕ ◦ ϕ)(x, y) = (x, y)
so ϕ is an involutive automorphism of A2(C) and in particular ϕ−1 = ϕ. Now
consider P (x, y) = y2 − a0x

m −
∑m
k=1

(
akx

m+k + (−1)kakxm−k
)
. On substi-

tuting P (ϕ(x, y)) we obtain − y2

x2m + a0
1
xm +

∑m
k=1

(
ak

1
xm−k

+ (−1)kak 1
xm+k

)
and hence −x2mP (ϕ(x, y)) = σP (x, y).

2. Set τ = σA ◦ϕ. We then have that τ(x, y) = (− 1
x ,−

iy
xm ) et (τ ◦τ)(x, y) =

(x,−y).
3a. Restricting the projection (x, y) 7→ x we exhibit the curve C :=

Cm,a0,...,am as a degree 2 covering of P1(C). Its function field C(C) is therefore
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a degree two extension of C(x) = C(P1(C)). Moreover, there is a one-to-
one correspondence between automorphisms of C and automorphisms of the
field C(C) (9). The two elements of the automorphism group of the extension
C(C)|C(x) are represented by idC and ρ. Any automorphism of C(C) there-
fore induces an automorphism of Frac (C[x, y]/(P )). If the coefficients of the
one-variable polynomial P (x, y) − y2 are independent over Q then the only
non trivial automorphism is represented by ρ.

3b. By Proposition 2.1.19, if C has a real structure then there is an isomor-
phism between C and C satisfying σAψ ◦ ψ = idC .

Moreover, it follows from 3a that the only isomorphisms between Cm,a0,...,am

and its conjugate are ϕ and ϕ′ : (x, y) 7→ (− 1
x ,−

i
xm y), but ϕ ◦ σAϕ = (ϕ′) ◦

(σA(ϕ′)) = ρ 6= idCm,a0,...,am
. It follows that if a0, ak, ak are independent over

Q then the curve Cm,a0,...,am has no real structure.
2.1.42 We have two non-equivalent real structures on P1(C):

σP : (x0 : x1) 7→ (x0 : x1)

et
σP
′ : (x0 : x1) 7→ (−x1 : x0)

which give rise to three non-equivalent structures on P1(C)×P1(C): the invo-
lution σP× σP whose fixed locus is the torus T2 = S1× S1 and the involutions
σP × σP′ and σP′ × σP′ whose fixed loci are empty.

The fourth structure is ((x : y), (z : t)) 7→ ((z : t), (x : y)) whose fixed locus
is the sphere S2.
2.2.6 1. We have that F (R) = Z(I) and F (R) = ZC(I(F (R))).

If I(Z(I)) ⊆ I then ZC(I(F (R))) ⊇ ZC(I) or in other words F (R) ⊇ F so
F (R) is dense in F .

If F (R) is dense in F then ZC(I(F (R))) = F = ZC(I). As the ideal I is
radical the ideal IC = I⊗R[X1,...,Xn] C[X1, . . . , Xn] is also radical. It follows by
the Nullstellensatz that IC(F (R)) ⊆ IC and hence I(F (R)) ⊆ I.

2. This follows immediately from (1) using Theorem A.5.15.
2.2.7 Set I = (x2 + y2): we then have that F = ZC(I) = {x ± iy = 0}
and the real locus is F (R) = Z(I) = {(0, 0)} and I(Z(I)) = (x, y) ( I in
R[X1, . . . , Xn].

(9)As an automorphism of C is also a birational transformation of C we simply apply The-
orem 1.3.30 which states there is a one-to-one correspondence between automorphisms of
C(C) and birational transformations of C. The stronger correspondence used in this proof
relies on the fact that C is a smooth projective curve.
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We set a = (0, 0). On the one hand, OF (R),a =
(
R[x,y]
(x,y)

)
mF (R),a

= R and on

the other hand
(
OGF |F (R)

)
a

= OGF,a =
((

C[x,y]
(x2+y2)

)
mF,a

)G
) R since the class

of the polynomial x modulo (x2 + y2) belongs to OGF,a since its coefficients are
real.
2.2.26 1. ϕ is a morphism of R-varieties if and only if

– ϕ is an morphism of complex varieties and
– ϕ ◦ σA|F1 = σA|F2 ◦ ϕ.
By Exercise 1.2.56 the first condition is equivalent to the existence of polyno-

mial functions f1, . . . , fm ∈ C[x1, . . . , xn] such that for every (x1, . . . , xn) ∈ F1,
ϕ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)). The second condition is
equivalent to

ϕ (x1, . . . , xn) = ϕ(x1, . . . , xn) ,

which simply means that for every (x1, . . . , xn) ∈ F1 and every i = 1 . . .m,

fi (x1, . . . , xn) = fi(x1, . . . , xn) .

i.e. for every i = 1 . . .m, σfi = fi or in other words fi has real coefficients.
2. ϕ is an R-regular rational map if and only if
– ϕ is a rational map of R-varieties ;
– F1(R) ⊂ dom(ϕ).
In other words, ϕ is an R-regular rational map if and only if
– ϕ is a rational map of complex varieties
– ϕ ◦ σA|F1 = σA|F2 ◦ ϕ ;
– F1(R) ⊂ dom(ϕ).
By Exercise 1.3.25, the first condition is equivalent to the existence of poly-

nomial functions g1, . . . , gm ∈ C[x1, . . . , xn] and h1, . . . , hm ∈ C[x1, . . . , xn]
such that for any (x1, . . . , xn) ∈ dom(ϕ),

ϕ(x1, . . . , xn) =
(
g1(x1, . . . , xn)
h1(x1, . . . , xn) , . . . ,

gm(x1, . . . , xn)
hm(x1, . . . , xn)

)
.

The map ϕ is therefore an R-regular rational map if and only if gi and hi
have real coefficients and the functions hi do not vanish at any point of F1(R).
2.2.31 The usual atlas is a compatible atlas because the functions defining the
open sets have real coefficients. We set

U0 := {(x0 : x1) ∈ P1(C) | x0 6= 0}
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and

ϕ0 :
{

U0 −→ C
(x0 : x1) 7−→ x1

x0

.

Similarly, set U1 := {(x0 : x1) ∈ P1(C) | x1 6= 0} and

ϕ1 :
{

U1 −→ C
(x0 : x1) 7−→ x0

x1

.

We then have that

σϕ0 :
{

σ(U0) σP−→ U0
ϕ0−→ C σA−→ C

(x0 : x1) 7−→ (x0 : x1) 7−→ x1
x0
7−→ x1

x0

and
σϕ1 :

{
U1 −→ C

(x0 : x1) 7−→ x0
x1

.

2.3.14 Use Exercise 1.2.56(3) to write the isomorphism

ϕ′ ◦ ϕ−1 : ϕ′(V )→ ϕ(V )

in homogeneous coordinates then check that ϕ′ ◦ ϕ−1 extends to an isomor-
phism ϕ(V )K → ϕ′(V )K .
2.3.17 1. I(F ) = (x, y) so FC = {(0, 0} is a complexification of F which is
irreducible so F is geometrically irreducible.

2. V = ZC(x+ iy) ∪ ZC(x− iy).
3. The R-variety (V, σ) does not have enough real points so it is not a

complexification of F .
2.6.15 See [Ser55a, Chapitre III, §2] if necessary.
2.6.27 To simplify notation we will prove this result only for n = 2. Take
a system of linear homogeneous coordinates (x0 : x1 : x2) and let Uk :=
P2 \ Z(xk) be the standard open affine set defined by xk 6= 0. Consider
U0 with its coordinates u1, u2. Sections of KP2 on U0 are all of the form
p(u1, u2) du1∧du2. We will calculate the poles and zeros of the section du1∧du2
outside of U0. There is only one divisor outside of U0, namely x0 = 0, so it
is enough to check the multiplicity along this divisor. We will calculate in U1
with coordinates v0, v2 such that (1 : u1 : u2) = (v0 : 1 : v2). In other words,
u1 = 1

v0
and u2 = v2

v0
, from which we get that

du1 ∧ du2 =
(
− 1
v2

0
dv0

)
∧
(
v0 dv2 − v2 dv0

v2
0

)
= − 1

v3
0

dv0 ∧ dv2 .

This form therefore has a pole of order 3 along v0 = 0 as claimed.
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2.6.28 Since H0(X,OX(−KX)) 6= 0, there is an effective divisor C linearly
equivalent to −KX .

There is an exact sequence
0→ OX(−C)→ OX → OC → 0

which on tensorising with Ω1
X gives us

0→ Ω1
X(KX)→ Ω1

X → Ω1
X |C → 0

whose initial terms in the long exact sequence are
0→ H0(X,Ω1

X(KX))→ H0(X,Ω1
X)→ · · ·

and the conclusion follows because H0(X,Ω1
X) = 0.

For the second question simply note that ΘX is the dual of Ω1
X and apply

Theorem D.2.5.





CHAPTER 3

TOPOLOGY OF VARIETIES WITH AN
INVOLUTION

Equipped with the Euclidean topology, an R-variety (X,σ) is a topological
space with a continuous involution. In this chapter we study the action of this
involution on the homology of the topological space X.

We start with preliminary results on involutive modules, Poincaré duality
and characteristic classes and then present Smith theory and its applications
to R-varieties. The main consequences of this theory are constraints on the
topology of the real locus depending on the topology of the complex variety.
Most of the time these constraints take the form of upper and lower bounds on
various topological invariants, such as the Smith-Thom (3.8), Harnack (3.9),
Petrovskii (3.11) and (3.12), Comessatti (3.14) inequalities.

If the variety X is non singular then X and X(R) are topological and
differentiable manifolds. We recall that- as in Definition 1.4.1 and Proposi-
tion 2.2.27- any non singular complex variety is also a differentiable manifold
of dimension dimRX = 2n and its real locus is a differentiable manifold of
dimension dimRX(R) = n if X(R) 6= ∅. This enables us to apply topo-
logical tools such as Poincaré duality and characteristic classes which yield
various constraints on the topological invariants of these spaces expressed in
the form of congruences, such as the results due to Rokhlin (3.15) and Gudkov-
Kharlamov-Krakhnov (3.16).

We then turn our attention on R-curves, especially plane curves, which leads
to a discussion of the first part of Hilbert’s famous sixteenth problem.

In the following section we consider the Galois cohomology of X’s homology
and define the various different forms of Galois-maximality. In many cases this
method will enable us to calculate the homology of the real locus using the
Galois group action on the homology of the complex variety. This method
yields preciser bounds than those obtained in previous sections.
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We end this chapter with a discussion of algebraic cycles, by which we mean
homology classes represented by algebraic subvarieties.

3.1. Homology and cohomology of R-varieties

Unless otherwise stated, the homology and cohomology used here will always
be singular homology. Of course when dealing with the underlying topological
space of a differentiable manifold or a real or complex quasi-projective variety
with its Euclidean topology, we determine singular homology by calculating
simplicial homology- see Remark B.3.3 and [Hat02, § 2.1]. The homology
groups of a compact topological or differentiable manifold are finitely gener-
ated, as are those of a projective real or complex algebraic variety - see [Hat02,
Corollary A.8] for more details. We denote by Hk(X,L;A) the kth homology
group and by Hk(X,L;A) the kth cohomology group of the pair (X,L) with
values in an abelian group A: typically A will be a ring or a field such as
A = Z2,Z,Q,R or C. If L = ∅ then we will write "X" rather than "X,∅". See
the Appendix, Section B.3 for basic homology and cohomology theory. As is
standard practice, we will denote by

Zm := Z/mZ

the cyclic group of order m > 1.(Be careful not to confuse this notation with
the profinite group Zp = lim←−Z/pnZ, where p is a fixed prime number and n
runs over all natural numbers.)

Involutive modules. — An involutive module is a pair (M,σ) where M is
a Z-module with a linear involution σ. Any involutive module is a G-group
where G is the group {1, σ} ' Z2. Indeed, any Z-module is an abelian group
and any abelian group is equipped with a unique Z-module structure. We
denote by MG or Mσ the submodule of M of elements which are invariant
under σ and by M−σ the submodule of anti-invariant elements.

Lemma 3.1.1. — Let M be a free Z-module of finite rank n equipped with a
linear involution σ. There is then a basis of M

(a1, . . . , ar, b1, . . . , bλ, cλ+1, . . . , cn−r)

such that
1. for any 1 6 i 6 r, σ(ai) = ai;
2. for any 1 6 i 6 λ, σ(bi) = ai − bi;
3. for any λ 6 i 6 n− r, σ(ci) = −ci.
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In other words, M can be decomposed as a direct sum

M1 ⊕M2 ⊕B1 ⊕ · · · ⊕Bλ

where σ|M1 = idM1, σ|M2 = − idM2 and σ|Bi has a matrix of the form
(

0 1
1 0

)
.

Proof. — By convention(1) we denote by 1 = σ ◦ σ the identity map on M .
The invariant submodule ker(1− σ) is a direct factor of M and the morphism
induced by 1+σ ontoM/ ker(1−σ) is identically zero because (1−σ)◦(1+σ) ≡
0. In other words, the map induced by σ on M/ ker(1 − σ) is − id. In any
basis for M extending a basis for ker(1−σ) the matrix of σ is therefore of the
form (

Ir N

0 − In−r

)
.

Using matrices of the form
(

Ir B

0 C

)
to make base changes we see that we can

reduce N modulo 2 and replace N by any matrix of the form NC for some
invertible matrix C. This completes the proof of the lemma.

To prove the second part of the lemma, simply consider the basis given by

(a1 − b1, . . . , aλ − bλ, b1, . . . , bλ)

of the submodule generated by (a1, . . . , aλ, b1, . . . , bλ) and reorganise terms.

Note that the integer λ appearing in the above lemma correponds to the
dimension λ := λσ of the Z2-vector space (1+σ)(M⊗ZZ2) (See Appendix A.4
for the definition of the tensor product ⊗). It is therefore an invariant of the
involutive module (M,σ). Similarly, the rank r := rσ = rkMσ (which is also
equal to rkM1 + λσ) of the invariant submodule Mσ is independant of the
choice of basis of M . We therefore have the following proposition.

Proposition 3.1.2. — Let (M,σ) and (N, τ) be free finitely generated in-
volutive Z-modules and let (M,σ) → (N, τ) be a G-equivariant isomorphism
(which is another way of saying that (M,σ) → (N, τ) is an isomorphism of
involutive modules). We then have that λσ = λτ and rσ = rτ .

(1)This convention derives from the fact that the identity is the multiplicative unit in the
group algebra Z[G].
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Definition 3.1.3. — LetM be a free Z-module of finite rank n with a linear
involution σ. We define the Comessatti characteristic(2) of (M,σ) to be the
dimension λ := λσ of the Z2-vector space (1 + σ)(M ⊗Z Z2).

As M is an abelian G-group the Galois cohomology sets Hk(G,M) are
abelian groups (indeed, they turn out to be Z2 vector spaces). See [Ser94,
§I.5] for a general definition of the cohomology groups Hk(G,M).

Proposition 3.1.4. — Let (M,σ) be an involutive module and set G =
{1, σ}. For any k > 0 we have that Hk(G,M) ' Hk+2(G,M) and

H0(G,M) = ker(1− σ) = Mσ ;
H1(G,M) = ker(1 + σ)/ Im(1− σ) = M−σ/ Im(1− σ) ;
H2(G,M) = ker(1− σ)/ Im(1 + σ) = Mσ/ Im(1 + σ) .

Proof. — See [Wei94, Theorem 6.2.2], noting that the norm on Z[G] is the
element 1 + σ.

Lemma 3.1.5. — Let E be a Z2-vector space equipped with a linear involu-
tion σ(3). We then have that Eσ = E−σ and (1 + σ)E = (1− σ)E from which
it follows that

H1(G,E) = H2(G,E)
and setting λσ = dimZ2(1 + σ)E we have that

dimZ2 E
G = dimZ2 E − λσ ;

dimZ2 H
1(G,E) = dimZ2 E − 2λσ .

Proof. — Simply note that EG = ker(1 + σ).

Proposition 3.1.6. — Let M be a free Z-module of rank n with a G-action.
The group G also acts on the Z2-vector space M2 = M ⊗Z Z2 = M/2M and
on setting r = rkMσ and λ = dimZ2(1 + σ)M2 we get that

dimZ2 H
1(G,M) = rkM−σ − λ = n− r − λ ;

dimZ2 H
2(G,M) = r − λ ;

dimZ2 M
σ
2 = n− λ ;

dimZ2 H
1(G,M2) = n− 2λ .

Proof. — Simply apply Lemmas 3.1.1 and 3.1.5.

(2)Terminology due to Silhol [Sil89, I.(3.5.1), page 15].
(3)The space E has a unique Z-module structure obtained by composing the Z2 action with
the unique ring morphism Z→ Z2.
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We conclude this subsection with a useful result on involutive integral lat-
tices, by which we mean free Z-modules of finite rank n equipped with an
integer-valued symmetric bilinear form (see Definition A.6.5) and an involu-
tion.

Proposition 3.1.7. — Let (M,Q) be an integral quadratic lattice with an
involutive isometry σ. The discriminant of the restriction of Q to the invariant
(resp. anti-invariant) part of M satisfies

|det(Q|Mσ)| = | det(Q|M−σ)| = 2λ .

Proof. — Applying Lemma A.6.9 to the invariant submodule gives us
|det(Q|Mσ)| = |det(Q|M−σ)| = [M : Mσ ⊕ M−σ]. Lemma 3.1.1 then
completes the proof of the proposition.

Poincaré duality on R-varieties. — Poincaré duality holds for all topo-
logical manifolds- see Definition B.5.1- and therefore for all non singular R-
varieties in particular. Here we will deal with varieties whose underlying Eu-
clidean topological space is compact: see Theorem B.7.1 for the non-compact
case.

Proposition 3.1.8. — Let (M,σ) be an oriented compact topological mani-
fold of dimension n equipped with an orientation-preserving (resp. reversing)
involution. Consider an integer k ∈ {0, .., n}. The Poincaré duality isomor-
phism (Corollary B.7.2)

DM : Hk(M ;Z) '−→ Hn−k(M ;Z)
φ 7−→ [M ] _ φ

is then equivariant (resp. anti-equivariant) for the G = Z2 action determined
by σ.

Proof. — Simply apply the fact that the cap-product is natural (Proposi-
tion B.7.5) to the continuous map σ : M →M for l = n and α = [M ] :

σ∗([M ]) _ φ = σ∗ ([M ] _ σ∗(φ)) .

As the linear map σ∗ is involutive it follows that

σ∗(DM (φ)) = DM (σ∗(φ)) (resp. σ∗(DM (φ)) = −DM (σ∗(φ)))

if σ∗([M ]) = [M ] (resp. σ∗([M ]) = −[M ]).
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Corollary 3.1.9. — Let (X,σ) be a non singular projective R-variety (or
compact analytic R-variety) of dimension n. The Poincaré duality isomor-
phism,

DX : Hk(X;Z) '−→ H2n−k(X;Z)
φ 7−→ [X] _ φ

is then equivariant if n is even and anti-equivariant if n is odd.

Proof. — By Proposition 2.2.27 the complex variety X with its Euclidean
topology has an oriented real differentiable manifold structure of dimension
2n. By Proposition 2.2.28 the real structure σ is orientation preserving if n is
even and orientation reversing if n is odd.

Orientability and characteristic classes. — A complex variety is always
orientable and oriented- see Exercise B.5.11 and Remark E.2.2(4)- which is
not always the case for a real variety. In this subsection we will prove some
results concerning the orientability of the real locus of an R-variety. The first
non-trivial case is that of surfaces because any non-singular R-curve has real
dimension 1 and is therefore orientable (see Remark B.5.5).

We start our investigations with non singular hypersurfaces in P3.

Proposition 3.1.10. — Let Xd ⊂ P3(C) be a non singular real algebraic
surface defined by a polynomial of degree d with real coefficients. Assume that
Xd(R) = Xd ∩ P3(R) is non empty. The compact topological surface Xd(R) is
then orientable if and only if d is even.

Proof. — By Poincaré duality (see Proposition B.7.17), a topological surface
V ⊂ P3(R) is orientable if and only if its homology class [V ] ∈ H2(P3(R);Z2)
vanishes. The group H2(P3(R);Z2) is generated by the class of a real
hyperplane H ⊂ P3(R). The class [Xd(R)] = d[H] therefore vanishes in
H2(P3(R);Z2) if and only if d is even.

Remark 3.1.11. — The group H4(P3(C);Z) is generated by the class of a
complex hyperplane H ⊂ P3(C) so we have that [Xd] = d[H] in H4(P3(C);Z).
This makes it tempting to reason using the complex variety: this idea is illus-
trated in Example 3.1.17. See also Section 3.7.

When the degree d is odd we have a stronger result.

Proposition 3.1.12. — Let Xd ⊂ P3(C) be a non singular algebraic sur-
face defined by a polynomial of degree d with real coefficients. If d is odd
then Xd(R) 6= ∅ and has a unique non-orientable connected component: there
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may be other components which are orientable. Moreover, this unique non
orientable connected component has odd Euler characteristic.

Proof. — 1. By Proposition 2.6.48, we have that Xd(R) 6= ∅.
2. By Proposition 3.1.10 the real locusXd(R) has at least one non-orientable

connected component since a line in P3(R) transverse to Xd(R) meets it
in a odd number of points, namely d.

3. There cannot be any other non orientable component because in P3(R)
any two non orientable surfaces must meet. Let H be a plane which is
transverse to Xd(R) (such a plane exists by Bertini’s theorem D.9.1)-
the curve cut out on H by each non orientable component contains a
pseudo-line, but any two pseudo-lines in H ' RP2 always meet. See
[BR90, 5.1.6] for more details if necessary.

4. The statement about the Euler characteristic follows from the fact that
any non-orientable surface in RP3 is cobordant with RP2 (see [BW69])
so is necessarily diffeomorphic to the connected sum of RP2 with a finite
number of Klein bottles K2. We recall that the connected sum V#K2 of
a non orientable surface V with a Klein bottle is homeomorphic to the
connected sum V#T2 of V with a torus).

Example 3.1.13. — A non singular cubic surface X3(R) in RP3 is home-
omorphic to one of the following surfaces.( In this list, Vg denotes the non-
orientable surface whose topological Euler characteristic is 2−g and t denotes
disjoint union as in notation 4.2.15)

V1 = RP2, V3, V5, V7, RP2 t S2 .

See [BR90, Proposition 5.6.4] for an elementary proof of this fact. Antic-
ipating Chapter 4, we can use the fact that a non singular cubic in P3(C) is
a Del Pezzo surface of degree 3, which implies that the complex surface X3 is
isomorphic to the blow up of P2(C) in 6 points in general position, by which
we mean that they do not all lie on one conic (they are not coconic) and no
three of them are on the same line. Consider the case where this set of 6 points
is globally fixed by σP. The number of these points in non real conjugate pairs
can be 0, 2, 4 or 6, giving the first 4 possibilities. (See Example 4.2.18 for the
calculation of the topology of a blow-up at a point). The last topological type
can be realised by blowing up a real point on a conic bundle over P1 which is
R-minimal and has four singular fibres as in Example 4.2.8. The real locus of
such a bundle is a disjoint union of two spheres which after blow up gives us
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the desired topological form. To be sure that this complex surface really is the
blow up of P2 in 6 points we need the minimal model, which is a Hirzebruch
surface by Exercise 4.2.11, to be of index 1. To prove this, recall that every
singular fibre consists of two non real conjugate (−1)-curves, which gives us
four contractions, to which we add our extra blow-up and the contraction of
the exceptional section which is a (−1)-curve by hypothesis. See also [Sil89,
§VI.5].

Returning to abstract surfaces, the differentiable manifold structure inher-
ited from the non singular real or complex algebraic structure means we can
use the characteristic classes of the tangent bundle. See [MS74, §4 et §14] for
the construction and main properties of these classes.

Definition 3.1.14. — Let (X,σ) be a non singular R-variety of dimension n.
We denote by TX the differential tangent bundle of the 2n-dimensional mani-
fold underlyingX and ifX(R) 6= ∅ we denote by TX(R) the differential tangent
bundle of the n dimensional manifold underlying X(R). The bundle TX(R) is
a real vector bundle of rank n and its kth Stiefel-Whitney class

wk(X(R)) := wk(TX(R)) ∈ Hk(X(R);Z2)

is called the kth Stiefel-Whitney class of X(R).
The bundle TX is a real vector bundle of rank 2n and its kth Stiefel-Whitney

class
wk(X) := wk(TX) ∈ Hk(X;Z2)

is called the kth Stiefel-Whitney class of X. The bundle TX has a natural rank
n complex vector bundle structure and its kth Chern class

ck(X) := ck(TX) ∈ H2k(X;Z)

is called the kth Chern class of X.

The first Stiefel-Whitney class w1(V ) of a differentiable compact manifold
V vanishes if and only if V is orientable. See [MS74, Problem 12.A] for more
details. The vanishing of w1(X(R)) therefore detects the orientability of the
real locus X(R): on the other hand, the first Stiefel-Whitney class of X always
vanishes because X is orientable. The key result is therefore the following.

Proposition 3.1.15. — Let (X,σ) be a non singular R-variety whose real
locus is non empty. The variety X(R) is then orientable if and only if

w1(X(R)) = 0 in H1(X(R);Z2) .
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It is not always easy to calculate the characteristic classes of the real locus
but we can sometimes use the characteristic classes of the complex variety.

Proposition 3.1.16. — Let X be a non singular complex projective vari-
ety of dimension n. The Stiefel-Whitney and Chern classes of X satisfy the
following relationships.

1. w2k+1(X) = 0 ;
2. w2k(X) ≡ ck(X) mod 2.

Moreover, if σ is a real structure on X then
3. σ∗ck(X) = (−1)kck(X) ;
4. σ∗w2k(X) = w2k(X).

Proof. — The first two equations are proved in [MS74, Problem 14.B]. For the
third, first note that the image under σ of the tangent bundle TX is isomorphic
to the conjugate bundle TX and then apply [MS74, Lemma 14.9]. The final
equation is a consequence of the first three.

Example 3.1.17. — Let Xd ⊂ P3(C) be a non singular algebraic surface of
degree d. We then have that w2(Xd) = 0 if and only if d is even. Indeed,
w2(X) ≡ c1(X) mod 2 and c1(X) = c1(dH) = dc1(H) for some hyperplane
H ⊂ P3(C).

Theorem 3.1.18. — Let (X,σ) be a non singular R-variety of even dimen-
sion n = 2m with non empty real locus such that b1(X;Z2) = 0.

If w2(X) ∈ H2(X;Z2), the second Stiefel-Whitney class of X, vanishes then
X(R) is orientable.

Remark 3.1.19. — This theorem is particularly useful when then variety
X is simply connected.

Proof of Theorem 3.1.18. — The proof below draws on [DK00, 2.9.1 Remark,
page 753]. The basic idea is to apply a result due to Edmonds:

Lemma 3.1.20 ([Edm81, Theorem 3]). — Let V be an oriented manifold
with a spin structure (see Section B.5) equipped with a C∞ involution σ fixing
both the orientation and a spin structure. If the stable locus V σ is non empty
then it is orientable.

The complex varietyX with the Euclidean topology is an oriented manifold-
see Proposition 2.2.27. An oriented differentiable manifold V has a spin struc-
ture if and only if w2(TV ) = 0, as in Proposition B.5.20. By [LM89, Chapter
II, Theorem 2.1], as b1(X;Z2) = 0, this variety has only one spin structure
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which must therefore be fixed by σ. As n is even, σ is orientation preserving
by Proposition 2.2.28. The proposition follows on applying Edmond’s theo-
rem.

Example 3.1.21. — The real locus of a real K3 surface (see Definition 4.5.3)
is either empty or orientable. See the proof of Proposition 4.5.6 for more
details.

3.2. Smith theory

As in [Bre72, Chapitre III] we present a version of Smith theory based on
simplicial homology which in principle is only valid for triangulable topological
spaces- see Definition B.3.2. This class contains all differentiable manifolds and
all complex or real quasi-projective varieties with their Euclidean topology- see
Remark B.3.3.

Let (X,σ) be a projective R-variety of dimension n. We equip the complex
variety X and the real locus X(R) with their Euclidean topology so that they
become compact triangulable topological spaces as in Remark B.3.3. We do
not assume that X is non singular: we do however assume it is projective,
which guarantees it is compact for the Euclidean topology and that all its
homology groups are finitely generated.

Remark 3.2.1. — Most of the results given in this section remain valid
for a compact complex analytic space with an anti-holomorphic involution.
In particular, the following results hold for any compact Kähler variety X-
see Definition D.3.4- equipped with an anti-holomorphic involution σ. This
generalisation will be useful in the study of real K3 surfaces in Chapter 4.

The involution σ equips X with a Galois group action where G =
Gal(C|R) ' Z2. Let L ⊂ X be a subvariety that is stable under σ (or in other
words an R-subvariety). A triangulation of the pair (X,L) is a simplicial
pair (X̃, L̃)- see Definition B.3.1- equipped with a G-action. In particular, σ
acts simplicially on X̃. As X is compact, X̃ is a finite simplicial complex.
Passing to a barycentric subdivision if necessary, we may assume that if
σ fixes a simplex s of X̃ then it fixes all the vertices of s as in [Bre72,
Proposition III.1.1]. We denote by X̃G the subcomplex fixed by σ and set
L̃G = L̃ ∩ X̃G. The complex X̃G (resp. L̃G) is then a triangulation of X(R)
(resp. L(R)). We denote by C(X̃, L̃;Z2) the chain group of the pair (X̃, L̃)
with coefficients in Z2.
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Theorem 3.2.2. — The sequence

(3.1) 0→ ρC(X̃, L̃;Z2)⊕ C(X̃G, L̃G;Z2) i−→

C(X̃, L̃;Z2) ρ−→ ρC(X̃, L̃;Z2)→ 0

where i is the sum of canonical injections and ρ = 1 + σ, is an exact sequence
of chain complexes (we recall that 1 = σ ◦ σ is the identity map).

Proof. — The second to last arrow is obviously surjective and if s is a simplex
fixed by σ then ρ(s) = 2s = 0 which implies that i is injective. It remains
to prove that the sequence is exact at C(X̃, L̃;Z2). For every n we simply
consider the set of n-chains in the orbit of s for every n-simplex s ⊂ X̃ \ L̃. It
is clear that ρ◦ρ = 2(1+σ) = 0 so Im i ⊂ ker ρ. Consider an element s ∈ ker ρ.
If s is invariant then ρ(s) = 2s = 0 et s = i(s) ∈ Im i. If s 6⊂ X̃G then any
n-chain in the orbit of s can be written as k1s + k2σ(s) where ki ∈ {0, 1} for
i = 1, 2 and corresponds to the unique element k1 + k2σ in the group algebra
Λ := Z2[G]. The sequence (3.1) reduces to a sequence of vector spaces

0→ ρΛ i−→ Λ ρ−→ ρΛ→ 0 .

The sequence is immediately exact: Λ is a 2-dimensional vector space over
Z2 and ker(σ : Λ→ Λ) = 〈σ〉 is a vector subspace of dimension 1.

Remark 3.2.3. — More generally, if G is a group of prime order p then there
is an exact sequence analogous to (3.1) for chains with coefficients in Zp. See
[Bre72, Chapitre III, Theorem 3.1] for more details.

The singular homology groups of the pairs (X,L) and (X(R), L(R)) are
isomorphic to the homology groups associated to the simplicial complexes
C(X̃, L̃;Z2) and C(X̃G, L̃G;Z2) (see [Hat02, § 2.1] for more details). The ex-
act sequence (3.1) therefore induces a long exact sequence of homology groups:

(3.2) · · · ρk+1−−−→ Hk+1(ρC(X̃, L̃;Z2)) γk+1−−−→

Hk(ρC(X̃, L̃;Z2))⊕Hk(X(R), L(R);Z2) ik−→

Hk(X,L;Z2) ρk−→ Hk(ρC(X̃, L̃;Z2)) γk−→ · · ·

where ρk is the map induced by ρ on each homology group.

Remark 3.2.4. — Let σ∗ be the action of σ on Hk(X,L;Z2). The restriction
of σ∗ to Im ik is then the identity.
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For any given k we can deduce from the exact sequence (3.2) the following
exact sequence

(3.3) 0→ Hk+1(ρC(X̃, L̃;Z2))/ Im ρk+1 →

Hk(ρC(X̃, L̃;Z2))⊕Hk(X(R), L(R);Z2)→ Hk(X,L;Z2)→ Im ρk → 0 .

The homology groups appearing in the exact sequence above are Z2-
vector spaces. For k = 0, . . . , 2n we set ak := dimZ2 Im ρk and ck :=
dimZ2 Hk(ρC(X̃, L̃;Z2)) and we get

0 = dimH2n(X,L) −c2n −a2n
0 = dimH2n−1(X,L) −c2n−1 + c2n −a2n − a2n−1
...

...
...

...
0 = dimHn+1(X,L) −cn+1 + cn+2 −an+2 − an+1

dimHn(X(R), L(R)) = dimHn(X,L) −cn + cn+1 −an+1 − an
...

...
...

...
dimHk(X(R), L(R)) = dimHk(X,L) −ck + ck+1 −ak+1 − ak

...
...

...
...

dimH1(X(R), L(R)) = dimH1(X,L) −c1 + c2 −a2 − a1
dimH0(X(R), L(R)) = dimH0(X,L) −c0 + c1 −a1 − a0 .

Summing these equalities and noting that c0 = a0 = 0 we get that

(3.4)
n∑
l=0

dimHl(X(R), L(R);Z2) =
2n∑
k=0

(
dimHk(X,L;Z2)− 2ak

)
.

For ease of notation we will assume that L = ∅. We now interpret the
groups Hr(ρC(X̃;Z2)) geometrically using the projection p : X → Y from
X to the orbit space Y := X/G (which is triangulable- see [Bre72, III.§ 1,
page 117] for more details). The topological space

Y = X/G

is the topological quotient (or topological quotient space) of X by G: in other
words, we equip Y with the finest topology rendering p continuous. We
consider X(R) as a subspace of both X and Y , we means essentially that
we identify the ramification locus X(R) and the branching locus p(X(R)).
The projection p is a double cover ramified along X(R) and the restriction
X \X(R)→ Y \X(R) of p is a non ramified double cover (see [Hat02, § 1.3]).



3.2. SMITH THEORY 161

Proposition 3.2.5. — The groups Hk(ρC(X̃;Z2)) appearing in the exact
sequence (3.2) are isomorphic to the homology groups of the pair (Y,X(R)) :

∀k, Hk(ρC(X̃;Z2)) ' Hk(Y,X(R);Z2) .

Proof. — We start by proving that

Hk(ρC(X̃, L̃;Z2)) ' Hk(X̃/G, X̃G ∪ L̃/G;Z2)

as in [Bre72, III.(3.4)]. Let s be a simplex in X̃ \ L̃. Then we have that
ρ((k1 + k2σ)(s)) = (k1 + k2)ρ(s) and ρ((k1 + k2σ)(s)) = 0 if and only if
k1 + k2 = 0 where s ∈ X̃G. The map ρ : C(X̃, L̃;Z2)→ C(X̃, L̃;Z2) therefore
has the same kernel as the composition

C(X̃, L̃;Z2) j−→ C(X̃, X̃G ∪ L̃;Z2) π−→ C(X̃/G, X̃G ∪ L̃/G;Z2) .

The images of these morphisms are therefore isomorphic via the map given
by ρ(c) 7→ (π ◦ j)(c) for any chain c. Passing to homology groups for L = ∅
we get that

Hk(ρC(X̃;Z2)) ' Hk(X̃/G, X̃G;Z2)
and

Hk(X̃/G, X̃G;Z2) ' Hk(Y,X(R);Z2) .

We note for later use that the following diagram is commutative

0→ ρC(X̃)⊕ C(X̃G) i−−−−→ C(X̃) ρ−−−−→ ρC(X̃)→ 0y0+id
y y'

0→ C(X̃G) −−−−→ C(X̃/G) −−−−→ C(X̃/G, X̃G)→ 0
and therefore induces a commutative diagram of homology groups

(3.5)

→ Hk(ρC(X̃))⊕Hk(X(R)) −−−−→ Hk(X) −−−−→ Hk(ρC(X̃))→y y y'
→ Hk(X(R)) −−−−→ Hk(Y ) −−−−→ Hk(Y,X(R))→ .

The exact sequence (3.2) implies the following theorem.

Theorem 3.2.6. — Let (X,σ) be a projective R-surface. There is a homology
long exact sequence:

(3.6) · · · → Hk(Y,X(R);Z2)⊕Hk(X(R);Z2)→ Hk(X;Z2)→

Hk(Y,X(R);Z2) ∆k−−→ Hk−1(Y,X(R);Z2)⊕Hk−1(X(R);Z2)→ · · ·
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where G = {1, σ} ' Z2, X(R) = XG and Y = X/G is the quotient topological
space of X by G.

Moreover, it follows from diagram (3.5) that the second component of ∆k

is the boundary map δk of the homology sequence associated to the pair
(Y,X(R))

(3.7) Hk(Y,X(R);Z2) δk−→ Hk−1(X(R);Z2)→ Hk−1(Y ;Z2) .

3.3. Upper bounds on Betti numbers

Definition 3.3.1. — Let (X,L) be a pair of topological spaces (if L = ∅
we simply write X) with L ⊂ X such that for any k, dimQHk(X,L;Q) <∞.
The kth Betti number bk(X,L) of (X,L) is the dimension of the kth homology
group of (X,L) with coefficients in Q

bk(X,L) := dimQHk(X,L;Q) .

We denote by bk(X,L;Z2) the kth Betti number with coefficients in Z2, or in
other words

bk(X,L;Z2) := dimZ2 Hk(X,L;Z2) .
We will denote by

b∗(X) =
∑

bk(X) and b∗(X;Z2) =
∑

bk(X;Z2)

the total Betti number of X and the total Betti number of X with coefficients
in Z2.

Remark 3.3.2. — Of course, as

Hk(X,L;C) = Hk(X,L;Q)⊗Q C

(see Section B.4), we have that

bk(X,L) = dimCHk(X,L;C) .

Remark 3.3.3. — The Betti numbers with coefficients in Z2 are not always
equal to the Betti numbers. See Section B.4 for the general theory and the
exercise below for some examples.

Exercise 3.3.4. — Prove the following statements.
1. If X = RP2 then b1(X) = 0 but b1(X;Z2) = 1.
2. If X = S1 × S1 then b1(X) = b1(X;Z2) = 2.
3. If X = K2 is a Klein bottle then b1(X) = 1 but b1(X;Z2) = 2.

[Hint: use universal coefficients, see Corollary B.4.5.]
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Proposition 3.3.5. — Let (X,σ) be a projective R-variety of dimension n

and let L ⊂ X be an R-subvariety. The Betti numbers with coefficients in Z2
satisfy the following equation:

2n∑
k=0

bk(X,L;Z2)−
n∑
l=0

bl(X(R), L(R);Z2) ≡ 0 mod 2

and in particular
2n∑
k=0

bk(X;Z2)−
n∑
l=0

bl(X(R);Z2) ≡ 0 mod 2.

Proof. — As X is projective it is compact for the Euclidean topology and
its homology groups are therefore finitely generated. We then simply apply
(3.4).

Theorem 3.3.6 (Smith-Thom inequality). — Let (X,σ) be a projective
R-variety of dimension n and let L ⊂ X be an R-subvariety. The Betti num-
bers with coefficients in Z2 satisfy the following inequalities

n∑
l=0

bl(X(R), L(R);Z2) 6
2n∑
k=0

bk(X,L;Z2)

and in particular

(3.8)
n∑
l=0

bl(X(R);Z2) 6
2n∑
k=0

bk(X;Z2).

Proof. — This follows immediately from (3.4) as in the previous proof.

For R-varieties defined by explicit equations, Thom [Tho65] and Milnor
[Mil64] independantly established an upper bound on

∑n
l=0 bl(X(R);Z2) de-

pending on the degrees of the defining equations. This result is proved using
Morse theory for manifolds with boundary. The bound given depends only on
the complex variety so this inequality is of the same type as (3.8).

For curves, Theorem 3.3.6 has the following corollary, often called Harnack’s
theorem or Harnack’s inequality despite that fact that the general statement
was due to Klein, Harnack having proved it only for plane curves.

Corollary 3.3.7 (Harnack’s inequality). — Let (C, σ) be a non singular
projective irreducible R-curve, let g(C) be the genus of the topological surface
underlying the complex curve C and let s(C(R)) be the number of connected
components of the real locus C(R). We then have that

(3.9) s(C(R)) 6 g(C) + 1.



164 CHAPTER 3. TOPOLOGY OF VARIETIES WITH AN INVOLUTION

Proof. — We will give two proofs of (3.9), the first being an application
of (3.8) and the second being Klein’s original proof, see[Kle82, page 72].

1. As the topological surface C is compact, connected, boundary free and
orientable of genus g := g(C) its Betti numbers are b0(C) = b2(C) = 1
and b1(C) = 2g. As C(R) is a smooth compact curve by Proposi-
tion 2.2.27 (or by linearisation as below), it is homeomorphic to a disjoint
union of s := s(C(R)) circles and it follows that b0(C(R)) = b1(C(R)) =
s.

2. The involution σ reverses the orientation on the topological surface C,
so in a neighbourhood of any fixed point it can be linearised as a symme-
try. Indeed, the topological surface C has a 2 dimensional C∞ manifold
structure and if P is a fixed point of σ then σ induces a linear involution
on the tangent space TX,p. It follows that the quotient Y = C/〈σ〉 is a
connected surface with boundary whose boundary, which may be empty,
can be identified with C(R). The base of the two-to-one covering map
C \ C(R)→ Y \ ∂Y is connected because a connected surface minus its
boundary remains connected. It follows that C \ C(R) has at most two
connected components and if it has two components they are exchanged
by σ. The topological surface C minus all its invariant circles except
one is connected. If we had s(C(R)) > g(C) + 1 then we could cut C
along g+1 circles without disconnecting it, which contradicts Riemann’s
definition of the genus, see Definition E.1.2.

We recover Harnack’s theorem 2.7.2 from Chapter 2 :

Corollary 3.3.8. — Let (C, σ) be an irreducible non singular projective
plane R-curve of degree d. We then have that

(3.10) s(C(R)) 6 (d− 1)(d− 2)
2 + 1 .

Proof. — Simply apply the genus formula (Theorem 1.6.17) to (3.9).

Remark 3.3.9. — Harnack’s inequality(3.9) is optimal in the strongest pos-
sible sense: for any integer g > 0 and any integer s such that 0 6 s 6 g + 1
there is a projective non singular R-curve (C, σ) such that g(C) = g and
s(C(R)) = s, see Section 3.5.

Definition 3.3.10. — An irreducible non singular projective R-curve (C, σ)
is said to be maximal (we will also say that (C, σ) is an M -curve) if and only
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if Harnack’s bound (3.9) is attained, or in other words if

s = g + 1 .

More generally, a non singular R-variety (X,σ) of dimension n is said to be
maximal (we will also say that (X,σ) is an M -variety) if the inequality (3.8)
is an equality, or in other words if

b∗(X(R);Z2) = b∗(X;Z2).

By (3.4) b∗(X;Z2) − b∗(X(R);Z2) =
∑2n
k=0 2ak so we can "measure" the

non-maximality of an R-variety using the quantity a =
∑
ak.

Definition 3.3.11. — Consider an integer a ∈ N. An R-variety (X,σ) of
dimension n is said to be an (M − a)-variety whenever

b∗(X;Z2)− b∗(X(R);Z2) = 2a .

This terminology comes from the curve case, as illustrated by the example
below.

Exercise 3.3.12. — Prove that a non singular irreducible projective R-curve
(C, σ) of genus g with s connected components is an (M−a)-curve if and only
if

s = g + 1− a .

Example 3.3.13. — 1. (See Example 2.1.29.) A non singular plane pro-
jective cubic with two connected components (such as the cubic zy2 −
x(x − z)(x + z) = 0) is an M -curve; a non singular projective plane
cubic with one connected component (such as the cubic of equation
zy2 = x3 + z2x = 0) is an (M − 1)-curve. The original complex curve is
of genus 1.

2. (See Example 4.2.19.) The quadric sphere of equation x2+y2+z2−w2 = 0
in P3 is an (M−1)-surface: the torus x2+y2−z2−w2 = 0 is anM -surface.
In both cases the complex variety X is isomorphic to P1(C) × P1(C)
whence

∑4
r=0 br(X;Z2) = 4.

Maximal plane R-curves have other constraints on their topology than those
given by (3.10). For example, any plane R-curve of degree at least 6 has nested
ovals- see Corollary 2.7.17. We now give a proof of the Petrovskii inequalities
stated in Chapter 2, Theorem 2.7.13.
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Theorem 3.3.14 (Petrovskii inequalities). — Let (C, σ) be a non singu-
lar projective plane R-curve of even degree d = 2k. Let p be the number of
positive ovals in C(R) and let n be the number of negative ovals as in Defini-
tion 2.7.12. We then have that

p− n 6
3
2k(k − 1) + 1 ;(3.11)

n− p 6 3
2k(k − 1) .(3.12)

We will prove this theorem via a useful refinement of the Smith-Thom in-
equality, Theorem 3.3.6, based on the Hodge decomposition of cohomology,
defined in Section D.3.

Remark 3.3.15. — In [Har74] Kharlamov presents the inequalities (3.13)
below as a generalisation of the Petrovskii inequalities (3.11) and (3.12) above.

Theorem 3.3.16 (Petrovskii-Oleinik inequalities)
Let (X,σ) be a compact connected Kähler R-variety of even complex

dimension 2n. We then have that

(3.13) 2− hn,n(X) 6 χtop(X(R)) 6 hn,n(X) .

Proof. — We can deduce this result from the Atiyah-Singer index theorem
(Corollary 3.4.15), see [Wil78, Remark 1 after the proof of Proposition 4.2].
This result was first proved (in Russian) in [Har74] using Lefschetz’s fixed
point theorem (Theorem 3.4.23). We refer to [Wil78, Proposition 4.2] for a
proof of this theorem in English.

In the case of surfaces, the Petrovskii-Oleinik inequalities(3.13) are called
the Comessatti inequalities, see [Com28]:

Corollary 3.3.17 (Comessatti inequalities). — Let (X,σ) be a projective
non singular R-surface. We then have that

(3.14) 2− h1,1(X) 6 χtop(X(R)) 6 h1,1(X) .

Proof of Theorem 3.3.14. — This proof is based on ideas developped by
Arnol’d [Arn71]. Let C be a non singular projective complex plane curve
of even degree d = 2k. (C is not assumed irreducible, but is assumed to
be a reduced effective divisor). We will define a double cover X → P2

ramified along C such that if (C, σP|C) is an R-curve then X has two real
structures lifting σP. We imitate Wilson’s construction [Wil78, §5, page 64].
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Let P (x0 : x1 : x2) = 0 be an equation for C in P2(C). The homogeneous
polynomial P is of even degree d = 2k: set

Z := {(x0 : x1 : x2 : x3) ∈ P3(C) | x2k
3 − P (x0 : x1 : x2) = 0}

and let pZ : Z → P2(C) be the restriction to Z of the projection (x0 : x1 :
x2 : x3) 7→ (x0 : x1 : x2). The map pZ is a branched cover of degree d with
branching locus C. We define an intermediate covering Z → X → P2(C) by
considering the action on Z of the group µd of dth roots of unity given for any
ε ∈ µd by

(x0 : x1 : x2 : x3) 7→ (x0 : x1 : x2 : εx3) .
The covering Z → P2(C) can then be identified with the quotient map

Z → Z/µd and we set
X := Z/µk .

The complex surface X thus obtained is a double cover of P2(C) branching
along C. We denote by η : X → X the covering involution. Assume that the
homogeneous polynomial P has real coefficients: the restriction σP|Z of the
canonical real structure on P3(C) is then a real structure on Z which induces
a real structure σ1 on X which in turn lifts the real structure σP on P2(C).
The composition σ2 := η ◦ σ1 = σ1 ◦ η is another real structure on X which
also lifts σP. Note that the passage from σ1 to σ2 is equivalent to replacing P
by −P in the equation x2k

3 − P (x0 : x1 : x2) = 0.
Replacing the polynomial P by −P if necessary we can therefore assume

that P is negative on the unique non orientable component of the complement
of C(R) in P2(R). We denote by F := {(x0 : x1 : x2) ∈ P2(R) | P (x0 :
x1 : x2) > 0} the surface with boundary consisting of all the points where
P is positive or zero. The boundary of F is the zero locus C(R) of P . By
construction, the Euler characteristic of F is then p−n. The Euler character-
istic of the double cover X(R) of F ramified along C(R) is therefore equal to
2χ(F ) = 2(p − n). Moreover, it is possible to express the Hodge numbers of
a double cover of the plane as a function of the degree of the branching curve
as in Example D.4.5 and in particular we have that

h1,1(X) = 3k2 − 3k + 2 .

We now simply apply the inequalities (3.14).

Singular curves. — Brusotti’s theorem 2.7.10 enables us to give an upper
bound for the number of double points which are locally R-analytically iso-
morphic to x2 + y2 = 0 that can appear in a planar R-curve of given degree.
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Lemma 3.3.18. — For given degree d the number of isolated ordinary double
points- by which we mean points that are R-analytically isomorphic to x2+y2 =
0- on a real algebraic plane curve of degree d is bounded above by the maximal
number of empty ovals that can appear on a non singular real algebraic curve
of degree d.

Remark 3.3.19. — See [Cos92] for a generalisation of this lemma to higher
dimension.

Corollary 3.3.20. — Let C be a projective plane R-curve of degree d. If
C(R) is finite then d is even, d = 2k, and

#(C(R)) 6 3k(k − 1)
2 + 1 .

Proof. — If the degree is odd then the real locus contains at least one pseudo-
line because every line in a pencil of lines centred on a point outside C meets
the real locus in at least one point. There is therefore a natural number k
such that d = 2k. If all the points of C(R) are isolated ordinary double points
then the bound given on the number of points in C(R) follows immediately
from Lemma 3.3.18 and the inequality of Corollary 2.7.16. The general case
requires a little more work: we can use either [Cos92] or [BDIM19].

3.4. The intersection form on an even-dimensional R-variety

Quadratic forms arise in the theory of non singular complex algebraic vari-
eties because on any compact orientable variety of dimension 4m the homol-
ogy intersection form (or the cohomology intersection form, in which case we
should, strictly speaking, call the product a cup-product) in dimension 2m
is unimodular- see Corollary B.7.7. See Appendix A.6 for the general theory
of quadratic forms on free Z-modules. The heart of this section is Rokhlin’s
famous theorem 3.4.2(3.15) which states that for certain R-varieties there is a
congruence relation between the Euler characteristic of the real locus and the
index of the intersection form in dimension 2m.

Let (X,σ) be a non singular projective R-variety of even (complex) dimen-
sion n = 2m. The underlying differentiable manifold is therefore of real dimen-
sion 4m. Let QR be the intersection form on H2m(X;R): it is a unimodular
quadratic form by Poincaré duality B.7.7.
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Definition 3.4.1. — If (a, b) is the signature (Definition A.6.10) of the in-
tersection form QR then we define the index of the form QR by

τ := τ(X) = a− b .

Theorem 3.4.2 (Extremal congruences). — Let (X,σ) be a non singular
projective R-variety of even dimension n = 2m.

If (X,σ) is an M -variety (Definition 3.3.10) then

(3.15) χtop(X(R)) ≡ τ(X) mod 16 (Rokhlin).

If (X,σ) is an (M − 1)-variety (Definition 3.3.11) then

(3.16) χtop(X(R)) ≡ τ(X)± 2 mod 16 (Gudkov-Kharlamov-Krakhnov)

where τ(X) is the index of the intersection form on the real vector space
H2m(X;R).

Remark 3.4.3. — We can go further: see for example [Wel02], unifying
and extending several classical congruence results.

We state a series of intermediate results before attacking the proof of this
theorem. We start by introducing Wu classes which are a key ingredient of
the proof. We motivate these objects by studying the real 2-dimensional case.
This discussion draws on [MH73, Chapter V].

Lemma 3.4.4. — A compact topological surface without boundary V is ori-
entable if and only if

(x · x) = 0 for every x ∈ H1(V ;Z2)

where (x, y) 7→ (x · y) is the intersection form on H1(V ;Z2).

Proof. — We can reduce to the case where V is connected: every homology
class x ∈ H1(V ;Z2) can then be represented by a simple closed curve γ ⊂ V .
Note that the self-intersection number (x · x) is zero if and only if a small
neighbourhood W ⊂ V of γ is orientable. Indeed, if W is orientable then a
small homotopy deforms γ to a curve γ′ ⊂W which is disjoint from γ. But if γ
does not have an orientable neighbourhood then it must have a neighbourhood
W which is a Möbius band. In this case we can deform γ to a curve γ′ meeting
γ transversally in an odd number of points. The lemma follows.

The classification of compact connected topological surfaces (Theo-
rem E.1.6) yields the following corollary.
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Corollary 3.4.5. — Two compact connected topological surfaces without
boundary V and V ′ are homeomorphic if and only if the quadratic Z2-modules
H1(V ;Z2) and H1(V ′;Z2) are isomorphic.

Example 3.4.6. — If T2 is a torus, H1(T2;Z2) is a two dimensional vector

space and the intersection product is given by the matrix
(

0 1
1 0

)
with respect

to a basis of two classes (e1, e2) that represent two non identified edges in a
quadrilateral from which the torus is constructed by identifying opposite sides.

Example 3.4.7. — For the Klein bottle K2, H1(K2;Z2) is also a two dimen-
sional space generated by classes (e1, e2) representing two edges of a quadri-

lateral. However, this time the intersection matrix is given by
(

0 1
1 1

)
. Alter-

natively, consider the basis (e1 + e2, e2): the matrix is then given by
(

1 0
0 1

)
.

See [MS74, page 131] for the definition and construction of the Wu classes
vk ∈ Hk(V ;Z2) of a compact differentiable manifold V . In particular, we have
that

Proposition 3.4.8. — Let V be a compact differentiable manifold of even
dimension 2n. There is then a unique element vn ∈ Hn(V ;Z2) such that for
every element x ∈ Hn(V ;Z2),

(x · x) = (x · vn) .

The element vn ∈ Hn(V ;Z2) is the nth Wu class of V .

By the cohomological analogue of Lemma 3.4.4 a compact topological sur-
face without boundary V is orientable if and only if the Wu class

v1(V ) ∈ H1(X;Z2)

vanishes. We saw in Proposition 3.1.15 that the orientability of V depended
on the vanishing of its first Stiefel-Whitney class

w1(V ) ∈ H1(X;Z2) .

The relationship between these two classes is simple: we have that

v1(V ) = w1(V ) .

This equality can be deduced from the following proposition, which in
its turn follows from Wu’s theorem, [MS74, Theorem 11.14] or [Wil78,
Lemma 3.8].
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Proposition 3.4.9. — Let V be a compact differentiable manifold. For any
k the kth Wu class of V is a polynomial in the Stiefel-Whitney classes of V .
In particular we have that

v1 = w1 and v2 = w2 + w1 ^ w1 .

Exercise 3.4.10. — Recall as in [MS74, pages 90–91] that the Steenrod
squares

Sql : Hk(V ;Z2)→ Hk+l(V ;Z2)
are morphisms such that for any x ∈ Hk(V ;Z2), Sq0(x) = x, Sqk(x) = x ^ x

and Sql(x) = 0 for any l > k. Using Wu’s theorem [MS74, Theorem 11.14]

(3.17) wk =
∑

p+q=k
Sqp(vq) ,

reprove the formulas of Proposition 3.4.9 above. Calculate v3 as a function of
the classes w1,w2,w3 and v4 as a function of the classes w1,w2,w3,w4 using
Wu’s formula, [MS74, Problem 8-A] and Cartan’s formula [MS74, (4) page
91].

Recall that as in Definition A.6.12 a symmetric bilinear form Q on a free
Z-module is even (or of type II ) if and only if for all x, Q(x, x) is even.

Corollary 3.4.11. — Let V be a simply connected oriented differentiable
manifold of dimension 4. V then has a spin structure if and only if its degree
2 intersection pairing is even.

Proof. — The first Stiefel-Whitney class vanishes because V is orientable so
v2(V ) = w2(V ) in H2(V ;Z2). Moreover, the second Stiefel-Whitney class
w2(V ) vanishes if and only if V has a spin structure and the result follows by
Proposition 3.4.8.

Definition 3.4.12. — Let (X,σ) be a projective non singular R-variety of
even dimension n = 2m whose intersection form onH2m(X;R) will be denoted
QR. The index τ(σ) of the involution σ is the index of the symmetric bilinear
form (x, y) 7→ QR(x, σ(y)).

Remark 3.4.13. — The index τ(σ) can equivalently be defined by

τ(σ) = τ+ − τ−

where QR is the intersection form on H2m(X;R) and we have set τ+ :=
τ+(σ) = τ(QR|H2m(X;R)σ) and by τ− := τ−(σ) = τ(QR|H2m(X;R)−σ).
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Theorem 3.4.14 (Atiyah, Singer). — On any oriented compact differen-
tiable manifold of real dimension 4m the index of any orientation-preserving
involution is equal to the auto-intersection of its fixed locus.

Proof. — See [AS68] for the original proof or [JO69] for a more elementary
proof.

Corollary 3.4.15. — Let (X,σ) be a non singular projective R-variety of
dimension n = 2m. We then have that

τ(σ) = (−1)mχtop(X(R))

Proof. — See Propositions 2.2.27 and 2.2.28 for the differentiable manifold
structures on X and X(R). As X has real dimension 4m, σ∗ is orientation
preserving by Proposition 2.2.28. The index of the self intersection of X(R)
in X is therefore equal by [Hir76, page 132] to the self-intersection of X(R)
in its normal bundle NX|X(R) (see also [MS74, page 119]). At any real point
multiplication by i in the tangent bundle TX induces an isomorphism of real
vector bundles between TX(R) and the normal bundle NX|X(R). Indeed, con-
sider a point x ∈ X(R) and let (u1, . . . , u2m) be a basis of the vector space
TX(R),x. Since x is a point in the real locus we have TX,x = TX(R),x ⊗R C.
The 4m-tuplet (u1, iu1, . . . , u2m, iu2m) is therefore a basis of TX,x and the
2m-tuplet (iu1, . . . , iu2m) is a basis for the normal bundle NX|X(R),x. As
the natural orientation on the manifold X of real dimension 4m is given by
(u1, iu1, . . . , u2m, iu2m), the orientation induced on NX|X(R),x is obtained via
a permutation of sign (−1)m of the set of vectors (u1, iu1, . . . , u2m, iu2m). As
the Euler characteristic χtop(X(R)) is equal to the self-intersection of X(R)
in its own tangent bundle TX(R) as in [Hir76, page 13] the result follows.

Remark 3.4.16. — Both the statement and the proof remain valid if we
replace "projective" by "compact Kähler" throughout- see Appendix D.

Lemma 3.4.17. — Let (X,σ) be a projective R-variety. If b∗(X(R);Z2) =
b∗(X;Z2) then σ∗ is the identity on H∗(X;Z2).

Proof. — Immediate by Remark 3.2.4 and Equation (3.4) page 160.

Exercise 3.4.18. — Check that the converse of Lemma 3.4.17 is false by
showing that the projective plane conic without real points given by the equa-
tion x2 + y2 + z2 = 0 is a counter-example.
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Lemma 3.4.19. — Let (X,σ) be a non singular projective R-variety of even
dimension n = 2m. The submodules H2m(X;Z)G and H2m(X;Z)−σ are then
orthogonal for the intersection form on H2m(X;Z).

Proof. — Recall that

H2m(X;Z) = H2m(X;Z)f ⊕ Tor(H2m(X;Z))

where H2m(X;Z)f := H2m(X;Z)/Tor(H2m(X;Z)) is the free part of
H2m(X;Z). By Proposition 3.1.8, the submodules H2m(X;Z)Gf and
H2m(X;Z)−σf are orthogonal for the form induced by the intersection
pairing Q on H2m(X;Z). Moreover, for any x ∈ Tor(H2m(X;Z)) and any
y ∈ H2m(X;Z) we have that Q(x, y) = 0. Indeed, let k ∈ N∗ be such that
kx = 0 in H2m(X;Z): by linearity in the first variable we then have that
0 = Q(kx, y) = kQ(x, y) whence Q(x, y) = 0 in the integral ring Z.

Lemma 3.4.20. — Let (X,σ) be a non singular projective R-variety of even
dimension n = 2m. We consider the intersection form Q on H2m(X;Z). If m
is even then the restriction of Q to H2m(X;Z)−σ is even (Definition A.6.12)
and if m is odd then the restriction of Q to H2m(X;Z)G is even.

Proof. — By Proposition 3.4.9 and Proposition 3.1.16(1) the Wu class v2m :=
v2m(X) ∈ H2m(X;Z2) is a polynomial P (w) in the Stiefel-Whitney classes
w2k(X) which are reduction modulo 2 of the Chern classes ck(X) by Propo-
sition 3.1.16(2). Since σ∗ck(X) = (−1)kck(X), it follows by Exercise 3.4.21
below that if m is even then v2m is the reduction modulo 2 of an element
y ∈ H2m(X;Z)G. The element y is obtained by considering the same poly-
nomial P (c) in the Chern classes. Consider an element x ∈ H2m(X;Z)−σ
and let x2 ∈ H2m(X;Z2) be its reduction modulo 2. As H2m(X;Z)−σ and
H2m(X;Z)G are orthogonal for Q we have that (x · y) = 0 so (x2 · v2m) =
(x2 · x2) = 0 which implies that (x · x) = Q(x, x) is even. The result for n
odd can be proved in a similar way since v2m is the reduction modulo 2 of an
element in H2m(X;Z)−σ.

Exercise 3.4.21. — Using the fact that every monomial in P (w) belongs
to H2m(X;Z2), prove that P (c) ∈ H2m(X;Z)G if m is even and P (c) ∈
H2m(X;Z)−σ if m is odd.

Proof of Theorem 3.4.2. — We will prove Rokhlin’s congruence (3.15) and re-
fer to [DK00, 2.7.1] (or [Sil89, II.(2.9)] when m = 1) for the proof of the
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Gudkov-Kharlamov-Krakhnov congruence. We have that τ(X) = τ+(σ) +
τ−(σ) so by Corollary 3.4.15 :

τ(X)− 2τ−(σ) = χtop(X(R)) if m is even ,
τ(X)− 2τ+(σ) = χtop(X(R)) if m is odd .

If (X,σ) is an M -variety then σ∗ is the identity on H2m(X;Z2) by
Lemma 3.4.17. We now apply Lemma 3.4.20: if m is even then the re-
striction of Q to H2m(X;Z)−σf is an even quadratic form and hence τ−(σ) ≡ 0
mod 8 by Proposition A.6.13. Similarly, if m is odd then the restriction of
Q to H2m(X;Z)σf is an even quadratic form and it follows that τ+(σ) ≡ 0
mod 8.

Remark 3.4.22. — The presentation above is the same as in Risler, [Ris85,
Théorème 2.1]. In [DK00, 2.7.1], Degtyarev and Kharlamov propose a differ-
ent proof which yields an additional result on (M − 2)-varieties. Silhol gives
yet another proof for surfaces (m = 1) in [Sil89, II.(2.4)].

We conclude this section with a series of useful results and an application
to surfaces in P3.

Lefschetz’s formula links the Euler characteristic of the fixed locus of an
involution on a triangulable space X to the traces of the endomorphisms that
it induces on the homology of X. This formula also appears in the litterature
as the "Lefschetz trace formula or "Lefschetz index theorem".

Theorem 3.4.23 (Lefschetz formula). — Let (X,σ) be a projective R-
variety. We then have that

(3.18) χtop(X(R)) =
∑
k>0

(−1)k tr (σ∗ : Hk(X;Q)→ Hk(X;Q)) .

Proof. — Smith’s exact sequence (3.6) immediately gives us

χtop(X) = χtop(X(R)) + 2χtop(Y,X(R)) .

Using the exact sequence of the pair (Y,X(R)) (by Theorem B.3.6 we have
that χtop(Y,X(R))− χtop(Y ) + χtop(X(R)) = 0) it follows that

(3.19) χtop(X) = 2χtop(Y )− χtop(X(R)) .

Moreover, taking the coefficient ring to be a field of characteristic different
from 2 we have that

(3.20) Hk(X;Q)σ ' Hk(Y ;Q) .

(see [DIK00, Corollary I.1.3.3])
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Diagonalising its matrix, we immediately see that the trace of a linear in-
volution τ on a Q-vector space E satisfies

tr(τ : E → E) = 2 dimEσ − dimE .

The right hand side of Equation (3.18) becomes

2
∑
k>0

(−1)k dimQHk(X;Q)σ −
∑
k>0

(−1)k dimQHk(X;Q) ,

or in other words
2χtop(Y )− χtop(X)

by (3.20). The theorem follows by (3.19).
The above proof is taken from[DIK00, I.1.3.5]. We refer to [Mun84, Chap-

ter 2, §22] or [Hat02, Theorem 2C.3] for a proof of the Lefschetz-Hopf theo-
rem.

We now consider a compact Kähler R-variety (X,σ). See Appendix D.3
for the basic properties of the Hodge decomposition on the cohomology of X.
Note in particular Corollary D.3.15 which states that

Hp,q(X) = Hq,p(X)

and Lemma D.3.17 which states that

(3.21) σ∗Hp,q(X) = Hq,p(X)

where σ∗ is the action on H∗(X;C) = H∗(X;Q)⊗Q C induced by σ.

Proposition 3.4.24. — Let (X,σ) be a compact Kähler R-variety of di-
mension n and consider an integer k ∈ {0, . . . , 2n}. We denote by rk(X) =
dimHk(X;Q)G the dimension of the Q-subspace of homology classes that are
invariant under G = {1, σ}. The number rk(X) is then subject to the following
constraints depending on the kth Betti number and the Hodge numbers of X :

(3.22) rk(X) = 1
2bk(X) if k is odd

and
(3.23)∑

p+q=2n−k
p<q

hp,q(X) 6 rk(X) 6 bk(X)−
∑

p+q=2n−k
p<q

hp,q(X) if k is even.

Proof. — By Corollary 3.1.9, Hk(X;Z) is isomorphic (or anti-isomorphic
depending on the parity of n) to H2n−k(X;Z) as an involutive mod-
ule. We will prove that theorem in the case where n is even: the case
where n is odd is similar. In particular, bk(X) = dimCH

2n−k(X;C)
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and rk(X) = dimCH
2n−k(X;C)G. Consider the Hodge decomposition

H2n−k(X;C) =
⊕
p+q=2n−kH

p,q(X). By Equation (3.21) quoted above, an
element of ⊕

p+q=2n−k
p 6=q

Hp,q(X)

is stable under σ∗ if and only if it is of the form ω + σ∗ω. In other words, the
dimension of the subspace of

⊕
{p+q=2n−k, p6=q}H

p,q(X) fixed by σ∗ is equal
to ∑

p+q=2n−k
p<q

hp,q(X) .

If k is odd this implies that

rk(X) = 1
2bk(X)

and if k is even this implies that

rk(X) >
∑

p+q=2n−k
p<q

hp,q(X) .

As Lemma D.3.17 also applies to −σ a similar argument gives that
dimCH

2n−k(X;C)−σ >
∑
p+q=2n−k

p<q
hp,q(X). Moreover, as H2n−k(X;C)

is a vector space and σ∗ is an involution we have a direct sum decomposition
H2n−k(X;C) = H2n−k(X;C)σ ⊕H2n−k(X;C)−σ whence it follows that

rk(X) 6 bk(X)−
∑

p+q=2n−k
p<q

hp,q(X) .

Proposition 3.4.25. — Let (X,σ) be a non singular projective R-variety
of dimension n and consider G = Gal(C|R) which acts on X via σ. The
topological Euler characteristic of the real locus X(R) then satisfies

(3.24) χtop(X(R)) =
∑
r even

(2rk(X)− bk(X))

where rk(X) = dimHk(X;Q)G.

Proof. — When (X,σ) is an R-surface, a version of this result was proved
by Comessatti [Com28]. We use Silhol’s proof [Sil89, Proposition I.(2.1),
page 9]. Consider once more the double cover p : X → Y = X/G ramified
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along X(R) as in Section 3.2. Using a triangulation of X of which X(R) is a
sub-triangulation we have that

(3.25) χtop(X) = 2χtop(Y )− χtop(X(R)) .

Moreover, the homology morphism p∗ induces an isomorphism

(3.26) Hr(Y ;Q) ' Hr(X;Q)G

(See [Gro57, page 202] or [Flo60, page 38] in [Bor60]). Note that χtop(X) =∑2n
k=0(−1)kHk(X;Q) and χtop(Y ) =

∑2n
k=0(−1)kHk(Y ;Q). Combining (3.25)

and (3.26) above we get that

χtop(X(R)) =
2n∑
k=0

2rk(X)− bk(X) .

We now simply apply Proposition 3.4.24 to get (3.24).

Remark 3.4.26. — The identity (3.24) still holds if X is a compact Kähler
R-variety.

Surfaces in P3. — Applying the various bounds and congruences stated
above to degree d hypersurfaces in P3 we obtain the following bounds.

Theorem 3.4.27. — Let (X,σ) be a non singular R-surface of degree d in
P3. We have the following bounds on the number of connected components in
its real locus:

#π0(X(R)) 6 d(5d2 − 18d+ 25)
12 − ε(d)

where

ε(d) = 0 if d ≡ 0 mod 16 or d ≡ 1 mod 4 ;
ε(d) = 1

2 if d ≡ ±2 mod 16 ;
ε(3) = 2 ;
ε(d) = 1 if d ≡ ±4 or 8 mod 16 or d 6= 3 and d ≡ 3 mod 4 ;
ε(d) = 3

2 if d ≡ ±6 mod 16 .

Proof. — The proof can be found in [Sil89, Chapter II, Theorem 3.9, Corol-
lary 3.10]. It uses notably the calculation of the Hodge numbers of a non
singular hypersurface of degree d in P3 as in Example D.4.4.

Remark 3.4.28. — As ε(2) = 1
2 , it follows in particular that a non empty

real quadric is connected. As ε(3) = 2, we get that for any non singular
cubic #π0(X(R)) 6 2: this upper bound is optimal by Example 3.1.13. As
ε(4) = 1 we have that #π0(X(R)) 6 10 for any quartic, which is optimal- see
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Chapter 4 for more details. The bound given by this theorem for the number
of connected components of a quintic is 25: at the time of writing we do not
know what the actual maximal number of components of a real quintic is.
See [KI96] for the construction of a quintic with 22 components and [Ore01]
for the construction of a quintic with 23 components, the best known example
at the time of writing.

3.5. Classification of R-curves and XVIth Hilbert’s problem

In this section we will apply the results obtained above to non singular
projective curves. We start by establishing an abstract classification- by which
we mean a classification independent of a choice of embedding- and then take
a closer look at the classical case of plane curves, ie. curves with the extra
information of an embedding into P2. This classification is more restrictive
than the previous one, since not all curves have a non singular embedding into
the plane. After characterising non singular projective R-curves which can be
embedded into the plane, we will address a more delicate question: what are
the possible relative positions of the ovals of a given curve? In other words,
for fixed degree, we will try to classify topological pairs (P2(R), X(R)) rather
than the pairs (X,X(R)).

Abstract classification. — Let us briefly review our analysis of the situ-
ation we met in the second proof of Corollary 3.3.7. Let (X,σ) be a non
singular projective R-curve. The involution σ of the topological surface X is
orientation reversing so it can be linearised in a neighbourhood of any point
in the real locus as a symmetry with respect to an axis. It follows that the
quotient Y = X/〈σ〉 is a compact connected surface whose boundary can be
identified with X(R). As the base of the double cover X \X(R)→ Y \ ∂Y is
connected, X \X(R) has at most two connected components, and in this case
they are exchanged by σ. The topological surfaces X minus all its invariant
circles apart from one is still connected. By Riemann’s definition of the genus,
Definition E.1.2, if X(R) has g(X) + 1 circles then X \X(R) is necessarily not
connected: the real locus X(R) disconnects or separates X. More generally,
we propose the following definition.

Definition 3.5.1 (Klein). — Let (X,σ) be a non singular projective R-
curve. The curve (X,σ) is said to be separating if X(R) disconnects X and
non separating otherwise.
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We can assign to any non singular projective R-curve (X,σ) a triplet of in-
tegers (g, s, a) where g := g(X) is the genus of the compact orientable surface
X, s := s(X) = s(X,σ) is the number of connected components of X(R) and
a := a(X) = a(X,σ) is the binary invariant defined by a := 2−#π0(X\X(R)).
This triplet is a complete homeomorphic equivalence invariant for our surfaces
with involutions. We now explain exactly what we mean by this. Following
Gabard, [Gab00], we will call a compact connected orientable topological
surface without boundary equipped with an orientation-reversing involution
a symmetric surface. As seen above, a projective R-curve whose algebraic
structure has been "forgotten", leaving only the topological structure is natu-
rally a symmetric surface. Klein-Weichold’s theorem, see [Gab00, Théorème
2.4], then states that any such symmetric surfaces are homeomorphic via an
involution-preserving homeomorphism if and only if they have the same as-
sociated triplet. The interested reader will find more information in [Nat99,
§ 1] where Natanzon classifies symmetric surfaces and equips them with a
Riemann surface structure that is both explicit and simple. (See examples 1.1
and 1.2 in [Nat99]. Since all compact Riemann surfaces are algebraic curves-
see Theorem E.2.28- this provides us with a source of real algebraic curves.

As the surface X is orientable χtop(X) = 2 − 2g as in Proposition E.1.5.
As the Euler characteristic of a circle vanishes, the Euler characteristic of the
quotient Y is g − 1. Moreover, Y is orientable if and only if a = 0, ie if and
only if the curve is separating. Indeed, X \X(R)→ Y \ ∂Y is the orientation
covering of Y \ ∂Y which is therefore orientable if and only if X \ X(R) is
not connected. The boundary of the compact surface Y has s connected
components: from the classification of compact surfaces (Theorem E.1.6) we
deduce the following constraints:

If a = 0 then 1 6 s 6 g + 1 and g − s ≡ 1 mod 2 .
If a = 1 then 0 6 s 6 g .

(3.27)

our classification will be complete once we have proved that conversely for
any triplet satisfying these conditions there is a non singular projective R-curve
of which it is the invariant.

Theorem 3.5.2. — Let (g, s, a), a ∈ {0, 1} be a triplet of integers. There is
a non singular irreducible projective plane R-curve (X,σ) of genus g(X) = g

such that #π0(X(R)) = s and 2 − #π0(X \ X(R)) = a if and only if the
conditions (3.27) above are satisfied.

Proof. — See [Gab00, §4].
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We now consider plane curves. If d is the degree of a plane curve then the
genus formula g = (d−1)(d−2)

2 = 1
2d(d − 3) + 1 (Theorem 1.6.17) leads us to

consider the triplet (d, s, a) instead of (g, s, a). Non singular projective plane
R-curves are subject to two additional constraints beside those coming from
the genus formula and equations (3.27).

Theorem 3.5.3. — Let (d, s, a) be a triplet of integers such that d > 0, s > 0,
a ∈ {0, 1}. There is a non singular irreducible projective plane R-curve (X,σ)
of degree deg(X) = d such that #π0(X(R)) = s and 2−#π0(X \X(R)) = a

if and only if the following conditions are satisfied
d ≡ 1 mod 2 =⇒ s > 1 ,

a = 0 =⇒
⌊
d+1

2

⌋
6 s 6 (d−1)(d−2)

2 + 1 and 1
2d(d− 3)− s ≡ 0 mod 2 ,

a = 1 =⇒ 0 6 s 6 (d−1)(d−2)
2 .

Proof. — See [Gab00, Théorème 5.2] for a proof that such curves exist. Here,
we will restrict ourselves to explaining where the conditions on (d, s, a) come
from. The first condition comes from the fact that a plane curve of odd
degree always has real points. Indeed, a general real line in the plane meets
X is a set of points that is globally stable under σ. As the number of such
points is odd, at least one of them is stable under σ. (This is a special case
of Proposition 2.6.48). The third condition is simply condition (3.27) where
g = (d−1)(d−2)

2 by the genus formula (Theorem 1.6.17). The second condition
arises on putting together the first condition (3.27) with g = 1

2d(d−3)+1 and
Rokhlin’s formula in Theorem 3.5.5 below. See [Mar80, page 59] or [Gab00,
Théorème 5.1] for more details.

First part of XVIth Hilbert’s problem. — En 1891, Hilbert asked the
following question: what are the possible relative positions of the ovals of a
degree d curve in P2(R) up to isotopy for d = 1, 2, 3, . . . . This question about
curves (or more generally surfaces in P3(R)- Hilbert asked this question for
surfaces of degree 4 in particular) became in 1900 the first part of what is now
known as the XVIth Hilbert’s problem. For curves of degree 6 and surfaces of
degree 4 the solution was given by Gudkov and Kharlamov in the 70s. One
of the most recent versions of this problem is the (asymptotic) solution of
Ragsdale’s (incorrect) conjecture from 1906 (see Remark 2.7.15), which was
found a hundred years later by Brugallé in 2006 [Bru06] using ideas by Arnol’d
[Arn71], Viro [Vir80], Itenberg [Ite93] (who gave the first counter-example)
and many others.
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In this section we present some known constraints on the arrangement of
ovals of a curve in the plane and refer to [A’C80], [Gab04, page 50] and
[Gab00] for classical curve construction methods, notably due to Hilbert and
Harnack. For modern methods, namely Viro’s method, "dessins d’enfants"
applied to trigonal curves and tropical methods we refer to [Ris93], [Ore03],
[BB06] and [IMS09] amongst others. Our first constraint is an immediate
consequence of Bézout’s theorem 2.7.1.

Theorem 3.5.4 (Hilbert). — Consider a curve of degree d = 2k. The
number of its ovals contained in a nest (see Definition 2.7.11) or in a disjoint
union of two nests is at most k.

Taken together with Theorem 3.5.3, this constraint yields a complete classi-
fication of isotopy types of real plane algebraic curves for k = 1, 2. For k = 1,
the curve is a non singular conic, which is therefore either empty or connected
as in Exercise 1.2.68. For k = 2, the curve is a quartic so its genus is 3 and
the number of ovals is 0, 1, 2, 3 or 4. By the above theorem there is at most
one nest of ovals and in this case the curve has only two nested ovals. Such a
curve can be constructed as a small perturbation of the product of equations
of two circles with the same centre. (Before perturbation, Bézout’s theorem
implies that the complex curve has four singular non real points). The sextic
k = 3 is more interesting and was the object of Hilbert’s original question.
We get some extra constraints using the following theorem where as in Defi-
nition 2.7.12 we denote by p the number of positive ovals (called even ovals)
and by n the number of negative (or odd) ovals of our R-curve. We have the
following result.

Theorem 3.5.5 (Gudkov-Rokhlin congruence). — For any M -curve of
degree 2k we have that

(3.28) p− n ≡ k2 mod 8 .

This theorem follows from Theorem 3.4.2 applied to the surface obtained
as a double cover of the plane branched along our curve as in the proof of
Theorem 3.3.14.

Hilbert’s question about degree 6 curves was answered by Gudkov in 1969
[Gud69] (see [Gud71] and [Arn71]) using Petrovskii’s results [Pet33]. The
question on degree 4 surfaces in P3 (linked to the above by the fact that a
degree 4 surface and a double cover of a plane branched along a sextic are
both K3 surfaces), was solved by Kharlamov in 1975 [Har76]. The hope of
finding a classification for curves of degree > 7 and surfaces of degree > 5 in
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P3 subsequently generated intense activity in this area. The most complete
result found was Viro’s classification of degree 7 curves [Vir80].

Ragsdale’s conjecture. — By Corollary 2.7.14, the number p of positive
ovals on a non singular real curve of degree 2k is bounded above by 7k2/4 −
9k/4 + 3/2. A famous incorrect conjecture by Ragsdale (see Remark 2.7.15)
states that p must be less than 3k2/2− 3k/2 + 1. We refer the reader to the
seminal articles [Ite93, Ite95] and [Bru06] and their bibliographies for the
history of the Ragsdale conjecture and the work it has inspired. In [Ite93,
Ite95], Itenberg shows that Ragsdale’s conjecture is false and in [Bru06],
Brugallé proves the existence of a family of non singular real algebraic curves
of degree 2k such that p/k2 →k→∞ 7/4. More recently, Renaudineau gave a
constructive proof of the existence of such a family in [Ren17]. Let us also
mention the article [Haa95] in which Haas improved the result of [Ite93].

The study of curves in the plane can be generalised to the study of curves
on a given surface X. For example, there has been significant progress in the
classification of trigonal curves on a Hirzebruch surface X in recent years. We
refer the interested reader to [DIK08, Deg12, DIZ14] for more details. We
will undertake a systematic study of surfaces in Chapter 4. Meanwhile we
present as an example the construction of an M -surface of degree 4 in P3.

Construction of a maximal quartic R-surface(5). — We will illustrate the
above theory with the construction of a quartic surface in P3 which is ob-
tained as the double cover of a quadric surface branched along a curve of
bidegree (4, 4). The three-dimensional diagram shows the double cover of a
single-sheeted hyperboloid of revolution ramified along the intersection with
four hyperplanes in general position as in Figure 3.1. All the figures below
are shown in intersection with a Euclidean ball in R3.

Once we have constructed the singular curve on the hyperboloid, we con-
struct the double cover. We do this by choosing a sign convention, indicated by
the choice of colours, and then construct a double cover, which is represented
twice, once with the hyperboloid included, and once without the hyperboloid:
see Figure 3.2.

The result is a singular surface whose singular points are all ordinary double
points.

In Figure 3.3, we construct a small perturbation of this (M − 1)-surface.
(From the second image onwards, the angle of vision has been changed.) To

(5)Illustrations created in collaboration with C. Raffalli in 2001.
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Figure 3.1. Construction of a maximal R-quartic. From left to
right: the four planes; the four planes plus the hyperboloid; a singular
curve cut out by the four hyperplanes on the hyperboloid.

Figure 3.2. Construction of a maximal R-quartic, bis. From left to
right: choice of signs, double cover with hyperboloid, double cover
without hyperboloid.

check that this perturbation is indeed an M -surface, we start by calculating
the total Betti number of a quartic in P3, given that b∗(Xd) = d(d2 − 4d+ 6)
for any degree d surface and then calculate the Euler characteristic of the
smooth compact connected surface X(R). The Euler characteristic of the
double cover is twice the Euler characteristic of the light coloured surfaces cut
out on the hyperboloid. Removing the singular points three surfaces remain:
each one is isomorphic to a disc of Euler characteristic 1. There are twelve
double points so χtop(X(R)) = 2(3 − 12) = −18: we conclude that the real
locus is diffeomorphic to an orientable surface S10 of genus 10. (The real
locus is orientable because X is of even degree). Prolonging the deformation
a second component which is diffeomorphic to a sphere appears in the centre
of the figure. Finally we see that X(R) ≈ S2 t S10 and (X,σ) is therefore an
M -surface.
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Figure 3.3. Construction of a maximal R-quartic, conclusion.

3.6. Galois-Maximal varieties

Let (X,σ) be an irreducible projective R-variety, which means that the
complex variety X is irreducible, see Definition 2.3.13. Considering the Galois
cohomology groups (see Proposition 3.1.4) of the homology of the complex
variety X, we obtain refinements of the Smith-Thom inequality (3.8), see
(3.30), (3.32) and (3.33).

Lemma 3.6.1. — Let (X,σ) be a projective R-variety. For any 0 6 k 6 2n,
on setting λk := dimZ2(1 + σ∗)Hk(X;Z2) we have that

dimZ2 Hk(X;Z2)G = dimZ2 Hk(X;Z2)− λk ;

dimZ2 H
1(G,Hk(X;Z2)) = dimZ2 Hk(X;Z2)− 2λk .

Proof. — Simply apply Lemma 3.1.5 to the Z2-vector space Hk(X;Z2) with
its involution σ∗.

Remark 3.6.2. — The invariant λk defined above on Hk(X;Z2) may be
different from the invariant defined in Definition 3.1.3 on Hk(X;Z) ⊗Z Z2 if
the homology of X contains torsion.
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Lemma 3.6.3. — Let (X,σ) be a projective R-variety. For any 0 6 k 6 2n
we set ak := dimZ2 Im ρk. We then have that

(3.29) ∀k, λk 6 ak .

Proof. — Consider an integer k such that 0 6 k 6 2n. We have that (1 +
σ∗)Hk(X;Z2) ⊂ Im ρk by definition of ρ so it follows that λk 6 ak.

Theorem 3.6.4. — Let (X,σ) be a projective irreducible R-variety. We then
have that

(3.30)
n∑
l=1

bl(X(R);Z2) 6
2n∑
k=0

dimH1 (G,Hk(X;Z2)) .

Definition 3.6.5. — A non singular R-variety (X,σ) is said to be Galois-
Maximal (we will sometimes say that (X,σ) is a GM -variety) if the inequality
(3.30) is an equality.

Proof of Theorem 3.6.4. — By Lemma 3.6.3 and equality (3.4) we have that

(3.31) b∗(X(R);Z2) 6
2n∑
k=0

(
bk(X;Z2)− 2λk

)
.

and the result follows by Lemma 3.6.1.

Lemma 3.6.6. — A non singular irreducible projective R-variety (X,σ) is
Galois-Maximal if and only if ∀k, λk = ak.

Proof. — By Lemma 3.6.1 the variety (X,σ) is Galois-Maximal if and only if
n∑
l=1

bl(X(R);Z2) =
2n∑
k=0

(
bk(X;Z2)− 2λk

)
.

We deduce from Equation (3.4),
∑n
l=0 bl(X(R);Z2) =

∑2n
k=0

(
bk(X;Z2)− 2ak

)
that (X,σ) is Galois-Maximal if and only if

∑2n
k=0 λk =

∑2n
k=0 ak. We further

deduce from Equation(3.29) that this is equivalent to ∀k, λk = ak.

We have the following upper bounds. (See [Kra83, Theorem 2.3] for a proof
using spectral sequences and [Sil89, I.3.13] for a direct proof using the Galois
action on the Hodge decomposition.):

(3.32)
∑
l even

dimZ2 Hl(X(R);Z2) 6
2n∑
k=0

dimZ2 H
2 (G,Hk(X;Z)) ;
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(3.33)
∑
l odd

dimZ2 Hl(X(R);Z2) 6
2n∑
k=0

dimZ2 H
1 (G,Hk(X;Z)) .

Note that in inequalities (3.32) and (3.33), the homology groups being con-
sidered on X have coefficients in Z whereas the Galois cohomology groups
H2 (G,Hk(X;Z)) and H1 (G,Hk(X;Z)) are Z2-vector spaces.

Definition 3.6.7. — A non singular R-variety (X,σ) is said to be Z-Galois-
Maximal (or to be a ZGM -variety) if the inequalities (3.32) and (3.33) are
equalities.

Proposition 3.6.8. — Let (X,σ) be a non singular projective R-variety.
1. If (X,σ) is Z-Galois-Maximal then it is Galois-Maximal.
2. If the homology of X has no 2-torsion then (X,σ) is Galois-Maximal if

and only if it is Z-Galois-Maximal.

Proof. — See [Kra83, Proposition 3.6].

Example 3.6.9. — (Z-Galois-Maximal varieties)
1. Smooth projective curves with non empty real locus are Z-Galois-

Maximal (and are therefore Galois-Maximal). See [Sil82] for a proof.
2. Abelian varieties of arbitrary dimension with non empty real locus are

Z-Galois-Maximal. See [Kra83] for a proof.
3. All non singular projective surfaces with non empty real locus such that
H1(X;Z2) = 0 are Z-Galois-Maximal: see Theorem 3.6.11 and Corol-
lary 3.6.12 below.

Example 3.6.10. — Let (X,σ) be a projective non singular R-surface such
that H1(X;Z) = 0. (For example, by the Lefschetz hyperplane theorem D.9.2
any surface in P3 satisfies this condition.) The inequalities (3.32) and (3.33)
then give us

#π0(X(R)) 6 1 + 1
2 dimZ2 H

2 (G,H2(X;Z)) ;

b1(X(R);Z2) 6 dimZ2 H
1 (G,H2(X;Z)) .

Indeed, by hypothesis and Poincaré duality, Hk(X;Z) = 0 for k ∈ {1, 3} and
as X is globally invariant under σ we have that Hk(X;Z)G = Hk(X;Z) = Z
for any k ∈ {0, 4} which implies that H2 (G,Hk(X;Z)) = Z2 and
H1 (G,Hk(X;Z)) = 0 for any k ∈ {0, 4}

It turns out that in the situation of this example if X(R) 6= ∅ then all the
above are equalities.
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Theorem 3.6.11 (Krasnov). — Let (X,σ) be a non singular projective R-
surface such that X(R) 6= ∅ and H1(X;Z2) = 0. We then have that (X,σ) is
Galois-Maximal.

The original proof of this theorem can be found in [Kra83, page 262]. We
give an alternative proof without spectral sequences at the end of this section.

Corollary 3.6.12. — Let (X,σ) be a non singular projective R-surface such
that X(R) 6= ∅ and H1(X;Z2) = 0. We then have that (X,σ) is Z-Galois-
Maximal and

#π0(X(R)) = 1 + 1
2 dimZ2 H

2 (G,H2(X;Z)) ;

b1(X(R);Z2) = dimZ2 H
1 (G,H2(X;Z)) .

Proof. — By Theorem 3.6.11 and Proposition 3.6.8 the R-variety (X,σ) is
Z-Galois-Maximal and the inequalities of Example 3.6.10 are equalities.

The following examples show that the hypotheses of Theorem 3.6.11 are
necessary.

Example 3.6.13 (b1(X) 6= 0). — Consider an R-curve C of genus g > 0
whose real locus has two connected components C1 and C2. (The R-curve
(C, σ1) of Example 2.1.29 is an example of this.) Note that b1(X) = g(C) 6= 0.
By a theorem of Witt’s ([Wit34] or [Kne76a, Kne76b]) there is a rational
function f ∈ R(C)∗ such that f > 0 on C1 and f < 0 on C2 (see also [Sil89,
V.(2.3)]). Let π : X → C be the conic bundle given in A2

x,y×Ct by the equation

x2 + y2 = f(t) .

The space X(R) ≈ S1 × S1 is then connected: it is a torus lying
over C1 ≈ S1, so b∗(X(R)) = 4. Moreover, as dimH1 (G,H4(X;Z2)) =
dimH1 (G,H0(X;Z2)) = 1 and C is a (M − (g − 1))-curve, by [Sil89, V.4,
page 108] we have that dimH1 (G,H1(X;Z2)) = dimH1 (G,H1(C;Z2)) =
2g − 2(g − 1) from which it follows that

dimH1 (G,H1(X;Z2)) = dimH1 (G,H3(X;Z2)) = 2 .

We then have that
∑4
k=0 dimH1 (G,Hk(X;Z2)) > 6 and (X,σ) is not

Galois-Maximal. We can generalise this example as in [Sil89, V.4] and [vH00]:
let (X,σ) be an R-surface with a conic bundle structure π : X → C over a pro-
jective R-curve (C, σC). We suppose that the real structures on X and C are
compatible with π (i. e. π is an R-morphism: σC ◦ π = π ◦ σ). We can
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then prove that (X,σ) is Z-Galois-Maximal if and only if the number of con-
nected components of the real locus X(R) is equal to the number of connected
components of the real locus C(R) of the base curve.

Example 3.6.14 (b1(X) = 0). — See Section 4.5 for the definition and main
properties of real Enriques surfaces. In particular, the fundamental group of
a complex Enriques surface X is equal to Z2 so b1(X) = 0 and b1(X;Z2) = 1.
We will see in Section 4.5 that there are real Enriques surfaces with non empty
real locus which are not Galois-maximal (see Theorem 4.5.20), such as those
whose real locus is connected and orientable (by Theorem 4.5.16, X(R) must
then be diffeomorphic to S2 or T2). We can do better than this: it turns
out that all possible cases of behaviour with respect to Galois maximality
can be attained by real Enriques surfaces (Theorem 4.5.20). In other words,
there are real Enriques surfaces which are Z-Galois-maximal, others that are
Galois-maximal but not Z-Galois-maximal and yet others that are not Galois-
maximal.

We end this subsection with a result confirming a conjecture due to R. Sil-
hol in 1989. See [Sil89, Remark I.4.5] for more details. We saw in Chapter 2
Theorem 2.6.32 which gives a sufficient condition for an invariant linear class
to be represented by an invariant divisor. We will now give a similar result
for another class group of divisors, the Néron-Severi group NS(X) (see Defi-
nition 2.6.34).

Theorem 3.6.15 (van Hamel 1998). — Let (X,σ) be a non singular irre-
ducible projective algebraic R-variety. If X is Z-Galois-maximal then for any
divisor D algebraically equivalent to σ(D) there is a divisor D′ algebraically
equivalent to D such that D′ = σ(D′). In other words(6) :

Div(X)G/Div0(X)G = NS(X)G .

Proof. — The proof is tricky and uses equivariant cohomology. See [vH00,
Cor. IV.5.2] for more details.

Returning to Example 3.6.13 we now shows that the Z-Galois maximal
hypothesis cannot be weakened.

Example 3.6.16 (Div(X)G/Div0(X)G 6= NS(X)G)
Let X → C be a conic bundle over a curve with non empty real part

(6)Scheme theoretically: if X is a scheme over R satisfying the hypotheses of the theorem
then NS(X) = NS(XC)G.
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X(R) which nevertheless has fewer connected components that the real part
C(R) of the base curve. The variety X is then a non singular irreducible
projective algebraic R-variety which is not Z-Galois-Maximal and satisfies:

Div(X)G/P(X)G = Pic(X)G,

but
Div(X)G/Div0(X)G 6= NS(X)G .

See [vH00, Example III.9.5] for more details.

σ-representable classes and proof of Theorem 3.6.11. — We saw in
Chapter 2 that if the real locus of an R-variety (X,σ) is non empty then any
linear class of divisors on X invariant under σ is representable by a divisor on
X which is itself invariant under σ (Theorem 2.6.32). By analogy we introduce
the notion of an invariant topological class which is σ-representable, which will
help us characterise Galois-maximal varieties (Proposition 3.6.19). Moreover,
using these techniques we will give a proof of Krasnov’s theorem 3.6.11 without
spectral sequences.

Throughout this paragraph (X,σ) will be a projective algebraic R-variety
of dimension n. We use the conventions of Section § 3.2: X̃ will be a finite
simplicial complex underlying the compact topological space X such that if
the real structure σ fixes a simplex s of X̃ globally then it fixes each of the
vertices of s. We denote the subcomplex fixed by σ by X̃G and C(X̃;Z2) and
C(X̃G;Z2) will be the chain groups with coefficients in Z2. We will freely
identify the homology groups Hk(C(X̃;Z2)) with the groups Hk(X;Z2) and
Hk(C(X̃G;Z2)) with Hk(X(R);Z2)).

Definition 3.6.17. — Let (X,σ) be an R-variety. An invariant class α ∈
Hk(X;Z2)G is said to be σ-representable if there is an invariant k-cycle c ∈
C(X̃;Z2)G representing α.

Lemma 3.6.18. — We use the same notation as in the spectral sequences
(3.1) and (3.2) with L = ∅. Consider α ∈ Hk(X;Z2): the following are
equivalent :

– ρk(α) = 0 in Hk(ρC(X̃;Z2)) ;
– α is an invariant σ-representable class.

Proof. — If α is an invariant σ-representable class and c is an invariant rep-
resentative it is clear that,

ρ(c) = (1 + σ)(c) ≡ 0 mod 2 whence ρk(α) = 0 .
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Conversely, let α ∈ Hk(X;Z2) be such that ρk(α) = 0 in Hk(ρC(X̃;Z2)) and
let c ∈ Ck(X̃;Z2) be a k-cycle representing α. There is then a (k + 1)-chain
b ∈ ρCk+1(X̃;Z2) such that

ρ(c) = ∂b .

There is therefore a chain b̃ ∈ Ck+1(X̃;Z2) such that

ρ(b̃) = b and ρ(c) = ∂b = ρ(∂b̃) .

The k-cycle c′ = ∂b̃− c = ∂b̃+ c also represents α and satisfies ρ(c′) = 0. By
the exact sequence (3.1) we have that c′ ∈ ρC(X̃;Z2) ⊕ C(X̃G;Z2) and the
invariance of c′ follows.

Proposition 3.6.19. — Let (X,σ) be a R-variety. The following properties
are equivalent.

– (X,σ) is Galois-Maximal ;
– For any 0 6 k 6 2n, any homology class α ∈ Hk(X;Z2) invariant under
σ can be represented by a cycle invariant under σ.

Remark 3.6.20. — It is interesting to compare the above result with Theo-
rem 3.6.15 in the complex codimension 1 case. This theorem characterises the
invariant algebraic classes which are representable by invariant divisors.

Proof. — Consider an integer k such that 0 6 k 6 2n. By Lemma 3.6.18
we have that ker ρk ⊂ Hk(X;Z2)G. Recall that on setting ak = dimZ2 Im ρk
and λk = dimZ2(1 + σ∗)Hk(X;Z2) Lemma 3.6.3 implies that λk 6 ak and
Lemma 3.6.6 implies that λk = ak for all k if and only if (X,σ) is Galois-
Maximal. We start by supposing that every invariant class is σ-representable:
we then have that

ker ρk = Hk(X;Z2)G

by Lemma 3.6.18. It follows that ak = dim Im ρk = λk by Lemma 3.6.1 and
hence the R-variety (X,σ) is Galois-Maximal.

Conversely, assume that (X,σ) is Galois-Maximal. For any k ∈ {0, . . . , 2n}
we then have that dim Im ρk = λk from which since ker ρk ⊂ Hk(X;Z2)G
we can deduce that dim ker ρk = dimHk(X;Z2)G. Using Lemma 3.6.18 once
more, we see that every invariant class is σ-representable.

Proposition 3.6.19 is the key element of the elementary proof of Theo-
rem 3.6.11. The original proof ([Kra83, page 262]) is based on the degen-
eration of the Grothendieck spectral sequence. An English version of this



3.6. GALOIS-MAXIMAL VARIETIES 191

proof can be found in [Sil89, A1.7]. We start with a lemma which is essen-
tially due to Hirzebruch and which will be used several times in the rest of
this book.

Lemma 3.6.21. — Let (X,σ) be a non singular projective algebraic R-
surface. We set G = {1, σ} ' Z2 and we let Y = X/G be the topological
quotient of X by G. The fundamental class of X(R) in H2(Y ;Z2) then van-
ishes.

Proof. — The complex surface X with its Euclidean topology is a compact
oriented differentiable manifold of dimension 4 on which G acts by orientation
preserving diffeomorphism (see Proposition 2.2.28). The subset of fixed points
X(R) is a compact differentiable submanifold all of whose connected compo-
nents are of codimension 2 in X; the projection p : X → Y is then a branched
double cover of Y whose branching locus is p(X(R)) [Hir69, § 1]. If X(R) is
orientable then the normal bundle N of p(X(R)) in Y is the tensor square of
the normal bundle NX|X(R) of X(R) in X: all these objets are differentiable
bundles of complex lines (see Hirzebruch [Hir69, pages 259–260]). The first
Chern class of the bundle N is therefore divisible by 2 in H2(Y ;Z). The fun-
damental class of X(R) in H2(Y ;Z)- ie. the class of p(X(R))- is the Poincaré
dual of c1(N ). This class is therefore also divisible by 2. On the other hand,
if X(R) is not orientable then a second application of [Hir69, pages 259–260]
shows that its fundamental class vanishes in Y modulo 2. Reducing modulo
2 it follows that in every case the fundamental class of X(R) in H2(Y ;Z2)
vanishes.

Lemma 3.6.22. — Using the same notation as in the Smith exact sequence
(3.2), let (X,σ) be a non singular projective R-surface such that X(R) 6= ∅
and H1(X;Z2) = 0. We then have that

H3(Y,X(R);Z2) ' Z2 .

Moreover if β0 is the unique non zero class in H3(ρC(X̃;Z2)) then the
second component of γ3(β0) in H2(ρC(X̃;Z2))⊕H2(X(R);Z2) is non trivial.
(See the exact sequence (3.2)).

Proof. — The real locus X(R) is a differentiable submanifold of X of dimen-
sion 2 and in particular bk(X(R);Z2) = 0 for any k > 2. The hypothesis
H1(X;Z2) = 0 implies that H3(X;Z2) = 0 by Poincaré duality and hence
H3(X;Z2) ' H3(X;Z2) = 0. The exact long sequence (3.2) can be decom-
posed as follows.
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(3.34) 0→ H4(ρC(X̃))→ H4(X;Z2)→ H4(ρC(X̃))→ H3(ρC(X̃))→ 0

0→ H3(ρC(X̃)) γ3−→ H2(ρC(X̃))⊕H2(X(R);Z2) i2−→ H2(X;Z2) ρ2−→

H2(ρC(X̃))→ H1(ρC(X̃))⊕H1(X(R);Z2)→ 0
(3.35)

By convention the complex surface X is connected so by (3.34) we have
that

dimH4(ρC(X̃;Z2)) = dimH4(X;Z2) = dimH3(ρC(X̃;Z2)) = 1 .

The group Hr(ρC(X̃;Z2)) is isomorphic to Hr(Y,X(R);Z2) (Proposi-
tion 3.2.5) and as this isomorphism is natural it is possible to identify the
maps γr and ∆r in the exact sequences (3.2) and (3.6). As above, we denote
by β0 the unique non zero class in H3(Y,X(R);Z2). We deduce from the
exact sequence (3.7)

H3(Y,X(R);Z2) δ3−→ H2(X(R);Z2)→ H2(Y ;Z2)

and Lemma 3.6.21 that the fundamental class of X(R) in Hin2(X(R);Z2)
is the image of β0 under δ3. As X(R) is non empty its fundamental class
in H2(X(R);Z2) is non zero, moreover δ3 is the second component of
∆3 : H3(Y,X(R)) → H2(Y,X(R)) ⊕ H2(X(R)), which is the same thing as
the second component of γ3 : H3(ρC(X̃)) → H2(ρC(X̃))⊕H2(X(R)), and as
H3(Y,X(R);Z2) ' H3(ρC(X̃;Z2)) the lemma follows.

Proof of Theorem 3.6.11. — For any k ∈ {0, 1, 3, 4} we have thatHk(X;Z2)G =
Hk(X;Z2) and it follows that λk = ak since by hypothesis we have that
b1(X;Z2) = b3(X;Z2) = 0. The failure of X to be Galois-Maximal is there-
fore due to the behaviour of the group H2(X;Z2). Suppose that (X,σ) is
not Galois-Maximal. It then follows from Proposition 3.6.19 that there is an
invariant class α ∈ H2(X;Z2)G which is not σ-representable.

We now use the fact that in the exact sequence (3.35) the target space of
ρ2 is also the target space of the first component of γ3. Lemma 3.6.18 implies
that ρ2(α) 6= 0 in H2(ρC(X̃;Z2)). We denote by α′ = ρ2(α) this non zero class
in H2(ρC(X̃;Z2)). By definition of ρ if c is a representative of α which is not
invariant then by hypothesis α′ is the class of c+ σ(c) in H2(ρC(X̃;Z2)). As
α is invariant we have that i2(α′ ⊕ 0) = α+ σ(α) = 2α = 0 in H2(X;Z2). As
the class β0 is the only non zero class in H3(ρC(X̃;Z2)), it follows from the
exactness of the sequence (3.35) at H2(ρC(X̃;Z2)) that α′ is the image under
β0 of γ3. This contradicts Lemma 3.6.22 which implies that the image of γ3
is not contained in H2(ρC(X̃;Z2)).
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3.7. Algebraic cycles

Fundamental class. — A connected compact manifold without boundary
V of dimension n has a fundamental Z2 homology class [V ] ∈ Hn(V ;Z2). If
the variety V is also oriented (see Definition B.5.3) then it has an oriented
fundamental Z-class [V ] ∈ Hn(V ;Z), see Remark B.5.8.

A (non singular) compact complex analytic variety V of complex dimension
n therefore has a fundamental homology class [V ] ∈ H2n(V ;Z). Similarly, a
(non singular) compact real analytic variety L of dimension n has a funda-
mental homology class [L] ∈ Hn(L;Z2).

In [BH61], Borel and Haefliger describe how to define a fundamental class
[V ] ∈ H2n(V ;Z) in the general case where V is a complex analytic space with
singularities and a fundamental class [L] ∈ Hn(L;Z2) when L is a locally real
analytic space. For more details of the construction of this fundamental class
using a semi-algebraic triangulation (see Appendix B.2) we refer to [BCR98,
Theorem 11.1.1 and Proposition 11.3.1].

Definition 3.7.1. — LetX be a complex analytic space of (complex) dimen-
sion n and let Y be a compact analytic subspace of (complex) dimension k. The
homology class represented by Y (or class of Y ), denoted by [Y ] ∈ H2k(X;Z), is
the image of the fundamental homology class [Y ] ∈ H2k(Y ;Z) under the mor-
phism i∗ : H2k(Y ;Z)→ H2k(X;Z) induced by the inclusion map i : Y ↪→ X.

IfX is non singular the cohomology class represented by Y , denoted ηY , will
be the image in H2n−2k

c (X;Z) of the class [Y ] ∈ H2k(X;Z) under the Poincaré
duality morphism (see Corollary 3.1.9 for the case where X is compact and
Theorem B.7.1 for the general case)

D−1
X : H2k(X;Z2)→ H2n−2k

c (X;Z2) .

Similarly, let L ⊂ V be a locally real analytic subspace of dimension k in a
locally real analytic space of dimension n. If L is compact the the homology
class represented by L, denoted [L] ∈ Hk(V ;Z2), will be the image of the
fundamental homology class [L] ∈ Hk(L;Z2) under the morphism induced by
inclusion L ↪→ V .

If V is non singular the cohomology class represented by L, denoted ηV , will
be the image in Hn−k

c (V ;Z2) of [L] ∈ Hk(V ;Z2) under the Poincaré duality
morphism

D−1
V : Hk(V ;Z2)→ Hn−k

c (V ;Z2) .

Algebraic cycles. — Let (X,σ) be a projective R-surface. Both the com-
plex variety X and its real locus X(R) have a Euclidean topology. We consider
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the subgroup
Halg

1 (X(R);Z2) ⊂ H1(X(R);Z2)

of homology classes which can be represented by the real locus of an algebraic
R-curve. One of the main questions in this area is to determine this group
and apply this knowledge to classification problems and topology.

More generally, we consider a projective R-variety of dimension n, (X,σ),
and an irreducible subvariety Y ⊂ X which is stable under σ (so that (Y, σ|Y )
is an R-subvariety) of codimension k in X. If Y (R) is of codimension k in
X(R) then we have a homology class [Y (R)] ∈ Hn−k(X(R);Z2) where n is
the dimension of X. Let Halg

n−k(X(R);Z2) be the subgroup in Hn−k(X(R);Z2)
generated by these classes. If X is non singular we denote by Hk

alg(X(R);Z2)
the subgroup generated by the Poincaré duals of these classes.

Definition 3.7.2. — The group Halg
n−k(X(R);Z2) is called the group of (n−

k)-algebraic cycles on X(R) or the group of algebraic cycles of codimension k
in X(R). (Note that for non singular X we generally call the elements of the
group Hk

alg(X(R);Z2) "algebraic cycles" rather than "algebraic cocycles").

Remark 3.7.3. — This is a slight abuse of notation, as an element of
Halg
n−k(X(R);Z2) is actually a homology class rather than a cycle.

Let (X,σ) be a projective R-variety. We set

Halg
∗ (X(R);Z2) =

⊕
k>0

Halg
k (X(R);Z2) ;

and if X is non singular we set

H∗alg(X(R);Z2) =
⊕
k>0

Hk
alg(X(R);Z2) .

Theorem 3.7.4. — Let (X,σ) and (Y, τ) be projective R-varieties and let
f : X → Y be a morphism of R-varieties. We then have that

f∗(Halg
∗ (X(R);Z2)) ⊂ Halg

∗ (Y (R);Z2) ;

and if X and Y are non singular,

f∗(H∗alg(Y (R);Z2)) ⊂ H∗alg(X(R);Z2) .

Proof. — This follows immediately from results found in [BH61, §5]. See also
[BCR98, Theorem 11.3.4].
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Theorem 3.7.5. — Let (X,σ) be a non singular projective R-variety. The
direct sum

H∗alg(X(R);Z2) =
⊕
k>0

Hk
alg(X(R);Z2)

is a graded ring with respect to cup-product.

Proof. — This follows immediately from [BH61, §5]. See also [BCR98, The-
orem 11.3.5].

Definition 3.7.6 (Totally algebraic variety). — A real algebraic variety
V such that

Halg
∗ (V ;Z2) = H∗(V ;Z2)

is said to be totally algebraic. Similarly, an R-variety (X,σ) such that

Halg
∗ (X(R);Z2) = H∗(X(R);Z2)

is said to be totally algebraic.

Example 3.7.7. — Projective spaces Pn(R) and Grassmannians (see below)
Gn,k(R) are totally algebraic

Halg
∗ (Pn(R);Z2) = H∗(Pn(R);Z2) ;

Halg
∗ (Gn,k(R);Z2) = H∗(Gn,k(R);Z2) .

See [BCR98, Proposition 11.3.3].

Definition 3.7.8 (Grassmannian). — Let K be a field and let n > k be
natural numbers. The Grassmannian (or Grassmann variety) Gn,k(K) is the
set of k-dimensional subspaces of Kn.

Remark 3.7.9. — The Grassmannian is a generalisation of projective space.
For any natural number n, Pn(K) = Gn+1,1(K).

Proposition 3.7.10. — Let n and k be natural numbers such that n > k.
The Grassmanian Gn,k(R) is a complete non singular real affine algebraic
variety.

Proof. — See [BCR98, Proposition 3.4.5].

Proposition 3.7.11. — Let n and k be natural numbers such that n > k.
The real algebraic varieties Gn,k(R) and Gn,n−k(R) are isomorphic.

Proof. — See [BCR98, Propositions 3.4.3, 3.4.4 et 3.4.11].
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Beyond the fact that characterising the homology classes coming from alge-
braic varieties is interesting in itself, the group of algebraic cycles intervenes
in the following question: how well can a C∞ hypersurfaces be approximated
by algebraic hypersurfaces? (See [BCR98, § 12.4] for more details). A closed
C∞ manifold M in a real algebraic variety V has an algebraic approximation
in V if for every open neighbourhood Ω of the inclusion M ↪→ V in C∞(M,V )
(with the C∞ topology, see Remark 5.2.2), there is an h ∈ Ω such that h(M) is
a non singular algebraic subset of V . We have the following important result.

Theorem 3.7.12. — Let (X,σ) be a non singular quasi-projective R-variety
of dimension n such that X(R) is compact and non empty (i. e. X(R) is com-
plete, see Definition 1.4.11) and let M ⊂ X(R) be a compact C∞ hypersurface.
The following conditions are then equivalent.

– The fundamental class [M ] of M belongs to Halg
n−1(X(R);Z2).

– M has an algebraic approximation in X(R).
– There is a C∞ diffeotopy of X(R) arbitrarily close to the identity sending
M to a non singular algebraic subset of codimension 1 in X(R).

Proof. — See [BCR98, Theorem 12.4.11].

Cycle map. — Let (X,σ) be an R-variety such that X(R) 6= ∅. We denote
by HR−alg

2k (X;Z) the subgroup of H2k(X;Z) generated by classes that can be
represented by complex algebraic subvarieties of dimension k fixed by σ. We
can define a cycle map

(3.36) ψX : HR−alg
2k (X;Z)→ Halg

k (X(R);Z2)

as follows.
Consider an element α ∈ HR−alg

2k (X;Z). By hypothesis there exist ir-
reducible complex algebraic subvarieties Dj , j = 1, . . . , s of dimension k

such that σDj = Dj and integers nj ∈ Z such that α =
∑s
j=1 nj [Dj ]. If

dimRDj(R) = k, then the image of Dj under ψX is the class [Dj(R)] in
Hk(X(R);Z2) and otherwise ψX(Dj) = 0. The image of α under ψX is then
the linear combination

∑s
j=1 nj [Dj(R)] where the sum is only taken over the

indices j such that dimRDj(R) = k.
For a special class of algebraic varieties we have the following result.

Lemma 3.7.13. — [BH61, § 5.15, Proposition, page 496] Let (X,σ) be a
non singular projective R-variety. If every homology class modulo 2 on X

(resp. on X(R)) (with not necessarily compact support) can be represented by
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a σ-invariant algebraic cycle on X (resp. a real algebraic cycle on X(R)) then
the inverse of the cycle map

H∗(X(R);Z2)→ H∗(X;Z2)

induces a ring morphism that doubles dimensions.

Example 3.7.14. — A basic example of this phenomenon is projective space.
In this case, the cycle map

H2k(Pn(C);Z)⊗Z Z2 ' H2k(Pn(C);Z2) −→ Hk(Pn(R);Z2)

is an isomorphism of Z2-modules.

Applications to R-surfaces. — We end this section by showing that any
rational R-surface is totally algebraic. We will continue the study of totally
algebraic R-surfaces in Chapter 4.

When (X,σ) is a non singular projective R-surface the Z2-vector spaces
H1(X(R);Z2) et H1(X(R);Z2) are isomorphic by Poincaré duality. We denote
their dimension by b1(X(R)). Similarly, we write

b1alg(X(R)) = dimZ2 H
1
alg(X(R);Z2).

Any algebraic R-surface X is therefore totally algebraic (Definition 3.7.6) if
and only if

b1alg(X(R)) = b1(X(R)) .

There are natural bounds on b1alg coming from complex geometry. For exam-
ple, when X is simply connected, b1alg(X(R)) is bounded above by the Hodge
number h1,1(X) = dimCH

1(X,Ω1
X). There are other upper bounds coming

from the real structure σ, such as the obvious upper bound b1alg(X(R)) 6
b1(X(R)).

We note for future reference that the decomposition

H1(X(R);Z2) =
⊕

V⊂X(R)
H1(V ;Z2)

where V runs over the set of connected components of X(R) is orthogonal
for the intersection form: see Section B.7 for more details, particularly Corol-
lary B.7.7.

Surfaces have a cycle map that is more sophisticated that the one defined
above.
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Proposition 3.7.15. — Let (X,σ) be a non singular projective R-surface.
There is then a surjective map

(3.37) ϕX : Pic(X)G → H1
alg(X(R);Z2)

defined essentially by mapping a real algebraic curve to the fundamental class
of its real part.

Proof. — We refer to [Sil89, Chapter III]. If (X,σ) has a non empty real locus
we know that every linear class of divisors that is invariant under σ can be
represented by an invariant divisor. The canonical map Div(X)G → Pic(X)G
is therefore surjective. As in (3.36) we associate to any irreducible divisor the
fundamental class of its real locus if this real locus has codimension 1 and zero
otherwise. This yields a morphism Div(X)G → H1(X(R);Z2). We can prove
that the image under this map of a principal divisor to be zero. We then com-
pose with the Poincaré duality map D−1

X(R) : H1(X(R);Z2) → H1(X(R);Z2),
which yields a well-defined morphism ϕX : Pic(X)G → H1(X(R);Z2). Con-
versely, the surjectivity of the map ϕX on H1

alg(X(R);Z2) can be proved by
complexification of algebraic cycles on X(R). (When the real locus is empty
ϕX is zero by both convention and necessity).

We recall (see Definition 3.1.14) that w1(V ) denotes the first Stiefel-Whitney
class of the tangent bundle of the compact differentiable variety V . Let KX

be a canonical divisor on X. We will use the following properties of ϕX :

Proposition 3.7.16. — Let (X,σ) be a non singular projective R-surface.
The morphism ϕX defined above has the following properties

∀D ∈ Div(X)σ, ∀D′ ∈ Div(X)σ, ϕX(D) · ϕX(D′) ≡ (D ·D′) mod 2 ;
(3.38a)

w1(X(R))− ϕX(KX) ∈ ϕX(Pic0(X)G) .(3.38b)

Proof. — In (3.38a) the left hand side uses the intersection form on the vector
space H1(X(R);Z2) and the right hand side uses the intersection form on
Pic(X). The result follows on noting that this intersection form is invariant-
see Proposition 4.1.16.

To prove (3.38b) we start by assuming that H1(X;Q) = 0. The first Chern
class map c1 : Pic(X) → H2(X;Z) is then injective. If X(R) is non empty
Div(X)G → Pic(X)G is surjective and Pic(X)G can be included in H2(X;Z)
on composition with the Poincaré duality map DX : H2(X;Z) → H2(X;Z).
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The morphism ϕX can then be identified with ψX :

ψX ◦DX ◦ c1 = DX(R) ◦ ϕX .

We now interpret Pic(X) as a group of isomorphism classes of line bundles.
Since c1(TX) = −c1(KX), note that the restriction to the real locus of the tan-
gent bundle of X is isomorphic to the complexification of the tangent bundle
of X(R) :

TX |X(R) ' TX(R) ⊗ C .

By definition of ψX it follows that

w1(X(R)) = D−1
X(R)(ψX(DX(c1(KX)))) = ϕX(KX) .

When H1(X;Q) 6= 0 the image of DX(c1(KX)) under ψX is only defined
up to addition of an element in ϕX(Pic0(X)G).

Proposition 3.7.17. — Let (X,σ) be a non singular projective R-surface.
If the real locus X(R) has a non orientable connected component then

b1alg(X(R)) > 1 .

Proof. — This result, first proved in [BKS82], is a combination of Proposi-
tion 3.1.15 and the fact that w1(X(R)) ∈ H1

alg(X(R);Z2) because of Prop-
erty (3.38b).

Theorem 3.7.18. — Let X be a non singular projective R-surface whose
geometric genus pg(X) is zero (Definition 4.1.1) such that H1(X;Z2) = 0.
We then have that

H1
alg(X(R);Z2) = H1(X(R);Z2) .

We apply this theorem to rational surfaces below. We refer the interested
reader to the survey article [BCP11] for the case of surfaces of general type
and geometric genus 0.

Remark 3.7.19. — The assumption that the homology of the complex
surface X does not contain 2-torsion is necessary. There are non singular
projective R-surfaces such that pg(X) = q(X) = 0 but H1

alg(X(R);Z2) (
H1(X(R);Z2). See Theorem 4.5.17 for more details.

Proof. — By the final hypothesis H1(X;Z)f = 0 from which it follows that
H1(X;Q) = 0. (See the universal coefficients theorem, B.4.3). We therefore
have that pg(X) = q(X) = 0 and by the Lefschetz theorem D.9.3 it follows



200 CHAPTER 3. TOPOLOGY OF VARIETIES WITH AN INVOLUTION

that Pic(X) ' NS(X) ' H1,1(X) ∩H2(X;Z) = H2(X;Z). Moreover we have
that

dimZ2 H
2(G,Pic(X)) = dimZ2 H

1 (G,H2(X;Z))
by Proposition D.6.5. The homology of X has no 2-torsion by the uni-
versal coefficients theorem B.4.3 and by Corollary 3.6.12 we have that
dimZ2 H1(X(R);Z2) = dimZ2 H

1 (G,H2(X;Z)). It remains to show that

dimZ2 H
1
alg(X(R);Z2) = dimZ2 H

2(G,Pic(X)) .

We recall that H2(G,Pic(X)) = Pic(X)G/(1 + σ∗) Pic(X) by Proposi-
tion 3.1.4. Set r := rk Pic(X)G and λ := dimZ2(1 + σ∗) Pic(X) ⊗Z Z2. By
Lemma 3.1.1 we can find a basis (d1, . . . , dρ(X)) of the free Z-module Pic(X)
whose first r elements form a basis of Pic(X)G such that

dj ∈ (1 + σ∗) Pic(X) for j = 1, . . . , λ ;
dj /∈ (1 + σ∗) Pic(X) for j = λ+ 1, . . . , r .

(3.39)

For any a and b in Pic(X) we have that

(a · b) = (σ∗a · σ∗b)

by Proposition 4.1.16. It follows that for any j = 1, . . . , λ and for any d ∈
Pic(X)G we have that

(3.40) (dj · d) = (d′ · d) + (σ∗d′ · d) = 2(d′ · d) ≡ 0 mod 2 .

We write the matrix of the intersection form restricted to Pic(X)G in the
basis (d1, . . . , dr) mentioned above: calculating the determinant and using
Equation (3.40) we see that for all j = λ+ 1, . . . , r, there is a k such that

(dj · dk) ≡ 1 mod 2

and it follows that
(ϕ(dj) · ϕ(dk)) = 1

where ϕ : Pic(X)G → H1
alg(X(R);Z2) is the morphism defined in (3.37).

This implies that for all j, λ < j 6 r, ϕ(dj) 6= 0. If we replace dj1 by
dj1 + · · · + djs (for distinct ji such that λ < ji 6 r, we obtain another
basis of Pic(X)G satisfying the hypotheses (3.39). For the same reasons as
above, ϕ(dj1 + · · · + djs) 6= 0 or in other words, the ϕ(dj), j = λ + 1, . . . , r
are linearly independent in H1

alg(X(R);Z2). We conclude by noting that
since dimZ2 H

1
alg(X(R);Z2) 6 dimZ2 H

2(G,Pic(X)) = r − λ, we get that
dimZ2 H

1
alg(X(R);Z2) = dimZ2 H

2(G,Pic(X)).

Corollary 3.7.20 (Silhol). — Any geometrically rational R-surface is to-
tally algebraic.
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Remark 3.7.21. — The proof of Theorem 3.7.18 proposed here is a gener-
alisation of [Sil89, III.(3.4)]. Theorem 3.7.18 can also be found, in a similar
generality but with a different proof, in [vH00, Chapter IV, Corollary 4.4 and
Chapter III, Lemma 8.9].
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Solutions to exercises of Chapter 3

3.3.4 1. The fundamental group of RP2 is π1(RP2) ' Z2 (see Proposi-
tion 2.7.6). By Hurewicz’s theorem B.3.9, H1(RP2;Z) ' Z2 since it
is the abelianisation of π1(RP2). As the degree zero homology is torsion
free, the universal coefficients theorem B.4.3 implies that H1(RP2;Z2) '
H1(RP2;Z)⊗ Z2 ' Z2.

2. This follows from a similar calculation applied to the fundamental group
π1(S1× S1) ' Z⊕Z or by direct calculation using the Künneth formula.
See Exercise B.6.5 for more details.

3. Use the fact that π1(K2) ' Z2 ⊕ Z.
3.3.12 We calculate the total Betti numbers b∗(C;Z2) = 2 + 2g and
b∗(C(R;Z2) = 2s and it follows that b∗(C;Z2)− b∗(C(R);Z2) = 2(g + 1− s).
3.4.10 Apply Equation (3.17) for k = 1

w1 = Sq0(v1) + Sq1(v0) = Sq0(v1) = v1 .

As Sqp(vq) = 0 whenever p > q, Formula (3.17) is simply a sum

wk =
∑

p=0,...,b k2c
Sqp(vk−p) .

For k = 2 we get that w2 = Sq0(v2) + Sq1(v1) = v2 + v1 ^ v1, and since
v1 = w1 on setting wk wl := wk ^ wl it follows that

v2 = w2 + w2
1 .

We calculate v3 using Wu’s formula [MS74, Problem 8-A]

Sqp(wk) =
p∑
l=0

(
k − p+ l − 1

l

)
wp−l ^ wk+l .

which gives us

(3.41) Sq1(w2) = w1 ^ w2 + w3

and Cartan’s formula [MS74, (4) page 91] which gives us Sq1(w1 ^ w1) =
Sq0(w1) ^ Sq1(w1) + Sq1(w1) ^ Sq0(w1) = 2 w1 ^ w1 ^ w1 = 0. It follows
that w3 = Sq0(v3) + Sq1(v2) = v3 + Sq1(w2 + w1 ^ w1) = v3 + Sq1(w2) +
Sq1(w1 ^ w1) and hence

v3 = w1 w2 .

For v4 we use v2 ^ v2 = (w2 + w1 ^ w1) ^ (w2 + w1 ^ w1) = w2 ^

w2 + w1 ^ w1 ^ w1 ^ w1, Cartan’s formula and equation (3.41) : Sq1(w1 ^

w2) = Sq0(w1) ^ Sq1(w2) + Sq1(w1) ^ Sq0(w2) = w1 ^ (w1 ^ w2 + w3) +
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w1 ^ w1 ^ w2 = w1 ^ w3. We then have that w4 = Sq0(v4) + Sq1(v3) +
Sq2(v2) = v4 + Sq1(w1 ^ w2) + v2 ^ v2 and finally we get

v4 = w4 + w1 w3 + w2
2 + w4

1 .

3.4.18 Let X ⊂ P2(C)x:y:z be the R-curve of equation x2 +y2 +z2 = 0. Its real
locus X(R) = X ∩ P2(R) is empty. The topological surface underlying X is
connected and of genus zero and henceH0(X;Z2) = H1(X;Z2) = H2(X;Z2) =
Z2. In particular, the Z2-linear map σi : Hi(X;Z2)→ Hi(X;Z2), i = 0, 1, 2 is
the identity, but b∗(X;Z2) = 3 whereas b∗(X(R);Z2) = 0.
3.4.21 By hypothesis, the 2mth Wu class is a polynomial in m variables w2k :=
w2k(X), k = 1, . . . ,m, and each monomial in these variables belongs to
H2m(X;Z2). We therefore have that

P (w) =
∑

i=(i1,...,im)|
∑

2ilαil=2m

ai

m∏
l=1

wαil
2il

from which it follows on setting ck := ck(X), k = 1, . . . ,m that

P (c) =
∑

i=(i1,...,im)|
∑

2ilαil=2m

ai

m∏
l=1

c
αil
il

.

Since σ∗ck = (−1)kck we get that

σ∗P (c) =
∑

i=(i1,...,im)|
∑

2ilαil=2m

ai

m∏
l=1

(−1)ilαil cαilil

from which the result follows because for every i = (i1, . . . , im),
∑
ilαil = m.





CHAPTER 4

SURFACES

This chapter contains a partial classification of real algebraic surfaces. Some
of the results presented here are classical, others are more recent: we have
tried to provide a panorama without attempting to be exhaustive, the selection
criteria being the author’s personal preferences. This chapter provides a review
of the geometry of real and complex surfaces: our leitmotif is an attempt to
describe as far as possible the topological types and deformation classes of real
algebraic surfaces, and whether each family of surfaces thus described contains
any totally algebraic elements.

In an ideal world we would find, as for algebraically closed base fields,
a discrete invariant (ie. a multi-integer) classifying the possible topological
types of real varieties, plus, for each value attained by this discrete invariant, a
continuous subinvariant, called a moduli space(1) A perfect classification would
establish a bijection between irreducible moduli spaces and possible values of
the multi-integral invariant.

The first natural integral invariant is the dimension. In dimension 1 the
topological classification, established by Klein, was described in Section 3.5:
we now review it as motivation for higher dimensional theory. Any non singular
projective R-curve (X,σ) is associated to a triplet of integers (g, s, a) where
g := g(X) is the genus of the orientable compact surface X, s := s(X,σ) is
the number of connected components of X(R) and a := a(X,σ) is the binary
invariant determined by a := 2−#π0(X\X(R)). These invariants must satisfy
the following conditions.

(1)From a set theoretic point of view a "moduli space" is simply a set parameterising possible
structures up to isomorphism: in this book we will settle for this point of view. It is rarely
simple to equip such a set with an appropriate "space" structure.
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1. If a = 0- ie, if the curve is separating (Definition 3.5.1) then 1 6 s 6 g+1
and g − s ≡ 1 mod 2.

2. If a = 1 then 0 6 s 6 g.
We can give a discrete topological classification of R-curves as follows: for
any triplet of integers(2) (g, s, a), a ∈ {0, 1}, satisfying the above condi-
tions, there is a non singular projective R-curve (X,σ) realising it, or in
other words such that g(X) = g, s(X,σ) = s and a(X,σ) = a. A refined
topological classification of R-curves follows because two R-curves (X,σ) and
(Y, τ) are deformation equivalent if and only if they have the same triplets:
(g(X), s(X), a(X)) = (g(Y ), s(Y ), a(Y )). See [Gab00] for more details.

From dimension 2 onwards it frequently becomes difficult to give such a
precise classification, even for special classes of surfaces. We generally start our
investigations by classifying real loci up to homeomorphism, as in Section 4.2.
Even when we manage to identify a suitable multi-integer for the classification
of a particular type of surface and endow the corresponding moduli space with
a natural structure, it is not usually clear whether the number of irreducible
components of this moduli space is finite. When it is finite, it is often difficult
to calculate the number of its irreducible or connected components.

In this chapter we will list
1. All known classifications of real loci of R-surfaces.
2. All known classifications of R-surfaces up to isomorphism.
3. The cases in which the "quasi-simplicity" problem- a real version of the

Def=Diff problem, see Question 4.3.29- is solved.

Example 4.0.1. — In this chapter we will study various "classes" of R-
surfaces: the word "class" is deliberately vague. For example, we will classify
topological types of

– Geometrically rational R-surfaces (Definition 4.4.1): the "class" is then a
C-birational equivalence class;

– Rational R-surfaces (Definition 4.4.1): the "class" is then an R-birational
equivalence class;

– Real Enriques surfaces, (Definition 4.5.13) resp. real K3 surfaces (Defi-
nition 4.5.3): in this case we consider that R-surfaces (X,σ) and (Y, τ)
belong to the same class if and only if the complex surfaces X and Y

belong to the unique irreducible family of complex deformations (Defini-
tion 4.3.25) of Enriques surfaces, resp. K3 surfaces;

(2)Which are necessarily positive or zero.
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– Real elliptic surfaces (Definition 4.6.1): the R-surfaces (X,σ) and (Y, τ)
belong to the same "class" if the complex surfaces X and Y belong to
one of the irreducible families (of which there are an infinite number) of
complex deformations of elliptic surfaces.

– Real Jacobian elliptic surfaces of irregularity zero and fixed holomor-
phic Euler characteristic: in this case the "class" is once again a unique
irreducible family of complex Jacobian elliptic surfaces.

4.1. Curves and divisors on complex surfaces

Section 2.6 of Chapter 2 deals with divisors on varieties of arbitrary dimen-
sion. Recall in particular that on a non singular irreducible complex variety X
there is a one-to-one correspondance between Cartier divisors and Weil divi-
sors and the linear equivalence groups Cl(X) and CaCl(X) are isomorphic. To
any divisor D on X represented by (Ui, fi)i we associate a line bundle OX(D)
defined by OX(D)|Ui = f−1

i OX |Ui as in Definition 2.6.11. If the variety X

is quasi-projective and non singular then the map D 7→ OX(D) induces an
isomorphism

Cl(X) ' Pic(X) ,
as in Corollary 2.6.17.

On a surface, prime divisors are just irreducible curves and divisors are
linear combinations of irreducible curves with integral coefficients. When this
linear combination has positive coefficients the divisor is said to be effective.
Many authors consider that a curve on a surface is simply an effective divisor
on this surface: this recalls our plane curves of Section 1.6 which were allowed
to be reducible or non-reduced. Recall that as in Definition 2.6.26 the canonical
divisor KX of a complex surface X is a (3) divisor associated to the canonical
bundle KX = det ΩX . In particular, we have that OX(KX) =

∧2 ΩX = Ω2
X .

On an R-surface (X,σ) the canonical bundle is an R-bundle, σKX = KX .
Recall that by the Cartan-Serre theorem D.1.3 the C-vector spaces H i(X,F)
of the cohomology of a coherent sheaf F are finite dimensional.

Definition 4.1.1. — Let X be a non singular complex projective surface,
or more generally a compact Kähler surface.

1. The geometric genus of X is defined to be pg(X) := dimH2(X,OX).
2. The irregularity of X is defined to be q(X) := dimH1(X,OX).

(3)We remind the reader that it is customary to call this object "the" canonical divisor despite
the fact that it is only defined up to linear equivalence.
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3. The holomorphic Euler characteristic of X is defined to be

χ(OX) = 1− q(X) + pg(X) .

4. The Hodge numbers of X are defined by ha,b(X) := dimHb(X,Ωa
X).

Proposition 4.1.2. — Let X be a compact Kähler surface. We have the
following identities.

1. pg(X) = dimH0(X,KX) = h2,0(X) = h0,2(X);
2. q(X) = h1,0(X) = h0,1(X) = h3,0(X) = h0,3(X).

Proof. — We refer to Appendix D for the proofs. By Hodge symmetry
we have that hp,q = hq,p. As H0(X,KX) = H0(X,Ω2

X) we have that
h2,0(X) = dimH0(X,KX). We could also have used Serre duality, which
gives us H2(X,OX) = H0(X,KX). We complete the proof using Poincaré
duality with complex coefficients which gives us bk = b4−k. As this duality is
compatible with the Hodge decomposition we get that hp,q = h2−p,2−q.

Definition 4.1.3. — Let X be a non singular irreducible complex projective
surface. For any m > 1 the number Pm(X) := dimH0(X,K⊗mX ) is called the
mth plurigenus of X: in particular, P1(X) = pg(X). The canonical dimension
κ(X), also called the Kodaira dimension, is defined to be the Iitaka dimension
of the canonical divisor

κ(X) :=
{
−∞ if Pm(X) = 0 for any m > 1 ;
k > 0 the smallest integer such that the sequence

{Pm(X)
mk

}
m

is bounded.

If ϕmK denotes the rational map from X to a projective space associated
to the linear system |mK| then κ(X) is the maximal dimension of the images
ϕmK(X) for m > 1.

It turns out that the Kodaira dimension can be defined for any complex
compact analytic variety. For a surface X, κ(X) can be −∞, 0, 1 or 2- see
Definition D.4.8, Proposition D.4.9 and Remark D.4.10. In what follows, we
will consider each possible Kodaira dimensions in turn.

Recall that a projective variety is said to be of general type if and only if its
canonical bundle is big, or equivalently if κ(X) = dimX. See Definitions 2.6.22
and 2.6.29 for more details.

Definition 4.1.4. — A complex projective surface X (resp. a projective
R-surface (X,σ)) is said to be of general type if κ(X) = 2 and of special type
if κ(X) < 2.
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Remark 4.1.5. — The Kodaira dimension of a scheme is invariant under
base change so for any projective R-schemeX we have that κ(X) = κ(X×SpecR
SpecC).

Intersection form. — The free Z-module Div(X) generated by curves on
a non singular projective surface X has a symmetric bilinear form endowing
Cl(X) with a quadratic module structure.

We start by generalising Definition 1.6.11 of the intersection multiplicity of
two plane curves in P2(C) to curves in an arbitrary non singular surface.

Definition 4.1.6. — Let X be a non singular complex quasi-projective va-
riety, let C1 and C2 be two distinct irreducible curves in X and let P be a
point in X. If P ∈ C1 ∩ C2 and fi is an equation for Ci (i = 1, 2) in the local
ring OX,P of X at P then we set

(C1 · C2)P := dimCOX,P /(f1, f2) .

If P /∈ C1 ∩ C2 then we set (C1 · C2)P := 0 The number thus defined is called
the intersection multiplicity of the curves C1 and C2 at the point P .

If (C1 · C2)P = 1 then we say that the curves C1 and C2 are transverse (or
meet transversely) at P.

Exercise 4.1.7. — 1. Prove that if P ∈ C1 ∩ C2 then the ring
OX,P /(f1, f2) is a finite-dimensional complex vector space. (Use
the Nullstellensatz).

2. Prove that (C1 · C2)P = 1 if and only if f1 and f2 generate the maximal
ideal mP (ie. if and only if f1 and f2 form a local system of parameters
of X in a neighbourhood of P - see Definition 1.5.47).

Definition 4.1.8. — Let X be a non singular complex projective surface
and let C1, C2 be distinct irreducible curves on X. We set

(C1 · C2) :=
∑
P∈X

(C1 · C2)P =
∑

P∈C1∩C2

(C1 · C2)P .

This is called the intersection number of the curves C1 and C2.

Theorem 4.1.9. — Let X be a non singular complex projective surface.
There is a unique symmetric bilinear form

Div(X)×Div(X) −→ Z , (A,B) 7−→ (A ·B)

with the following properties:
– If A and B are non singular curves who meet transversely then (A ·B) =

#(A ∩B) ;
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– if A and A′ are linearly equivalent then (A ·B) = (A′ ·B) for any divisor
B on X.

Proof. — See [Bea78, I.4].

Definition 4.1.10. — Let X be a non singular complex projective surface.
It follows from Theorem 4.1.9 that there is a symmetric bilinear form on the
Z-module Cl(X), the intersection form

Cl(X)× Cl(X) −→ Z , (A,B) 7−→ (A ·B) .

If A and B are divisors on X then we call (A ·B) the intersection number of
A and B and we denote by (A2) = (A ·A) the self-intersection number of A.

When there is no risk of confusion we will sometimes abusively denote the
intersection number (A ·B) by A ·B.

Proposition 4.1.11. — Let X be a non singular complex projective surface
and let L1 and L2 be line bundles on X. We set

(L1 · L2) = χ(OX)− χ(L−1
1 )− χ(L−1

2 ) + χ(L−1
1 ⊗ L

−1
2 ) .

The map
Pic(X)× Pic(X) −→ Z , (L1,L2) 7−→ (L1 · L2)

is then a symmetric bilinear form on the Z-module Pic(X) and the isomor-
phism of Z-modules Cl(X) ' Pic(X) induced by D 7→ OX(D) is an isometry
for the symmetric bilinear forms on Cl(X) and Pic(X). In other words, if A
and B are two divisors on X then

(OX(A) · OX(B)) = (A ·B) .

Proof. — See [Bea78, Théorème I.4].

The restriction of a line bundle to a projective curve has a well-defined
degree.

Proposition 4.1.12. — Let C be a non singular irreducible projective curve
on X and let L be a line bundle on X. We then have that

(OX(C) · L) = deg(L|C) .

Proof. — See [Bea78, Lemme I.6].
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Example 4.1.13. — 1. If X = P2(C) then Pic(X) = Z is generated by
the class of a line (see Exercise 2.6.5). Any curve of degree d on X is
linearly equivalent to a divisor dH where H is a line. Let C and C ′ be
two curves of respective degrees d and d′ and let L,L′ be two distinct
lines. Since C ∼ dL and C ′ ∼ d′L′ we recover Bézout’s theorem

(C · C ′) = (dL · d′L′) = dd′(L · L′) = dd′ .

2. If X = P1(C) × P1(C) then Pic(X) = Z × Z is generated by the classes
F1 = {0}×P1(C) and F2 = P1(C)×{0}. The multiplication table is given
by (F 2

1 ) = (F 2
2 ) = 0 and (F1 · F2) = 1. A curve on X is determined by a

bihomogeneous polynomial in four variables. Let C,C ′ be two curves of
bidegrees (d1, d2) and (d′1, d′2): we then have that

(C · C ′) = (d1F1 + d2F2) · (d′1F1 + d′2F2) = d1d
′
2 + d′1d2 .

Using the first Chern class map c1 : Pic(X) → H2(X;Z) (see Appendix D
for more details) we can link the intersection form to the cup-product (see
Section B.7):

Proposition 4.1.14. — Let X be a non singular complex variety of dimen-
sion n and let Y be a non singular compact complex subvariety of codimension
1. The fundamental class of Y in H2n−2(X;Z) is then the Poincaré dual of
c1(OX(Y )) ∈ H2

c (X;Z).

Proof. — See [Hir66, Theorem 4.9.1].

Proposition 4.1.15. — Let X be a non singular complex projective surface
and let D and D′ be divisors on X. We then have that c1(OX(D)) ∈ H2(X;Z),
c1(OX(D′)) ∈ H2(X;Z) and

(D ·D′) = c1(OX(D)) ^ c1(OX(D′)) .

Proof. — See [Ibid.].

Proposition 4.1.16. — The intersection form on a non singular projective
R-surface (X,σ) is compatible with the real structure. In other words

∀L,L′ ∈ Pic(X), (L · L′) = (σL · σL′)

and
∀A,B ∈ Cl(X), (A ·B) = (σA · σB) .
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Proof. — In order to apply Proposition 4.1.11 recall that

χ(L) =
∑

(−1)k dimCH
k(X,L) .

The first equation now follows from a simple application of Proposition 2.2.2.
We then use Proposition 2.6.30 to obtain the second equation on linear divisor
classes.

We note that by Section 3.7, this result also follows from Corollary 3.1.9 in
singular cohomology. See [Sil89, II.1] for more details if necessary.

Throughout the rest of this chapter we will freely identify Pic(X) and Cl(X)
whenever X is a non singular projective surface.

Theorem 4.1.17 (Serre duality). — Let X be a non singular projective
surface and let L be a line bundle on X. We then have that

Hk(X,L) ' H2−k(X,KX ⊗ L−1)

and in particular
χ(L) = χ(KX ⊗ L−1) .

Proof. — See [Bea78, Théorème I.11].

Theorem 4.1.18 (Riemann-Roch formula for surfaces)
Let X be a non singular projective surface and let D be a divisor on X.

We then have that

χ(OX(D)) = 1
2D · (D −KX) + χ(OX) .

Proof. — For any divisor A on X we have that (OX(−A))−1 = OX(A)). By
Proposition 4.1.11 we therefore have that

(−D) · (D −KX) =
χ(OX)− χ(OX(D))− χ(OX(KX −D)) + χ(OX(D)⊗OX(KX −D)) .

Using Serre duality applied to OX(KX −D) we get that

(−D) · (D −KX) = χ(OX)− χ(OX(D))− χ(OX(D)) + χ(OX(KX))

and the required formula follows on applying Serre duality to the canonical
bundle χ(OX(KX)) = χ(OX).

The holomorphic Euler characteristic of a complex surface X is linked to
its topological Euler characteristic χtop(X) =

∑4
k=0(−1)k dimQHk(X;Q) by

the following formula.
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Theorem 4.1.19 (Noether’s formula). — Let X be a non singular com-
plex projective surface. We then have that

χ(OX) = 1
12(K2

X + χtop(X)) .

This formula is often written in terms of Chern numbers c2
1(X) = (K2

X) and
c2(X) = χtop(X), which yields

χ(OX) = 1
12(c2

1(X) + c2(X)) .

Proof. — See [GH78, III.5].

Definition 4.1.20. — Let (X,σ) be a non singular projective R-surface. We
recall (Definition 2.6.34, Theorem 2.6.35 and Definition 2.6.36) that NS(X) =
Pic(X)/Pic0(X) is the Néron-Severi group of the complex surface X, that
ρ(X) = rk(Pic(X)/Pic0(X)) is the Picard number of X and if X(R) is non
empty then ρR(X) = rk(Pic(X)G/Pic0(X)G) is the real Picard number of the
R-surface (X,σ).

Remark 4.1.21. — By definition we have that ρR(X) 6 ρ(X). By Proposi-
tion 2.6.37, if q(X) = 0 then ρ(X) = rk Pic(X) and moreover if X(R) is non
empty then ρR(X) = rk Pic(X)G by Theorem 2.6.32.

Definition 4.1.22. — Let X be a non singular complex projective surface
and let A and B be divisors on X. We denote by A ≡ B the numerical
equivalence relation: A ≡ B if and only if (A · C) = (B · C) for any effective
divisor C on X. We denote by

Num(X) := Div(X)/ ≡

the quotient group.

Proposition 4.1.23. — For any non singular complex projective surface X
we have that

Num(X) ' NS(X)/Tor(NS(X)) .

Proof. — See [GH78, Chapter V].

Theorem 4.1.24 (Hodge index). — Let X be a non singular projective
surface and let H be an ample divisor on X. If D is a divisor on X such that
D ·H = 0 then (D2) 6 0 with equality if and only if D ≡ 0.
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Proof. — We recall that for any divisor D on X we denote by hk(D) the
dimension of the space Hk(X,OX(D)).

We claim that if D is a divisor on X such that (D2) > 0 then either
h0(mD) 6= 0 or h0(−mD) 6= 0 for large enough m.

It follows that either mD or −mD is equivalent to a non zero effective
divisor for large enough m which implies that H ·D > 0 or H ·D < 0 and the
first part of the theorem follows.

We now prove the claim. Let D be a divisor on X such that (D2) > 0.
By Riemann-Roch χ(OX(mD)) is then equivalent to m2

2 (D2) as m tends to
infinity. As h0(mD) + h2(mD) > χ(OX(mD)) either h0(mD) or h2(mD)
tends to infinity as m tends to infinity. By Serre duality h2(mD) = h0(KX −
mD). Using the same argument replacing D by −D, we conclude that ei-
ther h0(−mD) or h0(KX + mD) tends to infinity as m tends to infinity,
but h0(KX − mD) and h0(KX + mD) cannot both tend to infinity. In-
deed, if s ∈ H0(X,OX(KX − mD)) then multiplication by s defines an in-
clusion H0(X,OX(KX + mD)) ↪→ H0(X,OX(2KX)). It follows that either
h0(mD) 6= 0 or h0(−mD) 6= 0 for large enough m.

To prove the second claim assume that D ·H = 0 and (D2) = 0. Assume
by contradiction that D · C > 0 for some effective divisor C. Let λ = p

q ∈ Q
be defined by (C − λH) · H = 0. The divisor mD + q(C − λH) then does
not satisfy (mD + q(C − λH))2 6 0 for large enough m despite the fact that
(mD + q(C − λH)) ·H = 0.

Corollary 4.1.25. — Let X be a non singular complex projective curve. The
index of the intersection form (Definition 3.4.1) is then given by

τ(X) = 2 + 2h0,2(X)− h1,1(X) = 2 + 4pg(X)− b2(X) .

Proof. — By the Hodge index theorem the restriction of the intersection
form Q to H1,1(X) has signature (1, h1,1(X) − 1). As the restriction of
Q to H2,0(X) ⊕ H0,2(X) is definite positive the signature of Q is equal to
(h2,0(X)+h0,2(X)+1, h1,1(X)−1). The result now follows from the identities
h2,0(X) = h0,2(X) = pg(X) and b2(X) = h2,0(X) + h1,1(X) + h0,2(X).

Blow-up. — See Appendix F or [Bea78, II.1] for more details.
Let X be a complex projective surface and let P ∈ X be a non singular

point. There is then a surface X̃ and a birational morphism π : X̃ → X,
unique up to isomorphism, such that

1. The restriction of π to X̃ \ π−1(P )→ X \ {P} is an isomorphism.
2. EP := π−1(P ) is isomorphic to P1(C),
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3. The variety X̃ is non singular along the divisor EP .

Definition 4.1.26. — The morphism π is called the blow up of X at P (or
centred at P , the surface BPX := X̃ is called the blow up of X at P and the
curve EP := π−1(P ) is called the exceptional curve of the blow up.

Example 4.1.27 (Blow up of a point in the affine plane)
Applying Definition F.2.1 and restricting ourselves to an affine neigh-

bourhood of (0, 0), we see that the blow up B(0,0)A2 of A2 at the point (0, 0)
is the quadric hypersurface defined in A2 × P1 by

B(0,0)A2 = {((x, y), [u : v]) ∈ A2
x,y × P1

u:v | uy = vx} .

See Figure 4.1(4).

Figure 4.1. Blow up: the exceptional curve is represented by the
vertical line.

(4)Figure created by Daniel Naie.
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Example 4.1.28 (Blow up of a point in the projective plane)
The blow up B(0:0:1)P2 of P2 at P = (0 : 0 : 1) is the algebraic surface

P̃2 defined locally over a neighbourhood U = (z 6= 0) of P by

BPU := {((x, y), [u : v]) ∈ Ux,y × P1
u:v | uy = vx}.

More generally, the blow up of the projective plane P2
x:y:z at a point P =

(a : b : 1) in the open affine set (z 6= 0) is given by

B(a:b:1)P2 := {([x : y : z], [u : v]) ∈ P2
x:y:z × P1

u:v |
u(y − bz)− v(x− az) = 0},

and in particular

B(0:0:1)P2 := {([x : y : z], [u : v]) ∈ P2
x:y:z × P1

u:v | uy − vx = 0}.

Remark 4.1.29. — If X is a complex analytic space we can deduce a de-
scription of the blow up of X in a non singular point from the examples above.
We simply carry out the blow up in a chart sending an open neighbourhood
of P to an open set in C2. Note that when working with the Zariski topology
we cannot generally use this "local" description of blow ups, since a surface
containing a dense open subset isomorphic to a non empty Zariski open subset
of A2 must be rational (Definition 4.4.1).

Proposition 4.1.30. — Let X be a non singular complex projective surface,
let π : X̃ → X be the blow up of X at a point P and let E be the exceptional
curve of π.

1. The map Pic(X) ⊕ Z → Pic(X̃) defined by (A,n) 7→ π∗A + nE is an
isomorphism.

2. Let A and B be divisors on X. We then have that

(π∗A · π∗B) = (A ·B), (E · π∗A) = 0, (E)2 = −1 .

3. We have that NS(X̃) ' NS(X)⊕ Z[E].
4. We have that K

X̃
= π∗KX + E.

Proof. — See [Bea78, II.3].

Remark 4.1.31. — We can also blow up singular points. In Example 4.7.6
we calculate the blow up of a surface at an ordinary double point.
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Adjunction formula. — Let f : C → X be the embedding of an effective
divisor in a surface X and let D be a divisor on X. We set

OC(D) := f∗(OX(D))

and in particular OC(C) = OX(C)|C . If C is non singular then OC(C) is the
normal bundle of C in X.

Theorem 4.1.32 (Non singular variety). — Let X be a non singular
complex variety and let Y be a non singular complex subvariety of codimension
1. We then have that

KY = KX ⊗OX(Y )|Y .

Proof. — See [BHPVdV04, Theorem I.6.3].

Remark 4.1.33. — The canonical bundles KX and KY (see Appendix D)
are defined for any non singular varieties and subvarieties.

Corollary 4.1.34 (Non singular curves on a surface)
Let X be a complex surface (which is assumed non singular but not

necessarily connected or compact) and let C be a non singular curve on X.
The canonical sheaf on C is then given by

KC = KX ⊗OC(C) .

Remark 4.1.35. — When C is singular but X is non singular the right hand
side of the previous formula is well defined and gives rise to a sheaf on C

ωC := KX ⊗OC(C) .

This definition appears to depend on the embedding of C in X but this
turns out not in fact to be the case. The sheaf ωC is known as the dualising
sheaf of C. See [BHPVdV04, II.1] and [Har77, III.7] for more details.

Genus of an embedded curve. — This subsection draws on [BHPVdV04,
II.11]. Let C be a non singular connected complex curve: the geometric genus
of C is the genus of the underlying topological surface (see Definition E.1.2).
More generally, if C is a reduced and irreducible complex curve and ν : C̃ → C

is its normalisation (see Example 1.5.38) then the normalisation C̃ is a con-
nected non singular curve.

Definition 4.1.36. — The geometric genus g(C) of a reduced and irre-
ducible complex algebraic curve C is defined to be the topological genus of its
normalisation.

g(C) := g(C̃) .
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It is a birational invariant.

Definition 4.1.37. — The arithmetic genus pa(C) of a complex algebraic
curve C (which is assumed neither reduced nor irreducible) is defined by:

pa(C) := 1− χ(OC) .

Remark 4.1.38. — If C is non singular, irreducible and reduced then
pa(C) = g(C).

Remark 4.1.39. — Assume that C is irreducible and reduced and is em-
bedded in a non singular surface X. The following then hold.

1. The arithmetic genus of C is equal to the geometric genus g(C ′) of a non
singular curve C ′ obtained by perturbing C in the surface X whenever
such a perturbation is possible. (The curve C ′ ⊂ X is then linearly
equivalent to C).

2. By Remark 4.1.35 we have that

pa(C) = 1− χ(OC) = 1 + χ(ωC) .

Definition 4.1.40. — Let C be a curve on a non singular complex surface
and let P be a point of multiplicity rP on C. The point P is said to be an
ordinary multiple point of C if and only if it is locally analytically isomorphic
to a singularity of the form

∏
k=1,...,rP (x−εky) = 0 where ε is a primitive rP th

root of unity.

Lemma 4.1.41. — Let P be an ordinary multiple point of multiplicity rP of
an irreducible curve C and let C̃ be the strict transform of C on the blow up
of X centred at P . We then have that

C̃2 = C2 − r2
P .

Proof. — By [Bea78, Lemme II.2] we have that π∗C = C̃ + rEP , so the
formula follows from Proposition 4.1.30.

Definition 4.1.42. — Let X be a surface, let P ∈ X be a non singular point
and let X ′ → X be the blow up of X centred at P with exceptional curve
EP ⊂ X ′. Any point Q ∈ EP is said to be an infinitely close point of P . More
generally, if π : X ′′ → X is a sequence of blow ups then any point Q ∈ X ′′

such that π(Q) = P is said to be an infinitely close point of P .

Let C ⊂ X be a reduced curve on a non singular surface. We set δP (C) =∑ 1
2rQ(rQ − 1) where the sum is taken over all infinitely close points Q of

P including P itself. In particular, if P is an ordinary multiple point of
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multiplicity r on C then δP (C) = 1
2rP (rP − 1): an ordinary double point

counts for 1, a triple point counts for 3 and a quadruple point counts for 6 .
See [Har77, Chapitre V, exercice 3.7] for more details.

Proposition 4.1.43. — Let C ⊂ X be an irreducible reduced curve on a non
singular surface and let ν : C̃ → C be the normalisation of C. We then have
that

pa(C) = g(C̃) + δ(C)
where δ(C) =

∑
P∈C δP (C). If C is non singular then δ(C) = 0.

Proof. — See [Har77, Chapitre V, exemple 3.9.2].

Theorem 4.1.44 (Adjunction for singular curves)
Let X be a complex analytic surface which is assumed to be non singular

but not necesarily connected or compact and let C be a compact curve on X

which is assumed neither reduced nor irreducible. We then have that

2pa(C)− 2 = deg(KX ⊗OC(C)) .

If moreover X is compact then the intersection form is well defined and the
above equality can be written as

(4.1) 2pa(C)− 2 = C · (KX + C) .

Exercise 4.1.45. — Let (C, σP|C) be a projective plane reduced and irre-
ducible R-curve of degree 4. Prove that if C is rational- ie. g(C) = 0- then at
least one of its singular points is real, ie. Sing(C) ∩ C(R) 6= ∅.

Here is another application of adjunction to R-curves, taken from[KM16,
Proposition 23].

Proposition 4.1.46. — Let C ⊂ P1 × P1 be a rational R-curve whose real
locus C(R) is non singular, C(R) ∩ Sing(C) = ∅. The fundamental class
[C(R)] ∈ H1(T2,Z2) is then non vanishing.

Proof. — Let {E1, E2} be a basis of H2(P1(C)×P1(C);Z) such that (Ek)2 = 0
and E1 · E2 = 1. The fundamental class of the complex curve C is therefore
equal to a1E1 + a2E2 where a1 and a2 are natural numbers. The fundamental
class of the canonical divisor is given by KX = −2E1 − 2E2. The adjunction
formula then gives us

2pa(C)−2 =
(
a1E1 +a2E2

)
·
(
(a1−2)E1 +(a2−2)E2

)
= a1(a2−2)+a2(a1−2),

so that

(4.2) pa(C) = (a1 − 1)(a2 − 1) .
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As C is stable under σ we have moreover that

ak = (C · E3−k) ≡
(
C(R) · E3−k(R)

)
mod 2

for any k ∈ {1, 2}. If the class [C(R)] ∈ H1(T2,Z2) were zero then a1, a2
would both be even and pa(C) would be odd. Since C is rational g(C̃) = 0 so
C would then have an odd number of singular points one of which would be
real.

Using the adjunction formula (4.1) we define the virtual genus of a divisor
D on a compact surface by

(4.3) pv(D) := 1
2
(
D · (KX +D)

)
+ 1 .

If D = A+B where A and B are effective divisors then we have that

(4.4) pv(D) := pa(A) + pa(B) +A ·B − 1

and

(4.5) pv(−D) = D2 − pa(D) + 2 .

See [Har77, Chapitre V, exercice 1.3] for more details.

Proposition 4.1.47. — [BHPVdV04, II.11.c] Let C be a reduced connected
curve on a surface X. We then have that pv(C) = pa(C) > 0.

Exercise 4.1.48. — Let C = C1 + C2 be the union of two non singular
disjoint rational curves. We then have that χtop(C) = 4 and pv(C) = −1.

4.2. Examples of R-surfaces

We start by recalling the definitions of some special types of surfaces of
negative Kodaira dimension. κ = −∞.

Definition 4.2.1 (Hirzebruch surfaces [Hir51])
A complex surface X is a Hirzebruch surface of index n, denoted Fn,

if it is the total space of a locally trivial P1(C) bundle over P1(C) and Fn =
PP1(OP1 ⊕ OP1(n)), by which we mean that Fn is the projectivisation of the
2-dimensional vector bundle OP1 ⊕OP1(n) over P1.

By convention, the real Hirzebruch surface of index n is obtained by equip-
ping Fn with the canonical real structure induced by σP.

Proposition 4.2.2. — If n > 0 then the curve E∞ = PP1(OP1(n)) is an
exceptional section of the line bundle Fn → P1 whose self-intersection is
(E2
∞) = −n.
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Proof. — See [BHPVdV04, Propositions 4.1 et 4.2, page 141] and [Bea78,
Chapitre III].

Remark 4.2.3. — The surface Fn is obtained by gluing the local charts
P1
u:v×A1

t and P1
u1:v1×A1

t1 over the open sets {t 6= 0} and {t1 6= 0} via the map

((u : v), t) 7→ ((u1 : v1), t1)

where t1 = 1
t and uv1 = tnu1v.

Remark 4.2.4. — Hirzebruch surfaces have negative κ dimension because
the general fibre of Fn → P1 has negative κ dimension.

Exercise 4.2.5. — 1. Prove that the Hirzebruch surface F1 is isomorphic
to the blow up of P2(C) in a point.

2. Prove that if n is odd then Fn has only one equivalence class of real
structures.

3. Prove that if n = 2k then F2k has a second class of real structures whose
real locus is empty.

Example 4.2.6 (Conic bundles over P1). — Historically a conic bundle
over a field K was a surface given by an equation of the form

x2 + axy + by2 = f(t)

with a, b ∈ K and f ∈ K[t]. When K = R, on reducing the quadratic form on
the left, we can always reduce to the case of an equation of the form

x2 − ay2 = f(t)

where a = −1, 0, 1. Completing the affine surface defined above gives us a
variety X0 whose equation is

x2 − ay2 − f(t)z2 = 0

in P2
x:y:z × A1

t .
Recall that we can define the round up dxe of a real number x using the

round down: dxe = −b−xc. We denote by m :=
⌈

deg f
2

⌉
so the degree of f is

equal to 2m or 2m−1. Set f1 := t2mf(1
t ) (classically f1 is called the reciprocal

polynomial of f) and glue the surface X1 of equation x2
1 − ay2

1 − f1(t1)z2
1 = 0

in P2
x1:y1:z1 × A1

t1 to the surface X0 along the open sets {t 6= 0} and {t1 6= 0}
using the isomorphism

((x : y : z), t) 7−→ ((x1 : y1 : z1), t1) = ((x : y : ztm), 1
t
) .
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If a 6= 0 and f has simple roots then X is a non singular projective surface
and the map π : X → P1 defined by π : ((x : y : z), t) 7→ t on X0 and π : ((x1 :
y1 : z1), t1) 7→ t1 on X1 turns X into a conic bundle over P1.

If moreover the degree of f is even we can avoid having a root at infinity
and we can choose the sign of the dominant coefficient in such a way that
the real locus of the completed surface is diffeomorphic to that of the initial
surface X0.

Remark 4.2.7. — If the degree of f is odd there is at least one fibre of the
form x2 − y2 = 0 consisting of two real lines meeting in a point.

Example 4.2.8 (Topology of conic bundles). — Let X be the projective
completion of the conic bundle of the equation

x2 + y2 = f(t)

where f ∈ R[t] is a polynomial of even degree 2s which is negative
at infinity and has exactly 2s distinct real simple zeros, for example
f(t) = −

∏
i=1,...,2s(t − i) for s > 2. It follows immediately that X(R) is

compact and has s connected components. The variety X(R) is a disjoint
union of s spheres.

The examples above can be generalised to conic bundles over a curve of
arbitrary genus.

Definition 4.2.9 (Conic bundles). — A conic bundle is a pair (X,π)
where X is a complex surface and π : X → B is a morphism to a non singular
complex curve such that every fibre is isomorphic to a possibly singular or
non reduced plane conic (see 1.2.68). A real conic bundle is a pair ((X,σ), π)
where (X,σ) is an R-surface and π : X → B is a morphism of R-varieties to
an R-curve (B, σB) such that every fibre is isomorphic as a complex curve to
a plane conic.

Remark 4.2.10. — A Hirzebruch surface is a conic bundle whose fibres are
all non singular.

Exercise 4.2.11 (Conic bundle). — 1. Prove that any surface with a
conic bundle structure has negative κ dimension.

2. Prove that the total space X of a conic bundle π : X → B with at least
one irreducible fibre is non singular if and only if all the fibres of π are
reduced.
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3. Prove that any conic bundle over P1 with reduced complex fibres is the
blow up of a Hirzebruch surface in a finite number of points.

4. Give an example of a real conic bundle whose real locus is not connected
in the Euclidean topology.

Definition 4.2.12 (Del Pezzo surfaces). — A complex surface X is said
to be a del Pezzo surface if and only if its anti-canonical bundle −KX is ample.
The degree of the del Pezzo surface X is then defined to be the integer (K2

X).
A real del Pezzo surface is an R-surface (X,σ) such that X is a del Pezzo
surface.

We refer the interested reader to Demazure’s survey [DPT80, pages 21–69]
for a study of the multicanonical morphisms of del Pezzo surfaces and their
generalisations, the weak del Pezzo surfaces, whose anti-canonical divisor−KX

is only assumed nef and big.

Exercise 4.2.13. — 1. Prove that del Pezzo surfaces have negative κ di-
mension.

2. Give an example of a del Pezzo surface with a conic bundle structure.
(See [BM11] for a characterisation of such surfaces).

3. Prove that P1 × P1 is a degree 8 del Pezzo surface.
4. Prove that a double cover of the projective plane branched along a non

singular quartic curve is a del Pezzo surface of degree 2.

Topological surfaces: conventions and notations. — A topological sur-
face is a topological manifold of dimension 2. Recall that any topological
manifold of dimension 2 has a unique C∞ differentiable manifold structure
(see [Hir76, Chapter 9] for more details) and any homeomorphism between
topological manifolds can be approximated by C∞ diffeomorphisms. We will
therefore always assume that any topological surface comes equipped with
this differentiable structure and our topological surfaces will be differentiable
manifolds of real dimension 2. It will therefore make sense to talk about
diffeomorphisms between topological surfaces, for example.

Throughout this section our topological surfaces will be assumed compact:

Convention 4.2.14. — A topological surface is a compact topological man-
ifold without boundary of dimension 2.

Notation 4.2.15. — If A and B are topological surfaces, we will write A ≈
B if A and B are C∞-diffeomorphic. A t B will be the disjoint union of
A and B and A#B will be their connected sum as in Definition B.5.12 and
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Remark B.5.13. tsA will denote the disjoint union of s copies of A and #kA

will denote the connected sum of k copies of A. By convention, t0A = ∅ and
#0A = S2. We denote by

1. S2 the sphere of dimension 2;
2. T2 ≈ S1 × S1 the torus of dimension 2;
3. Sg = #gT2 the orientable topological surface of genus g > 0. In particu-

lar, S0 = S2 and S1 = T2;
4. RP2 ≈ S2/Z2 the real projective plane;
5. K2 the Klein bottle;
6. Vg = #gRP2 the non orientable surface of genus(5) g > 0. In particular

V1 = RP2 and V2 = K2.

Remark 4.2.16. — For g > 0, Vg is the non orientable surface of topological
Euler characteristic 2−g since Vg is the connected sum of g copies of RP2 = V1.
For convenience we extend the notation Vg to the case g = 0: V0 = S0 = S2.

Exercise 4.2.17. — Prove that the real locus of a Hirzebruch surface Fn
equipped with its canonical real structure is diffeomorphic to the torus T2 if
n is even and to the Klein bottle K2 if n is odd.

Example 4.2.18. — See Appendix F for more details. If (X,σ) is an R-
surface and P ∈ X(R) is real then by the universal property of blow ups (Corol-
lary F.2.6) σ lifts to a real structure on the blow up BPX and EP is an R-curve
for this structure. The real locus therefore satisfies (BPX)(R) = BP (X(R))
and we can denote it by BPX(R) without risking confusion. Topologically,
blow up corresponds to the following surgery of the real locus: we remove from
X(R) a disc centred at P (whose boundary is a circle) and we glue along this
circle a Möbius band (whose boundary is also a circle) to get BPX(R). In
other words:

BPX(R) ≈ X(R)#RP2 .

Example 4.2.19 (Real algebraic models of compact surfaces)
We now present real algebraic models (see page 4 of the Introduction)

of all compact topological surfaces. In other words, for any finite family of
integers gi > 0 and g′j > 0 we give an example of an R-surface whose real locus
is diffeomorphic to a disjoint union of the Sgis and Vg′is. We will explain the

(5)As there are at least two incompatible definitions of the genus of a non orientable surface
in the litterature, let us specify that we will use Riemann’s original definition (see Defini-
tion E.1.2): the genus g := g(S) of a compact surface S of Euler characteristic e := e(S) is
given by g := 2− e if S is non orientable and by g = 2−e

2 if S is orientable.
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rationale behind the choice of these particular algebraic models in subsequent
sections. Note that these algebraic models are not all of negative Kodaira
dimension because Theorem 4.4.14 gives constraints on the topology of the
real locus of such a variety. On the other hand, for each of these real algebraic
models (X,σ) the complex surface X is simply connected in the Euclidean
topology.

1. The real locus of (X,σ) is connected and non empty.
(a) The real projective plane RP2 ≈ P2(R), X = P2(C).
(b) The quadric sphere in R3

x,y,z

S2 ≈ Z(x2 + y2 + z2 − 1)
whose projective completion is the quadric sphere in P3(R)

S2 ≈ Q3,1(R)
where
X = Q3,1 := Z(x2 + y2 + z2 − w2) ⊂ P3

w:x:y:z(C) .

Figure 4.2. Quadric sphere S2.

(c) The quadric torus
T2 ≈ Q2,2(R) ⊂ P3(R) ,

where X = Q2,2 := Z(x2 + y2 − z2 − w2) ⊂ P3(C). This is the
projective completion of the hyperboloid of revolution Z(x2 +y2−
z2 − 1) ⊂ R3.
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Figure 4.3. Hyperboloid in R3 whose projective completion is the
quadric torus Q2,2(R) ⊂ P3(R).

(d) The Klein bottle is a blow up of the projective plane K2 ≈ BPP2(R)
at a point P ∈ P2(R)- see Example 4.2.18. The blow-up of the
projective plane at a point is also a Hirzebruch surface of index 1
and K2 ≈ F1(R). See Exercise 4.2.11.

(e) The non orientable surface of genus g can be obtained from the
blow up of the projective plane in g − 1 points

Vg ≈ BP1,...,Pg−1P2(R)

where P1, . . . , Pg−1 ∈ P2(R) as in Example 4.2.18.
(f) The orientable surface Sg of genus g 6 10 can be obtained as the

real locus of a K3 surface; see Section 4.5 for more details.
(g) The orientable surface Sg of arbitrary genus g can be obtained as

the real locus of a proper elliptic surface over P1: see Section 4.6
for more details.

2. The real locus of (X,σ) is empty or not connected.
(a) The empty set is the real locus of the quadric

∅ = Q4,0(R) ⊂ P3(R)

where

X = Q4,0 := Z(x2 + y2 + z2 + w2) ⊂ P3(C) .
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(b) For any s > 2 the disjoint union of s spheres can be obtained as
the real locus of the projective completion of the conic bundle

Z(x2 + y2 − f(t)) ⊂ R3

where f(t) = −
∏
i=1,...,2s(t−i). See Example 4.2.8 for more details.

(c) The disjoint union of a finite number s > 2 of spheres and non
orientable surfaces can be obtained as the real locus of the surface
described in Example (2b) by blowing up real points.

(d) The disjoint union of four spheres is the real locus of a certain
del Pezzo surface (X,σP|X) of degree 2 (the exact values of the
coefficients correspond to the diagram in Figure 4.4). Specifi-
cally, X is a projective completion in a weighted projective space
P(1, 1, 1, 2) (ie. the quotient of C4

z0,...,z3 by the C∗ action given by
(z0, . . . , z3) 7→ (λz0, λz1, λz2, λ

2z3)) of the affine surface of equation

(4.6) z2 + 8x4 + 20x2y2 − 24x2 + 8y4 − 24y2 + 16, 25 = 0 .

Note that by Proposition 2.3.22 this surface is a geometrically ra-
tional non rational R-surface as in Definition 2.3.18. It is also a
minimal R-surface, see Definition 4.3.10.

Figure 4.4. A del Pezzo surface of degree 2 with four connected components.

(e) The disjoint union of a finite number of orientable and non ori-
entable surfaces can be obtained as the real locus of a surface ob-
tained from an elliptic surface fibered over P1 as in Section 4.6 by
blowing up real points.
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Remark 4.2.20. — All compact topological surfaces therefore have a real
algebraic model (X,σ) whose complex surface X is simply connected in the
Euclidean topology. We now present a selection of models for which X is not
simply connected.

1. All topological types which do not contain an orientable connected com-
ponent of genus strictly greater than 1 can be realised by a real conic
bundle over a curve B of non zero genus g(B). See Theorem 4.4.14 for
more details.

2. Only a finite number of topological types can be realised by real Enriques
surfaces. See Theorem 4.5.16 for more details.

3. All topological types can be realised by real elliptic surfaces over a curve
B of non zero genus g(B): see Section 4.6 for more details.

4.3. R-minimal surfaces

We refer the interested reader to [Kol01a, Section 2]- containing most of
the preprint [Kol97]- for a presentation of minimal surfaces based on Mori
theory.

Definition 4.3.1. — The inverse operation of a blow-up is called a con-
traction: see Appendix F for more details. A contraction π : X → Y is an
R-contraction if and only if the birational morphism π is an R-morphism.

Of course, not every curve can be contracted to a non singular point, depsite
the fact that it is possible to blow up any non singular point.

Definition 4.3.2 ((−n)-curves). — 1. A (−1)-curve L on a non singu-
lar complex projective surface X is a curve isomorphic to P1(C) whose
self intersection L · L is −1. In particular, L is rational, irreducible and
non singular.

2. A (−1)-real curve L on a non singular projective R-surface (X,σ) is a
complex (−1)-curve which is stable under σ. We equip any such curve
with the restriction of σ.

3. More generally, for any natural number n, a (−n)-curve L on X is a
curve isomorphic to P1 such that L · L = −n.

Consider a point P ∈ X and let πP : BPX → X be the blow up of X
centred at P . It follows from Proposition 4.1.30 that the exceptional line
EP := π−1(P ) is a (−1)-curve.
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Exercise 4.3.3. — Prove that any (−1)-curve C on a surface X satisfies
(KX · C) = −1.

We have the following criterion for curve contractions on a complex surface:

Theorem 4.3.4 (Castelnuovo’s criterion). — Suppose that Y is a non
singular complex projective surface and that E ⊂ Y is a (−1)-curve. There is
then a projective surface X and a morphism π : Y → X such that P = π(E)
is a non singular point of X and π is the blow up of X centred on P .

We refer to [Bea78, II.17] for a proof. More generally, Grauert’s theorem
enables us to contract curves to not necessarily non singular points.

Theorem 4.3.5 (Grauert). — Let E ⊂ Y be a connected reduced projective
curve on a non singular complex projective surface Y and let E = tEi be its
decomposition into irreducible components.

There is then a (not necessarily projective) normal algebraic surface X and
a birational map π : Y → X such that P = π(E) is a point of X and the
restriction of π to Y \E → X \P is an isomorphism if and only if the matrix
(Ei · Ej)i,j is negative definite.

See [BHPVdV04, Theorem III.2.1] for more details.

Corollary 4.3.6. — For any non singular R-surface (Y, τ) it follows from
Castelnuovo’s criterion that any (−1)-real curve or any pair of disjoint con-
jugate (−1)-curves can be contracted to a non singular R-surface (X,σ).

Proof. — See [Sil89, II.6.2].

Example 4.3.7 (See Example 4.2.18). — In the first case of Corol-
lary 4.3.6 we have that Y (R) ≈ X(R)#RP2 and in the second case
Y (R) ≈ X(R).

Proposition 4.3.8 (Strong factorisation). — Any birational map between
non singular complex projective algebraic surfaces factorises as a sequence of
blow ups and contractions of (−1)-curves. More precisely, if f : X 99K Y is a
birational map then there is a non singular complex algebraic surface Z and
birational morphisms π1 : Z → X and π2 : Z → Y such that the diagram below
is commutative.

Z
π1

~~

π2

��
X

f // Y
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Proof. — See [Bea78, II.12].

Corollary 4.3.9 (Strong factorisation for R-surfaces)
Any birational real map between non singular projective R-surfaces fac-

torises as a sequence of blow ups of real points, blow ups of pairs of conjugate
points, contractions of real (−1)-curves and contractions of disjoint conjugate
pairs of (−1)-curves. More precisely, if f : (X,σ) 99K (Y, τ) is a real birational
map then there is a non singular projective algebraic R-surface (Z, σZ) and R-
birational morphisms π1 : Z → X and π2 : Z → Y such that the diagram below
commutes

(Z, σZ)
π1

zz

π2

$$
(X,σ) f // (Y, τ)

Proof. — See [Sil89, II.6.4].

Definition 4.3.10 (Minimal surfaces). — 1. A non singular complex
surface X is said to be minimal if and only if it has no contraction to a
non singular surface.

2. A non singular R-surface (X,σ) is said to be minimal if and only if it
has no R-contraction to a non singular R-surface.

Remark 4.3.11. — Riemannian geometers also study minimal surfaces, by
which they mean (compact) surfaces with a certain boundary whose area is
minimal amongst (compact) surfaces with the same boundary in a given Rie-
mannian manifold: the best known example of this phenomenon is soap bub-
bles. Obviously, there is no link between these two types of minimal surface.

Remark 4.3.12. — By Theorem 4.3.4, a non singular complex surface X is
minimal if and only if it contains no (−1)-curves. By Corollary 4.3.6, a non
singular R-surface is minimal if and only if it contains neither a real (−1)-curve
nor a pair of disjoint conjugate (−1)-curves.

Remark 4.3.13. — If the complex surface X is minimal then (X,σ) is R-
minimal, but the converse is false: this can be seen by considering an R-surface
with two conjugate (−1)-curves which meet in a real point. For example, the
irreducible components of a singular fibre with equation of the form x2+y2 = 0
in a conic bundle are non real conjugate (−1)-curves meeting in a real point
(0, 0). The complex surface is not minimal because we can contract one of
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the (−1)-curves, but there is no contraction to a non singular surface which
respects the real structure.

Exercise 4.3.14. — We use the same notations as in Example 4.2.6. If the
polynomial f is of odd degree then Remark 4.2.7 implies that there is a fibre
containing two real (−1)-curves. In particular, the R-surface is not minimal.

Exercise 4.3.15 (Continuation of Exercise 4.2.11)
Prove that if the total space X of a conic bundle over P1 is a non singular

projective surface then it has 8−K2
X singular fibres.

Definition 4.3.16. — Let (X,σ) be a non singular projective R-surface, let
(B, σB) be a non singular R-curve and let g be a natural number.

1. We say that a morphism of complex varieties π : X → B is a genus g
bundle if its general fibre is a non singular projective curve of genus g or
in other words if there is a non empty Zariski open set U in B such that
∀x ∈ U , π−1(x) is isomorphic to a projective non singular curve of genus
g.

2. An R-morphism π : (X,σ)→ (B, σB) is said to be a real genus g bundle
if the map of complex varieties π : X → B is a genus g bundle.

3. We say that the fibered complex surface (X,π) (resp. the fibration π) is
minimal if no fibre of π contains a (−1)-curve. We sometimes say that
(X,π) is relatively minimal to underline the fact that this minimality is
relative to the morphism.

4. We say that the fibered R-surface ((X,σ), π) is minimal (or relatively
minimal) if no fibre of π contains either a real (−1)-curve or a pair of
disjoint conjugate (−1)-curves.

Exercise 4.3.17. — Let π : X → B be a complex surface which is a genus
g bundle. Suppose that (X,π) is relatively minimal and the surface X is not
minimal. As no fibre of π contains a (−1)-curve there is a horizontal (−1)-
curve E, by which we mean that the image π(E) is not a point. In this case B
is a rational curve and g = 0. In particular, the complex surface X is rational.

Exercise 4.3.18. — Let π : X → B be a complex surface with a genus g
bundle structure. Suppose that some fibre of π contains a pair of non disjoint
(−1)-curves. Prove that we then have that g = 0.

Exercise 4.3.19. — 1. Prove that any conic bundle is a surface with a
genus 0 bundle structure.
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2. Prove that any projective non singular R-surface with a genus 0 bundle
structure is birationally equivalent to a real conic bundle. (See [Sil89,
Corollary V.2.7]).

Proposition 4.3.20. — Let (X,σ) be a non singular projective R-surface
with a real genus g bundle structure π : X → B. We assume moreover that all
the fibres of π are geometrically connected.

1. If g > 1 then the R-surface (X,σ) is relatively minimal if and only if the
complex surface X is relatively minimal.

2. If g = 0 and (X,σ) is relatively minimal then any fibre F of π containing
a (−1)-curve E is necessarily of the form F = E + σE with E · σE = 1.

Proof. — See [Man67, Man86] or [Sil89, V.1.6].

Corollary 4.3.21. — 1. A complex conic bundle (X,π) is minimal if and
only if π has no singular fibres.

2. An real conic bundle ((X,σ), π) is minimal if and only if all its singular
fibres are real (ie. lie over B(R)) and no irreducible component of a
singular fibre of π is a real (−1)-curve.

Proof. — All fibres are geometrically connected and a conic has at most two
irreducible components

Recall that we denote by G the Galois group Gal(C|R) acting non trivially
on X via the real structure. If X has an R-bundle structure π : X → B over
a projective R-curve, then we denote by Pic(X/B) or Pic(X/π), the relative
Picard group(6)

Pic(X/B) = Pic(X)/π∗(Pic(B) .

Proposition 4.3.22. — A real del Pezzo surface (X,σ) is minimal if and
only if Pic(X)G = Z. An real conic bundle (X,σ) → (B, σB) is minimal if
and only if Pic(X/B)G = Z.

Proof. — Exercise.

Theorem 4.3.23 (Minimal R-surfaces). — Let (X,σ) be a non singular
minimal projective R-surface. The variety (X,σ) is then isomorphic to exactly
one R-surface from the following list.
• κ(X) = −∞ (section 4.4)
1. (P2(C), σP);

(6)The corresponding scheme theoretic object is PicX/B(B).
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2. (Q3,1, σP|Q3,1) ;
3. (Fn, σFn) where Fn is a real Hirzebruch surface such that n 6= 1;
(in cases 1, 2 and 3, (X,σ) is rational. See Section 4.4 for more details)
4. (X,σ) such that X is a complex rational surface and X(R) = ∅, namely
Q4,0, Q3,0 × P1, or a surface which is a real conic bundle over a conic
with empty real locus π : X → (P1(C), σP′) where σP′ is the involution of
P1(C) defined by (x0 : x1) 7→ (−x1 : x0) as in Remark 2.1.41;

5. a del Pezzo surface of degree 1 or 2 such that ρR(X) = 1;
6. an real conic bundle π : X → (P1, σP) with an even number of singular

fibres 2r > 4 such that ρR(X/π) = 1 or in other words ρR(X) = 2;
(in cases 4, 5 and 6, (X,σ) is geometrically rational but not rational. See

Section 4.4 for more details)
7. An real conic bundle π : X → B such that g(B) > 0 and such that
ρR(X/π) = 1 or in other words ρR(X) = 2;

(in case 7, (X,σ) is a uniruled surface which is not geometrically rational.
See Section 4.4 for more details)
• κ(X) = 0 ( See Section 4.5)
8. X is a K3 surface, see Definition 4.5.3;
9. X is an Enriques surface see Definition 4.5.13;

10. X is an abelian surface, see Definition 4.5.22;
11. X is a bi-elliptic surface, see Definition 4.5.28.
• κ(X) = 1 ( See Section 4.6)

12. X is a properly elliptic surface, see Definition 4.6.10.
• κ(X) = 2 (section 4.7)

13. X is a surface of general type, see Definition 4.1.4.

Proof. — See [Kol01a, Theorem 30].

The above theorem is the basis for the classification of real and complex
projective algebraic surfaces. See [BHPVdV04, Chapter VI] for the classi-
fication of compact complex analytic surfaces. The classification of projec-
tive surfaces in positive characteristic was carried out in a series of articles
[Mum69, BM77, BM76, BH75]- see [Băd01] for a summary.

Exercise 4.3.24 (R-elementary transformations)
Let (X,σ) be a Hirzebruch surface of index n and let P ∈ X be a real

point. The blow up of X centred at P transforms the fibre through P into a
real (−1)-curve which can then be contracted to a new non singular R-surface
X ′. Prove that if n > 0 then X ′ is a Hirzebruch surface of index n+ 1 (resp.
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n− 1) if P lies on the exceptional section E∞ (resp. if P does not lie on this
section). If n = 0 there is no exceptional section and the surface obtained from
this transformation is F1 for any P . The R-surfaces X and X ′ are birationally
equivalent and minimal.

Similarly, let P and σ(P ) be two conjugate non real points on X and let
X ′′ be the surface obtained by the elementary R-transformation consisting of
blowing up the two points and then contracting the conjugate non real (−1)-
curves thus obtained. Calculate the index of the Hirzebruch surface obtained,
distinguishing the cases where the two points do or do not lie on the exceptional
section.

Deformation families. — In the following sections we study the topology
of real algebraic surfaces and their deformation families. We also state some
theorems on the group of algebraic cycles H1

alg, defined in Section 3.7, which
enable us to compare the behaviour of various different families of surfaces.
See [Man97, MvH98, Man00, Man03] for more details.

Definition 4.3.25 (Deformations). — 1. – A complex analytic va-
riety Y is a deformation of a complex variety X if and only if there
is a complex analytic varietyM, a proper holomorphic submersion

π : M→ D = {z ∈ C | |z| < 1}

and a point z0 ∈ D such that X = π−1(0) and Y = π−1(z0).
– An analytic R-variety (Y, τ) is a deformation of an analytic R-

variety (X,σ) if and only if there is an analytic R-variety (M, σM),
a proper holomorphic submersion π : M → D and a point z0 ∈
[−1, 1] = D(R) such that σD ◦ ϕ = ϕ ◦ σM, X = π−1(0) and
Y = π−1(z0). In particular we have that σ = σM|X and τ = σM|Y .

2. Two varieties X and Y are said to be deformation equivalent if and only
if there is a finite family of varieties Zi i = 1 . . . l such that Z1 = X,
Zl = Y and for every i, Zi+1 is either a deformation of Zi or isomorphic
to Zi.

Remark 4.3.26. — The definition of deformation equivalence given above
is justified by the fact that two varieties that are deformation equivalent do
not necessarily belong to the the same non singular deformation family. For
example, Horikawa proved in [Hor75] that the space of numerical quintics
has two irreducible components of dimension 40 which meet along a subspace
of dimension 39.
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Definition 4.3.27. — Two complex surfaces X and Y are said to belong
to the same complex family if and only if X and Y are fibres of a proper
holomorphic submersion (sometimes called a large deformation)

π : M→ B

over an irreducible complex analytic variety B.
Two R-surfaces (X,σ) and (Y, τ) belong to the same real family if and only if

they are fibres of some equivariant large deformation whose base has connected
real locus.

Theorem 4.3.28 (Ehresmann’s fibration theorem)
Let f : M→ B be a differentiable map between manifolds: f ,M and B

are supposed at least C2 and at most C∞. If f is a surjective proper submersion
then f is a locally trivial fibration (Definition C.3.5).

Proof. — See [Ehr51, Ehr95].

The Galois group G = Gal(C|R) acts on X (resp. Y , resp. M) by invo-
lution σ (resp. τ , resp. σM). Adapting the proof of Ehresmann’s fibration
theorem, we can prove that if two R-varieties (X,σ) and (Y, τ) are deformation
equivalent then X is diffeomorphic to Y via a G-equivariant diffeomorphism
([Dim85, Lemma 4]) and in particular X(R) is diffeomorphic to Y (R): the
converse is false and there are many known examples where it fails.

In general, every complex deformation family corresponds to many real
families. For example, there is a unique complex family of Enriques surfaces,
but over 200 real families of real Enriques surfaces. See [DIK00] for more
details.

Question 4.3.29 (Def=Diff). — The Def=Diff problem is the following: if
two complex surfaces X and Y are diffeomorphic, are they necessarily defor-
mation equivalent?

See [Man01] for the proof that this is not always the case. See [KK02],
[Cat03], [Cat08] for other examples. The precise real version of this question
was given by Kharlamov.

Definition 4.3.30 (Quasi-simplicity of R-surfaces)
An R-surface (X,σ) is said to be quasi-simple if and only if any R-

surface (Y, τ) such that there is a G-equivariant diffeomorphism (X,σ) →
(Y, τ) is deformation equivalent to (X,σ) whenever the complex surface Y is
deformation equivalent to X.
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The following definition is useful for expressing classifications of topological
types of real surfaces appearing in a given class of complex surfaces.

Definition 4.3.31 (Morse simplification). — Given a compact topolog-
ical surface S without boundary, (which is neither assumed connected nor
orientable) a topological Morse simplification of S is a Morse transformation
that decreases the total Betti number by two. There are two types of Morse
simplifications:

– removing a spherical component S2 → ∅,
– contracting a handle Sg+1 → Sg or Vq+2 → Vq.

Definition 4.3.32 (Topological type, extremal topological type)
A topological type is a class of R-surfaces with diffeomorphic real loci.

Given a class of complex surfaces (see Example 4.0.1) a topological type is said
to be extremal if it cannot be obtained by topological Morse simplification from
a topological type belonging to the same class of complex surfaces.

Example 4.3.33. — In the diagrams shown in Figures 4.11 and 4.12, the
extremal topological types are those corresponding to points with no ascending
adjacent edge.

Remark 4.3.34. — There is a stronger version of topological types in the
litterature which states that two R-surfaces (X,σ) and (Y, τ) are of the same
topological type if and only if there is an equivariant diffeomorphism (X,σ)→
(Y, τ). It is then immediate that X(R) is diffeomorphic to Y (R), but the
converse is false. See [DIK00] for more details..

Remark 4.3.35. — When the surfaces being considered belong to the same
complex deformation class the reader should be aware that Morse simplifica-
tion is abstract in the sense that the existence of a continuous deformation
realising the topological transformation is not guaranteed. It is simply a prac-
tical definition helping us list topological types. In certain special cases it is
however possible to realise Morse transformations by explicit deformation: see
4.6.13 for more details.

4.4. Uniruled and rational surfaces (κ = −∞)

The aim of this section is to classify topological types of rational R-surfaces
and more generally classify R-surfaces of negative Kodaira dimension using
the topological type of their real locus. The complete classification of non
singular projective surfaces of negative Kodaira dimension is Theorem 4.4.14.
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The main intermediate result is Theorem 4.4.15, sometimes described as a
generalisation of Comessatti’s theorem 4.4.16, which bounds the genus of an
orientable surface contained in the real locus of a rational surface. There are
basically two different approaches to the proof of this classification. One is
based on reduction to minimal surfaces followed by case by case analysis as
in Theorem 4.3.23. The other is based on the action of the Galois group on
the cohomology ring of X, and it is this second proof that will be presented
in this section. Both methods have their advantages.

Rational R-surfaces. — Let us mention two survey articles on rational R-
surfaces(7): [Man17a] (continuing [Hui11]) dealing with topological classi-
fication and [BM14] dealing with birational geometry. We now specialise
Definition 2.3.18 to surfaces.

Definition 4.4.1 (Rational and uniruled R-surfaces)
Let (X,σ) be an algebraic R-surface.

1. The R-surface (X,σ) is said to be rational or R-rational if and only if it
is birationally equivalent to the R-projective plane (P2(C), σP), by which
we mean there is a birational map of R-surfaces

(X,σ) 99K (P2(C), σP) .

The real algebraic surface X(R) is then rational (Definition 1.3.37).
2. The R-surface (X,σ) is said to be geometrically rational or C-rational if

and only if it is C-birationally equivalent to the projective plane P2(C),
or in other words if and only if there is a birational map of complex
surfaces

X 99K P2(C) .
The real algebraic surface X(R) is then geometrically rational if it is

Zariski dense in X, since the complex algebraic surface X, which is a
complexification of X(R), is then rational (Definition 1.3.37).

3. The R-surface (X,σ) is uniruled if and only if it is dominated by a cylin-
der of dimension 2, or in other words if and only if there exists an R-curve
(Y, τ) and a rational map of R-varieties

(Y × P1, τ × σP) 99K (X,σ)

whose image is dense in the Zariski topology.

(7)Several authors, such as [Sil89] or [DK02], consider that (X,σ) is a rational surface
whenever the complex surface X is rational: this can be confusing, and in this case we will
say that (X,σ) is geometrically rational or C-rational. See Definition 4.4.1 for more details.
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Remark 4.4.2. — Unlike rationality, uniruledness is invariant under change
of base field: an R-surface (X,σ) is uniruled if and only if the complex surface
X is uniruled. See [Deb01, §4.1, Remark 4.2(5)] for more details.

Remark 4.4.3. — IfX is uniruled then κ(X) = −∞ becauseX is dominated
by a ruled variety. In dimension 2 the converse holds and in fact a stronger
result turns out to be true: any surfaceX such that κ(X) = −∞ is birationally
ruled, i.e. birationally equivalent to a cylinder Y × P1 of dimension 2. See
[Bea78, Exemple VII.3 and Chapitre III] for more details. A complex surface
is therefore uniruled if and only if it is birationally ruled and such surfaces are
often said to be "ruled" in the literature. The notion of "ruled surface" becomes
difficult to handle over the real numbers: a conic bundle can by C-birationally
equivalent to a ruled surface without being R-birationally equivalent to it- we
prove in Proposition 4.4.10 that this is the case in Example 4.2.8 whenever
s > 2. This example is however uniruled over both R and C.

Remark 4.4.4. — It follows from Definition 1.3.37 and Proposition 4.3.8
that a complex surface is rational if and only if it is obtained by applying a
sequence of blow ups and contractions of (−1)-curves to the complex projective
plane. An R-surface (X,σ) is therefore geometrically rational if and only if it
can be obtained from the projective plane by a sequence of not necessarily real
blow ups and contractions. The function field K(X) of the complex surface
X is then isomorphic to the field of rational functions C(X1, X2). If we also
require that these blow ups and contractions should be real(8) then the R-
surface (X,σ) is rational. In this case the R-algebra of restrictions to X(R)
of elements of K(X) is isomorphic as an R-algebra to the field of rational
fractions R(X1, X2).

Remark 4.4.5. — In Definition 4.4.1 the complex surface X is not assumed
to be complete, projective or non singular. We state a classification theorem for
non singular projective X (Theorem 4.4.14) below. We will return to singular
varieties at the end of this section and we will deal with affine varieties in
Chapter 5 (Definition 5.5.2).

Remark 4.4.6. — Let F be a real algebraic surface and let (X,σ) be a
complexification of F . The surface F is then rational if and only if (X,σ) is
R-rational.

(8)By “real” we mean “globally real”: in other words, if P is the centre of a blow up then so
is P and if E is contracted then so is E.
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Remark 4.4.7. — By definition of R-morphisms, any rational R-surface is
geometrically rational. Similarly, as the product R-surface P1 × P1 is bira-
tionally equivalent to the R-surface P2, it is immediate that any geometrically
rational R-surface is uniruled.

Theorem 4.4.8. — Let (X,σ) be a non singular projective R-surface such
that κ(X) = −∞. The following then hold.

1. X is uniruled and (X,σ) is birationally equivalent to a real conic bundle
π : X → B with g(B) = q(X);

2. (X,σ) is geometrically rational if and only if q(X) = 0;
3. (X,σ) is rational if and only if q(X) = 0 and X(R) is connected and non

empty.

Proof. — 1. By Remark 4.4.3, any complex surface such that κ(X) =
−∞ is uniruled (and indeed birationally ruled). Comessatti proved in
[Com12] that any R-surface (X,σ) such that X is birationally ruled is
R-birationally equivalent to an real conic bundle π : X → B such that
g(B) = q(X). See [Sil89, Chapter V] for more details.

2. This follows from the classification of complex surfaces. See [Bea78,
Chapitre IV] for more details.

3. It remains to prove that if the complex surfaceX is rational then (X,σ) is
rational if and only if X(R) is connected and non empty. As the number
of connected components of the real locus is invariant under birational
maps defined over R this condition is necessary. It is sufficient by [Sil89,
Corollary IV.6.5].

Corollary 4.4.9. — Let (X,σ) be a uniruled non geometrically rational R-
surface. The surface (X,σ) is then birationally equivalent to a conic bundle
π : X → B such that g(B) = q(X) > 0.

We refer the interested reader to [Com12, Com14, Isk65, Isk67, Man67,
Man86, Sil89, Kol97, Kol01a, DK02, Wel03, BM11] for classical and
recent results on the classification of conic bundles.

Recall that Vg = #gRP2 denotes the non orientable surface of genus g whose
Euler characteristic is 2 − g. For example, g(RP2) = 1 and g(K2) = 2. We
now list the real algebraic models of 4.2.19 which are uniruled.
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Proposition 4.4.10 (Examples of uniruled surfaces)
We will now classify the real algebraic models (X,σ) described in Exam-

ple 4.2.19 for each topological type of the real locus.
1. (X,σ) is an R-rational surface.

(a) The real projective plane X = P2(C), σ = σP, X(R) = P2(R).
(b) The quadric sphere X = Q3,1 ⊂ P3(C), σ = σP|Q3,1, X(R) = S2.
(c) The quadric torus X = Q2,2, σ = σP|Q2,2, ((X,σ) is isomorphic to

the R-surface (P1(C)× P1(C), σP × σP) and Q2,2(R) = T2.
(d) The torus considered as the real locus of even index Hirzebruch

surfaces with their canonical real structure. F2k(R) ≈ T2.
(e) The Klein bottle considered as the real locus of the blow up of P2(R)

at a point BPP2(R) = K2.
(f) The Klein bottle considered as the real locus of the Hirzebruch sur-

faces of odd index F2k+1(R) = K2.
(g) The non orientable surface of genus g > 0 obtained by blowing up

P2(R): BP1,...,Pg−1P2(R) = Vg for any P1, . . . , Pg−1 ∈ P2(R).
(h) The non orientable surface g > 0 obtained by blowing up the

quadric sphere: BP1,...,PgQ3,1(R) = Vg for any P1, . . . , Pg ∈
Q3,1(R).

2. (X,σ) is geometrically rational but not rational.
(a) The empty set considered as the real locus of the quadric X = Q4,0,

σ = σP|Q4,0, X(R) = ∅.
(b) The disjoint union of s > 1 spheres considered as the real locus of

the projective completion of the conic bundle

Z

x2 + y2 +
∏

i=1,...,2s
(t− i)

 ⊂ R3 .

(c) The disjoint union of a finite union of s > 1 spheres and non ori-
entable surfaces considered as the real locus of the surface obtained
by blowing up real points in the above example.

(d) The disjoint union of four spheres considered as the real locus of
the degree 2 del Pezzo surface of equation (4.6), page 227.

3. (X,σ) is a uniruled non geometrically rational variety.
(a) The disjoint union of a finite number s > 0 of spheres, toruses

and Klein bottles considered as the real locus of conic bundle over
a curve of non zero geometric genus. .

(b) The disjoint union of a finite number s > 0 of spheres, toruses
and non orientable surface of arbitrary genus considered as the
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real locus of a surface produced by blowing up real points in the
previous example.

Proof of Proposition 4.4.10. —
1. By Corollary 4.3.9 an R-surface (X,σ) is R-rational if and only if there

is a sequence of blow ups of real points or conjugate pairs of points and
contractions of real (−1)-curves or pairs of disjoint conjugate (−1)-curves
producing this surface from the real projective plane.
(a) The R-surface (P2(C), σP) is rational by definition.
(b) The quadric surface Q3,1 in projective space P3 is rational. For any

real point P in Q3,1 let TPQ3,1 ⊂ P3(R) be the real projectivisation
of the tangent plane to Q3,1 at P . The stereographic projection
Q3,1 \ TPQ3,1 → A2 is then an isomorphism of R-surfaces. For
example if P is the north pole N = [1 : 0 : 0 : 1] let πN : Q3,1 →
P2
U :V :W be the rational map given by

πN : [w : x : y : z] 799K [x : y : w − z] .

The restriction of πN is then the stereographic projection of Q3,1 \
TNQ3,1 onto its image πN (Q3,1 \ TNQ3,1) = {w 6= 0} ' A2.
(The inverse rational map π−1

N : P2 99K Q3,1 is given by [U : V :
W ] 799K [U2 + V 2 +W 2 : 2UW : 2VW : U2 + V 2 −W 2]) .
The rational map πN can be decomposed as the blow up of Q3,1
in N , followed by the contraction of the birational transform of
the curve z = w (or in other words the intersection of Q3,1 with
the tangent plane TNQ3,1), which is the union of two non real
conjugate lines. The rational map π−1

N can be decomposed as the
blow up of two non real conjugate points [1 : ±i : 0] followed by
the contraction of the birational transform of the line z = 0.
The surface Q3,1 is therefore birational to the surface Y obtained
as follows. Let P, P be a pair of non real conjugate points in P2(C)
and let L := LP,P be the line passing through these two points.
Note that (L, σP|L) is an R-line. The self-intersection number of
the strict transform L̃ of L in the blown up surface X̃ = BP,PP

2(C)
is

(L̃2) = (L2)− 2 = −1

and it follows that there is a contraction c : X̃ → Y to a non singu-
lar R-surface whose real locus is a sphere. Indeed, by construction
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X̃(R) ≈ X(R) = RP2 and the contraction c remplaces a Moebius
band by a disc so Y (R) ≈ S2.

(c) We carry out the same construction using two distinct real points
P,Q in P2(C). We obtain BP,QP2(R) ≈ V2 and on contracting
the R-line LP,Q which is a real (−1)-curve we get a real locus Y (R)
diffeomorphic to a torus T2. Indeed, by construction Y (R) is diffeo-
morphic to T2 or K2. Moreover, the complex surface thus obtained
is isomorphic to P1(C)× P1(C) and we know (see Exercise 2.1.42)
that the real locus of any real structure on P1(C)× P1(C) is ∅, S2

or T2.
(d) Simply note that the complex surface F2k is obtained from F0 =

P1(C) × P1(C) by a succession of 2k elementary transformations.
Choosing k elementary R-transformations based at k pairs of non
real conjugate points as in Exercise 4.3.24 we get that F2k(R) ≈
F0(R) ≈ T2.

(e) Let P be a real point in P2(C). By Example 4.2.18 we know that
BPP2(R) ≈ F1(R) ≈ K2.

(f) We use the same construction as in (1d) starting with F2k+1(R) ≈
F1(R) ≈ K2.

(g) Consider points P1, . . . , Pg−1 ∈ P2(R). By Example 4.2.18 we have
that

BP1,...,Pg−1P2(R) ≈ Vg .

(h) Consider points P1, . . . , Pg ∈ Q3,1(R). By Example 4.2.18 we have
that

BP1,...,PgQ3,1(R) = BP1,...,PgS2 ≈ Vg .

2. Let (X,σ) be a geometrically rational R-surface. By Proposition 2.3.22,
if the R-surface (X,σ) is R-rational then X(R) is connected and non
empty.
(a) Any complex quadric surface is birational to P2(C) so the R-surface

(Q4,0, σP|Q4,0) is C-rational but as its real locus is empty it is not
rational.

(b) As X is a conic bundle over P1 it is a complex rational surface and
(X,σ) is therefore geometrically rational. The number of connected
components is at least half the number of simple singular fibres of
the conic bundle, ie. half the number of simple roots of f . By
hypothesis this gives us #π0(X(R)) > 1 so by Proposition 2.3.22
the R-surface (X,σ) is not rational.
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(c) Blowing up a real point does not change the number of connected
components.

(d) As any complex del Pezzo surface is rational (X,σ) is geometrically
rational. By construction #π0(X(R)) > 1 so the R-surface (X,σ)
is not rational.

3. (a) Let X → B be such a fibration. By [Deb01, Remarks 4.2(5), page
87] the complex surface X is uniruled but not rational because
q(X) = g(B) > 0.

(b) Idem.

Theorem 4.4.11 (Real locus of a C-rational surface)
Let (X,σ) be a non singular projective geometrically rational R-surface.

1. The R-surface (X,σ) is rational if and only if X(R) is connected and non
empty. When moreover (X,σ) is also minimal X(R) is diffeomorphic to
one of the following surfaces: the real projective plane RP2, a sphere S2,
a torus T2 or a Klein bottle K2. In this last case, X is a Hirzebruch
surface Fn of odd index n = 2k + 1 > 1.

2. When (X,σ) is a minimal real del Pezzo surface of degree 1, X(R) is dif-
feomorphic to the disjoint union of a real projective planes and 4 spheres.
If (X,σ) is a minimal real del Pezzo surface of degree 2, then X(R) is
diffeomorphic to the disjoint union of 4 spheres.

3. If (X,σ) is non rational and has a minimal real conic bundle structure
with 2s singular fibres then X(R) is diffeomorphic to a disjoint union of
s spheres, s > 2.

Proof. — As most of these statements have been proved earlier, we refer the
reader to [Man14] or [Man17a] for the missing pieces. See also [Rus02]
which includes a complete classification of minimal del Pezzo surfaces of degree
1 and 2 based on Silhol’s construction in [Sil89, § VI.4]).

Exercise 4.4.12. — If (X,σ) has a minimal real conic bundle structure
prove that #π0(X(R)) = 4− 1

2K
2
X (see Exercise 4.3.15).

Remark 4.4.13. — If (X,σ) is a geometrically rational minimal R-surface
such that X(R) = ∅ then X is a Hirzebruch surface of even index.

The main result of this section is the following theorem which summarises
and completes previous results.
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Theorem 4.4.14 (Topology of the real locus when κ(X) = −∞)
Let (X,σ) be a non singular projective R-surface of negative Ko-

daira dimension. We equip the real locus X(R) with its Euclidean topology
and consider topological surfaces up to homeomorphism. We denote by
s := #π0(X(R)) the number of connected components of the real locus.

1. If (X,σ) is rational then s = 1 and X(R) is homeomorphic to one of the
following compact connected surfaces:
(a) The torus T2;
(b) The sphere S2;
(c) A non orientable surface Vg for some g ∈ N.

2. If (X,σ) is geometrically rational, or in other words if the complex sur-
face X is rational, then s ∈ N can be arbitrary and X(R) is homeo-
morphic to one of the following compact topological spaces (which are all
surfaces except for ∅):
(a) The empty set ∅;
(b) A torus T2;
(c) A disjoint union of spheres and non orientable surfaces

tlS2 t Vg1 t · · · t Vgs−l
where l, g1, . . . , gs−l ∈ N∗.

3. If (X,σ) is uniruled (or in other words if the complex surface X is ge-
ometrically ruled) of irregularity q := q(X) then s ∈ N is arbitrary and
X(R) is homeomorphic to one of the following compact topological spaces
(which are all surfaces apart from ∅):
(a) The empty set ∅;
(b) A disjoint union of q + 1 toruses

tq+1T2 ;

(c) A disjoint union of toruses, spheres and non orientable surfaces

ttT2 tl S2 t Vg1 t · · · t Vgs−t−l
where t < q + 1 and l, g1, . . . , gs−t−l ∈ N.

4. Conversely, any topological surface in the first list has a rational alge-
braic model, any topological surface in the second list has a geometrically
rational algebraic model and any topological surface in the third list has
a uniruled algebraic model.

Before attacking the proof of this theorem we give a series of intermediate
results.
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Some authors call the orientable topological surface of genus g a surface
with g holes. The main result in the classification of uniruled R-surfaces is that
orientable components of such surfaces have at most one hole. The theorem
below is actually more general because there are surfaces of general type whose
geometric genus is zero. We refer the interested reader to the previously cited
review article [BCP11] which studies surfaces of general type with geometric
genus equal to 0.

Theorem 4.4.15. — Let (X,σ) be a non singular projective R-surface such
that pg(X) = 0. Any orientable component of the real locus X(R) is then
diffeomorphic to the sphere S2 or the torus T2.

The following result is due to Comessatti [Com14].

Corollary 4.4.16 (Comessatti’s theorem). — Let (X,σ) be an non sin-
gular projective R-surface which is rational over the real numbers. Its real
locus is then non empty and connected and if X(R) is orientable then it is
diffeomorphic to a sphere S2 or a torus T2.

Proof. — By Theorem 1.5.55 the number of connected components of the real
locus is invariant under birational maps of R-surfaces. By hypothesis the
R-surface (X,σ) is birational to the R-surface (P2(C), σP) and it follows that

#π0(X(R)) = #π0(P2(R)) = 1 .

As the geometric genus is a birational invariant and pg(P2(C)) = 0, Theo-
rem 4.4.15 completes the proof.

The proof of Theorem 4.4.15 given here is a “modern” proof. Comessatti’s
original proof [Com14] of Corollary 4.4.16 starts by reducing to the case of
minimal surfaces and then enumerating the possible topological types of real
loci of minimal geometrically rational surfaces.

Lemma 4.4.17. — Let (X,σ) be a non singular projective R-surface and
let V ⊂ X(R) be an orientable connected component of its real locus. The
fundamental class (Definition 3.7.1) α ∈ H2(X;Z) of V is then σ∗-invariant
and its square (α · α) is minus the topological Euler characteristic of V :

(4.7) (α · α) = −χtop(V ) .

Proof. — The fact that α is σ∗-invariant is immediate. We prove (4.7) as in
[Sil89, page 71].

See Propositions 2.2.27 and 2.2.28 for the differentiable manifold structures
on X and X(R). Since V is orientable the product (α·α) is the self intersection
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of the variety V in X which by [Hir76, page 132] is the same thing as the
self intersection of V in its normal bundle NX|V . (See also [MS74, page
119]). At any real point multiplication by i in the tangent space TX yields
an orientation reversing isomorphism between TX(R) and the normal bundle
NX|X(R). Indeed, consider a point x ∈ X(R) and let (u1, u2) be a basis for
the vector space TX(R),x. Since x is a point in the real locus we have that
TX,x = TX(R),x ⊗R C. The quadruplet (u1, iu1, u2, iu2) is therefore a basis for
the vector space TX,x and the pair (iu1, iu2) is a basis for the normal vector
space NX|X(R),x. Since the natural orientation of the differentiable manifold
X of real dimension 4 is given by (u1, iu1, u2, iu2) the induced orientation on
NX|X(R),x is given by (iu2, iu1). As the Euler characteristic χtop(V ) is equal
to the self intersection of V in its tangent bundle TV (see [Hir76, page 13])
the result follows.

Remark 4.4.18. — Both the statement and the proof remain valid if we
replace “projective” by ’compact Kähler”. See Appendix D for more details.

Lemma 4.4.19. — Let (X,σ) be a non singular projective R-surface. The
intersection form is then negative definite on the σ∗-invariant part of the real
vector space H1,1(X) ∩H2(X;R).

Proof. — The Hodge index theorem 4.1.24 implies that the intersection form
restricted to the subspace H1,1(X) ∩ H2(X;R) is Lorentzian, by which we
mean that it has signature (1, h1,1(X) − 1). As the surface is projective,
Proposition 2.6.43 implies that it has a real embedding in a projective space
ϕ : X ↪→ PN (C). As the surface is non singular, Bertini’s theorem D.9.1
implies is has a non singular hyperplane section H ′: we denote by h the
fundamental class of the R-curve (H,σ|H) where H = ϕ∗(H ′). The class h
is then σ∗-anti-invariant. Indeed, by Proposition 2.2.28, the anti-holomorphic
involution σ is orientation preserving on the differentiable manifold X of real
dimension 4, but orientation reversing on the submanifold H of real dimension
2. The eigenspaces of the involution σ∗ are orthogonal and the eigenspace of
eigenvalue 1 is therefore orthogonal to the line generated by the class of H.

Corollary 4.4.20. — Let (X,σ) be a non singular projective R-surface: if
the geometric genus pg(X) vanishes then the intersection form restricted to
the σ∗-invariant part of the real vector space H2(X;R) is negative definite.
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Proof. — Simply recall the Hodge decomposition (see Appendix D)H2(X;C) =
H2,0(X)⊕H1,1(X)⊕H0,2(X) and pg(X) = h0,2(X) = h2,0(X) which gives us
H1,1(X) = H2(X;C).

Remark 4.4.21. — Once again, the same statement with almost the same
proof (replacing “hyperplane section” by “Kähler class”) remains valid if we
replace “projective” by “compact Kähler”. This is not however an actual gen-
eralisation because any compact Kähler manifold with pg = 0 is projective.
See [BHPVdV04, Chapter VI] for more details.

Proof of Theorem 4.4.15. — Let V ⊂ X(R) be an orientable connected com-
ponent of the real locus. Lemma 4.4.17 and Corollary 4.4.20 imply that
χtop(V ) > 0. It follows that V is diffeomorphic to the sphere or a torus.

We will prove Theorem 4.4.14 using the following refinement of Theo-
rem 4.4.15.

Proposition 4.4.22. — Let (X,σ) be a non singular projective R-surface
such that pg(X) = 0. Let q := q(X) be its irregularity, let s = #π0(X(R))
be the number of connected components of its real locus and let t 6 s be the
number of connected components of X(R) which are diffeomorphic to a torus
T2.

1. If q = 0 and the homology of X has no 2-torsion then

t 6 1

and if t = 1, then s = t and

X(R) ≈ T2 .

2. If κ(X) = −∞ then
t 6 q + 1

and if t = q + 1 then s = t and

X(R) ≈ tq+1T2 .

Remark 4.4.23. — Note that the hypotheses of Proposition 4.4.22(1) can-
not be weakened.

1. If X is a K3 surface (see Section 4.5) then q(X) = π1(X) = 0 and
pg(X) = 1. Looking at Figure 4.11 of this section we see that if g 6 10
then there is a real K3 surface whose real locus is diffeomorphic to a
orientable surface of degree g. Similarly, there is a real K3 surface whose
real locus is diffeomorphic to the disjoint union of a torus and several
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spheres and there is a real K3 surface whose real locus is diffeomorphic
to the disjoint union of two toruses.

2. If X is an Enriques surface (see Section 4.5) then pg(X) = q(X) = 0
and π1(X) = Z2. Checking the list provided in Theorem 4.5.16 we see
that there is a real Enriques surface whose real locus is diffeomorphic to
the disjoint union of a torus and two Klein bottles and there is a real
Enriques surface whose real locus is diffeomorphic to the disjoint union
of two toruses.

On the other hand, we can weaken the hypothesis “κ(X) = −∞” in 4.4.22(2)
by replacing it by “κ(X) 6= 1 and the homology of X has no 2-torsion” as in
Complement 4.4.24.

Proof of Proposition 4.4.22. — This proof is based on an argument by
Risler [Ris85, page 161] quoted by Silhol [Sil89, page 72]. As in Section 3.2,
let Y = X/G be the topological quotient of X by the involution and let
p : X → Y be the canonical surjection. Note that the spaces Y and Y \X(R)
are topological manifolds which have a C∞ structure. It follows from Re-
mark 1.5.28 that Y is a differentiable manifold of dimension 4 and from
Proposition 2.2.27 that X(R) is a differentiable manifold of real dimension 2.
The subvariety X(R) in Y is therefore of real codimension 2 in Y .

Recall that in the exact sequence (3.6) of Theorem 3.2.6,

(4.8) · · · → Hr(Y,X(R);Z2)⊕Hr(X(R);Z2)→ Hr(X;Z2)→

Hr(Y,X(R);Z2) ∆r−−→ Hr−1(Y,X(R);Z2)⊕Hr−1(X(R);Z2)→ · · ·

the second component of ∆r is the boundary map δr of the homology se-
quence associated to the pair (Y,X(R)):

(4.9) Hr(Y,X(R);Z2) δr−→ Hr−1(X(R);Z2)→ Hr−1(Y ;Z2) .

Since the homology has no 2-torsion we have that b1(X;Z2) = b3(X;Z2) =
b1(X) = 2q(X). Since H4(X(R);Z2) = H3(X(R);Z2) = {0} the exact se-
quence(4.8) yields

(4.10) 0→ H4(Y,X(R);Z2)→ H4(X;Z2)→ H4(Y,X(R);Z2)→
→ H3(Y,X(R);Z2)→ H3(X;Z2) .

SinceH4(X;Z2) ' Z2, we can deduce from the first line thatH4(Y,X(R);Z2) '
Z2 and that 1 6 dimZ2 H3(Y,X(R);Z2) 6 2q + 1. The part of the exact
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sequence (4.9) that we need is:

H3(Y,X(R);Z2) δ2−→ H2(X(R);Z2) i2−→ H2(Y ;Z2) .

Using the above calculation it follows that

(4.11) dimZ2 ker i2 6 dimZ2 H3(Y,X(R);Z2) 6 2q + 1 .

Let {Vr}r=1,...,s be the connected components of X(R). The group mor-
phism H2(X(R);Z2) i2−→ H2(Y ;Z2) sends the fundamental homology class of
Vr in H2(X(R);Z2) to its fundamental homology class in H2(Y ;Z2).

We know by Lemma 4.4.17 that the fundamental homology class in
H2(X;Z) of a connected component diffeomorphic to T2 is isotropic for the
intersection form and it follows from Corollary 4.4.20 that it is zero. It follows
that its fundamental class in H2(Y ;Z) and hence in H2(Y ;Z2) vanishes.

The fundamental classes in H2(X(R);Z2) of the connected components of
X(R) diffeomorphic to T2 are linearly independent and their images under i2
all vanish. It follows from (4.11) that t 6 2q + 1.

We conclude by noting that as p : X → Y is a double covered ramified along
X(R) the fundamental class of X(R) in H2(Y ;Z2) vanishes. For example, if
X(R) is orientable then its fundamental class in H2(Y ;Z) is 2-divisible (see
Lemma 3.6.21 which applies because X is non singular).

Permuting terms if necessary we can assume that V1, . . . , Vt are the con-
nected components of X(R) diffeomorphic to T2. If V1 t · · · tVt ( X(R) then
the fundamental classes of V1, . . . , Vt and X(R) in H2(X(R);Z2) are linearly
independent and by (4.11) we get that t < 2q + 1 because the fundamental
class of X(R) belongs to ker i2. This result applied to q = 0, proves the first
part of the proposition.

To prove the second part of the proposition we recall that a non singular
complex projective surface such that κ(X) = −∞ is uniruled and its homology
has no 2-torsion. Indeed, any such surface is birationally equivalent to a
genus 0 fibration with non singular fibres which has a section. (See [Bea78,
Exemple VII.3 and Chapitre III] for more details). The existence of such a
section implies the homology is torsion free and this property is invariant under
birational maps. We can therefore apply the first part of the proposition to
prove the result when q = 0.

By Theorem 4.4.8 if X is uniruled and q > 0 then X is a conic bundle
π : X → C defined over R over a curve C of genus g(C) = q(X) > 1. Analysing
the singular fibres of π shows that they cannot meet a torus and we then apply
Harnack’s inequality (3.3.7): t 6 #π0(C(R)) 6 g(C) + 1 = q + 1.



250 CHAPTER 4. SURFACES

Proof of theorem 4.4.14. — Any surface X of negative Kodaira dimension has
geometric genus pg = 0. Indeed, κ(X) = −∞ means that all positive multiples
of the canonical bundle have no global sections and in particular pg(X) =
dimH2(X,OX) = dimH0(X,ΩX) = 0. Theorem 4.4.15 therefore applies
and implies that the only orientable surfaces that can appear are S2 and T2.
Point (1) follows from Comessatti’s Theorem 4.4.16. The upper bound on the
number of toruses in (2) and (3) follows from Proposition 4.4.22 since pg and q
are birational invariants of complex surfaces. If (X,σ) is geometrically rational
then pg(X) = pg(P2(C)) = 0 and q(X) = q(P2(C)) = 0 (in general, uniruled
surfaces have zero geometric genus but non zero irregularity). Finally (4)
follows from Proposition 4.4.10.

Complement 4.4.24. — Let (X,σ) be a non singular projective R-minimal
R-surface.

1. If pg(X) = 0, q(X) > 0 and X is not uniruled then q(X) = 1, K2
X = 0,

b2(X) = 2 and κ(X) ∈ {0, 1}.
2. If X is bi-elliptic and the homology of X has no 2-torsion then t < 3,

and if t = 2 then t = s, see [CF03, Remark 7.3], [Suw69].
3. If the homology of X has no 2-torsion and t > 3 then κ(X) = 1 (i. e. X

is a properly elliptic surface).

Proof. — 1. Note that under these hypotheses, X must be of special type.
Indeed if X is minimal and of general type c2

1(X) > 0 and it follows that
χ(OX) > 1 by the Noether formula 4.1.19 and hence q(X) = 0. If X is
not uniruled then χtop(X) = c2(X) > 0 [Bea78, Theorem X.4] and then
χ(OX) > 0 by Noether: it follows that if pg(X) = 0 then q(X) 6 1. By
minimality c2

1(X) = 0 and by Noether’s formula c2(X) = 0. As b1(X) =
b3(X) = 2q(X) it follows that b2(X) = 2. (See [Bea78, VI.1 et VI.2] for any
alternative proof).

2. There are bi-elliptic surfaces whose real locus is made up of three or
four toruses- see Theorem 4.5.30- but in this case the homology of X contains
2-torsion [CF03, Remark 7.3], [Suw69].

3. The classification of complex compact surfaces [BHPVdV04, Chap-
ter VI, Table 10] tells us that only bi-elliptic surfaces can satisfy κ(X) = 0,
pg(X) = 0 and q(X) = 1. As such surfaces were dealt with in the previous
question we have that κ(X) = 1 or in other words X is a properly elliptic
surface.
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We have not had the time to construct explicit examples contradicting the
conclusion of Proposition 4.4.22 when the hypotheses are weakened but we
propose two sketch constructions.

1. By [BHPVdV04, Théorème III.18.2], if a fibration π : X → C has sin-
gular fibres they are all of the form mE where E is a non singular elliptic
curve. If t > #π0(C(R)) it follows from Silhol’s classification of singular
real fibres ([Sil84], [Sil89, Chapitre VII]) that π has an even number of
fibres with even multiplicity m.

2. We could also use [Bea78, Théorème VI.13, case II non bi-elliptic]: under
our hypotheses, X is necessarily a quotient of the form (B×F )/H where
F is a non singular elliptic curve, B is a non singular curve of genus at
least 2, H is a finite group acting faithfully on both B and F , B/H is
elliptic, F/H is rational and H acts freely on B × F .

Singular surfaces and parabolas. — In this subsection based on [Kol99b,
CM08, CM09] we give a classification of possible topological types of sin-
gular geometrically rational Du Val R-surfaces 4.4.30 (see Definition 1.3.37
for the definition of geometrically rational). We will do this using the orb-
ifold structure with conic points (4.4.31) on the connected components of the
topological normalisation (4.4.35). This will give us a generalisation of Comes-
satti’s theorem (4.4.36). Another consequence, which was initially our main
motivation in this section, is the proof of three conjectures of Kollár’s on ra-
tionally connected varieties. See Theorem 6.2.11 in Chapter 6.

Du Val surfaces. — We start by recalling a definition of Artin’s, [Art66] (see
also [Har77, page 250]).

Definition 4.4.25. — Let X be a normal complex surface defined over C
and let P be a singular point of X. We say that P is a rational singularity if
and only if there is a resolution π : X̃ → X of P such that Rqπ∗(OX̃) = 0 for
all q > 0 where (Rqπ∗(OX̃) denotes the q-th direct image of the sheaf O

X̃
.

Theorem 4.4.26. — Let X be a normal complex surface and let P be a
singular point of X. The following properties are equivalent.

1. P is rational of embedding dimension 3.
2. P is rational of multiplicity 2: we say it is a rational double point.
3. P is of multiplicity 2 and can be resolved by a sequence of blow ups of

points.
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4. The minimal resolution of P has a configuration of exceptional curves of
type An, Dn, E6, E7 or E8. (See below for more details).

Proof. — See [Slo80, page 71].

Remark 4.4.27. — There are double points on surfaces which are not
rational- for example, z6 + y2 + x3 = 0 is a elliptic double point- but any
double point on a surface has embedding dimension 3, see [Lau71, page 7].

Definition 4.4.28. — If one of these four equivalent properties is satisfied
then P is said to be a rational double point of type An, n > 1, Dn, n > 4
or En, n = 6, 7, 8. Over C we have the following characteristic equations
[BHPVdV04, page 87]:

An(n > 1) :
Dn(n > 4) :

E6 :
E7 :
E8 :

z2 + x2 + yn+1 = 0
z2 + y(x2 + yn−2) = 0

z2 + x3 + y4 = 0
z2 + x(x2 + y3) = 0

z2 + x3 + y5 = 0 .

Remark 4.4.29. — Rational double points on surfaces are the same thing
as canonical singularities. These singularities are quotients of C2 by finite
subgroups of SL2(C). We also call them Du Val singularities.

Definition 4.4.30. — A projective surface is said to be Du Val if and only
if its only singularities are rational double points.

Over C, Du Val singularities are classified in Definition 4.4.28 below: there
are the cyclic singularities An, n > 1, the dihedral singularities Dn, n > 4, the
tetrahedral singularity E6, the octahedral singularity E7 and the icosahedral
singularity E8. There are many other types of singularities over R and in
this section we will only present two series of cyclic singularities. We refer to
[CM08, section 1 and example 1.3] for more details.

A real surfaceX is said to have a singularity of type A±n at a point P ∈ X(R)
if in some neighbourhoood of P X is R-analytically isomorphic to

x2 ± y2 − zn+1 = 0, n > 1 .

The grey part of Figure 4.5 represents the zone in R2
z,x where zn+1 − x2 is

positive. The surface X which is locally a double cover of the plane branched
over the curve zn+1 − x2 = 0 only has real points over this zone.

Note that all these singularities are non isomorphic except for A+
1 and A−1 .
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A+
n , n even A+

n , n odd

Figure 4.5. A+
n , x2 + y2 − zn+1 = 0, n > 1.

A−n , n even A−n , n odd

Figure 4.6. A−n , x2 − y2 − zn+1 = 0, n > 1.

Figure 4.7. A+
1 ' A

−
1 .

Generalisation of Comessatti’s theorem. —

Orbifolds of dimension 2. — The term orbifold derives from the expression
n-manifold denoting a topological space M equipped with a family of charts
(Ũ , φ) where Ũ is an open set and φ is a homeomorphism onto an open set
U ⊂ Rn.

An n-orbifold is a space equipped with an atlas whose charts φ : Ũ → U ⊂
Rn are finite branched covers: in the case where all the maps φ are of degree 1
the orbifold is simply a manifold. More precisely, every open chart of an
orbifold is equipped with a G-action for some finite group G and φ factorises
through a homeomorphism G\Ũ → U . See [BMP03, Chapter 2] for more
details.

Definition 4.4.31. — If G is cyclic and acts by rotation of angle 2π/m its
unique fixed point is said to be a conic point of index m.

Orbifolds are not always homeomorphic to a manifolds, except in dimen-
sion 2 where any orbifold M is homeomorphic to a topological manifold de-
noted |M |. See [Sco83, §2], for example, for more details.
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Definition 4.4.32. — Let p and q be coprime integers, (p, q) = 1. We denote
by S(p, q) the orbifold whose underlying smooth surface is |S(p, q)| = S2 with
two conic points whose indices are respectively p and q.

LetM be a compact 2 dimensional orbifold with a global finite covering map
of degree d from a smooth surface M̃ →M . The orbifold Euler characteristic
is then defined by

χ(M) := 1
d
χ(M̃) ∈ Q .

LetM be a 2-orbifold with k conic points of angles 2π/mj , j = 1, . . . , k and
let |M | be the smooth surface underlying M . We then have that

χ(M) = χ(|M |)−
k∑
j=1

(1− 1
mj

) .

Definition 4.4.33. — The orbifold M is said to be spherical (resp. Eu-
clidean) if and only if χ(M) > 0 (resp. χ(M) = 0).

Proposition 4.4.34. — The orbifoldM is spherical or Euclidean if and only
if |M | is spherical and

∑k
j=1(1− 1

mj
) 6 2 or |M | is Euclidean and k = 0.

Topological normalisation. — Kollár [Kol99a] introduced an operation imi-
tating "branch separation" in algebraic geometry (Definition 1.5.37) in order
to handle the situation where the real locus of an R-variety is singular.

Definition 4.4.35. — Let V be a simplicial complex whose singular locus
Sing(V ) is finite, where here Sing(V ) is defined as being the set of points
x ∈ V whose star (the union of all the simplexes in V having x as a vertex) is
not homeomorphic to a disc. The topological normalisation ν : V → V is the
unique continuous proper map such that

1. ν is a homeomorphism over V \ Sing(V ),
2. If P ∈ Sing(V ) then the fibre ν−1(P ) is in bijection with the set of local

connected components of V in a neighbourhood of P .

Let X be a geometrically rational algebraic R-surface and let M ⊂ X(R)
be a connected component of the topological normalisation of its real locus. If
X is non singular and the smooth surface M is orientable then Comessatti’s
theorem 4.4.16 implies thatM is a sphere or a torus. The generalisation below
was proved in [CM09].

If X is Du Val then we equipM with an orbifold structure with conic points
(Definition 4.4.38).
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Theorem 4.4.36. — Let X be a geometrically rational algebraic R-surface
and let M ⊂ X(R) be a connected component of the topological normalisation
of its real locus. If X is Du Val and the orbifold M is orientable then M is
spherical or Euclidean.

This result is a corollary of Theorem 4.4.39 below. Before stating this
theorem we need one more technical definition When X(R) is two dimensional
the normalisation X(R) is a topological manifold and if P ∈ X(R) is a singular
point of type A±n with n odd then X(R) has two locally connected components
in a neighbourhood of P .

Figure 4.8. M and M in a neighbourhood of a singular point of
type A±n , n odd.

Definition 4.4.37. — The point P is globally non separating if the two lo-
cally connected components in a neighbourhood of P are in the same connected
component of X(R) and globally separating otherwise.

Let X be a Du Val R-surface and let ν : X(R) → X(R) be the topological
normalisation of the real locus. We denote by ΣX the set of real singular
points which are either of type A−n with n even or globally separating and of
type A−n with n odd. We denote by PX := Sing(X) \ ΣX the set of all other
singular points.

Definition 4.4.38. — Let M ⊂ X(R) be a connected component of the
topological normalisation of the real locus of a Du Val R-surface. We equip
M with an orbifold structure whose conic points of index m correspond to the
singular points of type A±m contained in PX ∩ ν(M).

We denote by k(M) the cardinality #{ν−1(PX)∩M} and for i = 1 . . . k(M)
we let mi(M) be the index of a point in PX ∩ ν(M).

Theorem 4.4.39. — Let X be a Du Val R-surface and let M ⊂ X(R) be a
possibly non orientable connected component of the topological normalisation
of its real locus. If X is geometrically rational then
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– k(M) 6 4,
–
∑k
i=1(1− 1

mi+1) 6 2,
– |M | = S1 × S1 =⇒ k(M) = 0.

Proof. — See [CM08, Corollary 0.2, Theorem 0.3] and [CM09, Theorem 0.2]
for a full proof: here we only discuss the inequality k(M) 6 4. The heart of
the proof is a reduction to the case of certain double covers of the quadratic
cone branched along singular curves of degree 6. A clever counting argument
then enables us to complete the proof

The minimal model programme enables us to reduce to the case where X
is a del Pezzo (Definition 4.2.12) Du Val surface of degree 1. See Lemma
[CM08, Lemma 1.8] for more details.

The anticanonical model of X is a branched double cover q : X → Q of a
quadric cone Q ⊂ P3(C) whose branching locus is the union of the summit of
the cone and a cubic section B not passing through the summit. See [DPT80,
Exposé V] for more details. Note that the pull back under q of the summit
of the cone is a non singular point. Let X ′ be the singular elliptic surface
obtained from X by blowing up this non singular point(9).

We recall that ν : X ′(R) → X ′(R) is the topological normalisation of the
real locus. We therefore want to prove that for any connected component
M ⊂ X ′(R) we have that

#(ν−1(PX′) ∩M) 6 4 .

The surface X ′ is a ramified double cover of a Hirzebruch surface F2 whose
branching curve is the union of the unique section of negative self-intersection
Σ∞ of the fibration F2 → P1(C) and a trisection B which does not meet Σ∞.
The cone Q is isomorphic to the weighted projective space P(1, 1, 2) which
we equip with coordinates (x0, x1, y2) and X is therefore the hypersurface in
P(1, 1, 2, 3) with coordinates (x0, x1, y2, z) defined by the equation

z2 = y3
2 + p4(x0, x1)y2 + q6(x0, x1) .

We now describe a plane model for Q in which the hyperplane sections of Q
embedded in P3 via H0(Q,OQ(2)) correspond to the parabolas tangent to the
line at infinity L∞ = {w = 0} at the point O := {w = x = 0} in the projective
plane equipped with coordinates (x, y, w). In other words, we blow up at O
and then at the infinitely close point O′ in O corresponding to tangency to
the line at infinity L∞, and denote by Q̃ the surface thus obtained. Let E

(9)Exercise: prove that X ′ is an elliptic surface.



4.4. UNIRULED AND RATIONAL SURFACES (κ = −∞) 257

and E′ be the total transformations of O and O′ and note that E = E′ + E′′

where E′′ is a (−2)-curve. The linear system H0(Q̃,O
Q̃

(2H −E −E′)) sends
Q̃ birationally to the quadric cone Q ⊂ P3(C) contracting both the strict
transform L̃∞ of the line L∞ and the curve E′′ to points. Since L̃∞ and E′′
are disjoint the contraction of L̃∞ gives a Hirzebruch surface F2 whose (−2)-
section Σ∞ is the image of E′′. We write this using coordinates (x, y, w) on P2:
H0(Q,OQ(1)) then corresponds to H0(Q̃,O

Q̃
(H − E)) which is generated by

w, x and y2 := yw extends w2, wx, x2 to a basis of H0(Q̃,O
Q̃

(2H−E−E′)) '
H0(Q,OQ(2)). The morphism Q̃ → P(1, 1, 2) is therefore given by x0 := w,
x1 := x, y2 := yw.

The elliptic surface X ′ is the double cover of F2 branched over Σ∞ and over
the curve B corresponding to the curve in Q of equation y3 + p4(x0, x1)y +
q6(x0, x1) = 0. The curve B therefore correponds to the plane curve of equa-
tion w3y3 + p4(w, x)yw + q6(w, x) = 0 whose affine part has equation

(4.12) y3 + p4(1, x)y + q6(1, x) = 0 .

Note that a parabola of this form, by which we mean a curve of the form
C ∈ (2H − E − E′) is disjoint from E′′ (which contracts onto the summit of
the cone) unless it degenerates as two lines passing through the point O. In
particular, we can always modify the coordinates in the affine plane so that C
is sent to the line y = 0.

In order to describe the geometry at infinity of parabolas of this form, recall
that the surface F2 is covered by two open sets isomorphic to C× P1(C). On
one of these open charts we have affine coordinates x

w ∈ C and homogeneous
coordinates (w : y) ∈ P1(C), whereas on the other chart the coordinates are
w
x ∈ C and (x2

w : y) ∈ P1(C) (or alternatively x2

w /w = ( xw )2). The section
at infinity Σ∞ corresponds to the curve E′′ ⊂ X̃ and is defined by w = 0
or x2

w = 0 depending on the chart. A parabola yw = a0w
2 + a1xw + a2x

2 is
therefore given by an equation

1
η

= a0 + a1
x

w
+ a2( x

w
)2

in the affine chart of coordinates ( xw : η := w
y ). Using these coordinates at

infinity it becomes easy to see when a domain "meets" F2 at infinity.
We now seek the normal form of equation (4.12). The singular points of

X ′(R) are in one to one correspondence with singular points of B(R). There
are different cases to consider corresponding to different numbers of connected
components of the trisection B.



258 CHAPTER 4. SURFACES

Here we will restrict ourselves to the case where the trisection has three
irreducible components and we refer to [CM08] for the other cases. We aim
to prove that every connected component of the topological normalisation of
each of the two double covers branched along B has at most 4 singular points.
We start by noting that as B is real at least one of the irreducible components
is real. Equation (4.12) becomes

(y − α(x))(y − β(x))(y − γ(x)) = 0

and changing the real coordinates on Q = P(1, 1, 2) if necessary we can assume
that γ = 0. The case β = α where there are two irreducible complex conjugate
components only gives us 2 singular points: Reα(x) = 0, y = Imα(x). We
can therefore assume that all three irreducible components are real. Equa-
tion (4.12) then becomes (y − α)(y − β)y = 0 where α(x) = α0 + α1x+ α2x

2

and β(x) = β0 + β1x+ β2x
2 are polynomials of degree 2.

Case without tangency. — Suppose that none of the parabolas are tangent
to each other. Since we can permute the three curves we can assume the
smallest one is at infinity (The smallest curve is the one that has the smallest
value of a2 when we write their equations in the form y = a0 + a1x + a2x

2).
Changing coordinates we get a curve given by the equation y = 0 and two
convex parabolas, i. e. parabolas for which α2 > 0 and β2 > 0.

The 6 intersection points are distinct and are given by

y = α(x)β(x) = 0 , α(x) = β(x) = y .

The curve B is real so if one of these singular points is not real then the
number of real singular points is bounded by 4. We suppose therefore that
the 6 singular points are real and set

(4.13)

α(x) = α2(x− a1)(x− a2), a1 < a2 ;
β(x) = β2(x− b1)(x− b2) .

Multiplying y by β2 if necessary we can assume that β2 = 1. Furthermore
we can reduce to the case 0 < α2 < 1 by exchanging the roles of α and β if
necessary. Using a translation along the x axis we can assume that b1 = −b2.
Equation (4.13) then becomesα(x) = α2(x− a1)(x− a2), a1 < a2, 0 < α2 < 1 ;

β(x) = (x2 − b2), 0 < b .

Up to symmetry x↔ −x this leaves us with 4 possibilities.

b < a1 , −b < a1 < b < a2 , a1 < −b < b < a2 , −b < a1 < a2 < b .
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This configuration is shown in Figure 4.9. In order to help the reader visu-
alise the situation we invite them to count the double points in each connected
component of the complement of B. To do this, note that two connected com-
ponents are connected at infinity if and only their boundary contains two non
bounded curves belonging to the same pair of parabolas.

Figure 4.9. 6 A1 points.

Case with tangency. — A detailed study similar to the one carried out above
enables us to reduce to the five cases shown in Figure 4.10 below.

Figure 4.10. 4 A1 points, 1 A2 point.
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Non orientable components. — All non orientable surfaces can be realised as
components of real non singular rational surfaces by blowing up real points
in the real projective plane. Similarly, it is easy to construct hyperbolic non
orientable orbifolds.

When X is geometrically rational minimal and non singular Comessatti’s
theorem implies that M is spherical or euclidean- in fact minimality implies
that M is diffeomorphic to S2 or RP2 (which are both spherical), S1 × S1 or
K2 (which are both Euclidean). The singular case is rather different.

Theorem 4.4.40. — There is a geometrically rational minimal Du Val R-
surface X which has a component M ⊂ X(R) which is a hyperbolic orbifold.

Proof. — See [CM09, Theorem 0.4].

4.5. K3, Enriques, abelian and bi-elliptic surfaces (κ = 0)

The four classes of non singular minimal complex projective surfaces with
Kodaira dimension κ = 0 can be distinguished by their geometric genus pg and
their irregularity q. We can show that if the Kodaira dimension of a surface
X vanishes then there is a strictly positive integer m such that mKX ∼ 0.

Let m0 be the smallest strictly positive integer such that m0KX ∼ 0.

Theorem 4.5.1. — Let X be a non singular minimal complex projec-
tive surface with κ(X) = 0. There are then four possibilities for the pair
(pg(X), q(X)):

1. pg(X) = 1, q(X) = 0: we then have that m0 = 1 and X is a projective
K3 surface (Definition 4.5.3).

2. pg(X) = 0, q(X) = 0: we then have that m0 = 2 and X is an Enriques
surface (Definition 4.5.13).

3. pg(X) = 1, q(X) = 2: we then have that m0 = 1 and X is an abelian
surface(Definition 4.5.22)

4. pg(X) = 0, q(X) = 1: we then have that m0 ∈ {2, 3, 4, 6} and X is a
bi-elliptic surface (Definition 4.5.28).

Proof. — See [Bea78, Liste VI.20 and Théorème VIII.2].

Corollary 4.5.2. — Any non singular minimal complex projective surface
X with κ(X) = 0 satisfies 4KX ∼ 0 or 6KX ∼ 0.
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K3 Surfaces. — The book [X85] is a standard reference for complex K3
surfaces: we refer to [Sil89, Chapter VIII] for real K3 surfaces. The K3
surfaces in Theorem 4.5.1 are assumed to be projective. More generally, a
K3 surface is a compact non singular complex analytic surface with trivial
canonical divisor and vanishing first Betti number.

Definition 4.5.3. — Let X be a non singular compact complex analytic
surface. X is said to be a K3 surface if and only if KX ∼ 0 and b1(X) = 0. A
real K3 surface is an R-surface (X,σ) such that X is a K3 surface.

Proposition 4.5.4. — Let X be a K3 surface. X is then minimal: moreover
κ(X) = 0, pg(X) = 1, q(X) = 0 and X is simply connected.

Proof. — See [X85], [BHPVdV04, Chapitre VIII].

K3 surfaces are not all projective but by a fundamental theorem due to Siu
they are all Kähler. See [X85, Exposé XII] for more details.

χ(X(R))

b*(X(R))
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Figure 4.11. Topological types of real K3 surfaces with non empty
real locus.
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Theorem 4.5.5 (Kharlamov 1975). — There are 66 topological types of
real K3 surfaces. Each of them can be obtained by topological Morse sim-
plification (Definition 4.3.31) from one of the 6 extremal types listed below.
Conversely, any type obtained in this way can be realised as the real locus of a
real K3 surface.

The 6 extremal types are:
1. M -surfaces, b∗(X(R);Z2) = 24, χ(X(R)) = −16, 0, 16,

S10 t S2, S6 t 5S2, S2 t 9S2 ;

2. (M − 2)-surfaces, b∗(X(R);Z2) = 20, χ(X(R)) = ±8,

S7 t 2S2, S3 t 6S2 ;

3. Pair of toruses,
T2 t T2 .

Proof. — See [Har76], [Sil89, Chapter VIII].

Figure 4.11 shows all pairs (χ(X(R)), b∗(X(R));Z2) which can be realised
by real K3 surfaces. We deduce from this figure the possible topological types
of real K3 surfaces using the following proposition.

Proposition 4.5.6. — Let (X,σ) be a real K3 surface. If X(R) is non empty
then it is an orientable topological surface. Moreover X(R) has at most one
connected component whose Euler characteristic is 6 0 (the other components
are therefore all diffeomorphic to the sphere) unless X(R) is the disjoint union
of two toruses.

Proof. — Let (X,σ) be a real K3 surface whose real locus is non empty. Note
first that X(R) is orientable. Indeed, by definition c1(X) = b1(X) = 0 so by
Proposition 3.1.16 w2(X) = 0. Moreover we know by Proposition 4.5.4 that
π1(X) = 0 which implies in particular that b1(X;Z2) = 0. Theorem 3.1.18
therefore applies.

As in the proof of Theorem 3.2.6 we set Y = X/G and let p : X → Y be the
associated branched double cover. Since the homology of X has no 2-torsion
and q(X) = 0 we have that H3(Y,X(R);Z2) ' Z2 by Lemma 3.6.22 and as in
the first part of the proof of Proposition 4.4.22 this yields an exact sequence
arising from (4.9)

(4.14) 0→ Z2
δ2−→ H2(X(R);Z2) i2−→ H2(Y ;Z2) .

Let {Vr}r=1,...,s be the connected components of X(R) which are there-
fore compact orientable topological surfaces by previous results. For any
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r = 1, . . . , s, we denote by αr the fundamental class of Vr in H2(X;Z) and by
βr the image of αr in H2(Y ;Z2) under the map p∗ induced by p. Obviously
we have that αr ·αr′ = 0 if r 6= r′ and αr is in the invariant part of H2(X;Z).

By construction the group morphism H2(X(R);Z2) i2−→ H2(Y ;Z2) sends the
fundamental homology class of Vr in H2(X(R);Z2) to βr ∈ H2(Y ;Z2). Recall
that as p : X → Y is a double cover ramified along X(R) the fundamental
class of X(R) in H2(Y ;Z2) vanishes by Lemma 3.6.21. This class is equal to
the sum β1 +β2 + · · ·+βs which therefore vanishes. Moreover, the relationship
β1 +β2 + · · ·+βs = 0 is the only relationship between the classes βr because of
the exact sequence (4.14). There are therefore two possibilities for the classes
αr:

1. the classes αr are linearly independent;
2. there is exactly one relationship between the classes αr which is of the

form
∑s
r=1 drαr with

∏s
r=1 dr 6= 0.

Using Lemma 4.4.19 and the equalities h2,0 = 1 and σ∗H2,0 = H0,2, we can
prove that the positive index of the intersection form restricted to the invariant
part ofH2(X;Z) is equal to 1. Moreover, αr ·αr = −χtop(Vr) by Lemma 4.4.17.

In the first case it follows that there is at most one component which has
negative or zero Euler characteristic.

In the second case it follows from the fact that
∑s
r=1 drαr = 0 that αr·αr = 0

for all r because αr ·αr′ = 0 whenever r 6= r′. The fact that the positive index of
the intersection form restricted to H2(X;Z)G is 1 implies that X(R) contains
at most two connected components diffeomorphic to T2 and that if α1 and α2
are two such components then they are linearly dependent.

Remark 4.5.7. — There is a more sophisticated proof of the orientability
of the real locus of a real K3 surface which proceeds as follows: we start by
noting that by Proposition 3.1.10 the real locus of a real K3 surface of degree
4 in P3(C) is orientable and then we apply the following theorem ([Har76],
[Sil89, Chapter VIII]):

Theorem 4.5.8. — Any real K3 surface is a deformation (Definition 4.3.25)
of a quartic R-surface in P3.

See [Sil89, Corollary VIII.4.2] for more details

Let (X,σ) be a real K3 surface whose real locus is non empty. Let s be the
number of connected components of X(R) and let g be the sum of genuses
of connected components of X(R). If g > 0 and X(R) is not a union of two
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toruses then g is the genus of the unique component which is not diffeomorphic
to a sphere. We then have that

s = b∗(X(R);Z2) + χ(X(R))
4 , g = b∗(X(R);Z2)− χ(X(R))

4 .

The topological type of X(R) 6= ∅ is therefore determined by the value of
the pair (χ(X(R)), b∗(X(R));Z2) except for the pair (0, 8) which corresponds
to two topological types realised by real K3 surfaces:

T2 t T2 and S2 t S2 .

Algebraic cycles on K3 surfaces. — In the moduli space of complex K3
surfaces, the isomorphism classes of complex surfaces of given Picard number
ρ form a countable union of subspaces of dimension 20− ρ. See [GH78, page
594] for more details. We now prove a similar result for real K3 surfaces:
it turns out that in the moduli space of real K3 surfaces satisfying certain
conditions explained below, the isomorphim classes of real K3 surfaces such
that b1alg > k form a countable union of subspaces of dimension 20− k.

Example 4.5.9 (Quartic surface in P3 such that b1alg = 0)
Consider the surface S1 × S1 realised as a quartic in P3(R), for example

as the real locus of the surface X ⊂ P3(C) whose equation with real coefficients
is 16(x2

1 + x2
2)− (x2

1 + x2
2 + x2

3 + 3x2
0)2 = 0 as in Example 2.6.38. The surface

in question has non real singularities: perturbing the equation slightly so that
the real locus is still a torus we get a general non singular R-surface X ′. We
then have that ρ(X) = 1 by Noether’s theorem (see [Del73, 1.2.1]) and as X ′
is a non singular quartic it is a K3 surface. The hyperplane section generates
a non trivial algebraic cycle in H2(G,Pic(X)), but does not generate a real
algebraic cycle- if the intersection of this plane with the torus is not empty then
it contains two homologous circles or a circle homologous to 0. See [BKS82]
for more details.

There is a unique complex family of complex K3 surfaces ([X85]), but there
are 75 real families of real K3-surfaces ([DIK00]).

Let (X,σ) be an R-surface. The number b1alg is not generally invariant under
real deformation. If X is a K3 surface then

b1alg(X(R);Z2) 6 b1(X(R);Z2) 6 h1,1(X) = 20 .

Theorem 4.5.10. — Let (X,σ) be a real K3 surface which is not an M -
surface. For any subgroup K in H1(X(R);Z2) there is a real deformation Y
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of X and an isometry

u : H1(X(R);Z2)→ H1(Y (R);Z2)

such that
u(K) = H1

alg(Y (R);Z2) .

When X is a general K3 surface we have that

b1alg(X(R);Z2) 6 1 ,

but Theorem 4.5.10 enables us to realise any value of b1alg authorised by topo-
logical constraints by specialisation.

Corollary 4.5.11. — Let (X,σ) be a real K3 surface. The following then
hold.

1. For any integer 1 6 k < b1(X(R);Z2) there is a real deformation Y of
X such that

b1alg(Y (R);Z2) = k .

2. If X is not an M -surface there is also a real deformation Y of X such
that

b1alg(Y (R);Z2) = b1(X(R);Z2) .

For completion’s sake, we note that for any maximal real K3 surface there
cannot be a real deformation to a totally real algebraic surface because for
any such surface the inequality b1alg(X(R);Z2) < b1(X(R);Z2) holds by the
following proposition.

Proposition 4.5.12. — Let (X,σ) be a compact Kähler R-surface such that
H1(X;Z2) = 0. We have that

b1alg(X(R);Z2) 6 b1(X(R);Z2)− (pg(X)− a)

where a = 1
2(b∗(X;Z2) − b∗(X(R);Z2)), so that (X,σ) is an (M − a)-surface

(Definition 3.3.11).

Proof. — See [Man97, Proposition 3.2].

Proof of Theorem 4.5.10. — We sketch the proof of Theorem 4.5.10: see
[Man97] for the complete proof. Let X be a K3 surface. We know by [X85,
Exposé IV] that H2(X;Z) equipped with the cup product is isomorphic to
a certain free Z-module L with an integral even non degenerate symmetric
bilinear form Q of signature (3, 19). Let f : H2(X;Z) → L be an isometry.
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We say that the pair (X, f) is a marked K3 surface. Consider the Hodge
decomposition (see Appendix D)

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) .

Here we have that h2,0 = dimH2,0(X) = 1 and h1,1 = dimH1,1(X) = 20. Let
(X, f) be a marked K3 surface. We consider P ⊂ LR = L ⊗ R, the image
under fR of the subspace H2(X;R)∩ (H2,0(X)⊕H0,2(X)) in H2(X;R). Since
H2,0(X) is of complex dimension 1, P is of real dimension 2 in LR. We choose
an orientation of P such that for any holomorphic 2-form ω ∈ H2,0(X) the
basis (<(ω),=(ω)) is direct. This oriented plane P is called the period of the
marked K3 surface (X, f).

Let (X,σ) be a real K3 surface. The real structure induces an involution
σ of (L,Q). For simplicity’s sake we consider the case where X is not an M -
surface and set K = H1(X(R);Z). Following ideas due to Nikulin [Nik83] we
show that in this case there is a primitive submoduleM ⊂ L−σ whose quotient
M/((1−σ)L∩M) has rank b1(X(R);Z2) and whose orthogonalM⊥R meets the
cone of periods of real K3 surfaces deformation equivalent to X. For any real
K3 surface (Y, g) whose period is orthogonal to M we have that g−1(M) ⊂
H2

alg(Y ;Z) by the Lefschetz theorem on (1, 1)-cycles (Theorem D.9.3).
Consider an element α ∈ g−1(M). By construction, α is anti-invariant for

the real structure on Y and as Y is simply connected it is representable by
a real divisor. The first Chern class induces an isomorphism Pic(X)σ −→
H2

alg(X;Z)−σ. We complete the proof by establishing that H1(Y (R);Z2) is
equal to ϕ ◦ c−1

1 ◦ g−1(M).

Enriques surfaces. —

Definition 4.5.13. — Let X be a non singular compact complex analytic
surface. X is said to be an Enriques surface if and only if q(X) = 0, KX 6∼ 0
and 2KX ∼ 0. A real Enriques surface is an R-surface (X,σ) such that X is
an Enriques surface.

Remark 4.5.14. — Unlike K3 surfaces, all Enriques surfaces are projective.

Proposition 4.5.15. — Let X be an Enriques surface. X is then a minimal
projective surface such that κ(X) = 0 and pg(X) = 0.

Proof. — See [BHPVdV04, Chapitre VIII].

There are 87 topological types of real Enriques surfaces ([DK96b]). The
theorem below completes the classification started by Nikulin in [Nik96].
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In the list below X(R) is the real locus of a real Enriques surface realising
a given topological type. Recall that by definition of an (M − a)-surface,
the modulo 2 Betti numbers satisfy the relationship 2a =

∑4
i=0 bi(X;Z2) −∑2

i=0 bi(X(R);Z2).

Theorem 4.5.16 (Degtyarev, Kharlamov 1996)
There are 87 topological types of real Enriques surfaces. Each of them

can be obtained by topological Morse simplification (Definition 4.3.31) from
one of the 22 extremal types listed below. Conversely, except for 6S2 and
T2 t 5S2 any type obtained in this way can be realised as a real Enriques
surface.

The 22 extremal types are the following.
1. M -surfaces,

(a) χ(X(R)) = 8,
4RP2 t 2S2, V3 t RP2 t 4S2, V4 t 5S2,
K2 t 2RP2 t 3S2, 2K2 t 4S2, K2 t T2 t 4S2,

(b) χ(X(R)) = −8,
{Vl t V12−l}l=1...6, V10 t T2;

2. (M − 2)-surfaces with χ(X(R)) = 0,
V4 t 2RP2, V6 t 2S2, V3 tK2 t RP2, V4 t T2 t S2,

V5 t RP2 t S2, 2V3 t S2, V4 tK2 t S2, 2K2 t T2;

3. Pair of toruses T2 t T2.

Proof. — See [Nik96, DK96b, DK96a].

Algebraic cycles on Enriques surfaces. — There is a unique complex
family of Enriques surfaces, but several hundred real families. See [DIK00]
for more details. Let (X,σ) be a real Enriques surface. As b2(X) = 10 and
b1(X;Z2) = 1 we have that b1alg(X(R);Z2) 6 b1(X(R);Z2) 6 12 by Inequal-
ity (3.8) of Theorem 3.3.6.

Unlike K3 surfaces, the number b1alg is invariant under real deformation of
Enriques surfaces. The theorem below characterises the group of algebraic
cycles of a real Enriques surface topologically.

Theorem 4.5.17. — Let (X,σ) be a real Enriques surface with X(R) 6= ∅.
If all the connected components of the real part X(R) are orientable we have
that

H1
alg(X(R);Z2) = H1(X(R);Z2) .
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Otherwise

dimH1
alg(X(R);Z2) = dimH1(X(R);Z2)− 1 .

Corollary 4.5.18. — A real Enriques surface (X,σ) is totally algebraic if
and only if X(R) is empty or orientable.

Corollary 4.5.19. — There are real families of Enriques surfaces such that
b1alg(X(R);Z2) < b1(X(R);Z2) for all members of the family. In particular, if
X is a real Enriques surface with maximal first Betti number, b1(X(R);Z2) =
12, there is no real deformation of X which is totally algebraic.

Proof. — We will give a proof of the first part of Theorem 4.5.17: we refer to
[MvH98] for a complete proof. For technical reasons we prove this theorem
in homology. In other words, we will establish the following equivalence.

Halg
1 (X(R);Z2) = H1(X(R);Z2)⇐⇒ X(R) is orientable.

As the canonical divisor of an Enriques theorem is 2-torsion, the condition
is necessary by Theorem 4.5.21 below. The converse is tricky. If Y is a K3
surface then Y is simply connected and there is a surjective morphism

H2(Y ;Z)−σ −→ H1(Y (R);Z2) .

This morphism is not well defined for an Enriques surface X because its
fundamental group is π1(X) = Z2. On the other hand, when X is an Enriques
surface we can always define a morphism of equivariant cohomology ([MvH98,
Sec. 4])

αX : H2(X;G,Z(1)) −→ H1(X(R);Z2)
whose image is precisely the group Halg

1 (X(R);Z2). Any Enriques surface is
a quotient of a K3 surface by a holomorphic involution without fixed points
[Bea78, Proposition VIII.17]. Let Y be a complex K3 surface such that X
is the quotient of Y by a holomorphic involution η without fixed points. The
real structure on X naturally lifts to two real structures σ1 and σ2 = η ◦σ1 on
Y which commute with each other [Sil89, Theorem A8.6]. The real part X(R)
is covered by the union of the real parts Y1(R) = Y σ1 and Y2(R) = Y σ2 . For
any j ∈ {1, 2} let Xj be the disjoint union of components of X(R) covered by
Yj(R). This gives us a natural decomposition of the real part of an Enriques
surface in "halves"

X(R) = X1 tX2 .

Recall that all the connected components of the real locus of a K3 surface are
orientable. Let M be a connected component of one of the halves Xj . If M is
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orientable then it is covered by two components of Yj(R) which are exchanged
by η. If M is non orientable then M is covered by a unique component of
Yj(R) which is the orientation covering of M . This gives us a morphism

H1(Y1(R);Z2)⊕H1(Y2(R);Z2) −→ H1(X(R);Z2)

which is surjective whenever X(R) is orientable. This morphism gives us a
commutative diagram.

(4.15)

H2(Y1;G,Z(1))⊕H2(Y2;G,Z(1)) −−−−→ H2(X;G,Z(1))

αY1⊕αY2

y αX
y

H1(Y1(R);Z2)⊕H1(Y2(R);Z2) −−−−→ H1(X(R);Z2)
The morphisms αY1 and αY2 are surjective because Y is simply connected

and hence αX is surjective whenever X(R) is orientable.

The decomposition of the real locus in halves can also be used to characterise
Galois-Maximality (Definition 3.6.5) of real Enriques surfaces

Theorem 4.5.20. — Let (X,σ) be a real Enriques surface of non empty real
locus X(R) = X1 tX2.

1. Suppose that both the halves X1 and X2 are non empty. The surface X
is then Galois-Maximal. Moreover, X is Z-Galois-Maximal if and only
if X(R) is non orientable

2. Suppose one of the halves X1 or X2 is empty. The surface X is then
Galois-Maximal if and only if X(R) is non orientable. Moreover, X is
Z-Galois-Maximal if and only if X(R) has at least one component which
is of odd Euler characteristic.

Proof. — See [MvH98].

All cases of Galois-Maximality (see Example 3.6.14) are realised by Enriques
surfaces: on inspecting the proof of Theorem 4.5.16 (see [DK96b, §5] or
[DK96a]) we see that there exist examples of Enriques surfaces for each of
the cases listed in the previous theorem.

Theorem 4.5.21. — Let d > 2 be an integer. An algebraic R-surface X
whose canonical bundle KX is d-torsion can only be totally algebraic if its real
part X(R) is empty or orientable.

Proof. — Let X be a totally algebraic R-surface, by which we mean that

H1
alg(X(R);Z2) = H1(X(R);Z2).
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We use the properties (3.38) of ϕX : Pic(X)σ → H1
alg(X(R);Z2) discussed

in Proposition 3.7.16. Let D be a divisor whose class in the Néron Severi
group NS(X) has a trivial mutiple: we then have that (D · D′) = 0 for any
divisor D′. When D is real we have that ϕX(D) = 0 in H1(X(R);Z2) since by
hypothesis any cohomology class u ∈ H1(X(R);Z2) is the image under ϕX of
a real divisor D′ so ϕX(D) · u = 0. As the intersection form is non degenerate
on H1(X(R);Z2) it follows that ϕX(D) = 0. Now if X(R) 6= ∅ we can assume
that KX is real by Theorem 2.6.32. As KX is torsion in NS(X) we have that
ϕX(KX) = 0 whence w1(X(R)) = 0 and therefore X(R) is orientable.

Abelian surfaces. — A detailed study of real abelian varieties is available
in Comessatti’s articles [Com25, Com26]. Their moduli spaces and their
compactifications are described in [Sil89, Chap IV] and [Sil92].

Definition 4.5.22. — A complex torus of dimension g is a quotient of Cg by
a sub-Z-module Λ ⊂ Cg of maximal rank 2g (also called a lattice). An abelian
variety is a projective complex torus, or in other words a complex torus with
an ample divisor. A real abelian surface is a complex torus of dimension 2
equipped with a real structure and an embedding into projective space. The
embedding can be assumed equivariant by Theorem 2.6.44.

Remark 4.5.23. — Complex toruses are Kähler because they inherit a Käh-
ler metric from Cg. On the other hand, like K3 surfaces, complex toruses of
dimension 2 (or more) are not always projective.

Example 4.5.24 (Complex toruses associated to a variety)
The Picard variety Pic0(X) of a compact Kähler variety X of irregu-

larity q > 0 is a complex torus of dimension q. (See Definition D.6.6 for the
definition of the Picard variety). If X is projective it is a projective variety by
Proposition D.6.7. If X is a complex torus then Pic0(X) is isomorphic to X.

The Albanese variety Alb(X) of a compact Kähler variety X of irregularity
q > 0 is a complex torus of dimension q (See Definition D.6.10 for the definition
of the Albanese variety). It is an abelian variety if X is projective [Voi02,
Corollaire 12.12]. If X is a complex torus, Alb(X) is isomorphic to X.

The Jacobian Jac(C) of a compact complex curve C of genus g is an abelian
variety of dimension g. (See Definition E.4.1 for the definition of the Jacobian).
If C is a curve of genus 1 then Jac(C) is a curve isomorphic to C.

Proposition 4.5.25. — Let X be an abelian surface. X is then a minimal
projective surface such that κ(X) = 0, pg(X) = 1, q(X) = 2 and KX ∼ 0.
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Proof. — See Theorem 4.5.1 and [Bea78, Liste VI.20 and Théorème VIII.2].

Theorem 4.5.26. — There are 4 topological types of real abelian surfaces.

∅, T2, 2T2, 4T2 .

Proof. — See [Sil89, Chapter IV].

Algebraic cycles on abelian surfaces. — Like K3 surfaces, there is a
unique complex family of complex abelian surfaces whereas real abelian sur-
faces are divided into several real families and b1alg is not invariant under real
deformation.

Let (X,σ) be a real abelian surface. By Theorem 4.5.26 we have that
b1(X(R)) ≤ 8. Moreover, using [Kuc96, Theorem 2.1] we also have that
b1alg(X(R)) ≤ 5.

As for K3 surfaces we can identify certain topological constraints and prove
that once these constraints are satisfied we can always deform an abelian
surfaces so as to obtain a given b1alg(X(R)).

In particular, we can show that the real part of a totally algebraic real
abelian surface is either connected or empty- see [Hui94]- and that a real
abelian surface with connected real locus can always be deformed to a totally
algebraic real abelian surface.

Proposition 4.5.27. — Let X be a real abelian surface with a real point.
We then have that

H1
alg(X(R);Z2) = H1(X(R);Z2) =⇒ X(R) ≈ T2 .

Bi-elliptic surfaces. —

Definition 4.5.28. — Let X be a non singular compact complex analytic
surface. We say that X is a bi-elliptic surface(10) if there are two elliptic curves
E and F and a finite groupH acting by translation on F and by automorphism
on E such that E/H = P1 and X is the quotient of the product E×F by the
product action of H. A real bi-elliptic surface is an R-surface (X,σ) such that
X is a bi-elliptic surface.

(10)Classically, bi-elliptic surfaces were called hyperelliptic: we refer to [Bea78, VI.19] for
an explanation of the terminology used here.
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Proposition 4.5.29. — Let X be a bi-elliptic surface. X is then a projective
minimal surface such that κ(X) = 0, pg(X) = 0, q(X) = 1 and m0KX ∼ 0
for some m0 ∈ {2, 3, 4, 6}.

Proof. — See Theorem 4.5.1 and [Bea78, Liste VI.20 and Théorème VIII.2].

For any bi-elliptic surface X, the Albanese map (Definition D.6.13)

α : X = (E × F )/H → Alb(X) = F/H

is an elliptic fibration that is locally but not globally trivial. The fibres of α
are all isomorphic to E over C. When X is an R-surface the Albanese fibration
α is an R-fibration and the curves F/H and E are real elliptic curves. The
real locus of a non singular real elliptic curve is either empty or consists of one
or two ovals, It is immediate that the number of connected components of the
real locus of X satisfies 0 6 #π0X(R) 6 4 and every connected component
is homeomorphic to a torus T2 or a Klein bottle K2. This gives us a list of
15 potential topological types of X(R). F. Catanese and P. Frediani [CF03]
determined the eleven topological types that are actually possible as a corollary
of their description of the moduli space of real bi-elliptic surfaces. If α is
further assumed to have a real section then only seven topological types can
be realised.

Theorem 4.5.30 (Catanese, Frediani 2003). — There are 11 topological
types of real bi-elliptic surfaces.

1. ∅, T2, 2T2, 3T2, 4T2,
2. K2, 2K2, 3K2, 4K2,
3. T2 tK2, T2 t 2K2.

Proof. — See [CF03].

Theorem 4.5.31. — There are 7 topological types of real bi-elliptic surfaces
whose Albanese fibration has a real section.

1. T2, 2T2, 3T2, 4T2,
2. 2K2, 3K2, 4K2.

Proof. — See [Man03, Théorème 2.3].
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Algebraic cycles on bi-elliptic surfaces. — The canonical divisor KX of
a bi-elliptic surface is torsion: we denote its order by dX ∈ {2, 3, 4, 6}.

There are exactly seven complex families of bi-elliptic surfaces and each
of them corresponds to several real families. We refer to [CF03] for more
details. Once again, the number b1alg is invariant under deformation and the
article [Man03] contains a topological characterisation of totally algebraic
real bi-elliptic surfaces.

Theorem 4.5.32. — Let X be a real bi-elliptic surfaces with a real point.
1. If H1

alg(X(R);Z2) = H1(X(R);Z2) then X(R) is homeomorphic to a
torus. If moreover dX is even then α has a real section.

2. Suppose that X(R) is homeomorphic to a torus. If dX is odd or α has a
real section then

H1
alg(X(R);Z2) = H1(X(R);Z2) .

Proof. — We give a partial proof of this result and refer to [Man03] for the
complete proof. Let (X,σ) be a real bi-elliptic surface. We denote by

π : X → E/H ' P1

the second elliptic fibration whose only singular fibres are multiple fibres mtLt
where Lt is a non singular elliptic curve. The Néron Severi group NS(X) is
generated by a fibre Xx of α and by the reductions Lt of the multiple fibres of
π. Let mtLt and mt′Lt′ be two multiple real fibres of π and denote by d the
gcd of mt and mt′ . Assume that d > 2: the divisor D = (mt/d)Lt−(mt′/d)Lt′
is then d-torsion in NS(X). By the proof of Theorem 4.5.21 we then have that
ϕX(D) = 0. Permuting t and t′ if necessary we can assume that mt/d is odd
and in this case

ϕX((mt/d)Lt) = ϕX(Lt) .
There are now two possibilities: either ϕX(Lt) = ϕX(Lt′) or ϕX(Lt) = 0.

Studying the seven possible configurations of multiples fibres, we deduce that
the image under ϕX of the subgroup of NS(X) generated by the real curves
Lt is of dimension 6 1.

Suppose now that (X,σ) is totally algebraic. In this case we have that
ϕX(Pic0(X)σ) = {0} in H1

alg(X(R);Z2) by [Kuc96, Th. 2.1]. It follows that
there is a well defined morphism

NS(X)σ → H1
alg(X(R);Z2)

on NS(X)σ which is surjective onto H1
alg(X(R);Z2). This gives an upper

bound dimH1
alg(X(R);Z2) 6 2. By hypothesis, the dimension of the space
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H1(X(R);Z2) satisfies the same inequality so X(R) is connected. Moreover,
the canonical divisor KX of a bi-elliptic surface is dX -torsion for some dX ∈
{2, 3, 4, 6}. By Theorem 4.5.21, if the real part of X(R) is non empty then
it is orientable and thus homeomorphic to a torus. We refer to the original
article [Man03] for a proof of the converse.

Summary: algebraic cycles on surfaces with κ 6 0. — Gathering the
results in this section on surfaces of Kodaira dimension κ(X) = 0 and check-
ing them directly (exercise for the reader) for surfaces of Kodaira dimension
κ(X) = −∞ (by [Kuc96, Theorem 2.1] we then have to choose an involution
such that ϕX(Pic0(X)σ) = {0} in H1

alg(X(R);Z2)) we note that when X is an
algebraic surface of one of the following types: rational, uniruled, abelian, K3
or Enriques, we can always find an algebraic surface Y in the same complex
family as X and a non empty real structure on Y which is totally algebraic.
(This turns out to also hold for regular elliptic surfaces: see Theorem 4.6.16
for more details). On the other hand, there are two complex families of bi-
elliptic surfaces containing R-surfaces whose real part is diffeomorphic to a
torus and which are never totally algebraic:

Theorem 4.5.33. — Let E,F be elliptic curves and let H be the group Z2⊕
Z2 or Z4 ⊕ Z2. For any complex algebraic surface Y which is deformation
equivalent to the bi-elliptic surface X = (E×F )/H and for any real structure
on Y with real points we have that

H1
alg(Y (R);Z2) 6= H1(Y (R);Z2) .

Proof. — See [Man03, Corollaire 3.3].

In each of the five other complex families of bi-elliptic surfaces there is an
R-surface X such that X(R) is homeomorphic to a torus and H1

alg(Y (R);Z2) =
H1(Y (R);Z2).

Corollary 4.5.34. — Except for the surfaces of Theorem 4.5.33, every com-
plex family of surfaces with non positive Kodaira dimension contains an R-
surface Y with a real point such that H1

alg(Y (R);Z2) = H1(Y (R);Z2).

4.6. Elliptic surfaces (κ 6 1)

Definition 4.6.1. — A non singular complex analytic surface X is said to
be elliptic if and only if there is a non singular complex curve ∆ and a proper
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surjective holomorphic map π : X −→ ∆ such that the fibre Xu = π−1(u) is a
non singular curve of genus 1 for almost all points u ∈ ∆.

Remark 4.6.2. — As the complex variety X is non singular and of dimen-
sion 2 all the fibres of π are of dimension 1. (This equidimensionality of fibres
no longer holds in higher dimension: see [Uen73] for more details). Moreover,
since π is proper its fibres are compact and X is compact if and only if ∆ is
compact.

Some elliptic surfaces are projective and hence algebraic by Chow’s theo-
rem D.5.1. The algebraic definition is as follows.

Definition 4.6.3. — A non singular complex projective algebraic surface X
is said to be elliptic if there is a non singular complex projective algebraic
curve ∆ and a regular surjective map π : X −→ ∆ whose general fibre is a non
singular complex projective algebraic curve of genus 1.

Remark 4.6.4. — The image under π of the set of its singular fibres is
Zariski closed in ∆ so the number of singular fibres of π is finite.

Definition 4.6.5. — An R-surface (X,σ) is said to be real elliptic if there
is a real elliptic fibration π : X −→ ∆, i. e. the curve ∆ has a real structure
σ∆ and π ◦ σ = σ∆ ◦ π.

Remark 4.6.6 (Scheme theoretic definition). — We give the corre-
sponding scheme theoretic definition for the sake of completeness. An elliptic
fibration of a geometrically integral non singular surface X is a faithfully flat
morphism π : X −→ C to a non singular curve whose generic fibre XK(C) is
isomorphic to a non singular curve of genus 1 over the function field K(C)
of rational functions on C. A closed general fibre Xκ(c) = π−1(c) of π is iso-
morphic to a non singular curve of genus 1 over the residue field κ(c) of the
point c ∈ C. A closed schematic fibre π−1(c) which is not isomorphic to a non
singular curve of genus 1 over κ(c) is said to be degenerate.

Proposition 4.6.7. — If X is an elliptic surface then κ(X) 6 1.

Proof. — See [BHPVdV04, Theorem V.12.5].

Proposition 4.6.8. — Let X be a non singular compact complex analytic
surface such that κ(X) = 1. The surface X is then canonically equipped with
an elliptic fibration which is the only elliptic fibration on X.

Proof. — See [BHPVdV04, § VI.3, case a(X) = 2, κ(X) = 1].
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Remark 4.6.9. — If κ(X) = 1 the variety X has an elliptic fibration given
by the morphism ϕmKX associated to a multiple of the canonical divisor. In
particular, if (X,σ) is an R-surface then this fibration is a real elliptic fibration
by Proposition 2.6.31.

Definition 4.6.10. — A non singular compact complex analytic surface X
(resp. R-surface (X,σ)) is a properly elliptic surface (resp. a properly real
elliptic surface) if κ(X) = 1.

An algebraic surface is said to be regular or of zero irregularity if
H1(X,OX) = {0}. When X is an elliptic surface this implies that the
base curve has genus 0 and the fibration has at least one singular fibre.
Conversely, let X be an elliptic fibration and suppose that π : X −→ P1 has
at least one singular fibre. The surface X is then of zero irregularity. Recall
(Definition 4.3.16) that the fibration π is said to be minimal if and only
if non of its fibres contains a (−1)-curve (by which we mean, generalising
Definition 4.3.2 to non singular analytic surfaces, an irreducible non singular
rational curve of self intersection −1). When a relatively minimal elliptic
fibration π : X → P1 has a section s : P1 → X we say that X is a Jacobian
elliptic surface(11). All of these definitions make sense over R: a real elliptic
surface is an elliptic surface whose fibration morphism commutes with the
real structures on X and P1 and is said to be a real Jacobian elliptic surface
if π has a real section.

We recall two results on complex elliptic surfaces which will be useful in the
rest of this section.

Lemma 4.6.11. — Two relatively minimal complex elliptic surfaces of zero
irregularity without multiple fibres are equivalent by deformation if and only if
their holomorphic Euler characteristic are equal.

Proof. — See [Kas77].

Theorem 4.6.12. — Two regular elliptic surfaces without multiple fibres X
and Y are deformation equivalent if and only if

1. the minimal models X ′ of X and Y ′ of Y are deformation equivalent;
2. ηX = ηY , where ηZ , Z = X,Y is the minimal number of blow ups required

to produce Z from Z ′.

(11)This terminology comes from the fact that in this case the fibrations X → P1 and
Jac(X)→ P1 are isomorphic. See [BHPVdV04, V.9] for more details.
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Proof. — See [Kod64].

The possible singular fibres of a real elliptic surface were classified by Silhol-
see[Sil84] and [Sil89, Chapitre VII] for more details. The following theorem
lists all possible topological types of real Jacobian elliptic surfaces in each
complex family of complex Jacobian elliptic families.

Theorem 4.6.13. — Let k > 1 be an integer. The possible extremal topolog-
ical types of real Jacobian elliptic surfaces of zero irregularity and holomorphic
Euler characteristic χ(OX) = k are:

1. M -surfaces, a = k + 4λ− 1, l = 5k − 4λ, λ = 0, 1, . . . , k,
– Sl t aS2, k even
– V2l t aS2, k odd.

2. (M − 2)-surfaces, a = k + 4λ, l = 5k − 4λ− 3, λ = 0, 1, . . . , k − 1,
– Sl t aS2, k even or
– V2l t aS2, k odd.

3. χ(X(R))) = 0,
– pair of toruses K2 tK2, k even or
– pair of Klein bottles T2 t T2, k odd.

Let X be a real Jacobian elliptic surface of Euler characteristic χ(OX) = k.
The topological type of X(R) is then obtained by applying Morse simplification
to one of the types listed above.

Conversely, any topological type obtained by Morse simplification applied to
one of the above types which has total Betti number at least 2 can be realised
as the real part of a real Jacobian elliptic surface X with Euler characteristic
χ(OX) = k.

Proof. — See [BM07].

Note that in the definition of a Jacobian surface we have assumed the elliptic
fibration is relatively minimal. The analogue of Theorem 4.6.13 without this
hypothesis, i.e. the classification of topological types of real elliptic surfaces
of zero irregularity with at least one real section contained in a given fam-
ily of complex deformations, follows directly from Theorem 4.6.13. Indeed, by
Theorem 4.6.12, two complex elliptic surfaces of zero irregularity without mul-
tiple fibres are deformation equivalent if and only if their holomorphic Euler
characteristic are equal and their canonical fibres have the same degree.

To realise a given topological type in a certain complex family- with k =
χ(OX) and K2

X = −m < 0, for example- consider a Jacobian elliptic surface
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#π0(X(R)) = 5k

#π0(X(R)) = 1 b1(X(R)) = 2

k − 1 k k + 1321
b1(X(R)) = 10kb∗(X(R))

12k
12k − 4

10k + 2

2− 10k

4

10k − 2
χ(X(R))

Figure 4.12. Topological types of real Jacobian regular elliptic sur-
faces of holomorphic Euler characteristic k.

Y of holomorphic Euler characteristic k. By definition we then have that
K2
Y = 0. Let X be the surface obtained by blowing up a set of m points

globally fixed by the real structure. We then have that K2
X = −m. Each blow

up at a real point produces a connected sum with an RP2, as in Example 4.2.18.
Conversely, the topological type of any real elliptic surface of zero irregularity
with a real section can be obtained in this way.

Algebraic cycles on elliptic surfaces such that q = 0. — Unlike surfaces
of zero Kodaira dimension (K3, abelian, Enriques and bi-elliptic surfaces) there
is an infinite number of complex families of regular elliptic surfaces and for
each complex family there are several real families.

In general it is fairly difficult to find in a given family of complex surfaces real
algebraic surfaces with "large" first Betti number b1(X(R);Z2). For example,
we do not yet know whether there is a surface of degree 5 in P3(R) with first
Betti number equal to 47 (which is a known upper bound on the Betti number
of such surfaces. See Section4.7 for more details).
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Proposition 4.6.14 (Kharlamov). — Any regular real elliptic surface
(X,σ) without multiple fibres satisfies the Ragsdale-Viro inequality

(4.16) b1(X(R);Z2) 6 h1,1(X) .

This result and an idea of its proof were communicated to us by V. Khar-
lamov in 1997. We do not know of any published proof other than [AM08],
which we reproduce below.

Proof of 4.6.14. — Set b∗(X(R);Z2) =
∑k
k=0 bk(X(R);Z2) and b∗(X;Z2) =∑2k

k=0 bk(X;Z2). When π : X → P1 has no multiple fibres it is easy to
check (using the classification of possible singular fibres given in [Sil89,
Chapitre VII]) that

b1(X(R);Z2) 6 b1(Jac(X)(R);Z2)

where Jac(X) → P1 is the Jacobian bundle associated to X → P1 as in
[BHPVdV04, V.9]. By construction this fibration is a real elliptic surface
with a real section such that

h1,1(Jac(X)) = h1,1(X) .

We may therefore assume without loss of generality that π has a real section.
The real structure σ induces an involution, also denoted by σ, on H2(X,Z).
Consider the following homological invariants:

The rank of the submodule invariant under σ

r2 = rkH2(X,Z)σ = rk ker(1− σ)

The Comessatti characteristic

λ = rk ((1 + σ)H2(X,Z)) = rk Im(1 + σ) .

As the fibration π : X → P1 has a section it does not have multiple fi-
bres and the Betti numbers b1(X) and b3(X) vanish. By Theorem 3.6.11
the surface (X,σ) is therefore Galois-Maximal and for this reason (see also
Corollary 3.6.12) the Comessatti characteristic corresponds to

2λ = b∗(X;Z2)− b∗(X(R);Z2)

and the first Betti number of X(R) corresponds to

(4.17) b1(X(R);Z2) = b2(X)− r2 − λ .

If there is no real non singular fibre of π then X(R) is the union of two
toruses or two Klein bottles because π has a real section. In this case inequal-
ity(4.16) holds. If π has at least one singular real fibre then X(R) has exactly
one connected component which is not simply connected and a finite number
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of other components which are all homeomorphic to spheres. Let s be the
number of spherical components: the sum of the Betti numbers of X(R) is
then b∗(X(R);Z2) = 2 + 2s+ b1(X(R);Z2) and the Comessatti characteristic
is given by

(4.18) λ = r2 − 2s .

From Lemma 4.4.17 and Lemma 4.4.19 it follows that s is a lower bound for
the dimension of the invariant part of H1,1(X). As moreover σ(H2,0(X)) =
H0,2(X) by Lemma D.3.17 and h2,0(X) = h0,2(X) we deduce the following
lower bound for r2:

h2,0(X) + s 6 r2 .

It follows from Equation(4.18) that h2,0(X) − s 6 λ and equality (4.17)
implies that

b1(X(R);Z2) 6 b2(X)− 2h2,0(X) .

For every complex family of regular elliptic surfaces without multiple fibres
every R-surface (X,σ) satisfies b1(X(R);Z2) 6 h1,1(X) (Proposition 4.6.14).
We prove below that in every complex family of regular elliptic surfaces with-
out multiple fibres there is at least one subfamily of R-surfaces such that
b1 = h1,1. Moreover, in each of these real families there is at least one R-
surface such that b1alg(X(R);Z2) = b1(X(R);Z2). These two results are proved
using the same construction. This establishes that the Ragsdale-Viro inequal-
ity b1(X(R);Z2) 6 h1,1(X) is optimal for regular real elliptic surfaces without
multiple fibres.

By the Hodge decomposition theorem, for any regular relatively minimal
elliptic surface X we have that h1,1(X) = 10χ(OX) so when X is also without
multiple fibres

(4.19) b1(X(R);Z2) 6 10χ(OX) .

Theorem 4.6.15. — For any k > 0 there is a regular relatively minimal real
elliptic surface (X,σ) such that:

χ(OX) = k, b1(X(R);Z2) = 10k .

Proof. — We give a sketch of the proof and refer to [Man00] for the full
proof. The surfaces appearing in the above statement are said to be modular.
A modular surface is constructed from a finite index subgroup Γ of the modular
group PSL2(Z) = SL2(Z)/{±1}. We adapt the classical construction [Shi71,
Shi72b] to the real case and then use the real classification of possible singular
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fibres of an elliptic fibration given by Silhol [Sil84] to obtain the conditions
that must hold on the group Γ for the real surface to have maximal homology
in rank 1.

Consider a finite index subgroup Γ ⊂ PSL2(Z). As PSL2(Z) is a subgroup
of PSL2(R), the group Γ is a discrete subgroup of the group of isometries
of the hyperbolic plane H. It is therefore a Fuchsian group and the quotient
∆′Γ = H/Γ is a complex curve whose non compacity arises from parabolic
classes or cusps. A natural compactification of this space can be obtained
on noting that Γ acts on P1(Q) considered as a subspace of the boundary of
H = {z ∈ C/ =(z) > 0}: we then consider the compact complex curve

∆Γ = (H ∪ P1(Q))/Γ .

We then use the fact that Γ is not only a group of isometries of H but also
a group of automorphisms of elliptic curves, which allows us to construct a
natural fibration in genus one curves over the open set ∆′Γ in ∆Γ. There are
then several different ways of extending this fibration over a cusp point P .
To determine the complex type of the singular fibre over P it is enough to
identify an element of the stabiliser of P ∈ ∆Γ. This gives us a monodromy
representation

ρ : π1(∆′Γ)→ PSL2(Z) .
For every lifting ρ′ : π1(∆′Γ) → SL2(Z) of ρ we obtain an elliptic surface

with singular fibres whose complex types are in a prescribed list.
The action of the group PSL2(R) on H is denoted z 7→ A.z where A.z =

az+b
cz+d if A is represented by

(
a b

c d

)
, ad−bc = 1. The involution σH : z 7→ −z̄ on

H is anti-holomorphic. We set S : SL2(R)→ SL2(R),
(
a b

c d

)
7→
(
a −b
−c d

)
.

The map S then induces an involution on PSL2(R) which is also denoted by
S. For any z ∈ H and A ∈ PSL2(R) we have that σH (A.σH(z)) = S(A).z.

Let Γ be a Fuchsian group (i. e. a discrete subgroup of PSL2(R)). The
involution σH induces a real structure on the quotient H/Γ if and only if
σHΓ = ΓσH, i. e. if and only if Γ is stable under S.

In general we cannot entirely control the real types of the singular fibres
arising in this construction. When this is possible, we obtain some necessary
conditions on Γ and then exhibit a sequence of groups which satisfy these
necessary conditions.

For any k ∈ N∗, let Γk be the arithmetic group whose fundamental domain is
shown in Figure 4.13. For every group Γk there is a real modular elliptic surface
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Figure 4.13. Fundamental domain of the group Γk.

Xk −→ ∆Γk ' P1 satisfying the conditions of Theorem 4.6.15. For every k,
the real part Xk(R) is connected. When k is even, Xk(R) is diffeomorphic to
the orientable real surface of genus 5k

2 : when k is odd, Xk(R) is diffeomorphic
to the non orientable surface of Euler characteristic 2− 10k.

Theorem 4.6.16. — Every regular complex elliptic surface Y → P1 without
multiple fibres can be deformed over C to an elliptic surface X with a real
structure such that

b1alg(X(R);Z2) = b1(X(R);Z2) = h1,1(X) .

Proof. — Any regular elliptic surface with no multiple fibres Y −→ P1

has a relatively minimal model Y ′ −→ P1 which is an elliptic surface.
By Lemma 4.6.11, relatively minimal regular elliptic surfaces without
multiple fibres are classified by their holomorphic Euler characteris-
tic. By Theorem 4.6.15, there is a relatively minimal regular ellip-
tic surface X ′ without multiple fibres such that χ(OX′) = χ(OY ′) and
b1alg(X ′(R);Z2) = b1(X ′(R);Z2) = h1,1(X ′). Now, if V is a real surface and
W → V is a blow up at a point of V (R), then W is a real surface and

h1,1(W ) = h1,1(V ) + 1, b1alg(W (R);Z2) = b1alg(V (R);Z2) + 1 .

The surface Y is obtained from Y ′ by a finite number of blow ups of points.
The theorem follows by 4.6.12.

Remark 4.6.17. — Unlike elliptic surfaces, a surface fibred in genus 2 curves
can be of general type. The real theory of such surfaces is much less well
developed than the real genus 1 theory but an initial step towards their clas-
sification has nevertheless been made, namely a classification of the possible
singular fibres of a pencil of genus 2 curves established in [AM15].
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4.7. Surfaces of general type (κ = 2)

In this section we will construct some interesting examples of R-surfaces of
general type. In particular, we will study their algebraic cycles.

For any non singular complex projective algebraic surface X the image of
the map Pic(X) → H2(X;C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) is contained in
H1,1(X) (see Appendix D) so the Picard number ρ(X) is bounded above by
the Hodge number h1,1(X). Let Xd be a non singular surface in P3(C) of
degree d := deg(Xd). We then have that ρ(Xd) 6 h1,1(Xd) = d

3(2d2 − 6d+ 7)
(see Example D.4.4).

If d 6 3, Xd is a rational surface and ρ(Xd) = h1,1(Xd). If d > 3 and
Xd is very general amongst degree d surfaces then its Picard number satisfies
ρ(Xd) = 1 by Noether’s theorem [Del73, 1.2.1] and it is fairly difficult to
construct surfaces with Picard number close to h1,1(Xd).

If d = 4, Xd is a K3 surface, and we have a classification of such surfaces,
see Theorem 4.5.10. If d > 5, X is a surface of general type (see [Bom73])
and only a few sporadic examples are understood.

Surfaces X which have "large" Picard number, or in other words for which
ρ is close to h1,1, are exceptional. (See [Man94], [KI96], [Bih01a] for a
study of surfaces in P3 of degree 5 and their deformations; see [Bih01b] and
[Ren15] for more information on surfaces of degree 6). On the other hand,
R-surfaces which have "lots" of algebraic cycles are even rarer. As we can see,
it is extremely interesting to construct surfaces with such properties.

Algebraic cycles can be constructed by blowing up singular points on sur-
faces (namely the irreducible components of the exceptional divisor). Persson
uses this method to construct examples of surfaces with maximal Picard num-
ber. We refer to [Per82] for more details.

In this section we show that in certain cases we can prove useful results in
real algebraic geometry using this method, essentially thanks to Lemma 4.7.7
and an appropriate language for blow-ups, see Appendix F.

Definition 4.7.1. — A compact complex analytic surface X which has the
same numerical invariants as a degree 5 surface in P3 is called a numerical
quintic.

Remark 4.7.2. — By [Hor75], for example, any surface X such that

(c2
1(X), h0,2(X)) = (5, 4)

is a numerical quintic.
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After studying real resolutions of singular points on a real surface we present
two examples, 4.7.13 and 4.7.14, of numerical quintics. If X is a surface of
degree 5 in P3(C) then h1,1(X) = 45 as in Example D.4.4, and we have an
upper bound

rk Pic(X) 6 45 .

In [Per82], Persson gives an example of a non singular numerical quintic for
which ρ = 43 but this example is relatively uninteresting over the real numbers
as we will see in Example 4.7.14. Specifically, the homology of its real locus
contains only 31 classes generated by algebraic cycles. In Example 4.7.13,
we revisit an example of Hirzebruch’s of a quintic with a non singular model
with ρ = 41. We will see that the real locus of this model has homology of
dimension 41 entirely generated by algebraic cycles.

Remark 4.7.3. — In 2011, Mathias Schütt [Sch11] constructed a quintic
such that ρ = 45 which is a quotient of a Fermat surface. (We refer the
interested reader to [Shi81] or more generally [Bea14] for more information
on Fermat surfaces). Schütt’s surface has equation

yzw3 + xyz3 + wxy3 + zwx3 = 0

in P3 and is clearly defined over R. It would be interesting to calculate b1
and b1alg of the real locus of this surface. (See [Sch15] for the construction of
complex quintic surfaces with Picard number between 1 and 45).

Resolution of singular points and double covers. — In this subsection
we consider real resolutions of rational double points (Definition 4.4.28) and
we prove Lemma 4.7.7 on which we will rely in the rest of the section.

The two examples of surfaces of general type studied in the last part of
this chapter are obtained by resolution of singularities of special surfaces.
Each exceptional curve obtained by blowing up a point generates a complex
algebraic cycle whose real locus is not always easy to understand.

Example 4.7.4. — A common phenomenon is illustrated by the surface
X1 ⊂ R3

x,y,z of equation z2 = x4 − x2 − y4 − y2 constituted of two spheres
meeting in an ordinary double point. (There are two other singular points
in the complex locus which will be unimportant for our purposes). Blowing
up this point X̃1 → X1 we get a smooth sphere X̃1(R). There is therefore a
complex algebraic cycle invariant under the real structure which does not give
rise to any non trivial class in H1(X̃1(R);Z2).
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Example 4.7.5. — Our second example illustrates a slightly different phe-
nomenon. The surface X2 ⊂ R3

x,y,z of equation z2 = (x2 + (y − 1)2 − 4)(x2 +
(y + 1)2 − 4) contains two spheres meeting in two ordinary double points.
Blowing up these points X̃2 → X2 we get a smooth torus X̃2(R) and the
two exceptional curves (which are −2-curves, see 4.3.2) yield the same class
in H1(X̃2(R);Z2) despite the fact that they generate distinct classes in the
homology of the complex variety.

It is this second phenomenon that arises in Example 4.7.14. On the other
hand, in Example 4.7.13, all the invariant algebraic cycles of the complex
variety generate non trivial classes in H1(S̃(R);Z2) because the initial singular
surface is homeomorphic to P2(R).

Note that, unlike the complex case, a hyperplane section is not always
homologically non trivial in the real locus.

Example 4.7.6 (Resolution of a double point on a surface)
Consider a surface X and a double point P on this surface. As P is

a double point its minimal embedding dimension is 3, see Remark 4.4.27. In
other words, locally analytically we can assume that there is an open set V in
K3, K = R or C, centred in (0, 0, 0) in which the equation of X is of the form
z2 = f(x, y) and P = (0, 0, 0). The blow up Ṽ of V in 0 is the set of pairs
(a, ξ) in V × P2(K) satisfying the equations

xξ2 = yξ1 and xξ3 = zξ1

where (x, y, z) are coordinates on V and [ξ1, ξ2, ξ3] are the homogeneous coor-
dinates on P2(K).

We can cover the blow up Ṽ of V by charts,

Ui = {(a, ξ) ∈ Ṽ : ξi 6= 0}, i = 1, 2, 3 ;

with coordinates (ui, vi, wi) defined by:

u1 = x, v1 = ξ2
ξ1
, w1 = ξ3

ξ1
on U1 ,

u2 = ξ1
ξ2
, v2 = y, w2 = ξ3

ξ2
on U2 ,

u3 = ξ1
ξ3
, v3 = ξ2

ξ3
, w3 = z on U3 .

We can lift X via the blow up map π : X̃ → X to the charts Ui defined
above. In U1 the equation of π∗(X) is of the form

u2
1w

2
1 = um1 f1(u1, v1)
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where m is the multiplicity of f in 0. The strict transform X̃ of X therefore
has equation w2

1 = um−2
1 f1(u1, v1) in this chart In U2 the equation is w2

2 =
vm−2

2 f2(u2, v2) and in U3 it is 1 = wm−2
3 f3(u3, v3, w3).

In what follows we will be particularly interested in rational double points
(Definition 4.4.28) since their resolution will generate algebraic cycles in the
complex variety without changing the numerical invariants of the surface. (See
[Art62] or [Slo80, page 70] for more details). Recall that singular surfaces
all of whose singularities are rational double points are called Du Val surfaces
(see Definition4.4.30).

We want to determine the topology of the real locus of the non singular
surface X̃ obtained by blow up and calculate the rank of Halg

1 (X̃(R);Z2).

Lemma 4.7.7. — Let X be an R-surface with non empty real locus on which
we consider a singular point P belonging to X(R). Let πP : X̃ → X be an R-
resolution (by which we mean that πP commutes with the real structures on X
and X̃). If the real part L(R) of the exceptional divisor is non empty then we
have that

χtop(X̃(R)) = χtop(X(R)) + χtop(L(R))− 1
where χtop is the topological Euler characteristic.

Proof. — To simplify notations we set V := X(R) and W := L(R). We then
have that Ṽ = X̃(R).

We consider the exact sequence of cohomology with compact support (B.5)
from Proposition B.6.8 applied to the compact pair (Ṽ ,W ):

(4.20)
· · · → Hk

c (Ṽ rW ;Z2)→ Hk(Ṽ ;Z2)→ Hk(W ;Z2)→ Hk+1
c (Ṽ rW ;Z2)→ · · ·

We have that
1. ∀k > 0, Hk

c (Ṽ rW ;Z2) = Hk
c (V r {P};Z2);

2. dimH0
c (V r {P};Z2) = dimH0(V ;Z2)− 1;

3. ∀k > 0, Hk
c (V r {P};Z2) = Hk(V ;Z2);

4. H2(W ;Z2) = 0.
By definition of π there is a neighbourhood U of P in V and a neighbourhood

Ũ ofW in X̃ such that πP is biholomorphic to ŨrW over Ur{P}. As Ṽ rW
and V r {P} are homeomorphic (1) follows. Statement (2) follows from the
definition of cohomology with compact support. Indeed, if we denote by V1
the connected component of V containing P we have that H0

c (V1r{P};Z2) =
0. Statement (3) then follows from the exact sequence (4.20) applied to the
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pair (V, {P}), and finally (4) is simply a restatement of the fact that W has
dimension 1.

We then simply write that the alternating sum of dimensions of Z2-vector
spaces in the exact sequence is zero to obtain

χtop(Ṽ ) = χtop(V ) + χtop(W )− 1 .

Corollary 4.7.8. — If L(R) is connected and the hypotheses of the previous
lemma hold then we have that

χtop(X̃(R)) = χtop(X(R))− dimH1(L(R);Z2) .

Resolutions of real double covers. — Let W be a non singular R-surface
whose real locus is connected and non empty and let C be an R-curve on W
without multiple components. We assume there is a divisor B onW such that
C ∈ |2B|: we will then say that C is an even curve. Let X be the double
cover of W branched along C and let X̃ be the canonical resolution of X (see
below). We have the choice between two real structures on the surfaces X
and X̃. If W is a rational surface and locally P (x, y) is a polynomial defining
C the choice of real structure corresponds to a choice of sign: z2 = ±P (x, y).
Having made this choice, we study the real locus X̃(R) of X̃.

Remark 4.7.9. — We check that
1. The surface X is singular if and only if the curve C is singular.
2. The surface X is projective if and only if W is projective, see

[BHPVdV04, page 182].
3. If the complex surface W is simply connected then the complex surface
X is simply connected if and only if the complex curve C is connected.

There is a special method for resolving the singularities of a double cover,
namely canonical resolution, which is sometimes more efficient than direct
resolution by blow up. It has however the disadvantage of not always giving a
minimal resolution, as we will see with the line passing through the quadruple
points in Example 4.7.14. However, we will prove below that this method
always yields a minimal resolution for rational double points.

Definition 4.7.10. — Let W be a non singular complex projective alge-
braic surface and let C ⊂ W be an even curve without multiple components.
The canonical resolution of (W,C) is defined to be the pair (W̃ , C̃) defined
recursively as follows:
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– (W0, C0) = (W,C);
– At step (Wk, Ck):

If Ck is non singular, we set (W̃ , C̃) = (Wk, Ck). If Ck is singular we choose
a singular point P on Ck. We denote by π : Wk+1 → Wk the blow up of
W centred at P and by L the corresponding exceptional divisor and we set
Ck+1 = π∗(Ck)− 2 bm/2cL where m is the multiplicity of Ck at P . (We note
that L is a component of Ck+1 if and only if m is odd).

We can show that this definition makes sense, or in other words that the
processus eventually stops and the order of the blow-ups does not affect the
result. See [Per81, page 10] for more details.

Consider the canonical resolution of a double cover X defined by a pair
(W,C). The equation of C in an open affine subset of K2 is f(x, y) = 0: after
blowing up (0, 0) in K2 we obtain (with some obvious modifications of the
notations introduced in Example 4.7.6) um1 f1(u1, v1) = 0 and um2 f2(u2, v2) = 0.
We then take our new branching locus to be C1 = 2 bm/2cL and consider the
double cover. The equations of this double cover are:

z2 = uifi(ui, vi) if m is odd,
z2 = fi(ui, vi) if m is even.

Comparing with the calculations of Example 4.7.6 we see that this method is
equivalent to resolving a singularity by blow up and resolution of the branching
curve if m = 2, 3.

Lemma 4.7.11. — If (X,σ) is a singular R-surface the resolution X̃ → X

of a rational double point P belonging to X(R) does not change the number of
connected components of X(R). Moreover, if P is a point of type An, n odd
or Dn, neven then we have that

χtop(X̃(R)) = χtop(X(R))− n .

Proof. — 1. Let L be the exceptional divisor generated by resolution of
P . We need to determine what happens to the real locus of L, or in
other words what happens to P . Connectedness of X̃(R) depends on
connectedness of L(R).

2. When we blow up a singularity of type Dn, E6, E7 or E8 the branch-
ing locus remains connected since the corresponding singularity of the
branching locus is then triple. Moreover, when the singularity is of type
Dn with even n the real locus has exactly n double points of type A1.
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3. A singularity of type An, n > 2 becomes a singularity of type An−2 after
blow up; the branching locus remains singular and connected until we
reach A1 and A2 whose respective equations (over C) are z2 = x2 − y2

and z2 = y2 − x3.
4. The blow up of A1 gives us w2

1 = 1 − v2
1 (in U1 for example) and L(R)

is then the conic of equation u1 = 0, w2
1 + v2

1 = 1. This resolution
therefore turns a point into a connected curve and the strict transform
X̃(R) therefore has the same number of connected components as X(R).
Moreover, in this case χtop(L(R)) = 0.

5. A point of type A2 has two possible equations over R: z2 = y2 −
x3 and z2 = x3 − y2 which give rise after blow up to equations w2

1 =
v2

1 − u1 and w2
1 = u1 − v2

1 respectively. The curve L(R) (corresponding
to u1 = 0) consists of two lines, w1 = v1 and w1 = −v1, in the first case
and the isolated point w1 = v1 = 0 in the second case.

For An with n odd the locus L(R) is connected and contains n double
points of type A1. We complete the proof by applying Lemma 4.7.7 to
each blow up of a point of typeA1.

Proposition 4.7.12. — Let (W,C) be a pair where W is a non singular
compact R-surface and C ⊂W is a possibly reducible R-curve. If the real part
of C is connected and all its singularities are of type An, Dn, E6, E7 or E8,
then the double cover X̃(R) of the canonical resolution of (W,C) is connected
for one of the two real structures lifting the real structure on W .

Proof. — 1. If W (R) and C(R) are connected it is clear that the double
cover X(R) defined by (W,C) is connected independently of the choice
of real structure.

2. The resolution of a singularity that is not in C(R) does not alter the
connectedness of W (R) or C(R).

3. Since the singularities of the real part of C are of type An, Dn, E6, E7
or E8 the corresponding singularities of X are rational double points of
type An, Dn, E6, E7 or E8.

By Theorem 4.4.26, we know that the canonical resolution of this type
of singularity is equivalent to a sequence of blow ups of points on X, and
moreover all the intermediate singularities are also rational double points.
The proposition follows from Lemma 4.7.11.
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The first example we present is a non singular model of a certain degree 5
surface in P3.

Example 4.7.13 (A real quintic such that balg
1 = b1)

This example is based on a construction that Persson attributes to Hirze-
bruch in [Per82, Introduction]. A non singular complex surface X in P3(C)
is connected and simply connected and by the Lefschetz hyperplane theorem
D.9.2:

π0(X) ' π0(P3(C)) ,
π1(P3(C))→ π1(X)→ 0 .

It follows that the Picard group Pic(X) is a free, finitely generated Z-module
of rank ρ

Consider a curve C formed of five lines in general position in P2(C). Let
f : S → P2(C) be the cyclic covering of order 5 of P2(C) branched along C. The
surface S is then a quintic in P3(C) which has ten singularities, corresponding
to the intersections of the lines. Let P be one of these singular points. In an
affine neighbourhood of P we can write the equation of S in the form

x5 = z2 − y2 ,

which implies that P is a rational double point of type A4 (see Defini-
tion 4.4.28). We know that each rational double point can be resolved by
successive blow ups and the non singular model thus obtained has the same
numerical invariants as a quintic. In particular, the bound on the Picard
number remains valid.

On the other hand, the resolution of a singular point of type An increases
the number of algebraic cycles by exactly n (ie. the number of irreducible
components of the exceptional divisor of the resolution). This yields a non
singular surface S̃ such that ρ(S̃) = 41. The Picard group of S̃ is generated by
the hyperplane section and 40 cycles arising from resolutions of singularities.

Choosing the lines in C to be real lines in general position in P2(R) we obtain
a real surface. We will use the topology of S(R) to calculate the topology of
S̃(R): in other words, we will study the behaviour of the real locus under
resolution of singularities.

Restricting the covering map f to S(R) we get a homeomorphism from
S(R) to P2(R). As the equation of S is of the form t5 = Q(x, y, z) and as
f is given by f(x, y, z, t) = (x, y, z), it is easy to see that there is only one
real point in each fibre of f . The surface S(R) is therefore connected and
dimH1(S(R);Z2) = 1. Moreover, its only homology class is algebraic, as it is
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simply the pull back via the map

f∗ : H1(P2(R);Z2)→ H1(S(R);Z2)

of the hyperplane section of P2(R).
We now consider the resolution of a point P of type A4 on a surface X

whose local equation is z2 = x5 + y2. We use the notations of Example 4.7.6.
Let P ∈ V ⊂ X be a neighbourhood of P . After a first blow up Ṽ → V we
get equations

w2
1 = u3

1 + v2
1 on U1 and w2

2 = u5
2 v

3
2 + 1 on U2 .

The real part of the exceptional curve is connected and consists of two lines
(whose equations are w1 = v1 and w1 = −v1 in U1 respectively) meeting in a
singular point Q of BPX ⊃ Ṽ = BPV .

We now blow up Q and we denote by X̃ := BQ(BP (X)) the surface thus
obtained. Changing notation slightly for this second blow up, the equation of
X̃ in Ũ1 is of the form

w̃1
2 = ũ1 + ṽ1

2 .

The real locus of the exceptional divisor L is again connected with two irre-
ducible components. Moreover, the intersection point Q̃ is not a singular point
of the surface. To summarise,
– two blow ups are needed to resolve P ;
– the real part of the exceptional divisor L̃ is connected and has four irreducible
components.

We now use Corollary 4.7.8 to show that these four irreducible components
really give us four new homology classes in the real locus. In our case, L(R)
is topologically a chain of four circles, which gives us

χtop(X̃(R)) = χtop(X(R))− 4 .

Moreover the new surface is connected, as we have simply replaced a point
by a connected curve.. As S has 10 such singularities, we get that

dimH1(S̃(R);Z2) = 41 .

Any finally as each new cohomology class was obtained as the real part of
an exceptional curve we get that

dimHalg
1 (S̃(R);Z2) = dimH1(S̃(R);Z2) = 41 .

Example 4.7.14 (A real numerical quintic such that balg
1 < b1)

We now discuss an example of a numerical quintic constructed by Ulf
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Persson [Per82, page 309] and calculate the invariants of its real part and a
lower bound for the number b1alg.

We start by constructing a real curve in W = P2. Consider a quadrilateral

q

p

r

E

Figure 4.14. Projection of P(R) onto P2.

defined by two pairs of lines meeting in points p and q. Each side of Σ meets
two others in vertices of Σ. Each side of Σ therefore has three canonical points,
namely the intersections with the three other sides. The two diagonals of Σ
meet in a point r, the centre of Σ. Linking r to p and q respectively each side
of Σ is now cut in a fourth point. These four points on any given line form
a harmonic set, by which we mean that if we normalise the coordinates such
that the point p or q is ∞ and the vertices of Σ are ±1 then the fourth point
is 0.

This is in fact the classical construction of the fourth point in a harmonic
set given three of them. There is now a unique conic which is tangent to all
the sides of Σ at the "0-points". Let C be the reducible curve containing the
six lines above, the conic and one of the diagonals (Figure 4.14), plus the curve
E passing through p and q. This yields a curve of degree 10 with four ordinary
quadruple points, five A1 points, four A6 points and three D4 points.
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Let (W̃ , C̃) be the canonical resolution of the pair (W,C) as in Defini-
tion 4.7.10. Let P be the double cover defined by the pair (W,C) and let P̃
be the double cover defined by the pair (W̃ , C̃).

The self intersection E2 of E decreases by 1 each time we blow up one of
its three singular points, so the line E in P satisfies E2 = −2. By [Per81,
Proposition 1.3] the curve Ẽ obtained as a double cover of E is a (−1)-curve
in P̃. Using [Per81, Proposition 1.3] once more we can check that Ẽ is the
only (−1)-curve in P̃.

We contract Ẽ and we denote by P ′ the minimal surface thus obtained.

Proposition 4.7.15. — Let X̃ be the double cover obtained by canonical
resolution of a pair (P2(C), D) where D is a curve in P2(C) of degree 2d. If
every singular point Pk is of multiplicity mk = 2dk or mk = 2dk + 1 we have
that

c2
1(X̃) = 2(d− 3)2 − 2

∑
Pk

(dk − 1)2 ,

h0,2(X̃) = 1 + 1
2(d(d− 3))−

∑
Pk

1
2dk(dk − 1) .

Proof. — See [BHPVdV04, page 183].

Corollary 4.7.16. — The invariants of the surfaces P̃ and P ′ defined above
are

c2
1(P̃) = 4, c2

1(P ′) = 5 ,

h0,2(P̃) = 4, h0,2(P ′) = 4 ,

ρ(P̃) > 44, ρ(P ′) > 43 .

Proof. — For the first two equations we recall that as in Proposition 4.1.30 if
π : X̃ → X ′ is the blow up of a point P of a non singular surface and EP is
the exceptional line then K

X̃
= π∗KX′ + EP and hence c2

1(X ′) = c2
1(X̃) + 1.

Moreover, as h0,2 is a birational invariant we get two additional equations. To
prove the last two equation, recall that as well as the cycles arising from reso-
lution of singularities of type An, Dn or En which each generate n independent
algebraic cycles, there is a cycle arising from the hyperplane section and two
arising from the resolution of quadruple points.

The non singular surface P ′ therefore has the same numerical invariants as a
quintic in P3(C) (see Remark 4.7.2) and its Picard number is bounded below by
43. We now calculate the real locus of P ′. Referring once more to Figure 4.14,
we can calculate the Euler characteristic of the initial singular surface P(R)
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which is homeomorphic to a finite number of spheres glued together at singular
points. In particular, P(R) is connected and

χtop(P(R)) = 2(#{spheres})−
∑
Pk

(mk − 1)

where mk is the multiplicity of the point Pk. With its 13 spheres, 5 double
points, 7 triple points and 2 quadruple points we therefore have that

χtop(P(R)) = 1, b1(P(R);Z2) = 13 .

Proposition 4.7.17. — The numerical quintic P ′ has a connected real locus.

After blowing up the two quadruple points the branching locus is connected
(see Figure 4.15), and there are only simple singularities left in the real locus.
By Lemma 4.7.11 the resolution of these singularities yields a connected surface
and we complete the construction by contracting the curve E, which obviously
preserves connectedness.

Ep

Eq

E

r

Figure 4.15. The curve C̃ on W̃ .
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Proposition 4.7.18. — For the surfaces P̃(R) and P ′(R) defined above we
have the following equations:

χtop(P̃(R)) = χtop(P(R))−
∑
Pk

nk, χtop(P ′(R)) = χtop(P̃(R)) + 1

b1(P̃(R);Z2) = χtop(P̃(R)) + 2, b1(P ′(R);Z2) = b1(P̃(R);Z2)− 1
b1alg(P ′(R);Z2) = b1alg(P(R);Z2) + (b1(P ′(R);Z2)− b1(P(R);Z2))

where nk = n if Pk is a point of type An, n odd or Dn, n even, and nk = 1 if
Pk is a quadruple ordinary point.

Proof. — For simple singularities this follows from the second part of
Lemma 4.7.11. Moreover, let P be a quadruple ordinary point of C: we can
then find a neighbourhood of P such that P is locally defined by the equation:

z2 = xy(x2 − y2) .
The canonical resolution turns this equation into

z2 = v − v3 ,

so in the real world EP (R) is the union of two disjoint circles whence it follows
that χtop(EP (R)) = 0. We now simply apply Lemma 4.7.7.

Corollary 4.7.19. — For the surfaces P̃(R) and P ′(R) defined above we
have the equations:

χtop(P ′) = −41, b1(P ′(R);Z2) = 43, b1alg(P ′(R);Z2) > 31 .

Indeed, we have that
∑
Pk
nk = 43 and b1alg(P(R);Z2) > 1 because of the

hyperplane section class.
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Solution to exercises of Chapter 4

4.1.45 If C ′ is a non singular quartic then g(C ′) = 3 by the genus formula,
see Theorem 1.6.17. Since the genus of C is zero by hypothesis, we have that
δ(C) = 3. The multiplicities of the singular points (including the infinitely
close points) are therefore (2, 2, 2) or (3). Since the set of singular points is
invariant under σP, the only possibilities are: a unique triple point, three dou-
ble ordinary points or a unique singular point whose sequence of multiplicities
is (2, 2, 2) (which implies that it is either a ramphoid cusp or a double point
whose first blow up contains two double ordinary points). Since the number
of singular points is always odd, at least one of them must be real.
4.1.48 The Euler characteristic is additive so χtop(C) = χtop(C1) +χtop(C2) =
4. Moreover pa(Ci) = g(Ci) = 0 for i = 1, 2 and the result follows from
formula (4.4), page 220.
4.2.11 2. Calculating the derivative at any point of a reduced fibre gives us
the result.

4. Consider the conic bundle given by the equation

x2 + y2 = (t− 1)(t− 2)(t− 3)(t− 4) .

4.3.3 By definition any (−1)-curve is rational and non singular so pa(C) =
g(C) = 0 and C2 = −1. The result follows by the adjunction formula (4.1),
page 219.
4.3.14 Let E1 and E2 be the lines that are irreducible components of the
fibre F in question. We then have that 0 = F 2 = E2

1 + E2
2 + 2(E1 · E2) so

E2
1 = E2

2 = −1.
4.3.15 Every singular fibre consist of two (−1)-curves meeting in a point. Let
X → Fn be the birational morphism obtained by contracting one (−1)-curve
in each singular fibre. Let E1, . . . , Er be the contracted curves. We then have
that

π∗(KFn) = KX + E1 + · · ·+ Er ,

whence K2
X = π∗(KFn)2 − r. We now simply calculate K2

Fn given that KFn =
−2Σ0 +(n−2)F for any fibre F and a general section Σ0 as in [Bea78, III.18].
4.3.18 Recall that by the adjunction formula any (−1)-curve C satisfies KX ·
C = −1 as in Exercise 4.3.3. Let C1 and C2 be (−1)-curves such that C1 ·C2 >

0. We then have that (C1 + C2)2 = −2 + 2C1 · C2 > 0 and (C1 + C2)2 = 0
if and only if C1 · C2 = 1. By Zariski’s lemma, (see [BHPVdV04, Lemma
III.8.2]) the fibre of π containing C1 and C2 is therefore necessarily of the form
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n(C1 +C2). Let F be a general (connected non singular) fibre. We then have
that

KX · F = n(KX · (C1 + C2)) = −2n .
Moreover F 2 = 0 since it is a fibre and pa(F ) = g(F ) > 0 because F is
connected and non singular. The adjunction formula (4.1) (page 219) then
gives us n = 1 and g(F ) = 0.
4.4.12 If the conic bundle is minimal the only singular fibres are of the form
x2 + y2 = 0 and their number is twice the number of connected components
of X(R). By Exercise 4.3.15, the number of singular fibres of the conic bundle
is equal to 8−K2

X .





CHAPTER 5

ALGEBRAIC APPROXIMATION

5.1. Rational models

In Chapter 4- more precisely in Section 4.4- we started with a given R-
surface and tried to determine the topology of its real locus. We now consider
to the inverse problem mentionned on page 4 of the Introduction.

Definition 5.1.1 (Real rational and algebraic models)
Let M be a differentiable manifold of class C∞. We say that a non sin-

gular quasi-projective algebraic R-variety (X,σ) is a real algebraic model ofM
if and only if X(R) is diffeomorphic to M . By abuse of notation we will some-
times also say that the non singular real affine algebraic variety V := X(R),
(Definition 1.3.9 and 2.2.17) is a real algebraic model of M . If additionally the
real algebraic R-variety (X,σ) is R-rational we say that (X,σ) (resp. V ) is a
real rational model of the differentiable manifold M .

Of course, any differentiable manifold which has a real rational model also
has a real algebraic model but the converse is false. For example, by Comes-
satti’s theorem 4.4.16, any orientable surface of genus g > 2 does not have a
real rational model. On the other hand, any orientable surface of genus g has
a real algebraic model, as the following example shows.

Example 5.1.2 (Algebraic models of orientable surfaces)
Consider one of the two real algebraic surfaces given by the affine equa-

tions z2 = ±f(x, y), where f is the product of the equations of g + 1 suitable
circles. Any such surface is singular because it contains non real singular
points but we can easily create a non singular variety by resolution of sin-
gularities as in Theorem 1.5.54 or by a small perturbation fε(x, y) = 0 of
the plane curve f(x, y) = 0. In the latter case the curve becomes irreducible
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under general deformation and the real locus of the curve z2 = ±fε(x, y) is
diffeomorphic to the real locus of the surface z2 = ±f(x, y) by Ehresmann’s
fibration theorem 4.3.28.

We begin this chapter with a discussion of differentiable maps that can
be approximated by regular maps, concentrating initially on the case where
the target variety is a sphere of small dimension or a more general rational
variety. We continue with a study of a special class of diffeomorphisms, bi-
rational diffeomorphisms, which by Exercise 1.2.56(2) and Proposition 2.2.27
are simply isomorphisms of real non singular algebraic varieties. These bira-
tional diffeomorphisms enable us to classify the real algebraic models(1) of a
given differentiable manifold. These "isomorphisms" of real algebraic models
are central to a series of results based on special subgroups of the famous Cre-
mona group. We finish this chapter with a discussion of some recent results
on fake real planes.

In particular, this chapter contains a discussion of three important results
from the end of the 00s.

– Up to birational diffeomorphism there is a unique real rational model of
each non orientable surface. See Theorem 5.4.1.

– The group of birational diffeomorphisms of a rational real surface is in-
finitely transitive. See Theorem 5.4.3 for more details.

– The group of birational diffeomorphisms of a real rational surface V is
dense in the group Diff(V ) of C∞ diffeomorphisms. See Theorem 5.4.16
for more details.

The Cremona group of birational transformations of the projective plane
plays a central role in this chapter. See Section 5.4 for more details.

5.2. Smooth and regular maps

The Weierstrass approximation theorem we teach to undergraduates states
that any continuous function [a, b] ⊂ R → R can be uniformly approximated
by polynomial functions. In this chapter we study various generalisations of
this theorem.

Definition 5.2.1. — Let U ⊂ Rn be an open subset. We say that a real
function U → R is smooth if and only if it is C∞. More generally, for any two

(1)Reread Proposition 2.2.22 if necessary.
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differentiable manifolds V and W of class C∞ a map V → W is said to be
smooth if and only if it is C∞.

For any two differentiable manifolds V and W of class C∞ we denote by
C∞(V,W ) the set of smooth maps from V to W . We refer to the appendices
for the definition (B.5.21) of the weak topology and the definition (B.5.22) of
the strong topology on C∞(V,W ).

Remark 5.2.2. — Recall that if V is compact then the weak (or C∞
compact-open) topology on C∞(V,W ) is equivalent to the strong topology.
See [Hir76, Chapitre 2] for more details. In this case the topology is simply
called the C∞ topology.

The Stone-Weierstrass theorem generalises the Weierstrass approximation
theorem. We use the following version of it (see [BCR98, Theorem 8.8.5] for
more details).

Theorem 5.2.3 (Stone-Weierstrass theorem). — Any smooth real-
valued function defined on an open neighbourhood of a compact subset C in
Rn can be approximated on C by polynomial functions in the C∞ topology.

Given any two real affine algebraic varieties V andW we denote byR(V,W )
the space of regular maps from V to W (see Definitions 1.2.54 and 1.3.4). If
V ⊂ Rn and W ⊂ Rm a regular map is simply a rational map Rn 99K W

without poles on V by Exercise 1.2.56(2). If V and W are non singular then
each of them has a C∞ differentiable manifold structure by Remark 1.5.28 and
the set R(V,W ) is then a subset of C∞(V,W ).

Definition 5.2.4. — We will say that a map f in C∞(V,W ) has algebraic
approximation or can be approximated by regular maps if and only if f belongs
to the closure of R(V,W ) in the C∞ compact-open topology.

Remark 5.2.5. — If V is compact then f has algebraic approximation if
and only if f belongs to R(V,W ) in the strong topology.

The Stone-Weierstrass theorem quoted above implies that if V = C is com-
pact and W = Rm then we have density: R(C,Rm) = C∞(C,Rm). In general,
the space R(V,W ) is not dense in C∞(V,W ): as the example below illus-
trates, regular maps can be rare. (We refer to [BKS97] for other interesting
examples).
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Example 5.2.6 (Rareness of regular maps). — Let (X,σ) and (Y, τ) be
irreducible projective R-curves of genuses g(X) and g(Y ) respectively. Suppose
that their real loci V = X(R) and W = Y (R) are non empty: they are then
compact real affine algebraic varieties by Theorem 2.2.17. Any regular map
from V to W has a unique extension to a complex regular map X to Y :
on the one hand by Proposition 2.2.22 any regular map can be extended to
a R-regular rational map, and on the other hand by Proposition 1.3.26 any
rational map from a curve can be extended to a regular map. It follows that if
g(X) < g(Y ) then any regular map from V to W is constant by the Riemann-
Hurwitz theorem E.2.18. Moreover, if g(Y ) > 2 (or in other words if Y is of
general type) then there are only a finite number of non constant regular maps
from V to W by a theorem due to de Franchis [Maz86, page 227].

We recall that a real algebraic variety is affine if and only if it is quasi-
projective. In particular, any real quasi-affine algebraic variety is affine and
any real projective algebraic variety is affine. See Proposition 1.3.11 for more
details.

Exercise 5.2.7 (Affine model of Pn(R)). — We used one affine model
of Pn(R) in the proof of Proposition 1.2.63. Here is another model which
is often useful in practice. Let Mn+1(R) be the set of real square matrices
(n+ 1)× (n+ 1) and set

Pn :=
{
A ∈Mn+1(R) | tA = A,A2 = A, trace(A) = 1

}
.

1. Check that Pn is an algebraic set.
2. Prove that the map Pn(R)→ Pn,

(x0 : x1 : · · · : xn) 7→
(

xi−1xj−1
x2

0+x2
1+···+x2

n

)
1≤i≤n+1
1≤j≤n+1

is an isomorphism of real algebraic varieties.

Projective space Pn(R) is a special type of Grassmanian and it can be proved
that in general the Grassmanian Gn,k(R), (Definition 3.7.8) is isomorphic to
the algebraic set

Hn,k :=
{
A ∈Mn(R) | tA = A,A2 = A, trace(A) = k

}
as a real algebraic variety. (Note that Pn = Hn+1,1). (See [BCR98, §3.4.2]
for more details). Similarly, considering the complex Grassmanian Gn,k(C)
as a real algebraic variety we can prove it is isomorphic to the real algebraic
variety

H ′n,k :=
{
A ∈Mn(C) | tA = A,A2 = A, trace(A) = k

}
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which is a real (but not complex!) algebraic subvariety ofMn(C) ' R2n2 . See
[BCR98, §3.4.2] for more details. This gives us a result similar to Proposi-
tion 3.7.10.

Proposition 5.2.8. — Let n > k be natural numbers. Projective space Pn(C)
and the Grassmanian Gn,k(C) are non singular compact real affine algebraic
varieties.

Proof. — See [BCR98, Proposition 3.4.6 and Proposition 3.4.11].

Remark 5.2.9. — Let H be the field of quaternions. We can prove in a
similar way(2) that Pn(H) and Gn,k(H) are non singular compact real affine
algebraic varieties.

If K = R,C or H, then any quasi-projective algebraic variety over K has a
natural real affine algebraic variety structure(3) and this enables us to gener-
alise Definition 2.5.10 of algebraic vector bundles.

Definition 5.2.10. — LetK be R,C or H and let V be a real affine algebraic
variety. An algebraic K-vector bundle of rank r over V is a K-vector bundle
(E, π) (Definition C.3.5) such that the following hold.

1. The total space E is a real algebraic variety;
2. The projection π : E → V is a regular map of real algebraic varieties;
3. The homeomorphisms ψi : π−1(Ui)

'−→ Ui × Kr are biregular isomor-
phisms of real algebraic varieties(4) ;

4. The bundle (E, π) is isomorphic to a subbundle of a trivial bundle.

Definition 5.2.11 (Universal bundle). — Let n > k be natural numbers
and let K be a field. We set

En,k := {(A, v) ∈ Gn,k(K)×Kn | Av = v}

and let pn,k : En,k → Gn,k(K) be the canonical projection. The K-vector
bundle

γn,k := (En,k, pn,k)
of rank k over Gn,k(K) is called the universal bundle over Gn,k(K).

(2)The notation is somewhat awkward because of the non-commutativity of the field.
(3)Simply separate each complex (resp. quaternionic) equation into two (resp. four) equa-
tions with real coefficients.
(4)Note that Kr is a real algebraic variety of dimension 2r if K = C and 4r if K = H.
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Proposition 5.2.12. — Let n > k be natural numbers and let K be R,C or
H. The universal bundle γn,k is then an algebraic K-vector bundle of rank k
over Gn,k(K).

Proof. — See [BCR98, Proposition 12.1.8].

Homotopy, approximations and algebraic bundles. — If a smooth map
between real affine algebraic varieties can be approximated by regular maps
then it is homotopic to a regular map (see [BCR98, Corollaire 9.3.7]). The
converse is false as the example below proves.

Example 5.2.13 (Homotopic 6= approximable)
Let Fn be the Fermat curve of degree n,

Fn :=
{

(x : y : z) ∈ P2(R) | xn + yn − zn = 0
}
.

By example 5.2.6, if k > n > 2, any regular map from Fn to Fk is constant.
By the genus formula (Theorem 1.6.17) the genus of a complexification of Fn
is strictly smaller than the genus of the complexification of Fk. For the same
reason, if k > 4 then for any n > 1 there is only a finite number of non constant
regular maps from Fn to Fk. It also follows that if n > 4 then any smooth map
Fn → Fn of topological degree 1 is homotopic to a regular map (the identity)
but only a finite number of them can be approximated by regular maps (those
that are already regular).

When the target variety is a Grassmanian we can transform the approxi-
mation problem into a problem about algebraic bundles.

Theorem 5.2.14. — Let K be R,C or H, let V be a non singular compact
real affine algebraic variety and let

f : V → Gn,k(K)

be a smooth map. The following are then equivalent.
1. The map f can be approximated in the C∞ topology by regular maps
V → Gn,k(K).

2. The map f is homotopic to a regular map V → Gn,k(K).
3. The pull back f∗(γn,k) of the universal bundle Gn,k(K) is topologically

isomorphic to an algebraic K-vector bundle.

Proof. — See [BCR98, Theorem 13.3.1].
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Corollary 5.2.15. — Let K be R,C or H and let V be a non singular com-
pact real affine algebraic variety. If every topological K-vector bundle of rank
k over V is topologically isomorphic to an algebraic K-vector bundle then
R(V,Gn,k(K)) is dense in C∞(V,Gn,k(K))

Proof. — Immediate.

Let V be a non singular compact real affine algebraic variety. Let V B1(V )
be the group of isomorphism classes of (topological) vector bundles of rank 1.
The morphism w1 : V B1(V )→ H1(V ;Z2) which associates to an isomorphism
class of rank 1 vector bundles its first Stiefel-Whitney class (5) is an isomor-
phism. See [BCR98, §12.4] for more details. If the dimension of V is n then
we can compose with Poincaré duality to get an isomorphism

DV ◦ w1 : V B1(V ) '−→ Hn−1(V ;Z2) .

Theorem 5.2.16. — Let V be a non singular compact real affine algebraic
variety of dimension n and consider an element α ∈ Hn−1(V ;Z2). The fol-
lowing are then equivalent.

1. The class α is the image under DV ◦w1 : V B1(V )→ Hn−1(V ;Z2) of the
class of an algebraic vector bundle of rank 1.

2. There is a non singular algebraic subset W ⊂ V of dimension n−1 whose
fundamental class is α (see Definition 3.7.1).

3. The class α belongs to the subgroup of algebraic cycles (Definition 3.7.2)
Halg
n−1(V ;Z2).

Proof. — See [BCR98, Theoreme 12.4.6].

Corollary 5.2.17. — The isomorphism w1 : V B1(V ) '−→ H1(V ;Z2) induces
an isomorphism

w1 : V B1
alg(V ) '−→ H1

alg(V ;Z2) ;

and DV ◦ w1 : V B1(V ) '−→ Hn−1(V ;Z2) induces an isomorphism

DV ◦ w1 : V B1
alg(V ) '−→ Halg

n−1(V ;Z2) .

The following theorem enables us to turn an approximation problem into a
problem on algebraic cycles. See Section 3.7 for more details.

(5)w1(E) is the first Stiefel-Whitney class of a bundle E: see [MS74, §4] for more details.
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Theorem 5.2.18. — Let n be a non zero natural number, let un be the unique
generator of the group H1(Pn(R);Z2) ' Z2 and let V be non singular compact
real affine algebraic variety. For any smooth map

f : V → Pn(R) ,

the following are equivalent.
1. The map f is approximable in the C∞ topology by regular maps V →

Pn(R).
2. The map f is homotopic to a regular map V → Pn(R).
3. The pull back f∗(un) where f∗ is the induced map f∗ : H1(Pn(R);Z2)→
H1(V ;Z2) belongs to the subgroup of algebraic cycles H1

alg(V ;Z2).

Proof. — By Corollary 5.2.17, the first two conditions are equivalent by The-
orem 5.2.14 applied to Pn(R) = Gn+1,1(R). The third condition is then equiv-
alent because f∗(un) = w1(f∗(γn+1,1)) and apply Theorem 5.2.16.

5.3. Maps to spheres

Let P be a point on the sphere Sn ⊂ Rn+1. Stereographic projection from
pole P is the map Sn \ {P} → Rn obtained by associating to any point Q in
Sn different from P the intersection point of the unique line in Rn+1 passing
through P and Q an the affine subspace (of dimension n) tangent to Sn at the
antipode of P .

Proposition 5.3.1. — Let n be a natural number, let

Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}

be the quadric sphere of dimension n and let P be a point in Sn. Stereographic
projection Sn \ {P} → Rn is then an isomorphism of real algebraic varieties.

Remark 5.3.2. — We invite the reader to compare this proof with the proof
of Proposition 4.4.10(1b) for the sphere of dimension 2.

Proof. — Fix two points on the sphere: the north pole PN := (0, . . . , 0, 1) ∈ Sn
and the south pole PS := (0, . . . , 0,−1) ∈ Sn. In coordinates, stereographic
projection from the north and south poles are given by:

ϕN : Sn \ {PN} −→ Rn

(x1, . . . , xn+1) 7−→
(

x1
1−xn+1

, . . . , xn
1−xn+1

)
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and
ϕS : Sn \ {PS} −→ Rn

(x1, . . . , xn+1) 7−→
(

x1
1+xn+1

, . . . , xn
1+xn+1

)
and their inverses are given by

Rn −→ Sn \ {PN}
(y1, . . . , yn) 7−→

(
2y1

y2
1+···+y2

n+1 , . . . ,
2yn

y2
1+···+y2

n+1 ,
y2

1+···+y2
n−1

y2
1+···+y2

n+1

)
and

Rn −→ Sn \ {PS}
(y1, . . . , yn) 7−→

(
2y1

y2
1+···+y2

n+1 , . . . ,
2yn

y2
1+···+y2

n+1 ,
−y2

1−···−y
2
n+1

y2
1+···+y2

n+1

)
.

Corollary 5.3.3. — As real algebraic varieties,
1. S1 is isomorphic to P1(R).
2. S2 is isomorphic to P1(C).
3. S4 is isomorphic to P1(H).

Proof. — Consider stereographic projection from Sn to Rn. For n = 1 for any
x 6= 0 we have that ϕN ◦ ϕ−1

S (x) = 1
x and if n = 2 for any (x, y) 6= (0, 0) we

have that ϕN ◦ ϕ−1
S (x, y) = ( x

x2+y2 ,
y

x2+y2 ) and hence in complex coordinates
z = x+ iy, ϕN ◦ ϕ−1

S (z) = 1
z . Similarly, we can show that S4 is isomorphic to

P1(H) using the map

(u : v) 7→
(

2uv
|u|2 + |v|2

,
|u|2 − |v|2

|u|2 + |v|2

)
.

Proposition 5.3.4. — Let V be a non singular compact real affine algebraic
variety, let n be 1, 2 or 4 and let

f : V → Sn

be a smooth map. The following are then equivalent.
1. The map f is approximable in the C∞ topology by regular maps V → Sn.
2. The map f is homotopic to a regular map V → Sn.

Proof. — This equivalence follows immediately from Theorem 5.2.14 because
of Corollary 5.3.3 which states that for n = 1, 2 or 4 the sphere Sn is isomorphic
to P1(K) = G2,1(K) for K = R,C or H.
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Maps to S1. — The isomorphism of real algebraic varieties between S1 and
P1(R) gives us a homological characterisation of density of regular maps to S1.

Theorem 5.3.5. — Let V be a non singular compact real affine algebraic
variety of dimension n. The following are then equivalent.

1. The subspace R(V,S1) is dense in C∞(V,S1).
2. Any C∞ map from V to S1 is homotopic to a regular map.
3. Hnt

n−1(V ;Z2) ⊂ Halg
n−1(V ;Z2), where Hnt

n−1(V ;Z2) is the subset of
Hn−1(V ;Z2) of homology classes represented by compact C∞ hypersur-
faces in V whose normal bundle is trivial.

Proof. — See [BCR98, Theorem 13.3.5].

Example 5.3.6. — Here are two examples where purely topological argu-
ments enable us to refine the above criteria.

1. If V is diffeomorphic to the Klein bottle K2 then R(V,S1) is dense in
C∞(V,S1). In this case Hnt

1 (V ;Z2) is generated by the dual Poincaré
class of the algebraic bundle

∧2 TV . See Theorem 5.2.16 for more details.
2. If V is an orientable surface then R(V,S1) = C∞(V,S1) if and only if
H1(V ;Z2) = Halg

1 (V ;Z2). In this case, any C∞ curve in V has trivial
normal bundle in V and hence Hnt

1 (V ;Z2) = H1(V ;Z2).

Corollary 5.3.7. — Let V be a non singular compact real affine algebraic
variety of dimension n. If Hn−1(V ;Z2) = Halg

n−1(V ;Z2) then R(V,S1) is dense
in C∞(V,S1).

The converse is false, even in dimension 2, as the example below shows.

Example 5.3.8 (Not totally algebraic Klein bottle)
Let Y be the quotient of the non singular quartic hypersurface(6) X :=

Z(x4 + y4 + z4 − t4) in P3(C)t:x:y:z by the fixed point free involution (t :
x : y : z) 7→ (−x : t : −z : y). Let τ be the real structure induced on
Y by the restriction of σP to X. By construction, (X,σP|X) is a real K3
surface (Section 4.5) whose real locus is diffeomorphic to S2 and (Y, τ) is a
real Enriques surface whose real locus is diffeomorphic to the Klein bottle K2.
Moreover, by Theorem 4.5.17 we have that H1(Y (R);Z2) 6= Halg

1 (Y (R);Z2),
but Example 5.3.6(1) shows that R(Y (R),S1) = C∞(Y (R),S1).

(6)Often called the Fermat hypersurface in the litterature.
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These examples show that different real algebraic models (Definition 5.1.1)
of the same differentiable manifold generally have non isomorphic algebraic
cycle groups. This holds for the Klein bottle, but for any algebraic model V
of the Klein bottle R(V,S1) is nevertheless dense in C∞(V,S1). This property
holds for a very small number of topological surfaces.

Theorem 5.3.9. — The following conditions on a compact connected C∞
surface M are equivalent.

1. The subspace R(V,S1) is dense in C∞(V,S1) for any real algebraic model
V of M .

2. The topological manifold M is diffeomorphic to the S2, the real projective
plane RP2 or the Klein bottle K2.

Proof. — See [BK10, Thm.3.4].

Maps to S2. — In this section we consider a non singular real algebraic
variety V and a non singular complexification (Definition 2.3.2) VC of V . The
results presented below do not depend on the choice of the complexification
VC by Proposition 2.3.3. We will concentrate on approximation of smooth
maps from a compact surface V of negative Kodaira dimension to the sphere.
When we say that κ(V ) = −∞ we mean that some non singular projective
complexification VC has κ(VC) = −∞. The number κ is a birational invariant
of complete varieties and we can therefore set κ(V ) := κ(VC) whenever V is
compact and VC is projective.

We start by giving a historical overview of known results, followed by a
sketch of their proofs. By Theorem 4.4.8, real algebraic surfaces of negative
Kodaira dimension can be classified in three categories, each of which includes
the previous one: rational surfaces, geometrically rational surfaces and surfaces
which are birationally equivalent to the total space of a conic bundle.

Rational surfaces. — When V is a compact non singular rational surface
(Definition 1.3.37) J. Bochnak and W. Kucharz proved in the nineties that
R(V,S2) = C∞(V,S2) if and only if V is not diffeomorphic to a torus, and if
V is a torus only the homotopically trivial maps can be approximated alge-
braically. It turns out that we can do better (see [Kuc99, Th. 1.2]):

Theorem 5.3.10. — Let V and W be non singular compact real rational
algebraic surfaces. The space R(V,W ) is then dense in C∞(V,W ) except when
V is diffeomorphic to T2 and W is diffeomorphic to the sphere S2. In this case
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the topological closure of R(V,W ) in C∞(V,W ) is the set of homotopically
trivial maps.

Proof. — Since V is connected by Theorem 4.4.8 the theorem for W = S2

follows from Theorems 5.3.18 and 5.3.34 below. We refer to [Kuc99, Th. 1.2]
for a proof when W is another rational surface.

Geometrically rational surfaces, del Pezzo surfaces. — Rational surfaces are
a special case of geometrically rational surfaces (Definition 1.3.37). By Theo-
rem 4.4.8, real rational algebraic surfaces are exactly connected geometrically
rational real surfaces. In 2004, surfaces with four connected components which
have algebraic approximation for maps of even degree only were discovered.
See [JPM04, Theorem 0.3] for more details. The surfaces in question are
the real algebraic surfaces which are topologically the disjoint union of four
spheres and whose complexifications are del Pezzo surfaces of degree 2 (Defini-
tion 4.2.12). Recall that a del Pezzo surface X is a complex algebraic surface
whose anti-canonical divisor −KX is ample. The degree d of a del Pezzo sur-
face is its first Chern number K2

X . Apart from P1(C) × P1(C), all del Pezzo
surfaces are blow ups of the projective plane P2(C) in 9− d points. If the set
Σ of 7 blow up centres is stable under σP, the degree 2 del Pezzo surface given
by Σ has two real structures, one of which has a connected real part, namely
the one that arising from complex conjugaison on P2(C) via blow up.

Theorem 5.3.11. — Let V be a non singular real affine algebraic surface
diffeomorphic to the disjoint union of 4 spheres which has a complexification
VC which is a del Pezzo surface of degree 2. Let

f : V → S2

be a smooth map. The map f can then be approximated by regular maps if and
only if it is of even topological degree.

In particular, R(V,S2) 6= C∞(V,S2).

Proof. — This result follows on combining Theorems 5.3.18 and 5.3.35 below.

Remark 5.3.12. — There are real geometrically rational surfaces which are
topologically a disjoint union of four spheres on which all smooth maps can be
approximated by regular maps. There surfaces have a conic bundle structure.
See Example 4.2.8 and Theorem 5.3.13 below for more details.
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It turns out that the torus and the del Pezzo surface of Theorem 5.3.11
are the only geometrically rational surfaces for which density does not hold:
R(V,S2) 6= C∞(V,S2).

Theorem 5.3.13. — Let V be a non singular compact geometrically rational
real algebraic surface. The space of regular maps R(V,S2) is dense in the
space C∞(V,S2) of maps C∞ unless V is diffeomorphic to the torus T2 or V is
diffeomorphic to a disjoint union of 4 spheres and has a complexification VC
which is a real del Pezzo surface of degree 2 as in Theorem 5.3.11.

Proof. — This follows from Corollary 5.3.17 and Theorems 5.3.18 and 5.3.34
below. See [JPM04, Theorem 0.4] for more details.

Uniruled surfaces and conic bundles. — All that is now left to complete the
classification for surfaces of negative Kodaira dimension is to deal with conic
bundles whose base has non zero genus and their blow ups. In particular, if
VC has a conic bundle structure with a non rational base, VC is not simply
connected and V can have several orientable non spherical components.

Let V be a non singular compact real affine algebraic surface of negative
Kodaira dimension which is not geometrically rational. By Theorem 4.3.23(7),
V then has a real ruling ρ : V −→ B, since the blow-up of a conic bundle is
a ruling, ie. a genus 0 bundle. We recall that a connected component of
V can be diffeomorphic to a sphere, a torus or an arbitrary non orientable
surface (Theorem 4.4.14). Let K ′ be the set of components of V which are
diffeomorphic to the Klein bottle and whose image under ρ is a connected
component of B.

Theorem 5.3.14. — Let V be a non singular compact real affine algebraic
surface which is of negative Kodaira dimension but is not geometrically ratio-
nal. For any smooth map f : V −→ S2, the following are equivalent.

1. The map f can be approximated by regular maps.
2. The map f is homotopic to a regular map.
3. For any connected component M of V diffeomorphic to a torus we have

that deg(f |M ) = 0 and for any pair of components N and L belonging to
K ′ we have that degZ2(f |N ) = degZ2(f |L).

Proof. — See [Man06, Theorem 1.1].
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Maps to rational surfaces. — We end this section with a generalisation of
Theorem 5.3.10.

Theorem 5.3.15. — Let V and W be non singular compact connected real
affine algebraic surfaces such that κ(V ) = −∞ and W is rational. The space
R(V,W ) is then dense in C∞(V,W ) unless V is diffeomorphic to the torus
T2 and W is diffeomorphic to the sphere S2. In this last case, the closure of
R(V,W ) in C∞(V,W ) is the set of homotopically trivial maps.

Proof. — See [Man06, Theorem 1.2].

Algebraic C-vector bundles. — We now sketch the proofs of the results stated
above. Let V be a real affine algebraic variety, let VC be a non singular com-
plexification of V and let i : V ↪→ VC be the inclusion map. By Corollary 2.5.16,
a topological R-vector bundle L on V (Definition C.3.5) is algebraic (Defini-
tion 5.2.10) if and only if its tensorisation by C is the restriction to V of an
algebraic C-vector bundle E over VC with a real structure L ⊗ C ' E|V .

We denote by V B1
C(VC) the group of isomorphism classes of (topological)

rank 1 C-vector bundles over VC. We denote by H2
C−alg(V ;Z) the subgroup of

H2(V ;Z) of restrictions to V of algebraic rank 1 C-vector bundles on VC. In
other words, H2

C−alg(V ;Z) is the image of classes of algebraic bundles under
the restriction map V B1

C(VC) c1' H2(VC;Z) i∗−→ H2(V ;Z). Note that if a bundle
has, like E above, a real structure then its restriction to V is 2-torsion (Propo-
sition 5.3.23) and the group H2

C−alg(V ;Z) also contains classes of restrictions
of algebraic rank 1 C-vector bundles on V without real structure. We denote
by

Γ(V ) = H2(V ;Z)/H2
C−alg(V ;Z)

the quotient group. The group H2
C−alg(V ;Z) does not depend on the choice

of non singular complexification VC. (This follows from Proposition 2.3.3: we
also refer the interested reader to [BBK89]). The group Γ(V ) is therefore
also independant of this choice. Our definition of H2

C−alg(V ;Z) is motived by
the following result, which invites comparison with Theorem 5.2.18.

Theorem 5.3.16. — Let V be a non singular compact real affine algebraic
variety and let s2 be a generator of H2(S2;Z) ' Z. For any smooth map

f : V → S2 ,

the following are equivalent.
1. The map f can be approximated in the C∞ topology by regular maps
V → S2.
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2. The map f is homotopic to a regular map V → S2.
3. The pull back f∗(s2), where f∗ is the induced map f∗ : H2(S2;Z) →
H2(V ;Z), belongs to the subgroup H2

C−alg(V ;Z).

Proof. — This follows immediately from Theorem 5.2.14 and Corollary 5.3.3.

Corollary 5.3.17. — Let V be a non singular compact real affine algebraic
variety such that any topological rank 1 C-vector bundle on V is topologically
isomorphic to an algebraic C-vector bundle. The set R(V,S2) is then dense in
C∞(V,S2) for the C∞ topology. In other words if Γ(V ) = 0 then R(V,S2) =
C∞(V,S2).

If V is a connected surface then the converse holds.

Theorem 5.3.18. — Let V be a compact connected non singular affine real
algebraic surface. We then have that R(V,S2) is dense in C∞(V,S2) for the
C∞ topology if and only if every rank 1 topological C-vector bundle on V is
topologically isomorphic to an algebraic C-vector bundle.

In other words, R(V,S2) = C∞(V,S2) if and only if Γ(V ) = 0.

Remark 5.3.19. — Note that Γ(V ) = 0, or in other words H2
C(V ;Z) =

H2
C−alg(V ;Z) if and only if V B1

C(V ) = V B1
C−alg(V ) via the first Chern class

map.

Proof. — See [BCR98, Corollary 13.3.12].

Blow ups and regular maps. — We calculate the group Γ(V ) of a geometrically
rational real algebraic surface V in two steps. We first prove Proposition 5.3.20
below that enables us to control the behaviour of the quotient group Γ(V )
under blow up π : BPV → V centred at P ∈ V . We then calculate Γ(V0) for
the various minimal models V0 of a given geometrically rational real algebraic
surface V . Finally, we prove that if V is both minimal and non connected
then either Γ(V ) = 0 or Γ(V ) = Z2.

Proposition 5.3.20. — Let V be a compact non singular geometrically ra-
tional real algebraic surface such that Γ(V ) = 0 or Γ(V ) = Z2. We then have
that Γ(BPV ) = 0 for any blow up BPV centred at a point P in V .

Before proving Proposition 5.3.20 we need some auxiliary results. Let
i : V ↪→ VC be the canonical injection of a non singular compact real affine
algebraic surface into a non singular projective complexification.
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Lemma 5.3.21. — If the geometrical genus of VC is zero then H2
C−alg(V ;Z) =

Im i∗. If moreover the irregularity of VC vanishes then H2(VC;Z) ' Pic(VC).

Proof. — By definition H2
C−alg(V ;Z) ⊆ Im i∗. Inserting the isomorphism

Pic(VC) ' H1(VC,O∗VC) into the long exact sequence associated to the ex-
ponential sequence (Proposition D.6.3), we get an exact sequence

· · · → H1(VC,OVC)→ Pic(VC) c1−−→ H2(VC;Z)→ H2(VC,OVC)→ · · ·

The result follows immediately since by definition pg(VC) = dimH2(VC,OVC)
and q(VC) = dimH1(VC,OVC).

Corollary 5.3.22. — If V is a compact non singular geometrically rational
real algebraic surface then H2

C−alg(V ;Z) = Im i∗.

In other words, for any geometrically rational compact and non singular
real algebraic surface V , the quotient group Γ(V ) is trivial if and only if
i∗ : H2(VC;Z)→ H2(V ;Z) is surjective.

Since BPV is the real blow up of a geometrically rational real algebraic
surface it is also a geometrically rational real algebraic surface and Γ(BPV ) =
0 if and only if the morphism i∗ : H2(BPVC;Z) → H2(BPV ;Z) is surjective
by Corollary 5.3.22.

We denote by β : H1(V ;Z2) → H2(V ;Z) the Bockstein morphism induced
in cohomology by the exact sequence

(5.1) 0→ Z ×2−−−→ Z→ Z2 → 0 .

Proposition 5.3.23. — Let V be a compact non singular geometrically ra-
tional real algebraic surface. We then have that

β(H1(V ;Z2)) ⊆ H2
C−alg(V ;Z) .

Proof. — Recall that the group of isomorphism classes of rank 1 topological
C-vector bundles on V is denoted V B1

C(V ). There is a commutative diagram
(see [JP00] for example):

Pic(VC) L7→L|V−−−−−→ V B1
C(V ) L7→L⊗C←−−−−−− V B1

alg(V )

c1

y c1

y w1

y
H2(VC;Z) i∗−−−−→ H2(V ;Z) β←−−−− H1(V ;Z2) .

Here w1 is the morphism induced by the first Stiefel-Whitney class and c1
is the morphism induced by the first Chern class.
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Note that the restriction morphism L 7→ L|V in the first line is surjective
and in this case the morphisms c1 and w1 are also surjective (see [JP00, Proof
of Claim 2]). Recall also that by Corollary 5.3.22 we have that H2

C−alg(V ;Z) =
i∗(H2(VC;Z)).

Remark 5.3.24. — In the above proof we have used the fact that the
morphisms w1 : V B1

alg(V ) → H1(V ;Z2) and c1 : Pic(VC) → H2(VC;Z)) are
surjective. This does not hold for a general non singular projective sur-
face because the surjectivity of c1 fails as soon as pg(VC) > 0. Indeed,
dimH2,0(VC) = pg(VC) and the image of c1 is contained in H1,1(VC) (see
Theorem D.9.3). All K3 surfaces, abelian surfaces, bi-elliptic surfaces, as well
as most properly elliptic surfaces and surfaces of general type, satisfy pg > 0.

Let V1, V2, . . . , Vs be the connected components of V and assume for sim-
plicity that the centre P of the blow up belongs to V1. The blown up surface
BPV is diffeomorphic to the disjoint union of BPV1 = V1#RP2 and the other
connected components of V .

Proposition 5.3.25. — Via the identification

H2(BPV ;Z) ' H2(BPV1;Z)⊕H2(V2;Z)⊕ · · · ⊕H2(Vs;Z),

we get an inclusion H2(BPV1;Z) ⊆ H2
C−alg(BPV ;Z).

Proof. — Consider the cohomology exact sequence induced by multiplication
by 2 (see the exact sequence (5.1) preceding the proof of Proposition 5.3.23)

· · · → H1(BPV ;Z2) β−−−→ H2(BPV ;Z) ×2−−−→ H2(BPV ;Z)→ · · ·

As BPV1 is connected and non orientable the group H2(BPV1;Z) is iso-
morphic to Z2 by Theorem B.5.7 and Corollary B.4.2. It is therefore
contained in the kernel of the morphism ×2. It follows that the subgroup
H2(BPV1;Z) of H2(BPV ;Z) is contained in the image of the Bockstein
morphism β : H1(BPV ;Z2)→ H2(BPV ;Z). The result follows from Proposi-
tion 5.3.23.

Remark 5.3.26. — Let V be a non singular compact real affine algebraic
surface. If the homology of some non singular complexification VC has no
2-torsion then H∗(VC;Z) ⊗ Z2 ' H∗(VC;Z2) (see Section B.4) and it follows
that H∗(VC;Z)⊗ Z2 ' H∗(VC;Z2). Moreover we have that H2(V ;Z)⊗ Z2 '
H2(V ;Z2) ' (Z2)s where s is the number of connected components of the
compact topological surface V .
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As above, we denote by i the inclusion of V in its complexification VC
(resp. BPV in BPVC) and set H2

C−alg(V ;Z2) = i∗(H2
alg(VC;Z2)). Note that

H2
C−alg(V ;Z2) = i∗(H2(VC;Z2)) ' H2

C−alg(V ;Z) ⊗ Z2. By the above discus-
sion, Proposition 5.3.25 then implies the following result:

Corollary 5.3.27. — Let V1 be a connected component of V and let Q
be a point on BPV1. The Poincaré dual class D−1

BPV
([Q]) then belongs to

H2
C−alg(BPV ;Z2).

Remark 5.3.28. — Corollary 5.3.27 turns out to hold for any non singular
real projective algebraic surface V . Let P be a real point of V , let E = π−1(P )
be the exceptional curve and let E be the complex line bundle associated to
EC: we then have that i∗(c1(E)) = c1(L ⊗ C), where L is the real line bundle
associated to E.

By characteristic class theorem (see [MS74, Exercise 15-D]) we have that
c1(L ⊗ C) = β(w1(L)). Reducing β(w1(L)) modulo 2 we obtain D−1

BPV
([Q]),

the element ofH2(BPV ;Z2) generating the subspaceH2(BPV1;Z2), and hence
i∗([c1(E)]2) = [β(w1(L))]2 = D−1

BPV
([Q]).

The following corollary remains valid, with the same proof, for an arbitrary
non singular real projective algebraic surface.

Corollary 5.3.29. — If D−1
V ([P ]) belongs to H2

C−alg(V ;Z2) then H2
C−alg(BPV ;Z2) =

π∗(H2
C−alg(V ;Z2)). Otherwise, there is a canonical decomposition

H2
C−alg(BPV ;Z2) = π∗(H2

C−alg(V ;Z2))⊕D−1
BPV

([Q]).

Proof. — Since π : BPV → V is a blow up centred at P , π is a morphism
inducing an isomorphism from BPV \ E to V \ {P}. As V and BPV are
surfaces, π induces an isomorphism π∗ : H2(V ;Z2) → H2(BPV ;Z2). As π is
a morphism, the isomorphism π∗ satisfies

π∗(H2
C−alg(V ;Z2)) ⊆ H2

C−alg(BPV ;Z2) .

We complete the proof by recalling that we can identify

π∗(H2
C−alg(V ;Z2) ∩ (H2(V2;Z2)⊕ · · · ⊕H2(Vs;Z2)))

with
H2

C−alg(BPV ;Z2) ∩ (H2(V2;Z2)⊕ · · · ⊕H2(Vs;Z2))

and π∗(D−1
V ([P ])) = D−1

BPV
([Q]).
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Proposition 5.3.30. — Let V be a non singular compact real affine alge-
braic surface. Let i : V ↪→ VC be its inclusion in a non singular projective
complexification. The morphism i∗ : H2(VC;Z)→ H2(V ;Z) is then surjective
if and only if i∗ : H2(VC;Z2)→ H2(V ;Z2) is surjective.

Proof. — A non singular compact real affine algebraic surface V satisfies
2H2(V ;Z) ⊆ Im(i∗) by [JP00, Claim 1, proof of Theorem 1.1]. The result
follows by Remark 5.3.26 and the linear algebra lemma below.

Lemma 5.3.31. — Let A and B be abelian groups and let h : A → B be a
group morphism. Let h2 : A2 → B2 be the morphism obtained by reduction
modulo 2 and assume that 2B ⊆ Im(h). If the morphism h2 is surjective then
so is h.

Proposition 5.3.32. — Let V be a non singular compact real affine algebraic
surface and let VC be a non singular projective complexification. The blow
up BPVC of VC at a point P in V ⊂ VC is then a non singular projective
complexification of BPV . Assume that the restriction morphism

i∗ : H2(VC;Z2)→ H2(V ;Z2)

is surjective. The morphism

i∗ : H2(BPVC;Z2)→ H2(BPV ;Z2)

is then also surjective.

Proof. — Let Pj ∈ Vj , j = 1, . . . , s be points such that

D−1
V ([P1]), D−1

V ([P2]), . . . , D−1
V ([Ps])

generate H2(V ;Z2). Since P belongs to V1 and BPV is the blow up of
V centred at P , D−1

BPV
([P2]), . . . , D−1

BPV
([Ps]) belongs to H2(BPV ;Z2).

Moreover, since the restriction morphism i∗ is supposed surjective, the
classes D−1

BPV
([P2]), . . . , D−1

BPV
([Ps]) are also contained in the image

i∗(H2(BPVC;Z2)). The result follows from Corollary 5.3.29.

Proof of Proposition 5.3.20. — Case 1. If Γ(V ) = 0 then i∗ : H2(VC;Z) →
H2(V ;Z) is surjective. By Proposition 5.3.30, i∗ : H2(VC;Z2)→ H2(V ;Z2) is
also surjective, as is i∗ : H2(BPVC;Z2) → H2(BPV ;Z2) (Proposition 5.3.32).
It follows that i∗ : H2(BPVC;Z) → H2(BPV ;Z) is surjective by Proposi-
tion 5.3.30 and finally we get that Γ(BPV ) = 0.
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Case 2. If Γ(V ) = Z2, it is easy to check that Γ2(V ) = Z2 (here we
have set Γ2(V ) = H2(V ;Z2)/H2

C−alg(V ;Z2)). Considering the two possible
cases in Corollary 5.3.29, it is easy to see that Γ2(BPV ) = 0 and hence
i∗ : H2(BPVC;Z2) → H2(BPV ;Z2) is surjective. We complete the proof as
in the previous case.

Corollary 5.3.33. — Let V be a non singular compact geometrically rational
real algebraic surface. If V is not connected then the space R(BPV,S2) is dense
in C∞(BPV,S2) for any blow up BPV centred at a point P contained in V .

Calculating Γ(V ). — Given Theorem 5.3.18, Theorem 5.3.13 is a consequence
of the following theorem.

Theorem 5.3.34. — Let V be a non singular compact geometrically rational
real algebraic surface. We then have that

Γ(V ) =


Z if V ≈ S1 × S1

Z2 if V satisfies the hypotheses of Theorem 5.3.35
0 otherwise.

Sketch proof. — As we saw in Proposition 5.3.20, the quotient Γ(V ) is not a
birational invariant.

We prove this theorem using the classification of relatively minimal models
over R presented in Theorem 4.3.23. The case where V is connected has
already been proved (Theorems 5.3.10 and 5.3.18): the remaining possible
models are conic bundles and certain real del Pezzo surfaces of degrees 2 and
1. In each case, the group Γ(V ) can be determined using Theorem 5.3.35,
Proposition 5.3.42 and Proposition 5.3.43.

Theorem 5.3.11 is then a consequence of the following result.

Theorem 5.3.35. — Let V be a non singular real affine algebraic surface.
If V is diffeomorphic to a disjoint union of four spheres and has a complexi-
fication VC which is a degree 2 del Pezzo surface then Γ(V ) = Z2.

Remark 5.3.36. — The following statement is equivalent to Theorem 5.3.35.
Let (X,σ) be a non singular projective R-surface such that X(R) ≈ t4S2 and
which has an R-minimal model (X0, σ0) which is a degree 2 del Pezzo surface.
We then have that Γ(X(R)) = Z2.

We need some auxiliary results before giving the proof of the theorem.
Let i : V ↪→ VC be the canonical injection of a non singular compact real
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Figure 5.1. Degree 2 del Pezzo surface defined by Equation (4.6),
page 227. See also Figure 4.4.

affine algebraic surface into a non singular projective complexification. The
differentiable manifolds VC and V are compact and VC is orientable. If V
is also orientable we can define the Gysin morphism i! via the commutative
diagramme:

(5.2)

H2(VC;Z) i∗−−−−→ H2(V ;Z)

D−1
VC

x' D−1
V

x'
H2(VC;Z) i!−−−−→ H0(V ;Z)

where DVC (resp. DV ) is the Poincaré duality isomorphism (Proposi-
tion 3.1.8) of the compact oriented topological manifold VC (resp. V ).

Remark 5.3.37. — If V is non orientable we can use a similar argument
with coefficient group Z2.

Lemma 5.3.38. — Let S be a closed differentiable submanifold of dimension
2 in VC which is transverse to V . We then have that

i!([S]) = [S t V ] .

Proof. — See Section B.7.

We can therefore describe the image of the fundamental class of certain
complex curves under the Gysin morphism i! : H2(VC;Z) −→ H0(V ;Z) in the
following way. In the underlying differentiable manifold structure VC is of
dimension 4 and V is of dimension 2. Let L ⊂ VC be a complex algebraic
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curve. Outside of a finite number of points L is also a topological submanifold
of dimension 2 in VC and if L is transverse to V in VC then we have that

i!([L]) = [L t V ] .

Proposition 5.3.39. — Let V be a non singular compact geometrically ra-
tional real algebraic surface. If V is orientable then

Γ(V ) ' H0(V ;Z)/ Im i! .

Proof. — By Diagram (5.2), page 319 we have that Im i∗ ' Im i! and the
isomorphism follows from Corollary 5.3.22.

Sketch proof of Theorem 5.3.35. — We want to calculate the image of i!. If
(X,σ) is a degree 2 real del Pezzo surface then the homology group H2(X;Z)
is generated by classes of exceptional curves and the hyperplane section. The
anti-canonical map ϕ−KX : X → P2(C) is a double cover of the plane branched
along a quartic R-curve ∆. The (−1)-curves of X are sent by ϕ−KX to the
bitangents of ∆. When X(R) ≈

⊔
4S2, the R-curve (∆, σP|∆) is maximal, by

which we mean that ∆(R) ≈
⊔

4S1, and all the bitangents are real.
We complete the proof by showing that the (−1)-curves in X are non real

and are transverse to X(R) in X. The theorem follows from our detailed
knowledge of the possible configurations of bitangents of a plane quartic- see
[Zeu74] for more details. The interested reader will find the details of this
proof in [JPM04, §5].

Example 5.3.40. — Let (∆, σP|∆) ⊂ (P2(C), σP) be a non singular plane
R-curve of even degree and let ϕ : (X,σ)→ (P2(C), σP) be one of the two real
double covers branched along ∆ (see the proof of Theorem 3.3.14). Let L be
an R-line tangent to ∆ and let P ∈ ∆ ∩ L be a simple tangency point. In
an analytic neighbourhood of P the surface X is defined by one of the two
equations z2 = ±(y−x2) and in the plane z = 0 the curves ∆ and L are given
by equations y = x2 and y = 0.

Let C := ϕ−1(L) be the inverse image of L in X. Locally analytically in a
neighbourhood of P inX the complex curve C has equation {y = 0, (z−x)(z+
x) = 0} or {y = 0, (z − ix)(z + ix) = 0}. Globally, C can be either reducible
or irreducible. Suppose that C is reducible. In this case C decomposes as
C = E + τE where τ is the involution of the double cover. For one of the
two real structures, E and τE are defined over R and for the other they are
conjugate complex curves. In the latter case, since the complex surface X is
non singular, the local ring of regular functions is factorial and E (resp. τE)
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has a local equation {y = 0, z − ix = 0} (resp. {y = 0, z + ix = 0}). The
tangent plane at P of the topological surface X(R) in the manifold X of real
dimension 4 is generated by ∂

∂x1
and ∂

∂z1
where x = x1 + ix2, y = y1 + iy2 and

z = z1 + iz2. It is easy to check that the tangent plane at P of the topological
surface E in X is generated by ∂

∂x1
+ i ∂

∂x2
and i ∂

∂z1
− ∂

∂z2
. It follows that E is

transverse to X(R) at the point P in X.

Remark 5.3.41. — The key point here is the reducibility of i−1(L), which
is global information.

Proposition 5.3.42. — Let V be a non singular real affine algebraic surface
which is diffeomorphic to the disjoint union of four spheres and a real projec-
tive plane and which has a complexification VC which is a degree 1 del Pezzo
surface. The quotient group Γ(V ) is then trivial.

Proof. — See [JPM04, Theorem 6.1].

Proposition 5.3.43. — Let V be a non singular compact geometrically ra-
tional real algebraic surface. Assume that VC has a conic bundle structure.
If V is not connected, or in other words if V is not rational over R, then
Γ(V ) = 0.

Proof. — See [JPM04, Proposition 4.2].

Sketch proof of Theorem 5.3.14. — (See [Man06, Theorem 1.1] for a full
proof). Let V be a non singular real algebraic surface with a complexification
that has a conic bundle structure over a non rational base. We generalise
Proposition 5.3.39 to the non geometrically rational and non orientable
case. This reduces the problem to an examination of the incidence relations
between V and real or complex curves in VC. The Néron Severi group NS(VC)
is generated by the class of a fibre, the class of a (not necessarily real) section
and by the classes of those complex (−1)-curves that meet their conjugates.
It is easy to deal with the (real) fibre class. We deal with the (−1)-curves
using a transversality argument similar to the one used for del Pezzo surfaces.
The tricky part of the proof is dealing with the class of a section.

Regulous functions. — This subsection is based on section 5 of the survey
article [Man17a].

Approximation of smooth maps by regular maps is still an open problem in
general. For example, the question of the existence of algebraic representants
in each homotopy class of continuous maps between spheres is not completely
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solved at the time of writing- see [BCR98, Chapter 13] for more details. Here
is an example of the kind of theorem that can be proved: if n is a power of two
and p < n then any polynomial map from Sn is Sp is constant. See [BCR98,
Theorem 13.1.9] for more details.

In [Kuc09], Kucharz introduced the notion of continuous rational maps
generalising regular maps between real algebraic varieties. The special case
of continuous rational functions was also studied by Kollár and Nowak- see
[KN15] for more details. Continuous rational maps between non singular real
algebraic varieties are now often called regulous maps as in [FHMM16]. If
the variety is singular, these two notions can differ (see [KN15] or [Mon18]).

Definition 5.3.44. — Let V and W be non singular geometrically irre-
ducible real affine algebraic varieties. A regulous map from V to W is a
rational map f : V → W satisfying the following property: if U ⊂ V is the
domain of f then the restriction of f to U can be extended to a map from V

to W which is continuous in the Euclidean topology.

Kucharz proved that all homotopy classes of continuous maps between
spheres contain regulous maps.

Theorem 5.3.45. — Let n and p be two strictly positive integers. Any con-
tinuous map from Sn to Sp is homotopic to a regulous map.

Proof. — See [Kuc09, Theorem 1.1].

The article [FHMM16] laid the foundations for regulous geometry, namely
the definitions and basic properties of the algebra of regulous functions and
the associated topology, which we now summarise. Recall that a rational
function f on Rn is said to be regular on Rn if and only if f has no poles in
Rn (Definition 1.2.35): for example, the rational function f(x) = 1/(x2 + 1)
is regular on R. The set of regular functions on Rn is a subring of the field
R(x1, . . . , xn) of rational functions on Rn. A regulous function on Rn is a
real valued function on Rn which is continuous in the Euclidean topology and
whose restriction to some non empty Zariski open subset is regular. A typical
example is the function defined by

f(x, y) = x3

x2 + y2 , f(0, 0) = 0

which is regular on R2 \ {0} and regulous on R2. Its graph is the head of the
famous Cartan umbrella met in Chapter 1, Figure 1.5.
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The set of regulous functions on Rn is a subring R0(Rn) of the field
R(x1, . . . , xn). More generally, a real valued function defined on Rn is said to
be k-regulous if and only if it is regular on a non empty Zariski open set and
Ck on Rn. Here, k ∈ N ∪ {∞}. For example, the function defined by

f(x, y) = x3+k

x2 + y2

is k-regulous on R2 for any natural number k′ ≤ k. By [FHMM16,
Théorème 3.3], any∞-regulous function on Rn is in fact regular (the converse
is immediate) and this gives us an infinite chain of subrings

R∞(Rn) ⊆ · · · ⊆ R2(Rn) ⊆ R1(Rn) ⊆ R0(Rn) ⊆ R(x1, . . . , xn).

where Rk(Rn) is the subring of R(x1, . . . , xn) of k-regulous functions.
The k-regulous topology is the topology whose closed sets are the vanishing

loci of k-regulous functions. Figure 5.2 below, which reproduces Figure 1.8 of
Chapter 1, is the algebraic subset of R3 defined by the equation x2 + y2((y −
z2)2 + yz3) = 0.

Figure 5.2. Horned umbrella.

This set is irreducible in the ∞-regulous topology but reducible in the k-
regulous topology for any natural number k. The "horn" of the umbrella
is closed in the 0-regulous topology because it is the vanishing locus of the
regulous function defined by

(x, y, z) 7→ z2x
2 + y2((y − z2)2 + yz3)

x2 + y4 + y2z4 .
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The "handle" of the umbrella is also closed: it is the set of zeros of the
function (x, y, z) 7→ x2 + y2. The horned umbrella is therefore reducible in the
regulous topology. See [FHMM16, Exemple 6.12] for more details.

Several properties of the ring of regulous functions are established in the
article [FHMM16], notably a strong Nullstellensatz. Their scheme theoretic
properties are analysed and regulous versions of Cartan’s A and B theorems are
proved. A geometric characteristation of prime ideals in Rk(Rn) via vanishing
loci of regulous functions and a relationship between the k-regulous topology
and the topology generated by Euclidean closed Zariski constructible sets are
proved. There are many articles linked to this new field of research and we par-
ticularly recommend the following: [Kuc13, BKVV13, Kuc14a, Kuc14b,
KK16, Kuc16a, Kuc16b, FMQ17, Now17, PP17, KK18, KKK18,
Mon18].

5.4. Diffeomorphisms and biregular maps

Rational models. — Let M be a C∞ differentiable manifold. Recall that
a real algebraic model of M (Definition 5.1.1) is a non singular real affine
algebraic variety V diffeomorphic to M .

By Comessatti’s theorem 4.4.16, if a topological surface M has a rational
real algebraic model then M is diffeomorphic to S2, T2 or a non orientable
connected surface. It has been known for a long time that any rational real
algebraic model of S2, T2 or RP2 is birationally diffeomorphic to Q3,1(R),
Q2,2(R) or P2(R) respectively. (See Example 4.2.19 for the notations). An-
swering a questions of J. Bochnak, it was proved in [Man06, Theorem 1.3]
that the Klein bottle also has a unique rational algebraic model up to bira-
tional diffeomorphism. Surprisingly, it turns out that all rational models of a
given topological surface are birationally diffeomorphic. This was proved by
Biswas and Huisman [BH07, Theorem 1.2].

Theorem 5.4.1. — Two non singular rational real surfaces are birationally
diffeomorphic if and only if they are diffeomorphic.

A different proof from the original proof of [BH07] was given in [HM09].
This alternative proof is based on the fact (conjectured in [BH07]) that the
group of birational diffeomorphisms from the sphere to itself is infinitely tran-
sitive (definition below).
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Automorphisms of the real locus. — The automorphism group of a com-
plex projective algebraic variety is "small"- it is always finite dimensional and
for most varieties it is finite. On the other hand, the group Aut(V ) of bira-
tional diffeomorphisms of a real rational algebraic surface V (which are also
called automorphisms of V ) is rather "big", as the following result shows.

Definition 5.4.2. — Let G be a group acting on a set M and let n > 0 be
an integer. We say that G acts n-transitively on M if for any pair of n-uplets
(P1, . . . , Pn) and (Q1, . . . , Qn) of distinct elements of M there is an element g
in G such that g · Pj = Qj for every j. The group G is said to act infinitely
transitively(7) on M if and only if for any strictly positive integer n its action
is n-transitive on M .

Theorem 5.4.3. — Let V be a compact connected non singular rational
real algebraic surface. For any natural number n the group Aut(V ) acts n-
transitively on V .

Proof. — We refer to [HM09] for the full proof, which we now illustrate by
showing how to construct many birational diffeomorphisms when V is the
sphere Q3,1(R) ' S2. Let I be the interval [−1, 1] in R and let S1 ⊂ R2 be the
unit circle. Consider a regular map f : I → S1: the two components of f are
then rational functions of one variable without poles in I. We define a map,
called the twisting map associated to f , given by φf : S2 → S2

φf (x, y, z) = (f(z) · (x, y), z)

where · is complex multiplication in R2 = C. In other words, (x, y) 7→ f(z) ·
(x, y) is a rotation in the Rx,y plane depending algebraically on z. The map
φf is a birational diffeomorphism from S2 to itself. Its inverse is φg where
g : I → S1 sends z to the multiplicative inverse (f(z))−1 of f(z). Now, consider
n distinct points z1, . . . , zn in I and let ρ1, . . . , ρn be elements in S1. By
Lagrange’s interpolation theorem, there is a regular map f : I → S1 such
that f(zj) = ρj for any j = 1, . . . , n. Multiplication by ρj is then a rotation
in the plane z = zj : there is therefore a twisting map φf which moves n
distinct points P1, . . . , Pn on the sphere to n given points R1, . . . , Rn provided
that any pair of points Pj , Rj with the same value of j belong to the same
horizontal plane (z = const). Let (P1, . . . , Pn) and (Q1, . . . , Qn) be n-uplets of
distinct elements of S2. We get a birational diffeomorphism from S2 to itself

(7)In the litterature an infinitely transitive group action is sometimes said to be very tran-
sitive.
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sending Pj to Qj by simply considering two transverse families of parallel
planes to obtained n intersection points Rj as in Figure 5.3. The fact that
the transverse families of parallel planes can be chosen in such a way that the
lines of intersection meet the sphere is established in [HM09, Theorem 2.3].

Q1

P2

R2

R1

R3

Q2

P1

P3

Q3

Figure 5.3. The sphere S2 with two parallel families of lines.

After linear change of coordinates the above construction yields two twisting
maps, one which sends Pj to Rj for j = 1, . . . , n and the second which sends Rj
toQj for j = 1, . . . , n. The composition of these two maps is the automorphism
we seek.

Remark 5.4.4. — By induction on the dimension we can prove using the
same construction that the group Aut(Sd) where Sd is the quadric hypersurface
Qd+1,1(R) := Z(x2

1 + x2
2 + · · · + x2

d+1 − x2
0) ⊂ Pd+1

x0:x1:···:xd+1(R) acts infinitely
transitively on Sd for any d > 1.

The above theorem can be generalised to any real algebraic surface in the
following form. The action of the group Aut(V ) on V is said to be infinitely
transitive on each connected component if and only if for any n ≥ 1 and any
pair of n-tuplets (P1, . . . , Pn) and (Q1, . . . , Qn) of distinct elements of V such
that for any j, Pj and Qj belong to the same connected component of V , there
is a birational diffeomorphism f : V → V such that f(Pj) = Qj .
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Theorem 5.4.5. — Let V be a non singular compact real affine algebraic
surface. The group Aut(V ) of birational diffeomorphisms from V to V is
infinitely transitive on each connected component of V if and only if #π0(V ) 6
3 and V is geometrically rational.

Proof. — See [BM11, Proposition 41].

Remark 5.4.6. — We mention two other transitivity results. By [HM10], if
V is a compact connected real rational algebraic surface with certain types of
singularities(8) then Aut(V ) acts n-transitively on V for any n. By [KM12],
if V is an affine suspension then the special linear group SAut(V ) acts n-
transitively on V for all n.

Cremona groups of real surfaces. — Recently, progress has been made
in the study of sets of generators of the group Aut(V ) for several specific
rational surfaces V . These groups are conjugate to subgroups of the real
Cremona group BirR(P2) of birational transformations with real coefficients.

The Noether-Castelnuovo theorem [Cas01] (see [AC02, Chapter 8] for a
modern presentation of the proof) describes a set of generators of the group
BirC(P2) of birational transformations of the complex projective plane. This
group is generated by the biregular maps AutC(P2) = PGL(3,C) and the
standard quadratic transformation

σ0 : (x : y : z) 99K (yz : xz : xy).

This result does not hold over the real numbers. We recall that a base point
of a birational transformation is a (possibly infinitely near) point at which the
transformation is not defined, and we note that two of the base points of the
quadratic involution

σ1 : (x : y : z) 99K (y2 + z2 : xy : xz)

are not real. The involution σ1 therefore cannot be constructed using real
projective transformations and σ0. More generally, we cannot obtain any
transformation with non real base points in this way and it follows that the
group BirR(P2) of birational transformations of the real projective plane is not
generated by AutR(P2) = PGL(3,R) and σ0.

(8)More precisely, V is assumed dantesque, by which we mean that V is a singular surface
obtained from a non singular surface by weighted blow ups. See [HM10] for more details.
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The main result of [BM14] is that BirR(P2) is generated by AutR(P2), σ0,
σ1 and a family of birational transformations of degree 5 whose base points
are all non real.

Example 5.4.7 (Standard quintic transformation)
Let p1, p1, p2, p2, p3, p3 ∈ P2(C) be three pairs of non real points on

P2(C) which do not lie on the same conic. Let π : X → P2(C) be the blow up
of these three pairs of points: π induces a birational diffeomorphism X(R)→
P2(R). We note that the complex surface X thus obtained is isomorphic to
a non singular conic in P3(C). The set of strict transforms of conics passing
through five of the six points is a family of three pairs of non real (−1)-curves
(which are lines on the cubic), and these six curves are pairwise disjoint.
The contraction of these six curves gives us a birational map η : X → P2(C)
inducing a birational diffeomorphism X(R) → P2(R) contracting the (−1)-
curves to three pairs of non real points q1, q1, q2, q2, q3, q3 ∈ P2(C). Permuting
if necesssary, we can assume that qi is not in the image of the conic which
avoids pi. The birational map ψ = ηπ−1 : P2(C) 99K P2(C) induces a birational
diffeomorphism P2(R)→ P2(R).

Let L ⊂ P2(C) be a general line in P2(C). The strict transform of L on
X under π−1 has self intersection 1 and meets each of the six curves con-
tracted by η in two points because they derive from conics. The image ψ(L)
has six singular points of multiplicity 2 and self intersection 25: it is there-
fore a quintic with a double ordinary point at each of the points qi. As the
constructions of ψ−1 and ψ are symmetric, the linear system associated to ψ
is formed of quintics in P2(C) with an ordinary double point at each of the
points p1, p1, p2, p2, p3, p3.

We can moreover check that ψ sends the pencil of conics passing through
p1, p1, p2, p2 to the pencil of conics passing through q1, q1, q2, q2, and similarly
for the two other pencils of real conics, those passing through p1, p1, p3, p3 and
those passing through p2, p2, p3, p3).

Definition 5.4.8. — The degree 5 birational maps of P2 constructed in
Example 5.4.7 are called the standard quintic transformations of P2.

Theorem 5.4.9. — The group BirR(P2) is generated by AutR(P2), σ0, σ1
and the standard quintic transformations of P2.

Proof. — See [BM14, Theorem 1.1].
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Remark 5.4.10. — It has since been proved that the set of generators given
above is essentially minimal: in particular, BirR(P2) cannot be generated by
AutR(P2) and a countable set of elements. See [Zim18, Theorem 1.1].

The strategy used to prove Theorem 5.4.9 is based on a detailed study
of Sarkisov links. This methods enables [BM14] to study several natural
subgroups of BirR(P2) in a similar way: in particular, they recover in this
article the system of generators of Aut(P2(R)) given in [RV05, Teorema II]
and the system of generators of Aut(Q3,1(R)) given in [KM09, Thm. 1].

Theorem 5.4.11. — For a given R-variety (X,σ), Aut(X(R)) denotes the
group of birational diffeomorphisms of the real locus to itself.

1. The group Aut(P2(R)) is generated by AutR(P2) = PGL(3,R) and the
standard quintic transformations (see Example 5.4.7 above).

2. The group Aut(Q3,1(R)) is generated by AutR(Q3,1) = PO(3, 1) and the
standard cubic transformations (see Example 5.4.12 below).

3. The group Aut(F0(R)) is generated by AutR(F0) ' PGL(2,R)2 oZ2 and
the involution

τ0 : ((x0 : x1), (y0 : y1)) 99K ((x0 : x1), (x0y0 + x1y1 : x1y0 − x0y1)) .

Note that Aut(Q3,1(R)) and Aut(F0(R)) are not really subgroups of
BirR(P2), but each of them is isomorphic to a subgroup which is determined
up to conjugaison. For any choice of birational map ψ : P2 99K X (X = Q3,1
or F0) we have that

ψ−1 Aut(X(R))ψ ⊂ BirR(P2) .

Example 5.4.12 (Standard cubic transformations)
Let p1, p1, p2, p2 ∈ Q3,1 ⊂ P3 be two pairs of non real points which are

conjugate and not coplanar. Let π : X → Q3,1 be the blow up of these four
points. The non real plane in P3 passing through p1, p1, p2 meets Q3,1 in a
conic C of self intersection 2, since two general conics on Q3,1 are hyperplane
intersections and therefore meet in two points lying on the intersection line
of the hyperlanes. The strict transform of this conic C on X is therefore
a (−1)-curve. Proceeding similarly with all the conics passing through three
points out of p1, p1, p2, p2, we obtain four disjoint (−1)-curves on X, which can
be contracted to get a birational morphism η : X → Q3,1. The surface thus
obtained is indeed Q3,1 because it is a non singular rational projective surface
with real Picard number 1. This gives us a birational map ψ = ηπ−1 : Q3,1 99K
Q3,1 which induces a birational diffeomorphism Q3,1(R)→ Q3,1(R).
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Let H ⊂ Q3,1 be a general hyperplane section: the strict transform of
H on X under π−1 has an intersection 2 with each of the four (−1)-curves.
The image ψ(H) has four points of multiplicity 2 and self intersection 18: it is
therefore a cubic section. As the constructions of ψ and ψ−1 are symmetric, the
linear system of ψ is formed of cubic sections of multiplicity 2 at p1, p1, p2, p2.

Definition 5.4.13. — The degree three birational maps of P2 constructed
in Example 5.4.12 are called the standard cubic transformations of P2.

We refer to [Rob16], [Yas16], [RZ18] and [Zim18] for recent results on
the Cremona group BirR(P2). In particular, the abelianisation of BirR(P2) has
been calculated: the result is particularly surprising as the complex Cremona
group BirC(P2) is a perfect group. See [CD13] for more details. We recall
that a group is perfect if and only if it is equal to its derived subgroup or in
other words if its abelianisation (Definition B.3.8) is trivial.

BirC(P2)/[BirC(P2),BirC(P2)] ' {id} .

Theorem 5.4.14. — The abelianisation of BirR(P2) is isomorphic to

BirR(P2)/[BirR(P2),BirR(P2)] '
⊕
R

Z2 .

Proof. — See [Zim18, Theorem 1.2].

Density of birational diffeomorphisms. — One of the most famous ap-
plications of Nash’s theorem (Introduction, page 6) is the Artin-Mazur the-
orem below. For any endomorphism f : M → M of a compact differentiable
manifold M of class C∞ without boundary we denote by Nν(f) the number
of isolated periodic points of f of period ν (ie. the number of isolated fixed
points of fν).

Theorem 5.4.15. — Let M be a compact C∞ manifold without boundary(9)

and let C∞(M) := C∞(M,M) be the space of C∞ endomorphisms equipped
with the C∞ topology. There is a dense subspace A ⊂ C∞(M) such that if
f ∈ A then Nν(f) grows at most exponentially with ν, or in other words there
is a constant c := c(f) < +∞ such that

Nν(f) 6 cν for any ν > 1.

Proof. — See [AM65].

(9)In fact, this theorem holds for Ck manifolds for any k = 1, . . . ,∞.
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The proof of the Artin-Mazur theorem uses the fact that any C∞ endomor-
phism ofM can be approximated by Nash diffeomorphisms (Definition B.2.4).
The reader should be aware of an important difference between Nash diffeo-
morphisms and birational diffeomorphisms. A diffeomorphism which is a ra-
tional map without real poles is a Nash diffeomorphism but is not necessarily
a birational diffeomorphism because there is no guarantee the inverse map is
rational. For example, the map x 7→ x + x3 is a Nash diffeomorphism from
R to itself but it is not birational because the inverse map is written using
radicals. This phenomenon arises because the inverse function theorem holds
in the analytic category but not in the algebraic category. It is then natural to
ask the following question: for a given non singular real algebraic variety V ,
is the group Aut(V ) of birational diffeomorphisms dense in the group Diff(V )
of diffeomorphisms from V to itself? The answer is yes for rational surfaces.

Theorem 5.4.16. — Let S be a connected compact topological surface with-
out boundary and let Diff(S) be its group of diffeomorphisms with the C∞
topology.

If S is non orientable or of genus g(S) ≤ 1 then there is a real rational
model V of S such that

Aut
(
V
)

= Diff
(
V
)
' Diff

(
S
)

or in other words Aut
(
V
)
is a dense subgroup Diff

(
V
)
in the C∞ topology.

Proof. — See [KM09, Theorem 4].

Remark 5.4.17. — If S is orientable of genus g(S) ≥ 2 then for any real
algebraic model V of S we have that Aut

(
V
)
6= Diff

(
V
)
. Let V be a compact

connected orientable non singular real affine algebraic surface and let VC be a
minimal non singular complex projectivisation of V . Such a complexification
exists because V is orientable. By the classification of R-surfaces (Chapter 4),
we are in one of the following situations:

1. If κ(V ) = −∞ then V ≈ S2 or V ≈ S1 × S1 ;
2. If VC is a K3 surface or an abelian surface, κ(V ) = 0, then Aut

(
V
)

preserves a volume form.
3. If VC is an Enriques surface or a bi-elliptic surface, κ(V ) = 0, then it has

a finite covering by a K3 surface or an elliptic surface;
4. If VC is a properly elliptic surface, κ(V ) = 1, then Aut

(
V
)
preserves the

canonical elliptic fibration
5. If V is of general type, κ(V ) = 2, then Aut

(
V
)
is finite. See [Uen75],

for example; for a proof.
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In short, if g(S) > 1 then for any real algebraic model V of S density fails.

The above theorem has been generalised to geometrically rational surfaces.

Theorem 5.4.18. — Let V be a geometrically rational compact surface. We
then have that

1. If #π0(V ) > 4 then Aut(V ) is not dense in Diff(V ).
2. If #π0(V ) = 3 or 4 then Aut(V ) may not be dense in Diff(V ).

Proof. — Voir [BM11, Proposition 41].

At the time of writing there are still cases of varieties for which #π0(V ) = 3
or #π0(V ) = 4 and we do not know whether Aut(V ) is dense in Diff(V ) or
not. Similarly, the case where there are two connected components is still
open.

Approximation by rational curves. — We end this section with an im-
portant application of the density theorem 5.4.16. We start with an example.

Example 5.4.19. — Consider the rational curve parameterised by
f : R −→ R2

t 7−→
(
t2 + 1, t(t2 + 1)

)
whose image set is represented in Figure 5.4.

Figure 5.4. Image of R under f : t 7−→
(
t2 + 1, t(t2 + 1)

)
.

Prolonging f to the compactification P1(R) of R and composing with a
birational map R2 99K V to a rational surface V , we get a regular map P1(R)→
V , or in other words a rational curve in V .
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J. Bochnak and W. Kucharz proved that all differentiable maps S1 → V

from the circle S1 ≈ P1(R) to a rational variety by rational curves can be
approximated by rational curves.

Definition 5.4.20. — Let f : S1 → V be a C∞ map. We say that f can
be approximated by rational curves if every neighbourhood of f in C∞

(
S1, V

)
contains a regular map P1(R)→ V .

Theorem 5.4.21. — Let V be a non singular real rational algebraic variety.
Every C∞ map f : S1 → V can then be approximated by rational curves.

Proof. — See [BK99, Theorem 1.1].

Note that the rational curves in this theorem are parameterisations: the
Zariski closure of the image curve may contain extra isolated points.

Example 5.4.22 (Continuation of 5.4.19). — The map f can be natu-
rally extended to the complexifications C of R and C2 of R2.

f : C −→ C2

t 7−→
(
t2 + 1, t(t2 + 1)

)
.

The image set then contains an extra real point (Figure 5.5) and in particular

f(R) ( f(C) ∩ R2 .

Figure 5.5. Real locus of the image of C under f : t 7−→
(
t2 +

1, t(t2 + 1)
)
.
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Extending the map f in the above example to P1 we get a map f : P1 → P2,
(u, v) −→

(
v(u2 + v2), u(u2 + v2), v3). The image f(P1(R)) is a simple closed

curve in P2(R) but its Zariski closure, the nodal cubic Z
(
(x2 + y2)z − x3) ⊂

P2(R), has an isolated real point at (0, 0, 1). We can remove this point by
deforming the equation to Z

(
z(x2 + y2 + ε2z2)− x3) or blowing up the point

(0, 0, 1), but the first modification would render the curve elliptic and the
second would change the topology of the surface. We show below how to get
rid of these isolated points using Theorem 5.4.16.

Let (X,σ) be a projective non singular algebraic R-variety and let (C, σ|C) ⊂
(X,σ) be a rational R-curve. Choosing an isomorphism between the normal-
isation C̃ of C and the plane conic Z(x2 + y2 − z2) ⊂ P2, we get a C∞ map
S1 → X(R) whose image coincides with C(R) away from its singular real
points. We call such curves real-smooth.

Definition 5.4.23. — Let f : L ↪→ X(R) be an embedded circle. We say
that L has C∞ approximation by real-smooth rational curves if and only if every
neighbourhood of f in C∞

(
S1, X(R)

)
contains a map S1 → X(R) defined as

above using a rational curve C without isolated singular real points.

It is not always possible to approximate an embedded circle by rational
curves that are non singular at their real points. For example, this is impossible
for a homotopically(10) trivial circle on the torus T2 = P1(R)× P1(R).

Proposition 5.4.24. — Let C ⊂ P1(C) × P1(C) be an algebraic R-curve
which is non singular at its real points. The fundamental class of its real locus

[C(R)] ∈ H1(T2;Z2)

is then non zero.

Proof. — Let E1 (resp. E2) be a vertical (resp. horizontal) complex line in
P1 × P1. The Picard group of P1 × P1 is generated by the classes of E1 and
E2. Any complex algebraic curve D ⊂ P1 × P1 is therefore linearly equivalent
to a linear combination a1E1 + a2E2 with a1, a2 ≥ 0.

If D is an R-curve in P1 × P1 then

ai = (D · E3−i) ≡
(
D(R) · E3−i(R)

)
mod 2.

(10)Recall that π1(T2) ' Z⊕ Z ' H1(T2;Z) and H1(T2;Z2) = H1(T2;Z)⊗ Z2.
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and if [D(R)] = 0 in H1(T2,Z/2) then a1 and a2 are even. By the adjunction
formula (Theorem 4.1.44) we have that

2pa(D)− 2 =
(
a1E1 + a2E2

)
·
(
(a1 − 2)E1 + (a2 − 2)E2

)
= a1(a2 − 2) + a2(a1 − 2)

and hence pa(D) = (a1− 1)(a2− 1). It follows that if a1 and a2 are even then
the arithmetic genus pa(D) is odd. If D is rational then by Proposition 4.1.43
it has an odd number of singular points and at least one of them must be
real.

Surprisingly, this is the only example in which approximation does not hold

Theorem 5.4.25. — An embedded circle L in a compact non singular real
rational algebraic variety V has C∞ approximation by real-smooth rational
curves if and only if the pair (V,L) is not diffeomorphic to the pair (T2, L0)
where L0 is a contractible circle on the torus T2.

Proof. — If dimV > 3 the result can be deduced from Theorem 5.4.21 as
follows. Let f : S1 → V be a C∞ embedding of image L and let VC be a non
singular projective complexification of V . The proof of Theorem 5.4.21 (see
[BK99] for more details) produces approximations of f by restriction to P1(R)
of morphisms g : P1(C) → VC such that g∗TVC is ample. Now, if dimV > 3,
any general small perturbation of a morphism g : P1(C)→ VC such that g∗TVC
is ample is an embedding ([Kol96, II.3.4]).

Suppose now that V is a surface: we give a sketch of the proof in this case
and refer to [KM16, Theorem 3] for the full proof. First of all, if V1, V2 are
diffeomorphic compact non singular real rational algebraic surfaces there is a
birational diffeomorphism g : V1 → V2 by Theorem 5.4.1. Suppose there is a
rational curve C ⊂ V which is non singular at real points and a diffeomorphism

φ :
(
V,L

) ≈−→ (
V,C

)
.

By Theorem 5.4.16, the diffeomorphism φ−1 can be approximated in the
C∞ topology by birational diffeomorphisms ψn : V → V . It follows that

Cn := ψn(C) ⊂ V

is a sequence of rational curves and (Cn)n tends to L in the C∞ topology.
We can resolve the non real points of CC to get an approximation of L by
non singular rational curves C ′n ⊂ Vn. Here, the surfaces Vn are birationally
diffeomorphic to V .
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We complete the proof by giving a list of possible topological pairs and
constructing for every pair except (T2, L0) a real rational model, by which
we mean a non singular real rational algebraic surface V and a real-smooth
rational curve C ⊂ V . As an illustration, we present below the construction
of a real rational algebraic model of the pair (#gT2#RP2, L) where L is a
separating curve concretising the connected sum of the orientable surface #gT2

with RP2. (A connected sum (Definition B.5.12) is constructed by gluing two
surfaces from which a disk has been removed).

Example 5.4.26. — Let L1, . . . , Lg+1 be distinct lines passing through the
origin in R2 and let H(x, y) = 0 be the equation of their disjoint union. For
suitable 0 < ε� 1 let C± ⊂ P2 be the Zariski closure of the image of the unit
circle Z(x2 + y2 = 1) ⊂ R2 under the map

(x, y) 7→
(
1± εH(x, y)

)
(x, y).

The curves C± are rational and meet each other in the 2g+ 2 points where
the unit circle meets one of the lines Li. The curves C+ and C− also meet
in a pair of conjugate points (1 : ±i : 0). Note that (1 : ±i : 0) are the only
points of C± at infinity.

We now use the inverse of stereographic projection centred at the south
pole (see the proof of Proposition 5.3.1) to compactifiy R2 as the quadric
Q3,1 := Z(z2

1 + z2
2 + z2

3 − z2
0) ⊂ P3. Starting with P2 we obtain this projection

by blowing up the pair of points (1 : ±i : 0) and then contracting the strict
transform of the line at infinity.

We think of the equator as the image of the unit circle, giving us rational
curves C± ⊂ Q3,1. Since (1 : ±i : 0) are the only points of C± at infinity, the
south pole does not belong to either of the curves C± so the real points of C±
are all non singular. Moreover, the curves C+ and C− meet at 2g + 2 points
on the equator.

Choose one of these points p and consider C0 := C+ ∪ C− as the image
under a map φ0 of the reducible curve B0 := Z(uv) ⊂ P2

uvw to Q3,1 sending
the point (0 : 0 : 1) to p. By [AK03, Appl.17] or [Kol96, II.7.6.1], φ0 can be
deformed to a morphism

φt : Bt := Z(uv − tw2)→ Q3,1.

Let Ct ⊂ Q3,1 be the image of Bt. For t close to zero with the appropriate
sign, Ct(R) ⊂ S2 = Q3,1(R) goes twice around a neighbourhood of the equator
and has 2g + 1 self-intersection points. See Figure 5.6.
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Figure 5.6. The case g = 2.

We complete the construction by blowing up the 2g+ 1 real singular points
of Ct to get a rational surface Xg → Q3,1. The strict transform of Ct is a
rational curve Cg ⊂ Xg which is non singular at its real points.

The union of the 2g+1 regions of S2\Ct(R) close to the equator is a Möbius
band on Xg(R) \ Cg(R) and the union of the north and south hemispheres is
a copy of a punctured #gT2. It follows that(

Xg(R), Cg(R)
)
≈ RP2#(S2,L)#gT2.

The constructions used in the proof of Theorem 5.4.25 can also be used to
give a purely topological characterisation of the simple connected closed curves
L on S which can be approximated by (−1)-curves, which are rigid objects.

Definition 5.4.27. — Let C ⊂ V be a real algebraic curve on a real algebraic
surface. We say that C is a (−1)-curve if and only if there is a birational
morphism π : V → W such that π(C) is a non singular point of W and π

restricted to V \ C →W \ π(C) is an isomorphism.

This definition is motivated by Castelnuovo’s criterion (Theorem 4.3.4)
which states that there exists such a birational map π : V → W if and only
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if there is a complexification VC of V such that (CC · CC) = −1 (complex
intersection in VC).

Theorem 5.4.28. — Let V be a non singular compact real rational algebraic
surface and let L ⊂ V be a C∞ curve. The following are equivalent.

1. The surface V is non orientable in a neighbourhood of L and one of the
following conditions is satisfied:

– V \ L is a punctured sphere
– V \ L is a punctured torus
– V \ L is non orientable.

2. The curve L is homotopic to a (−1)-curve ;
3. The curve L has C∞ approximation by (−1)-curves.

Proof. — This result can be deduced from [KM16, Theorem 6] or proved
directly as follows. If L is homotopic to a (−1)-curve then the open surface
V \ L is homeomorphic to the real locus of a punctured non singular rational
surface. By Comessatti’s theorem on rational surfaces, we know that the
open surface V \L is non orientable, homeomorphic to a punctured sphere or
homeomorphic to a punctured torus. Theorem 5.4.25, or [KM16, Theorem 3]
implies that these necessary conditions are in fact sufficient.

We end this section with the statement of two conjectures that are still open
at the time of writing.

Conjecture 5.4.29. — [KM16, Conjecture 26.3] Let V be a non singular
rationally connected real affine algebraic variety. A differentiable map S1 → V

of class C∞ can be approximated by rational curves if and only if it is homotopic
to a rational curve P1(R)→ V .

Conjecture 5.4.30. — [BK10, Conjecture 1.12] Given two non singular
real affine algebraic varieties V and W where V is compact and W is rational
any smooth map V → W can be approximated by regular maps if and only if
it is homotopic to a regular map.

We refer the interested reader to [BW18a, BW18b] for recent progress on
these conjectures.
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5.5. Fake real planes

We saw in Theorem 5.4.1 that two compact non singular real rational al-
gebraic surfaces are birationally diffeomorphic if and only if they are diffeo-
morphic. The situation is more complicated for non compact surfaces: in
this section, we present a series of recent results on fake real planes, [DM17,
DM16, BCM+16].

Fake projective planes. — A fake projective plane was defined by Mumford
[Mum79] to be a non singular complex projective surface X which has the
same Betti numbers as the projective plane P2(C) but is not biregularly iso-
morphic to the projective plane.

It would be tempting to define a real fake projective plane to be a complex
fake projective plane with a real structure whose real locus is diffeomorphic to
P2(R) but is not isomorphic to the R-variety (P2(C), σP). Despite the fact that
100 different fake projective planes up to biregular isomorphism are known to
exist [PY07, PY10, CS10], it was proved in [KK02, §5] that none of them
have a real structure, so there is no real fake projective plane.

Proposition 5.5.1. — Let (X,σ) be a non singular projective R-surface such
that the Betti numbers of the complex surface X are

(b0(X), b1(X), b2(X), b3(X), b4(X)) = (1, 0, 1, 0, 1) ,

The R-variety (X,σ) is then isomorphic to the R-variety (P2(C), σP).

Fake real planes. — Analogy with fake projective planes motivates the follow-
ing definition.

Definition 5.5.2. — A fake real plane is a non singular quasi-projective
R-surface (X,σ) which has the same Betti numbers as the affine plane A2(C)

(b0(X), b1(X), b2(X), b3(X), b4(X)) = (1, 0, 0, 0, 0) ,

and whose real locus X(R) is diffeomorphic to R2 but is not isomorphic to the
R-variety (A2(C), σA).

Complex surfaces with the same Betti numbers as the affine plane have been
much studied. They are often called Q-planes or Q-acyclic surfaces.

Definition 5.5.3. — A complex surface whose higher Betti numbers are all
zero is said to be Q-acyclique.

Proposition 5.5.4. — Any complex algebraic Q-acyclic surface is affine and
rational.
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Proof. — See [Fuj82] for a proof of the fact that a Q-acyclic surface is affine
and [GPS97, GP99] for the proof that such a surface is rational.

Corollary 5.5.5. — Let (X,σ) be a fake real plane. The complex algebraic
surface X is then affine and rational.

Given that there are no fake real projective planes it does not seem obvious
that fake real planes exist. We give an example below: it turns out that
there are an infinity of such surfaces and we refer the interested reader to
[DM17, DM16] for more details.

Before presenting our example, we discuss for the sake of completeness the
existence of exotic complex planes.

Theorem 5.5.6. — There are differentiable manifolds not diffeomorphic to
R4 whose underlying topological space is homeomorphic to R4.

Proof. — See [FQ90].

Definition 5.5.7. — Such differentiable manifolds are called exotic R4s.

In the statement below we use simply connectedness at infinity whose precise
definition is rather technical. For a detailed study of homotopy at infinity we
refer to the proof of the main theorem in [Ram71] or [HR96, Chapter 9].
To summarise, simply connectedness at infinity roughly means that the space
has an exhaustion by nested compact sets whose complements are simply
connected from a certain point onwards.

Theorem 5.5.8 (Myanishi, Ramanujam). — Any non singular complex
algebraic surface whose underlying topological space in the strong topology is
contractible and simply connected at infinity is isomorphic to A2(C).

Proof. — See [Ram71].

Corollary 5.5.9. — There is no non singular complex algebraic surface X
such that the underlying four dimensional real differentiable manifold is an
exotic R4.

Remark 5.5.10. — For any n 6= 4, any differentiable manifold whose un-
derlying topological space is homeomorphic to Rn is diffeomorphic to Rn. See
[Sta62] for more details.

We now construct our fake real plane. There are many other examples
described in detail in [DM17, DM16].
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Example 5.5.11 (Ramanujan surface). — Consider the R-curve
D = C ∪Q ⊂ P2

which is the union of a cuspidal cubic C = Z(x2z+y3) and its osculating conic
Q at a general real point q ∈ C(R). The conic Q is therefore a non singular
R-conic meeting C at the real point q with multiplicity 5; Q therefore meets
C transversally at another real point p. We consider the projective surface
Y = BpP2 obtained by blowing up P2 at p. The complement in Y of the

C(R)

p

Q(R)

q

Q(R)

q

Q(R)

C(R)

Ep(R)

Ep(R)

Figure 5.7. Construction of a Ramanujam surface and connected-
ness of the complement.

strict transform D̃ of D, the surface X := Y \ D̃, is a Ramanujam surface, see
[Ram71]. In particular, as explained in [DM17, Example 3.8], the complex
surface X is a contractible surface which is not isomorphic to the affine plane
A2(C). Moreover, by construction, X has a real structure σ induced by σP on
P2(C) and it is easy to check that X(R) is connected and diffeomorphic to R2.
(See the left hand side of Figure 5.7 where Ep is the exceptional curve of the
blow up BpP2 → P2. We recall that the blow up of P2(R) at a point is a Klein
bottle BpP2(R) ≈ K2, see Corollary F.3.2. It follows that (X,σ) is a fake real
plane.

In fact it is possible to construct a series of such Ramanujam surfaces by
blowing up various configurations of points on Ep and only "keeping" the last
exceptional line in the final affine surface. See [DM17, Example 3.8] for more
details.





CHAPTER 6

THREE DIMENSIONAL VARIETIES

Most of this chapter was previously published in [Man14] in the "Gazette
de la SMF".

6.1. The Nash conjecture from 1952 to 2000 via 1914

Rational varieties. — We recall the Nash conjecture, previously discussed
in the Introduction, page 8.

Conjecture. — Any compact connected C∞ manifold of positive dimension
without boundary has a real rational model (Definition 5.1.1).

This conjecture was disproved for non singular projective surfaces in 1914-
before it had even been stated- proved for singular projective threefolds in
the early 90s, disproved in the late 90s for higher dimensional non singular
projective varieties and finally proved for non singular compact non projective
threefolds! We will discuss all these results on properties of different types of
algebraic models in more detail in the rest of this section.

The Nash conjecture for surfaces. — When it was first stated, the Nash
conjecture had already been disproved in dimension 2 by a theorem of Comes-
satti’s proved in Chapter 4 (Corollary 4.4.16), originally published in 1914 in
[Com14]. It seems likely this article had been forgotten by the time Nash was
active.

Theorem (Comessatti’s theorem). — Let X be a non singular projective
R-surface. If X is rational then its real locus X(R) is diffeomorphic to S2,
S1 × S1 or a non orientable surface.
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Note that things change if we replace "non singular" by "possibly singu-
lar". In particular, the real locus of a singular R-surface is not necessarily a
topological manifold (ie. something that is locally homeomorphic to R2) and
hence the notion of diffeomorphism between such surfaces does not always
make sense. This leads us to replace "diffeomorphic" with "homeomorphic" in
the above theorem.

Example 6.1.1 (Real rational models of compact surfaces)
We construct a rational model for any topological surface using [BM92].

Comessatti’s theorem implies that any such model is necessarily singular if the
surface is orientable and of genus greater than 2. We start by constructing a
non singular rational model of any non orientable surface. This can be done by
blowing up k points on the projective plane P2(R) which yields an algebraic
surface Xk such that Xk(R) is non orientable and has Euler characteristic
1 − k. To construct a model of an orientable surface of genus g > 0 we set
k = 2g and choose k = 2g > 0 points lying on a line H. After blowing up
these k points, the strict transform H̃ ⊂ X2g has negative self-intersection
1 − 2g and can be contracted to yield an algebraic surface Yg. If g = 1 the
surface Y1 is non singular and Y1(R) is diffeomorphic to a torus but if g > 1
then Yg is singular at the point P which is the image of H̃ under contraction.
As the self-intersection of H̃ is odd we can check that a small neighbourhood
of P in Yg(R) is homeomorphic to a disc. The surface Yg(R) is therefore
homeomorphic to an orientable surface of genus g. Indeed, as explained in
Appendix F, the topological blow up of an orientable surface Sg of genus g
at a point Q ∈ Sg is diffeomorphic to a connected sum of 2g + 1 projective
planes BQSg ≈ Sg#RP2 ≈ RP2# . . .#RP2 and in particular the fact that
Sg \ {Q} ≈ X2g(R) \ H ≈ Yg(R) \ {P} implies that the surface Yg(R) is
homeomorphic to Sg.

Given these subtle distinctions it seems reasonable to study several different
forms of the Nash conjecture. We summarise in the next section the various
versions of this conjecture which have been proposed in the litterature.

The topological Nash conjecture holds. — We refer to Appendix F for
the definitions of differentiable blow ups and contractions. The following re-
sult, which can be thought of as a topological analogue of the Nash conjecture,
was proved in dimension 3 by Akbulut and King [AK91] and Benedetti and
Marin [BM92] and later proved in all dimensions by Mikhalkin [Mik97].
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Theorem 6.1.2 ([Mik97]). — Any compact connected C∞ manifold without
boundary is diffeomorphic to a C∞ manifold obtained from RPn by a sequence
of differentiable blow ups and contractions.

The projective singular Nash conjecture holds if n 6 3. — The proof
of this theorem in dimension 2 was presented above. In dimension 3, not ev-
ery manifold can be produced by blowing up points and contracting divisors-
we also need certain knot surgeries, where a knot is a circle embedded in a
manifold. For simplicity we restrict ourselves to knots that have an orientable
tubular neighbourhood: in this case the closed tubular neighbourhood is neces-
sarily diffeomorphic to S1×D2. Topologically, any compact 3-manifold without
boundary can be obtained from the sphere S3 by knot surgery. A surgery along
a knot L in a manifold M is the operation of gluing a solid torus T := S1×D2

to the boundary of the complement of an open tubular neighbourhood UL
of L. This gluing is realised via a diffeomorphism ϕ ∈ Diff(S1 × S1) from
the torus S1 × S1 = ∂ (M \ UL) = ∂T to itself. The operation which pro-
duces Mϕ = M \ UL ∪ϕ T from M is called a surgery along L. Benedetti
and Marin proved that apart from a handful of examples which can be dealt
with on a case-by-case basis, most 3-manifolds can be produced from S3 by
blowing up points and performing certain surgeries called déchirures. Their
description of these topological transformations enables them to prove the
topological Nash conjecture in dimension 3: they realise déchirures as alge-
braic operations and this gives them a possibly singular R-variety X and a
resolution of singularities Y → X such that Y is birationally equivalent to
Q4,1 = Z(x2

1 +x2
2 +x2

3 +x2
4−x2

0) ⊂ P4, Y (R) is diffeomorphic to S3 and X(R)
is homeomorphic to M .

Theorem 6.1.3 ([BM92]). — LetM be a compact connected C∞ 3-manifold
without boundary. There is then a (possibly singular) rational projective alge-
braic R-variety X such that X(R) is homeomorphic to M .

Non projective non singular Nash holds for n = 3. — Any non sin-
gular complex projective algebraic variety is also a compact complex analytic
variety if we equip it with the Euclidean topology. (See Appendix D for more
details). Conversely, if the field of meromorphic functions of a compact com-
plex analytic variety is of maximal transcendence degree (which is equal to the
dimension of the variety by Siegel’s theorem [Sie55]) the variety is very close
to being projective. (See [Moi67] for more details). Despite this, the Nash
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conjecture holds in dimension 3 for such varieties even though, as we will see
in Theorem 6.1.9, it fails for projective varieties.

Definition 6.1.4. — A non singular compact complex analytic variety of
dimension n is said to be Moishezon if and only if it has a family of n alge-
braically independent meromorphic functions. (Compare this definition with
the discussion preceding Definition 1.3.37). An real Moishezon variety is a
Moishezon variety with a global anti-holomorphic involution σ : X → X.

Remark 6.1.5. — By [Moi67] (an English translation of [Mŏı66a,
Mŏı66b, Mŏı66c]), any compact non singular complex analytic variety is
Moishezon if and only if it is bimeromorphic to a projective variety.

Any non singular Moishezon surface is projective ([BHPVdV04, IV.5]).
The first examples of 3 dimensional non singular non projective Moishezon
varieties were constructed by Hironaka. See [Har77, Appendix B.3] for more
details..

The following theorem implies that the non projective non singular Nash
conjecture holds for n = 3.

Theorem 6.1.6. — Let M be a three dimensional compact connected C∞
manifold without boundary. There is then a non singular R-Moishezon variety
(X,σ) and a bimeromorphic map π : P3 99K X such that πσ0 = σπ and X(R)
is diffeomorphic to M .

Proof. — See [Kol02, Theorem 1.3].

In fact, the following more specific theorem holds: there is a sequence of
blow ups and contractions along non singular centres (see Appendix F for the
definitions)

P3 = X0
π0
99K X1

π1
99K · · ·

πn−1
99K Xn = X

such that for every i the variety Xi is non singular. Moreover, this sequence is
real in the following sense: each of the varieties has a global anti-holomorphic
involution σi : Xi → Xi such that σ0 = σP, σn = σ and πiσi = σi+1πi for all i.
See [Kol02] for more details.

Kollár proves this result using the Benedetti-Marin classification of what
he calls "topological flops" which are a special case of the déchirures discussed
above. He then shows how to realise these topological flops as algebraic flops.
We briefly describe the special type of algebraic flop used by Kollár. There
is a birational map f : X 99K X ′ which factors as X π←− X1

π′−→ X ′ where π
and π′ have the same exceptional divisor E ⊂ X1, isomorphic to P1 × P1, and
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each of the morphisms contracts one of the two P1 factors. The associated
transformation of the real locus X(R) 99K X ′(R) is then a topological flop.
Conversely, such a transformation of the 3-dimensional variety X can only be
carried out in the presence of a rational curve C ⊂ X embedded in a particular
way:

1. the exceptional divisor E of the blow up π : X1 → X along C must be
isomorphic to P1 × P1,

2. π|E : E → P1 must be projection onto the first fibre,
3. there is a contraction π′ : X1 → X ′ of E whose restriction to E is a

projection onto the second factor.
The first step in the proof of this theorem is the construction of a suit-

able algebraic approximation of certain embedded Möbius bands representing
topological flops. This is done using the approximation theorem 5.4.21. The
second step involves constructing algebraic flops using blow ups that do not
alter the real locus. At the end of this process, the variety X is not generally
projective but remains Moishezon because the function field is invariant under
birational transformation. We refer the interested reader to [Kol01a, § 4] for
more details of this construction.

Non singular projective Nash fails for all dimensions n > 1. — As we
have seen, Comessatti’s theorem refutes the non singular projective Nash con-
jecture for n = 2. The fact that the Nash conjecture fails for non singular pro-
jective varieties of dimension n = 3 follows from Theorem 6.1.9 below, proved
in the series of articles [Kol98b, Kol99a, Kol99b, Kol00]. In particular,
Kollár proved in this theorem that apart from a finite number of possible ex-
ceptions, hyperbolic manifolds (Definition B.8.6) of dimension 3 do not have a
non singular rational projective model (Corollary 6.1.10) and conjectured that
this result generalises. Not long afterwards, Viterbo and Eliashberg confirmed
this conjecture by proving that in dimension n > 2 there is no hyperbolic
manifold with a non singular rational projective model (Corollary 6.1.18).

The results of Kollár and Viterbo-Eliashberg apply to a class of varieties
generalising rational varieties, namely the uniruled varieties mentionned in our
discussion of surfaces (Definition 4.4.1).

Definition 6.1.7. — A real or complex variety X of dimension n is said to
be uniruled if and only if it is dominated by a cylinder of the same dimension,
by which we mean there is a variety Y of dimension n− 1 and a rational map

Y × P1 99K X
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whose image is Zariski dense.

Remark 6.1.8. — The definition above holds whether X is real or complex:
being uniruled is invariant under change of base field. See [Deb01, §4.1,
Remark 4.2(5)] for more details.

As the product variety Pn−1 × P1 is birationally equivalent to Pn, it is
immediate that any rational variety over R or C is uniruled. To see that
Pn−1 × P1 is birational to Pn, consider the rational map

((x0 : · · · : xn−1), (y0 : y1)) 799K (x0y0 : x1y0 : · · · : xn−1y0 : x0y1) .

which induces an isomorphism between the open sets {x0 6= 0} × {y0 6= 0} in
Pn−1
x0:···:xn−1 × P1

y0:y1 and the open set {z0 6= 0} in Pnz0:···:zn .

Kollár’s theorem. — Before stating Kollár’s theorem we need some results on
the classification of three dimensional topological manifolds. Compact con-
nected surfaces without boundary are classified topologically (Theorem E.1.6)
by two invariants: orientability, which is a binary invariant, and the Euler
characteristic, which is an integer. The theory of three dimensional mani-
folds is much richer: we refer the interested reader to Appendix B.8 for a full
discussion of three dimensional manifold theory which is summarised here.

By Theorem B.8.16, any compact topological manifold of dimension 3 is
constructed from "blocks" belonging to one of the following disjoint families:

1. Seifert manifolds (Definition B.8.1) ;
2. Sol manifolds (Definition B.8.8) ;
3. Hyperbolic manifolds (Definition B.8.6).
Note that the lens spaces (Definition B.8.2) appearing in the next result

belong to the first class of manifolds by Proposition B.8.3. A connected sum
of at least two such spaces, however, is not Seifert unless it is RP3#RP3 by
Propositions B.8.11 and B.8.13.

Theorem 6.1.9 (Kollár 1998). — Let X be a non singular projective al-
gebraic R-variety of dimension 3. Suppose that X is uniruled and X(R) is
orientable. Any connected component of X(R) is then diffeomorphic to one of
the following.

1. A Seifert manifold,
2. A connected sum of a finite collection of lens spaces,
3. A Sol manifold,
4. A manifold belonging to a finite list of possible exceptions.
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5. A manifold obtained from one of the above manifolds by taking the con-
nected sum with a finite number of copies of RP3 and a finite number of
copies of S2 × S1.

Proof. — The above result can be deduced from the original statement
([Kol01b, Th. 6.6]) using Proposition 6.2.3. We sketch its proof below.

Corollary 6.1.10. — Apart from a finite number of possible exceptions, ori-
entable hyperbolic manifolds of dimension 3 do not have a non singular unir-
uled projective model.

Remark 6.1.11. — In fact, subsequent results of Kollár’s imply that the
orientability hypothesis can be omitted in 6.1.10. See[Kol99a, Theorem 12.1,
Theorem 1.8, Theorem 1.2], [Kol99b, Theorem 8.3] and [Kol00] for more
details.

Proof of Corollary 6.1.10. — Any hyperbolic manifold M is geometric and
therefore indecomposable by Corollary B.8.12. By Theorem 6.1.9, except for
a finite number of possible exceptions, any indecomposable connected compo-
nent of the real locus of a non singular uniruled orientable projective variety
is a Seifert manifold, a lens space (which is also a Seifert manifold) or a Sol
manifold. None of these manifolds is hyperbolic by Corollary B.8.14.

One of the main difficulties arising in the proof of Theorem 6.1.9 is that
we need to control the modifications of the topology arising when we run the
minimal model program (MMP) over R. Theorem 6.1.13 below enables us to
reduce our general topological classification to certain special manifolds.

Minimal model problem over R. — Starting from a non singular projective
algebraic R-variety (X,σ) de dimension 3 we can carry out a sequence of
"elementary" birational transformations.

X = X0
π0
99K X1

π1
99K · · ·

πn−1
99K Xn = X∗

until we obtain an R-variety (X∗, σ∗) whose global structure is "simple". More-
over, this sequence of transformations is real in the following sense: every va-
riety Xi has a real structure σi : Xi → Xi such that σ0 = σ, σn = σ∗ and
πiσi = σi+1πi for every i.

The price we pay is that the varieties Xi, i > 0 and X∗ are no longer non
singular: we have to extend our class of varieties to include certain types of
relatively mild singularities. The singularities in question are called terminal
singularities- we refer to [Kol98b] for the definition of these singularities and
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their classification on an R-variety of dimension 3. We note that in dimension
3 all such singularities are isolated.

When we say that the global structure is "simple" we mean that X∗ satisfies
one of the conditions below. See [Kol99a, Theorem 3.11] for a more precise
statement.

– The canonical divisor KX∗ is nef (Definition 2.6.41).
– There is a real conic fibration X∗ → Y over an R-surface Y ;
– There is a real del Pezzo fibration X∗ → Y over an R-curve Y ;
– The varietyX∗ is Fano, or in other words its anti-canonical divisor −KX∗

is ample (Definition 2.6.20).

Theorem 6.1.12. — Let (X,σ) be a non singular projective algebraic R-
variety of dimension 3 and let (X∗, σ∗) be the output of the real MMP applied
to X. If X is uniruled then X∗ is a fibration of one of the following types
(known as Mori fibre spaces) :

1. A conic bundle over a surface ;
2. A Del Pezzo fibration over a curve;
3. A three dimensional Fano variety over a point.

Proof. — If the variety X is uniruledKX∗ cannot be nef since in characteristic
zero, any non singular uniruled variety contains a free rational curve ([Deb01,
Corollary 4.11]) and by [Deb01, Example 4.7(1)], there is no free rational
curve on a variety whose canonical divisor is nef. The variety X∗ therefore
belongs to one of the three classes listed above.

One of Kollár’s discoveries it that we can avoid the main difficulties of the
MMP if the real locus of the variety is orientable.

Theorem 6.1.13. — Let (X,σ) be a non singular projective algebraic R-
variety of dimension 3 and let (X∗, σ∗) be the output of a real MMP on X.
Suppose that the real locus X(R) is orientable.

The topological normalisation X∗(R) → X∗(R) (Definition 4.4.35) is then
a piecewise linear manifold and any connected component L ⊂ X(R) can be
obtained from X∗(R) as a connected sum of components of X∗(R), copies of
RP3 and copies of S2 × S1.

Proof. — See [Kol99a, Theorem 1.2].

Summary of the proof of Theorem 6.1.9. — By Theorem 6.1.12, the R-
variety (X,σ) is birational to an R-variety (X∗, σ∗) which is a Mori fibre
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space of one of the three types listed above. Theorem 6.1.13 enables us to
conclude using known classifications of topological types of such fibrations:

1. A conic bundle over a surface. Kollár classified such bundles in [Kol99b,
Theorem 1.1]. One consequence of his classification is that, up to con-
nected sum with RP3s and S2×S1s,M is a Seifert manifold or a connected
sum of lens spaces.

2. A fibration over a curve with rational fibres. [Kol00, Theorem 1.1] states
that up to connected sum with RP3s and S2 × S1s, M is then a Seifert
manifold, a connected sum of lens spaces, a torus bundle over a circle or
the Z2-quotient of such a bundle. In the last two cases, Proposition 6.2.3
implies that M is a lens space or a Sol manifold.

3. A Fano variety with terminal singularities. We know by [Kaw92] (see
also [Kol98a, Section 6]) that there is only a finite number of families
of such varieties: we even have an (improbable) upper bound on this
number, since work by Kollár (see [Kol17, before Theorem 24] for ex-
ample) implies that there are at most 1010500 different topological types
of R-Fano varieties with terminal singularities.

Remark 6.1.14. — Not much is currently known about the topology of 3
dimensional Fano varieties: we mention three articles on real Fano varieties for
the interested reader. Real cubics in P4 were classified by Krasnov [Kra06,
Kra09] and the possible real structures on the Fano variety V22 were classified
by Kollár and Schreyer [KS04].

Viterbo’s theorem. — The proof of Theorem 6.1.16 below on hyperbolic man-
ifolds, like the proof of Theorem 6.2.4 on Sol manifolds, uses symplectic field
theory (SFT), which would take us too far from algebraic geometry. Not hav-
ing the necessary space to explain this important tool, we refer the interested
reader to [EGH00, 1.7.5] (or [MW12] for Sol manifolds) for more details.
We will however explain how symplectic geometry arises in this context.

Given any non singular complex projective algebraic variety X of complex
dimension n, we may consider its underlying differentiable manifold. For any
projective embedding j : X ↪→ PN (C), the restriction to j(X) of the Fubini-
Study metric on PN (C) equips X with a Kähler form ω as in Example D.3.6.
The pair (X,ω)- where X is the differentiable manifold of even real dimension
2n and ω is a Kähler form- is then a symplectic manifold. See Remark D.3.5
for more details.
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Definition 6.1.15. — Let (X,ω) be a symplectic manifold. A submanifold
M ⊂ X is said to be Lagrangian if and only if

ω|M ≡ 0 and dimRM = 1
2 dimRX ,

or in other words if M is an isotropic submanifold of maximal dimension.

Theorem 6.1.16. — Let X be a non singular complex projective algebraic
variety of complex dimension > 2. Let M ⊂ X be a Lagrangian submanifold
for some underlying symplectic structure on X. If X is uniruled then M does
not have a Riemannian metric with strictly negative sectional curvature.

Proof. — See [Vit99], [EGH00, 1.7.5].

Exercise 6.1.17. — Prove that the real locus X(R) of a non singular projec-
tive R-variety (X,σ) is a Lagrangian subvariety of the underlying symplectic
manifold structure on X given by an R-embedding of (X,σ).

Corollary 6.1.18. — Let X be a non singular projective R-variety of di-
mension > 2. If X is uniruled then no connected component of X(R) has a
hyperbolic metric since any such a metric has constant sectional curvature −1.

6.2. Real uniruled 3-varieties from 2000 to 2012

Theorem 6.1.9 implies strong constraints on the real locus of a non singular
uniruled projective R-variety of dimension 3. Following this theorem, Kollár
proposed several conjectures on the topological classification of the real loci of
such varieties, whose current status is summarised below.

Recall that if M is an oriented compact manifold without boundary of
dimension 3 then there is a decomposition M = M ′#aRP3#b(S2 × S1) with
maximal a+ b and this decomposition is unique by Milnor’s theorem [Mil62].
(See Definition B.5.15 for the definition of the connected sum).

Since the algebraic properties of rationality, rational connectedness (see
below) and uniruledness are invariant under birational equivalence the corre-
sponding topological properties ofM can be detected onM ′: this phenomenon
is illustrated in the examples below. This motivates our following ad hoc def-
inition.

Definition 6.2.1. — Let M be an oriented compact manifold without
boundary of dimension 3 and let M = M ′#aRP3#b(S2 × S1) be a decomposi-
tion with a+ b maximal. The manifold M ′ is said to be the essential part of
M . A property of M is said to be essential if it only depends on M ′.
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Example 6.2.2. — This example is taken from [Kol99a, Example 1.4]. Let
X be a non singular R-variety of dimension 3.

1. Let P ∈ X(R) be a real point and let M be the connected component of
X(R) containing P . We then have (Proposition F.3.1)

BPM ≈M#RP3.

2. Let D ⊂ X be an R-curve with a unique real point {0} = D(R). Suppose
that close to 0 this curve is given by equations {z = x2 + y2 = 0}. Let
Y1 = BDX be the variety obtained by a blow up of X centred at D.
(See Appendix F for the definition of such a blow up). This new variety
is real and has a unique singular point P . Consider Y := BPY1, the
variety obtained by blowing up Y1 at P , which is a non singular real
variety. Denoting by π : Y → X the composition of these two blow ups,
the component M ⊂ X(R) containing P satisfies

π−1M ≈M#(S2 × S1),

or in other words

BP (BDM) ≈M#(S2 × S1).

Uniruled varieties. — Kollár’s theorem 6.1.9 tells us that apart from Sol
maniolds (Definition B.8.8), and a finite number of closed manifolds of di-
mension 3, real uniruled orientable varieties are essentially (Definition 6.2.1)
Seiert bundles or connected sums of lens spaces. The progress made since this
theorem can be briefly summarised as follows. Theorem 6.1.16 tells us that no
hyperbolic manifold can be contained in the real locus of a non singular unir-
uled projective variety. Theorem 6.2.4 tells us that only a finite number of Sol
manifolds can be contained in the real locus of a non singular uniruled projec-
tive variety. Conversely, Theorem 6.2.7 together with Proposition B.8.13 tells
us that any orientable geometric manifold (Definition B.8.4) which is neither
hyperbolic nor Sol is diffeomorphic to a connected component of the real locus
of a non singular uniruled projective variety.

Sol manifolds and suspensions(2) of diffeomorphisms of the torus. — Let z be
a coordinate on the circle S1 := {|z| = 1} ⊂ C and let (u, v) be coordinates on
the torus S1× S1 := {|u| = 1, |v| = 1} ⊂ C×C. The group GL2(Z) then acts

(2)This construction also appears in the litterature under the name "mapping torus".
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on S1 × S1 via the map(
a b

c d

)
7−→ [(u, v) 7→ (uavb, ucvd)]

For any A ∈ GL2(Z) we set

M :=
(
S1 × S1

)
× [0, 1]/((u, v), 0) = (A · (u, v), 1).

The map ρ : M → S1 = [0, 1]/(0 = 1) is then a differentiable C∞ torus
bundle as in Definition C.3.5. We can prove that the total space M of this
bundle is geometric (Definition B.8.4) and its geometry depends on the dif-
feomorphism of S1 × S1 given by the matrix A. See [Sco83] for more details.
Let λ be a eigenvalue of A: there are three different possible cases.

1. If |λ| = 1 and A is periodic then M is a Euclidean manifold,
2. If |λ| = 1 and A is non periodic then M is a Nil manifold
3. If |λ| 6= 1 (or in other words A is hyperbolic) then M is a Sol manifold.
Note that in the first two cases where M has a Euclidean or Nil geometry

M is also a Seifert bundle (Proposition B.8.13). It follows that a torus bundle
over the circle is always either a Seifert manifold or a Sol manifold.

Conversely, most Sol manifolds are toric bundles with hyperbolic gluing, as
the proposition below shows.

Proposition 6.2.3 (Classification of closed Sol manifolds)
Let M be a compact Sol manifold without boundary: M therefore has

one of the following two forms.
1. M is the suspension of a hyperbolic diffeomorphism.
2. M is a sapphire, ie., a Z2-quotient of the previous case.

Proof. — See [MW12, Theorem 2.1].

Theorem 6.2.4. — Any closed orientable Sol manifold cannot be embedded
as a connected component of the real locus of a non singular projective variety
of dimension 3 which is a bundle over a curve with rational fibres.

Proof. — See [MW12, Corollary 3.1].

Apart from a finite number of possible exceptions, this establishes the first
part of Kollár’s conjecture [Kol01b, Conjecture 6.7(1)].

Corollary 6.2.5. — If a connected orientable component M of the real locus
of a non singular uniruled projective R-variety (X,σ) of dimension 3 is a Sol
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manifold then X is birationally equivalent to an R-Fano variety (Y, τ) such
that Y (R) contains a connected component homeomorphic to M .

Remark 6.2.6. — In particular, the number of such uniruled Sol manifolds
is finite: it is even conjectured that such things do not exist. See [Kol01b,
Conjecture 6.7(1)]) for more details.

Proof of Corollary 6.2.5. — We use the same line of attack as in the proof
of Theorem 6.1.9. By Theorem 6.1.12, the R-variety (X,σ) is birational to
an R-variety (Y, τ) which is a Mori fibre space. Moreover, Y (R) contains a
connected component which is homeomorphic toM by Theorem 6.1.13 because
any Sol manifold is indecomposable by Corollary B.8.12. We conclude using
Theorem 6.1.13 and our classification of topological types of Mori fibre spaces.

1. Conic bundles over surfaces. Kollár classified such surfaces in [Kol99b,
Theorem 1.1]: this classification implies in particular that M is a Seifert
manifold (or a lens space which is a special type of Seifert manifold) and
therefore M cannot be a Sol manifold by Corollary B.8.14.

2. A fibration with rational fibres over a curve: Theorem 6.2.4 then states
that M cannot be Sol.

3. A Fano variety with terminal singularities. We know that there is only
a finite number of such varieties.

The following theorem, proved in the articles [HM05b] and [HM05a],
is the converse of Theorem 6.1.9 if we assume Kollár’s conjecture [Kol01b,
Conjecture 6.7(1)] which states that there are in fact no exceptions in Kollár’s
theorem. In other words, this conjecture states that any connected component
of the real locus of a non singular Fano variety of dimension 3 is essentially a
Seifert manifold or a connected sum of lens spaces.

Theorem 6.2.7. — Any orientable Seifert manifold and any connected sum
of lens spaces #k

i=1Lpi,qi can be realised as a connected component of the real
locus of a non singular uniruled projective R-variety of dimension 3.

Proof. — See [HM05b, Theorem 1.1] for the construction of Seifert manifolds
and [HM05a, Corollary 1.2] for the construction of connected sums of lens
spaces.

Remark 6.2.8. — This theorem confirms a conjecture of Kollár’s ([Kol01b,
Conjecture 6.7.(2)]).
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Rationally connected varieties. — We have seen that uniruled varieties
(Definition 6.1.7) generalise rational varieties. We now present a class of vari-
eties in between rational and uniruled varieties.

Definition 6.2.9. — A non singular projective R-variety (X,σ) of dimension
n is said to be rationally connected (r. c.) if and only if it has a non empty
Zariski open subset U ⊂ X such that for any pair of points x, y ∈ U there is
a rational curve f : P1(C) → X such that x, y ∈ f(P1(C)). It is not required
that f should be real.

Remark 6.2.10. — This definition is one of five equivalent characterisations
given in [Kol01c, Definition 41] of rational connectedness of non singular
varieties. For more information on rational connectedness of possibly singular
varieties see [Deb01, Definition 4.3]: the link with Definition 6.2.9 is explained
in Remark [Deb01, Remark 4.4(3)]. The interested reader may also wish
to consult [Deb01, Remark 4.4(4)] which shows that rational connectedness
([Deb01, Definition 4.3]) is, like uniruledness, invariant under change of base
field.

Geometrically rational varieties are rationally connected, hypersurfaces of
degree less than or equal to n in Pn are rationally connected and more gen-
erally all Fano varieties are rationally connected [KMM92, Cam92]. Ra-
tionally connectedness is an intermediate property between rationality and
uniruledness: a variety X is uniruled if and only if there is an open subset U
such that for any x ∈ U there is a rational curve f : P1(C) → X such that
x ∈ f(P1(C)). Paraphrasing Kollár ([Kol01c]), "rationally connected variety"
has come to be seen as the "right" generalisation of "rational curve".

Before stating Theorem 6.2.12, the main result of the subsection, we prove
a corollary of Theorem 4.4.39 on rational surfaces with Du Val singularities.

If g : M → B is a Seifert bundle (Definition B.8.1), let k be the number of
multiple fibres of g and for every multiple fibre g−1(Pi), i = 1 . . . k, let mi be
its multiplicity. If M is a connected sum of lens space (Definition B.8.2) let k
be the number of lens spaces and for each lens space Lpi,qi , i = 1 . . . k, let mi

be the order of its fundamental group.

Theorem 6.2.11. — Let (X,σ) be a non singular projective R-variety of
dimension 3 with an R-fibration X −→ Y whose general fibre is P1. If X(R) is
orientable and Y is a geometrically rational R-surface then for every connected
component M ⊂ X(R) we have that

1. k(M) 6 4 ;
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2.
∑k
i=1(1− 1

mi+1) 6 2 ;
3. If M → B is a Seifert bundle with |B| = S1 × S1 then

k(M) = 0 .

The three conclusions of this theorem confirm three conjectures of Kollár
[Kol99b, Remark 1.2(1–3)] (see also [Kol01b, Conjecture 6.7.(3)]).

Proof. — The original proof can be found in [CM09, Theorem 0.1, Section 6].
Let f : X −→ Y be a non singular projective R-variety of dimension 3

which is R-fibred in rational curves over a geometrically rational R-surface Y .
Suppose thatX(R) is orientable and letM ⊂ X(R) be a connected component.
Kollár proved (see [CM08, 3.3, 3.4, and the proof of Corollary 0.2]) that the
following objects exist.

1. A pair of birational contractions c : X → X ′, r : Y → Y ′ such that
(a) X ′ is a projective R-variety of dimension 3 with terminal singular-

ities
(b) Y ′ is a Du Val surface.

2. An R-fibration in rational curves f ′ : X ′ −→ Y ′ such that −KX′ is f ′-
ample and f ′ ◦ c = r ◦ f .

3. The important property of this construction is that M ′′ = M ′#a′RP3

where M ′ is the essential part of M and M ′′ is the connected compo-
nent of the topological normalisation ν : X ′(R) → X ′(R) which has the
property that ν(M ′′) = c(M).

By [Kol99b, Theorem 8.1] and [CM08, Proof of Corollary 0.2, end of
section 3], there is a small perturbation g : M ′′ → B of f ′|ν(M ′′) such that
g|g−1(B\∂B) is a Seifert bundle and is injective on the set of singular points of
Y ′ contained in f ′(ν(M ′′)) which are of type A+ and are globally separating
if they are locally separating. This injection shows that the multiplicity of the
fibre is m + 1 if the singular point is of type A+

m. The inequalities k(M) 6 4
and

∑k
i=1(1− 1

mi+1) 6 2 then follow from Theorem 4.4.39.

The next theorem summarises our current knowledge of the topological
classification of three dimensional uniruled and rationally connected varieties.
It brings together work originally published in [Kol98b, Kol99a, Kol99b,
Kol00, Vit99, EGH00, HM05b, HM05a, CM08, CM09, MW12].

Theorem 6.2.12 (Classification). — Let X be a non singular projective
R-variety of dimension 3 with orientable real locus X(R). Let M ⊂ X(R) be
a connected component. Except for a finite number of possible exceptions,
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1. If X is uniruled then there are integers a, b ∈ N and a variety M ′ such
that

M = M ′#aRP3#b(S2 × S1)

and M ′ is either a Seifert bundle M ′ → B or has a decomposition M ′ =
#k
i=1Lpi,qi into lens spaces.

2. If X is rationally connected and M is a Seifert manifold M → B whose
orbit space B is orientable then M has one of the following four geome-
tries

S3, E3, S2 × E1, Nil.

Conversely, let M = M ′#aRP3#b(S2 × S1) be a compact manifold with-
out boundary of dimension 3. If M ′ is an orientable Seifert manifold or a
connected sum of lens spaces M ′ = #k

i=1Lpi,qi then there is a non singular
uniruled projective R-variety X such that M is diffeomorphic to a connected
component of X(R).

Proof. — By Kollár’s theorem 6.1.9 result (1) will follow if we can show that
the only infinite family of possible exceptions in 6.1.9.(3) does not in fact
arise. In other words, it will be enough to prove that if M → S1 is a lo-
cally trivial torus bundle which does not also have a Seifert bundle structure
then M belongs to the finite list of exceptions 6.1.9.(4). This follows from
Corollary 6.2.5.

The result (2) follows from Theorem 6.2.11 using Proposition 4.4.34 and the
table below [Sco83, Table 4.1], which gives the geometry of the total space
M as a function of the geometry of the base orbifold B of the Seifert bundle
f : M → B and the Euler number e(f) of the fibration. (See [Sco83, discussion
after Theorem 3.6] for the definition of e(f) and [Sco83, Lemme 3.7] for its
main properties.)

χ(B) > 0 χ(B) = 0 χ(B) < 0

e(f) = 0 S2 × E1 E3 H2 × E1

e(f) 6= 0 S3 Nil S̃L2(R)

Table 6.2.1. Geometry of Seifert manifolds f : M → B.

The converse follows from Theorem 6.2.7.
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6.3. Questions and conjectures

1. The following conjecture from 2004 ([Man04, Page 24]) is still open.

Conjecture 6.3.1. — The real geometric components of orientable non
singular uniruled projective R-varieties of dimension 3 are exactly the
orientable Seifert manifolds.

Given Theorem 6.2.12, the number of possible counter-examples to
this conjecture is finite. Moreover, any such counter-example would have
to be a Fano variety with terminal singularities and a connected Sol
component in its real locus.

2. Let us unearth a question first asked in [MW12]. We have seen above
that there are uniruled models for all orientable Seifert manifolds (The-
orem 6.2.7) but the following question is still open: what is the simplest
non singular real projective model of a hyperbolic manifold? of a Sol
manifold?

3. It should be possible to prove that any non orientable Seifert manifold
has a uniruled model by improving the construction in [HM05b]
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APPENDIX A

COMMUTATIVE ALGEBRA

In this chapter we will summarise various results from commutative alge-
bra for the reader’s convenience. Some are well known, but others are not
easily available despite being standard in the specialist litterature. Our main
reference is Eisenbud’s book [Eis95].

A.1. Inductive limits

We refer to [Eis95, Appendices 5&6] for an introduction to categories and
limits: the reader should be aware that our inductive limits are called filtered
colimits in Eisenbud’s book. We recall some basic definitions.

Definition A.1.1 (Inductive system). — Let C be a category and let
(J,6) be a partially ordered set such that ∀(i, j) ∈ J2,∃k ∈ J | i 6 k and j 6
k. We then call (J,6) a filtered set, a directed set or a directed preorder. An
inductive system indexed by J is the data of a family {Mj}j∈J of objects of
C and morphisms ϕij : Mi → Mj for all pairs of indices (i, j) ∈ J2 such that
i 6 j which satisfy

1. ∀j ∈ J , ϕjj = idMj ;
2. ∀(i, j, k) ∈ J3, i 6 j 6 k =⇒ ϕjk ◦ ϕij = ϕik.

Definition A.1.2 (Inductive limit). — Let {Mj}j∈J be an inductive sys-
tem in a category C. A object M in C is the inductive limit, direct limit or
colimit of a filtered set of the system {Mj} if it is equipped with morphisms
ϕj : Mj →M satisfying the compatibility relations ϕi = ϕj◦ϕij for every i 6 j

and having the following universal property: if N is an object in C equipped
with morphisms ψj : Mj → N which are compatible with the inductive system
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structure then there is a unique mapM → N such that for all j the morphism
ψj factors

Mj

ϕj

��

ψj // N

M

88

When the inductive limit of the system {Mj}j∈J exists we denote it by
lim−→j∈JMj .

Example A.1.3. — If the category C is the category of groups, rings or A-
modules/algebras for some given ring A then the inductive limit exists: it is
simply the quotient of the disjoint union of the Mjs modulo an equivalence
relation

lim−→
j∈J

Mj =
⊔
j∈J

Mj

/
∼

where xi ∈ Mi is equivalent to xj ∈ Mj if and only if there is a k ∈ J such
that ϕik(xi) = ϕjk(xj).

Example A.1.4. — Let F be a sheaf (see Appendix C) of elements of C over
a topological space X. For any given x ∈ X the set of open neighbourhoods
of x ordered by inclusion (U 6 V if and only if U ⊇ V ) is a filtered set and
{F(U)}U3x is an inductive system. The limit of this system is called the stalk
of F at x and is denoted Fx. For every open neighbourhood of x the canonical
morphism F(U) → Fx sends a section s of F over U to the germ sx ∈ Fx of
s at x.

A.2. Rings, prime ideals, maximal ideals and modules.

By convention all our rings are assumed to be commutative with a multi-
plicative unit, and ring morphisms are required to send the multiplicative unit
to the multiplicative unit.

The set of invertible elements of A is denoted U(A). If K is a ring then a
K-algebra A is a ring equipped with a ring morphism K → A. For example,
K[X1, . . . , Xn] is the K-algebra of polynomials in n variables with coefficients
in K and K(X1, . . . , Xn) is the K-algebra of rational functions in n variables
with coefficients in K.

Definition A.2.1. — A non zero element a in a ring A is said to be a zero
divisor in A if and only if there is a non zero element b ∈ A such that ab = 0.
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A ring is said to be an integral domain if and only if it has at least two
elements and does not contain a zero divisor.

A field is a ring with at least two elements such that all its non zero elements
are invertible.

Definition A.2.2. — Let A be a ring.
1. An ideal I in A is said to be prime if and only if it satifies the following

properties:
(a) I is not equal to A
(b) If a and b are elements of A such that ab ∈ I then a ∈ I or b ∈ I.

2. An ideal I in A is said to be maximal if and only if it is different from A

and the only ideals in A containing I are I and A.

Definition A.2.3. — For any ideal I in a ring A, the radical
√
I of I in A

is the ideal of roots of elements of I.
√
I := {a ∈ A | there is a natural number n > 1, an ∈ I} .

An ideal I ⊂ A is said to be radical if and only if I =
√
I.

Exercise A.2.4 (See Remark 1.2.29). — Let K be a field. Prove that if
F is a Zariski closed subset of An(K) then I(F ) is radical.

Definition A.2.5. — An element a in a ring A is said to be nilpotent if and
only if there is a natural number n > 1 such that an = 0. The nilradical of a
ring A is the set of its nilpotent elements. A ring is said to be reduced if and
only if its nilradical is the zero ideal, or in other words if it has no non zero
nilpotent elements.

Exercise A.2.6. — The nilradical of a ring A is an ideal, namely the radical
ideal of the zero ideal of A.

Proposition A.2.7. — Let A be a ring and let I be an ideal of A.
1. The ideal I is radical if and only if the quotient ring A/I is reduced.
2. The ideal I is prime if and only if the quotient ring A/I is an integral

domain.
3. The ideal I is maximal if and only if the quotient ring A/I is a field.

Proof. — Easy exercise.

Proposition A.2.8 (Correspondence theorem)
Let A be a ring and let I ⊂ A be an ideal. The canonical surjection

A → A/I induces a one-to-one correspondence between prime ideals of A/I
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and prime ideals of A containing I and a similar one-to-one correspondence
between maximal ideals of A/I and maximal ideals of A containing I.

Proof. — Easy exercise.

The following lemma is extremely useful despite its simplicity.

Lemma A.2.9. — Let A be a ring and let B ⊂ A be a sub-ring. If I is a
prime ideal of A then I ∩B is a prime ideal of B.

Proof. — Let a and b be elements of B such that ab ∈ I ∩ B and a /∈ I ∩ B.
As a ∈ B and a /∈ I ∩B, a does not belong to I. It follows that b ∈ I because
I is a prime ideal of A and hence b belongs to I ∩B.

Example A.2.10. — We calculate the dimension of the affine algebraic set
F := Z(x2 + y2) ⊂ A2

R from Example 1.5.20. There is a unique chain (Defini-
tion 1.5.2) of prime ideals in R[x, y] containing (x2 + y2) which is of maximal
length

(x2 + y2) ⊂ (x, y) .
There is therefore only one chain of prime ideals of R[x, y]/(x2 + y2) of

maximal length. The dimension of the ring R[x, y]/(x2 +y2) is therefore equal
to 1 and according to Definition 1.5.9 dimF = 1.

Lemma A.2.11 (Nakayama’s Lemma). — Let A be a ring, let a ⊂ A be
an ideal and let M be a finitely generated A-module such that M = aM . There
is then an element a ∈ 1 +a such that aM = 0: in particular, if A is local and
a is its maximal ideal then M = 0.

Proof. — See [Eis95, Corollary 4.8].

Definition A.2.12. — A ring S is said to be graded if and only if it has a
decomposition S = ⊕d>0Sd as a direct sum of abelian groups Sd such that for
any d, e > 0, Sd · Se ⊂ Sd+e. An ideal I ⊂ S is said to be a homogeneous ideal
if and only if I = ⊕d>0(I ∩ Sd).

A.3. Localisation

Definition A.3.1. — Let A be a ring, let M be an A-module and let S ⊂ A
be a multiplicative subset(1) or in other words a subset stable under multiplica-
tion. The localised module (or localisation) ofM in S, denoted S−1M , is the set

(1)By convention, the product over an empty set is 1, so any multiplicative subset of a ring
is assumed to contain the multiplicative unit.
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of equivalence classes of pairs (m, s) ∈M ×S for the relation (m, s) ∼ (m′, s′)
if and only if there is an element t ∈ S such that t(s′m− sm′) = 0. This set is
equipped with an obvious A-module structure. The equivalence class of (m, s)
is denoted by m/s. When M = A, this construction yields the localisation
S−1A of A at S.

If f is an element of A, the set S = {1, f, f2, . . . , fk, . . . , } is a multiplicative
subset of A and we denote these special localisations by Af := S−1A and
Mf := S−1M . If f is nilpotent then Af is the zero ring.

If p ⊂ A is a prime ideal then S := A \ p is a multiplicative subset and we
denote these special localisations by Ap := S−1A and Mp := S−1M (2). We
denote by κ(p) the quotient ring Ap/pp. There is a natural morphism i : M →
S−1M defined by a 7→ a/1 and a natural localisation of morphisms: if ϕ : M →
N is a morphism of A-modules, the localised morphism S−1ϕ : S−1M → S−1N

is defined by (S−1ϕ)(m/s) = ϕ(m)/s.

Proposition A.3.2 (Universal property of localisations)
Let A and B be rings, let S ⊂ A be a multiplicative subset and let

ϕ : A→ B be a ring morphism such that ϕ(S) ⊂ U(B) (note that the set U(B)
of invertible elements of B is a multiplicative subset). There is then a unique
extension ϕ̂ : S−1A→ B of ϕ such that the following diagram commutes.

A

i
��

ϕ // B

S−1A
ϕ̂

77

Corollary A.3.3. — The localised ring S−1A is a flat A-module (Defini-
tion A.4.5).

Proof. — See [Eis95, Proposition 2.5, page 66].

Exercise A.3.4. — Let A be a ring and let m ⊂ A be a maximal ideal. We
then have that A/m ' Am/mm.

Proposition A.3.5. — Let A be a ring, let p ⊂ A be a prime ideal and let
ϕ : A → Ap, a 7→ a/1 be the natural map. The map I 7→ ϕ−1(I) from the set
of ideals of Ap to the set of ideals of A is then injective and induces a bijection

(2)This notation can sometimes be confusing: if K is a field and A = K[x] then Ax =
K[x, 1

x
] (we localise with respect to the multiplicative subset of A generated by x) but

A(x) = { p
q
, p, q ∈ K[x], q(0) 6= 0} (we localise with respect to the multiplicative subset

which is the complement of the prime ideal generated by x).
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between the set of prime ideals of Ap and the set of prime ideals of A contained
in p.

Proof. — [Eis95, Proposition 2.2].

Definition A.3.6. — A quotient κ(m) = A/m of a ring A by a maximal
ideal m is called a residue field of A.

Definition A.3.7. — A ring is said to be local if and only if it has a unique
maximal ideal. The unique residue field of a local ring A of maximal ideal m
is denoted

κ = A/m .

Definition A.3.8 (Total ring of fractions). — Let S be the set of non
zero divisors of a ring A, which is a multiplicative subset. The ring of fractions
(or or total ring of fractions) of A is the localisation

FracA := S−1A .

Proposition A.3.9 (Fraction field). — If A is an integral domain then
FracA is a field called the fraction field of A.

Remark A.3.10. — If A is an integral domain then the ideal (0) is prime
and A satisfies

FracA = A(0) = κ((0)) .

Proposition A.3.11. — Let A be an integral domain and let m ⊂ A be a
maximal ideal. We can think of the localisation Am as a subring of FracA and
we then have that

A =
⋂

m maximal ideal
maximal of A

Am

Proof. — As A is an integral domain we may assume that the localisations
Am are included in FracA as subrings. By definition Am is made up of classes
of fractions g

h where g, h ∈ A, h /∈ m. We will now prove that⋂
m maximal ideal

of A

Am ⊂ A ,

since the opposite inclusion is obvious. Let f ∈
⋂

m maximal ideal
of A

Am. If f = g
h

for some g, h ∈ A then h is invertible in A, since otherwise A.h would be
contained in a maximal ideal so g

h ∈ A.
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Lemma A.3.12 (Avoidance lemma). — Let A be a ring and let I1, . . . , In
and I be ideals of A such that I ⊂ ∪n`=1I`. If A contains an infinite field or if
at most two of the I` are not prime then there is an ` ∈ {1, . . . , n} such that
I ⊂ I`.

Proof. — [Eis95, Lemma 3.3, page 90].

Definition A.3.13 (Noetherian ring). — A ring A is said to be Noethe-
rian if and only if every ideal in A is finitely generated.

Example A.3.14. — If K is a field then the polynomial ring K[X1, . . . , Xn]
is Noetherian by Hilbert’s famous basis theorem which states that if A is a
commutative Noetherian ring then the polynomial ring A[X] is Noetherian.
Any ideal I ⊂ K[X1, . . . , Xn] therefore has a finite set of generators.

A.4. Tensor product

Proposition A.4.1 (Universal property of tensor product)
Let A be a ring and let M and N be A-modules. There is then an A-

module denoted M⊗AN equipped with a A-bilinear map ψ : M×N →M⊗AN
which satisfies the following universal property: for any A-module B and any
A-bilinear map ϕ : M ×N → B, there is a unique A-linear map

ϕ̂ : M ⊗A N → B

such that the diagram

M ×N

ψ
��

ϕ // B

M ⊗A N
ϕ̂

66

commutes.
The pair (M ⊗A N,ψ) is unique up to isomorphism. Most of the time we

omit ψ from the notation and call the A-module M ⊗A N the tensor product
of the A-modules M and N .

See [Eis95, Appendice 2.2] for a proof.
One possible way of constructing the tensor product M ⊗A N of two A-

modules M and N is to quotient the free abelian group generated by symbols
of the form m ⊗ n := ψ(m,n) by the subgroup generated by elements of the
form

1. m⊗ n+m′ ⊗ n− (m+m′)⊗ n
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2. m⊗ n+m⊗ n′ −m⊗ (n+ n′)
3. (a ·m)⊗ n−m⊗ (a · n)

for any m,m′ ∈M , n, n′ ∈ N and a ∈ A.

Proposition A.4.2. — Let A be a ring and let M,M ′ and N be A-modules.
We then have that

1. M ⊗A N ' N ⊗AM ;
2. (M ⊕M ′)⊗A N ' (M ⊗A N)⊕ (M ′ ⊗A N).

Proposition A.4.3. — Let ϕ : A → B be a ring morphism and let I be an
ideal of A. We then have that

1. B ⊗A A/I = B/ϕ(I)B ;
2. B ⊗A A[t1 . . . , tn] = B[t1 . . . , tn] ;
3. If S is a multiplicative subset of A then

(ϕ(S))−1B = S−1A⊗A B .

Proof. — See [Eis95, Appendice 2.2].

Exercise A.4.4. — Following standard notation, we denote by Zm := Z/mZ
the cyclic group of order m 6= 1.

1. Prove that if m > 1 is an odd integer then

Zm ⊗Z Z2 = 0 .

2. Prove that if m is an even integer (by convention Z0 = Z) then

Zm ⊗Z Z2 = Z2 .

Definition A.4.5. — Let A be a ring. An A-module M is said to be flat
if and only if for any injective morphism N ′ → N of A-modules the induced
morphism

M ⊗A N ′ →M ⊗A N
is also injective.

Definition A.4.6. — An A-module over a ring A is said to be free if and
only if it has a basis and projective if and only if it is a direct summand of a
free A-module.

Lemma A.4.7. — Let A be a ring.
1. Any free A-module is projective.
2. If A is a local ring then any projective A-module is free.
3. Any free A-module is flat.
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Proof. — See [Eis95, Appendice 3.2].

Definition A.4.8. — Let A be a ring and let M be an A-module. Let
T k(M) be the tensor product M ⊗ · · · ⊗M of M with itself k times for any
k > 1. By convention, we set T 0(M) = A. The (non commutative) A-algebra
T (M) =

⊕
k>0 T

k(M) is called the tensor algebra of M . The symmetric
algebra S(M) =

⊕
k>0 S

k(M) of M is the quotient of T (M) by the two-sided
ideal generated by expressions of the form x⊗ y − y ⊗ x with x, y ∈M . This
A-algebra is commutative. The exterior algebra

∧
(M) =

⊕
k>0

∧k(M) of M
is the quotient of T (M) by the two-sided ideal generated by expressions of the
form x⊗ x with x ∈M . This A-algebra is anti-symmetric.

Exercise A.4.9. — If M is a free A-module of rank r then S(M) '
A[X1, . . . , Xr].

A.5. Rings of integers and the Nullstellensatz

Definition A.5.1 (Integer over A). — Let ϕ : A→ B be a ring morphism
(B is then an A-algebra) and consider an element x ∈ B. We say that x is
integral over A if and only if it satisfies a unitary equation, or in other words
if there are elements a0, . . . , an−1 of A such that:

xn + ϕ(an−1)xn−1 + · · ·+ f(a0) = 0 .

If all the elements of B are integral over A, we say that B is an integral
extension of A and that ϕ : A→ B is an integral morphism.

Definition A.5.2. — The integral closure of a subring A ⊂ B in B is the
ring of all the elements in B which are integral over A.

A ring A is said to be integrally closed if and only if it is an integral domain
and it is its own integral closure in the fraction field FracA.

We refer to Definition 1.5.3 for the definition of the dimension dimA of a
ring A.

Proposition A.5.3. — Let A and B be rings and let A→ B be an integral
morphism. We then have that dimB 6 dimA. If moreover A→ B is injective
then dimA = dimB.

Proof. — See [Liu02, Proposition II.5.10].
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Definition A.5.4. — Let A and B be rings. A ring morphism A → B is
said to be a finite morphism if and only if it is an integral morphism and
B is a finitely generated A-module for the structure given by the inclusion
A→ B. We then say that B is an A-algebra of finite type (or that B is a finite
A-algebra).

It is easy to see that if B is a finitely generated A-algebra then B is integral
over A (and hence finite over A) if and only if B is a finitely generated A-
module.

Definition A.5.5. — Let K be a field. A K-algebra A is said to be affine if
and only if it is non zero and finitely generated as an algebra. A ring A is said
to be affine if and only if there is a field K such that A is an affine K-algebra.

Lemma A.5.6 (Noether’s normalisation lemma)
Let K be a field and let A be an affine K-algebra. There is then an

integer d > 0 and a finite injective morphism.

K[X1, . . . , Xd] ↪→ A .

Proof. — See [Liu02, Proposition II.1.9].

Definition A.5.7. — Let L|K be a field extension . If there exists an integer
d such that L is algebraic over a subfield isomorphic to K(X1, . . . , Xd) then
we say that L is of finite transcendence degree over K. It is possible to prove
that the integer d is unique: d is called the transcendence degree of L over K,
denoted trdegK L.

Definition A.5.8. — Let K be a field. A function field over K is a field L
generated over K by a finite number of elements, by which we mean that there
is a finite set f1, . . . , fr ∈ L such that L = K(f1, . . . , fr). Such a field L is said
to be a function field in n variables if the transcendence degree trdegK L = n.

Theorem A.5.9 (Primitive element theorem). — Any field extension
which is finite- ie. of finite degree- and separable is generated by a single
element.

Corollary A.5.10. — Let K be a field of characteristic zero. If L|K is an
algebraic extension of finite type then there is an element α ∈ L such that

L = K(α) .
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The Nullstellensatz over an algebraically closed field. —

Definition A.5.11. — A field K is said to be algebraically closed if and
only if any non constant polynomial in K[X] has a root in K.

There are several equivalent versions of Hilbert’s Nullstellensatz.

Theorem A.5.12 (Nullstellensatz 1). — If K is an algebraically closed
field then all maximal ideals of K[X1, . . . , Xn] are of the form m(a1,...,an) =
(X1 − a1, . . . , Xl − an) for some (a1, . . . , an) ∈ Kn.

Corollary A.5.13 (Nullstellensatz 2). — Let K be an algebraically closed
field and let I be an ideal of K[X1, . . . , Xn]. We then have that

I(Z(I)) = I if and only if I is a radical ideal.

The Nullstellensatz over a real closed field. — The analogue of Corol-
lary A.5.13 over the real numbers (or more generally over any real closed field)
is much less powerful.

Definition A.5.14. — Let A be a commutative ring . An ideal I of A is
said to be a real ideal if and only if for any sequence a1, . . . , al of elements in
A,

a2
1 + · · ·+ a2

l ∈ I =⇒ ai ∈ I, ∀i = 1, . . . , l.

Theorem A.5.15 (Real Nullstellensatz). — Let I be an ideal in
R[X1, . . . , Xn]. We then have that

I(Z(I)) = I if and only if I is a real ideal.

Proof. — See [BCR98, 4.1.4].

This theorem turns out to hold over any real closed field, such as Ralg =
Q ∩ R.

Definition A.5.16. — [BCR98, 1.1.6] A field K is said to be a real field if
and only if for any x1, . . . , xn ∈ K,

n∑
k=1

x2
k = 0 =⇒ x1 = · · · = xn = 0 .

Remark A.5.17. — Any real field is of characteristic zero.

Definition A.5.18. — A real closed field K is a real field which does not
have any non trivial real extension.
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Theorem A.5.19. — [BCR98, Théorème 1.2.2] Let K be a field. The fol-
lowing are equivalent.

1. The field K is real closed.
2. The field K has a unique total order whose positive cone is exactly the

squares of K and any polynomial K[X] of odd degree has a root in K.
3. The extension K[i] = K[X]/(X2 + 1) is an algebraically closed field.

Remark A.5.20. — Only the "true" real number field can be used in prob-
lems requiring transcendental methods: we refer to [BCR98, page 2] for more
details. For example, the Stone-Weierstrass theorem 5.2.3 which helps us to
compare algebraic and differentiable geometry, holds only over R.

A.6. Quadratic Z-modules and lattices

This section draws on [Ser77, Chapitre V]. We recall that any Z-module is
an abelian group and that any abelian group has a unique Z-module structure.
We further recall that any finitely generated Z-module,M , can be decomposed
as a free part and a torsion part.

M = Mf ⊕ Tor(M) .

Definition A.6.1. — Let A be a ring. A quadratic form on an A-module
M is a map Q : M → A such that

1. Q(ax) = a2Q(x) for any a ∈ A and x ∈M .
2. The map (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is a bilinear form.

Such a pair (M,Q) is called a quadratic A-module.

Remark A.6.2. — 1. The bilinear form (x, y) 7→ Q(x+ y)−Q(x)−Q(y)
is clearly symmetric.

2. If 2 is invertible inA (this holds in particular ifA is a field of characteristic
different from 2) then the map

(x, y) 7→ 1
2[Q(x+ y)−Q(x)−Q(y)]

is a symmetric bilinear form sending the pair (x, x) to Q(x) for any x ∈
M . This yields a one to one correpondence between bilinear symmetric
forms and quadratic forms on M .

Definition A.6.3. — Let K be a field of characteristic different from 2. The
discriminant of a quadratic K-module (M,Q) is defined to be the determinant
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of the matrix BQ of Q with respect to a basis of M , modulo the non zero
squares of K. In other words,

d(Q) = det(BQ) mod K∗2 .

Remark A.6.4. — Let (M,Q) be a free finitely generated quadratic Z-
module. As any change of basis matrix for M has determinant ±1, the deter-
minant of a matrix of Q is independent of the basis. The discriminant of the
quadratic module (M,Q) is defined to be the determinant of its matrix in any
basis of M

d(Q) = det(Q) .

Definition A.6.5. — A free Z-module M of finite rank n (ie. isomorphic to
Zn as a Zn module) is a lattice if and only if it is equipped with a symmetric
bilinear form (x, y) 7→ (x · y). The lattice M is said to be integral if the form
(x · y) is an integer for all x, y ∈ M . The determinant of a lattice M is the
discriminant of the quadratic form x 7→ (x · x). An integral lattice is said to
be unimodular if and only if its determinant is ±1.

Remark A.6.6. — Let (M, (x, y) 7→ (x · y)) be an integral lattice. The map
Q : M → Z, x 7→ (x · x) is then a quadratic form on M . The pair (M,Q) is
therefore a torsion free quadratic Z-module of finite rank.

The following result is one of the main reasons for which we are interested
in unimodular lattices.

Proposition A.6.7. — The degree 2m cohomology of a compact oriented
simply connected topological manifold without boundary of dimension 4m with
its cup product form is a unimodular lattice.

Sketch of the proof. — Proposition A.6.7 follows from Poincaré duality
(Corollary B.7.7). Indeed, if M is a compact oriented topological manifold
without boundary of dimension 4m then H2m(M ;Z)f is of finite rank and
the cup product H2m(M ;Z)f × H2m(M ;Z)f → Z is a non degenerate sym-
metric bilinear form of determinant 1. If moreover M is simply connected its
homology is torsion free and hence H2m(M ;Z) is a free Z-module or on other
words H2m(M ;Z)f = H2m(M ;Z).

Corollary A.6.8. — Let X be a non singular complex projective algebraic
surface with its Euclidean topology. (More generally, X may be a non singular
compact analytic surface). The group H2(X;Z) with cup product is then a
unimodular lattice.
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Lemma A.6.9. — Let (M,Q) be a non degenerate quadratic Z-module. As-
sume that M is free and of finite type. Let A be a submodule of M and set
B = A⊥. The absolute value of the discriminant of Q|A (resp. Q|B) is then
equal to the index of the subgroup A⊕B ⊂M :

|d(Q|A)| = |d(Q|B)| = [M : A⊕B] .

Proof. — See [Wil78, Lemma 3.14].

Definition A.6.10. — The signature (a, b) ∈ N × N of a non degenerate
quadratic form Q on a Z-module M is defined to be the signature of the
induced quadratic form QR on the R-vector space M ⊗Z R. The index of a
non degenerate quadratic form Q of signature (a, b) is defined to be

τ(Q) := a− b .

Remark A.6.11. — If Q is non degenerate then so is QR and it follows that
a+ b = dimRM ⊗Z R = rk(M/Tor(M)).

Definition A.6.12. — Let (M, (x, y) 7→ (x · y)) be a unimodular lattice.
The symmetric bilinear form (x, y) 7→ (x · y) is said to be even (or of type
II) if and only if for any x ∈ M the integer (x · x) is even. Otherwise, ie. if
there is an x ∈ M such that (x · x) is odd, the form is said to be odd (or of
type I).

Proposition A.6.13. — Let (M,Q) be a unimodular lattice. If Q is even
then its index satisfies

τ(Q) ≡ 0 mod 8 .

Proof. — See [Ser77, Corollaire 1, §V.2].

A.7. Anti-linear involutions

Definition A.7.1. — Let E be a C-vector space. A map

σ : E → E

is an anti-linear involution if and only if σ ◦ σ = idE and for all λ ∈ C and all
a ∈ E we have that

σ(λa) = λσ(a) .
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Definition A.7.2. — Let G := Gal(C|R) be the Galois group, let E be an
R-vector space with a G action and let σ be the corresponding involution of
E. We denote by EG := Eσ = {a ∈ E | σ(a) = a} the subspace of invariants
and by E−σ = {a ∈ E | σ(a) = −a} the subspace of anti-invariants.

The following elementary lemma is often useful.

Lemma A.7.3. — Let E be C-vector space of finite dimension with an anti-
linear involution σ. Any R-basis of Eσ is then a C-basis of E whose elements
are all σ-invariant.

Proof. — The map σ is R-linear for the R-vector space structure on E induced
by the inclusion R ⊂ C. As σ is an involution, its minimal polynomial isX2−1.
As this polynomial is square free, the R-linear map σ is diagonalisable and is
a direct sum of the two eigenspaces associated to the eigenvalues 1 and −1:
in other words, E = Eσ ⊕E−σ. Let (a1, . . . , ad) be an R-basis of Eσ: we then
have that (ia1, . . . , iad) is an R-basis of E−σ since σ(iak) = −iσ(ak) = −iak for
any k = 1, . . . , d. We therefore have that dimRE

σ = dimRE
−σ = 1

2 dimRE =
dimCE. The 2d-tuple (a1, . . . , ad, ia1, . . . , iad) is therefore an R-basis of E and
(a1, . . . , ad) is a C-basis of E.
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Solution to exercises of Appendix A

A.2.4 By definition, I(F ) ⊂
√
I(F ) and conversely for any f ∈

√
I(F ) there

is an n ∈ N∗ such that fn ∈ I(F ), or in other words ∀x ∈ F, (f(x))n = 0.
Since f is K-valued and the field K is reduced we have that ∀x ∈ F, f(x) = 0
and hence f ∈ I(F ).
A.3.4 Consider the map ϕ : A/m → Am/mm, x 7→ x

1 . The quotient A/m is a
field so ϕ is injective. Conversely, consider an element x

s ∈ Am where x ∈ A
and s ∈ A \ m. The class of s in A/m is non zero and is therefore invertible.
There is therefore an a ∈ A and an m0 ∈ m such that 1 = as+m0: moreover
x
s = x(as+m0)

s = (xa)s
s + m0

s ∈
xa
1 +mm and it follows that ϕ(xa) = xa

1 = x
s and

hence ϕ is an isomorphism.
A.4.4 1. If m is odd it is coprime with 2 so there is a pair (u, v) ∈ Z2 such
that 2u+mv = 1. In Zm ⊗Z Z2, we therefore have that

1⊗ 1 = (2u+mv)⊗ 1 = 2u⊗ 1 = u⊗ 2 = u⊗ 0 = 0
and the conclusion follows because 1⊗ 1 generates Zm ⊗Z Z2.

2. We apply the universal property of tensor product to the map
ϕ : Zm ×Z Z2 → Z2, (a, b) 7→ ab

which is Z-bilinear and satisfies ϕ(1, 1) = 1 6= 0. There is therefore a map
ϕ̂ : Zm ⊗Z Z2 → Z2 such that ϕ̂(1⊗ 1) 6= 0 and in particular 1⊗ 1 is not zero
in Zm⊗ZZ2. Moreover, as 2(1⊗1) = 1⊗2 = 0, the order of 1⊗1 in Zm⊗ZZ2
is 2 and the result follows because 1⊗ 1 generates Zm ⊗Z Z2.



APPENDIX B

TOPOLOGY

Our main reference for this appendix is Hatcher’s book [Hat02].

B.1. Hausdorff spaces

Any real or complex algebraic variety comes equipped with two natural
topologies, namely the Zariski and Euclidean topologies (Definitions 1.2.3 and
1.4.1 respectively). We start this chapter by reviewing some important differ-
ences between them.

Definition B.1.1. — A topological space X is said to be Hausdorff if and
only if any two distinct points of X have disjoint neighbourhoods.

In Chapter 1 we defined the Zariski topology on An(K) and noted that it
was only Hausdorff in a few special cases (n = 0 or n = 1 and K = Z2 for
example). For algebraic varieties, there is a related notion of separated space,
motivated by the following elementary result.

Proposition B.1.2. — Let X be a topological space: we equip the carte-
sian product X × X with the product topology (i.e. the topology generated
by products of open spaces). X is then Hausdorff if and only if the diagonal
∆ := {(x, x) ∈ X ×X | x ∈ X} is closed in X ×X.

Definition B.1.3. — An algebraic variety X over a field K is said to be
separated if and only if the diagonal ∆ := {(x, x) ∈ X ×X | x ∈ X} is closed
in the Zariski topology on X ×X.

Exercise B.1.4 (See Exercise 1.2.2). —
�

Let K be an infinite field.
The Zariski topology on the product of two affine algebraic sets X ⊂ An(K)
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and Y ⊂ Am(K) is the topology induced on X × Y by the Zariski topology
on An+m(K). Prove that the Zariski topology on a product X × Y is not the
product of the Zariski topologies on X and Y .

Definition B.1.5. — A topological space X is said to be quasi-compact if
and only if every open cover of X has a finite sub-cover.

Proposition B.1.6. — A topological space X is Noetherian (Defini-
tion 1.2.22) if and only if every subspace of X is quasi-compact. In particular,
every subspace of an algebraic set is quasi-compact in the Zariski topology.

Definition B.1.7. — A topological space is said to be compact if and only
if it is both quasi-compact and Hausdorff.

The following proposition summarises the links between compactness and
separation of algebraic varieties.

Proposition B.1.8. — Let X be a real or complex algebraic variety.
1. X is quasi-compact and every subspace of X is quasi-compact in the

Zariski topology. If the variety X is projective, quasi-projective, affine or
quasi-affine then X is a separated algebraic variety.

2. If we equip X with its Euclidean topology then X becomes Hausdorff. If
X is projective then it is compact.

B.2. Semi-algebraic sets

This brief section contains several useful definitions: see [BCR98, Chapters
2 and 8] for a more detailled presentation.

Definition B.2.1. — A semi-algebraic set in Rn is a finite union of sets of
the form

{x ∈ Rn | P1(x) = · · · = Pl(x) = 0 and Q1(x) > 0, . . . , Qm(x) > 0}

where Pi, i = 1, . . . , l and Qj , j = 1, . . . ,m are elements of R[X1, . . . , Xn].

Definition B.2.2. — Let A ⊂ Rm and B ⊂ Rn be semi-algebraic sets. A
map f : A → B is said to be semi-algebraic if and only if its graph is semi-
algebraic in Rm+n.

Definition B.2.3. — Let A ⊂ Rm be an open semi-algebraic set. A Nash
function f : A → R is a function which is both semi-algebraic and C∞-
differentiable. Let A ⊂ Rm and B ⊂ Rn be open semi-algebraic sets. A Nash
map f : A→ B is a map which is both semi-algebraic and C∞-differentiable.
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There is an implicit functions theorem for Nash maps (see [BCR98, Propo-
sition 2.9.7 and Corollary 2.9.8]) which justifies the following definition.

Definition B.2.4. — Let A ⊂ Rm and B ⊂ Rn be open semi-algebraic sets.
A map f : A→ B is said to be a Nash diffeomorphism if and only if f is both
a Nash map and a C∞ diffeomorphism.

B.3. Simplicial complexes and homology

Definition B.3.1. — An abstract simplicial complex(1) is a set K whose
elements are called vertices equipped with a family of non empty finite subsets
ofK called simplexes such that every vertex is contained in at least one simplex
and every non empty subset of a simplex is a simplex. A non empty subset
of a simplex is said to be a face of the simplex. A simplicial map is a map
ϕ : K → K ′ between simplicial complexes which sends simplexes to simplexes.
A simplicial pair is a pair (K,L) of simplicial complexes such that L ⊂ K and
every simplex of L is a simplex of K.

We denote by |K| the geometric realisation of a simplicial complex K. See
[Spa66, III.1] or [Hat02, Section 2.1] for more details.

Definition B.3.2. — A topological space X is said to be triangulable if
and only if there is a simplicial complex K such that its geometric realisation
|K| is homeomorphic to X. A compact triangulable space- in other words, a
space which is homeomorphic to the geometric realisation of a finite simplicial
complex- is often called a polyhedron.

Remark B.3.3 (Triangulation of (semi)-algebraic sets)
It has been known for a long time that every real or complex quasi-

projective algebraic set is triangulable, as is every real or complex analytic
set. We refer to [Wae30], [KB32], or [LW33] for the proof of this result.
See [Hir75, Theorem, page 170] for a "modern" proof inspired by work of
Łojasiewicz [Łoj64]. The interested reader may also wish to read [BCR98,
§9.2] or [Cos02, Chapter 3]. The result proved by Hironaka is actually more
general: he shows that any disjoint union of a finite number of semi-algebraic
sets is triangulable. Recall that as in Definition B.2.1 a semi-algebraic set
is a subset of RN (or more generally of KN for any real closed field K) for
some N defined by polynomial equalities and inequalities. A real algebraic set

(1)Such an object is called a Schéma simplicial in [God58, II.3.2].
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is therefore a special case of a semi-algebraic set. To prove that Hironaka’s
theorem implies that any affine (for example) complex algebraic variety X is
triangulable, we start by embedding X as an algebraic subset of Cn for some
n. Separating the real and imaginary parts of the equations defining X, we
obtain an embedding of the underlying Euclidean space of X in R2n: X can
therefore be seen as a real algebraic set in R2n and we now apply Hironaka’s
theorem.

Definition B.3.4. — The barycentric subdivision of a simplicial complex K
is a simplicial complex K ′ whose vertices are the simplexes of K and whose
simplices are the sets {s0, . . . , sn} of simplexes of K (ie. vertices of K ′) such
that after permutation

s0 ⊂ s1 ⊂ · · · ⊂ sn .
In other words, si is a face of si+1 for all i = 0 . . . n− 1.

Remark B.3.5. — Simplicial complexes can be generalised to cell complexes,
or CW-complexes as in [Hat02, Chapter 0 and Appendix]. In other words,
every simplicial complex, and in particular every polyhedron and every graph,
has a natural CW-complex structure. Moreover, every CW-complex is ho-
motopy equivalent to a simplicial complex of the same dimension, [Hat02,
Theorem 2C.5]. Every differentiable manifold and every real or complex quasi-
projective algebraic variety has the homotopy type of a CW-complex (in the
Euclidean topology). All these complexes are used for the same reason: cal-
culating singular homology. When the space is triangulable-ie. decomposable
as a simplicial complex- we can calculate singular homology via simplicial
homology. The modern method for this reduction is ∆-complexes [Hat02,
Chapter II]: the definition of the simplicial homology of a ∆-complex given by
Hatcher [Ibid., Section 2.1] applies directly to the special case of a simplicial
complex K provided we use its realisation as a topological space to orient it
correctly.

Theorem B.3.6 (Homology long exact sequence of a pair)
Let G be an abelian group (in practice we generally take G = Z,Z2,Q,C

or R) and let (X,A) be a topological pair. We then have the following exact
sequence

(B.1) · · · → Hk(A;G)→ Hk(X;G)→ Hk(X,A;G)→ Hk−1(A;G)→ · · ·
→ H0(X,A;G)→ 0

Proof. — See [Hat02, 2.13, pages 114–117].
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Theorem B.3.7 (Cohomology long exact sequence of a pair)
Let G be an abelian group and let (X,A) be a topological pair. We then

have the following exact sequence:
(B.2)
· · · → Hk(X,A;G)→ Hk(X;G)→ Hk(A;G)→ Hk+1(X,A;G)→ · · ·

Proof. — See [Hat02, §3.1, page 200].

Definition B.3.8. — Let G be a group and let [G,G] be its derived subgroup
or in other words the subgroup of G generated by its commutators [x, y] :=
xyx−1y−1. The derived subgroup is distinguished in G and the quotient group

Gab := G/[G,G]

is an abelian group called the abelianisation of G.

Theorem B.3.9 (Hurewicz’ theorem). — Let X be a path connected topo-
logical space and let x be a point in X. To any loop γ : [0, 1] → X passing
through x there corresponds a 1-chain which is a cycle whose class is an el-
ement of H1(X;Z). This correspondence induces a functorial isomorphism
between the abelianisation of π1(X,x) and H1(X;Z). In particular, if π1(X)
is abelian then H1(X;Z) ' π1(X).

Proof. — See [Hat02, Theorem 2.A1].

B.4. Universal coefficients theorem

Recall that as in Section A.6, any finitely generated Z-module M decom-
poses as a free part and a torsion part

M = Mf ⊕ Tor(M)

where Mf ' Zr and Tor(M) ' Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdl and for any i < l, di > 1
and di|di+1.

Theorem B.4.1 (Universal coefficients in cohomology)
Let X be a topological space and let G be an abelian group. For any k

the sequence

0→ Ext(Hk−1(X;Z), G)→ Hk(X;G)→ Hom(Hk(X;Z), G)→ 0

is then exact and split.

Proof. — See [Hat02, Theorem 3.2, page 195].
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Corollary B.4.2. — If the groups Hk(X;Z) and Hk−1(X;Z) are finitely
generated then

Hk(X;Z) ' (Hk(X;Z)/Tor(Hk(X;Z)))⊕ Tor(Hk−1(X;Z)) .

Proof. — See [Hat02, Corollary 3.3].

Theorem B.4.3 (Universal coefficients theorem in homology)
Let X be a topological space and let G be an abelian group. For any

natural number k the sequence

0→ Hk(X;Z)⊗G→ Hk(X;G)→ Tor(Hk−1(X;Z), G)→ 0

is exact and split.

Proof. — See [Hat02, Theorem 3A.3, page 264].

Corollary B.4.4. — Let X be a topological space. For any natural number
k we then have that

Hk(X;C) = Hk(X;Q)⊗Q C ,

We now apply Theorems B.4.1 and B.4.3 to cohomology with coefficients
in Z2:

Corollary B.4.5. — Let X be a topological space. For any k the sequences

0→ Ext(Hk−1(X;Z),Z2)→ Hk(X;Z2)→ Hom(Hk(X;Z),Z2)→ 0
0→ Hk(X;Z)⊗ Z2 → Hk(X;Z2)→ Tor(Hk−1(X;Z),Z2)→ 0

are then exact and split.

Remark B.4.6. — Let m > 1 be a natural number. The image of the
multiplication by m map

Z2
×m−−→ Z2

vanishes if and only if m is even. It follows (see [Hat02, page 195 and Propo-
sition 3A.5, page 265]) that:

– If m is even then Ext(Zm,Z2) ' Z2 and Tor(Zm,Z2) ' Z2 ;
– if m is odd then Ext(Zm,Z2) ' 0 and Tor(Zm,Z2) ' 0.

Moreover, we have that

Ext(M ⊕M ′,Z2) ' Ext(M,Z2)⊕ Ext(M ′,Z2) ;
Tor(M ⊕M ′,Z2) ' Tor(M,Z2)⊕ Tor(M ′,Z2) .
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If X is compact we can calculate the group Hk(X;Z2) using the above re-
mark and the invariant factors of the finitely generated Z-module Hk−1(X;Z):

Hk−1(X;Z) = Zj1 ⊕ · · · ⊕ Zjt ⊕ Z⊕ · · · ⊕ Z ,

where ji divides ji+1 for every i. Let l be the number of even invariant factors
ji: we then have that Ext(Hk−1(X;Z),Z2) ' ⊕lZ2 and Tor(Hk−1(X;Z),Z2) '
⊕lZ2. It follows that

Hk(X;Z2) ' Hom(Hk(X;Z),Z2)⊕l Z2 ;

Hk(X;Z2) ' Hk(X;Z)⊗ Z2 ⊕l Z2 .

Example B.4.7 (Homology of real projective spaces)
1. Homology of RP2. We have that H0(RP2;Z) ' Z, H1(RP2;Z) ' Z2

and H2(RP2;Z) = {0}. It follows that H0(RP2;Z2) ' H1(RP2;Z2) '
H2(RP2;Z2) ' Z2 because Tor(H1(RP2;Z)) ' Z2.

2. Homology of RP3. We have that H0(RP3;Z) ' Z, H1(RP3;Z) ' Z2,
H2(RP3;Z) = {0} and H3(RP3;Z) ' Z. It follows that H0(RP3;Z2) '
H1(RP3;Z2) ' H2(RP3;Z2) ' H3(RP3;Z2) ' Z2 because Tor(H1(RP3;Z)) '
Z2.

Definition B.4.8 (Reduced homology). — The reduced homology
groups of a non empty topological space X are defined as follows:

H̃k(X;Z) = Hk(X;Z)

for k > 0 and
H̃0(X;Z)⊕ Z ' H0(X;Z) .

Example B.4.9 (Reduced homology uniformises statements)
1. The reduced homology of a point (and indeed of any contractible space)

is trivial for all k (including k = 0),

∀k H̃k({x};Z) = {0} .

2. The reduced homology of a sphere of dimension n is concentrated in
dimension n: H̃n(Sn;Z) ' Z

H̃k(Sn;Z) = 0 ∀k 6= n .

We note for completeness’ sake that since S0 = {−1, 1} we have that

H0(S0;Z) ' Z⊕ Z and H̃0(S0;Z) ' Z .
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Proposition B.4.10. — Let (X,L) be a topological pair. If X is contractible
and L is non empty then

Hk(X,L;Z) ' H̃k−1(L;Z)

for every natural number k.

Proof. — We deduce the following exact sequence from the exact sequence
(B.1).

· · · → Hk+1(X,L;Z)→ H̃k(L;Z)→ H̃k(X;Z)→ Hk(X,L;Z)→ · · ·

The desired result follows because the reduced homology of a contractible
space is trivial for all k.

Example B.4.11. — For any n > 0 we have thatHn(Rn,Rn \ {0};Z) ' Z
Hk(Rn,Rn \ {0};Z) = 0 ∀k 6= n .

Proof. — The group Hk(Rn,Rn \ {0};Z) is isomorphic to the reduced homol-
ogy group H̃k−1(Rn \ {0};Z) because Rn is contractible (Proposition B.4.10)
which is in turn isomorphic to H̃k−1(Sn−1;Z) because Rn \ {0} is homeomor-
phic to Sn−1. We now simply apply Example B.4.9(2).

Note that for n = k = 1 we have that Hk−1(Rn \ {0};Z) ' Z⊕ Z.

B.5. Topological and differentiable manifolds and orientability

This section is based on [Hat02, 3.3].

Definition B.5.1. — A topological manifold M of dimension n is a Haus-
dorff topological space such that every point has a neighbourhood which is
homeomorphic to Rn.

Proposition B.5.2. — The dimension of a topological manifold M can be
characterised intrinsically using the fact that for any x ∈M the local homology
group

Hk(M,M \ {x};Z)
is non zero only for k = n and in this case it is isomorphic to Z.

Proof. — Suppose that n > 0. Since M is locally homeomorphic to Rn the
group Hk(M,M \ {x};Z) is isomorphic to Hk(Rn,Rn \ {0};Z) by excision
([Hat02, Theorem 2.20]). The result then follows from Example B.4.11.
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If n = 0 and M is connected then M = {x} and Hk(M,M \ {x};Z) =
Hk({x};Z). The non connected case follows from the connected case.

Definition B.5.3. — Let M be a topological manifold of dimension n. An
orientation of M is a function M → tx∈MHn(M,M \ {x};Z) associating to
every x ∈M a generator µx of the cyclic group Hn(M,M \ {x};Z), subject to
the following local constancy condition. We require that every point x ∈ M
should have a neighbourhood B ⊂ Rn ⊂ M which is an open ball of finite
radius in Rn such that for every point y ∈ B the local orientation µy is the
image of a fixed generator µB ∈ Hn(M,M \B;Z) ' Hn(Rn,Rn \B;Z) under
the natural maps Hn(M,M \B;Z)→ Hn(M,M \ {y};Z).

A manifold M with an orientation is said to be orientable: a manifold
without any orientation is said to be non orientable.

Remark B.5.4. — It follows immediately from the above definition that M
is orientable if and only if all its connected components are orientable and M
is non orientable if and only if at least one of its connected components is non
orientable.

Remark B.5.5. — In particular, every topological manifoldM of dimension
1 is orientable. Indeed, consider a connected component M0 of M and note
that an orientation at a point x determines an orientation at every point y of
the same connected component via the canonical isomorphism H1(M0,M0 \
{x};Z) ' H1(M0,M0 \ B;Z) ' H1(M0,M0 \ {y};Z) where B is the image of
any path in M0 passing through x and y.

Proposition B.5.6 (Non compact manifolds). — Let M be a connected
non compact manifold of dimension n. For any k > n we then have that

Hk(M ;Z) = Hk(M ;Z2) = 0 .

See [Hat02, Proposition 3.29].

Theorem B.5.7 (Compact manifolds). — Let M be a compact connected
manifold of dimension n.(2). The homology groups in degree n or more are as
follows.

1. Hn(M ;Z2) ' Z2,
2. Hn(M ;Z) ' Z if M is orientable,
3. Hn(M ;Z) ' 0 if M is non orientable,

(2)We will sometimes say that M is closed to emphasise the fact that M is compact and has
no boundary
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4. Hk(M ;Z) = 0 if k > n.

See [Hat02, Theorem 3.26].

Remark B.5.8 (Fundamental class). — It follows that any compact con-
nected manifold M without boundary of dimension n has a fundamental Z2-
homology class [M ] ∈ Hn(M ;Z2). If moreover the manifold M is oriented
then it has a fundamental Z-homology class [M ] ∈ Hn(M ;Z). See [Hat02,
Theorem 3.26], for example, for more details.

Corollary B.5.9. — Let M be a compact connected topological manifold of
dimension n. The torsion subgroup Hn−1(M ;Z) then satisfies

1. Tor(Hn−1(M ;Z)) = 0 if M is orientable,
2. Tor(Hn−1(M ;Z)) ' Z2 if M is non orientable.

See [Hat02, Corollary 3.28].

Proposition B.5.10. — A differentiable manifold M is orientable if and
only if it has an atlas A such that the transition maps preserve orientation,
or in other words, such that

∀(U1, ϕ1), (U2, ϕ2) ∈ A, U1 ∩U2 6= ∅ =⇒ ∀x ∈ U1 ∩U2, det dx(ϕ1 ◦ϕ−1
2 ) > 0 .

Proof. — See [Hir76, §4.4].

Exercise B.5.11. — Any complex analytic variety is a differentiable mani-
fold whose transition maps are complex analytic. Prove that such a manifold
is not only orientable, but oriented in the sense that the complex analytic
manifold structure (ie. the data of a maximal atlas whose transition maps are
holomorphic) induces a canonical orientation.

Connected sums. — The operation ’connected sum of two topological sur-
faces’ enables us to equip the set of classes of compact surfaces without bound-
ary up to homeomorphism with a semigroup structure generated by the class
of the torus T2 and the real projective plane RP2. The identity element is the
class of S2 and the only relation is T2#RP2 = RP2#RP2#RP2.

Let M1 and M2 be two connected manifolds of the same dimension n. Let
B1 ⊂M1 and B2 ⊂M2 be two open balls: the complements F1 := M1\B1 and
F2 := M2\B2 are then manifolds whose boundary is homeomorphic to a sphere
Sn−1. Identifying F1 and F2 by a diffeomorphism along the boundary spheres
∂F1 and ∂F2 we obtain a manifold without boundary. See [Laf96, Laf15,
Exercice II.28] or [Die70, 16.26 problèmes 12 à 15] for details of the "gluing"
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of the manifolds F1 and F2. Under certain conditions the resulting manifold
is unique [Ibid.]:

Definition B.5.12 (Connected sum). — If each of the manifolds M1 and
M2 is non orientable or has an orientation-reversing differentiable automor-
phism then the manifold obtained from the above surgery is uniquely deter-
mined (up to homeomorphism) byM1 andM2 and is called the connected sum
of M1 and M2, denoted M1#M2.

Remark B.5.13. — As any orientable surface S has an orientation revers-
ing differentiable automorphism (and moreover there is always such a map
without fixed points whose quotient is the non orientable surface whose Euler
characteristic is half that of S) the connected sum of two arbitrary surfaces is
well defined.

Exercise B.5.14. — Any real projective space of even dimension is non
orientable. Any real projective space of odd dimension is orientable and has
an orientation-reversing differentiable automorphism. Any complex projective
space is orientable and such a space has an orientation-reversing differentiable
automorphism if and only if its (complex) dimension is odd. (See Proposi-
tion 2.2.28).

We will also use oriented connnected sums.

Definition B.5.15 (Oriented connected sums). — Let M1 and M2 be
two connected oriented manifolds of the same dimension n. Let B1 ⊂M1 and
B2 ⊂ M2 be open balls. The complements F1 := M1 \ B1 and F2 := M2 \ B2
are manifolds with boundary whose boundary is homeomorphic to a sphere
Sn−1. Identifying F1 and F2 along the spheres ∂F1 and ∂F2 by a diffeomor-
phism which is compatible with the induced orientations we get an oriented
manifold without boundary uniquely determined (up to homeomorphism) by
the oriented manifolds M1 and M2, which we call the connected sum M1#M2.

Remark B.5.16. — If we denote by −M2 the manifold M2 with the inverse
orientation then the connected sumsM1#M2 andM1#−M2 are not generally
homeomorphic. In dimension 2, however, M1#M2 and M1#−M2 are always
homeomorphic: in dimension 3 we have that M1#M2 and M1# − M2 are
homeomorphic whenever M2 = RP3 or M2 = S2 × S1. See [Hem76, Chapter
3] for more details.
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Spin structures. — Our main references for this section are [LM89, Chap-
ter II], [Mil63b]. The group SO(n) of positive isometries is a topological
group whose fundamental group isπ1(SO(2)) = Z

π1(SO(n)) = Z2 ∀n > 2 .

Definition B.5.17 (The group Spin(n)). — For all n > 1 we let the
group Spin(n) be the unique double cover of SO(n).

1→ Z2 → Spin(n)→ SO(n)→ 1

Remark B.5.18. — For any n > 2 the group Spin(n) is the universal cover
of SO(n).

Definition B.5.19. — An oriented differentiable manifold is said to be a
spin manifold if and only if its tangent bundle has at least one spin structure.
See [LM89, Chapter II, Definition 1.3, Remark 1.9] for more details.

Proposition B.5.20. — A differentiable oriented manifold V is a spin man-
ifold if and only if its second Stiefel-Whitney class vanishes, w2(TV ) = 0.

Proof. — See [LM89, Chapter II, Theorem 2.1] or the original paper [BH59,
page 350] for more details.

Topologies on a family of maps. — Let k be an element of N∪{∞}. For
any two Ck differentiable manifolds V and W we denote by Ck(V,W ) the set
of differentiable Ck maps from V to W .

Definition B.5.21 (Weak topology). — For any natural number k, the
weak (or Ck-compact-open) topology on the set Ck(V,W ) is the topology gen-
erated by open sets Ω (f ; (ϕ,U); (ψ,U ′);K; ε) defined as follows. Consider a
function f ∈ Ck(V,W ), a chart (ϕ,U) of V , a chart (ψ,U ′) ofW and a compact
set K ⊂ U such that f(K) ⊂ U ′ and 0 < ε 6∞. The open set

Ω
(
f ; (ϕ,U); (ψ,U ′);K; ε

)
contains those functions g : V →W of class Ck such that g(K) ⊂ U ′ and∥∥∥Dl(ψfϕ−1)(x)−Dl(ψgϕ−1)(x)

∥∥∥ < ε

for any x ∈ ϕ(K) and any l = 0, . . . , k.
For k = ∞ the weak topology on the set C∞(V,W ) is the union of all the

topologies induced by the inclusion Ck(V,W ) ↪→ C∞(V,W ) for some finite k.
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Definition B.5.22 (Strong topology). — For any natural number k the
strong (or Whitney) topology on the set Ck(V,W ) is generated by open sets
Ω (f ; Φ; Ψ;K; ε) defined as follows. Let Φ = {(ϕi, Ui)}i∈Λ be a locally finite
family of charts on V , by which we mean that every point x in V has a
neighbourhood meeting only a finite number of Uis. Let K = {Ki}i∈Λ be
a family of compact subsets of V such that Ki ⊂ Ui for all i. Let Ψ =
{(ψi, U ′i)}i∈Λ be a family of charts of W and let ε = {εi}i∈Λ be a family of
strictly positive real numbers. For any map f ∈ Ck(V,W ) sending Ki to U ′i
the open set

Ω (f ; Φ; Ψ;K; ε)
contains those functions g : V → W of class Ck such that for every i ∈ Λ,
g(Ki) ⊂ U ′i and ∥∥∥Dl(ψifϕ−1

i )(x)−Dl(ψigϕ−1
i )(x)

∥∥∥ < εi

for any x ∈ ϕi(Ki) and any l = 0, . . . , k.
For k =∞ the strong topology on the set C∞(V,W ) is the union of topolo-

gies induced by the inclusions Ck(V,W ) ↪→ C∞(V,W ) for all finite k.

Remark B.5.23. — When V is compact the weak and strong topologies are
equivalent on Ck(V,W ). See [Hir76, §2.1] for more details.

B.6. Cohomology

Let X be a topological space and let G be a ring (in practice we generally
have G = Z,Z2,Q,C or R). We denote by Ck(X;G) the group of cochains
φ : Ck(X) → G and by Hk(X;G) the cohomology groups associated to the
cochain complex

(B.3) · · · → Ck(X;G)→ Ck+1(X;G)→ . . .

Definition B.6.1 (Cup-product). — Let X be a topological space and let
l, k be integers. There is a bilinear map called the cup-product:

^ : H l(X;Z)×Hk(X;Z) −→ H l+k(X;Z)

sending the class of an l-cochain ψ ∈ C l(X;Z) and the class of a k-cochain
φ ∈ Ck(X;Z) to the class of the (l + k)-cochain ψ ^ φ ∈ C l+k(X;Z) whose
value on a singular (l + k)-simplex s : ∆l+k → X is given by

(ψ ^ φ)(s) := ψ(s|[0,··· ,k])φ(s|[k,··· ,k+l])

See [Hat02, §3.2] for the details of this construction.
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Proposition B.6.2. — Let f : X → Y be a continuous map between topo-
logical spaces and let l, k be integers. The naturality of the cup-product man-
ifests itself in the fact that the induced maps f∗ : H l+k(Y ;Z) → H l+k(X;Z),
f∗ : H l(Y ;Z)→ H l(X;Z) and f∗ : Hk(Y ;Z)→ Hk(X;Z) satisfy the formula

f∗(ψ ^ φ) = f∗(ψ) ^ f∗(φ)

for any ψ ∈ H l(Y ;Z) and any φ ∈ Hk(Y ;Z).

Proof. — See [Hat02, Proposition 3.10].

The space H∗(X;G) is a ring whose multiplication is given by cup-product.
The following theorem can be used to calculate the cohomology ring of a
product space.

Theorem B.6.3. — Let X,Y be "reasonable" topological spaces (by which we
mean they should be CW-complexes) and let G be a ring. The cross-product

H∗(X;G)⊗G H∗(Y ;G)→ H∗(X × Y ;G)

is then an isomorphism of graded rings whenever Hk(Y ;G) is a free finitely
generated G-module for all k.

Proof. — See [Hat02, Theorem 3.16].

Theorem B.6.4 (Künneth formula). — Let X,Y be "reasonable" topo-
logical spaces (ie. CW complexes) and let K be a field. The homology cross
product ⊕

l

(Hl(X;K)⊗K Hk−l(Y ;K))→ Hk(X × Y ;K)

is then an isomorphism for any k.

Proof. — See [Hat02, Corollary 3.B7].

Example B.6.5. — We can calculate the homology of tori of dimension n

Tn = S1×· · ·×S1 using the Betti numbers of the circle S1: b0(S1) = b1(S1) = 1
and bk(S1) = 0 for k /∈ {0, 1}. This gives us

bk(Tn) = bk−1(Tn−1) + bk(Tn−1) .

It follows that b0(Tn) = 1 and b1(Tn) = b1(Tn−1) + 1 = n. Organising the
Betti numbers of the torus into a Pascal triangle we get that

bk(Tn) =
(
n

k

)
.
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Remark B.6.6. — See [Hat02, Theorem 3.B6] for a version of the Künneth
formula valid for spaces whose homology groups contain torsion.

Cohomology with compact support. — Let X be a topological space
and let G be a ring (typically G = Z,Z2,Q,C or R). We denote by Ckc (X;G)
the subgroup of Ck(X;G) of cochains φ : Ck(X) → G such that there exists
a compact set K = Kφ ⊂ X such that φ vanishes on all chains in X \ K.
If δ : Ck(X;G) → Ck+1(X;G) is the coboundary map then δφ vanishes on
chains in X \K. The subgroups

(B.4) · · · → Ckc (X;G)→ Ck+1
c (X;G)→ . . .

therefore form a subcomplex of the complex of singular cochains of X with
values in G.

Definition B.6.7 (Cohomology with compact support)
The cohomology groups

Hk
c (X;G)

associated to the subcomplex (B.4) are called the compact support cohomology
groups of X with coefficients in G.

Proposition B.6.8. — We have the following exact sequence for cohomology
with compact support of a compact pair (X,L):
(B.5)
· · · → Hk

c (X r L;G)→ Hk(X;G)→ Hk(L;G)→ Hk+1
c (X r L;G)→ · · ·

B.7. Poincaré duality

In this section, we discuss several different versions of Poincaré duality,
whose common hypothesis is that the topological space in question should be
a topological manifold, or in other words every point in this space should have
a neighbourhood isomorphic to Rn (Definition B.5.1). We refer the interested
reader to [PP12] for a historical discussion of this result. Most of the proofs
omitted below can be found in [Hat02, §3.3] or [Gre67].

Theorem B.7.1. — Let M be a topological manifold of dimension n. There
is then a dualising isomorphism

DM : Hk
c (M ;Z2) '−→ Hn−k(M ;Z2) .

If M is orientable then there is a dualising isomorphism

DM : Hk
c (M ;Z) '−→ Hn−k(M ;Z)
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which does not depend on the choice of an orientation on M .

Proof. — See [Hat02, Theorem 3.35].

Corollary B.7.2. — Let M be a topological manifold of dimension n. If M
is compact and orientable then there is a dualising isomorphism

DM : Hk(M ;Z) '−→ Hn−k(M ;Z).

Remark B.7.3. — In this case, as the manifoldM is compact and orientable,
we may choose an orientation. With this orientation, M has a fundamental
class [M ] and the isomorphism DM is given for all k by cap-product (see below)
with this fundamental class.

DM (φ) = [M ] _ φ .

Definition B.7.4 (Cap-product). — Let X be a topological space and let
l > k be integers. There is then a bilinear map, called the cap-product:

_ : Hl(X;Z)×Hk(X;Z) −→ Hl−k(X;Z)

which sends the class of a singular l-simplex s : ∆l → X and the class of
a k-cochain φ ∈ Ck(X;Z) to the class of the (l − k)-simplex s _ φ :=
φ(s|[0,··· ,k])s|[k,··· ,l].

We refer to [Hat02, §3.3] for details of this construction.

Proposition B.7.5. — Let f : X → Y be a continuous map between topo-
logical spaces: the naturality of the cap product is expressed in the following
diagram

Hl(X;Z)×Hk(X;Z) _−−−−→ Hl−k(X;Z)

f∗

y f∗
x yf∗

Hl(Y ;Z)×Hk(Y ;Z) _−−−−→ Hl−k(Y ;Z)
by

f∗(α) _ φ = f∗(α _ f∗(φ))
for any α ∈ Hl(X;Z) and φ ∈ Hk(Y ;Z).

Proof. — See [Hat02, §3.3].

The cup-product and cap product are linked by the formula

ψ(α _ φ) = (φ ^ ψ)(α)

for any α ∈ Hk+l(X;Z), φ ∈ Hk(X;Z) and ψ ∈ H l(X;Z).
Considering the free part of the cohomology groups we get a perfect pairing:
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Theorem B.7.6. — Let M be a topological manifold of dimension n. If M
is compact and oriented then for any 0 6 k 6 n the cup-product pairingP k : Hk(M ;Z)f ×Hn−k(M ;Z)f → Z

(φ, ψ) 7→ (φ ^ ψ)[M ]

is a Z-bilinear form such that the induced Z-linear maps

Hk(M ;Z)f → Hom(Hn−k(M ;Z)f ;Z)

and
Hn−k(M ;Z)f → Hom(Hk(M ;Z)f ;Z)

are isomorphisms.

Corollary B.7.7. — Let M be a compact topological manifold of even di-
mension n = 2m.

1. The cup-product pairing

Hm(M ;Z2)×Hm(M ;Z2)→ Z2

is a symmetric non degenerate bilinear form of determinant 1.
2. If M is oriented then the cup-product pairing

Hm(M ;Z)f ×Hm(M ;Z)f → Z

is a non degenerate bilinear form of determinant ±1, which is symmetric
if m is even and anti-symmetric if m is odd.

Proposition A.6.7 is a key application of Poincaré duality.

Theorem B.7.8 (Coefficients in Z). — Let M be a topological manifold
of dimension n. If M is compact and oriented then for any integers 0 6 k 6 n

there is a bilinear form (called the "intersection form")

Pk : Hk(M ;Z)×Hn−k(M ;Z)→ Z

which induces an identification between the free part

Hk(M ;Z)f = Hk(M ;Z)/Tor(Hk(M ;Z))

of the Z-module Hk(M ;Z) and the dual Z-module Hom(Hn−k(M ;Z),Z).

In particular, if Hk(M ;Z) and Hn−k(M ;Z) are free Z-modules then we can
associate to any basis {ei} of Hk(M ;Z) a dual basis {fj} of Hn−k(M ;Z) such
that

Pk(ei, fj) = δij .
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Proposition B.7.9. — If M is a compact oriented topological manifold of
even dimension n = 2m then the bilinear form in dimension m

Pm : Hm(M ;Z)×Hm(M ;Z)→ Z

is symmetric if m is even and anti-symmetric if m is odd.

Theorem B.7.10 (Coefficients in Z2). — Let M be a topological manifold
of dimension n. If M is compact then for all integers k such that 0 6 k 6 n

there is an intersection form

Pk : Hk(M ;Z2)×Hn−k(M ;Z2)→ Z2

inducing an identification between the Z2-vector spaces Hk(M ;Z2) and
Hom(Hn−k(M ;Z2),Z2) which in turn is isomorphic to Hn−k(M ;Z2) because
Z2 is a field.

Proposition B.7.11. — If M is a compact topological manifold of even di-
mension n = 2m then the bilinear form in dimension m

Pm : Hm(M ;Z2)×Hm(M ;Z2)→ Z2

is symmetric.

Remark B.7.12. — When M is a differentiable manifold and α = [A] ∈
Hk(M ;Z) and β = [B] ∈ Hn−k(M ;Z) are the fundamental classes of two
oriented differentiable submanifolds A of dimension k and B of dimension
n − k which are transverse in M (3). Since A and B have complementary
dimensions the intersection A t B is then a finite collection of points. Let
P ∈ A t B be such a point: we associate a sign εP = ±1 to P in the following
way. If the orientation determined by the orientation on TPA and on TPB is
the same as that on TPM then εP := 1 and otherwise εP := −1. We then
have that

Pk(α, β) =
∑

P∈AtB
εP ∈ Z .

For Z2 cohomology, M , A and B do not need to be oriented (they are
automatically Z2-oriented) and Pk(α, β) is equal to the number of points P ∈
A t B modulo 2.

(3)This means that for any point P in the intersection A∩B we have that TPM = TPA⊕TPB:
we denote this relationship by A t B.
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Note that this interpretation of Pk only applies in certain special cases and
cannot be used to define the intersection form in full generality. In particu-
lar, not all homology classes can be represented by embedded differentiable
submanifolds- see [Tho54] for more details.

Remark B.7.13. — In the situation of the above remark, it is easy to show
that if M is a manifold of even dimension n = 2m then the bilinear form
Pm : Hm(M ;Z)×Hm(M ;Z)→ Z is symmetric ifm is even and anti-symmetric
if m is odd.

Remark B.7.14. — Analogues of Theorems B.7.1 and B.7.2 exist for not
necessarily orientable manifolds. (To remember these generalisations, think
of an arbitrary manifold as being Z2-orientable as in the discussion preceding
[Hat02, Theorem 3.26].)

Theorem B.7.15. — Let M be a topological manifold of dimension n. We
then have that

Hk
c (M ;Z2) ' Hn−k(M ;Z2).

Corollary B.7.16. — Let M be a topological manifold of dimension n. If
M is compact then

Hk(M ;Z2) ' Hn−k(M ;Z2).

Application: orientability of a submanifold. —

Proposition B.7.17. — Let S ⊂ RP3 be a connected differentiable subman-
ifold of dimension 2. The following are then equivalent.

1. S is orientable,
2. Any line in RP3 transverse to S meets S in an even number of points,
3. The homology class (Definition 3.7.1) [S]2 ∈ H2(RP3;Z2) vanishes,
4. The complement RP3 \ V has two connected components.

Proof. — We refer to [BR90, Proposition 5.1.7] for more details.
1 =⇒ 2: if the surface S is orientable then it has a fundamental class [S] in

H2(S;Z) but as H2(RP3;Z) = {0} the class i∗([S]) in H2(RP3;Z) must vanish.
Let H be a line in RP3 transverse to S. As [H] generates H1(RP3;Z) ' Z2
the intersection H t S has an even number of elements by Poincaré duality.

2 =⇒ 3: By Poincaré duality [S]2 = 0 in H2(RP3;Z2) because [H]2
generates H1(RP3;Z2).
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3 =⇒ 4: Consider the homology exact sequence of the pair (RP3, S),

0→ H3(RP3;Z2) ' Z2 → H3(RP3, S;Z2)→

H2(S;Z2) ' Z2
i∗−→ H2(RP3;Z2) ' Z2

Since i∗ is trivial by hypothesis H3(RP3, S;Z2) ' Z2 ⊕ Z2. By Alexander du-
ality ([Hat02, Theorem 3.44]) we have that H0(RP3 \S;Z2) ' H3(RP3, S;Z2)
and RP3 \ V therefore has two connected components.

4 =⇒ 1: Since RP3 \ S has two connected components we can orient the
normal bundle of S in RP3. Since RP3 is orientable this yields an orientation
of the tangent bundle of S. See [Hir76, Lemma 4.4.1 and Theorem 4.4.5] for
more details.

Applications to algebraic varieties. — In this section we study Poincaré
duality on algebraic varieties that may be complex or real, projective or affine.

Compact ANRs. — A topological space X is said to be normal if and only
if it is Hausdorff (Definition B.1.1.) and additionally satisfies the following
stronger separation axiom:

For any pair of disjoint closed sets A and B there are two disjoint open sets
U and V such that A is contained in U and B is contained in V . In particular,
any metrisable space is normal.

A topological space is said to be paracompact if and only if it is Hausdorff
and any open covering has a locally finite (open) refinement. We recall that
a covering (Xi) of a topological space X is said to be locally finite if and only
if every point of X has a neighbourhood which meets only a finite number of
the Xis.

Every paracompact space is normal and every compact space or CW-
complex is paracompact. Every metrisable space is paracompact and every
paracompact manifold is metrisable.

Definition B.7.18. — A topological space X is said to be an ANR (Abso-
lute Neighborhood Retract) if and only if it satisfies the following universal
property: for any normal topological space Y , any continuous map f : B → X

defined on a closed subset B in Y can be extended to a continuous map U → X

from an open neighbourhood U of B in Y .

Proposition B.7.19. — (Examples of ANRs)
1. Rn is an ANR.
2. Any open subset of an ANR is an ANR.
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3. Any compact topological manifold is an ANR.
4. [Hu59, page 30 K.4] Let X be a metrisable space and let X1 and X2 be

two closed subspaces such that X = X1 ∪X2. If X1, X2 and X1 ∩X2 are
ANRs then X is an ANR.

Proposition B.7.20. — Let V be a compact topological manifold and let
B ⊂ V be a compact subspace which is an ANR. We then have that

Hk
c (V \B;Z) ' Hk(V,B;Z).

Proof. — See [Gre67, Cor. 27.4].

Remark B.7.21. — This can be generalised to the case where V is a compact
ANR.

Proposition B.7.22. — Let V be a non singular real projective variety of
dimension n and let VC be a non singular complexification of V . We then have
that

Hk(VC, V ;Z) ' H2n−k(VC \ V ;Z).

Proof. — Poincaré duality applied to the topological manifold VC \ V of di-
mension 2n yields that

Hk
c (VC \ V ;Z) ' H2n−k(VC \ V ;Z) .

Since moreover V is a compact ANR contained in the compact manifold VC
we have that Hk

c (VC \ V ;Z) ' Hk(VC, V ;Z).

Proposition B.7.23. — Let S be a non singular complex affine algebraic
variety of dimension n and let (V,B) be a smooth projective completion such
that B is a simple normal crossing (SNC) divisor. We then have that

(B.6) Hk(V,B;Z) ' H2n−k(S;Z) .

Proof. — Poincaré duality applied to the topological manifold S gives us that
Hk
c (S;Z) ' H2n−k(S;Z). By Proposition B.7.19.(4), B is a compact ANR in

the compact manifold V so Hk
c (S;Z) ' Hk(V,B;Z).

Example B.7.24 (Homology of affine rational surfaces)
In the above situation, assume that V is a complex surface (n = 2) from

which it follows that B is a complex curve. The following sequence is part of
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the exact cohomology sequence associated to the pair (V,B):

0→ H1(V ;Z)→ H1(B;Z)→
H2(V,B;Z)→ H2(V ;Z)→ H2(B;Z)→

H3(V,B;Z)→ H3(V ;Z)→ 0

Indeed, H3(B;Z) = 0 because B is a topological manifold of dimension
2 and H1(V,B;Z) ' H3(S;Z) = 0 because S is a complex affine surface.
Suppose now that V is a rational surface and B is a tree of rational curves. In
this case we have that H1(B;Z) ' H1(B;Z) = 0, H1(V ;Z) ' H3(V ;Z) = 0
and H3(V ;Z) ' H1(V ;Z) = 0. Using Poincaré duality (B.6) applied to the
topological manifold S of dimension 4 we get an exact sequence:

0→ H2(S;Z)→ H2(V ;Z)→ H2(B;Z)→ H1(S;Z)→ 0 .

B.8. Three dimensional manifolds

Seifert manifolds. — Let S1 × D2 be the solid torus, where S1 is the unit
circle {u ∈ C | |u| = 1} and D2 is the closed unit disc {z ∈ C, |z| 6 1}. A
Seifert fibration of the solid torus is a differentiable map of the form

f : S1 × D2 → D2, (u, z) 7→ uqzp,

where p, q are natural numbers such that p 6= 0 and (p, q) = 1. The map f

is a circle bundle which is locally trivial over the punctured disc D2 \ {0}. If
p > 1 then the fibre f−1(0) is said to be a multiple fibre of multiplicity p.

Definition B.8.1. — A compact manifold without boundary M of dimen-
sion 3 is said to be Seifert if and only if it has a Seifert fibration, or in other
words if and only if there is a differentiable map g : M → B to a surface B
such that every point P ∈ B has a closed neighbourhood U such that the
restriction of g to g−1(U) is diffeomorphic to a Seifert fibration of the solid
torus.

In particular, ever fibre of g is diffeomorphic to S1 and g is locally trivial
outside of a finite set of points {P1, . . . , Pk} ⊂ B where the fibre g−1(Pi) is
multiple.

Lens spaces. — For any natural number n ∈ N∗ denote by µn the multi-
plicative subgroup of C∗ consisting of n-th roots of unity.
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Definition B.8.2. — Let 0 < q < p be coprime integers. The lens space
Lp,q is the quotient of the sphere

S3 = {(w, z) ∈ C2 | |w|2 + |z|2 = 1}

by the action of µp defined by

ζ · (w, z) = (ζw, ζqz),

for any ζ ∈ µp and (w, z) ∈ C2.

Proposition B.8.3. — Any lens space has a Seifert fibration.

In fact, any such space has an infinite number of Seifert fibrations. Spaces
of the form Lp,1 have locally trivial fibrations.

Proof. — Such a fibration can be constructed from the Hopf fibration of the
sphere S3 over the sphere S2 ≈ C ∪ {∞}.

(B.7) S3 −→ S2

(w, z) 7−→ w/z .

A cyclic quotient of the Hopf fibration is a Seifert fibration over an orbifold
of dimension 2 (Definition 4.4.32):

Lp,q −→ S2(p, q)
(w, z) 7−→ wq/z .

We have seen that any lens space is a Seifert manifold. On the other hand,
apart from L2,1#L2,1 = RP3#RP3, any connected sum of at least two lens
spaces has no Seifert fibration structure (Propositions B.8.11 and B.8.13).

C∞ geometric manifolds. — A Riemannian manifold Ω is said to be ho-
mogeneous if and only if the isometry group Isom(Ω) acts transitively on Ω.
A geometry Ω is a simply connected homogeneous Riemannian manifold that
has a quotient of finite volume. If Ω is a real Lie group then we can make it
into a Riemannian manifold by equipping it with a left-invariant metric and
we call the resulting object "the" Ω geometry.

Definition B.8.4. — A C∞ differentiable manifoldM is said to be geometric
if and only if M is diffeomorphic to a quotient of a geometry Ω by a discrete
subgroup of isometries Λ ⊂ Isom(Ω) acting without fixed points. We also
say that M = Λ\Ω has a geometric structure modelled on Ω. Extending this
definition, we will say that a manifold with boundary is geometric if and only
if its interior (see Page 404) is geometric.
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When Ω is a Lie group the above hypotheses imply the existence of a lattice
of finite covolume. In other words, Ω is a unimodular Lie group.

Definition B.8.5. — A cristallographic group of dimension n is a discrete
group Λ of isometries of Euclidean space En such that the quotient Λ\En is
compact.

Definition B.8.6. — A C∞ differentiable manifold of dimension n is said to
be spherical, (resp. Euclidean, resp. hyperbolic) if and only if it has a geometry
modelled on Sn (resp. En, resp. Hn)(4).

The uniformisation theorem tells us that any compact topological surface
has a spherical, Euclidean or hyperbolic geometry: see [Sti92] for more de-
tails. Remarkably, all surfaces are geometric and moreover all 2 dimen-
sional geometries have constant sectional curvature. This no longer holds
in dimension 3 where as well as the constant scalar curvature geometries
S3, E3 and H3 there are five geometries without constant scalar curvature:
S2 ×E1, H2 ×E1, S̃L2(R), Nil and Sol. Thurston proved that up to equiva-
lence these are the only three dimensional geometries if we require the isometry
group to be maximal.

Theorem B.8.7 (Thurston). — Up to equivalence there are exactly eight
three dimensional geometries with maximal isometry group:

S3, E3, H3, S2 × E1, H2 × E1, S̃L2(R), Nil, Sol .

Proof. — See [BBM+10, page 2] or [Sco83].

We refer to [Sco83]) for more details on these eight geometries which we
will not describe in depth here. We will simply give a quick definition of
some of the associated Lie groups. The group S̃L2(R) is the universal cover
of SL2(R). The group Nil is the Heisenberg group of upper triangular 3 × 3
matrices whose diagonal elements are all equal to 1.

The Sol group is the only simply connected Lie group of dimension 3 with
a finite volume quotient which is resoluble but not nilpotent. The Lie group
Sol is the set R3 with the semi-direct product law induced by the action

R× R2 → R2, (z, (x, y)) 7→
(
ezx, e−zy

)
.

(4)Hn is the half-space {(x1, . . . , xn) ∈ Rn | xn > 0} with the metric 1
x2

n
(dx2

1 + · · ·+ dx2
n−1 +

dx2
n).
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The group law on R3 is

((α, β, λ), (x, y, z)) 7→
(
eλx+ α, e−λy + β, z + λ

)
and the metric

ds2 = e−2zdx2 + e2zdy2 + dz2

is left invariant. The group Isom(Sol) has eight connected components and
the identity component is the group Sol itself. See [Tro98, Lemme 3.2] for
more details.

Definition B.8.8. — A manifold M of dimension 3 is said to be a Sol
manifold if and only if there is a discrete subgroup of isometries Λ ⊂ Isom(Sol)
acting without fixed points such that

M = Λ\Sol .

We have seen that every compact surface is geometric: on the other hand,
not every manifoldM of dimension 3 has a geometric structure. We do however
have the following result.

Proposition B.8.9. — If a three dimensional manifold M of finite volume
has a geometric structure then this structure is unique.

Proof. — See[Sco83, §5].

Definition B.8.10 (Indecomposable manifold)
A compact C∞ manifold without boundary M of dimension 3 is said

to be indecomposable if and only if for any connected sum decomposition
M = M1#M2 one of the terms M1 or M2 is homeomorphic to S3.

Proposition B.8.11. — LetM be a three dimensional compact C∞ manifold
without boundary. If M is geometric and not diffeomorphic to RP3#RP3 then
M is indecomposable.

Proof. — See [Sco83, page 457].

As RP3#RP3 is modelled on S2 × E1 we have the following corollary.

Corollary B.8.12. — Let M be a three dimensional compact C∞ manifold
without boundary. If M is geometric and its geometry is not S2 × E1 then M
is indecomposable.

An important result in this area states that all Seifert manifolds have a
geometric structure. We even have a characterisation of the six "Seifert" ge-
ometries. See [Sco83, Theorem 5.3] for more details.
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Proposition B.8.13. — An orientable compact C∞ manifold without bound-
ary M is a Seifert manifold if and only if M has a geometry modelled on one
of the six following geometries.

S3, S2 × E1, E3, Nil, H2 × E1, S̃L2(R).

This proposition is also valid for non orientableM if we extend the definition
of Seifert manifolds to manifolds with a foliation of circles (which essentially
means that we accept non orientable local models in addition to the models
used in Definition B.8.1).

Corollary B.8.14. — If M = Λ\Ω is a compact geometric manifold without
boundary then either M is a Seifert manifold, Ω = Sol or Ω = H3.

Amongst classes of three dimensional topological manifolds, the class of
hyperbolic manifolds- ie. quotients of the form Λ\H3 where Λ ⊂ PO(3, 1) is
a discrete subgroup- is both the geometrically richest class and the least well
understood.

Geometrisation and classification. — Several articles have appeared in
the journal ’Gazette des Mathématiciens’ on the Poincaré Conjecture and
Thurston’s Geometrisation Conjecture ([And05], [Mil04], [Bes05], [Bes13]).
The following rapid summary of the state of the art since Perelman’s work
opened up the possibility of a complete classification is based on [BBM+10].

Classification of C∞ manifolds of dimension 3. — Throughout this paragraph,
a manifold of dimension n can have a boundary, denoted ∂M , characterised
by the fact that any point p ∈ ∂M has a neighbourhood in M which is locally
homeomorphic to a product Rn−1×R>0 = {(x1, . . . , xn) ∈ Rn | xn > 0} where
p is sent to (0, . . . , 0). If the boundary of a manifold of dimension n is non
empty then it is a manifold of dimension n − 1 whose boundary is empty:
∂∂M = ∅. The interior of a manifold with boundary is the subvariety that
is the complement of the boundary M \ ∂M . Any point p ∈ M \ ∂M has a
neighbourhood homeomorphic to Rn. A manifold is said to be closed if and
only if it is compact and ∂M = ∅.

A connected closed surface S in a compact orientable manifold M of di-
mension 3 is said to be essential if and only if its fundamental group injects
into π1(M) and S neither bounds a 3-ball nor is cobordant to a product with
a connected component of ∂M .

We now state Thurston’s famous geometrisation conjecture. (See B.8.4 for
the definition of a geometric manifold).
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Conjecture B.8.15 (Thurston’s geometrisation conjecture)
The interior of a compact orientable manifold of dimension 3 can be

cut along a finite family of essential embedded pairwise disjoint 2-spheres and
2-tori into a canonical collection of geometric 3-manifolds after filling up the
spherical boundaries with 3-balls.

Every connected component of the complement of the family of tori and
spheres has a locally homogeneous metric of finite volume. Let M be such a
connected component and let M̂ be the compact manifold obtained by "filling
up" the holes. The manifold M then has a geometric strucure modelled on
one of the eight geometries of Theorem B.8.7.

The famous Poincaré conjecture is a special case of this conjecture.

Conjecture (Poincaré conjecture). — LetM be a simply connected closed
topological manifold of dimension 3. M is then homeomorphic to the 3-sphere.

Bringing together Thurston’s hyperbolisation theorem [BBM+10, 1.1.5]
and Perelman’s theorem [BBM+10, 1.1.6] we obtain the following classifica-
tion of orientable manifolds.

Theorem B.8.16 (Geometrisation theorem). — The above geometrisa-
tion conjecture B.8.15 holds for any compact orientable manifold of dimen-
sion 3.





APPENDIX C

SHEAVES AND RINGED SPACES

This appendix is based on books by Godement [God58, Chapitre II], Liu
[Liu02, § 2.2.1] and Hartshorne [Har77, § II.1]. We will not discuss sheaf
cohomology, for which we refer to [Liu02, §5.2] or [Har77, Chapter III].

C.1. Sheaves

Technical warning: we quote [Ser55a] several times in this chapter. In this
article, a sheaf over X is defined to be a sheaf space (ie. a certain type of topo-
logical space with a continuous map to X as in Definition C.2.2) whereas else-
where in the litterature, notably in[Har77, Chapter II], a sheaf is a presheaf
(ie. a certain type of contravariant functor as in Definition C.1.1 below) sat-
isfying certain axioms. See Definition C.1.4 for more details. Corollary C.4.3
establishes that these two notions are equivalent. (In particular, Godement
freely identifies them in his book [God58, Remarque II.1.2.1]).

Definition C.1.1. — Let X be a topological space. A presheaf (of abelian
groups) F over X is the data of an abelian group F(U) for every open set
U ⊂ X and for every nested pair of open sets V ⊂ U ⊂ X a group morphism
called the restriction morphism ρUV : F(U) → F(V ) satisfying the following
conditions

1. F(∅) = {0} ;
2. ρUU = idU ;
3. If W ⊂ V ⊂ U ⊂ X are nested open sets then ρUW = ρVW ◦ ρUV .

We define presheaves of sets (resp. presheaves of rings) in a similar way: the
F(U)s are then sets (resp. rings) and the ρUV : F(U)→ F(V ) are maps (resp.
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ring morphisms). There are many variations on this theme: for example, given
a ring A we can define presheaves of A-modules and presheaves of A-algebras.

There is a natural notion of subpresheaf F ′ of F : it is a presheaf such that
for any open set F ′(U) is a subgroup (resp. subset, subring etc.) of F(U) and
the morphism ρ′UV is required to be induced by ρUV .

Example C.1.2. — Let X be a topological space.
1. Let K be a ring. We define a presheaf F as follows: for any U ∈ X,
F(U) := KU is the ring of K-valued functions on U and the morphisms
ρUV are the restriction maps of functions.

2. The presheaf C0 of continuous real valued functions is a subpresheaf of
the presheaf of real valued functions C0(U) ⊂ RU .

Let F be a sheaf over X and let U ⊂ X be an open subset. An element
s ∈ F(U) is called a section of F over U . A global section of F is a section
over the space X. By analogy with presheaves of functions we denote by s|V
the element ρUV (s) in F(V ) and we call it the restriction of s to V .

Definition C.1.3. — The set of sections F(U) of a presheaf F over an open
set U is sometimes denoted Γ(U,F).

Definition C.1.4 (Sheaf). — A presheaf F is said to be a sheaf if and only
if for any open subset U ⊂ X and any open cover {Ui}i∈I of U the following
two conditions hold.

1. (Uniqueness.) If s ∈ F(U) and s|Ui = 0 for all i ∈ I then s = 0 ;
2. (Gluing) If the collection si ∈ F(Ui), i ∈ I has the property that
si|Ui∩Uj = sj |Ui∩Uj for any pair i, j ∈ I then there is a section s ∈ F(U)
such that s|Ui = si for any i ∈ I. (This section s is then unique by (1).)

Example C.1.5 (Sheaves of functions). — Let X be a topological space
and let K be a ring (K = R or C for example). The presheaf of K-valued
functions of Example C.1.2(1) is then a sheaf, called the sheaf of K valued
functions on X. By a sheaf of functions we mean a subsheaf of the sheaf of
K-valued functions.

1. The sheaf C0 of continuous real (or complex) functions.
2. The sheaves of real or complex Ck or C∞ functions.
3. The sheaf of holomorphic functions is a subsheaf of the sheaf of complex

valued functions.
4. In general, a sub-presheaf of the sheaf of functions is a sheaf whenever

the sub-presheaf is defined locally. This is notably the case for the sheaf
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of regular functions on a quasi-algebraic set, see Definitions 1.2.33, 1.2.34
and 1.2.35).

Definition C.1.6 (Sheaf of restrictions to a subspace)
Let K be a ring, let X be a topological space, let F be a sheaf of K-

valued functions on X and let Y ⊂ X be a topological subspace with the
induced topology. We define a sheaf FY on Y by deciding that for any open
set U in Y a function f : U → K belongs to FY (U) if and only if for any x
in U there is an open neighbourhood V of x in X and a function g ∈ FX(V )
such that g(y) = f(y) for any y ∈ V ∩ U .

The sheaf FY is in fact the sheafification (Definition C.4.1) of the presheaf
of restrictions of functions of F to open subsets of Y .

Remark C.1.7. — Note that this definition FY is specific to sheaves of
functions. Note in particular that the sheaf FY is a sheaf ofK-valued functions
on Y .

Remark C.1.8. — If U ⊂ X is an open subset then FU = FX |U where
for any open set V ⊂ U we set FX |U (V ) := F(V ). See Definition C.4.8 and
Example C.4.9.

C.2. Sheaf spaces over X

Let X be a topological space and let (E, π) be a pair such that E is a
topological space and π : E → X is a continuous map. Let Y be a subset of
X. By a (continuous) section s of (E, π) over Y we mean a continuous map
s : Y → E such that π(s(x)) = x for any x ∈ Y . We define a sheaf Ê over X
associated to (E, π) in the following way: for any U ⊂ X, Ê(U) is the set of
continuous sections of (E, π) over U and whenever U ⊃ V , the restriction to
V of a section over U is the restriction of the corresponding map U → E.

Definition C.2.1. — The sheaf Ê is called the sheaf of sections of (E, π).

Definition C.2.2. — If π is a local homeomorphism (by which we mean
that every point in p ∈ E has an open neighbourhood homeomorphic via π to
an open neighbourhood of π(p) in X), we say that (E, π) is a sheaf space over
X.

We will see in Definition C.4.1 that conversely we can associate a sheaf
space to any presheaf.
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Remark C.2.3. — There are several different versions of construction C.2.1.
In particular, if X is a differentiable (respectively analytic) manifold there is
a similar definition of the sheaf of differentiable (resp. analytic) sections of
(E, π) where E is a differentiable (resp. analytic) manifold and π : E → X is
a differentiable (resp. analytic) map.

Remark C.2.4. — It can be proved that a sheaf F is uniquely determined
by the data of F(U) and ρUV for all U, V in some basis of open sets B of the
topological space X. Recall that B is a basis for X if and only if any open set
in X is a union of elements of B and any finite intersection of members of B
is a member of B. For example, if X is a real or complex algebraic variety,
the data of F(D(f)) for any open affine set D(f) (f is a regular function)
characterises F . (See Exercise 1.3.15(3)).

C.3. Stalks of a sheaf

Definition C.3.1. — Let F be a presheaf of abelian groups over a topolog-
ical space X and let x be a point in X. The stalk of the presheaf F at x is
the inductive limit

Fx := lim−→
U3x
F(U)

(see Definition A.1.2 and Example A.1.4). This inductive limit is taken over
all open sets in X and if F is a presheaf of rings (resp. of A-algebras or A-
modules for some fixed ring A) then Fx is a ring (resp. an A-module or an
A-algebra). Let s ∈ F(U) be a section: for any x ∈ U , we denote the image
of s in Fx by sx. The element sx is called the germ of s at x. The map
F(U) → Fx, s 7→ sx is then a morphism of groups (resp. of rings, resp. of
A-modules, resp. of A-algebras).

Remark C.3.2. — In the special case of a sheaf of functions F such that
all the sets of sections F(U) are subsets of a single common set and all the
restriction morphisms are inclusions ρUV : F(U) ⊂ F(V ), inductive limit is
simply union and we have that

Fx =
⋃
U3x
F(U) .

Lemma C.3.3. — Let F be a sheaf of abelian groups on a topological space
X. Let s and t ∈ F(X) be global sections such that sx = tx for any x ∈ X.
We then have that s = t.
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Proof. — We can assume that t = 0. For any x ∈ X, there is an open
neighbourhood Ux of x such that s|Ux = 0, since sx = 0. As the open sets
{Ux}x∈X cover X we have that s = 0 by definition of a sheaf.

Let (E, π) be a sheaf space over X and let Ê be its sheaf of sections (see
Definition C.2.1). For any section s of (E, π) over an open set U in X, the
image s(U) is open in E, so any section of (E, π) is an open mapping. For
any p ∈ E the fact that π is a local homeomorphism implies that there is a
section s of (E, π) defined in a neighbourhood of x = π(p) such that s(x) = p.
Sets of the form s(U) are therefore a basis of open sets for E.

Proposition C.3.4. — The fibre Ex := π−1(x) of the sheaf space (E, π) can
be identified with the stalk of its space of sections.

Ex ' Êx = lim−→
U3x

Ê(U) .

Proof. — It will be enough to show that if two sections s and t of (E, π) defined
on open neighbourhoods U and V of a point x in X are equal at x then they
are equal on some open neighbourhood W ⊂ U ∩V of x. As sections are open
maps, s(U) and t(V ) are open subsets of E. As s(x) = t(x), the intersection
s(U) ∩ t(V ) is non empty. As π is a local homeomorphism there is an open
subset W ′ ⊂ s(U) ∩ t(V ) such that π|W ′ : W ′ → π(W ′) is a bijection. The
equality π ◦ s = π ◦ t therefore implies s = t on W := π(W ′).

There is an inverse of this construction: equipped with a suitable topology,
the disjoint union of the stalks tx∈XFx of a sheaf {U 7→ F(U)}U open set in X

over a topological space X is the sheaf space of F as in Definition C.4.1.

Locally trivial fibrations. —

Definition C.3.5. — Let X and F be topological spaces. We recall that
a locally trivial bundle(1) with fibre F over X is the data of a pair (E, π)
where π : E → X is a continuous map which locally (on X) has the form of
a product. In other words, there is an open cover {Ui}i∈I of X and a family
of homeomorphisms {ψi : π−1(Ui)

'−→ Ui × F}i∈I such that for any i ∈ I the

(1)Locally trivial is often implicit in the litterature, which can sometimes be confusing.
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following diagram commutes.

π−1(Ui)
ψi

'
//

π|π−1(Ui) ##

Ui × F

(u,f)7→u||
Ui

If x ∈ Ui ∩Uj then ψj |Ui∩Uj ◦ψ−1
i |Ui∩Uj induces a continuous map ψij from

Ui ∩ Uj to the symmetric group of F .
A covering space of X is a locally trivial bundle whose fibre is a discrete

topological space: the map π is then a local homeomorphism.
A (locally trivial) Ck bundle is defined as above, except that we require the

topological spaces to be Ck differentiable manifolds and the continuous maps
to be Ck differentiable maps.

A K-vector bundle of rank r is a locally trivial bundle of fibre F = Kr

such that for any x ∈ X and any pair of open sets Ui, Uj containing x,
ψij(x) ∈ GLr(K). More generally, a vector bundle is a vector bundle of
constant rank on each connected component of X.

Example C.3.6. — A locally trivial bundle of fibre F is not generally a
sheaf space unless F is a discrete topological space (such as a finite set with
the discrete topology), in which case π is a local homeomorphism. In other
words, a sheaf space (E, π) is a covering of X.

Sheaf morphisms. —

Definition C.3.7. — Let F and G be presheaves (resp. sheaves) of abelian
groups on a topological spaceX. A presheaf morphism (resp. sheaf morphism)
α : F → G is a family of group morphisms {α(U) : F(U)→ G(U)}U open inX
which are compatible with the restriction morphisms ρUV .

F(U) αU //

ρFUV
��

G(U)

ρGUV
��

F(V ) αV
// G(V )

The composition of presheaf morphisms is clearly defined. An isomorphism
can therefore be defined to be a morphism that has an inverse. In other
words, a morphism of presheaves α : F → G is an isomorphism if and only if
α(U) : F(U)→ G(U) is an isomorphism of groups for any open set U in X.
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Definition C.3.8. — Let X be a topological space and let α : F → G be a
morphism of sheaves of abelian groups over X. The kernel of α, denoted kerα,
is the presheaf U 7→ ker(α(U)), which turns out to be a sheaf. The image of
α, denoted Imα, is the sheaf associated to the presheaf U 7→ Im(α(U)).

Remark C.3.9. — By definition, the sheaf kerα is a subsheaf of F . By the
universal property of sheafification, there is a natural map θ : Imα→ G which
is in fact injective. We can therefore identify Imα with a subsheaf of G.

Let α : F → G be a morphism of presheaves on X. By the universal prop-
erty of inductive limit, for every x ∈ X the morphism α induces a canonical
group morphism αx : Fx → Gx such that (α(U)(s))x = αx(sx) for any open
neighbourhood U in x and any element s ∈ F(U).

Definition C.3.10. — Let F and G be presheaves on a topological space X.
A morphism of presheaves α : F → G is said to be injective (resp. surjective) if
and only if for any x ∈ X the map αx : Fx → Gx is injective (resp. surjective).

If α is injective then for any open set U in X the map α(U) : F(U)→ G(U)
is injective. In particular α is injective if and only if kerα is trivial.

�

There are surjective sheaf morphisms α such that the maps
α(U) : F(U)→ G(U) are not all surjective.

Example C.3.11. — Let X be a complex analytic variety, let OX be the
additive sheaf of holomorphic functions and let O∗X be the multiplicative sheaf
of invertible holomorphic functions (ie. everywhere non vanishing holomorphic
functions). Associating to any holomorphic function f : U → C the function
α(U)(f) := exp ◦f : U → C∗ for any open set U in X, we get a sheaf morphism
α : OX → O∗X . As any non vanishing holomorphic function is locally of the
form exp ◦f this sheaf morphism is surjective but it is well known that if U is
not simply connected then the map f 7→ exp ◦f from OX(U) to O∗X(U) is not
surjective: the identity map may not have a preimage.

Proposition C.3.12. — A sheaf morphism α : F → G over X is an isomor-
phism if and only if αx : Fx → Gx is a group isomorphism for all x ∈ X.

Proof. — See [Liu02, Proposition 2.12].

To summarise, if αx is surjective for every x then αU is not necessarily
surjective for every U but if αx is both injective and surjective for every x

then αU is both injective and surjective for every U .
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Corollary C.3.13. — Let α : F → G be a sheaf morphism over X. The
morphism α is then an isomorphism if and only if it is both injective and
surjective.

Definition C.3.14. — Let X be a topological space. A sequence of sheaves
F → G → H is said to be exact if and only if Fx → Gx → Hx is an exact
sequence of groups for all x ∈ X.

Example C.3.15. — Returning to Example C.3.11, the exponential function
induces an exact sequence of abelian groups

(C.1) 0→ Z incl.−−→ C z 7→exp(2πiz)−−−−−−−−→ C∗ → 0

where C has its additive structure and C∗ has its multiplicative structure. Let
X be a reduced complex analytic space: considering holomorphic functions
with values in the exact sequence (C.1) we get an exact sequence of sheaves.
For any reduced complex analytic spaceX we therefore have an exact sequence
of sheaves

(C.2) 0→ Z −→ OX −→ O∗X → 0

where Z is the constant sheaf, OX is the structural sheaf and O∗X is the sheaf
of multiplicative inverses in OX .

C.4. Sheaf of sections of a sheaf space

It turns out that every sheaf is a sheaf of sections of a sheaf space. To
prove this we start by considering a presheaf F . We denote by E(F) the
disjoint union tx∈XFx and we let π : E(F) → X be the map sending every
point p ∈ Fx to x. The canonical map F(U) → Fx, s 7→ sx associates to
every element s ∈ F(U) a map s̃ : U → E(F), x 7→ sx such that π(s̃(x)) = x

for every x ∈ U . We now equip E(F) with the coarsest topology for which
the maps s̃ (s ∈ F(U), U open set in X) are continuous. The map π is then
a local homeomorphism. We simplify notation by setting F+ := Ê(F) as in
Hartshorne (see [Har77, Definition II.1.2 and Exercise II.1.13]), F+ := Ê(F).

If the presheaf F is a presheaf of abelian groups (resp. rings etc.), E(F)
has a natural continuous composition law (p, q) 7→ p + q defined whenever
π(p) = π(q), which induces on every fibre Fx an abelian group structure. (In
the case of rings, for example, there is also a second continuous composition
law (p, q) 7→ pq defined whenever π(p) = π(q) and these two laws turn Fx
into a ring). If s and t are sections of (E(F), π) over an open set U in X
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then we denote by s + t the section x 7→ s(x) + t(x) (resp. by st the section
x 7→ s(x)t(x)).

Definition C.4.1 (Sheaf associated to a presheaf)
The pair (E(F), π) is called the sheaf space associated to the presheaf F

and the sheaf F+ is called the sheaf associated to the presheaf F .

The sheafification F+ of the presheaf F has a natural morphism

F −→ F+

which is universal for morphisms from F to a sheaf. In other words, any
morphism α : F → G to a sheaf G factorises through a unique morphism
α̃ : F+ → G

F+ α̃ // G

F

OO

α

88

In particular, if F is a subpresheaf of a sheaf G then F+ is a subsheaf of G
determined as follows: for any open set U ⊂ X an element f ∈ G(U) belongs
to F+(U) if and only if there is an open covering {Ui}i∈I of U such that for
any i ∈ I, ρUUi(f) ∈ F(Ui).

Theorem C.4.2. — [God58, Théorème 1.2.1], [Har77, Proposition II.1.2]
Let X be a topological space and let F be a presheaf over X. The sheaf F+ of
sections of the sheaf space E(F) is isomorphic to the presheaf F if and only
if F is a sheaf.

Corollary C.4.3. — Any sheaf over X is isomorphic to the sheaf of sections
of some sheaf space over X and this sheaf space is unique up to canonical
isomorphism.

Remark C.4.4. — When F is a presheaf of K-valued functions on X (see
Example C.1.2) the local sections of F+ over an open subset U ⊂ X are
defined by

F+(U) = {f : U → K | ∀x ∈ U,∃V ⊂ U open neighbourhood of x and
∃g ∈ F(V ) | f |V = g} .

Definition C.4.5. — Let X be a topological space, let F be a sheaf on X
and let F ′ be a subsheaf of F . We then have that U 7→ F(U)/F ′(U) is a
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presheaf over X. The sheafification F/F ′ := (U 7→ F(U)/F ′(U))+ is called
the quotient sheaf.

Proposition C.4.6. — Let X be a topological space, F a sheaf on X and F ′
a subsheaf of F . We have that

∀x ∈ X, (F/F ′)x = Fx/F ′x .

Remark C.4.7. — The sheaf space E(F) is not generally Hausdorff even if
X is. Indeed, for any sections s, t over an open set U in X, the set of elements
x ∈ U such that s(x) = t(x) is an open subset of U but if E(F) is Hausdorff
it is also a closed subset of U : this implies that two sections which are equal
at x are equal on the whole of the connected component of U containing x.
In other words, the sheaf F satisfies the analytic continuation property. For
example, if X is a complex analytic variety and F is the sheaf of analytic
functions then E(F) is Hausdorff, but if F is the sheaf of continuous functions
then E(F) is certainly not Hausdorff.

Definition C.4.8. — Let X be a topological space, let F be a sheaf over X
and let (E(F), π) be the associated sheaf space. Let Y ⊂ X be a topological
subspace and set E|Y := π−1(Y ). The associated sheaf Ê|Y , denoted F|Y , is
called the restricted sheaf or the restriction of F to Y .

Example C.4.9. — If F is a presheaf on X and U ⊂ X is open then on
setting F|U (V ) := F(V ) for any open set V ⊂ U , we get a presheaf on U

called the restriction of the presheaf F to U . Of course, if F is a sheaf this is
just the restricted sheaf F|U defined above.

Proposition C.4.10. — Let X be a topological space, F a sheaf over X and
Y ⊂ X a topological subspace. For any x ∈ Y we then have that

(F|Y )x = Fx .

Let X and Y be topological spaces, let F be a sheaf over X, let G be a sheaf
over Y and let ϕ : X → Y be a continuous map. For any open set V ⊂ Y the
set ϕ−1(V ) is then an open set of X and we denote by ϕ∗F the sheaf on Y

given by V 7→ F(ϕ−1(V )).

Definition C.4.11. — The sheaf ϕ∗F on Y is called the direct image of F .

We can also define an inverse image sheaf of G, generally denoted ϕ−1G.
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Definition C.4.12. — The sheaf ϕ−1G on X associated to the presheaf

U 7→ lim−→
V⊃ϕ(U)

G(V )

where U is an open subset of X and the limit is taken over all open sets V in
Y containing ϕ(U) is called the inverse image of G.

Remark C.4.13. — Warning: in [God58] the inverse image sheaf of G under
ϕ is denoted ϕ∗G. As in [Har77, § II.5], we will only use this notation when
G is a sheaf of OY -modules (Definition C.5.4 below): ϕ−1G is then a sheaf of
ϕ−1OY -modules and ϕ∗G := ϕ−1G ⊗ϕ−1OY OX is a sheaf of OX -modules.

Proposition C.4.14. — ∀x ∈ X, (ϕ−1G)x = Gϕ(x).

Exercise C.4.15. — If i : Z ↪→ Y is the canonical injection of a topological
subspace of Y then

i−1G = G|Z .

C.5. Ringed spaces

When working with algebraic varieties (Definition 1.3.1) we can restrict
ourselves to sheaves that are subsheaves of function sheaves. When working
with schemes, we use sheaves of local rings, which gives rise to the notion of
ringed spaces.

Definition C.5.1. — A ringed space (which is short for locally ringed in
local rings) is the data of a topological space X and a sheaf of rings OX on
X such that OX,x is a local ring for all x ∈ X. The sheaf OX is called the
structural sheaf of (X,OX). Let (X,OX) and (Y,OY ) be ringed spaces: a
morphism of ringed spaces is a pair (ϕ,ϕ#) where ϕ : X → Y is a continuous
map and ϕ# : OY → ϕ∗OX is a morphism of sheaf of rings on Y .

Definition C.5.2. — A morphism (ϕ,ϕ#) : (X,OX)→ (Y,OY ) is called an
open embedding (resp. closed embedding) if and only if

1. ϕ is a homeomorphism onto ϕ(X) ;
2. ϕ(X) is open (resp. closed) in Y ;
3. ϕ#

x is an isomorphism (resp. surjective morphism) for all x ∈ X.

Example C.5.3. — When OX (resp. OY ) is a subsheaf of the sheaf FX
(resp. FY ) of K-valued functions, any continuous map ϕ : X → Y induces a
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morphism ϕ# : OY → ϕ∗FX of sheaves of rings on Y associated to the pull
back map

∀U open set in Y, f ∈ OY (U) 7→
(
f ◦ ϕ : ϕ−1(U)→ K

)
.

The pair (ϕ,ϕ#) is then a morphism of ringed spaces if and only if ϕ#

is contained in ϕ∗OX . In particular, if (X,OX) and (Y,OY ) are algebraic
varieties over the same base field K then (ϕ,ϕ#) is a morphism of ringed
spaces if and only if ϕ is a morphism of algebraic varieties over K.

Definition C.5.4. — Let (X,OX) be a ringed space. A sheaf of OX-modules
(also called an OX-module) is a sheaf F over X such that for any open set
U ⊂ X the group F(U) is an OX(U)-module, and for any inclusion of open
sets V ⊂ U the restriction morphism F(U) → F(V ) is compatible with the
module structure via the ring morphism OX(U)→ OX(V ).

Definition C.5.5. — Let (X,OX) be a ringed space. The direct sum of two
OX -modules F and G is an OX -module denoted F ⊕ G. The tensor product
of two OX -modules F and G is the sheaf denoted F ⊗OX G associated to the
presheaf U 7→ F(U)⊗OX(U) G(U). See Proposition A.4.1 for the definition of
the tensor product of two A-modules over a ring A.

Definition C.5.6 (Locally free sheaf). — Let (X,OX) be a ringed space.
A OX -module F is said to be free if and only if it is isomorphic to a direct
sum OX ⊕ OX ⊕ . . . . It is said to be locally free if and only if there exists
an open cover of X by sets U such that F|U is a free OX |U -module. Such an
open set U is said to be a trivialising open set for F . The rank of a locally
free OX -module over a trivialising open set is the (finite or infinite) number
of copies of OX required. A sheaf of ideals over X is an OX -module I which
is a subsheaf of OX .

An OX -module F is therefore locally free if and only if there is an open
cover of X and a set I for each set U of this covering such that

F|U ' O(I)
X |U

where O(I)
X is the direct sum of copies of OX indexed by I.

Let r > 1 be an integer. An OX -module F is locally free of rank r if and
only if there is an open cover of X by open sets U such that

F|U ' OrX |U
where OrX denotes the direct sum of r copies of OX . More generally, as the
rank of a locally free sheaf is constant on connected components of X, a locally
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free sheaf is said to be of finite type if and only if its rank is finite on each
connected component of X.

Example C.5.7. — Let (X,OX) be a ringed space and let F be an OX -
module. We define the tensor algebra T (F) (resp. the symmetric algebra
S(F), resp. the exterior algebra

∧
(F)) of the OX -module F by taking the

sheafification of the presheaf U 7→ T (F(U)) (resp. U 7→ S(F(U)), resp. U 7→∧
(F(U))) where the tensor operations are taken with respect to the OX(U)-

module structure on F(U). See Definition A.4.8 for more details.
If F is locally free of rank r then T k(F) (resp. Sk(F), resp.

∧k(F)) is also
a locally free sheaf of rank rk (resp.

(r+k−1
r−1

)
, resp.

(r
k

)
).

Definition C.5.8 (Invertible sheaf). — An invertible sheaf over X is a
locally free sheaf of rank 1, by which we mean that there is a covering of X
by open sets U such that F|U is isomorphic to OX |U .

Proposition C.5.9. — Let (X,OX) be a ringed space and let F be a OX-
module. The sheaf F is then locally free if and only if Fx is a free OX,x-module
for every x ∈ X.

Proposition C.5.10 (Projection formula). — Let ϕ : (X,OX)→ (Y,OY )
be a morphism of ringed spaces. If F is an OX-module and E is a locally free
OY -module of finite rank then there is a natural isomorphism

ϕ∗(F ⊗OX ϕ
∗E) ' ϕ∗(F)⊗OY E .

C.6. Coherent sheaves

We start with the most general definition of coherent sheaves, and prove
later that in the case we are interested in (Example C.6.8) a coherent sheaf
is just a sheaf that is isomorphic to a quotient of a locally free sheaf of finite
type.

Definition C.6.1 (Sheaf generated by its global sections)
Let (X,OX) be a ringed space and let F be an OX -module. We say

that F is generated by its global sections at x ∈ X if and only if the canonical
map F(X) ⊗OX(X) OX,x → Fx is surjective. We say that F is generated by
global sections if and only if this holds at any point x in X.

Example C.6.2. — Let (X,OX) be a ringed space. Let I be a set. The
sheaf O(I)

X - the direct sum of copies of OX indexed by I- is generated by
global sections.
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Lemma C.6.3. — Let (X,OX) be a ringed space. An OX-module F is gen-
erated by its global sections if and only if there is a set I and a surjective
morphism of OX-modules

O(I)
X → F → 0 .

Definition C.6.4 (Quasi-coherent sheaf). — Let (X,OX) be a ringed
space and let F be an OX -module. We say that F is quasi-coherent if and
only if for every x ∈ X there is an open neighbourhood U of x in X and an
exact sequence of OX -modules

O(J)
X |U → O

(I)
X |U → F|U → 0 .

Example C.6.5. — Let (X,OX) be a ringed space.
1. The structural sheaf OX is quasi-coherent.
2. Any locally free OX -module is quasi-coherent.
3. Any sheaf of ideals is quasi-coherent.

Definition C.6.6 (Sheaf of finite type). — Let (X,OX) be a ringed space
and let F be an OX -module. We say that F is of finite type if and only if for
every x ∈ X there is an open neighbourhood U of x in X, an integer r > 1
and a surjective morphism of OX -modules

OrX |U → F|U → 0 .

Definition C.6.7 (Coherent sheaves). — Let (X,OX) be a ringed space
and let F be an OX -module. We say that F is coherent if and only if it is
of finite type and for every open subset U in X, every integer r and every
morphism α : OrX |U → F|U the kernel kerα is of finite type.

Example C.6.8 (Structural sheaf). — 1. The structural sheaf OX of
an algebraic variety (X,OX) over an algebraically closed field K is co-
herent.

2. The structural sheaf OX of a locally noetherian scheme (X,OX) is co-
herent.

3. The sheaf of germs of holomorphic functions over a non singular complex
analytic variety is coherent ([Oka50]).

Definition C.6.9 (Finitely presented sheaf). — Let (X,OX) be a ringed
space and let F be an OX -module. We say that F is finitely presented if and
only if for every x ∈ X there is an open neighbourhood U of x in X, integers
r > 1 and c > 1 and an exact sequence of OX -modules

OcX |U → OrX |U → F|U .
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Every coherent sheaf is finitely presented. The converse holds whenever the
structural sheaf is also coherent.

Proposition C.6.10. — Let (X,OX) be a ringed space. If the sheaf OX is
coherent then an OX-module is coherent if and only if it is finitely presented.

Corollary C.6.11. — Let (X,OX) be a ringed space with coherent structural
sheaf OX .

1. Any locally free OX-module of finite type (ie. of finite rank on every
trivialising open set) is coherent. Any locally free OX-module of finite
rank and in particular every invertible sheaf is coherent.

2. Any finitely generated sheaf of ideals is coherent. In particular, the sheaf
of ideals of regular functions vanishing on a closed subvariety of an alge-
braic variety X with coherent structural sheaf is coherent.

C.7. Algebraic varieties over an algebraically closed base field

Proposition C.7.1. — Let (X,OX) be an algebraic variety over an alge-
braically closed base field K. A sheaf of OX-modules F is then coherent if and
only if it is of finite type and quasi-coherent.

Definition C.7.2 (OX-module associated to a Γ(X,OX)-module)
Let X be an affine algebraic variety over an algebraically closed base

field K, let A := A(X) = Γ(X,OX) be the ring of affine coordinates of X and
let M be an A-module. We define a OX -module M̃ on the principal open sets
of X (which form an open basis for X by Exercise 1.3.15(3)) as follows: for
any f ∈ A we set M̃(D(f)) = Mf = M ⊗A Af . In particular we have that
M̃(X) = Γ(X, M̃) = M .

Theorem C.7.3. — Let (X,OX) be an algebraic variety over an algebraically
closed base field K.

A sheaf of OX-modules F is said to be quasi-coherent if and only if for every
open affine subset U of X the OX(U)-modules F|U and F̃(U) are isomorphic.

It is said to be coherent if and only if the OX(U)-modules F|U and F̃(U)
are isomorphic and finitely generated.

Theorem C.7.4. — Let (X,OX) be an irreducible algebraic variety over an
algebraically closed base field K. We then have that ΩX is a locally free sheaf
of dimension n = dimX if and only if X is non singular.

Proof. — See [Har77, Theorem II.8.15].
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Proposition C.7.5. — Let (X,OX) be an algebraic variety over an alge-
braically closed base field K and let F be a coherent sheaf. The sheaf F is then
invertible if and only if there is a coherent sheaf G such that F ⊗ G ' OX .

See [Per95, III.7] for other properties of quasi-coherent sheaves over an
algebraically closed base field.



APPENDIX D

ANALYTIC GEOMETRY

The first part of this appendix is based on Serre’s famous article GAGA
[Ser56].

D.1. Complex analytic spaces and holomorphic functions

Definition D.1.1. — A subset U of Cn is said to be analytic if and only if it
is locally the vanishing locus of a set of holomorphic functions. More formally,
U is analytic if and only if for every x ∈ U there are holomorphic functions
f1, . . . , fk defined in a neighbourhood W of x such that for any z ∈ W the
point z is in U ∩W if and only if fi(z) = 0 for all i = 1 . . . k. The restriction
to U of the sheaf of holomorphic functions H on Cn is called the sheaf of
holomorphic functions on U , denoted HU .

Any analytic subset U ⊂ Cn is locally closed in Cn: it is therefore also
locally compact for the induced topology. For any x ∈ U , the ring of germs
HU,x is isomorphic to the quotient of Hx by the ideal of germs of functions
whose restriction to U is identically zero in some neighbourhood of x.

Definition D.1.2. — A complex analytic space(1) is a pair (X,OX) where
X is a topological space and OX is a subsheaf of the sheaf of complex valued
functions on X satisfying the following two conditions.

1. There is a covering of the space X by open sets Ui such that (Ui,OX |Ui)
is isomorphic as a ringed space to an analytic subset of Cn with its sheaf
of holomorphic functions.

(1)The use of the term "space" rather than "manifold" implies that the object under consid-
eration may be singular.
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2. The topology on X is Hausdorff (Definition B.1.1). In practice we will
also assume that the topological space has a countable basis of open sets.

The sheafOX is called the sheaf of holomorphic functions or sheaf of analytic
functions on X.

If X and Y are complex analytic spaces then a morphism (or analytic map)
ϕ : X → Y is a continuous map such that for any open set V ⊂ Y and any
analytic function f : V → K the function f ◦ ϕ : ϕ−1(V )→ K is analytic.

Let X be an analytic space, let x be a point of X and let Ox be the ring
of germs of holomorphic functions on X at x. This ring is a local C-algebra
whose unique maximal ring m contains exactly the functions f that vanish at
x. We have that Ox/m = C. When X = Cn the algebra Ox = Hx is simply
the algebra C

{
z1, . . . , zn

}
of convergent series in n variables and in general,

Ox is isomorphic to a quotient algebra C
{
z1, . . . , zn

}
/I. It follows that Ox is

a Noetherian ring. In particular, X is isomorphic to Cn in a neighbourhood of
x if and only if Hx is isomorphic to C

{
z1, . . . , zn

}
, or in other words if Ox is a

regular local ring (Definition 1.5.32) of dimension n. An analytic space all of
whose points are regular is said to be an analytic variety: see Definition D.2.1
and Remark D.2.2 for more details.

Any complex algebraic variety (X,OX) has a natural complex analytic space
structure (Xh,OhX) where Xh is the underlying set of X with its Euclidean
topology and OhX is the sheaf of holomorphic functions associated to OX . In
other words, for any x ∈ X, OhX,x is the analytic subring of the ring of germs
at x of complex valued functions generated by OX,x. One important property
of this construction is that the completions of the local rings OX,x and OhX,x
are isomorphic for all x ∈ X. [Ser56, pages 9–11].

Theorem D.1.3 (Cartan-Serre finiteness theorem)
Let (X,OX) be a compact analytic space and let F be a coherent sheaf

on X. The C-vector space H i(X,F) is then finite dimensional for any i > 0
and

H i(X,F) = {0} for all i > dimCX .

Proof. — See [CS53] or [BHPVdV04, Theorem 8.3].
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D.2. Complex analytic varieties

Definition D.2.1. — A complex analytic variety(2) is an analytic space
(X,OX) which is locally isomorphic to an open subset of Cn. If X and Y

are complex analytic varieties a morphism (or holomorphic map) ϕ : X → Y

is a continuous map such that for any open set V ⊂ Y and any holomorphic
function f : V → K the function f ◦ ϕ : ϕ−1(V )→ K is holomorphic.

Remark D.2.2. — An analytic space is an analytic variety if and only if it
is non singular.

Stein manifolds. — We refer the interested reader to [GR79] for the orig-
inal definition of a Stein manifold: we will use an alternative definition which
is equivalent to the original definition by the Stein embedding theorem [Ibid.].

Definition D.2.3. — A complex analytic variety is said to be a Stein mani-
fold if and only if it has a proper holomorphic embedding in an affine space Cn.

Recall that an algebraic variety V is said to be affine if and only if it is
isomorphic to a closed subvariety of an affine space.

Example D.2.4. — The complex analytic variety underlying a non singular
affine algebraic variety over C is a Stein manifold.

The converse, however, is false- there are non singular algebraic varieties
that are Stein but not affine. See [Nee89] for more details.

Serre duality. —

Theorem D.2.5 (Serre duality). — Let X be a non singular complex pro-
jective variety of dimension n and let L be a holomorphic vector bundle on X.
We then have that

Hk(X,L) ' Hn−k(X,L∨ ⊗KX) .

and in particular
χ(L) = χ(L∨ ⊗KX) .

Proof. — See [Ser55b] for the original proof or [Har77, Chapter III, Corol-
lary 7.7] for an algebro-geometric proof.

(2)Sometimes called a holomorphic variety in the litterature.
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D.3. Kähler manifolds and Hodge theory

We refer to [Voi02, Chapitre III] for an in depth study of Hodge theory
and Kähler manifolds.

Definition D.3.1. — Let X be a complex analytic variety of dimension n.
We denote by TX the holomorphic tangent bundle of X, by which we mean the
real tangent bundle TX,R of the underlying differentiable manifold, equipped
with the complex structure inherited from the analytic structure of X.

The bundle TX is isomorphic to the subbundle T 1,0
X ⊂ TX,C = TX,R ⊗ C .

generated by holomorphic vector fields. See below for more details.

Definition D.3.2. — The dual of the holomorphic tangent bundle TX is
called the bundle of holomorphic forms ΩX := Ω1

X = T ∨X . The bundle of
holomorphic p-forms on X is defined by Ωp

X :=
∧p ΩX . The canonical bundle

of X is the complex holomorphic line bundle

KX :=
n∧
T ∨X = Ωn

X = det ΩX .

Theorem D.3.3. — Let n be a strictly positive integer. There is then an
exact sequence of sheaves on Pn(C):

0→ ΩPn(C) →
n+1terms

OPn(C)(−1)⊕ · · · ⊕ OPn(C)(−1)→ OPn(C) → 0

where OPn(C)(−1) is the tautological bundle (see Section F.1 or Defini-
tion 2.6.14).

Proof. — See [Har77, Theorem 2.8.13] for an algebro-geometric proof.

A Hermitian metric on a holomorphic variety X is a C∞ family of Hermitian
products on each holomorphic tangent bundle, which we can think of as a
section h ∈ Γ∞

(
X,
(
T 1,0
X ⊗ T 1,0

X

)∗)
such that

1. hx(u, v) = hx(v, u) for every x ∈ X and for every u, v ∈ T 1,0
x ;

2. hx(u, u) > 0 for every non zero vector u ∈ T 1,0
x .

A Hermitian metric h on a holomorphic variety X provides a Riemannian
metric g on the underlying differentiable manifold, namely the real part of h:

g = 1
2(h+ h) .

The form g is a symmetric bilinear form on the complexification TX,C = TX,R⊗
C. As g is equal to its conjugate it is also the complexification of a real
symmetric bilinear form on TX,R.
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The metric h also determines a (1, 1)-form ω = −=(h) = i
2(h − h). As

above, ω is the complexification of a real form on the real tangent bundle
TX,R.

Definition D.3.4 (Kähler varieties). — A Kählerian or Kähler variety
is a (non singular) complex analytic variety with a Hermitian metric h such
that the 2-form ω = −=(h) is closed. The metric h is then said to be a Kähler
or Kählerian metric on X and the form ω is said to be a Kähler form on X.

Remark D.3.5. — As the form ω is non degenerate and closed it is a sym-
plectic form. Any Kähler variety therefore has a natural symplectic manifold
structure.

Example D.3.6. — The analytic variety underlying a non singular com-
plex projective algebraic variety is always Kähler, since it inherits the Käh-
ler Fubini-Study metric from projective space. Consider the Hopf fibration
Sn+1 → CPn whose fibres are great circles on Sn+1. The spherical metric on
Sn+1 is the restriction of the Euclidean metric on the space Rn+2 and it is
invariant under rotation. The Fubini-Study metric on CPn = Sn+1/S1 is then
the metric induced by the spherical metric on Sn+1. We refer the interested
reader to [Voi02, 3.3.2] for more information, notably the expression of the
Fubini Study metric in coordinates. Any projective complex analytic variety
is a compact Kähler variety by restriction of the Fubini-Study metric

Example D.3.7 (Other examples of Kähler varieties)
1. Every non singular complex analytic curve- ie. every Riemann surface-

is Kähler (see Appendix E) (and projective if it is compact, see Theo-
rem E.2.28) since in complex dimension 1 every 2-form is closed.

2. Any K3 surface is Kähler by Siu’s thereom (see [Siu83] or [X85]).
3. Complex Euclidean space Cn is Kähler with the standard Hermitian

metric.
4. Quotienting the above example, any complex torus of the form Cn/Γ

where Γ is a lattice in R2n is Kähler.

Hodge theory. — We refer the interested reader to the first two chapters
of [GH78, Chapitre 0] for a more detailed study of Hodge theory.

Let X be a complex analytic variety of dimension n. For any a ∈ X, we
consider a system of analytic coordinates centred at a which we denote by
z = (z1, z2, . . . , zn). There are three different tangent spaces to X at the point
a.
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1. Real tangent space. We denote by TR,a the usual real tangent space
derived from the C∞ manifold structure on X, which we realise as the
space of R-linear derivations of the ring of germs of real C∞ functions.
In other words, writing the coordinates zj in the form zj = xj + iyj in a
neighbourhood of a we have that

TR,a = R{ ∂

∂xj
,
∂

∂yj
} .

2. Complex tangent space. We denote by TC,a = TR,a ⊗ C the complexified
tangent bundle. We can think of it as the space of C-linear derivations
of the ring of germs of complex C∞ functions

TC,a = C{ ∂

∂xj
,
∂

∂yj
} = C{ ∂

∂zj
,
∂

∂zj
} ;

where
∂

∂zj
= 1

2( ∂

∂xj
− i ∂

∂yj
) ; ∂

∂zj
= 1

2( ∂

∂xj
+ i

∂

∂yj
) .

3. Decomposition of TC,a. We denote by T 1,0
a = C{ ∂

∂zj
} ⊂ TC,a the holo-

morphic tangent space to X at a. It can be characterised as the subspace
of TC,a of derivations which are zero on all anti-holomorphic functions f
(ie functions such that f̄ is holomorphic). The space T 1,0

a is therefore in-
dependent of the choice of coordinates at a. We denote by T 0,1

a = C{ ∂
∂zj
}

the anti-holomorphic tangent space. There is then a direct sum decom-
position:

(D.1) TC,a = T 1,0
a ⊕ T 0,1

a .

Note that by definition TC,a has a real structure. Conjugation
∂

∂zj
7→ ∂

∂zj

is therefore well defined and

T 0,1
a = T 1,0

a .

We denote by Ak(X,R) the space of real valued differential k-forms on X,
by Zk(X,R) ⊂ Ak(X,R) the subspace of closed forms and by A(X,R) :=⊕
k A

k(X,R) the space of all differential forms. Similarly, Ak(X,C) is the
space of complex valued k-forms and Zk(X,C) is the subspace of closed com-
plex valued forms. We set A(X,C) :=

⊕
k A

k(X,C). The De Rham cohomol-
ogy groups of X are then defined as follows.
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Hk
DR(X,R) = Zk(X,R)

dAk−1(X,R) ;

Hk
DR(X,C) = Zk(X,C)

dAk−1(X,C) .

Remark D.3.8. — We have that Hk
DR(X,C) = Hk

DR(X,R)⊗ C.

By (D.1) there is a decomposition of the cotangent space

T ∗C,a = (T 1,0
a )∗ ⊕ (T 0,1

a )∗

for every a ∈ X. It follows that there is a decomposition of the exterior algebra
k∧
T ∗C,a =

⊕
p+q=k

(
p∧

(T 1,0
a )∗ ⊗

q∧
(T 0,1
a )∗) .

We set

Ap,q(X) :=
{
ϕ ∈ Ak(X,C) | ϕ(a) ∈

p∧
(T 1,0
a )∗ ⊗

q∧
(T 0,1
a )∗,∀a ∈ X

}
and we obtain that

(D.2) Ak(X,C) =
⊕
p+q=k

Ap,q(X) .

The fundamental Hodge theorem establishes a corresponding decomposition
on cohomology groups when the variety X is compact Kähler.

A differential form ϕ ∈ Ap,q(X) is said to be of type (p, q). We denote by
πp,q : A(X,C)→ Ap,q(X) the projection maps. Let ϕ be a differential form of
type (p, q): for every a ∈ X we then have that

dϕ(a) ∈
( p∧

(T 1,0
a )∗ ⊗

q∧
(T 0,1
a )∗

)
∧ T ∗C,a ,

or in other words
dϕ ∈ Ap+1,q(X)⊕Ap,q+1(X) .

We define operators

∂̄ : Ap,q(X)→ Ap,q+1(X) , ∂ : Ap,q(X)→ Ap+1,q(X)

by
∂̄ = π(p,q+1) ◦ d , ∂ = π(p+1,q) ◦ d .

We then have that
d = ∂ + ∂̄ .
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Let Zp,q
∂̄

(X) be the space of ∂̄-closed forms of type (p, q). Since ∂̄2 = 0 on
Ap,q(X), we can define the Dolbeault cohomology groups by

Hp,q

∂̄
(X) =

Zp,q
∂̄

(X)
∂̄Ap,q−1(X)

.

Let Zp,q(X) be the space of closed complex-valued differential forms of type
(p, q). We also define

Hp,q(X) = Zp,q(X)
dA(X,C) ∩ Zp,q(X) .

De Rham’s theorem. — We recall that H∗(X;R) is the group of singular
cohomology of X with coefficients in R. It is also the sheaf cohomology of the
constant sheaf R. Let ϕ be a closed p-form and let σ be the boundary of a
(p+ 1)-chain τ . Stokes’ theorem then gives us∫

σ
ϕ =

∫
τ
dϕ = 0 .

The p-form ϕ therefore defines a singular p-cocycle. Moreover, for any p-
form ϕ and for any p-cycle σ we have that

∀η ∈ Ap−1(X,R),
∫
σ
ϕ =

∫
σ
ϕ+ dη .

This gives us a mapH∗DR(X,R)→ H∗(X;R) which is in fact an isomorphism
by the following theorem.

Theorem D.3.9 (De Rham). — Let X be a C∞ manifold. There is an
isomorphism

H∗DR(X,R) ' H∗(X;R) .

We prove this using a fine resolution of the constant sheaf R. Let Ap be the
sheaf of germs of C∞ p-forms on X. The sequence

0→ R ↪→ A0 d−→ A1 d−→ A2 d−→ · · ·

is exact by the Poincaré’s lemma which says that every closed form is locally
exact.

Lemma D.3.10. — Let α be a degree d C1 form on X with d > 0. If dα = 0
then for any contractible open set U in X there is a C1 form β of degree d− 1
on U such that α|U = dβ.

Proof. — See [GH78, Section 0.2, page 25] or [Voi02, Proposition 2.31].
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This sequence can be broken up into a collection of short exact sequences.
(In the sequences below, dAp denotes the sheaf of closed p-forms).

0→ R ↪→ A0 d−→ dA0 → 0

0→ dA0 ↪→ A1 d−→ dA1 → 0
...

0→ dAp−2 ↪→ Ap−1 d−→ dAp−1 → 0

The associated cohomology sequences split because Hq(X,Ap) = 0 for any
non zero q and we get that

Hp(X;R)
' Hp−1(X, dA0)
' Hp−2(X, dA1)

...
' H1(X, dAp−2)

' H0(X, dAp−1)
dH0(X,Ap−1)

= Γ(dAp−1)
dΓ(Ap−1)

= Hp
DR(X,R).

Dolbeault’s theorem. — Recall that Ωp is the sheaf of germs of holomor-
phic p-forms on X and Hq(X,Ωp) is the q-th cohomology group of this sheaf.

Theorem D.3.11 (Dolbeault). — Let X be a complex analytic variety. We
then have that

Hq(X,Ωp
X) ' Hp,q

∂̄
(X)

We denote by Ap,qX the sheaf of C∞ forms of type (p, q) on X. We have a
fine resolution of the sheaf Ωp

X

0→ Ωp
X ↪→ Ap,0X

∂̄−→ Ap,1X
∂̄−→ · · ·

This sequence is exact by the ∂̄ Poincaré lemma which states that any
∂̄-closed form is locally ∂̄-exact:
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Lemma D.3.12. — Let α be a C1 form of type (p, q) on X with q > 0. If
∂̄α = 0 then for every contractible open set U in X there is a C1 form β of
type (p, q − 1) on U such that α|U = ∂̄β.

Proof. — See [GH78, Section 0.2, page 25] or [Voi02, Proposition 2.31].

The rest of the proof is exactly the same as the proof given above for the
de Rham case.

Hodge decomposition. — It remains to show that the decomposition (D.2)
page 429 also holds on the cohomology groups when X is compact Kähler.
There is no known algebraic proof of this fact: the proof uses transcendental
methods. This theorem is proved using the fact that Hodge’s theorem tells us
that every cohomology class inH∗DR(X,C) is represented by a unique harmonic
form and since X is Kähler, the space of harmonic forms decomposes as Hr =⊕
p+q=rHp,q.
We start by defining harmonic forms. The Hermitian metric X, yields a

Hermitian product (·, ·), with turns Ap,q(X) into a inner product space. We
prove that this space is in fact a Hilbert space and then introduce the Laplacian
∆∂̄ in order to answer the following question:

Given a form ψ ∈ Zp,q
∂̄

(X), can we find a representative of the cohomology
class [ψ] ∈ Hp,q

∂̄
(X) of ψ which is of minimal norm?

The operator ∂̄ turns out to be bounded on Ap,q(X) so we can introduce
its adjoint ∂̄∗ : Ap,q(X)→ Ap,q−1(X), defined by

∀η ∈ Ap,q−1(X), (∂̄∗ψ, η) = (ψ, ∂̄η) .

We then prove that ψ is of minimal norm in ψ + ∂̄Ap,q−1 if and only if

∂̄∗ψ = 0 .

Elements of the group Hp,q

∂̄
(X) are therefore represented by solutions of the

second order system
∂̄ψ = 0 , ∂̄∗ψ = 0 .

The Laplacian enables us to replace this system by a single equation

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ .

On the one hand, ∂̄ψ = ∂̄∗ψ = 0 clearly implies that ∆∂̄ψ = 0: on the other
hand, the equation

(∆∂̄ψ,ψ) = (∂̄∂̄∗ψ,ψ) + (∂̄∗∂̄ψ, ψ) = |∂̄∗ψ|2 + |∂̄ψ|2

proves that the converse also holds.
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A form ψ such that ∆∂̄ψ = 0 is said to be harmonic. We denote by Hr the
space of harmonic forms of degree r and by Hp,q(X) the space of harmonic
forms of type (p, q).

Theorem D.3.13 (Hodge). — Let X be a compact complex analytic vari-
ety. We then have that

1. dimHp,q(X) <∞.
2. The orthogonal projection

H : Ap,q(X)→ Hp,q(X)

is well defined and there is a unique operator (known as Green’s operator)

G : Ap,q(X)→ Ap,q(X)

such that

G(Hp,q(X)) = 0 , ∂̄G = G∂̄ , ∂̄∗G = G∂̄∗

and
Id = H+ ∆G on Ap,q(X) .

This equation can also be written in the form ∀ψ ∈ Ap,q(X),

ψ = H(ψ) + ∂̄(∂̄∗Gψ) + ∂̄∗(∂̄Gψ) .

It follows that for any ψ ∈ Zp,q
∂̄

(X) we have that ψ = H(ψ) + ∂̄(∂̄∗Gψ)
because ∂̄Gψ = G∂̄ψ = 0 which yields an isomorphism

Hp,q

∂̄
(X) ' Hp,q .

We also introduce the operator ∆d = dd∗ + d∗d and the Kähler condition
then implies that ∆d = 2∆∂̄ , from which the following result follows.

Proposition D.3.14. — If X is Kähler then the complex vector spaces
Hp,q

∂̄
(X) and Hp,q(X) are isomorphic.

For the same reason it follows that if X is Kähler then the Laplacian ∆∂̄ is
a real operator so that Hq,p = Hp,q. Moreover, as ∆∂̄ is real it commutes with
the projections πp,q and we have that

Hr(X) '
⊕
p+q=r

Hp,q(X) .

Corollary D.3.15. — Let X be a compact Kähler variety. There is then a
direct sum decomposition

Hr(X;C) '
⊕
p+q=r

Hp,q(X)
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such that
Hp,q(X) = Hq,p(X) .

Proof. — By De Rham’s theorem, we know that H∗DR(X,C) ' H∗DR(X,R)⊗
C ' H∗(X;R)⊗ C ' H∗(X;C). The corollary follows.

Poincaré duality induces an isomorphism

Hn−k(X;C) ' Hk(X;C) .

Passing to harmonic forms we see that this isomorphism is compatible with
the Hodge decomposition and this gives us an isomorphism (which can also
be proved directly using Serre duality, Theorem D.2.5- see Remark D.4.2):

Hn−p,n−q(X) ' Hp,q(X) .

Consequences. — a) If q = 0, Hp,0(X) ' Hp,0
∂̄

(X) ' H0(X,Ωp) which is
the space of global holomorphic p-forms onX. A holomorphic form is therefore
harmonic for any Kähler metric on a compact variety.

b) Odd degree Betti numbers on Kähler manifolds are even. Indeed, if we
denote by bk(X) = dimCH

k(X;C) the Betti numbers of X and by hp,q(X) =
dimHp,q(X) the Hodge numbers of X, then

bk(X) =
∑

p+q=k
hp,q(X) ; hp,q(X) = hq,p(X) .

It follows that if k = 2q + 1, then bk(X) = 2
∑q
p=0 h

p,2q+1−p(X).
c) We organise the cohomology groups of X into a diagram called the Hodge

diamond as in Figure D.1.
The k-th cohomology group of X is the direct sum of all groups in the k-th

horizontal line. The diagram is symmetric under rotation about its centre
hn−p,n−q = hp,q and symmetry in the vertical axis hq,p = hp,q.

For any connected surface (n = 2) this gives us a diagram where q = h0,1

is the irregularity of the surface and pg = h0,2 is its geometric genus (see
Definition D.4.1).

1
q q

pg h1,1 pg

q q

1
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Hn−p,n−p

Hn−1,1

Hn,n

H1,0 H0,1

H0,n

H0,0

H1,n−1

Hp,p

Hn,n−1 Hn−1,n

Hn,0

Figure D.1. Hodge diamond.

Example D.3.16. — Calculating the cohomology of a compact Riemann
surface S of genus g.

b0 = b2 = h0,0 = h1,1 = 1 ;
h1,0 = h0,1 = dimH0(S,Ω1) = g from which it follows that b1 = 2g .

The existence of the Hodge decomposition has an important consequence
for R-varieties.

Lemma D.3.17. — Let (X,σ) be a compact Kähler R-variety. If we denote
by σ∗ the action induced by σ on H∗(X;C) = H∗(X;Q) ⊗Q C then we have
that

σ∗Hp,q(X) = Hq,p(X) .

Proof. — See [Sil89, Lemma I.(2.4) page 10].

D.4. Numerical invariants

Definition D.4.1. — Let (X,OX) be a compact complex analytic variety
(such as the underlying analytic space of a non singular complex projective
variety) of dimension n.
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The geometric genus of X is defined to be pg(X) := dimHn(X,OX). The
irregularity ofX is defined to be q(X) := dimH1(X,OX). The Hodge numbers
of X are defined to be the numbers hp,q(X) := dimHq(X,Ωp

X).

Remark D.4.2. — By Serre duality (Theorem D.2.5) applied to the line
bundle OX = Ω0

X we have that pg(X) = dimH0(X,KX) = dimH0(X,Ωn
X).

Noting that (Ωp
X)∨ ⊗KX = Ωn−p

X (see [Har77, II, Exercice 5.16b], for exam-
ple), Serre duality applied to the vector bundles Ωp

X gives us the more general
result that hp,q(X) = hn−p,n−q(X) for any p, q. If additionally X is Kähler,
the Hodge numbers satisfy hp,q(X) = hq,p(X) for any p, q.

Definition D.4.3 (Chern numbers of a complex surface)
Let (X,OX) be a compact complex analytic variety of dimension 2. The

Chern numbers of X are given by:

c2
1(X) := c2

1(KX) = (K2
X) and c2(X) := χtop(X) =

4∑
k=0

(−1)kbk(X) .

Example D.4.4 (Numerical invariants of a surface in P3)
Let X be a non singular complex hypersurface of degree d in P3(C).

We then have the following formulas. See [GH78, pages 601–602] for more
details.

b1(X) = 0 ;
b2(X) = d3 − 4d2 + 6d− 2 ;
c2(X) = d3 − 4d2 + 6d ;

h0,2(X) = 1
6(d− 1)(d− 2)(d− 3) ;

h1,1(X) = 1
3d(2d2 − 6d+ 7) .

Example D.4.5 (Numerical invariants of a double cover of the plane)
Using [BHPVdV04, V.22, page 237], for example, we can calculate the

numerical invariants of a double cover X of P2 ramified over a non singular
irreducible curve of degree 2k. (Some of the formulas below are also proved in
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[Wil78, §5, page 65–66]):

q(X) = 0, b1(X) = 0 ;

h0,2(X) = 1 + 1
2k(k − 3) = 1

2(k − 1)(k − 2) ;

c2
1(X) = 2(k − 3)2 ;

c2(X) = χtop(X) = 4k2 − 6k + 6 .

It follows that

h1,1(X) = c2(X)− 2− 2h0,2(X) = 3k2 − 3k + 2 .

Definition D.4.6 (Algebraic dimension). — Let X be a compact con-
nected complex analytic variety. The algebraic dimension of X is the tran-
scendence degree over C of the field of meromorphic functions on X:

a(X) := trdegCM(X) .

This definition makes sense because the field of meromorphic functions on
a compact connected complex analytic variety X is a function field over C
(Definition A.5.8). See [BHPVdV04, §I.7] for more details.

Proposition D.4.7. — The algebraic dimension is a bimeromorphic invari-
ant.

Definition D.4.8 (Kodaira dimension). — Let X be a compact con-
nected complex analytic variety. For any integerm > 1, the number Pm(X) :=
dimH0(X,K⊗mX ) is the m-th plurigenus of X: in particular, P1(X) = pg(X).
The Kodaira dimension of X is defined as follows.

κ(X) :=
{
−∞ if and only if Pm(X) = 0 for all m > 1 ;
k > 0 is the smallest integer such that the sequence

{Pm(X)
mk

}
m

is bounded.

Proposition D.4.9. — The Kodaira dimension of a variety is a bimeromor-
phic invariant. If the variety is a projective surface then it is a birational
invariant.

Proof. — See [Ibid.].

Remark D.4.10. — LetX be a compact connected complex analytic variety.
We then have that

κ(X) 6 a(X) 6 dimX .

See [Ibid.] for more details.
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In particular, the Kodaira dimension κ(X) of a compact complex variety X
of dimension n is contained in this list: −∞, 0, 1, . . . , n.

Definition D.4.11. — A compact complex variety X (resp. R-surface
(X,σ)) of dimension n is said to be of general type if and only if κ(X) = n

and of special type otherwise (κ(X) < n).

Proposition D.4.12. — Let X and Y be compact connected complex ana-
lytic varieties. We then have that

κ(X × Y ) = κ(X) + κ(Y ) .

Proof. — See [Uen75, page 63].

Theorem D.4.13 (Iitaka’s conjecture C2,1). — Let X be a compact con-
nected complex analytic surface, let Y be a compact connected curve and let
π : X → Y be a fibration, by which we mean that π is surjective, holomorphic
and proper (this last condition not being necessary for our purposes because X
is compact). If X is minimal then

κ(X) > κ(Y ) + κ(general fibre of π) .

Proof. — See [BHPVdV04, Theorem III.18.4].

D.5. Projective varieties

Unlike the compact complex curves discussed in Appendix E, compact com-
plex varieties of dimension n > 2 are not all projective and in fact they are
not even all Kähler. On the other hand, Chow’s famous theorem tells us that
any projective complex analytic variety is algebraic.

Theorem D.5.1 (Chow’s theorem). — Let X be a subset of a complex
projective space. If X is a closed analytic subspace then X is an algebraic
subvariety.

Proof. — See [GR65, Section V.D, Theorem 7].

Corollary D.5.2. — Let X be a compact complex analytic variety. X can
be equipped with a projective algebraic structure variety if and only if there is
an analytic embedding X ↪→ PN (C) in projective space.

To any coherent algebraic sheaf F on a complex algebraic variety X we can
associate a natural coherent analytic sheaf Fh on Xh. See [Ser56, §3, 9] for
more details. The next three theorems, collectively known as the "GAGA"
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theorems, state that if X is projective then the theory of coherent analytic
sheaves on Xh is essentially the same as the theory of coherent algebraic
sheaves on X. These theorems are valid for projective varieties only and in
particular they do not hold for affine X. We refer the interested reader to
[Ser56, §3, 12] for the proofs.

Theorem D.5.3. — Let X be a complex projective algebraic variety and let
F be a coherent algebraic sheaf over X. For any integer i ≥ 0 there is an
isomorphism

H i(X,F) ' H i(Xh,Fh) .

Theorem D.5.4. — Let X be a complex projective algebraic variety and let
F and G be coherent algebraic sheaves over X. Any analytic homomorphism
from Fh to Gh arises from an unique algebraic homomorphism from F to G.

Theorem D.5.5. — Let X be a complex projective algebraic variety. For any
coherent analytic sheafM on Xh there is a coherent algebraic sheaf F over X
such that Fh is isomorphic toM. The sheaf F is unique up to isomorphism.

D.6. Picard and Albanese varieties

We define Cartier divisors on a complex analytic variety X as in Defini-
tion 2.6.7. Let U ⊂ X be an open subset in the Euclidean topology and let
f ∈ MX(U) be a meromorphic function on U . By definition there is a dense
open subset V ⊂ U such that ∀p ∈ V , f(p) = g(p)

h(p) for some g, h ∈ OX(V ).
Attention: there is generally a subset of codimension 2 where this function is
not defined.

Definition D.6.1. — The quotient sheaf DX = M∗X/O∗X is the sheaf of
divisors of X arising from the exact sequence

1 −→ O∗X −→M∗X −→ DX −→ 1

where O∗X is the sheaf of germs of nowhere vanishing holomorphic functions
andM∗X is the sheaf of germs of non identically zero meromorphic functions.
A Cartier divisor is a global section of the quotient sheaf DX . A principal
divisor is the divisor associated to a global meromorphic function.

Let U ⊂ X be a Euclidean open set and let D = (Ui, fi)i ∈ Div(X) =
Γ(U,M∗X/O∗X) be a divisor described with respect to an open cover {Vi}i of
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U . This means that there are germs of holomorphic functions gi, hi ∈ O(Vi)
such that

fi = gi
hi

and gi
hi
·
(
gj
hj

)−1

∈ O∗(Vi ∩ Vj).

Proposition D.6.2. — Let X be a non singular complex projective algebraic
variety. The group of divisors modulo linear equivalence is then isomorphic to
the Picard group of isomorphism classes of holomorphic line bundles. (Com-
pare with Definition 2.6.11.)

Div(X)/P(X) ' H1(X,O∗) ' Pic(X) .

Proof. — See [Hir66, Chapter I] or [GH78, §1.1].

Proposition D.6.3. — In the long exact sequence

→ H1(X,OX)→ H1(X,O∗X) δ−→ H2(X;Z)→ H2(X,OX)→

associated to the exponential short exact sequence (see Example C.3.15)

0→ Z incl.−−→ OX
exp(2πi·)−−−−−→ O∗X → 0 ,

the coboundary map δ : H1(X,O∗X)→ H2(X;Z) can be identified with the first
Chern class morphism c1 : Pic(X)→ H2(X;Z).

Proof. — See [Hir66, Chapter I] or [GH78, §1.1].

Proposition D.6.4. — Let (X,σ) be an R-variety and set G = Gal(C|R).
The exponential exact sequence

0→ Z incl.−−→ OX
exp(2πi·)−−−−−→ O∗X → 0

gives rise to a sequence of G-sheaves on "twisting" the constant sheaf Z by the
G-action given by σ · n = −n.

For any d ∈ Pic(X), we have that

c1(σ∗(d)) = −σ∗(c1(d)) .

Proof. — Passing to the long exact sequence

→ H1(X,OX)→ H1(X,O∗) c1−→ H2(X;Z)→

we get that for any divisor class d ∈ H1(X,O∗), we have that

c1(σ∗(d)) = −σ∗(c1(d)) .

See [Sil89, I.(4.7)] for more details.
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Proposition D.6.5. — Let (X,σ) be a non singular projective R-variety
such that pg(X) = 0 and q(X) = 0. The map c1 : Pic(X) → H2(X;Z) then
induces an isomorphism of Z2-vector spaces

H2(G,Pic(X)) ' H1 (G,H2(X;Z)) .

Proof. — See [Sil89, I.(4.7–4.12) and III.(3.3–3.4)].

Picard variety. —

Definition D.6.6. — Let X be a compact connected Kähler variety, such
as a non singular projective complex variety. The Picard variety Pic0(X) ⊂
Pic(X) of X is the kernel of the morphism c1 : Pic(X)→ H2(X;Z).

By Proposition 2.6.12 the quotient group Pic(X)/Pic0(X) is therefore iso-
morphic to a subgroup of H2(X;Z) known as the Néron-Severi group, NS(X),
of X. See Definition 2.6.34.

Proposition D.6.7. — If q(X) > 0 then Pic0(X) is a complex torus. If X
is projective (and non singular) then it is an abelian variety.

Proof. — See [BHPVdV04, § I.13].

If X has a real structure then the exact sequence

(D.3) 0→ H1(X;Z) i∗−→ H1(X,OX)→ Pic0(X)→ 0

induces a real structure on the quotient torus

Pic0(X) = H1(X,OX)/i∗(H1(X;Z))

on "twisting" by the Galois action on the constant sheaf Z as in the exponential
exact sequence in Proposition D.6.4. See [Sil82, II.8] or [Sil89, IV.1] for more
details.

Proposition D.6.8. — Let (X,σ) be a non singular projective R-variety of
irregularity q > 0. The Picard variety Pic0(X) then has an induced R-variety
structure, Pic0(X)G = Pic0(X)(R) is a real compact Lie group and

Pic0(X)G = Pic0(X)(R) ' (R/Z)q × (Z/2)q−λ1

where λ1 := dimZ2(1 + σ∗)H1(X;Z2) is the Comessatti characteristic of the
involutive module

(
H1(X;Z), σ∗

)
(Definition 3.1.3).

Proof. — See [Sil82, II.8] or [Sil89, IV.1].
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Remark D.6.9. — It follows from Poincaré duality that dimZ2(1 +
σ∗)H1(X;Z2) = dimZ2(1 + σ∗) (H1(X;Z)f ⊗ Z2) or in other words that
the Comessatti characteristic of the involutive modules

(
H1(X;Z), σ∗

)
and

(H1(X;Z)f , σ∗) are equal.

Albanese variety. — We refer to [BHPVdV04, § I.13], amongst others,
for more about the Albanese variety. Consider a compact connected Kähler
variety X- for example a non singular complex projective algebraic variety-
such that q(X) 6= 0. Let ω1, . . . , ωq be holomorphic forms that form a basis of
the complex vector space H0(X,ΩX) of global holomorphic forms on X. The
family ω1, . . . , ωq, ω̄1, . . . , ω̄q is then a basis for H1(X;C) by Theorem D.3.11
and Corollary D.3.15. We denote by H1(X;Z)f := H1(X;Z)/Tor(H1(X;Z))
the free part of H1(X;Z) and we consider a basis γ1, . . . , γ2q of the free Z-
module H1(X;Z)f . The vectors

vj =


∫
γj
ω1
...∫

γj
ωq

 ∈ Cq for j = 1, . . . , 2q

are therefore R-linearly independent and generate a lattice in Cq. The group
morphism H1(X;Z)f → H0(X,ΩX)∗, γ 7→ (ω 7→

∫
γ ω) is therefore injective.

Definition D.6.10. — Let X be a compact connected Kähler variety- for
example a non singular complex projective algebraic variety. The Albanese
variety of X is defined by the exact sequence:

(D.4) 0→ H1(X;Z)f → H0(X,ΩX)∗ → Alb(X)→ 0 .

In other words, Alb(X) is the cokernel of H1(X;Z)f → H0(X,ΩX)∗.

Under these hypotheses, if q(X) 6= 0 then the variety Alb(X) is a complex
torus of dimension q(X): if moreover X has a real structure σ then the exact
sequence (D.4) induces a real structure on Alb(X). (See [Sil82, II.5] or [Sil89,
IV.1] for more details). If X is projective then Alb(X) is an abelian variety
[Voi02, Corollaire 12.12].

Proposition D.6.11. — Let (X,σ) be a Kähler R-variety of irregularity
q > 0. The Albanese variety Alb(X) then has an induced R-variety structure,
Alb(X)G = Alb(X)(R) is a compact real Lie group and we have that

Alb(X)G = Alb(X)(R) ' (R/Z)q × (Z/2)q−λ1
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where λ1 := dimZ2(1 + σ∗) (H1(X;Z)f ⊗ Z2) is the Comessatti characteristic
of the involutive module (H1(X;Z)f , σ∗) (Definition 3.1.3).

Proof. — See [Sil82, II.5] or [Sil89, IV.1].

Remark D.6.12. — The complex tori Alb(X) and Pic0(X) associated to the
same compact Kähler variety X are isomorphic but in general the R-varieties
associated to the same compact Kähler R-variety (X,σ) are not. If we denote
by σAlb(X) and σPic0(X) the real structure associated to σ, then the R-variety(
Alb(X), σAlb(X)

)
is isomorphic to the R-variety

(
Pic0(X),−σPic0(X)

)
. See

[Sil82, II.8, after Lemma 3] for more details.

Definition D.6.13. — Let X be a compact connected Kähler variety of
irregularity q(X) 6= 0 and let P0 be a point in X. We define the Albanese
map:

αP0 : X → Alb(X), P 7→


∫ P
P0
ω1
...∫ P

P0
ωq

 mod (v1, . . . , v2q) .

If X has a real structure σ and P0 ∈ X(R) then αP0 is an R-morphism. See
[Ibid.] for more details.

D.7. Riemann-Roch theorem

Riemann-Roch for curves. — The Riemann Roch theorem on divisors
of an abstract curve E.3.1 can be generalised to rank r bundles on curves
embedded in a non singular projective variety X.

Theorem D.7.1. — If C is a curve (which is not assumed non singular,
reduced nor irreducible) on a non singular projective variety X and F is a
locally free OC-module of rank r then

χ(F) = deg(F) + rχ(OC) ;
h0(C,F)− h1(C,F) = deg(F) + r(1− pa(C)) .

If F is a vector bundle of rank r on a non singular irreducible curve C then
we have that

h0(C,F)− h1(C,F) =
∫
C
c1(F) + r(1− g(C)) .

Proof. — See [BHPVdV04, Theorem II.3.1].
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Riemann Roch on surfaces. — See Theorem 4.1.18 for more details.

Theorem D.7.2. — If X is a non singular projective surface and D is a
divisor on X then

h0(D)− h1(D) + h0(KX −D) = 1
2D · (D −KX) + χ(OX)

where χ(OX) is the holomorphic Euler characteristic of X.

Proof. — See [BHPVdV04, Theorem I.5.5] or [Har77, Theorem V.1.6] for
an algebro-geometric proof.

D.8. Vanishing theorems

We refer the interested reader to [EV92] for a deeper discussion of vanishing
theorems, by which we mean theorems that give sufficient conditions for the
vanishing for cohomology groups of coherent sheaves(3). We state two of the
most important vanishing theorems below.

Theorem D.8.1 (Serre vanishing theorem). — Let X be a non singular
projective algebraic variety over an algebraically closed base field K, let L be
an invertible sheaf on X and let F be a coherent sheaf over X. If L is ample
then there is an natural number m0 such that

H i(X,F ⊗ Lm) = {0} for i > 0 and m > m0 .

In particular on taking F = OX we get that H i(X,Lm) vanishes for i > 0
and m sufficiently large.

Theorem D.8.2 (Kodaira’s vanishing theorem)
Let X be a non singular complex projective variety of dimension n and

let L be an invertible sheaf on X. If L is ample then
1. H i(X,L ⊗KX) = {0} for all i > 0 ;
2. H i(X,L−1) = {0} for all i < n.

Note that by Serre duality equations (1) and (2) are equivalent. The original
proof is in [Kod53].

(3)Sheaf cohomology of coherent sheaves is sometimes called coherent cohomology.
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D.9. Other fundamental theorems

Theorem D.9.1 (Bertini’s theorem). — Let N > n > 2 be strictly pos-
itive integers and let X be a complex analytic subvariety of dimension n in
PN (C). If X is connected then any general hyperplane H ⊂ PN (C)(ie. in the
complement of some strict algebraic subset of PN (C)∨) meets X transversally
and the hypersurface X ∩H in H is non singular.

Proof. — See [BHPVdV04, Corollary I.20.3] and [GH78, 1.1, page 137].

Theorem D.9.2 (Lefschetz hyperplane theorem)
Let N > n > 2 be strictly positive integers, let X be a complex analytic

subvariety of dimension n in PN (C) and let H ⊂ PN (C) be a hyperplane such
that X ∩H is a non singular variety. The inclusion morphisms

Hi(X ∩H;Z)→ Hi(X;Z) and πi(X ∩H,Z)→ πi(X,Z)

are then isomorphisms whenever 0 6 i 6 n− 2.

Proof. — See [Mil63a].

Let X be a compact Kähler variety. By Corollary D.3.15 there is then a
decomposition H2(X;C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

The image of the first Chern class map c1 : Pic(X) → H2(X;Z) is con-
tained in the set of integral classes of type (1, 1) [Voi02, §I.7.1]. This is
expressed, slightly abusively, in [GH78, §1.2] as meaning that this image is
contained in the "intersection" H1,1(X)∩H2(X;Z)f , by which they mean that
we consider an inclusion map H2(X;Z)f → H2(X;C) obtained by compos-
ing the inclusion H2(X;Z)f ' Hom(H2(X;Z),Z) (Theorem B.4.1) with the
Z-module inclusion Hom(H2(X;Z),Z) ↪→ Hom(H2(X;Z),C) induced by the
unique ring morphism Z ↪→ C.

Theorem D.9.3 (Lefschetz theorem on (1, 1)-cycles)
Let X be a compact Kähler variety. The first Chern class map

c1 : Pic(X) → H2(X;Z) is a surjection onto the intersection H1,1(X) ∩
H2(X;Z)f .

Proof. — The original proof uses Poincaré’s normal functions: we refer the in-
terested reader to [Lef71] which reproduces the famous 1924 article L’Analysis
situs et la géométrie algébrique. Here is a proof based on the exponential exact
sequence (Proposition D.6.3):

0→ Z i−→ OX
exp(2πi·)−−−−−→ O∗X → 0
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whose long exact sequence is

→ H1(X,OX)→ H1(X,O∗X) c1−→ H2(X;Z) i∗−→ H2(X,OX)→ .

In this exact sequence of Z-modules, we use the fact thatH1(X,O∗X) is isomor-
phic to Pic(X) and H2(X,OX) is isomorphic to the free Z-module H0,2(X).
The map i∗ vanishes on the torsion subgroup of H2(X;Z) and factors through
the inclusion described above H2(X;Z)f → H2(X;C) and the projection
H2(X;C)→ H0,2(X). The restriction of i∗ to H1,1(X)∩H2(X;Z)f therefore
vanishes, which proves the theorem. We refer the interested reader to [Voi02,
I.7.9] for more details.

Theorem D.9.4 (Kodaira’s embedding theorem)
Let (X,OX) be a compact complex analytic variety. The variety X is

isomorphic to a non singular projective variety (which is algebraic by Chow’s
theorem) if and only if it has a Hodge metric, or in other words a Kähler metric
whose class ω ∈ H2(X;R) is integral. In this case, ω ∈ H2(X;Z) ∩H1,1(X).

Proof. — See [Kod54, Theorem 4] or [GH78, 1.4].



APPENDIX E

RIEMANN SURFACES AND ALGEBRAIC
CURVES

This appendix is a summary of important results on Riemann surfaces,
central objects in complex geometry.

E.1. Genus and topological classification of surfaces

Topological surfaces appear in two different contexts in this book.
1. The underlying topological space of a complex algebraic curve is a topo-

logical surface. In this statement, the word "curve" refers to the algebraic-
ie complex- dimension of the object, and the word "surface" refers to its
real dimension. For example, R2 is the topological surface underlying
the complex curve C. The underlying topological surface of the complex
projective line P1(C) is the sphere S2.

2. Topological surfaces can also appear as real loci of algebraic surfaces
defined over R. For example, R2 is the real locus of the algebraic surface
C2. The real locus of the quadric surface x2 + y2 + z2 = 1 is the sphere
S2.

It is important to understand the difference between these two types of
surfaces.

Definition E.1.1. — A topological surface S is a Hausdorff topological space
which is locally homeomorphic to R2. In other words, for any x ∈ S there is
a pair (U,ϕ), where U is an open neighbourhood of x in S and ϕ : U → R2 is
a homeomorphism.

Definition E.1.2. — The genus g := g(S) of a topological surface S is de-
fined to be the maximal number of disjoint simple closed curves (ie. embedded
circles) tCi ⊂ S which can be cut out of S without disconnecting it.
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1. ∀i, j , i 6= j ⇒ Ci ∩ Cj = ∅
2. S \ tCi is connected.

Proposition E.1.3. — Let S, S′ be two topological surfaces. If there is a
homeomorphism, ie. a continuous bijective map with continuous inverse

f : S → S′ ,

then g(S) = g(S′).

Definition E.1.4. — The Euler-Poincaré characteristic χ of a polyhedron
whose faces, edge and vertices sets are denoted F , E and V respectively, is
defined by the formula

χ = #F −#E + #V .

See Proposition E.1.10 below for a characterisation of orientability using
the differentiable manifold structure on a surface. See Definition B.5.3 for a
definition of orientability using only the topological structure.

The key fact is that a surface S is orientable if and only if any closed simple
curve in S has a trivial tubular neighbourhood, ie a tubular neighbourhood
homeomorphic to S1 × [−1, 1]. On the other hand, S is non orientable if and
only if it contains a simple closed curve which has a tubular neighbourhood
homeomorphic to a Möbius band. See Lemma 3.4.4 for more details.

As there are at least two incompatible definitions of the genus of a non
orientable surface in the litterature, it is useful to explain the relationship
between the Euler-Poincaré characteristic of a polyhedron and the genus as
defined in E.1.2. (The existence of a polyhedron underlying a surface is guar-
anteed by a theorem of Radó’s proved in 1925. See [Mas67, Chapitre 1] for
more details.)

Proposition E.1.5. — Let S be a topological surface with a polyhedral de-
composition. The following then hold.

1. If S is orientable
χ(S) = 2− 2g(S) .

2. If S is non-orientable

χ(S) = 2− g(S) .

In particular, the Euler-Poincaré characteristic of a surface does not depend
on the choice of polyhedral decomposition.
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For example, the Klein bottle K2, which is non orientable and has zero
Euler characteristic, is of genus 2 whereas the torus, which also has zero Euler
characteristic but is orientable, is of genus 1.

Theorem E.1.6 (Classification of compact surfaces)
Let S, S′ be two connected compact topological surfaces without bound-

ary. Assume that both surfaces are orientable (resp. both surfaces are non
orientable). We then have that.

g(S) = g(S′) ⇐⇒ S homeomorphic S′ .

More generally, two compact connected topological surfaces are homeomor-
phic if and only if they have the same orientability, the same Euler character-
istic and the same number of connected components in their boundary.

See [Mas67, Chapitre 1] or [FK80] for a proof of this fact.

Definition E.1.7. — A two dimensional differentiable manifold is a topo-
logical surface S with a maximal atlas A whose transition functions are dif-
feomorphisms.

Formally:
1. ∀x ∈ S,∃(U,ϕ) ∈ A, Uopen neighbourhood of x in S, ϕ : U → R2 is a

homeomorphism
2. ∀(U1, ϕ1), (U2, ϕ2) ∈ A, U1 ∩ U2 6= ∅⇒

ϕ1 ◦ ϕ−1
2 is a C∞ map from ϕ2(U1 ∩ U2) ⊂ R2 onϕ1(U1 ∩ U2) ⊂ R2 .

⇔ ϕ1 ◦ ϕ−1
2 |ϕ2(U1∩U2) ∈ C∞(ϕ2(U1 ∩ U2)).

In practice we do not need our atlas to be maximal: any open cover of S
by charts satisfying (2) will do.

See the standard reference [Laf96] (English translation [Laf15]) for an in-
troduction to differentiable manifolds.

By convention, unless otherwise specified the transition maps of a differ-
entiable manifold are assumed to be C∞, even though the definition makes
sense for Ck functions for any strictly positive integer k. When k = 0 the
corresponding objects are topological surfaces.

Remark E.1.8. — In real dimension 2 any topological manifold has a unique
C∞ differentiable manifold structure and any homeomorphism between topo-
logical manifolds can be approximated by C∞ maps. See [Hir76, Chapter 9]
for more details.



450 APPENDIX E. RIEMANN SURFACES

Exercise E.1.9. — We can replace condition (1) of the definition by the
following:

1. ∀x ∈ S,∃(U,ϕ) ∈ A, U open neighbourhood of x in S such that ϕ : U →
R2 is a homeomorphism from U to ϕ(U) ⊂ R2.

[Hint: any open ball in Rn is diffeomorphic to Rn.]

Proposition E.1.10. — A differentiable surface is said to be orientable if
and only if it has an atlas A whose transition functions preserve orientation,
or in other words

∀(U1, ϕ1), (U2, ϕ2) ∈ A, U1 ∩ U2 6= ∅⇒ ∀x ∈ U1 ∩ U2,det dx(ϕ1 ◦ ϕ−1
2 ) > 0

Proof. — See [Hir76, §4.4].

We denote by [S] the orientability class of a surface S.

Corollary E.1.11. — Let S, S′ be two compact connected differentiable sur-
faces. The following are equivalent:

S diffeomorphic to S′ ⇔ g(S) = g(S′) and [S] = [S′]

Exercise E.1.12. — Prove that the product torus S1×S1 ⊂ R4 is diffeomor-
phic to a revolution torus in R3 by constructing an explicit diffeomorphism.

E.2. Complex curves and Riemann surfaces

For detailed statements and proofs of foundational results on Riemann sur-
faces we refer to [FK80, Chapitre 1]. If U is an open subset of C we denote
by H(U) the ring of holomorphic functions U → C.

Definition E.2.1 (Compare with Definition D.1.2)
A complex analytic curve or Riemann surface X is a Hausdorff topo-

logical space, locally homeomorphic to C, equipped with a maximal atlas A
whose transition functions are holomorphic.

Formally
1. ∀x ∈ X,∃(U,ϕ) ∈ A, U open neighbourhood of x in X,ϕ : U → C is a

homeomorphism from U to ϕ(U) ⊂ C,
2. ∀(U1, ϕ1), (U2, ϕ2) ∈ A, U1 ∩ U2 6= ∅⇒

ϕ1 ◦ ϕ−1
2 is holomorphic on ϕ2(U1 ∩ U2) ⊂ C [d’image ϕ1(U1 ∩ U2) .]

⇔ ϕ1 ◦ ϕ−1
2 |ϕ2(U1∩U2) ∈ H(ϕ2(U1 ∩ U2)).

By convention, a Riemann surface is assumed connected.
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Remark E.2.2 (Transition functions). — 1. The maps ϕ1◦ϕ−1
2 |ϕ2(U1∩U2)

are therefore biholomorphisms.
2. As any biholomorphism is a C∞ diffeomorphism the atlas A equips X

with a differentiable surface structure.
3. Warning. An open disc is not biholomorphic to the plane C, and more

generally any bounded open set is not biholomorphic to the plane: by
Liouville’s theorem, if f ∈ O(C) and |f | < M on C then f is constant.
Holomorphic geometry is more rigid than differentiable geometry.

4. Transition functions on a Riemann surface are holomorphic, so their
determinant is strictly positive (exercise). The underlying differentiable
manifold of a Riemann surface is therefore orientable.

5. In practice we do not need our atlases to be maximal: any covering of X
by open charts satisfying condition 2. of the definition will do (exercise).

6. Warning: the term surface in the name "Riemann surface" refers to this
underlying differentiable manifold structure modeled on R2 (which is
isomorphic to C as an R-vector space). See § E.1 for more details.

Exercise E.2.3 (Examples of Riemann surfaces)
1. (a) The field C of complex numbers with its usual topology and one

chart, namely the identity.
(b) Any connected open subset of C with one chart, namely inclusion.
(c) Any connected open subset U ⊂ X of a Riemann surface X with

the atlas given by restrictions to U of charts on X.
2. The Riemann sphere C ∪ {∞} with atlas

(C→ C, z 7→ z), (C∗ ∪ {∞} → C, z 7→ 1
z
,∞ 7→ 0) .

Prove that this Riemann surface is diffeomorphic to the usual sphere in
R3.

[Hint: use stereographic projection as in Proposition 5.3.1.]
3. The tori: consider τ ∈ H(⇔ Im(τ) > 0) and set

T := C/Z⊕ τZ

where z1 ∼ z2 ⇔ ∃(n,m) ∈ Z2 such that z2 = z1 + n+mτ .
[Hint: consider charts on a fundamental domain.]

Definition E.2.4 (Holomorphic). — 1. A continuous function f : X →
C on a Riemann surface X is said to be a holomorphic function if and
only if ∀x ∈ X there is a chart (U,ϕ) in a neighbourhood of x such that
f ◦ ϕ−1 : ϕ(U)→ C is a holomorphic function. When this is the case we
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write f ∈ OX(X). More generally, for any open connected set W in X
we will denote by OX(W ) the ring of holomorphic functions on W .

2. A holomorphic map (or morphism) between Riemann surfaces

g : X → Y

is a continuous map such that for any open set V ⊂ Y and any holomor-
phic function f : V → C the function

f ◦ g : g−1(V )→ C

is holomorphic.
We set g∗(f) := f ◦ g|g−1(V ): g∗ is called the pull back of f by g. With

this notation, g is holomorphic if and only if for any open set V ⊂ Y we
have that

f ∈ OY (V )⇒ g∗(f) ∈ OX(g−1(V )) .

A holomorphic map f : X → Y between Riemann surfaces is said to be
conformal if and only if it is both injective and surjective.

Exercise E.2.5. — The function f is then a biholomorphism by Proposi-
tion E.2.9.

Exercise E.2.6 (Characterisation of holomorphic functions)
1. Prove that any C∞ map between surfaces g : X → Y is a continuous map

such that for any C∞ function f : Y → R2 the function f ◦ g : X → R2 is
C∞.

2. Prove that any continuous map f : X → Y between Riemann surfaces
is holomorphic if and only if for any pair of charts (U,ϕ) in X and
(V, ψ) in Y such that f(U) ∩ V 6= ∅, the expression of f in coordinates
ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V )) ⊂ C→ ψ(V ) ⊂ C is a holomorphic function
between open subsets of C.

Remark E.2.7. — If a Riemann surface X has an anti-holomorphic involu-
tion σ, we say (X,σ) is separating if the complement X \Xσ is non connected.
We refer the interested reader to [Gab06] for a detailled study of this property.

Definition E.2.8. — A holomorphic map g : X → Y is said to be constant
if and only if the image of X under g is a point.

Proposition E.2.9 (Open image). — Let f : X → Y be a holomorphic
map between Riemann surfaces. If f is non constant then the image of any
open connected subset of X under f is an open set in Y . In other words, any
non constant holomorphic map between Riemann surfaces is open.



E.2. COMPLEX CURVES AND RIEMANN SURFACES 453

Exercise E.2.10. — Prove the above proposition using the analogous result
for holomorphic functions on C.

Theorem E.2.11. — Let X be a compact Riemann surface and let Y be
a Riemann surface. Any holomorphic map f : X → Y is either constant or
surjective, and in this latter case Y is also compact.

In particular, any holomorphic function X → C is constant and the ring of
global holomorphic functions on X satisfies OX(X) = C.

Proof. — If f is non constant then f(X) is open by Proposition E.2.9 and
compact because the image of a compact space under a continuous map is
compact. It follows that f(X) is a closed subset of Y because Y is Hausdorff.
Since X and Y are assumed connected by convention, f(X) = Y .

Exercise E.2.12. — The affine complex line A1(C) ' C is a Riemann sur-
face. Prove that the projective complex line P1(C) ' C2/C∗ is a Riemann
surface which is isomorphic (ie. biholomorphic) to the Riemann sphere.

Proposition E.2.13 (Local expression of a holomorphic map)
Let f : X → Y be a holomorphic non constant map between Riemann

surfaces. Consider a point x0 ∈ X and set y0 = f(x0). Let ψ be a chart of Y
centred on y0. There is then a local coordinate z on X vanishing at x0- ie. a
chart centred at x0- and a natural number d such that the expression of f in
these charts is

z 7→ zd .

Proof. — Consider a coordinate z̃ on X centred at x0 and let f̃ be the expres-
sion of f in the charts z̃ and ψ. We then have that f̃(0) = 0. In a neighbour-
hood of 0 we can develop f̃ as a power series f̃(z̃) =

∑
akz̃

k. Let d be the small-
est integer such that ad 6= 0 and choose c ∈ C such that cd = ad. The function
f̃ is of the form f̃(z̃) = (cz̃)d(1+u(z̃)) where u is holomorphic and u(0) = 0. As
the holomorphic function w 7→ d

√
w is well defined in a certain neighbourhood

of 1, the function 1 + u is of the form hd where h is holomorphic in a neigh-
bourhood of 0 and h(0) = 1, so f̃(z̃) = (cz̃ · h(z̃))d. Set z(x) = cz̃(x) · h(z̃(x)).
The implicit function theorem implies that z is a holomorphic coordinate in
a neighbourhood of x0 and we have that ψ(f(z)) = (z(x))d for any x in some
neighbourhood of x0.

Exercise E.2.14. — Check that the natural number d depends on f and x0
but is independent of the choice of charts.
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Definition E.2.15. — The natural number d is called the ramification index
of f at x0. We also say that f is equal to f(x0) with multiplicity d at x0. (In
a neighbourhood of f(x0), the fibre of f meets a neighbourhood of x0 in d

points). The number bf (x0) := d − 1 is called the branching number of f at
x0.

Proposition E.2.16. — Let f : X → Y be a non constant holomorphic map
between compact Riemann surfaces. There is then an integer m such that
every y ∈ Y has exactly m preimages, counting multiplicities. In other words,

∀y ∈ Y,
∑

x∈f−1(y)
(bf (x) + 1) = m .

Proof. — We refer to [FK80, page 12] for the details.
We set

Σn :=
{
y ∈ Y ;

∑
x∈f−1(y)

(bf (x) + 1) > n
}

and we prove that every set of this form is either empty or equal to Y . For
any point y0 ∈ Y we then set m :=

∑
x∈f−1(y0)(bf (x) + 1). This gives us

0 < m <∞ and since y0 ∈ Σm we get that Σm = Y . Since y0 /∈ Σm+1, Σm+1
must be empty.

To prove that every set of this form is either empty or Y we prove that Σn

is both open and closed in the connected set Y .

Definition E.2.17. — The integer m, denoted deg(f), is called the degree
of f . We will also say that f is an m-sheeted (ramified) covering of Y by X.

Theorem E.2.18 (Riemann-Hurwitz). — Let f : X → Y be a non con-
stant holomorphic map between compact Riemann surfaces. If m is the degre
of f then

g(X) = m(g(Y )− 1) + 1 + 1
2
∑
x∈X

bf (x) .

Proof. — This result follows from a relationship between Euler characteristics.

2− 2g(X) = m(2− 2g(Y ))−
∑
x∈X

bf (x) .

As the set of branching points is finite, we can assume they are contained
in the set of vertices of a polyhedral decomposition (F,A, S) of Y . This de-
composition can be lifted by f to a decomposition that has m#F faces, m#A
edges and m#S −

∑
x∈X bf (x) vertices.
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Example E.2.19 (Plane cubics and hyperelliptic curves)
Affine cubics of the form {y2 = x3 + ax + b} ⊂ A2(C) and projective

cubics of the form C := {y2 = x3 + ax + b} ∪ {∞} ⊂ P2(C) (∞ = (1 : 0 : 0))
are said to be reduced. We calculate the genus of C using the form {y2 =
x(x − 1)(x − h)} ∪ {∞}. If the curve is non singular- note that C is then a
compact Riemann surface- then C is a torus, g = 1. This can be proved by
considering the map

π : C → P1(C), (X : Y : Z) 7→ (X : Z) ,∞ 7→ (1 : 0) .

in homogeneous coordinates.
In affine coordinates this gives us (x, y) 7→ x, so this is a degree 2 morphism

with four ramification points. We get the Riemann surface structure on C by
pulling back the Riemann surface structure on P1(C) as below.

More generally, the same argument shows that hyperelliptic curves {y2 =
P2g+1(x)} ∪ {∞} ⊂ P2(C), where P2g+1 is a degree 2g + 1 polynomial with
simple roots, have genus g. These curves are ramified double covers of the
Riemann sphere.

Definition E.2.20. — Let X be a Riemann surface.
1. A holomorphic map from X to C is called a holomorphic function on X

(see Definition E.2.4).
2. A holomorphic map from X to the Riemann sphere C ∪ {∞} is called

a meromorphic function on X. For any open set U ⊂ X we denote
by M(U) the C-algebra of meromorphic functions on U . When U is
connected,M(U) is a field and in particularM(X) is the field of mero-
morphic functions on the Riemann surface X.

Remark E.2.21. — The reader should be aware that in higher dimension
E.2.20 (2) fails because there can be points at which a meromorphic function
is not defined, even when including the value ∞.

Exercise E.2.22. — 1. Any polynomial of degree d can be extended to a
meromorphic function on P1(C) with a pole of order d at ∞.

2. (Very important!) If f is a non constant meromorphic function on a
Riemann surface X then with multiplicity f has the same number of
zeros and poles. (Use Proposition E.2.16).

3. Recall that the usual definition of a meromorphic function on X is a
function f : X \D → C where D ⊂ X is a discrete closed subset whose
expression in any chart of X is meromorphic, by which we mean that it
is holomorphic outside of a discrete subset and has a pole at every point
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in which it is not defined. Extending f to the whole of X by setting
f(x) =∞ at every pole x we recover Definition E.2.20.

Proposition E.2.23. — Any meromorphic function on the Riemann sphere
is a rational function, by which we mean a function of the form p

q where p and
q are polynomials

Proof. — Let f : P1(C)→ C be a meromorphic function. Since P1(C) is com-
pact, f has only a finite number of poles. Replacing f by 1/f , we can assume
that ∞ ∈ P1(C) is not a pole. Let (a1, . . . , an) ∈ C be the set of poles of f . In
a neighbourhood of aν , let the polar part of f be

hν(z) =
−1∑

l=−kν
cνl (z − aν)l.

The function f − (h1 + . . . hn) is then holomorphic on P1(C). By Theo-
rem E.2.11 it is therefore constant, so f is rational.

Note that it follows that a single non constant meromorphic function entirely
determines the complex structure on X. Indeed, if f ∈M(X) is non constant,
x is a point ofX and n−1 = bf (x) then f determines a local coordinate centred
on x : (f − f(x))

1
n if f(x) 6=∞ ,

(f)−
1
n if f(x) =∞ .

Exercise E.2.24. — Deduce a proof of the D’Alembert-Gauss theorem (also
known as the fundamental theorem of algebra): any non constant polynomial
has a root in C. This theorem can be generalised as follows "any non constant
polynomial has a root in the algebraic closure of its field of coefficients".

Any Riemann surface, and particularly any compact Riemann surface, has
a globally defined non constant meromorphic function. (This is a difficult
result). On the other hand, there are complex surfaces, such as general tori of
complex dimension > 2, which do not have any globally defined non constant
meromorphic function.

Theorem E.2.25. — Any Riemann surface has a globally defined non con-
stant meromorphic function.

Proof. — See [FK80, Cor. II.5.3]: the key point in the proof is Weyl’s
lemma.(1)

(1)Hermann Weyl (1885–1955), not to be confused with André Weil (1906–1998).
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Corollary E.2.26. — Any Riemann surface is triangulable.

Remark E.2.27. — 1. Any such non constant function f ∈ M(X) gives
us a holomorphic map f : X → P1 which by Proposition E.2.16 is an
m = deg(f)-sheeted ramified covering map.

2. More generally, any non constant holomorphic map f : X → Y between
compact Riemann surfaces is also a ramified covering map. Restricting
this covering to the complement of the branch points we get a degree m
non ramified covering. It can be proved that this non ramified covering
determines and is determined by f . (See [Dol90, 5.(6.3.1) and 5.(6.3.4)]
for more details).

Theorem E.2.28. — Any compact Riemann surface is projective.
More precisely, if X is a compact Riemann surface then there is a natural

number N and a holomorphic embedding

Φ: X → PN (C) .

Moreover, Φ(X) ⊂ PN (C) is a complex projective algebraic curve.

Sketch proof. — Theorem E.2.25 implies the existence of an ample line bundle
(Definition 2.6.20) L on X. The existence of such a line bundle implies the
existence of a morphism ϕL (see Definition 2.6.20 or [Dol90, page 182 (8.7.3)])
and we then simply apply Chow’s theorem D.5.1. We refer the interested
reader to [Jos06, Theorem 5.7.1] for a full proof.

Example E.2.29. — Weierstrass’s elliptic ℘ function (see [Car61, V.2.5],
[FK80, page 4], [Sil09, VI.3]) gives a direct proof- ie. a proof which does not
depend on the above theorem- of the fact that all complex tori of dimension
1 of type Tτ := C/Z⊕ τZ seen in Exercise E.2.3(3) are algebraic.

For any τ ∈ H we set

℘(τ ; z) = 1
z2 +

∑
(n,m) 6=(0,0)
(n,m)∈Z2

( 1
(z − n−mτ)2 −

1
(n+mτ)2

)
.

The function thus defined is a meromorphic function on the plane which
is doubly periodic with respect to the lattice Z ⊕ τZ and therefore defines a
meromorphic function on the torus Tτ . It can be proved that the derivative
℘′ of ℘ satisfies an algebraic equation in ℘ :

(E.1) (℘′)2 = 4(℘− e1)(℘− e2)(℘− e3)
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where e1 = ℘(1
2), e2 = ℘( τ2 ) and e3 = ℘(1+τ

2 ).
The function ℘′ is also meromorphic on the torus. The Riemman surface

Tτ can be thought of as the plane algebraic curve determined by the equation

y2 = 4(x− e1)(x− e2)(x− e3) .

E.3. The Riemann-Roch theorem for a curve

Theorem E.3.1 (Riemann-Roch theorem). — Let X be a non sin-
gular projective curve and let D be a divisor on X: recall that hk(D) =
dimHk(X,OX(D)). We then have that

h0(D)− h0(KX −D) = degD + 1− g(X) .

Proof. — See [Jos06, Theorem 5.4.1], for example.

E.4. Jacobian variety associated to a curve

LetX be a compact Riemann surface of non zero genus g and let (ω1, . . . , ωg)
be a basis of the complex vector space H0(X,ΩX) of global holomorphic differ-
entiable forms on X. Let γ1, . . . , γ2g be a basis of the free Z-module H1(X;Z):
the 2g vectors

vj =


∫
γj
ω1
...∫

γj
ωg

 ∈ Cg pour j = 1, . . . , 2g

are then R-linearly independent (see [ACGH85, §I.3] for example) and gen-
erate a lattice in Cg. It follows that integration of holomorphic differentiable
forms of a compact Riemann surface X along 1-cycles gives us an injection

H1(X;Z) ↪→ H0(X,ΩX)∗, γ 7→ (ω 7→
∫
γ
ω)

which enables the following definition.

Definition E.4.1. — Let X be a compact Riemann surface of non zero
genus. The complex torus

Jac(X) := H0(X,ΩX)∗/H1(X;Z)

is called the Jacobian variety of the curve X.

Remark E.4.2. — The Jacobian Jac(X) of a Riemann surface X is a special
case of an Albanese variety Alb(X) (Definition D.6.10).
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Proposition E.4.3. — Let X be a compact Riemann surface of non zero
genus g with a real structure σ. Let s = #π0(X(R)) be the number of connected
components of X(R). The Jacobian Jac(X) then has an induced R-variety
structure and Jac(X)G = Jac(X)(R) is a real compact Lie group which is
isomorphic to

1. (R/Z)g × (Z/2)s−1 if s 6= 0 ;
2. (R/Z)g if s = 0 and g is even;
3. (R/Z)g × Z/2 if s = 0 and g is odd.

Proof. — If X(R) is non empty then λ1 = g + 1− s (see Exercise 3.3.12 and
Example 3.6.9). By Remark E.4.2, when s 6= 0 the result below is a special case
of Proposition D.6.11. We refer to [Sil82, Proposition 10] for more details.

Theorem E.4.4 (Abel-Jacobi theorem). — Let X be a non singular com-
plex projective algebraic curve. The Abel Jacobi map

πP0 : X → Jac(X), P 7→


∫ P
P0
ω1
...∫ P

P0
ωq

 mod (v1, . . . , v2q) .

then induces a group isomorphism.
Pic0(X)→ Jac(X) .

Proof. — The injectivity of this map is simply Abel’s theorem and its surjec-
tivity is equivalent to Jacobi’s inversion theorem. Voir [ACGH85, §I.3].





APPENDIX F

BLOW UPS

Blow ups are one of the main technical tools in this book. We summarise
their main "algebraic" and "differentiable" properties in this section.

F.1. Blowing up C∞ manifolds

This section is based on [Mik97, 2.1].

Tautological bundle. — We denote by Bn → RPn the tautological bundle-
often denoted OPn(−1) in algebraic geometry: see Definition 2.6.14 for more
details- over projective space RPn. The fibre of this bundle at the point L ∈
RPn is just the line passing through zero in Rn+1 represented by L. It is a real
rank 1 bundle. We recall how to construct a local trivialisation of this bundle.
Let v be a non zero vector in Rn+1 and let L ∈ RPn be the line generated by
v. Let H ⊂ Rn+1 be a hyperplane which is a linear complement to L. Denote
by A ⊂ RPn the set of lines not contained in H. Every line L′ contained in A
contains exactly one vector of the form v+w(L′) with w(L′) ∈ H. This yields
a homeomorphism

A× R→ Bn|A, (L′, t) 7→ (L′, tw(L′))

linear on each fibres.
Bn is a submanifold of the product Rn+1 × RPn by construction and the

tautological bundle morphism is the restriction of the projection map

Rn+1 × RPn → RPn.

We denote by π : Bn → Rn+1 the restriction of projection to the first factor.
The map π then induces a diffeomorphism

Bn \ EP
≈−→ Rn+1 \ {P}
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where P = (0, . . . , 0) ∈ Rn+1 and EP := π−1(P ).
We say that π : Bn → Rn+1 is the blow up of Rn+1 at P . The submanifold

EP of codimension 1 in Bn is called the exceptional divisor of this blow up. It
follows immediately from the definition that EP is diffeomorphic to RPn.

Remark F.1.1. — The tautological bundle is also the universal bundle over
RPn = Gn+1,1(R). See Definition 5.2.11 for more details.

Projectivisation of the normal bundle. — Consider a compact subman-
ifold without boundary C of codimension r in a smooth manifold M : for
simplicity, we equip M with a Riemannian metric. Let NM |C → C be the
normal bundle to C in M : this is a vector bundle of rank r. We denote by

π1 : EC → C

the projectivisation of the bundle NM |C → C. By definition, the fibre π−1
1 (P )

over P ∈ C is the projective space of lines in the vector space NM |C,P and EC
is therefore the total space of an RPr−1-bundle over C.

Blowing up a manifold along a submanifold. — As C is embedded in
M , there is an injective C∞ map j : NM |C ↪→ M identifying NM |C with an
open neighbourhood U = j(NM |C) of C in M . The injection j is called a
tubular neighbourhood of C in M . (The open subset U is also often called a
tubular neighbourhood). The map j then identifies C with the zero section
of NM |C . By abuse of notation we write C ⊂ NM |C and j then induces a
diffeomorphism NM |C \ C

≈−→ U \ C. We denote by Ũ the total space of the
tautological bundle over EC and we identify EC with the zero section EC ⊂ Ũ .
The space Ũ is then a manifold of the same dimension as M by construction
and we have a natural diffeomorphism

µ : Ũ \ EC
≈−→ U \ C

which extends to a C∞ map

f : Ũ → U ⊂M

such that f |EC = π1.
Ignoring the various choices involved in this construction, we have the fol-

lowing definition.

Definition F.1.2. — The blow up M̃ ofM along C is constructed by gluing
together Ũ and M \ C by the diffeomorphism µ. The C∞ map

π : M̃ →M
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defined by π|M\C = id and π|
Ũ

= f is called the topological blow up of M
along C.

The submanifold C ⊂ M is called the centre of the blow up and the codi-
mension 1 submanifold EC in M̃ is called the exceptional divisor. We often
denote the blow up by BCM := M̃ .

If L ⊂ M is a closed suset then we say that a subset L̃ ⊂ M̃ is the strict
transform of L if and only if

– π(L̃) = L,
– L̃ is closed in M̃ ,
– L̃ \ EC is dense in L̃.

We refer the interested reader to [AK85, Section 2] for more details.

F.2. Blow ups of algebraic varieties

Strict transform. — Consider an algebraic subvariety W ⊂ PN given by r
equations {f1 = 0, . . . , fr = 0}.

Definition F.2.1. — The blow up of PN along W is the subvariety BWPN
of PNx0:···:xN × Pr−1

y1:···:yr given by the r − 1 equations
y1f2(x0, . . . , xN )− y2f1(x0, . . . , xN ) = 0,
y2f3(x0, . . . , xN )− y3f2(x0, . . . , xN ) = 0,

...
yr−1fr(x0, . . . , xN )− yrfr−1(x0, . . . , xN ) = 0.

The blow up map πW : BWPN → PN is given by

((x0 : · · · : xN ), (y1 : · · · : yr)) 7→ (x0 : · · · : xN ).

If codimW = r, we recover the previous interpretation of a blow up in
terms of the normal bundle at every smooth point of W .

For any subvariety V ⊂ PN , we denote by Ṽ the Zariski closure of π−1
W (V \

W ∩ V ) in BWPN .

Definition F.2.2. — The subvariety Ṽ is called the strict transform of V
under πW .

It is possible to prove that the variety Ṽ does not depend on the embeddings
V ⊂ PN and W ⊂ PN but only on the embedding W ∩ V ⊂ V (see [Har77,
II.7]). We denote by πW the restriction Ṽ → V of πW to Ṽ .
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Definition F.2.3. — Let V be a projective variety and let W ⊂ V be a
subvariety. The restriction πW : Ṽ → V is called the blow up of V of centre
W . We denote by BWV := Ṽ the blow up of V along W . The divisor π∗W (W )
is called the exceptional divisor of the blow up.

We denote the blown up variety by BWV := Ṽ .

Proposition F.2.4 (Universal property of blow ups on surfaces)
Let f : Y → X be a birational morphism of non singular projective

complex surfaces. If P ∈ X is a point at which the inverse rational map
f−1 : X 99K Y is not well defined then f factorises uniquely as a map

f : Y g−→ BPX
πP−−→ X

where g is a birational map and πP is the blow up of X at P .

Proof. — See [Bea78, Proposition II.8].

Remark F.2.5. — A more general statement which also holds in higher
dimension is given in [Har77, Proposition II.7.14]: this result is weaker than
the above in the two dimensional case. See [Har77, Remark V.5.4.1] for more
details.

Corollary F.2.6. — Let X be a non singular projective complex surface
and let f : X → X be a birational map. Let P be a point of X fixed by f .
There is then a unique birational endomorphism g : BPX → BPX such that
f ◦ πP = πP ◦ g :

BPX
g−−−−→ BPXyπP yπP

X
f−−−−→ X

Proof. — Simply apply the previous proposition to the birational morphism
f ◦ πP : BPX → X, noting that the inverse map (f ◦ πP )−1 is not defined at
P = f(P ). Indeed, if f−1 were well defined at P then f−1(P ) = P would be
a point at which π−1

P is not defined.

When V and W are smooth there is a diffeomorphism between the topo-
logical and algebraic blow ups that commutes with morphisms over V .
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F.3. Topology of blow ups

The definition B.5.12 of the connected sum of two varieties will be needed
in this section.

Proposition F.3.1. — Consider a point P ∈ Rn. The blow up BPRn is
then diffeomorphic to Rn#RPn. More generally, if C ⊂ M is a non sin-
gular submanifold of codimension r with trivial normal bundle then BCM is
diffeomorphic to M#C × RPr.

Corollary F.3.2. — Let X be a real surface and let BPX be the blow up of
X at a point P in X. The differentiable manifold BPX of real dimension 2 is
then diffeomorphic to

X#RP2 .

In particular, if P ∈ RP2 then the blow up BPRP2 is diffeomorphic to the
Klein bottle K2.

Proof. — Indeed, the boundary ∂(URP2|RP1) of a tubular neighbourhood of
RP1 in RP2 is diffeomorphic to a circle S1 and the tubular neighbourhood
itself is a Möbius band.

Proposition F.3.3. — Let X be a complex surface and let BPX be the blow
up of X at a point P in X. For example, B(0,0)C2 is the complex subvariety
in C2

x,y × CP1
u:v given by the equation xv = yu. The differentiable manifold

BPX of real dimension 4 is then diffeomorphic in the Euclidean topology to

X#CP2

where CP2 = −CP2 is the complex projective plan with the inverse orientation.

Proof. — The boundary ∂(UCP2|CP1) of a tubular neighbourhood of CP1 in
CP2 is diffeomorphic to the sphere S3 and the circle bundle induced by pro-
jection

S3 ≈ ∂(UCP2|CP1)→ CP1 ≈ S2

is the Hopf fibration (see Proposition B.8.3). The blow up of a point is there-
fore equivalent to the surgery that replaces the tubular neighbourhood UX|P
of a point in X, diffeomorphic to the unit ball of dimension 4, by UCP2|CP1 ,
gluing them together along their boundaries spheres by a orientation reversing
diffeomorphism. See [KM61] or [Hir51] for more details.

Example F.3.4. — We now illustrate the above with a worked example due
to Kollár. See [Kol99a, Example 1.4] for more details.
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Let X be a non singular real algebraic variety of dimension 3 and let D ⊂ X
be a real curve with a unique real point {0} = D(R). Suppose moreover that
close to 0 this curve is given by equations {z = x2 + y2 = 0}. Let Y1 = BDX

be the variety obtained by blowing up Y in D. This new variety is real and
has a unique singular point P . Consider Y := BPY1, the variety obtained
by blowing up Y1 at P , which is a non singular real algebraic variety. Let
π : Y → X be the composition of blow ups. We will prove that the connected
component M ⊂ X(R) containing P satisfies

π−1M ≈M#(S2 × S1),

or in other words

BP (BDM) ≈M#(S2 × S1).

As our aim is to calculate the topology of the blow up, it is reasonable
to use the C∞ blow up, which enables us to work in an open set U which is
"arbitrarily small", such as, for example, an open neighbourhood of the unique
real point of the singular curve D. We will make free us of the identification
U ≈ R3: such an identification does not exist either in the analytic category
(since C3 is not biholomorphic to any of its strict open subsets) or in the
algebraic category (because the Zariski topology is too weak). See [Sha94,
Chapter VI § 2.2] for a more complete explanation.

Consider the curve D whose equations are (z = x2 +y2 = 0) in X = R3. We
will calculate π1 : Y1 = BDR3 → R3 and π : Y = BPY1 → R3, where P ∈ Y1 is
the unique singular point of Y1.

By definition, BDR3 ⊂ R3
x,y,z × P1

α:β is determined by the equation

α(x2 + y2)− βz = 0

which has a unique singular point P in the affine chart α 6= 0. Restricting to
this chart, Y1 is the affine hypersurface of equation x2

1 + y2
1 − z1t1 = 0 where

x1 = x, y1 = y, z1 = z, t1 = β and P = (0, 0, 0, 0).
We calculate BPY1 by blowing up πP : R̃4 → R4 at the point P and consid-

ering the strict transform Y = BPY1 of Y1.
The four equations of π−1

P (Y1) ⊂ R4
x1,y1,z1,t1 × P3

a:b:c:d are

x2
1 + y2

1 − z1t1 = ay1 − bx1 = bz1 − cy1 = ct1 − dz1 = 0.

Restricting to the chart c 6= 0, π−1
P (Y1) is the affine variety of equation

z2
2(x2

2 + y2
2 − t2) = 0 in the affine subspace of R7

x2,y2,z2,t2,a,b,d
whose equations
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are 
x2 = a,

y2 = b,

t2 = d.

where z2 = z1, x2 = x1/z1, y2 = y1/z1, t2 = t1/z1.
The trace of the exceptional divisor in this chart is given by z2 = 0 and

it follows that the equation of Y is x2
2 + y2

2 − t2 = 0 in the affine subspace
x2−a = y2−b = t2−d = 0. The real locus is therefore the product variety of a
paraboloid of revolution and the real line R. In the chart d 6= 0 the topological
situation is the same and simply need to check that the gluing is diffeomorphic
to

R3#S2 × S1 ≈ S2 × S1 \ D3

where D3 is the ball of dimension 3.
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Funkcional. Anal. i Priložen. 8 (1974), no. 2, p. 50–56.

[Har76] , “Topological types of nonsingular surfaces of degree 4 in
RP 3”, Funkcional. Anal. i Priložen. 10 (1976), no. 4, p. 55–68.

[Har77] R. Hartshorne – Algebraic geometry, Springer-Verlag, New
York, 1977, Graduate Texts in Mathematics, No. 52.



BIBLIOGRAPHY 481

[Hat02] A. Hatcher – Algebraic topology, Cambridge University Press,
Cambridge, 2002.

[Hem76] J. Hempel – 3-Manifolds, Princeton University Press, Prince-
ton, N. J., 1976, Ann. of Math. Studies, No. 86.

[Hir51] F. Hirzebruch – “Über eine Klasse von einfachzusammenhän-
genden komplexen Mannigfaltigkeiten”, Math. Ann. 124 (1951),
p. 77–86.

[Hir64] H. Hironaka – “Resolution of singularities of an algebraic va-
riety over a field of characteristic zero. I, II”, Ann. of Math. (2)
79 (1964), 109–203; ibid. (2) 79 (1964), p. 205–326.

[Hir66] F. Hirzebruch – Topological methods in algebraic geometry,
Third enlarged edition. New appendix and translation from the
second German edition by R. L. E. Schwarzenberger, with an
additional section by A. Borel. Die Grundlehren der Mathema-
tischen Wissenschaften, Band 131, Springer-Verlag New York,
Inc., New York, 1966.

[Hir69] , “The signature of ramified coverings”, in Global Analy-
sis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo,
1969, p. 253–265.

[Hir75] H. Hironaka – “Triangulations of algebraic sets”, in Algebraic
geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State
Univ., Arcata, Calif., 1974), Amer. Math. Soc., Providence,
R.I., 1975, p. 165–185.

[Hir76] M. W. Hirsch – Differential topology, Springer-Verlag, New
York, 1976, Graduate Texts in Mathematics, No. 33.

[HM05a] J. Huisman & F. Mangolte – “Every connected sum of lens
spaces is a real component of a uniruled algebraic variety”, Ann.
Inst. Fourier (Grenoble) 55 (2005), no. 7, p. 2475–2487.

[HM05b] , “Every orientable Seifert 3-manifold is a real component
of a uniruled algebraic variety”, Topology 44 (2005), no. 1, p. 63–
71.

[HM09] , “The group of automorphisms of a real rational surface
is n-transitive”, Bull. Lond. Math. Soc. 41 (2009), no. 3, p. 563–
568.



482 BIBLIOGRAPHY

[HM10] , “Automorphisms of real rational surfaces and weighted
blow-up singularities”, Manuscripta Math. 132 (2010), no. 1-2,
p. 1–17.

[Hor75] E. Horikawa – “On deformations of quintic surfaces”, Invent.
Math. 31 (1975), no. 1, p. 43–85.

[HP52] W. V. D. Hodge & D. Pedoe – Methods of algebraic geom-
etry. Vol. II. Book III: General theory of algebraic varieties in
projective space. Book IV: Quadrics and Grassmann varieties,
Cambridge, at the University Press, 1952.

[HR96] B. Hughes & A. Ranicki – Ends of complexes, Cambridge
Tracts in Mathematics, vol. 123, Cambridge University Press,
Cambridge, 1996.

[Hu59] S.-t. Hu – Homotopy theory, Pure and Applied Mathematics,
Vol. VIII, Academic Press, New York, 1959.

[Hui94] J. Huisman – “Cycles on real abelian varieties”, Prépublication
de l’Institut Fourier 271, Grenoble, 1994.

[Hui95] , “On real algebraic vector bundles”, Math. Z. 219
(1995), no. 3, p. 335–342.

[Hui11] , “Topology of real algebraic varieties; some recent re-
sults on rational surfaces”, in Real Algebraic Geometry, Rennes
: France (2011), Prépublication, 2011, hal-00609687, p. 51–62.

[IMS09] I. Itenberg, G. Mikhalkin & E. Shustin – Tropical al-
gebraic geometry, second ed., Oberwolfach Seminars, vol. 35,
Birkhäuser Verlag, Basel, 2009.

[Isk65] V. A. Iskovskih – “On birational forms of rational surfaces”,
Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), p. 1417–1433.

[Isk67] , “Rational surfaces with a pencil of rational curves”,
Mat. Sb. (N.S.) 74 (116) (1967), p. 608–638.

[Ite93] I. Itenberg – “Contre-examples à la conjecture de Ragsdale”,
C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, p. 277–
282.

[Ite95] , “Counter-examples to Ragsdale conjecture and T -
curves”, in Real algebraic geometry and topology (East Lansing,
MI, 1993), Contemp. Math., vol. 182, Amer. Math. Soc., Prov-
idence, RI, 1995, p. 55–72.



BIBLIOGRAPHY 483

[JO69] K. Jänich & E. Ossa – “On the signature of an involution”,
Topology 8 (1969), p. 27–30.

[Jos06] J. Jost – Compact Riemann surfaces, third ed., Universitext,
Springer-Verlag, Berlin, 2006, An introduction to contemporary
mathematics.

[JP00] N. Joglar-Prieto – “Rational surfaces and regular maps into
the 2-dimensional sphere”, Math. Z. 234 (2000), no. 2, p. 399–
405.

[JPM04] N. Joglar-Prieto & F. Mangolte – “Real algebraic mor-
phisms and del Pezzo surfaces of degree 2”, J. Algebraic Geom.
13 (2004), no. 2, p. 269–285.

[Kam75] T. Kambayashi – “On the absence of nontrivial separable forms
of the affine plane”, J. Algebra 35 (1975), p. 449–456.

[Kas77] A. Kas – “On the deformation types of regular elliptic surfaces”,
in Complex analysis and algebraic geometry, Iwanami Shoten,
Tokyo, 1977, p. 107–111.

[Kaw92] Y. Kawamata – “Boundedness of Q-Fano threefolds”, in Pro-
ceedings of the International Conference on Algebra, Part 3
(Novosibirsk, 1989) (Providence, RI), Contemp. Math., vol. 131,
Amer. Math. Soc., 1992, p. 439–445.

[KB32] B. O. Koopman & A. B. Brown – “On the covering of an-
alytic loci by complexes”, Trans. Amer. Math. Soc. 34 (1932),
no. 2, p. 231–251.

[KI96] V. Kharlamov & I. Itenberg – “Towards the maximal num-
ber of components of a nonsingular surface of degree 5 in RP3”,
in Topology of real algebraic varieties and related topics, Amer.
Math. Soc. Transl. Ser. 2, vol. 173, Amer. Math. Soc., Provi-
dence, RI, 1996, p. 111–118.

[KK02] V. S. Kulikov & V. M. Kharlamov – “On real structures
on rigid surfaces”, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002),
no. 1, p. 133–152.

[KK16] W. Kucharz & K. Kurdyka – “Some conjectures on contin-
uous rational maps into spheres”, Topology Appl. 208 (2016),
p. 17–29.

[KK18] , “Stratified-algebraic vector bundles”, J. Reine Angew.
Math. 745 (2018), p. 105–154.



484 BIBLIOGRAPHY

[KKK18] J. Kollár, W. Kucharz & K. Kurdyka – “Curve-rational
functions”, Math. Ann. 370 (2018), no. 1-2, p. 39–69.

[Kle82] F. Klein – “Ueber Riemann’s Theorie der algebraischen Func-
tionen und ihrer Integrale.”, Leipzig. Teubner (1882)., 1882.

[Kle66] S. L. Kleiman – “Toward a numerical theory of ampleness”,
Ann. of Math. (2) 84 (1966), p. 293–344.

[KM61] M. A. Kervaire & J. W. Milnor – “On 2-spheres in 4-
manifolds”, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), p. 1651–
1657.

[KM09] J. Kollár & F. Mangolte – “Cremona transformations and
diffeomorphisms of surfaces”, Adv. Math. 222 (2009), no. 1,
p. 44–61.

[KM12] K. Kuyumzhiyan & F. Mangolte – “Infinitely transitive ac-
tions on real affine suspensions”, J. Pure Appl. Algebra 216
(2012), no. 10, p. 2106–2112.

[KM16] J. Kollár & F. Mangolte – “Approximating curves on real
rational surfaces”, J. Algebraic Geom. 25 (2016), p. 549–570.

[KMM92] J. Kollár, Y. Miyaoka & S. Mori – “Rational connected-
ness and boundedness of Fano manifolds”, J. Differential Geom.
36 (1992), no. 3, p. 765–779.

[KN15] J. Kollár & K. Nowak – “Continuous rational functions on
real and p-adic varieties”, Math. Z. 279 (2015), p. 85–97.

[Kne76a] M. Knebusch – “On algebraic curves over real closed fields. I”,
Math. Z. 150 (1976), no. 1, p. 49–70.

[Kne76b] , “On algebraic curves over real closed fields. II”, Math.
Z. 151 (1976), no. 2, p. 189–205.

[Kod53] K. Kodaira – “On a differential-geometric method in the the-
ory of analytic stacks”, Proc. Nat. Acad. Sci. U. S. A. 39 (1953),
p. 1268–1273.

[Kod54] , “On Kähler varieties of restricted type (an intrinsic
characterization of algebraic varieties)”, Ann. of Math. (2) 60
(1954), p. 28–48.

[Kod64] , “On the structure of compact complex analytic sur-
faces. I”, Amer. J. Math. 86 (1964), p. 751–798.



BIBLIOGRAPHY 485

[Kol96] J. Kollár – Rational curves on algebraic varieties, Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of
Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Math-
ematics], vol. 32, Springer-Verlag, Berlin, 1996.

[Kol97] , “Real algebraic surfaces”, arXiv:alg-geom/9712003,
1997.

[Kol98a] , “The Nash conjecture for threefolds”, Electron. Res.
Announc. Amer. Math. Soc. 4 (1998), p. 63–73 (electronic).

[Kol98b] , “Real algebraic threefolds. I. Terminal singularities”,
Collect. Math. 49 (1998), no. 2-3, p. 335–360, Dedicated to the
memory of Fernando Serrano.

[Kol99a] , “Real algebraic threefolds. II. Minimal model program”,
J. Amer. Math. Soc. 12 (1999), no. 1, p. 33–83.

[Kol99b] , “Real algebraic threefolds. III. Conic bundles”, J. Math.
Sci. (New York) 94 (1999), no. 1, p. 996–1020, Algebraic geom-
etry, 9.

[Kol00] , “Real algebraic threefolds. IV. Del Pezzo fibrations”,
in Complex analysis and algebraic geometry, de Gruyter, Berlin,
2000, p. 317–346.

[Kol01a] , “The topology of real algebraic varieties”, in Current
developments in mathematics, 2000, Int. Press, Somerville, MA,
2001, p. 197–231.

[Kol01b] , “The topology of real and complex algebraic varieties”,
in Taniguchi Conference on Mathematics Nara ’98, Adv. Stud.
Pure Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, p. 127–145.

[Kol01c] , “Which are the simplest algebraic varieties?”, Bull.
Amer. Math. Soc. (N.S.) 38 (2001), no. 4, p. 409–433.

[Kol02] , “The Nash conjecture for nonprojective threefolds”, in
Symposium in Honor of C. H. Clemens (Salt Lake City, UT,
2000), Contemp. Math., vol. 312, Amer. Math. Soc., Providence,
RI, 2002, p. 137–152.

[Kol07] , Lectures on resolution of singularities, Annals of Math-
ematics Studies, vol. 166, Princeton University Press, Princeton,
NJ, 2007.



486 BIBLIOGRAPHY

[Kol17] , “Nash’s work in algebraic geometry”, Bull. Amer.
Math. Soc. (N.S.) 54 (2017), no. 2, p. 307–324.

[Kra83] V. A. Krasnov – “Harnack-Thom inequalities for mappings
of real algebraic varieties”, Izv. Akad. Nauk SSSR Ser. Mat. 47
(1983), no. 2, p. 268–297.

[Kra06] , “Rigid isotopy classification of real three-dimensional
cubics”, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 4, p. 91–
134.

[Kra09] , “On the topological classification of real three-
dimensional cubics”, Mat. Zametki 85 (2009), no. 6, p. 886–893.

[KS04] J. Kollár & F.-O. Schreyer – “Real Fano 3-folds of type
V22”, in The Fano Conference, Univ. Torino, Turin, 2004,
p. 515–531.

[Kuc96] W. Kucharz – “Algebraic equivalence and homology classes of
real algebraic cycles”, Math. Nachr. 180 (1996), p. 135–140.

[Kuc99] , “Algebraic morphisms into rational real algebraic sur-
faces”, J. Algebraic Geom. 8 (1999), no. 3, p. 569–579.

[Kuc09] , “Rational maps in real algebraic geometry”, Adv.
Geom. 9 (2009), no. 4, p. 517–539.

[Kuc13] , “Regular versus continuous rational maps”, Topology
Appl. 160 (2013), no. 12, p. 1375–1378.

[Kuc14a] , “Approximation by continuous rational maps into
spheres”, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 8, p. 1555–
1569.

[Kuc14b] , “Continuous rational maps into the unit 2-sphere”,
Arch. Math. (Basel) 102 (2014), no. 3, p. 257–261.

[Kuc16a] , “Continuous rational maps into spheres”, Math. Z. 283
(2016), no. 3-4, p. 1201–1215.

[Kuc16b] , “Stratified-algebraic vector bundles of small rank”,
Arch. Math. (Basel) 107 (2016), no. 3, p. 239–249.

[Laf96] J. Lafontaine – Introduction aux variétés différentielles.,
Grenoble: Presses Universitaires de Grenoble; Les Ulis: EDP
Sciences, 1996 (French).



BIBLIOGRAPHY 487

[Laf15] , An introduction to differential manifolds, second ed.,
Springer, Cham, 2015.

[Lau71] H. B. Laufer – Normal two-dimensional singularities, Prince-
ton University Press, Princeton, N.J., 1971, Annals of Mathe-
matics Studies, No. 71.

[Laz04] R. Lazarsfeld – Positivity in algebraic geometry. I, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathe-
matics], vol. 48, Springer-Verlag, Berlin, 2004, Classical setting:
line bundles and linear series.

[Lef71] S. Lefschetz – Selected papers, Chelsea Publishing Co., Bronx,
N.Y., 1971.

[Les18] J. Lesieutre – “A projective variety with discrete, non-finitely
generated automorphism group”, Invent. Math. 212 (2018),
no. 1, p. 189–211.

[Liu02] Q. Liu – Algebraic geometry and arithmetic curves, Oxford
Graduate Texts in Mathematics, vol. 6, Oxford University Press,
Oxford, 2002, Translated from the French by Reinie Erné, Ox-
ford Science Publications.

[LM89] H. B. Lawson, Jr. & M.-L. Michelsohn – Spin geometry,
Princeton Mathematical Series, vol. 38, Princeton University
Press, Princeton, NJ, 1989.

[Łoj64] S. Łojasiewicz – “Triangulation of semi-analytic sets”, Ann.
Scuola Norm. Sup. Pisa (3) 18 (1964), p. 449–474.

[LV06] Y. Laszlo & C. Viterbo – “Estimates of characteristic num-
bers of real algebraic varieties”, Topology 45 (2006), no. 2,
p. 261–280.

[LW33] S. Lefschetz & J. H. C. Whitehead – “On analytical com-
plexes”, Trans. Amer. Math. Soc. 35 (1933), no. 2, p. 510–517.

[Mal67] B. Malgrange – Ideals of differentiable functions, Tata Insti-
tute of Fundamental Research Studies in Mathematics, No. 3,
Tata Institute of Fundamental Research, Bombay; Oxford Uni-
versity Press, London, 1967.

[Man67] Y. I. Manin – “Rational surfaces over perfect fields. II”, Mat.
Sb. (N.S.) 72 (114) (1967), p. 161–192.



488 BIBLIOGRAPHY

[Man86] , Cubic forms, second ed., North-Holland Mathemati-
cal Library, vol. 4, North-Holland Publishing Co., Amsterdam,
1986, Algebra, geometry, arithmetic, Translated from the Rus-
sian by M. Hazewinkel.

[Man94] F. Mangolte – “Une surface réelle de degré 5 dont l’homologie
est entièrement engendrée par des cycles algébriques”, C. R.
Acad. Sci. Paris Sér. I Math. 318 (1994), no. 4, p. 343–346.

[Man97] , “Cycles algébriques sur les surfaces K3 réelles”, Math.
Z. 225 (1997), no. 4, p. 559–576.

[Man00] , “Surfaces elliptiques réelles et inégalité de Ragsdale-
Viro”, Math. Z. 235 (2000), no. 2, p. 213–226.

[Man01] M. Manetti – “On the moduli space of diffeomorphic algebraic
surfaces”, Invent. Math. 143 (2001), no. 1, p. 29–76.

[Man03] F. Mangolte – “Cycles algébriques et topologie des surfaces
bielliptiques réelles”, Comment. Math. Helv. 78 (2003), no. 2,
p. 385–393.

[Man04] , “Real algebraic geometry of some 2-dimensional and
3-dimensional varieties”, Habilitation à diriger des recherches,
Université de Savoie, June 2004, https://tel.archives-
ouvertes.fr/tel-00006900/file/tel-00006900.pdf.

[Man06] , “Real algebraic morphisms on 2-dimensional conic bun-
dles”, Adv. Geom. 6 (2006), no. 2, p. 199–213.

[Man14] , “Topologie des variétés algébriques réelles de dimen-
sion 3”, Gaz. Math. 139 (2014), p. 5–34.

[Man17a] , “Real rational surfaces”, in Real Algebraic Geometry,
vol. 51, Panoramas et synthèses, 2017, p. 1–26.

[Man17b] , Variétés algébriques réelles, Cours Spécialisés [Special-
ized Courses], vol. 24, Société Mathématique de France, Paris,
2017, viii + 484 pages.

[Mar80] A. Marin – “Quelques remarques sur les courbes algébriques
planes réelles”, in Seminar on Real Algebraic Geometry (Paris,
1977/1978 and Paris, 1978/1979), Publ. Math. Univ. Paris VII,
vol. 9, Univ. Paris VII, Paris, 1980, p. 51–68.

[Mas67] W. S. Massey – Algebraic topology: An introduction, Harcourt,
Brace & World, Inc., New York, 1967.



BIBLIOGRAPHY 489

[Maz86] B. Mazur – “Arithmetic on curves”, Bull. Amer. Math. Soc.
(N.S.) 14 (1986), no. 2, p. 207–259.

[MH73] J. Milnor & D. Husemoller – Symmetric bilinear forms,
Springer-Verlag, New York-Heidelberg, 1973, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 73.

[Mik97] G. Mikhalkin – “Blowup equivalence of smooth closed mani-
folds”, Topology 36 (1997), no. 1, p. 287–299.

[Mil62] J. Milnor – “A unique decomposition theorem for 3-
manifolds”, Amer. J. Math. 84 (1962), p. 1–7.

[Mil63a] , Morse theory, Based on lecture notes by M. Spivak and
R. Wells. Annals of Mathematics Studies, No. 51, Princeton
University Press, Princeton, N.J., 1963.

[Mil63b] , “Spin structures on manifolds”, Enseignement Math.
(2) 9 (1963), p. 198–203.

[Mil64] , “On the Betti numbers of real varieties”, Proc. Amer.
Math. Soc. 15 (1964), p. 275–280.

[Mil04] , “Vers la conjecture de Poincaré et la classification des
variétés de dimension 3”, Gaz. Math. (2004), no. 99, p. 13–25,
Translated from Notices Amer. Math. Soc. 50 (2003), no. 10,
1226–1233.
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Abelian
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Abelianisation, 383
Absolute Neighborhood Retract, 398
Adjunction
formula, 217, 219

Affine
algebra, 372
coordinates, 13
covering, 37
open, 37
ring, 372
variety, 39

Albanese
map, 442, 443
variety, 442

Algebra
affine, 372
exterior, 371
finite, 372
of affine coordinates, 13
of anti-invariants, 377

of invariants, 377
of rational functions, 33
over K, 364
symmetric, 371
tensor, 371

Algebraic
R-variety, 88
complex variety, 38, 48
cycle, 194
dimension, 437
morphism, 37
real variety, 38, 48
subvariety, 38
totally, 195
variety, 36

Analytic
R-variety, 88
function, 423
map, 423
set, 423

Analytic complex
space, 423
variety, 425

ANR, 398
Anti-holomorphic

map, 88
Anti-linear

involution, 376
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map, 88
Anti-sheaf, 87
Any real projective algebraic variety

is affine, 31
Approximation
algebraic, 301
by regular maps, 301

Arithmetic
genus, 218

Bézout’s
theorem, 67

Barycentric subdivision, 382
Bertini’s
theorem, 445

Betti
number, 162

Bi-elliptic
surface, 260, 271

Birational
map, 44
morphism, 44

Birationally equivalent
varieties, 44

Blow up, 215, 463, 464
topological, 462
universal property, 464

Bockstein
morphism, 314

Bundle
K-vector, 411
OPn(d), 129
algebraic vector, 122
algebraic C-vector, 312
canonical, 131, 207, 426
conic, 222
différentiable, 411
Holomorphic tangent, 426
line, 123
line, associated to a divisor, 128
locally trivial, 411
normal, 462
of holomorphic differential p-forms,
426

of holomorphic differential forms,
426

real conic, 221
tautological, 461
universal, 303
vector, 411

Bézout’s
theorem, 68, 138

Canonical
bundle, 131, 207
dimension, 208
divisor, 131, 207

Cap-product, 394
Cartan-Serre

finiteness theorem, 424
Centre

of a blow up, 464
Characteristic

Comessatti, 152
Euler, 448
holomorphic Euler, 207
topological Euler, 213

Chern
class, 156
numbers, 436

Chow’s
theorem, 438

Class
Wu, 170
characteristic, 156
Chern, 156
fundamental, 193, 388
fundamental, homology, 388
of a compact analytic subspace, 193
Stiefel-Whitney, 156

Closed
algebraically, 373
integrally, 371
real closed, 373

Closure
integral, 371

Cocycle
condition, 128

Codimension
of an ideal, 53

Coherent
sheaf, 420, 421
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Cohomology
singular, 391
with compact support, 393

Comessatti
characteristic, 152
inequalities, 166

Comessatti’s
theorem, 245

Commutator, 383
Compact, 380
Compact support
cohomology, 393

Compatible atlas, 108
Complete
algebraic variety, 50
real algebraic variety, 50

Complex
simplicial, 381
topology, 48
variety, 38, 48

Component
connected of x, 111
irreducible, 18

Condition
cocycle, 128

Conic, 32
affine, 32
bundle, 221, 222, 232
projective, 32

Conjecture
Nash’s, 8, 343
Poincaré, 405
Ragsdale’s, 142
Thurston’s geometrisation, 405

Conjugate
sheaf, 97, 119

Conjugate
variety, 87, 107

Conjuguate
function, 85

Connected sum, 389
Contraction, 228
Coordinates
affine, 13
analytic, 62

homogeneous, 14
Cover

branched, 287, 436
double, 287, 436

Covering
affine, 37
locally finite, 398
space, 411

Cremona
group, 327

Cristallographic
group, 402

Criterion
Nakai-Moishezon, 135

Cup-product, 391
Curve, 61

affine plane, 64
complex, 450
even, 287
exceptional, 215
Fermat, 304
irreducible, 64
maximal, 164
on a surface, 207
projective plane, 64
real-smooth, 334
reduced, 64
separating, 178

Cycle
algebraic, 194
codimension 1, 124

Deformation
of a complex variety, 234

Degre, 137
Degree, 125, 454

complex, 137
of a del Pezzo surface, 223
real, 138
transcendance, 52, 372

Del Pezzo
surface, 223

Diffeomorphism
Nash, 381

Dimension
algebraic, 437
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canonical, 208
Iitaka, 208
Kodaira, 208, 437
of a ring, 52
of a topological manifold, 386
of a topological space, 54
of an affine algebraic set, 53
of an algebraic variety, 61
of an ideal , 53

Direct sum, 418
Discriminant
Z-module, 375
of a quadratic module, 374
of an integral lattice, 375

Divisor
ample, 130
big, 130
canonical, 131, 207
Cartier, 126, 439
effective, 124, 207
exceptional, 464
hyperplane section, 130
Nef, 136
principal, 125, 127
very ample, 130
Weil, 124
zero in a ring, 364

Domain
integral, 364
of a rational map, 43

Dominant
rational map, 43

Duality
Poincaré, 393
Serre, 212, 425

Equivalence
of real structures, 95

Effective
divisor, 207

Ehresmann
fibration theorem, 235

Element
integral over a ring, 371
nilpotent, 365

Elementary transformations, 233

Elliptic
properly, 276
surface, 274, 275

Embedding, 39
closed, 417
open, 417
Segre, 39
Veronese, 41, 75

Empty
oval, 141

Enriques
surface, 260, 266

Equivalence
numerical, 213

Euclidean
manifold, 402
topology, 48

Exceptional curve, 215
Exotic

R4, 340
differentiable manifold, 340

Exponential exact sequence, 414, 440
Ext, 383
Extension

integral of a ring, 371
Exterior

algebra, 371
Fake plane

projective, 339
real, 339

Family
complex, 235
real, 235

Fermat
curve, 304

Fibration
Hopf, 401
Seifert, 400

Field, 364
algebraically closed, 373
fraction, 368
function, 34, 372
of rational functions, 34
real, 373
real closed, 373
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residue, 368
Flat
module, 370

Form
intersection, 210
Kähler, 427
quadratic, 374
quadratic of type I or II, 376
quadratic, even or odd, 376
real, 88, 118
symplectic, 427
unimodular quadratic, 375

Formula
adjunction, 217, 219
genus, 68
Künneth, 392
Lefschetz, 174
Noether’s, 213
Riemann-Roch, 212

Fraction
field, 368
ring, 368
total ring, 368

Free
module, 370

Function
Weierstrass ℘, 457
analytic, 423
anti-holomorphic, 88
conjugate, 85
holomorphic, 423, 425, 451
invariant, 98
meromorphic, 455
Nash, 380
polynomial, 18
rational, 33, 42
regular, 20, 21, 37
regulous, 322
semi-algebraic, 380
smooth, 300

Fundamental
class, 193, 388

G-group, 150
Galois
cohomology group, 152

Galois-Maximal
GM -variety, 185
ZGM -variety, 186
Z-Galois-Maximal R-variety, 186
Galois-Maximal R-variety, 185

General type
surface of, 208
variety of, 132, 438

Genus
arithmetic, 218
formula, 68
geometric, 207, 217, 435
of a topological surface, 447
virtual, 220

Geometric
genus, 207, 217, 435
manifold, 401
modelled geometric structure, 401

Geometrically irreducible, 113
Geometrically rational

R-variety, 114
surface, 239
variety, 47, 114

Geometry, 401
Germ

of a regular function, 22, 42
of a section, 410

Graded
ring, 366

Grassmannian, 195
Group

of linear divisor classes, 126
Cremona, 327
cristallographic, 402
cyclic, 150
derived, 383
G-group, 150
Galois cohomology, 152
Néron-Severi, 133, 213
of linear divisor classes, 127
perfect, 330
Picard, 128

Harnack’s
inequality, 163
theorem, 139, 163
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Hartogs’
theorem, 30

Hausdorff, 379
Height
of an ideal, 53

Hermitian
metric, 426

Hilbert
Nullstellensatz, 373

Hilbert’s
XVIth problem, 178, 180

Hirzebruch
surface, 220

Hodge
index theorem, 213
metric, 446
numbers, 207, 435, 436

Holomorphic
function, 423, 425
map, 425
variety, 425

Homogeneous
ideal, 366
Riemannian manifold, 401

Homogenised
polynomial, 22

Homology
singular, 382

Hopf
fibration, 401

Horned umbrella, 71
Hurewicz
theorem, 383

Hyperbolic
manifold, 402

Ideal
homogeneous, 366
maximal, 365
prime, 365
radical, 365
real, 373

Image, 413
Indecomposable
manifold, 403

Index

branching, 454
of a quadratic form, 168, 376
of an involution, 171
ramification, 454

Inductive
limit, 363
system, 363

Inequalities
Comessatti, 166
Petrovskii’s, 142, 166
Petrovskii-Oleinik, 166

Inequality
Harnack’s, 163
Smith-Thom, 163

Infinitely close
point, 218

Integral
closure, 371
domain, 364

Integrally
closed, 371

Interior
of an oval, 141

Invariant
function, 98
open set, 98

Invertible
sheaf, 419

Involution
anti-linear, 376

Involutive
module, 150

Irreducible
component, 18
geometrically irreducible, 113
irreducible R-variety, 113
subset, 17

Irregularity, 207, 435
Isomorphism, 28

real, 105
Jacobi

variety, 458
Jacobian, 458
K-algebra, 364
K3 surface, 260, 261
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Kernel, 413
Klein bottle, 155, 162, 170, 224, 226,

240, 248, 272, 277, 279, 308, 311,
324, 449, 465

Kodaira
dimension, 437
embedding theorem, 446
vanishing theorem, 444

Kähler
form, 427
metric, 427
variety, 427

Kählerian
metric, 427

Künneth
formula, 392

Lagrangian
submanifold, 351

Lattice
quadratic, 375

Lefschetz
formula, 174
hyperplane theorem, 445
theorem on (1, 1)-cycles, 445

Lemma
Nakayama’s, 366

Lens
space, 401

Limit
inductive, 363

Line bundle
ample, 130
big, 130
nef, 136
tautological, 129
very ample, 130

line bundle
associated to hyperplanes, 129

Linear
system, 130

Local
parameters, 61
ring, 368

Localisation, 366
universal property, 367

Locally finite
covering, 398

Locus
vanishing of a function, 16
non-vanishing of a function, 16
real, 90
regular, 60
singular, 60

Manifold
Sol, 354, 403
Euclidean, 402
exotic differentiable, 340
geometric, 401
homogeneous Riemannian, 401
hyperbolic, 402
Lagrangian, 351
Seifert, 400
spherical, 402
spin, 390
symplectic, 427
topological, 386

Map
Abel-Jacobi, 459
Albanese, 442, 443
analytic, 423
anti-holomorphic, 88
anti-regular, 88
birational, 44
birational R-biregular, 105
constant, 452
holomorphic, 425, 451
Nash, 380
rational, 43
rational R-regular, 104
rational of R-varieties, 91
regular, 28, 37
regular of R-varieties, 91
regulous, 322
semi-algebraic, 380
simplicial, 381
smooth, 300

Maximal
(M − a)-curve, 165
(M − a)-variety, 165
GM -variety, 185
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M -curve, 164
M -variety, 164
ZGM -variety, 186
Z-Galois-Maximal R-variety, 186
Galois-Maximal R-variety, 185
ideal, 365
maximal R-variety, 164
maximal curve, 164

Metric
Kähler, 427
Hermitian, 426
Hodge, 446
kählérian, 427

Minimal
R-surface, 230
surface, 230, 231

Model
rational, 299
real algebraic, 299

Module
Z-module, 375
Flat, 370
Free, 370
involutive, 150
localised, 366
projective, 370
quadratic, 374
quadratic over Z, 375

Moishezon variety, 346
Morphism, 28
algebraic, 37
birational, 44
Bockstein, 314
finite, 372
integral, 371
of R-varieties, 91
of ringed spaces, 417
presheaf, 412
real, 104
sheaf, 412

Morse
simplification, 236

Multiplicity, 66, 454
intersection, 66, 209

of a divisor along a prime divisor,
124, 127

of a rational function along a prime
divisor, 125

Nakai-Moishezon
criterion, 135

Nakayama’s
lemma, 366

Nash
conjecture, 8, 343
diffeomorphism, 381
function, 380
map, 380

Nef
divisor, 136
line bundle, 136

Néron-Severi
group, 133, 213
theorem, 133

Nest
of ovals, 141

Nilradical, 365
Noether’s

formula, 213
Noetherian

ring, 369
topological space, 18

Non singular
point, 57

Normal
point, 60
Space, 398
variety, 60

Normalisation, 60
Nullstellensatz, 373

real, 373
Number

Betti, 162
Chern, 436
Hodge, 207, 435, 436
intersection, 67, 138, 209, 210
Picard, 133, 213
real Picard, 133, 213
self-intersection, 210

Numerical quintic, 283
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Open set
affine, 37
invariant, 98
principal, 30, 40

Open subset
trivialising, 418

Ordinary
multiple point, 218

Orientable, 387, 450
non orientable, 387, 450

Orientation, 387
Oval, 140
contained in, 141
empty, 141
even, 141
interior, 141
negative, 141
nest, 141
odd, 141
positive, 141
OX -module, 418
Pair
simplicial, 381

Paracompact
space, 398

Parameter
local, 61

Part
real, 90

Perfect
group, 330

Petrovskii’s
inequalities, 142, 166
theorem, 142

Petrovskii-Oleinik
inequalities, 166

Picard
number, 133, 213
variety, 133, 441

Plurigenus, 208, 437
Poincaré
Conjecture, 405
duality, 393

Point
infinitely close, 218

multiple ordinary, 218
non singular, 57
normal, 60
rational double, 251, 252
regular, 60
singular, 60

Polyhedron, 381
Polynomial

homogeneised, 22
reciprocal, 221

Presheaf, 407
Prime

ideal, 365
Principal

open set, 30, 40
Product

cap-, 394
cup-, 391
tensor, 369

of OX -modules, 418
universal property, 369

Projective
module, 370
variety, 39

Projective completion, 22
Pseudo-line, 140
Quadratic

form, 374
lattice, 375
module , 374
Z-module , 375

Quadric, 32
Quasi-coherent

sheaf, 420, 421
Quasi-compact, 380
Quotient

topological, 160
R-contraction, 228
R-sheaf, 97, 119
R-subvariety, 89
R-variety, 88

irreducible, 113
algebraic, 88
analytic, 88
geometrically rational, 114
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rational, 114
Radical
ideal, 365

Ragsdale’s
conjecture, 142

Ramanujam
surface, 341

Rank, 418
Rational
function, 33, 42
map, 43
R-variety, 114
surface, 239
variety, 7, 47, 114

Rationally connected
variety, 356

Real
bi-elliptic surface, 271
conic bundle, 232
del Pezzo surface, 223
elliptic fibration, 275
elliptic surface, 275
Enriques surface, 266
form, 88, 118
Hirzebruch surface, 220
K3 surface, 261
locus, 90
Moishezon variety, 346
part, 90
Picard number, 133, 213
structure, 88
variety, 38, 48

Real-smooth
curve, 334

Reduced
ring, 365

Reducible
subset, 17

Regular
function, 20, 21
locus, 60
map, 28, 37

regular
point, 60

Regulous

function, 322
map, 322

Residue
field, 368

Resolution of singularities, 63
Restriction, 408
Riemann-Hurwitz

theorem, 454
Riemann-Roch

formula, 212
theorem, 212, 458

Ring
affine, 372
fraction, 368
graded, 366
integrally closed, 371
local, 368
local regular, 58
localised, 366
Noetherian, 369
reduced, 365
total fraction, 368

Round
down, 221
up, 221

σ-representable, 189
Sapphire, 354
Section, 409

continuous, 409
global, 408
hyperplane, 130
of a sheaf, 408

Segre
embedding, 39

Seifert
fibration, 400
geometry of manifolds, 358
manifold, 400

Semi-algebraic
function, 380
map, 380
set, 380

Separated
separated algebraic variety, 379

Separating
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curve, 178
Serre
duality, 212, 425
vanishing theorem, 444

Set
affine algebraic, 13
algebraic, 15
analytic, 423
projective algebraic, 14
quasi-affine, 15
quasi-algebraic, 15
quasi-projective, 15
semi-algebraic, 380
zero of a function, 16
zero, of an ideal, 16

Sheaf, 408
R-, 97, 119
ample, 130
associated, 415
coherent, 420, 421
conjugate, 97, 119
direct image, 416
dualising, 217
free, 418
inverse image, 417
invertible, 419
locally free, 418
of OX -modules, 418

finitely presented, 420
generated by global sections, 419
of finite type, 420

of functions, 408
of ideals, 418
of rational functions, 46
of regular functions, 21, 36
of restrictions to a subspace, 409
of sections, 409
quasi-coherent, 420, 421
restricted, 416
restriction, 416
space, 409
structural, 36, 417
very ample, 130

Signature
of a quadratic form, 168, 376

Simplex, 381
Simplicial

complex, 381
map, 381
pair, 381

Singular
cohomology, 391
homology, 382
locus, 60
point, 57, 60

Singularities
resolution of, 63

Smith-Thom
inequality, 163

Smooth
function, 300
map, 300

Sol
manifold, 354, 403

Space
affine, 13
complex analytic, 423
Hausdorff, 379
lens, 401
locally ringed in local rings, 417
normal, 398
paracompact, 398
projective, 14
ringed, 417
sheaf, 409, 415
topological

quotient, 160
Special type

surface of, 208
variety of, 438

Spherical
manifold, 402

Stalk
of a presheaf, 410
of a sheaf, 410
of a sheaf space, 411

Stereographic projection, 241, 306
Stiefel-Whitney

class, 156
Stone-Weierstrass
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approximation theorem, 301
Strong factorisation, 229
Structure
equivalence of real structures, 95
of the underlying real variety, 118
real, 88

Submanifold
Lagrangian, 351

Subset
multiplicative, 366

Subvariety
algebraic, 38
closed, 38
open, 38

Sum
direct

of OX -modules, 418
Support
of a divisor, 124

Surface, 61, 449, 450
abelian, 260, 270
bi-elliptic, 260, 271
blow up, 215
cubic, 155
del Pezzo, 223
elliptic, 274, 275

Jacobian, 276
properly, 276
regular, 276

Enriques, 260, 266
geometrically rational, 239
Hirzebruch, 220
in P3, 155, 177, 182, 436
K3, 260, 261
minimal, 231
numerical quintic, 283
of general type, 208
of special type, 208
of zero irregularity, 276
Q-acyclic, 339
Ramanujam, 341
rational, 239
regular, 276
relatively minimal, 231
Riemann, 450

topological, 223, 447
uniruled, 237, 239

Symmetric
algebra, 371

Symplectic
form, 427
manifold, 427

System
inductive, 363
linear, 130
of analytic coordinates, 62
of local parameters, 61

Tangent space
Zariski, 56

Tautological
bundle, 461

Tensor
algebra, 371
product, 369, 418

Theorem
Riemann-Roch, 212
Abel-Jacobi, 459
Bertini’s, 445
Bézout’s, 68, 138
Cartan-Serre finiteness, 424
Chow’s, 438
Comessatti’s, 245
Ehresmann’s fibration, 235
Harnack’s, 139, 163
Hartogs’, 30
Hodge index, 213
Hurewicz’, 383
Kodaira vanishing, 444
Kodaira’s embedding, 446
Lefschetz

hyperplane, 445
on (1, 1)-cycles, 445

Néron-Severi, 133
Petrovskii’s, 142
Riemann-Hurwitz, 454
Riemann-Roch, 458
Stone-Weierstrass, 301
universal coefficients, 383, 384
vanishing, Serre, 444
Weierstrass approximation, 300
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Topological
manifold, 386

Topological Morse simplification, 236
Topology
C∞, 301
compact-open, 390
complex, 48
Euclidean, 48
strong, 391
transcendantal, 48
weak, 390
Whitney, 391
Zariski, 13, 14, 36

Tor, 383
Torus, 134, 144, 155, 162, 165, 170,

187, 224, 240, 244, 248, 274, 285,
309, 311, 334, 335, 353, 388, 392,
449, 451

complex, 89, 96, 134, 165, 225, 270,
334, 427, 441, 455, 458

solid, 345, 400
Transcendance
degree, 52, 372

Transcendantal
topology, 48

Transform
strict, 463

Transitive
n- group action, 325
infinitely, group action, 325
very, group action, 325

Transverse, 209
Transversely, 209
Triangulable, 381
Triangulation of algebraic sets, 381
Tubular neighbourhood, 462
Type
topological, 236

extremal, 236
Unimodular
lattice quadratic, 375
Z-module, 375

Uniruled
surface, 237, 239
variety, 347

Universal
bundle, 303

Universal coefficients
theorem, 383, 384

Universal property
of blow ups, 464
of localisations, 367
of tensor product, 369

Variety
R-, 88
R-sub, 89
abelian, 270
affine, 39
Albanese, 442
abstract algebraic, 36
algebraic, 36
algebraic complex, 38
blown up, 463, 464
complex, 38, 48
complex algebraic, 48
complex analytic, 425
conjugate, 87, 107
geometrically rational, 47, 114
holomorphic, 425
Jacobi, 458
Jacobian, 458
kähler, 427
Moishezon, 346
normal, 60
of general type, 132, 438
of special type, 438
Picard, 133, 441
projective, 39
quasi-affine, 39
quasi-projective, 39
rational, 7, 47, 114
rationally connected, 356
real, 38, 48
real algebraic, 38, 48
sub, 38
totally algebraic, 195
underlying real algebraic, 118
uniruled, 347

Veronese
embedding, 41, 75
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Virtual
genus, 220

Weierstrass
approximation theorem, 300
function ℘, 457

Whitney

topology, 391
X, X(R), X(C), XC, XR, 118
XVIth Hilbert’s problem, 178, 180
Zariski

tangent space, 56
topology, 13, 14, 36
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b1(X) = 0, 188
b1(X) 6= 0, 187

Non-affine quasi-affine sets, 29
Not totally algebraic Klein bottle, 308
Numerical invariants of a double cover of the plane, 436
Numerical invariants of a surface in P3, 436
Quadric
M and (M − 1), 165

Quartic surface in P3 such that b1
alg = 0, 264

Real algebraic line bundle not generated by its global sections, 121
Real algebraic models of compact orientable surfaces, 299
Real algebraic models of compact surfaces, 224
Real quintic surface such that balg

1 = b1, 290
Real rational singular models of orientable compact surfaces, 344
Real structures on a complex torus, 96
Regular maps
homotopic 6= approximable, 304
rareness, 302

Resolution of a double point on a surface, 285
Topology of conic bundles, 222
Twisting map, 325
Veronese embedding of the projective line, 41
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