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1. EXAMPLES OF BIRATIONAL INVOLUTIONS OF THE PROJECTIVE PLANE P2

Let k= R,C.
The first way to describe an element of Birk(P2) is to explicitly express it in homogeneous coordinates.

Example 1 (Standard Cremona involution). The birational map from P2 to P2 given by

α0 : [x : y : z] 99K [yz : xz : xy]

is called the Standard Cremona involution. It is well-defined except at the three points [1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1] (base points) and is conjugate in Birk(P2) to the linear involution

τ0 : [x : y : z] 99K [x : y : −z] .

Another way to define a birational involution of P2 is to start with a biregular involution on a smooth
rational surface which is called a model, and then pull it back to P2 by a birational map.

Example 2 (Geiser involution). Let S2 be a complex del Pezzo surface of degree 2 with anti-canonical double
cover

π : S2
2:1 // P2

with branch locus a smooth quartic plane curve C. The surface S2 is defined by an equation of the form

w2 = f4(x,y, ,z)

in P(2,1,1,1) where f4 is the homogeneous polynomial of degree 4 whose zero locus in P2 is the curve C.
The biregular involution τ ∈ AutC(S2) given by

τ : [w : x : y : z] 99K [−w : x : y : z]

exchanges the two sheets of the double cover. The surface S2 is rational over C which means there is a
birational map

ϕ : S2 99K P2 .

Hence the composed map α = ϕτϕ−1 is an order 2 element of the group BirC(P2) classically called the
Geiser involution.

Assume now that S2 is defined over R (i.e. f4 has real coefficients). If the real locus S2(R) is non empty
and connected (for the euclidean topology), then S2 is rational over R by Comessatti’s Theorem (see e.g.
[Man20]), and we can assume that ϕ is defined over R.

The biregular automorphism τ ∈ AutR(S2) leads to a birational involution α ∈ BirR(P2).

Observe that α is only defined up to conjugation in Birk(P2) as the map ϕ is not uniquely defined. when
we say "the" Geiser involution, we speak in fact of the conjugacy class of α in Birk(P2).

This review is an elaboration of a presentation given at the Real algebraic geometry and singularities conference in honor of
Wojciech Kucharz’s 70th birthday in Krakow in 2022.
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2. REDUCTION TO G-BIRATIONAL CLASSIFICATION OF MINIMAL DEL PEZZO SURFACES AND CONIC
BUNDLES

In fact we can reverse and generalize the process used in the second example by regularizing any birational
involution of P2.

From now on, we let G = Z/2.

Proposition. Let k=R,C and α ∈ Birk(P2) be an element of order 2. There exists a smooth rational surface
S and a birational map defined over k

ϕ : S 99K P2 .

such that τ := ϕ−1αϕ ∈ Autk(S) is a biregular involution of S.

Definition. Let S be a smooth surface endowed with a nontrivial biregular involution τ . The subgroup H =
⟨τ⟩ ⊂ Autk(S) is then isomorphic to G and the pair (S,H) is called a G-surface.

Proposition. Let α,α ′ ∈ Birk(P2) be elements of order 2, (S,⟨τ⟩) and (S′,⟨τ ′⟩) associated rational G-
surfaces. Then α,α ′ are conjugated in Birk(P2) if and only if the associated G-surfaces are equivariantly
birational. That is there exists a birational map ϕ : S 99K S′ such that ϕτϕ−1 = τ ′ over a Zariski dense open
subset of S.

Hence to classify conjugacy classes of elements of order 2 in Birk(P2), we classify equivariant birational
classes of rational G-surfaces. For this purpose, take a G-surface (S,⟨τ⟩) rational over k and run a G-MMP
over k (see [Kol97]) which ends with a pair (S∗,⟨τ∗⟩). There are two possibilities for S∗:

Proposition. Let k = R,C and (S,H) be a G-surface rational over k. Denote by (S∗,H∗) the output of a
G-MMP over k. Then S∗ belong to one of the two following classes:

(DP) S∗ is a del Pezzo surface such that PicG(S∗)≃ Z ;
(CB) S∗ admits a G-conic bundle structure over P1 and PicG(S∗)≃ Z2 ;
Here the action of G on Pic(S∗) is given by H∗.

When the hypothese on the invariant part of the Picard group is satisfied we say the G-surface, DP or CB,
is minimal.

The initial problem of classification of conjugacy classes of birational involutions is now reduced to the
G-equivariant birational classification of minimal G-surfaces belonging to the set (DP)∪ (CB). In fact in
[CMYZ24] we went further and gave explicit models of all such pairs.

The two former examples are in (DP): (S,H) = (P2,α0) and (S∗,H∗) = (P2,τ0) for the first example;
(S,H) = (P2,α) and (S∗,H∗) = (S2,τ) in the second example.

3. MAIN INVARIANT: THE FIXED CURVE

Recall that a real variety X is geometrically rational if its complexification XC is rational. For example, a
smooth geometrically rational real curve C is rational if and only if C(R) ̸=∅. A complex variety is rational
if and only if it is geometrically rational.

Proposition. Let (S,H) and (S′,H ′) be G-surfaces and ϕ : S 99K S′ a G-equivariant rational map. If C is a
geometrically irrational curve on S, its proper transform C′ := ϕ(C) is a geometrically irrational curve on S′.
If furthermore C is fixed by H then C′ is fixed by H ′. If ϕ is birational, the curves C and C′ are birational.
They are isomorphic if they are smooth.

Proof. The proper transform C′ is obtained from C in the following way: let C0 be the image of ϕ of the open
subset of C where ϕ is defined. The set C0 is a curve because ϕ contracts only geometrically rational curves.
Then let C′ be the Zariski closure of C0 in S′. □

Definition. Let S be a rational surface over k and τ ∈ Autk(S) an element of ordre 2. Define F(τ) the
normalization of the union of geometrically irrational curves fixed by τ . In particular, F(τ) =∅ if τ fixes no
geometrically irrational curve.

From the discussion above, F(τ) is a conjugacy invariant.
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Remark. In fact we can prove that in our context, we get exactly two cases, see [CMYZ24, Lemma 2.7]:
(1) F(τ) =∅, or
(2) F(τ) =C where C is a smooth geometrically irreducible curve of genus g ≥ 1.

Returning to the two former examples, we get F(τ) =∅ for the standard Cremona involution and F(τ) is
the smooth non hyperelliptic curve of genus 3 given by the equation f4 = 0 in P2 in the second example.

4. MAIN RESULT

4.1. Classification over C. Using an equivariant version of Mori theory in dimension two as discussed above,
L. Bayle and A. Beauville obtained a very precise classification (see [BB00]):

Theorem (Bayle-Beauville 2000). Let α be an element of order 2 in the group BirC(P2). Then α is conjugate
in BirC(P2) to one and only one of the following 4 classes of involution:

(1) The linear involution on P2 given by τ0 : [x : y : z] 99K [x : y : −z] .
F(α) =∅.

(2) A Bertini involution (analogously to Example 2, a biregular model is the deck involution of a del Pezzo
surface of degree 1 given by a double cover of the quadric cone with branch locus the fixed curve of
the involution).

F(α) is a smooth non hyperelliptic curve of genus g = 4 canonically embedded in a quadric cone.
(3) A Geiser involution (see Example 2).

F(α) is a smooth non hyperelliptic curve of genus g = 3.
(4) A de Jonquières involution (see Section 5.1).

F(α) is a smooth hyperelliptic curve of genus g ≥ 1.

Except for the case (1), all these involutions have moduli [BB00]. Namely, conjugacy classes of de Jon-
quières involutions of genus g ⩾ 1 are parametrized by hyperelliptic curves of genus g ⩾ 1. Conjugacy classes
of Geiser involutions are parametrized by non-hyperelliptic curves of genus 3, and conjugacy classes of Bertini
involutions are parametrized by non-hyperelliptic curves of genus 4 canonically embedded in a quadric cone.

4.2. Classification over R. The first new involution in this context is the antipodal map on the quadric
sphere. In [CMYZ24], we discovered 7 additional classes of involutions in BirR(P2) and called them d-twisted
Trepalin involutions, d = 0,1,2, Kowalevskaya involution and d-twisted Iskovskikh involutions d = 0,1,2,
see Section 5.2 for Iskovskikh involutions and [CMYZ24] for the definitions of the others.

Main Theorem (Cheltsov-Mangolte-Yasinsky-Zimmermann 2024). Let α be an element of order 2 in the
group BirR(P2). Then α is conjugate in BirR(P2) to one of the following 12 classes of involution:

(1) The linear involution τ0 or the antipodal involution on the quadric sphere or a t-twisted Trepalin
involution, t = 0,1,2.

F(α) =∅:
(2) A Bertini involution.

F(α) is a smooth non hyperelliptic curve of genus g = 4 canonically embedded in a quadric cone.
(3) A Geiser involution.

F(α) is a smooth non hyperelliptic curve of genus g = 3.
(4) A Kowalevskaya involution.

F(α) is a smooth elliptic curve.
(5) A de Jonquières involution or a t-twisted Iskovskikh involutions t = 0,1,2 (see Section 5.2).

F(α) is a smooth hyperelliptic curve of genus g ≥ 1.

Furthermore, involutions in different classes are not conjugate except some exceptions when the fixed curve
is elliptic, see [CMYZ24, Main Theorem] for details.

In contrast with the complex case, fixed curves does not parametrize conjugacy classes. See [CMYZ24,
Main Corollary]

Main Corollary. Let C be a real smooth projective hyperelliptic curve of genus g ⩾ 2 such that the locus
C(R) consists of at least 2 connected components. Then BirR(P2) contains uncountably many non-conjugate
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involutions that all fix a curve isomorphic to the curve C. Besides, the real plane Cremona group BirR(P2)
contains uncountably many non-conjugate involutions that fix no geometrically irrational curves.

5. BIRATIONAL MODELS OF G-CONIC BUNDLES OVER R

To illustrate the methods used in the proof of the main theorem above, we will focus now on the case where
S∗ is in the case (CB), see Section 2.

Let k=R,C and S be a smooth surface defined over k endowed with a biregular involution τ . Assume that S
admits a G-equivariant morphism π : S→P1 whose fibers are conics. Assume furthermore that PicG(S∗)≃Z2.
We have the following, [CMYZ24, Lemma 2.7] for a proof.

Lemma. If C = F(τ) is a geometrically irrational curve, then τ acts trivially on the base P1 and C is a double
section of π .

Assume from now on that τ acts trivially on the base of the G-conic bundle π : S → P1. In this case, a
general complex fiber of π is a smooth conic on which τ restricts to an involution and there is a finite number
of singular fibers which are unions of two smooth complex rational curves F1, F2 intersecting transversally in
one point. Each Fi, i = 1,2 is a (−1)-curve on the complexification SC of S.

Over C, for each singular fiber, we must have τ(Fi) = F3−i because PicG(S∗)≃ Z2.
Over R, denoting by σ the real structure on the complexification SC (σ is an anti-holomorphic involution

on SC) , at least one of the two involutions τ or σ must exchanges F1 and F2 for the same reason.

5.1. De Jonquières involutions. Firstly assume that π admits a section Z defined over k. Then Z + τ(Z) is
G-invariant and there exists a G-equivariant birational map χ : S 99KX that fits into the following commutative
G-equivariant diagram:

S

π

��

χ // X

η

��

ρ // Y

xx
P1 P1

where X is a smooth surface, η is a conic bundle such that Pic(X)G ≃ Z2, Y is a hypersurface in P(d,d,1,1)
of degree 2d = 8−K2

S that is given by
xy = f (z, t)

for some homogeneous polynomial f (z, t) of degree 2d that has no multiple roots. The map Y 99K P1 is
given by [

x : y : z : t
]
7→

[
z : t

]
,

where x, y, z and t are coordinates on P(d,d,1,1) of weights d, d, 1 and 1, respectively.
The curves Z and τ(Z) are ρ ◦χ-exceptional, the involution τ acts on the surface Y as[

x : y : z : t
]
7→

[
y : x : z : t

]
,

and the morphism ρ is a minimal resolution of singularities.
The fixed locus of τ is the curve C ≃ ρ(C), where ρ(C) is given by{

x = y,

x2 = f (z, t).

If d ⩾ 3, then ρ(C) is a real hyperelliptic curve of genus g = d −1 with hyperelliptic covering

ν : C → P1, [x : y : z : t] 7→ [z : t].

Similarly, if d = 2, then ρ(C) is an elliptic curve. The number of real roots r of f is even and the number
of connected components of C(R) is 1

2 r.
If k = C, forgetting the action of G, we can always contract one of the (−1)-curves in any singular fiber

of π and obtain a locally trivial P1-fibration S′ → P1 (S′ is an Hirzebruch surface). Any such fibration has a
complex section whose pullback Z is a section of π : S → P1. Hence any G-surface for which S∗ is in the case
(CB) admits such a model Y 99K P1. In this case, τ is called a de Jonquières involution.
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If k = R, we cannot contract a (−1)-curve if it’s not defined over R (case σ(Fi) = F3−i). So we need to
consider another model when π : S → P1 has no real section.

As a step in the classification, we get the following characterization of de Jonquières involutions over R,
see [CMYZ24, Proposition 6.5].

Proposition. Let S be a real rational surface and π : S → P1 a G-conic bundle with biregular involution τ

acting trivially on the base and such that PicG(S)≃ Z2. Then τ is a de Jonquières involution if and only if

π(S(R)) = P1(R)≈ S1 .

5.2. d-twisted Iskovskikh involutions. In the case π(S(R))⊊ P1(R), we prove first the existence of a good
model in Theorem 1, then its unicity in Theorem 2, see [CMYZ24, Theorems 7.1 and 7.6].

Theorem 1. Let π : S → P1 be a minimal real rational G-conic bundle with biregular involution τ acting
trivially on the base. Assume that π(S(R))⊊ P1(R). Then there exists G-equivariant commutative diagram

S

π

��

χ // X

η

��
P1

φ

// P1

where χ is a birational map, φ ∈ PGL2(R), X is a smooth surface, η is a G-minimal conic bundle, the fiber
η−1([1 : 0]) is smooth and does not have real points, the quasi-projective surface Y = X \η−1([1 : 0]) is given
in P2 ×A1 with coordinates ([x : y : z], t)

A(t)x2 +B(t)xy+C(t)y2 = H(t)z2

for some polynomials A,B,C,H ∈ R[t] such that ∆ = (B2 − 4AC)H does not have multiple roots and deg(∆)
is even, the involution τ acts on the surface Y by

([x : y : z], t) 7→ ([x : y : −z], t),

and the restriction map η |Y : Y → P1 \ [1 : 0] = A1 is the map given by ([x : y : z], t) 7→ t. Moreover, the
following holds:

• the polynomial H(t) has only real roots and its leading coefficient is negative,
• fibers of η over roots of the polynomial H(t) are singular irreducible conics (σ(Fi) = F3−i).

σ

FIGURE 1. Singular irreducible real fiber

Definition. In the assumptions of Theorem 1, let d = degH. We call τ a d-twisted Iskovskikh involution.

The fixed curve C = F(τ) is given by

(1) w2 = B2 −4AC .

It is elliptic if deg(B2 −4AC) = 4 and hyperelliptic if deg(B2 −4AC)≥ 6.
Indeed, the fixed curve is given by z = 0 which gives Ax2 +Bxy+Cy2 = 0. Letting w := 2( x

y A+ 1
2 B) we

get (1).

Theorem 2. In the assumptions of Theorem 1, two G-conic bundles η : X →P1,η : X ′→P1 are G-equivariantly
birational if and only if
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(1) They have same discriminant loci {∆ = 0}= {∆′ = 0} ;
(2) They have the same real interval η(X(R)) = η ′(X ′(R)).
(3) Sign conditions: B2 −4AC = λ (B′2 −4A′C′) and H = µH ′ for some positive real numbers λ ,µ .

Note that the third condition implies the first one. I put them like this for didactical purposes.

We conclude this note by giving explicit proof of the main corollary in the case C irrational (see [CMYZ24,
Section 8.C] for details).

Let C be an hyperelliptic curve given by
w2 =−4 f (t)

where f ∈ R[t] has even degree ≥ 6, only simple roots and at least 4 real roots. For given real numbers a,b,
let Sa,b be the surface with equation

x2 + f (t)y2 =−(t −a)(t −b)z2 .

Let τa,b be the corresponding involution. Then for general a,b,a′,b′ in a given interval (we need to preserve
the connectedness of the real locus of the surface), τa,b and τa′,b′ are not conjugate by Theorem 2.
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