THE GROUP OF AUTOMORPHISMS OF A REAL RATIONAL SURFACE IS *n*-TRANSITIVE

JOHANNES HUISMAN AND FRÉDÉRIC MANGOLTE

Dedicated to Joost van Hamel in memoriam

ABSTRACT. Let X be a rational nonsingular compact connected real algebraic surface. Denote by $\operatorname{Aut}(X)$ the group of real algebraic automorphisms of X. We show that the group $\operatorname{Aut}(X)$ acts n-transitively on X, for all natural integers n.

As an application we give a new and simpler proof of the fact that two rational nonsingular compact connected real algebraic surfaces are isomorphic if and only if they are homeomorphic as topological surfaces.

MSC 2000: 14P25, 14E07

Keywords: real algebraic surface, rational surface, geometrically rational surface, automorphism, transitive action

1. INTRODUCTION

Let X be a nonsingular compact connected real algebraic manifold, i.e., X is a compact connected submanifold of \mathbb{R}^n defined by real polynomial equations, where n is some natural integer. We study the group of algebraic automorphisms of X. Let us make precise what we mean by an algebraic automorphism.

Let X and Y be real algebraic submanifolds of \mathbb{R}^n and \mathbb{R}^m , respectively. An *algebraic map* φ of X into Y is a map of the form

(1.1)
$$\varphi(x) = \left(\frac{p_1(x)}{q_1(x)}, \dots, \frac{p_m(x)}{q_m(x)}\right)$$

where $p_1, \ldots, p_m, q_1, \ldots, q_m$ are real polynomials in the variables x_1, \ldots, x_n , with $q_i(x) \neq 0$ for any $x \in X$ and any *i*. An algebraic map from X into Y is also called a *regular map* [BCR]. Note that an algebraic map is necessarily of class C^{∞} . An algebraic map $\varphi \colon X \to Y$ is an *algebraic isomorphism*, or *isomorphism* for short, if φ is algebraic, bijective and if φ^{-1} is algebraic. An algebraic isomorphism from X into Y is also called a *biregular map* [BCR]. Note that an algebraic isomorphism is a diffeomorphism of class C^{∞} . An algebraic isomorphism from X into itself is called an *algebraic automorphism* of X, or *automorphism* of X for short. We denote by $\operatorname{Aut}(X)$ the group of automorphism of X.

For a general real algebraic manifold, the group $\operatorname{Aut}(X)$ tends to be rather small. For example, if X admits a complexification \mathcal{X} that is of general type then $\operatorname{Aut}(X)$ is finite. Indeed, any automorphism of X is the restriction to X

The research of the second author was partially supported by the ANR grant "JCLAMA" of the French "Agence Nationale de la Recherche".

of a birational automorphism of \mathcal{X} . The group of birational automorphisms of \mathcal{X} is known to be finite [Ma63]. Therefore, $\operatorname{Aut}(X)$ is finite for such real algebraic manifolds.

In the current paper, we study the group $\operatorname{Aut}(X)$ when X is a compact connected real algebraic surface, i.e., a compact connected real algebraic manifold of dimension 2. By what has been said above, the group of automorphisms of such a surface is most interesting when the Kodaira dimension of X is equal to $-\infty$, and, in particular, when X is geometrically rational. By a result of Comessatti, a connected geometrically rational real surface is rational (see Theorem IV of [Co12] and the remarks thereafter, or [Si89, Corollary VI.6.5]). Therefore, we will concentrate our attention to the group $\operatorname{Aut}(X)$ when X is a rational compact connected real algebraic surface.

Recall that a real algebraic surface X is *rational* if there are a nonempty Zariski open subset U of \mathbb{R}^2 , and a nonempty Zariski open subset V of X, such that U and V are isomorphic real algebraic varieties, in the sens above. In particular, this means that X contains a nonempty Zariski open subset V that admits a parametrization by real rational functions in two variables.

Examples of rational real algebraic surfaces are the following:

- the unit sphere S^2 defined by the equation $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 ,
- the real algebraic torus $S^1 \times S^1$, where S^1 is the unit circle defined by the equation $x^2 + y^2 = 1$ in \mathbb{R}^2 , and
- any real algebraic surface obtained from one of the above ones by repeatedly blowing up a point.

This is a complete list of rational real algebraic surfaces, as was probably known already to Comessatti. A modern proof may use the Minimal Model Program for real algebraic surfaces [Ko97, Ko01] (cf. [BH07, Theorem 3.1]). For example, the real projective plane $\mathbb{P}^2(\mathbb{R})$ —of which an explicit realization as a rational real algebraic surface can be found in [BCR, Theorem 3.4.4]—is isomorphic to the real algebraic surface obtained from S^2 by blowing up 1 point.

The following conjecture has attracted our attention.

Conjecture 1.2 ([BH07, Conjecture 1.4]). Let X be a rational nonsingular compact connected real algebraic surface. Let n be a natural integer. Then the group Aut(X) acts n-transitively on X.

The conjecture seems known to be true only in the case when X is isomorphic to $S^1 \times S^1$:

Theorem 1.3 ([BH07, Theorem 1.3]). The group $\operatorname{Aut}(S^1 \times S^1)$ acts n-transitively on $S^1 \times S^1$, for any natural integer n.

The object of the paper is to prove Conjecture 1.2:

Theorem 1.4. The group Aut(X) acts n-transitively on X, whenever X is a rational nonsingular compact connected real algebraic surface, and n is a natural integer.

Our proof goes as follows. We first prove *n*-transitivity of $\operatorname{Aut}(S^2)$ (see Theorem 2.3). For this, we need a large class of automorphisms of S^2 .

Lemma 2.1 constructs such a large class. Once *n*-transitivity of $\operatorname{Aut}(S^2)$ is established, we prove *n*-transitivity of $\operatorname{Aut}(X)$, for any other rational surface X, by the following argument.

If X is isomorphic to $S^1 \times S^1$ then the *n*-transitivity has been proved in [BH07, Theorem 1.3]. Therefore, we may assume that X is not isomorphic to $S^1 \times S^1$. We prove that X is isomorphic to a blowing-up of S^2 in *m* distinct points, for some natural integer *m* (see Theorem 3.1 for a precise statement). The *n*-transitivity of Aut(X) will then follow from the (m + n)-transitivity of Aut(S^2).

Theorem 1.4 shows that the group of automorphisms of a rational real algebraic surface is big. It would, therefore, be particularly interesting to study the dynamics of automorphisms of rational real surfaces, as is done for K3-surfaces in [Ca01], for example.

Using the results of the current paper, we were able, in a forthcoming paper [HM08], to generalize Theorem 1.4 and prove *n*-transitivity of Aut(X) for curvilinear infinitely near points on a rational surface X.

We also pass to the reader the following interesting question of the referee.

Question 1.5. Let X be a rational nonsingular compact connected real algebraic surface. Is the subgroup $\operatorname{Aut}(X)$ dense in the group $\operatorname{Diff}(X)$ of all C^{∞} diffeomorphisms of X into itself?¹

As an application of Theorem 1.4, we present in Section 4 a simplified proof of the following result.

Theorem 1.6 ([BH07, Theorem 1.2]). Let X and Y be rational nonsingular compact connected real algebraic surfaces. Then the following statements are equivalent.

- (1) The real algebraic surfaces X and Y are isomorphic.
- (2) The topological surfaces X and Y are homeomorphic.

Acknowledgements . We want to thank J. Kollár for useful discussions, in particular about terminology. We are also grateful to the referee for helpful remarks that allowed us to improve the exposition.

2. *n*-Transitivity of $\operatorname{Aut}(S^2)$

We need to slightly extend the notion of an algebraic map between real algebraic manifolds. Let X and Y be real algebraic submanifolds of \mathbb{R}^n and \mathbb{R}^m , respectively. Let A be any subset of X. An algebraic map from A into Y is a map φ as in (1.1), where $p_1, \ldots, p_m, q_1, \ldots, q_m$ are real polynomials in the variables x_1, \ldots, x_n , with $q_i(x) \neq 0$ for any $x \in A$ and any i. To put it otherwise, a map φ from A into Y is algebraic if there is a Zariski open subset U of X containing A such that φ is the restriction of an algebraic map from U into Y.

We will consider algebraic maps from a subset A of X into Y, in the special case where X is isomorphic to the real algebraic line \mathbb{R} , the subset A of X is a closed interval, and Y is isomorphic to the real algebraic group $SO_2(\mathbb{R})$.

Denote by S^2 the 2-dimensional sphere defined in \mathbb{R}^3 by the equation

$$x^2 + y^2 + z^2 = 1.$$

¹This question has now been answered, see [KM08].

Lemma 2.1. Let L be a line through the origin of \mathbb{R}^3 and denote by $I \subset L$ the closed interval whose boundary is $L \cap S^2$. Denote by L^{\perp} the plane orthogonal to L containing the origin. Let $f: I \to SO(L^{\perp})$ be an algebraic map. Define $\varphi_f: S^2 \to S^2$ by

$$\varphi_f(z, x) = (f(x)z, x)$$

where $(z, x) \in (L^{\perp} \oplus L) \cap S^2$. Then φ_f is an automorphism of S^2 .

Proof. Identifying \mathbb{R}^2 with \mathbb{C} , we may assume that $S^2 \subset \mathbb{C} \times \mathbb{R}$ is given by the equation $|z|^2 + x^2 = 1$, and that L is the line $\{0\} \times \mathbb{R}$. Then $L^{\perp} = \mathbb{C} \times \{0\}$ and $\mathrm{SO}(L^{\perp}) = S^1$. It is clear that the map φ_f is an algebraic map from S^2 into itself. If $f^{-1}(x)$ denotes the inverse of f(x) then $\varphi_{f^{-1}}$ is the inverse of φ_f . (We use that since SO is an algebraic group the inverse is a regular map to itself.) Therefore φ_f is an automorphism of S^2 .

Lemma 2.2. Let x_1, \ldots, x_n be *n* distinct points of the closed interval [-1, 1], and let $\alpha_1, \ldots, \alpha_n$ be elements of $SO_2(\mathbb{R})$. Then there is an algebraic map $f: [-1, 1] \to SO_2(\mathbb{R})$ such that $f(x_j) = \alpha_j$ for $j = 1, \ldots, n$.

Proof. Since $SO_2(\mathbb{R})$ is isomorphic to the unit circle S^1 , it suffices to prove the statement for S^1 instead of $SO_2(\mathbb{R})$. Let P be a point of S^1 distinct from $\alpha_1, \ldots, \alpha_n$. Since $S^1 \setminus \{P\}$ is isomorphic to \mathbb{R} , it suffices, finally, to prove the statement for \mathbb{R} instead of $SO_2(\mathbb{R})$. The latter statement is an easy consequence of Lagrange polynomial interpolation. \Box

Theorem 2.3. Let n be a natural integer. The group $Aut(S^2)$ acts ntransitively on S^2 .

Proof. We will need the following terminology. Let W be a point of S^2 , let L be the line in \mathbb{R}^3 passing through W and the origin. The intersection of S^2 with any plane in \mathbb{R}^3 that is orthogonal to L is called a *parallel of* S^2 with respect to W.

Let P_1, \ldots, P_n be *n* distinct points of S^2 , and let Q_1, \ldots, Q_n be *n* distinct points of S^2 . We need to show that there is an automorphism φ of S^2 such that $\varphi(P_i) = Q_i$, for all *j*.

Up to a projective linear automorphism of $\mathbb{P}^3(\mathbb{R})$ fixing S^2 , we may assume that all the points P_1, \ldots, P_n and Q_1, \ldots, Q_n are in a sufficiently small neighborhood of the north pole N = (0, 0, 1) of S^2 . Indeed, we may first assume that none of these points is contained in a small spherical disk Dcentered at N. Then the images of the points by the inversion with respect to the boundary of D are all contained in D.

We can choose two points W and W' of S^2 in the xy-plane such that the angle WOW' is equal to $\pi/2$ and such that the following property holds. Any parallel with respect to W contains at most one of the points P_1, \ldots, P_n , and any parallel with respect to W' contains at most one of Q_1, \ldots, Q_n . Denote by Γ_j the parallel with respect to W that contains P_j , and by Γ'_j the one with respect to W' that contains Q_j .

Since the disk D has been chosen sufficiently small, $\Gamma_j \cap \Gamma'_j$ is nonempty for all j = 1, ..., n. Let R_j be one of the intersection points of Γ_j and Γ'_j

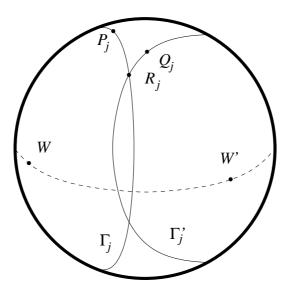


FIGURE 1. The sphere S^2 with the parallels Γ_j and Γ'_j .

(see Figure 1). It is now sufficient to show that there is an automorphism φ of S^2 such that $\varphi(P_j) = R_j$.

Let again L be the line in \mathbb{R}^3 passing through W and the origin. Denote by $I \subset L$ the closed interval whose boundary is $L \cap S^2$. Let x_j be the unique element of I such that $\Gamma_j = (x_j + L^{\perp}) \cap S^2$. Let $\alpha_j \in \mathrm{SO}(L^{\perp})$ be such that $\alpha_j(P_j - x_j) = R_j - x_j$. According to Lemma 2.2, there is an algebraic map $f: I \to \mathrm{SO}(L^{\perp})$ such that $f(x_j) = \alpha_j$. Let $\varphi := \varphi_f$ as in Lemma 2.1. By construction, $\varphi(P_j) = R_j$, for all $j = 1, \ldots, n$.

3. *n*-Transitivity of Aut(X)

Theorem 3.1. Let X be a rational nonsingular compact connected real algebraic surface and let S be a finite subset of X. Then,

- (1) X is either isomorphic to $S^1 \times S^1$, or
- (2) there are distinct points R_1, \ldots, R_m of S^2 and a finite subset S' of S^2 such that
 - (a) $R_1, \ldots, R_m \notin S'$, and
 - (b) there is an isomorphism $\varphi \colon X \to B_{R_1,\dots,R_m}(S^2)$ such that $\varphi(S) = S'$.

Proof. By what has been said in the introduction, X is either isomorphic to $S^1 \times S^1$, in which case there is nothing to prove, or X is isomorphic to a real algebraic surface obtained from S^2 by successive blow-up. Therefore, we may assume that there is a sequence

$$X = X_m \xrightarrow{f_m} X_{m-1} \xrightarrow{f_{m-1}} \cdots \xrightarrow{f_1} X_0 = S^2 ,$$

where f_i is the blow-up of X_{i-1} at a point P_i of X_{i-1} .

Let \widetilde{S} be the union of S and the set of centers P_1, \ldots, P_m . Since the elements of \widetilde{S} can be seen as infinitely near points of S^2 , there is a natural

partial ordering on \tilde{S} . The partially ordered set \tilde{S} is a finite forest with respect to that ordering.

The statement that we need to prove is that there is a sequence of blowups as above such that all trees of the corresponding forest have height 0. We prove that statement by induction on the sum h of heights of the trees of the forest \tilde{S} . If h = 0 there is nothing to prove. Suppose, therefore, that $h \neq 0$. We may then assume, renumbering the P_i if necessary, that either $P_2 \leq P_1$ or that a point $P \in S$ is mapped onto P_1 by the composition $f_1 \circ \cdots \circ f_m$.

As we have mentioned in the introduction, the real algebraic surface obtained from S^2 by blowing up at P_1 is isomorphic to the real projective plane $\mathbb{P}^2(\mathbb{R})$. Moreover, the exceptional divisor in $\mathbb{P}^2(\mathbb{R})$ is a real projective line L. We identify $B_{P_1}(S^2)$ with $\mathbb{P}^2(\mathbb{R})$. Choose a real projective line L'in $\mathbb{P}^2(\mathbb{R})$ such that no element of $\widetilde{S} \setminus \{P_1\}$ is mapped into L' by a suitable composition of some of the maps f_2, \ldots, f_m . Since the group of linear automorphisms of $\mathbb{P}^2(\mathbb{R})$ acts transitively on the set of projective lines, the line L'is an exceptional divisor for a blow-up $f'_1 \colon \mathbb{P}^2(\mathbb{R}) \to S^2$ at a point of S^2 . It is clear that the sum of heights of the trees of the corresponding forest is equal to h - 1. The statement of the theorem follows by induction. \Box

Corollary 3.2. Let X be a rational nonsingular compact connected real algebraic surface. Then,

- (1) X is either isomorphic to $S^1 \times S^1$, or
- (2) there are distinct points R_1, \ldots, R_m of S^2 such that X is isomorphic to the real algebraic surface obtained from S^2 by blowing up the points R_1, \ldots, R_m .

Proof of Theorem 1.4. Let X be a rational surface and let (P_1, \ldots, P_n) and (Q_1, \ldots, Q_n) by two *n*-tuples of disctinct points of X. By Theorem 3.1, X is either isomorphic to $S^1 \times S^1$ or to the blow-up of S^2 at a finite number of distinct points R_1, \ldots, R_m . If X is isomorphic to $S^1 \times S^1$ then $\operatorname{Aut}(X)$ acts *n*-transitively by [BH07, Theorem 1.3]. Therefore, we may assume that X is the blow-up $B_{R_1,\ldots,R_m}(S^2)$ of S^2 at R_1,\ldots,R_m . Moreover, we may assume that the points $P_1,\ldots,P_n,Q_1,\ldots,Q_n$ do not belong to any of the exceptional divisors. This means that these points are elements of S^2 , and that, (P_1,\ldots,P_n) and (Q_1,\ldots,Q_n) are two *n*-tuples of distinct points of S^2 . It follows that $(R_1,\ldots,R_m,P_1,\ldots,P_n)$ and $(R_1,\ldots,R_m,Q_1,\ldots,Q_n)$ are two (m+n)-tuples of distinct points of S^2 . By Theorem 2.3, there is an automorphism ψ of S^2 such that $\psi(R_i) = R_i$, for all *i*, and $\psi(P_j) = Q_j$, for all *j*.

4. CLASSIFICATION OF RATIONAL REAL ALGEBRAIC SURFACES

Proof of Theorem 1.6. Let X and Y be a rational nonsingular compact connected real algebraic surfaces. Of course, if X and Y are isomorphic then X and Y are homeomorphic. In order to prove the converse, suppose that X and Y are homeomorphic. We show that there is an isomorphism from X onto Y.

By Corollary 3.2, we may assume that X and Y are not homeomorphic to $S^1 \times S^1$. Then, again by Corollary 3.2, X and Y are both isomorphic to a real algebraic surface obtained from S^2 by blowing up a finite number of distinct points. Hence, there are distinct points P_1, \ldots, P_n of S^2 and distinct points Q_1, \ldots, Q_m of S^2 such that

$$X \cong B_{P_1,\dots,P_n}(S^2)$$
 and $Y \cong B_{Q_1,\dots,Q_m}(S^2)$.

Since X and Y are homeomorphic, m = n. By Theorem 2.3, there is an automorphism φ from S^2 into S^2 such that $\varphi(P_i) = Q_i$ for all *i*. It follows that φ induces an algebraic isomorphism from X onto Y.

References

- [BH07] Biswas, I., Huisman, J.: Rational real algebraic models of topological surfaces, Doc. Math. 12 (2007), 549–567
- [BCR] Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, 1998
- [Ca01] Cantat, S.: Dynamique des automorphismes des surfaces K3. Acta Math. 187:1 (2001), 1–57
- [Co12] Comessatti, A.: Fondamenti per la geometria sopra le superficie razionali dal punto di vista reale, Math. Ann. **73**(1) (1912), 1–72
- [HM08] J. Huisman, F. Mangolte, Automorphisms of real rational surfaces and weighted blow-up singularities, (to appear), arXiv:0804.3846[math.AG]
- [Ko97] Kollár, J.: Real algebraic surfaces, Preprint (1997), http://arxiv.org/abs/alg-geom/9712003
- [Ko01] Kollár, J.: The topology of real algebraic varieties. Current developments in mathematics 2000, 197–231, Int. Press, Somerville, MA, 2001
- [KM08] Kollár, J., Mangolte, F.: Cremona transformations and diffeomorphisms of surfaces, Adv. Math. (2009), in press
- [Ma63] Matsumura, H.: On algebraic groups of birational transformations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 34 (1963), 151–155
- [Si89] Silhol, R.: Real algebraic surfaces, Lect. Notes Math. 1392, Springer Verlag, 1989

(J. Huisman) Université Européenne de Bretagne, France

(J. Huisman) UNIVERSITÉ DE BREST; CNRS, UMR 6205 LABORATOIRE DE MATHÉMATIQUES DE BREST, ISSTB, 6, AVENUE VICTOR LE GORGEU, CS 93837, 29238 BREST CEDEX 3, FRANCE. TEL. +33 2 98 01 61 98, FAX +33 2 98 01 67 90

E-mail address: johannes.huisman@univ-brest.fr *URL*: http://pageperso.univ-brest.fr/~huisman

(F. Mangolte) LABORATOIRE DE MATHÉMATIQUES, UNIVERSITÉ DE SAVOIE, 73376 LE BOURGET DU LAC CEDEX, FRANCE, PHONE: +33 (0)
47975 86 60, FAX: +33 (0)
47975 81 42

E-mail address: mangolte@univ-savoie.fr

URL: http://www.lama.univ-savoie.fr/~mangolte