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Abstract. Let X be a rational nonsingular compact connected real
algebraic surface. Denote by Aut(X) the group of real algebraic auto-
morphisms of X. We show that the group Aut(X) acts n-transitively
on X, for all natural integers n.

As an application we give a new and simpler proof of the fact that
two rational nonsingular compact connected real algebraic surfaces are
isomorphic if and only if they are homeomorphic as topological surfaces.
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1. Introduction

Let X be a nonsingular compact connected real algebraic manifold, i.e.,
X is a compact connected submanifold of R

n defined by real polynomial
equations, where n is some natural integer. We study the group of algebraic
automorphisms of X. Let us make precise what we mean by an algebraic
automorphism.

Let X and Y be real algebraic submanifolds of R
n and R

m, respectively.
An algebraic map ϕ of X into Y is a map of the form

(1.1) ϕ(x) =

(
p1(x)

q1(x)
, . . . ,

pm(x)

qm(x)

)

where p1, . . . , pm, q1, . . . , qm are real polynomials in the variables x1, . . . , xn,
with qi(x) 6= 0 for any x ∈ X and any i. An algebraic map from X into Y is
also called a regular map [BCR]. Note that an algebraic map is necessarily
of class C∞. An algebraic map ϕ : X → Y is an algebraic isomorphism, or
isomorphism for short, if ϕ is algebraic, bijective and if ϕ−1 is algebraic. An
algebraic isomorphism from X into Y is also called a biregular map [BCR].
Note that an algebraic isomorphism is a diffeomorphism of class C∞. An
algebraic isomorphism from X into itself is called an algebraic automorphism

of X, or automorphism of X for short. We denote by Aut(X) the group of
automorphism of X.

For a general real algebraic manifold, the group Aut(X) tends to be rather
small. For example, if X admits a complexification X that is of general type
then Aut(X) is finite. Indeed, any automorphism ofX is the restriction toX
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of a birational automorphism of X . The group of birational automorphisms
of X is known to be finite [Ma63]. Therefore, Aut(X) is finite for such real
algebraic manifolds.

In the current paper, we study the group Aut(X) when X is a com-
pact connected real algebraic surface, i.e., a compact connected real alge-
braic manifold of dimension 2. By what has been said above, the group
of automorphisms of such a surface is most interesting when the Kodaira
dimension of X is equal to −∞, and, in particular, when X is geometrically
rational. By a result of Comessatti, a connected geometrically rational real
surface is rational (see Theorem IV of [Co12] and the remarks thereafter,
or [Si89, Corollary VI.6.5]). Therefore, we will concentrate our attention to
the group Aut(X) when X is a rational compact connected real algebraic
surface.

Recall that a real algebraic surface X is rational if there are a nonempty
Zariski open subset U of R

2, and a nonempty Zariski open subset V of X,
such that U and V are isomorphic real algebraic varieties, in the sens above.
In particular, this means that X contains a nonempty Zariski open subset
V that admits a parametrization by real rational functions in two variables.

Examples of rational real algebraic surfaces are the following:

• the unit sphere S2 defined by the equation x2 + y2 + z2 = 1 in R
3,

• the real algebraic torus S1 × S1, where S1 is the unit circle defined
by the equation x2 + y2 = 1 in R

2, and
• any real algebraic surface obtained from one of the above ones by

repeatedly blowing up a point.

This is a complete list of rational real algebraic surfaces, as was proba-
bly known already to Comessatti. A modern proof may use the Minimal
Model Program for real algebraic surfaces [Ko97, Ko01] (cf. [BH07, Theo-
rem 3.1]). For example, the real projective plane P

2(R)—of which an explicit
realization as a rational real algebraic surface can be found in [BCR, Theo-
rem 3.4.4]—is isomorphic to the real algebraic surface obtained from S2 by
blowing up 1 point.

The following conjecture has attracted our attention.

Conjecture 1.2 ([BH07, Conjecture 1.4]). Let X be a rational nonsingular

compact connected real algebraic surface. Let n be a natural integer. Then

the group Aut(X) acts n-transitively on X.

The conjecture seems known to be true only in the case when X is iso-
morphic to S1 × S1:

Theorem 1.3 ([BH07, Theorem 1.3]). The group Aut(S1 × S1) acts n-
transitively on S1 × S1, for any natural integer n. �

The object of the paper is to prove Conjecture 1.2:

Theorem 1.4. The group Aut(X) acts n-transitively on X, whenever X is

a rational nonsingular compact connected real algebraic surface, and n is a

natural integer.

Our proof goes as follows. We first prove n-transitivity of Aut(S2) (see
Theorem 2.3). For this, we need a large class of automorphisms of S2.
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Lemma 2.1 constructs such a large class. Once n-transitivity of Aut(S2)
is established, we prove n-transitivity of Aut(X), for any other rational
surface X, by the following argument.

If X is isomorphic to S1 × S1 then the n-transitivity has been proved
in [BH07, Theorem 1.3]. Therefore, we may assume that X is not isomorphic
to S1×S1. We prove thatX is isomorphic to a blowing-up of S2 inm distinct
points, for some natural integer m (see Theorem 3.1 for a precise statement).
The n-transitivity of Aut(X) will then follow from the (m+ n)-transitivity
of Aut(S2).

Theorem 1.4 shows that the group of automorphisms of a rational real
algebraic surface is big. It would, therefore, be particularly interesting to
study the dynamics of automorphisms of rational real surfaces, as is done
for K3-surfaces in [Ca01], for example.

Using the results of the current paper, we were able, in a forthcoming
paper [HM08], to generalize Theorem 1.4 and prove n-transitivity of Aut(X)
for curvilinear infinitely near points on a rational surface X.

We also pass to the reader the following interesting question of the referee.

Question 1.5. Let X be a rational nonsingular compact connected real al-
gebraic surface. Is the subgroup Aut(X) dense in the group Diff(X) of all
C∞ diffeomorphisms of X into itself?1

As an application of Theorem 1.4, we present in Section 4 a simplified
proof of the following result.

Theorem 1.6 ([BH07, Theorem 1.2]). Let X and Y be rational nonsingular

compact connected real algebraic surfaces. Then the following statements are

equivalent.

(1) The real algebraic surfaces X and Y are isomorphic.

(2) The topological surfaces X and Y are homeomorphic.

Acknowledgements . We want to thank J. Kollár for useful discussions, in
particular about terminology. We are also grateful to the referee for helpful
remarks that allowed us to improve the exposition.

2. n-Transitivity of Aut(S2)

We need to slightly extend the notion of an algebraic map between real
algebraic manifolds. Let X and Y be real algebraic submanifolds of R

n and
R

m, respectively. Let A be any subset of X. An algebraic map from A into
Y is a map ϕ as in (1.1), where p1, . . . , pm, q1, . . . , qm are real polynomials
in the variables x1, . . . , xn, with qi(x) 6= 0 for any x ∈ A and any i. To put
it otherwise, a map ϕ from A into Y is algebraic if there is a Zariski open
subset U of X containing A such that ϕ is the restriction of an algebraic
map from U into Y .

We will consider algebraic maps from a subsetA ofX into Y , in the special
case where X is isomorphic to the real algebraic line R, the subset A of X
is a closed interval, and Y is isomorphic to the real algebraic group SO2(R).

Denote by S2 the 2-dimensional sphere defined in R
3 by the equation

x2 + y2 + z2 = 1.

1This question has now been answered, see [KM08].
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Lemma 2.1. Let L be a line through the origin of R
3 and denote by I ⊂

L the closed interval whose boundary is L ∩ S2. Denote by L⊥ the plane

orthogonal to L containing the origin. Let f : I → SO(L⊥) be an algebraic

map. Define ϕf : S2 → S2 by

ϕf (z, x) = (f(x)z, x)

where (z, x) ∈ (L⊥ ⊕ L) ∩ S2. Then ϕf is an automorphism of S2.

Proof. Identifying R
2 with C, we may assume that S2 ⊂ C × R is given by

the equation |z|2+x2 = 1, and that L is the line {0}×R. Then L⊥ = C×{0}
and SO(L⊥) = S1. It is clear that the map ϕf is an algebraic map from
S2 into itself. If f−1(x) denotes the inverse of f(x) then ϕf−1 is the inverse
of ϕf . (We use that since SO is an algebraic group the inverse is a regular
map to itself.) Therefore ϕf is an automorphism of S2.

�

Lemma 2.2. Let x1, . . . , xn be n distinct points of the closed interval [−1, 1],
and let α1, . . . , αn be elements of SO2(R). Then there is an algebraic map

f : [−1, 1] → SO2(R) such that f(xj) = αj for j = 1, . . . , n.

Proof. Since SO2(R) is isomorphic to the unit circle S1, it suffices to prove
the statement for S1 instead of SO2(R). Let P be a point of S1 distinct
from α1, . . . , αn. Since S1 \ {P} is isomorphic to R, it suffices, finally, to
prove the statement for R instead of SO2(R). The latter statement is an
easy consequence of Lagrange polynomial interpolation. �

Theorem 2.3. Let n be a natural integer. The group Aut(S2) acts n-
transitively on S2.

Proof. We will need the following terminology. Let W be a point of S2, let
L be the line in R

3 passing through W and the origin. The intersection of
S2 with any plane in R

3 that is orthogonal to L is called a parallel of S2

with respect to W .
Let P1, . . . , Pn be n distinct points of S2, and let Q1, . . . , Qn be n distinct

points of S2. We need to show that there is an automorphism ϕ of S2 such
that ϕ(Pj) = Qj , for all j.

Up to a projective linear automorphism of P
3(R) fixing S2, we may assume

that all the points P1, . . . , Pn and Q1, . . . , Qn are in a sufficiently small
neighborhood of the north pole N = (0, 0, 1) of S2. Indeed, we may first
assume that none of these points is contained in a small spherical disk D
centered at N . Then the images of the points by the inversion with respect
to the boundary of D are all contained in D.

We can choose two points W and W ′ of S2 in the xy-plane such that the
angleWOW ′ is equal to π/2 and such that the following property holds. Any
parallel with respect to W contains at most one of the points P1, . . . , Pn,
and any parallel with respect to W ′ contains at most one of Q1, . . . , Qn.
Denote by Γj the parallel with respect to W that contains Pj , and by Γ′

j

the one with respect to W ′ that contains Qj .
Since the disk D has been chosen sufficiently small, Γj ∩ Γ′

j is nonempty

for all j = 1, . . . , n. Let Rj be one of the intersection points of Γj and Γ′
j
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Figure 1. The sphere S2 with the parallels Γj and Γ′

j.

(see Figure 1). It is now sufficient to show that there is an automorphism ϕ
of S2 such that ϕ(Pj) = Rj .

Let again L be the line in R
3 passing through W and the origin. Denote

by I ⊂ L the closed interval whose boundary is L∩S2. Let xj be the unique

element of I such that Γj = (xj + L⊥) ∩ S2. Let αj ∈ SO(L⊥) be such that
αj(Pj − xj) = Rj − xj . According to Lemma 2.2, there is an algebraic map

f : I → SO(L⊥) such that f(xj) = αj . Let ϕ := ϕf as in Lemma 2.1. By
construction, ϕ(Pj) = Rj , for all j = 1, . . . , n. �

3. n-Transitivity of Aut(X)

Theorem 3.1. Let X be a rational nonsingular compact connected real al-

gebraic surface and let S be a finite subset of X. Then,

(1) X is either isomorphic to S1 × S1, or

(2) there are distinct points R1, . . . , Rm of S2 and a finite subset S′ of S2

such that

(a) R1, . . . , Rm 6∈ S′, and

(b) there is an isomorphism ϕ : X → BR1,...,Rm
(S2) such that ϕ(S) =

S′.

Proof. By what has been said in the introduction, X is either isomorphic
to S1 × S1, in which case there is nothing to prove, or X is isomorphic to
a real algebraic surface obtained from S2 by successive blow-up. Therefore,
we may assume that there is a sequence

X = Xm

fm

// Xm−1

fm−1
// · · ·

f1
// X0 = S2 ,

where fi is the blow-up of Xi−1 at a point Pi of Xi−1.

Let S̃ be the union of S and the set of centers P1, . . . , Pm. Since the

elements of S̃ can be seen as infinitely near points of S2, there is a natural
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partial ordering on S̃. The partially ordered set S̃ is a finite forest with
respect to that ordering.

The statement that we need to prove is that there is a sequence of blow-
ups as above such that all trees of the corresponding forest have height 0. We
prove that statement by induction on the sum h of heights of the trees of the

forest S̃. If h = 0 there is nothing to prove. Suppose, therefore, that h 6= 0.
We may then assume, renumbering the Pi if necessary, that either P2 ≤ P1

or that a point P ∈ S is mapped onto P1 by the composition f1 ◦ · · · ◦ fm.
As we have mentioned in the introduction, the real algebraic surface ob-

tained from S2 by blowing up at P1 is isomorphic to the real projective
plane P

2(R). Moreover, the exceptional divisor in P
2(R) is a real projective

line L. We identify BP1
(S2) with P

2(R). Choose a real projective line L′

in P
2(R) such that no element of S̃ \ {P1} is mapped into L′ by a suitable

composition of some of the maps f2, . . . , fm. Since the group of linear auto-
morphisms of P

2(R) acts transitively on the set of projective lines, the line L′

is an exceptional divisor for a blow-up f ′
1
: P

2(R) → S2 at a point of S2. It
is clear that the sum of heights of the trees of the corresponding forest is
equal to h− 1. The statement of the theorem follows by induction. �

Corollary 3.2. Let X be a rational nonsingular compact connected real

algebraic surface. Then,

(1) X is either isomorphic to S1 × S1, or

(2) there are distinct points R1, . . . , Rm of S2 such that X is isomor-

phic to the real algebraic surface obtained from S2 by blowing up the

points R1, . . . , Rm. �

Proof of Theorem 1.4. Let X be a rational surface and let (P1, . . . , Pn) and
(Q1, . . . , Qn) by two n-tuples of disctinct points of X. By Theorem 3.1, X
is either isomorphic to S1 × S1 or to the blow-up of S2 at a finite number
of distinct points R1, . . . , Rm. If X is isomorphic to S1 × S1 then Aut(X)
acts n-transitively by [BH07, Theorem 1.3]. Therefore, we may assume
that X is the blow-up BR1,...,Rm

(S2) of S2 at R1, . . . , Rm. Moreover, we
may assume that the points P1, . . . , Pn, Q1, . . . , Qn do not belong to any of
the exceptional divisors. This means that these points are elements of S2,
and that, (P1, . . . , Pn) and (Q1, . . . , Qn) are two n-tuples of distinct points
of S2. It follows that (R1, . . . , Rm, P1, . . . , Pn) and (R1, . . . , Rm, Q1, . . . , Qn)
are two (m+n)-tuples of distinct points of S2. By Theorem 2.3, there is an
automorphism ψ of S2 such that ψ(Ri) = Ri, for all i, and ψ(Pj) = Qj, for
all j. The induced automorphism ϕ of X has the property that ψ(Pj) = Qj,
for all j. �

4. Classification of rational real algebraic surfaces

Proof of Theorem 1.6. Let X and Y be a rational nonsingular compact con-
nected real algebraic surfaces. Of course, if X and Y are isomorphic then
X and Y are homeomorphic. In order to prove the converse, suppose that
X and Y are homeomorphic. We show that there is an isomorphism from X
onto Y .

By Corollary 3.2, we may assume that X and Y are not homeomorphic
to S1 × S1. Then, again by Corollary 3.2, X and Y are both isomorphic to
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a real algebraic surface obtained from S2 by blowing up a finite number of
distinct points. Hence, there are distinct points P1, . . . , Pn of S2 and distinct
points Q1, . . . , Qm of S2 such that

X ∼= BP1,...,Pn
(S2) and Y ∼= BQ1,...,Qm

(S2).

Since X and Y are homeomorphic, m = n. By Theorem 2.3, there is an
automorphism ϕ from S2 into S2 such that ϕ(Pi) = Qi for all i. It follows
that ϕ induces an algebraic isomorphism from X onto Y . �
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