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The simplest Cremona transformation of projective 3-space is the involution

σ : (x0 : x1 : x2 : x3) 7→
( 1

x0
:

1

x1
:

1

x2
:

1

x3

)

,

which is a homeomorphism outside the tetrahedron (x0x1x2x3 = 0). More gener-
ally, if Li :=

∑

j ajixj are linear forms defining the faces of a tetrahedron, we get
the Cremona transformation

σL : (x0 : x1 : x2 : x3) 7→
( 1

L0
:

1

L1
:

1

L2
:

1

L3

)

·
(

aij

)−1
,

which is a homeomorphism outside the tetrahedron (L0L1L2L3 = 0). The vertices
of the tetrahedron are called the base points. If Q is a quadric surface in P3, its
image under a Cremona transformation is, in general, a sextic surface. However, if
Q passes through the 4 base points, then its image σL(Q) is again a quadric surface
in P3 passing through the 4 base points. In many cases, we can view σL as a map
of Q to itself.

The aim of this paper is to show that the action of Cremona transformations on
the real points of quadrics exhibits the full complexity of the homeomorphisms of
S2 and of all non-orientable surfaces.

Let us start with the sphere S2 := (x2 + y2 + z2 = 1) ⊂ R3 and view this as
the set of real points of the quadric Q := (x2 + y2 + z2 = t2) ⊂ P3 in projective
3-space. Pick 2 conjugate point pairs p, p̄, q, q̄ on the complex quadric Q(C) and
let σp,q denote the Cremona transformation with base points p, p̄, q, q̄. As noted
above, σp,q(Q) is another quadric surface. The faces of the tetrahedron determined
by these 4 points are disjoint from S2, hence σp,q is a homeomorphism from S2 to
the real part of σp,q(Q). Thus Q and σp,q(Q) are projectively equivalent and the
corresponding Cremona transformation σp,q can be viewed as a homeomorphism of
S2 to itself, well defined up to left and right multiplication by O(3, 1). Let us call
these the Cremona transformations with imaginary base points. Our first result
says that every homeomorphism of S2 to itself can be approximated by composites
of these transformations.

Theorem 1. The Cremona transformations with imaginary base points σp,q and
O(3, 1) generate a dense subgroup of Homeo(S2).

Building on [Biswas-Huisman07], it is proved in [Huisman-Mangolte08a] that
Aut(S2) is n-transitive for any n ≥ 1. Using this, it is easy to see (31) that the
above density property also holds with assigned fixed points.

Corollary 2. Aut(S2, p1, . . . , pn) is dense in Homeo(S2, p1, . . . , pn) for any finite
set of distinct points p1, . . . , pn ∈ S

2, where Aut( ) denotes the group of algebraic
1
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automorphisms of S2 fixing p1, . . . , pn and Homeo( ) the group of homeomorphisms
fixing p1, . . . , pn.

Note that, for a real algebraic variety X , the semigroup of algebraic diffeomor-
phisms is usually much bigger than the group of algebraic automorphisms Aut(X).
For instance, x 7→ x + 1

x2+1 is an algebraic diffeomorphism of R (and also of

RP1 ∼ S1), but its inverse involves square and cube roots. The difference is best
seen in the case of the circle S1 = (x2 + y2 = 1).

Essentially by the Weierstrass approximation theorem, any differentiable map
φ : S1 → S1 can be approximated by polynomial maps Φ: S1 → S1. By con-
trast, the group of algebraic automorphisms of S1 is the real orthogonal group
O(2, 1) ∼= PGL(2,R), which has real dimension 3. Thus Aut(S1) is a very small
closed subgroup in the infinite dimensional groups Homeo(S1) and Diff(S1).

The Cremona transformations with real base points do not give homeomorphisms
of S2; they are not even defined at the real base points. Instead, they give generators
of the mapping class groups of non-orientable surfaces.

Let Rg be a non-orientable, compact surface of genus g without boundary. Com-
ing from algebraic geometry, we prefer to think of it as S2 blown up at g points
p1, . . . , pg ∈ S

2. Topologically, Rg is obtained from S2 by replacing g discs centered
at the pi by g Möbius bands. Up to isotopy, a blow-up form of Rg is equivalent to
giving g disjoint embedded Möbius bands M1, . . . ,Mg ⊂ Rg.

There are two ways to think of a Cremona transformation with real base points
as giving elements of the mapping class group of Rg.

Let us start with the case when there are four real base points p1, . . . , p4. We
can factor the Cremona transformation σp1,...,p4

as

σp1,...,p4
: Q

π1← Bp1,...,p4
Q

π2→ Q

where on the left π1 : Bp1,...,p4
Q→ Q is the blow up of Q at the 4 points p1, . . . , p4

and on the right π2 : Bp1,...,p4
Q → Q contracts the birational transforms of the

circles Q∩Li where the {Li} are the faces of the tetrahedron with vertices {pi}. In
Figure 1, the • represent the 4 base points. On the left hand side, the 4 exceptional
curves Ei lie over the four points marked •. On the right hand side, the images of
the Ei are 4 circles, each passing through 3 of the 4 base points. Since σp1,...,p4

is
an involution, dually, the four points marked • on the right hand side map to the
4 circles on the left hand side.

Figure 1. Cremona transformation with four real base points.
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A Cremona transformation σp1,p2,q,q̄ with 2 real and a conjugate complex pair
of base points act similarly. Here only two Möbius bands are altered.

In general, we can think of the above real Cremona transformation σp1,...,p4
as

a topological operation that replaces the set of g Möbius bands
(

M1, . . . ,Mg

)

by a

new set
(

M ′
1, . . . ,M

′
4,M5, . . . ,Mg

)

. In this version, σp1,...,p4
is the identity on the

surfaces but acts nontrivially on the set of isotopy classes of g disjoint Möbius bands.
One version of our result says that the transformations σp1,...,p4

and σp1,p2,q,q̄ act
transitively on the set of isotopy classes of g disjoint Möbius bands.

The other way to view σp1,...,p4
is as follows. First, we obtain an isomorphism

σ′
p1,...,p4

: Bp1,...,pg
S2 ∼= Bq1,...,qg

S2

for some q1, . . . , qg ∈ S
2. Under this isomorphism, the exceptional curve E(pi) ⊂

Bp1,...,pg
S2 is mapped to the exceptional curve E(qi) ⊂ Bq1,...,qg

S2 for i ≥ 5 and to
the circle passing through the points {qj : 1 ≤ j ≤ 4, j 6= i} for i ≤ 4. As we noted
above, there is an automorphism Φ ∈ Aut(S2) such that Φ(qi) = pi for 1 ≤ i ≤ n.
Thus

Φ ◦ σ′
p1,...,p4

: Bp1,...,pg
S2 ∼=
−→ Bp1,...,pg

S2

is an automorphism of Bp1,...,pg
S2 which maps E(pi) to E(qi) for i ≥ 5 and to a

simple closed curve passing through the points {pj : 1 ≤ j ≤ 4, j 6= i} for i ≤ 4.

Theorem 3. For any g, the Cremona transformations with 4, 2 or 0 real base points
generate the (non-orientable) mapping class group Mg.

Finally, we can put these results together to obtain a general approximation
theorem for homeomorphisms of such real algebraic surfaces. We have been using
homeomorphisms instead of diffeomorphisms advisedly. Our methods give only C0-
approximations. However, the differentiability problems occur at one point only.

Theorem 4. Let R ∼= Bp1,...,pg
S2 be a real algebraic surface birational to P2 and

q1, . . . , qn ∈ R distinct marked points. Let q ∈ R be another point. Then the group
of algebraic automorphisms Aut(R, q1, . . . , qn) is dense in

(1) Homeo(R, q1, . . . , qn) in the C0-topology on R, and in
(2) Diff(R, q1, . . . , qn) in the compact-open C∞-topology on R \ {q}.

We expect that Aut(R, q1, . . . , qn) is dense in the group of diffeomorphisms
Diff(R, q1, . . . , qn), but our method in Section 1 definitely produces only a C0-
approximation.

5 (Other algebraic varieties). Similar assertions definitely fail for most other al-
gebraic varieties. Real algebraic varieties of general type have only finitely many
birational automorphisms. (See [Ueno75] for an introduction to these questions.)
For varieties whose Kodaira dimension is between 0 and the dimension, every bira-
tional automorphism preserves the Iitaka fibration. If the Kodaira dimension is 0
(e.g., Calabi-Yau varieties, Abelian varieties), then every birational automorphism
preserves the canonical class, that is, a volume form, up to sign. The automorphism
group is finite dimensional but may have infinitely many connected components.
In particular, using [Comessatti14], for surfaces we obtain the following.

Proposition 6. Let S be a smooth real algebraic surface. If S(R) is an orientable
surface of genus ≥ 2 then Aut(S) is not dense in Homeo

(

S(R)
)

. �
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The analogous question for S1 × S1 remains open.
If X has Kodaira dimension −∞, then every birational automorphism preserves

the MRC fibration [Kollár96, Sec.IV.5]. Thus the main case when density could
hold is when the variety is rationally connected [Kollár96, Sec.IV.3]. It is clear that
the analog of (1) fails even for most geometrically rational real algebraic surfaces.
Consider, for instance, the case when R→ P1 is a minimal conic bundle with at least
8 singular fibers. Then Aut(R) is infinite dimensional, but every automorphism of
R preserves the conic bundle structure [Iskovskikh96, Thm. 1.6(iii)]. There are only
a handful of other surface cases where the analog of (1) may hold. Conic bundles
with 4 singular fibers may be the best candidates.

It is less clear to us what happens with higher dimensional spheres. As in (28),
for any real algebraic map M : [−1, 1] → O(n), the twisting map ΦM : Sn → Sn

defined by
(x0, x1, . . . , xn) 7→

(

x0, (x1, . . . , xn) ·M(x0)
)

is an algebraic automorphism of Sn. Thus Aut(Sn) is infinite dimensional for
n ≥ 2. These automorphisms, however, do not seem to generate a dense subgroup
of Homeo(Sn) for n ≥ 3. For n ≥ 3 the generators of Aut(Sn) are not known and
the density of Aut(Sn) in Homeo(Sn) is an open problem.

7 (History of related questions). There are many results in real algebraic geometry
that endow certain topological spaces with a real algebraic structure or approxi-
mate smooth maps by real algebraic morphisms. In particular real rational models
of surfaces were studied in [Bochnak-Coste-Roy87], [Mangolte06] and approxima-
tions of smooth maps to spheres by real algebraic morphisms were investigated in
[Bochnak-Kucharz87a, Bochnak-Kucharz87b], [Bochnak-Kucharz-Silhol97], [Kucharz99],
[Joglar-Kollár03], [Joglar-Mangolte04], [Mangolte06].

The first indication that Aut(S2) is surprisingly large comes from [Biswas-Huisman07],
with a more precise version developed in [Huisman-Mangolte08a]. We know, how-
ever, of no other results that approximate self-homeomorphisms by algebraic auto-
morphisms.

8 (Plan of the proofs). We start with (1). Let φ : S2 → S2 be a homeomorphism.
Let n ∈ S2 be the “north pole.” We may assume that φ(n) = n. Thus, by
stereographic projection, φ gives a homeomorphism φπ : R2 → R2. By a result of
[Andersén-Lempert92], on any compact set, one can approximate φπ by a product of
certain algebraic automorphisms, called overshears, gs ∈ Aut(R2). We can now lift
the gs to birational maps Gs : S2

99K S2. Their product is a C0-approximation of
φ, but it is not an algebraic automorphism. In general, Gs is not even differentiable
at the “north pole” n ∈ S2.

Approximating Gs by automorphisms turns out to be quite subtle. (See (17) for
counter examples.) First we lift some of the overshears Gs to automorphisms of a
singular conic bundle. We then deform the singular conic bundle to a smooth conic
bundle and try to deform the automorphism along. This relies on a careful study
of the relative automorphism groups of conic bundles. The general computations
of Section 4 are applied to our current question in Section 3. Finally, in Section 5
we prove that the Cremona transformations with imaginary base points generate
Aut(S2). This completes the proof of (1).

Next, in Section 6, we prove (4) for the identity components. If φ : R → R
is homotopic to the identity, then φ can be written as the composite of homeo-
morphisms φi : R → R such that each φi is the identity outside a small open set
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Wi ⊂ R. Moreover, we can choose the Wi in such a way that for every i there is
a morphism πi : R → S2 that is an isomorphism on Wi. The map φi then pushes
down to a homeomorphism of S2. We take an approximation there and lift it to R.
(Note that this would have been much easier using [ibid., Thm. 5.2]. However, the
latter result, which is mentioned without a proof, is erroneous. The only compactly
supported overshear is the identity, so no approximation is possible.)

Generators of the mapping class group of non-orientable surfaces have been writ-
ten down by [Chillingworth69] and [Korkmaz02]. In Section 7 we describe a some-
what different set of generators. We thank M. Korkmaz for his help in proving
these results.

Theorem 3 is proved in Section 8. We show by explicit constructions that our
generators are given by Cremona transformations.
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J. Huisman, I. Itenberg, V. Kharlamov and A. Okounkov for many useful conver-
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DMS-0500198. The research of FM was partially supported by the ANR grant
“JCLAMA” of the french “Agence Nationale de la Recherche.” He also benefited
from the hospitality of Princeton University.

1. Approximation via overshears

Notation 9. In the sequel, S2 will always denote the unit sphere S2 := (x2 +
y2 + z2 = 1) ⊂ R3 as a real algebraic variety and Q denotes the corresponding
projective quadric Q := (x2 + y2 + z2 = t2) ⊂ P3 in projective 3-space. Technically
speaking, we consider Q as an R-scheme. In practice this means that it is a complex
quadric Q(C) equipped with complex conjugation. The fixed point set of complex
conjugation is the set of real points Q(R). It is identified with the unit sphere S2.

Aut(S2) denotes the group of algebraic automorphisms of S2. That is, these
are those birational self-maps Φ: Q 99K Q that are defined over R (equivalently,
commute with complex conjugation) and that are regular at every point of S2 =
Q(R) (equivalently, induce a C∞ or real analytic map of S2 to itself.) It is crucial
to remark that, for such a birational self-map Φ, the map Φ−1 is also regular at
every point of S2 = Q(R), cf. [Bochnak-Coste-Roy87, (3.2.6)].

Let φ ∈ Homeo(S2). Any homeomorphism of a C∞-surface R onto itself can be
approximated by a C∞-diffeomorphism. (See, for instance, the books [Moise77] or
[Kirby-Siebenmann77] for introductions to such questions.) Thus we can assume
that φ is a C∞-diffeomorphism of S2. (Strictly speaking, this is not necessary, but
several of the references use diffeomorphisms, so it is convenient.) Furthermore,
up to multiplication by an element of O(3), we can assume that φ is orientation
preserving and φ(n) = n where n := (0, 0, 1) ∈ S2 is the “north pole”.

Let π : S2
99K R2 be the projection from the north pole to the (z = 0)-plane. In

concrete equations

π(x, y, z) =
( x

1− z
,

y

1− z

)

, π−1(x, y) =
( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

.
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Hence φ induces a C∞-diffeomorphism π ◦φ ◦π−1 of R2. By [Andersén-Lempert92,
Theorem 5.1], this C∞-diffeomorphism can be approximated in the C∞-compact-
open topology (or weak topology, see [Hirsh76, Chap. 2]) by a finite composition
Gk ◦ · · · ◦G1 of C∞-overshears.

By definition, an overshear on R2 is a diffeomorphism that, up to permuting the
coordinates, has the form

G : (x, y) 7→ (x, a(x)y + b(x)),

where a(x), b(x) are smooth and a(x) is nowhere zero.
Let G be an algebraic automorphism of R2. Then π−1 ◦ G ◦ π : S2

99K S2 is a
birational map and a homeomorphism of S2 but usually not an automorphism of
S2. For overshears it is easy to check that, unless a(x) ≡ ±1 and b(x) is bounded,
the lifting π−1 ◦G ◦ π is not even C1 at n ∈ S2.

For later purposes, we need the following stronger approximation result for over-
shears.

Lemma 10 (Algebraic approximation of overshears). For any C∞-overshear

G : (x, y) 7→
(

x, a(x)y + b(x)
)

,

there are real algebraic overshears Fs : (x, y) 7→
(

x, as(x)y + bs(x)
)

such that

(1) Fs converges to G in the C∞-compact-open topology, and
(2) for each s, Fs satisfies the following conditions

(a) as(x) has no real zeros and poles,
(b) limx→±∞ as(x) is either 1 or −1,
(c) bs(x) has no real poles, and
(d) limx→±∞ bs(x) is finite.

Proof. Apply the Weierstrass approximation theorem to the C∞-functions a
and b to get two families of polynomials As, Bs ∈ R[x] approximating a and b in
the compact-open topology. By adding a polynomial of the form (x/r)2m to As(x)
and Bs(x) (with r,m depending on s) we can assume that each As is nowhere zero
and the As, Bs have even degree. Denote by αs (resp. βs) the leading coefficient of
As(x) (resp. Bs(x)). Set ms = degAs and ns = degBs. Set

as(x, ε, r) := As(x) ·
(

1 + ε2rx2r

(1+ε2x2)r · |αs|x
ms

)−1

and

bs(x, ε, r) := Bs(x) ·
(

1 + ε2rx2r

(1+ε2x2)r · |βs|x
ns

)−1

.

Note that as ε → 0 and r → ∞, as(x, ε, r) converges to As(x) and bs(x, ε, r)
converges to Bs(x) in the compact-open topology. Both as(x, ε, r) and bs(x, ε, r)
have limit ±1 as x → ±∞. Thus a suitable subsequence as(x, ε(s), r(s)) and
bs(x, ε(s), r(s)) will work. �

11 (Overshears and conic bundles). Let F : R2 → R2, (x, y) 7→ (x, a(x)y + b(x)) be
an overshear on the plane. Note that F is also an automorphism of the foliation
of the plane by the vertical lines x = constant. The inverse of the stereographic
projection transforms the foliation by lines to a singular foliation of S2 by circles
tangent at the north pole n = (0, 0, 1). The left hand side of Figure 2 shows the
resulting family of circles on S2 tangent to each other at n.
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To approximate the lifts of overshears by algebraic automorphisms, we want to
resolve the singularity of this family of circles into a conic bundle and study the
behavior of its automorphism group.

This family of circles on S2 is obtained by cutting S2 with the family of planes
through the line L1 := (x = z − 1 = 0) which is tangent to S2 at the point n.
Projection from L1 is not defined at n. As we move the line away from the sphere
in the family Lt := (x = z− t = 0) for t > 1, we get another family of circles on S2

as in the right hand side of Figure 2. For t > 1, the line Lt intersects the sphere in
2 imaginary points, hence projection from the line Lt is defined everywhere along
the real points.

Figure 2. Deformation of the singular foliation.

For t > 1, the projection πt : Q → P1 becomes regular after we blow up the
two (imaginary) intersection points of Q and Lt. What is the limit of this blow
up as t → 1? The correct answer is, we need to blow up the scheme theoretic
intersection Q ∩ L1. Let Z(t) := Q ∩ Lt denote the scheme theoretic intersection
and πt : BZ(t)Q→ P1 the blow up.

One can obtain BZ(1)S
2 using ordinary blow ups as follows. We first blow

up the north pole n ∈ S2. We get an exceptional curve E1 ⊂ BnS
2. Then we

blow up the intersection of E1 with the birational transform of L1. Thus we get
B2nS

2 → BnS
2 → S2 with two exceptional curves. The birational transform of E1

is denoted by E and the second exceptional curve is denoted by C. Note that the
projection π1 lifts to a morphism π2n : B2nS

2 → P1. E is contracted by π2n and C
is a section of π2n.

We also get a morphism B2nS
2 → BZ(1)S

2 which contracts E to a singular point.
The real topology of this and of the t > 1 deformation is explained in Section 2.

Next we check which overshears lift to automorphisms of the singular conic
bundle π1 : BZ(1)Q→ P1.

Proposition 12. Let F : (x, y) 7→
(

x, a(x)y + b(x)
)

be a real algebraic overshear.
Then F induces a birational self-map of the complex conic bundle BZ(1)Q which

is an automorphism of the real conic bundle BZ(1)S
2 → P1(R) iff a(x) and b(x)

satisfy the conditions (10.2.a–d).

Proof. Let p ∈ P2 be the point (0, 1, 0). The lines of our foliation meet there.
On τ : BpP2 → P1 the foliation becomes smooth, and the overshear preserves the
projection τ . Thus the overshear F : (x, y) 7→ (x, a(x)y+ b(x)) is an automorphism
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near a fiber τ−1(q) whenever F induces an actual isomorphism on τ−1(q). For the
fibers x = γ in the original affine plane we have the induced map y 7→ a(γ)y+ b(γ).
This is an automorphism iff a(γ) 6= 0,∞ and b(γ) 6= ∞. These are the conditions
(10.2.a) and (10.2.c).

One can lift π : Q 99K P2 to a morphism

π̃ : B2nQ ∼= B(1,±i,0)BpP2 → BpP2,

where π̃(E) is the line at infinity (z = 0), π̃(C) is the exceptional curve Ep of τ
and the conjugate pair of lines ℓ+ ℓ̄ := Q ∩ (z = 1) is contracted to the conjugate
point pair (1,±i, 0) on the line at infinity.

Therefore, an overshear F lifts to a birational map F ′ of B2nQ and F ′ is a
morphism along the line at infinity iff F stabilizes the point pair {(1,±i, 0)}.

As local coordinates at (1 : 0 : 0) take u = y
x , v = 1

x . Then v = 0 is the line at
infinity. In these coordinates F is given as

F : (u, v) 7→
(

a
(

1
v

)

u+ vb
(

1
v

)

, v
)

.

Our condition about stabilizing the point pair {(1,±i, 0)} is equivalent to
(

lim
x→∞

a(x)
)

· i+
(

lim
x→∞

1
xb(x)

)

= ±i.

This holds iff limx→∞ a(x) = ±1 and limx→∞ b(x) is finite. These are the conditions
(10.2.b) and (10.2.d). �

2. Topological description of the smoothing

We use the notation of (11).
B2nS

2 is obtained from S2 by 2 blow ups, it is thus a Klein bottle. In Figure 3
we arranged the non-contractible pre-image of the self-intersection set to be exactly
E(R). The other exceptional curve is C(R). The foliation by circles is also shown.
E(R) is one of the leaves and C(R) is a section of this foliation.

In Figures 3–5 we have also added an extra “neck” on the left hand side. Left
of the neck is the compact set K ( S2 over which we want a C∞-approximation.
In order to get a C0-approximation on the whole S2, the parts to the right of the
neck should be very small.

C

E

Figure 3. The sphere blown-up at 2 consecutive points.
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In order to obtain BZ(1)S
2, we need to contract E(R). This is shown in Figure 4.

The foliation by circles acquires a singular leaf (the singular point of the surface).
The foliation is a conic bundle structure with C as a section. The fiber through
the singular point is a conjugate pair of complex lines intersecting there.

Figure 4. The singular blow up BZ(1)S
2 (the sewing machine).

The singular blow up BZ(1)S
2 has a single conical singularity of the form (w2 =

u2 +v2). The t > 1 direction corresponds to the smoothing (w2 = u2 +v2 +(t−1)).
After smoothing, we get Figure 5. Note that the curve C ⊂ BZ(1)S

2 can not be

deformed to a curve in BZ(t)S
2 for t 6= 1. We obtain a topological sphere and a

Figure 5. BZ(t)S
2 for t > 1 is a topological sphere.

family of circles on it as in Figure 2.

3. Deformation of conic bundles

In the previous section we lifted certain overshears to automorphisms of the
singular conic bundle π1 : BZ(1)Q → P1. Next we increase t and attempt to move
this automorphism along with t to get an automorphism of the smooth conic bundle
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πt : BZ(t)Q → P1. Note that for t > 1, the set of real points of BZ(t)Q is identical

to S2 = Q(R), hence this deformation will produce automorphisms of S2.
The first step in this direction is to answer the following

Question. If we vary a conic bundle continuously, will the group of birational
automorphisms also vary contiuously?

To make this more precise, let A1 denote the affine line with coordinate t. The
conic bundles πt : BZ(t)Q → P1 can be viewed as (t = constant) sections of a
3-dimensional conic bundle

π : Q := BZ

(

Q× A1
)

→ P1 × A1 where Z :=
(

Q× A1
)

∩ (x = z − t = 0).

Next we need the following consequence of the study of automorphisms of conic
bundles established in Section 4. (Note that this holds only for conic bundles where,
as in our case, every fiber is a quadric of rank ≥ 2.)

Proposition 13. There is a smooth group scheme Aut
(

Q/P1 × A1
)

→ P1 × A1

such that for (b, t) ∈ P1 × A1 the following holds, where a subscript (b, t) denotes
the fiber over the point (b, t).

(1) If Q(b,t) is smooth then Aut(Q/P1 × A1)(b,t) is Aut(Q(b,t)) ∼= PGL(2,R).

(2) If Q(b,t) is singular then Aut(Q/P1 × A1)(b,t) is a certain subgroup of
Aut(Q(b,t)) (whose precise definition we do not need right now, cf. (18))

(3) Moreover, for each t, there is a one-to-one correspondence between
(a) real algebraic sections P1(R)→ Aut(BZ(t)S

2/P1), and

(b) real algebraic automorphisms of BZ(t)S
2 that preserve πt. �

Using (13), there are three ways to obtain the necessary deformation of over-
shears.

14 (Topological deformation). LetG be an overshear on R2 satisfying the conditions
(10.2.a–d). By (12), it lifts to an automorphism of the real conic bundle BZ(1)S

2,
hence it corresponds to a real algebraic section

σ1 : P1(R)→ Aut(BZ(1)Q/P
1)(R) .

Since Aut
(

Q/P1 × A1
)

→ P1 × A1 is smooth, this section can be deformed to a

C∞-section σt : P1(R)→ Aut(BZ(t)Q/P
1)(R) for t near 1. Since Aut(BZ(t)Q/P

1) is

a group scheme with general fiber PGL(2), we see that Aut(BZ(t)Q/P
1) is birational

to P1 × P3. Thus any C∞-section can be approximated by real algebraic sections,
essentially by the Weierstrass theorem. See [Bochnak-Kucharz99] for details.

This takes care of the deformation problem in our situation, but the following
algebraic approaches are also of interest. The first one suggests that it should be
possible to write down these deformations explicitly and the second applies in much
more general circumstances.

15 (Algebraic deformation using Hilbert schemes). The overshear defines a rational
section σ1 : P1

99K Aut(BZ(t)Q/P
1) which is an actual section over the real points.

We want to use Grothendieck’s theory of the Hilbert scheme to conclude that σ1

deforms with t.
To this end, we introduce in (19) a partial compactification of Aut

(

Q/P1×A1
)

→

P1 × A1 denoted by

π̄ : Aut
sm(

Q/P1 × A1
)

→ P1 × A1.
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For a smooth fiber Qb,t, the fiber of π̄ is End
(

Qb,t

)

∼= P3. For a singular conic,

the fiber is the same as before. Then σ1 becomes an actual section σ1 : P1 →
Aut

sm
(BZ(1)Q/P

1). Let C1 ⊂ Aut
sm

(BZ(1)Q/P
1) denote its image and N1 its

normal bundle.
If H1(C1, N1) = 0, then the general theory of Hilbert schemes shows that C1

deforms in a family of sections {Ct} as we vary t (see, eg. [Kollár96, Sec. I.2]).
(Note that this notation somewhat hides the fact that there are many choices for
the {Ct}, thus it may be rather hard to write down these deformations explicitly.)

The normal bundle N1 is the restriction of the relative tangent bundle T1 of
Aut

sm
(BZ(1)Q/P

1)→ P1 of C1.

As noted in (12), BZ(1)Q can also be obtained from ρ : BpP2 → P1 by blowing up

a pair of conjugate points in the fiber over infinity (1 : 0) ∈ P1 and then contracting
the birational transform of that fiber. We can thus view our overshear as a section
C2 ⊂ Aut

sm
(BpP2/P1)→ P1 with normal bundle N2. By the above construction, a

deformation of C2 that is the identity over (1 : 0) ∈ P1 corresponds to a deformation
of C1. This gives a map N2(−1)→ N1 and a surjection

H1
(

C2, N2(−1)
)

։ H1(C1, N1).

Let T2 denote the relative tangent bundle of Aut
sm

(BpP2/P1) → P1. Since
BpP2 → P1 is a P1-bundle corresponding to the vector bundle OP1 +OP1(−1), we

see that Aut
sm

(BpP2/P1)→ P1 is the P3-bundle

P := P End
(

OP1 +OP1(−1)
)

= P
(

OP1(−1) +O2
P1 +OP1(1)

)

with projection ρ : P→ P1. Thus T2 sits in the standard exact sequence

0→ OP → ρ∗ End
(

OP1 +OP1(−1)
)

⊗OP(1)→ T2 = TP/P1 → 0.

(Depending on which convention one uses for P of a vector bundle, one may need
the dual of the ρ∗( ) term. An endomorphism bundle is self dual, so this does
not matter for us.) With the classical convention, the section C2 corresponds to a
sublinebundle

L∗
2 →֒ OP1(−1) +O2

P1 +OP1(1),

and so the normal bundle N2 is a quotient

Hom
(

OP1(−1) +O2
P1 +OP1(1), L2

)

։ N2.

Thus we see that if degL2 ≥ 1 then N2 is semi-positive and hence

H1
(

C2, N2(−1)
)

= H1(C1, N1) = 0 .

Let us write the overshear (x, y) 7→ (x, a(x)y + b(x)) in homogeneous form as

(x : y : z) 7→
(

γ(x : z) · x, α(x : z)y + β(x : z)
)

.

Its degree is the value d := degα = deg γ = deg β−1. Thus a(x) = α(x : 1)/γ(x : 1)
and b(x) = β(x : 1)/γ(x : 1). As an element of End

(

OP1 +OP1(−1)
)

it corresponds
to the sublinebundle

OP1(−d)
(0,α,γ,β)
−→ OP1(−1) +O2

P1 +OP1(1).

Thus H1(C1, N1) = 0 unless d ≤ 0, that is, when a(x) is constant and b(x) is linear.
Such an overshear satisfies the conditions (10.2.a–d) iff b(x) is also constant. In this
case the lifting of the overshear is in O(3, 1), hence no smoothing is necessary. �
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The above Hilbert scheme approach has problems in general since not all conic
bundles are obtained from a P1-bundle by a birational transformation. So our
reduction to the P1-bundle computation would not work directly, but it should
work after taking a ramified double cover of P1. The end result should be that all
overshears with high enough degree do deform.

16 (Algebraic deformation, general case). This approach is technically harder but
it always gives an algebraic deformation of the overshear.

We use that Aut(BZ(t)Q/P
1) is birational to P1 × P3 and the overshear defines

a rational section σ1 : P1
99K Aut(BZ(t)Q/P

1) which is an actual section over the
real points. We want to use the deformation theory of sections of rationally con-
nected fibrations to conclude that σ1 deforms with t. (See [Araujo-Kollár02] for an
introduction to such techniques.)

As before, we use the partial compactification (19.4)

π̄ : Aut
sm(

Q/P1 × A1
)

→ P1 × A1.

Let C1 ⊂ Aut
sm

(BZ(1)Q/P
1) denote the image of a section.

Next we note that deformation theory is local near the section that we want to
deform. Thus it does not matter that Aut

sm
(BZ(1)Q/P

1)→ P1 is not proper. All
we need is that σ1 is an actual section and that there is at least one smooth, proper
fiber.

Thus, by adding many conjugate pairs of vertical rational curves to C1, the
resulting 1-cycle will deform with t, cf. [Araujo-Kollár02, Sec.6]. Since we added
only curves without real points to C1, the real points of the complex deformation
give a C∞-deformation of C1(R). This gives an algebraic lifting of σ1 to sections

σt : P1 → Aut
sm

(BZ(t)Q/P
1). �

It is natural to wonder if the above approach using conic bundles is truly nec-
essary. The following example shows that even for linear automorphism of R2, the
corresponding birational self-map of S2 is, in general, not algebraically smoothable.

17 (Non-smoothable birational homeomorphisms). Let Φ0 : R2 → R2 be an al-
gebraic automorphism. Using the stereographic projection, we can lift Φ0 to a
birational map Φ′

0 : S2 → S2 which is also a homeomorphism. In general, Φ′
0 is

not an automorphism since it is not a regular map at the north pole n ∈ S2. We
have shown that in some cases Φ′

0 has an algebraic deformation Φ′
t where Φ′

t is an
algebraic automorphism of S2 for t 6= 0. It is natural to ask if this is always possible
or not. Here we show that, even in some quite simple cases, the answer is negative.

Consider the simplest case when Φ0 is a linear transformation

(u, v) 7→
(

ℓ1(u, v) := a1u+ b1v + c1, ℓ2(u, v) := a2u+ b2v + c2
)

.

Then Φ′
0 is given by

(x, y, z, t) 7→
(

2(t− z)L1, 2(t− z)L2, L
2
1 + L2

2 − (t− z)2, L2
1 + L2

2 + (t− z)2
)

where Li = aix+ biy + ci(t− z).
Assume now that A(Φ): (u, v) 7→ (a1u + b1v, a2u + b2v) has complex conjugate

eigenvectors different from (1,±i). Then one can factor the map Φ′
0 : Q → Q

through blow-ups and downs as follows.

(1) Blow up the north pole n ∈ Q to get the exceptional curve En ⊂ BnS
2.
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(2) Blow up a conjugate point pair on En (corresponding to the eigenvectors
of A(Φ)) to get E′

n ⊂ Q2. Note that E′
n has self intersection −3.

(3) Contract the birational transforms of the (complex conjugate) lines on Q
passing through n to get E′′

n ⊂ Q3. Note that E′′
n has self intersection −1.

(4) Contract E′′
n to get again Q.

Let Γ0 ⊂ Q × Q be the closure of the graph of Φ′
0. We see that Γ0 is obtained

from Q2 by contracting E′
n. In particular, Γ0 has a single triple point, and the

projections pi : Γ0(R)→ S2 are homeomorphisms for i = 1, 2.
An algebraic smoothing of Φ′

0 would be a deformation Γt ⊂ Q×Q such that Γt

is the graph of a birational map that is an automorphism of S2 for t 6= 0.
We claim that there is no such deformation.
By an example of [Artin74], every deformation of our rational triple point is

simultaneously resolvable. (In order to assert this over R and not just over C, we
need that Q2 → Γ0 is a minimal resolution without exceptional −2-curves.) That
is, there is a base change t = sn after which the Γs for s 6= 0 are also deformations
of the minimal resolution Q2 → Γ0. Since Q2(R) ∼ BnS

2 ∼ RP2, we conclude that
Γt(R) ∼ RP2 for t 6= 0.

In particular, Γt(R) can not be the graph of a homeomorphism S2 → S2.

4. Automorphism groups of conic bundles

Let k be a field, char k 6= 2, Z a normal variety over k and X → Z a conic
bundle. That is, there is a P2-bundle PZ → Z and a closed embedding X →֒ PZ

such that every fiber of X → Z becomes a conic in P2. We assume that the generic
fiber is a smooth conic. The singular fibers are either a pair of intersecting lines or
a double line.

For our applications we need the case when Z is a smooth surface over R, but
the above generality poses no extra problems.

Definition 18 (Automorphisms). There are several ways to define the relative
automorphisms of a conic bundle.

Since X → Z is flat, the scheme of relative automorphisms AutZ(X) exists (cf.
[Kollár96, I.1.10]). Note that AutZ(X)→ Z is not flat, not even equidimensional.
A smooth conic has a 3-dimensional automorphism group but a singular conic has
a 4-dimensional automorphism group.

Every automorphism of a conic Q ⊂ P2 extends uniquely to an automorphism
of P2. (This holds even for the double line with scheme theoretic automorphisms.
This is, however, not important for us.) For conic bundles X → Z, this gives an
embedding

AutZ(X) →֒ AutZ(PZ) →֒ EndZ(PZ).

Since PZ → Z is a P2-bundle, EndZ(PZ)→ Z is naturally a P8-bundle.
Let Z0 ⊂ Z be the open set corresponding to smooth conics and X0 ⊂ X its

pre-image. Set

Aut(X/Z) := closure of AutZ0(X0) in EndZ(PZ). (18.1)

We prove in (19) that for conic bundles without double fibers, Aut(X/Z) → Z
is equidimensional. Furthermore

Aut(X/Z) := Aut(X/Z) ∩AutZ(X)
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is a smooth group scheme over Z which can be viewed as a Néron model of
AutZ0(X0). (Rather, only part of a Néron model since the universality condition
for extending sections is not always satisfied.)

The fibers of Aut(X/Z) → Z are described as follows. At a singular fiber, we
have a singular conic isomorphic to Qa := (a(x, y) = 0) ⊂ P2 where a(x, y) is a
homogeneous quadric. Since Aut(Qa) is 4-dimensional, it can not be the fiber of
Aut(X/Z)→ Z.

Let p ∈ Qa be the singular point. We have a canonical representation

ρ : Aut(Qa)→ GL
(

TpQa

)

where TpQa denotes the Zariski tangent space. Let Aut0(Qa) ⊂ Aut(Qa) be the
subgroup of those elements σ ∈ Aut(Qa) such that det ρ(σ) = 1. We will show that
Aut0(Qa) is the fiber of Aut(X/Z)→ Z at a singular conic.

Theorem 19. Let k be a field, char k 6= 2, Z a normal variety over k and X → Z
a conic bundle without double line fibers. Then:

(1) Every fiber of Aut(X/Z)→ Z has dimension 3.
(2) At a smooth conic Q, the fiber is End(Q) ∼= P3.
(3) At a singular conic Q, the fiber has 4 irreducible components. Aut0(Qa) is

a dense open subset of the union of two of them.
(4) Let Aut

sm
(X/Z) ⊂ Aut(X/Z) be the open set of points where Aut(X/Z)→

Z is smooth. Then:
(a) At a smooth conic Q, the fiber of Aut

sm
(X/Z)→ Z is End(Q) ∼= P3.

(b) At a singular conic Q, the fiber of Aut
sm

(X/Z)→ Z is Aut0(Qa).

Proof. Pick any point z ∈ Z\Z0 and let g : (0 ∈ C)→ (z ∈ Z) be a smooth curve
mapping to Z such that g(0) = z and g(C) intersects Z0 nontrivially. By pull-back,
we obtain a conic bundle XC → C and so we can construct Aut(XC/C)→ C. Since
C is a smooth curve, Aut(XC/C)→ C is automatically flat. Let A(z, g) ⊂ End(P2

z)
be its fiber.

We check below that the reduced structure of A(z, g) does not depend on g. Let
us denote this reduced structure by A(z). (It is possible that A(z, g) itself does not
depend on g, but we have not checked this.)

This means that the fiber of Aut(X/Z) → Z over z has the same support
as A(z). Hence, by the theory of Chow varieties, z 7→ A(z) is a well defined
3-dimensional family of proper algebraic cycles over Z. (See [Kollár96, Sec.I.3]
especially [Kollár96, I.3.17] for the relevant definitions and results.) Finally, by
[Kollár96, I.6.5], Aut(X/Z)→ Z is actually smooth at the smooth points of A(z).
Because of the group structure, this holds at every point that corresponds to an
automorphism of the fiber.

It remains to check the above assertions about A(z, g).
As before, let k be a field, char k 6= 2, C a smooth curve over k and S → C a

conic bundle without double fibers whose generic fiber is smooth.
Let C0 ⊂ C be the open set corresponding to smooth conics. If c ∈ C0 then

Aut(Sc) is a k(c)-form of PGL2 and Aut(S0/C0) → C0 is smooth. Moreover, we
have an embedding Aut(Sc) →֒ P3 which makes Aut(S0/C0) → C0 into an open
subset of a P3-bundle Aut(S0/C0) → C0. Note that the identity element gives
a canonical section of Aut(S0/C0) → C0, in particular Aut(S0/C0) is birational
(over C0) to P3 × C0.
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Next let us consider a singular fiber. We have a singular conic isomorphic to
Qa := (a(x, y) = 0) ⊂ P2 where a(x, y) is a homogeneous quadric. We claim that
Aut0(Qa) is the fiber of Aut(S/C)→ C at a singular fiber.

This assertion can be checked after a field extension, hence we may assume that
k is algebraically closed. We can then write down the family as

(xz − ty2 = 0) ⊂ P2
xyz × A1

t .

Write an element of PGL2 as (u, v) 7→ (au+ bv, cu+ dv). We can write (xz − ty2)
as the image of P1 under the map

x = τu2, y = uv, z = τv2 where τ2 = t.

The corresponding matrix in PGL3 is given by

M(a, b, c, d; τ) :=





a2 2τab b2

τ−1ac ad+ bc τ−1bd
c2 2τcd d2



 .

For τ 6= 0 we have the standard Veronese embedding P3 →֒ P9 projected to P8. In
particular, the image has dimension 3 and degree 8.

We need to compute the flat closure of the set of these matrices as t→ 0. Write
M(a, b, c, d; τ) = (aij). It is easy to write down the 10 quadratic equations satisfied
by the aij .

(5) 4 equations coming from rows 1,3 and columns 1,3. The first one is

4τ2 · a2 · b2 =
(

2τab
)2

giving 4τ2a11a13 = a2
12.

(6) 4 equations coming from multiplying a22 by the 4 non-corner entries. The
first one is

(ad+ bc)(2τab) = 2τ2(a2)(τ−1bd) + 2τ2(b2)(τ−1ac)

which gives

a22a12 = τ2a11a23 + τ2a13a21.

(7) Squaring a22, giving

a2
22 = a11a33 + a13a31 + τ2a21a23.

(8) The 4 non-corner elements give

a12a32 = τ4a21a23.

Note that these equations depend only on t = τ2. Setting t = 0 we get equations
for the central fiber of the flat closure. It is not a priori clear that these are all the
equations. However, as we see below, these equations define a subscheme of the
correct dimension and degree. Thus, aside from some possible embedded compo-
nents, these equations do define the flat limit. We get 4 irreducible components as
follows.

(9) Matrices of the form




∗ 0 0
∗ ∗ ∗
0 0 ∗



 where a11a33 = a2
22,
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giving a 3-dimensional subvariety of degree 2. These are obtained as

lim
τ→0

M(a, τb, τc, d; τ) =





a2 0 0
ac ad bd
0 0 d2



 .

Those with nonzero determinant give the identity component of Aut0(Q0).
The singular point of the conic is (0 : 1 : 0). The representation on the
Zariski tangent space 〈x/y, z/y〉 is

(

a2/ad 0
0 d2/ad

)

which has determinant 1.
(10) Matrices of the form





0 0 ∗
∗ ∗ ∗
∗ 0 0



 where a13a31 = a2
22,

giving a 3-dimensional subvariety of degree 2. Those with nonzero determi-
nant give the non-identity component of Aut0(Q0). These can be obtained
as limτ→0M(τa, b, c, τd; τ).

(11) Matrices of the form




∗ 0 ∗
∗ 0 ∗
0 0 0





giving a 3-dimensional subvariety of degree 1. These matrices are always
singular and this component appears with multiplicity 2. These can be
obtained as limτ→0M(a, b, τc, τd, τ).

(12) Matrices of the form




0 0 0
∗ 0 ∗
∗ 0 ∗





giving a 3-dimensional subvariety of degree 1. These matrices are always
singular and this component appears with multiplicity 2. These can be
obtained as limτ→0M(τa, τb, c, d, τ).

Geometrically, the last 2 components correspond to maps that map the components
of Qa to a point on them.

Taking into account the multiplicities, we have described a 3-dimensional cycle
of degree 8 = 2 + 2 + 2 · 1 +2 · 1. This is the same degree as the generic fiber, hence
this is the whole limit cycle. From the above descriptions it is also clear that the
support depends only on Qa. (We have not checked that the double structure along
the two extra components does not depend on the deformation, nor have we tried
to prove that there are no other nilpotents in the scheme theoretic fiber. These are,
however, not needed.) �

20 (Remarks on double fibers). Although we do not need it, it is interesting to
check what happens for conic bundles with a double line as a fiber. A typical
example is

(txz − y2 = 0) ⊂ P2
xyz × A1

t .
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We can write (txz − y2 = 0) as the image of P1 under the map

x = u2, y = τuv, z = v2 where τ2 = t.

The corresponding matrix in PGL3 is given by

N(a, b, c, d; τ) :=





a2 2τ−1ab b2

τac ad+ bc τbd
c2 2τ−1cd d2



 .

The flat closure can be computed as before. Let us look for example at the first
component, consisting of matrices of the form





∗ ∗ 0
0 ∗ 0
0 ∗ ∗



 where a11a33 = a2
22.

These are obtained as limτ→0N(a, τb, τc, d; τ).
This looks very much like (19.9), but the geometric picture is completely differ-

ent. The above matrices give those automorphisms of the double line (y2 = 0) that
fix the two points (y = xz = 0). Thus, this group depends not only on the fiber
(y2 = 0) but also on the smoothing (y2 + txz = 0). In particular, if S → C is a
conic bundle over a 1-dimensional smooth curve C, then Aut(S/C) → C behaves
as in (19), even if there are double fibers. However, for a conic bundle over a higher
dimensional base, Aut(X/Z) → Z is usually not equidimensional at the double
fibers.

The following provides a more general approach to the computation in (19) in
all dimensions.

Let Q ⊂ Pn be a singular quadric of rank n. Q has a unique singular point
p ∈ Q. Let TpQ be the Zariski tangent space. We can view Q as a quadratic form
q on TpQ, defined up to multiplicative scalar. The image of the representation of

Aut(Q) on TpQ fixes q, but only up to a scalar. Let Aut0(Q) ⊂ Aut(Q) be the
subgroup whose image under ρ fixes q.

Theorem 21. Let k be a field, char k 6= 2, Z a normal variety over k, P → Z a
Pn-bundle and Q ⊂ P a quadric bundle such that each fiber has rank ≥ n and the
generic fiber has rank n + 1. Then there is a smooth group scheme Aut(Q/Z) ⊂
AutZ(P) such that

(1) if Qz is smooth then Aut(Q/C)z is Aut(Qz), and
(2) if Qz is singular then Aut(Q/C)z is Aut0(Qz).

Proof. As before, it is enough to check this when Z = C is a curve over an
algebraically closed field.

We can trivialize P and letQ be the family of quadrics (x2
0+· · ·+x2

n−1+tx
2
n = 0).

Write a matrix in block form as
(

A b

ct d

)

,

where A is an n× n matrix, b, c column vectors and all their entries are functions
of t. This is in AutC(Q) iff

AtA+ tcct = λ1n,
Atb + tdc = 0,
btb + td2 = λt,

(21.4)
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where λ is also a function of t. (Because of the presence of λ, these are not honest
equations. To get the actual equations, we need to eliminate λ. Since λ occurs
only linearly, this is easy to do, but we lose the simple form of the above equations.
Alternatively, we can consider λ to be a new variable of degree 2 and work in the
corresponding weighted projective space.) Setting t = 0 we get the equations of
Aut(Q0):

A(0)tA(0) = λ(0)1n and b(0) = 0.

This group, however, has dimension dimAut(Qt) + 1 which is too big. In order
to get Aut(Q/Z), we need one more equation. Multiplying (21.4.ii) on the left by
At,adj (the determinant theoretic adjoint of At) we obtain

detA · b = −tdAt,adjc

which gives that
det2A · btb = t2d2ctAadjAt,adjc

Substituting into (21.4.iii) and canceling t we get

det2A · (λ− d2) = td2ctAadjAt,adjc.

From (21.4.i) we see that

det2A = det
(

λ1n − tcc
t
)

and the right hand side can be expanded as λn + t · (polynomial). Thus setting
t = 0 gives the new equation

λ(0)n ·
(

λ(0)− d(0)2
)

= 0. (21.5)

The case λ(0) = 0 gives singular limits.
Otherwise λ(0) 6= 0 and such limit automorphisms all satisfy λ(0) = d(0)2.
The representation on the tangent space TpQ0 is

(

A(0) b(0)
c(0)t d(0)

)

7→ 1
d(0)A(0).

Thus
(

1
d(0)A(0)

)t( 1
d(0)A(0)

)

= λ(0)
d(0)2 1n = 1n. �

5. Generators of Aut(S2)

Noether proved that the involution (x, y, z) 7→
(

1
x ,

1
y ,

1
z

)

and PGL3 generate the

group of birational self-maps Bir(P2) over C. Using similar ideas, [Ronga-Vust05]
proved that Aut(P2(R)) is generated by linear automorphisms and certain real
algebraic automorphisms of degree 5. In this section, we prove that Aut(S2) is
generated by linear automorphisms and by the σp.q. The latter are real algebraic
automorphisms of degree 3.

Example 22 (Cubic involutions of P3). On P3 take coordinates (x, y, z, t). We need
two types of cubic involutions of P3. Let us start with the Cremona transformation

(x, y, z, t) 7→
(

1
x ,

1
y ,

1
z ,

1
t

)

= 1
xyzt(yzt, ztx, txy, xyz)

whose base points are the 4 “coordinate vertices”. We will need to put the base
points at complex conjugate point pairs, say (1,±i, 0, 0), (0, 0, 1,±i). Then the
above involution becomes

τ : (x, y, z, t) 7→
(

(x2 + y2)z, (x2 + y2)t, (z2 + t2)x, (z2 + t2)y
)

.
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Check that

τ2(x, y, z, t) = (x2 + y2)2(z2 + t2)2 · (x, y, z, t),

thus τ is indeed a rational involution on P3.
Consider a general quadric passing through the points (1,±i, 0, 0), (0, 0, 1,±i).

It is of the form

Q = Qabcdef (x, y, z, t) := a(x2 + y2) + b(z2 + t2) + cxz + dyt+ ext+ fyz.

By direct computation,

Qabcdef

(

τ(x, y, z, t)
)

= (x2 + y2)(z2 + t2) ·Qabcdfe(x, y, z, t).

(Note that ef changes to fe. Thus, if e = f , then τ restricts to an involution of
the quadric (Q = 0) but not in general.)

Assume now that we are over R. We claim that τ is regular on the real points
if a, b 6= 0. The only possible problem is with points where (x2 + y2)(z2 + t2) = 0.
Assume that (x2 + y2) = 0. Then x = y = 0 and so Q(x, y, z, t) = 0 gives that
b(z2 + t2) = 0 hence z = t = 0, a contradiction.

Whenever Q has signature (3, 1), we can view (Q = 0) as a sphere and then τ
gives a real algebraic automorphism of the sphere S2, which is well defined up to
left and right multiplication by O(3, 1). A priori the automorphisms depend on
a, b, c, d, e, f , so let us denote them by τabcdef .

Given S2, the above τabcdef depends on the choice of the base points, that is,
2 conjugate pairs of points on the complex quadric S2(C). The group O(3, 1) has
real dimension 6. Picking 2 complex points has real dimension 8. So the τabcdef

should give a real 2-dimensional family of automorphisms modulo O(3, 1).
We also need a degenerate version of the Cremona transformation when the 4

base points come together to a pair of points. With base points (1, 0, 0, 0) and
(0, 1, 0, 0), we get

(x, y, z, t) 7→ (xz2, yt2, zt2, z2t).

If we put the base points at (1,±i, 0, 0) then we get the transformation

σ′ : (x, y, z, t) 7→
(

y(z2 − t2) + 2xzt, x(t2 − z2) + 2yzt, t(z2 + t2), z(z2 + t2)
)

.

Take any quadric of the form

Q = Q′
abcdef(x, y, z, t) := a(x2 + y2) + bz2 + czt+ dt2 + e(xt+ yz) + f(xz − yt).

By direct computation,

Q′
abcdef

(

σ′(x, y, z, t)
)

= (z2 + t2)2 ·Q′
adcbef(x, y, z, t).

As before, if Q′ has signature (3, 1), we can view (Q′ = 0) as a sphere and then
σ′ gives a real algebraic automorphism of the sphere S2, which is well defined up
to left and right multiplication by O(3, 1). Let us denote them by σabcdef . Despite
the dimension count, the group O(3, 1) does not act with a dense orbit on the set
of complex conjugate point pairs and complex conjugate directions. Indeed, after
complexification, the quadric becomes P1 × P1 and we can chose the two points to
be p1 := (0, 0) and p2 := (∞,∞). The subgroup fixing these two points is C∗ ×C∗

and the diagonal acts trivially on the tangent directions at both of the points pi.
Thus the σabcdef form a 1-dimensional family.

Theorem 23. The group of algebraic automorphisms of S2 is generated by O(3, 1),
the τabcdef and σabcdef .
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Remark 24. It is possible that the τabcdef alone generate Aut(S2). In any case,
as the 4 base points come together to form 2 pairs, the τabcdef converge to the
corresponding σabcdef . Thus the τabcdef generate a dense subgroup of Aut(S2) (in
the C∞-topology.)

One reason to use the σabcdef is that, as the proof shows, the τabcdef and σabcdef

together generate Aut(S2) in an “effective manner.” By this we mean the following.
Any rational map Φ: S2

99K S2 can be given by 4 polynomials

Φ(x, y, z, t) =
(

Φ1,Φ2,Φ3,Φ4

)

.

Note that Φ does not determine the Φi uniquely, but there is a “minimal” choice.
We can add any multiple of x2 + y2 + z2− t2 to the Φi and we can cancel common
factors. We choose maxi{deg Φi} to be minimal and call it the degree of Φ. It
is denoted by deg Φ. (It is easy to see that these minimal Φi are unique up to a
multiplicative constant.) Note that deg Φ = 1 iff Φ ∈ O(3, 1).

By “effective” generation we mean that given any Φ ∈ Aut(S2) with deg Φ > 1,
there is a ρ which is either of the form τabcdef or σabcdef such that

deg
(

Φ ◦ ρ) < deg Φ.

25 (Proof of (23)). The proof is an application of the Noether-Fano method. See
[Kollár-Smith-Corti04, Secs. 2.2–3] for details.

Let k be a field and Q ⊂ P3 a quadric defined over k. Assume that Pic(Q) = Z[H ]
where H is the hyperplane class. Let Q′ be any other quadric and Φ: Q 99K Q′

a birational map. Then Γ := Φ∗|HQ′ | is a 3-dimensional linear system on Q and
Γ ⊂ |dHQ| for some d. Let pi be the (possibly infinitely near) base points of Γ
(over k̄) and mi their multiplicities. As in [Kollár-Smith-Corti04, 2.8], we have the
equalities

Γ2 −
∑

m2
i = degQ′ and Γ ·KQ +

∑

mi = degKQ′ .

In our case, these become
∑

m2
i = 2d2 − 2 and

∑

mi = 4d− 4.

Next we see how the transformations τabcdef and σabcdef change the degree of a
linear system Γ.

Example 26 (Cremona transformation on a quadric). For the τabcdef series, pick
4 distinct points p1, . . . , p4 ∈ Q such that no two are on a line in Q, not all 4 on a
conic and assume that s := m1 + · · ·+m4 > 2d. Blow up the 4 points and contract
the 4 conics that pass through any 3 of them. The pi are replaced by 4 base points
of multiplicities 2d−s+mi. Their sum is 8d−4s+s = 8d−3s. Thus 4d−4 =

∑

mi

is replaced by
∑

mi − s+ (8d− s), hence d becomes d− (s− 2d) < d.
For σabcdef , pick 2 distinct points p1, p2 ∈ Q and 2 infinitely near points p3 → p1

and p4 → p2 such that no two are on a line in Q, not all 4 on a conic and assume
that s := m1 + · · ·+m4 > 2d. Blow up the points p1, p2 and then the points p3, p4.
After this, we can contract the two conics that pass through p1 + p2 + p3 (resp.
p1 + p2 + p4) and we can also contract the birational transforms of the exceptional
curves over p1 and p2. The rest of the computation is the same. The pi are replaced
by 4 base points of multiplicities 2d−s+mi. Their sum is 8d−4s+s = 8d−3s. Thus
4d−4 =

∑

mi is replaced by
∑

mi− s+(8d− s) hence d becomes d− (s−2d) < d.
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Thus, as long as we can find p1, . . . , p4 ∈ Q (or infinitely near) such that m1 +
· · ·+m4 > 2d, we can lower deg Φ by a suitable degree 3 Cremona transformation.

In order to find such pi, assume first to the contrary that mi ≤ d/2 for every i.
Then

2d2 − 2 =
∑

m2
i ≤

d
2

∑

mi = d
2 (4d− 4) = 2d2 − 2d.

This is a contradiction, unless d = 1 and Φ is a linear isomorphism.
If we work over R and we assume that there are no real base points, then we

have at least one complex conjugate pair of base points with multiplicity mi > d/2.
We are done if we have found 2 such pairs.

In any case, up to renumbering the points, we have m1 = m2 = d
2 + a for some

d/2 ≥ a > 0. Assume next that all the other mj ≤
d
2 − a. Then

2d2 − 2 =
∑

m2
i ≤ 2

(

d
2 − a

)2
+

(

d
2 − a

)(
∑

mi − d+ 2a
)

= 2
(

d
2 − a

)2
+

(

d
2 − a

)(

4d− 4− d+ 2a
)

.

By expanding, this becomes

(a+ 2)(d− 4) ≤ −6.

Thus d ∈ {1, 2, 3}. If d = 3 then a+ 2 ≥ 6 so d/2 ≥ a ≥ 4 gives a contradiction. If
d = 2 then we get a = 1. Thus Γ consists of quadric sections with singular points
at p1, p2. These are necessarily reducible (they have pa = 1 with 2 singular points),
again impossible.

We also need to show that no two of the points lie on a line and not all 4 are on
a conic. For any line L ⊂ Q(C), (L · Γ) = d gives that

∑

i:pi∈L

mi ≤ d.

In particular, mi ≤ d for every i and if pi, pj are on a line then mi +mj ≤ d. Thus
out of p1, . . . , p4 only p3, p4 could be on a line. But p3, p4 are conjugates, thus they
would be on a real line. There is, however, no real line on S2.

Similarly, for any conic C ⊂ Q(C), (C · Γ) = 2d gives that
∑

i:pi∈C mi ≤ 2d.
Thus not all 4 points are on a conic.

Remark 27. Note that we started the proof over an arbitrary field, but at the
end we had to assume that that we worked over R. For a quadric surface Q with
Picard number one, the above method should give generators for the group Bir∗(Q)
of those birational self-maps that are regular along Q(k). However, for other fields
k, other generators also appear if there are more than 2 conjugate base points.

6. The identity component

The purpose of this section is to prove (4) for the identity components. We start
with the proof of (2) which settles the case R = S2. Next we prove (4) for the
identity components in the case R is the non-orientable surface Rg.

Definition 28. Let X and Y be real algebraic manifolds and let I be any subset
of X . A map f from I into Y is algebraic if there is a Zariski open subset U of X
containing I such that f is the restriction of an algebraic map from U into Y .

Consider the standard sphere S2 ⊂ R3 and let L be a line through the origin.
Choose coordinates such that L is the x-axis and S2 := (x2 + y2 + z2 = 1) ⊂ R3.
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Let M : [−1, 1]→ O(2) be a real algebraic map. Then

ΦM : S2 → S2 given by (x, y, z) 7→
(

x, (y, z) ·M(x)
)

is an automorphism of S2, called the twisting map with axis L and associated to
M . A conjugate of a twisting map by an element of O(3, 1) is also called a twisting
map.

The following results are proved in [Huisman-Mangolte08a].

Theorem 29. Notation as above.

(1) Any C∞ map M0 : [−1, 1] → O(2) can be approximated by real algebraic
maps Ms : [−1, 1] → O(2). Moreover, given finitely many points ti ∈
[−1, 1], we can choose the Ms such that Ms(ti) = M0(ti) for every i.

(2) Given distinct points p1, . . . , pm and q1, . . . , qm there are two twisting maps
(with different axes) Φ1 and Φ2 such that Φ1 ◦ Φ2(qi) = pi for every i.
Moreover,
(a) if pj = qj for some values of j then we can assume that Φ1(qj) =

Φ2(qj) = qj for these values of j, and
(b) if pi is near qi for every i then we can assume that the Φ1,Φ2 are near

the identity.
(3) Let R be any real algebraic surface that is obtained from S2 by repeatedly

blowing up m real (possibly infinitely near) points and let r1, . . . , rn be points
in R. Then there are (nonunique) distinct points p1, . . . , pm and q1, . . . , qn
and an isomorphism φ : R→ Bp1,...,pm

S2 such that φ(ri) = qi.

By adding more points in (29.3) and compactness, we obtain the following
stronger version:

Corollary 30. Let R be any real algebraic surface that is obtained from S2 by
repeatedly blowing up m real (possibly infinitely near) points and let r1, . . . , rn be
points in R. There is a finite open cover R = ∪jWj such that for every j there
are distinct points p1j , . . . , pmj, q1j , . . . , qnj ∈ S2 and an isomorphism φj : R →
Bp1j ,...,pmj

S2 such that φj(ri) = qij and φj(Wj) ⊂ S
2 \ {p1j, . . . , pmj}. �

31 (Proof of (2)). Let p1, . . . , pn, q ∈ S
2 be any finite set of distinct points, and

let φ ∈ Diff(S2, p1, . . . , pn). In Section 1 we proved that there are automorphisms
ψs ∈ Aut(S2) such that ψs converges to φ in the compact-open C∞-topology on
S2 \ {q}, and in the C0-topology on S2.

For any s and i, set qs
i := ψs(pi). As ψs converges to φ, the qs

i converge to pi

for every i. By (29.2.b) there are autmorphisms Φs such that Φs(q
s
i ) = pi and Φs

converges to the identity. Thus the composites Φs ◦ ψs are in Aut(S2, p1, . . . , pn)
and they converge to φ in the compact-open C∞-topology on S2 \ {q}, and in the
C0-topology on S2.

Proposition 32. Let R be any real algebraic surface that is obtained from S2 by
repeatedly blowing up g real (possibly infinitely near) points and let r1, . . . , rn be
points in R. Let r0 ∈ R be another point. Then the group Aut0(R, r1, . . . , rn) of
algebraic automorphisms homotopic to identity is dense in

(1) Homeo0(R, r1, . . . , rn) in the C0-topology on R, and in

(2) Diff0(R, r1, . . . , rn) in the compact-open C∞-topology on R \ {r0}.
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Proof. Let φ : R→ R be a C∞-diffeomorphism fixing r1, . . . , rn, and homotopic to
the identity. Choose R = ∪jWj as in (30). By a partition of unity argument, φ can
be written as the composite of diffeomorphisms φℓ : R → R fixing r1, . . . , rn such
that each φℓ is the identity outside some Wj ⊂ R.

In particular, each φℓ descends to a diffeomorphism φ′ℓ of S2 which fixes the
points p1j , . . . , pgj and q1j , . . . , qnj . By (2), we can approximate φ′ℓ by algebraic
automorphisms Φ′

ℓ,s fixing all the points p1j , . . . , pgj and q1j , . . . , qnj . Since the

Φ′
ℓ,s fix p1j , . . . , pgj , they lift to algebraic automorphisms Φℓ,s of R ∼= Bp1j ,...,pgj

S2

fixing the points r1, . . . , rn. The composite of the Φℓ,s then converges to φ.
Note that as we blow up we loose one derivative, so even for the case of homeo-

morphisms it is better to use a C1-approximation on S2. �

7. Generators of the mapping class group

Definition 33. Let R be a compact, closed surface and p1, . . . , pn distinct points
on R. The mapping class group is the group of connected components of those
diffeomorphisms φ : R→ R such that φ(pi) = pi for i = 1, . . . , n.

M(R, p1, . . . , pn) := π0

(

Diff(R, p1, . . . , pn)
)

.

Up to isomorphism, this group depends only on the orientability and the genus of
R. The orientable case has been intensely studied. Recent important results about
the non-orientable case are in [Korkmaz02, Wahl08].

(In the literature, Mg,n is used to denote both the mapping class group of an
orientable genus g (hence with Euler characteristic 2− 2g) surface with n marked
points and the mapping class group of a non-orientable genus g (hence with Euler
characteristic 2− g) surface with n marked points.)

In preparation for the next section, we establish a somewhat new explicit set of
generators in the non-orientable case.

Write R as Bp1,...,pg
S2, the blow up of S2 at g points. We start by describ-

ing some elements of the mapping class group. For more details see [Lickorish65,
Chillingworth69, Korkmaz02].

Definition 34 (Dehn twist). Let R be any surface and C ⊂ R a simple closed
smooth curve such that R is orientable along C. Cut R along C, rotate one side
around once completely and glue the pieces back together. This defines a diffeo-
morphism tC of R, see Figure 6. The inverse t−1

C corresponds to rotating one side

Ct

C

Figure 6. The effect of the Dehn twist around C on a curve.

the other way. Up to isotopy, the pair {tC , t
−1
C } does not depend on the choice of
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C or the rotation. Either of tC and t−1
C is called a Dehn twist using C. On an

oriented surface, with C oriented, one can make a sensible distinction between tC
and t−1

C . This is less useful in the non-orientable case.

Definition 35 (Crosscap slide). Let D be a closed disc and p, q ∈ D two points.
Take a simple closed curve C in D passing through p, q and let C′ denote the
corresponding curve in BqD. Let Mp be a small disc around p. Let {φt : t ∈ [0, 1]}
be a continuous family of diffeomorphisms of BqD such that φ0 is the identity, each
φt is the identity near the boundary and as t increases, the φt slide Mp once around
C. At t = 1, Mp returns to itself with its orientation reversed, as in Figure 7. In
particular, φ1(p) = p. Thus φ1 can be lifted to a diffeomorphism of Bp,qD which is
not isotopic to the identity but is the identity near the boundary.

p

φ1

−→

p

Figure 7. Cross-cap slide.

Let R be any surface, U ⊂ R a closed subset with C∞ boundary and τ : U →
Bp,qD a diffeomorphism. Then τ−1φ1τ : U → U is the identity near the boundary
of U , hence it can be extended by the identity on R \ U to a diffeomorphism of
R. Up to isotopy, this diffeomorphism does not depend on the choice of C, φt and
τ . It is called a cross-cap slide or a Y -homeomorphism using U . Note that for a
cross-cap slide to exist, R must be non-orientable and of genus at least 2.

36 (Generators of the mapping class group). Let Rg be a non-orientable surface of
genus g ≥ 1. We write Rg := Bp1,...,pg

S2 with exceptional curves Ei ⊂ Rg and let

π : Rg → S2 be the blow down map.
The map π gives a one-to-one correspondence between

• simple closed smooth curves CR ⊂ Rg whose intersection with any excep-
tional curve Ei is transversal, and
• immersed curves C = π(CR) ⊂ S2 whose only self-intersections are at the
pi and no two branches are tangent.

Generators of the mapping class group were first established by [Lickorish65]
and simplified by [Chillingworth69]. The case with marked points was settled by
[Korkmaz02].

The generators are the following

(1) Dehn twists along CR for certain smooth curves C ⊂ S2 that pass through
an even number of the p1, . . . , pg. (No self-intersections at the pi.)

(2) Cross-cap slides using a discD ⊂ S2 that contains exactly 2 of the p1, . . . , pg.

The results of [Chillingworth69] and of [Korkmaz02] are more precise in that only
very few of these generators are used. In the unmarked case, the above formulation
is established in the course of the proof and stated on [Chillingworth69, p.427].
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We will need somewhat different generators. We thank M. Korkmaz for answer-
ing many questions and especially for pointing out that one should use the lantern
relation (38) to establish the following.

Proposition 37. The following elements generate the mapping class group of the
marked surface

(

Bp1,...,pg
S2, q1, . . . , qn).

(1) Dehn twists along CR for certain smooth curves C ⊂ S2 that pass through
0, 2 or 4 of the points p1, . . . , pg. (No self-intersections at the pi.)

(2) Cross-cap slides using a disc D ⊂ S2 that contains exactly 2 of the points
p1, . . . , pg.

Proof. We have included all the cross-cap slides from (36). Thus we need to deal
with Dehn twists along CR where C ⊂ S2 is a simple closed curve passing through
m of the points p1, . . . , pg with m > 4.

Using induction, it is enough to show that the Dehn twist along CR can be
written as the product of Dehn twists along curves C′

R where each C′ ⊂ S2 is a
simple closed curve passing through fewer than m of the points p1, . . . , pg.

Assume for simplicity that C passes through p1, . . . , pm with m > 4 (and even).
For I ⊂ {1, . . . ,m} let tI be a Dehn twist using a simple closed curve CI passing
through the {pi : i ∈ I} but none of the others. The precise choice of the curve will
be made later. We show that, with a suitable choice of the curves, t12345...m is a
product of the Dehn twists t125...m, t345...m, t1234, t5...m, t12, t34.

This is best shown by a picture for m = 8. In Figure 8, t12345678 is a product of
the Dehn twists t125678, t345678, t1234, t5678, t12, t34. The shaded region is a sphere
with four holes, and corresponds to a neighborhood of the lift to R8 of C12345678.
On each side of the picture are drawn the curves corresponding to the Dehn twists
of the same side in (38.1):

a) C12, C34, C5678, C12345678, b) C1234, C125678, C345678. �

Figure 8. Lantern relation for m = 8.

38 (Lantern relation of Dehn). [Dehn38, Johnson79] Fix 4 points q0, . . . , q3 ∈ S
2.

Let ti be the Dehn twist using a small circle around qi and for i, j ∈ {1, 2, 3}, let tij
be the Dehn twist using a simple closed curve that separates qi, qj from the other
2 points. Then, with suitable orientations,

t0t1t2t3 = t12t13t23 , (38.1)

where the equality is understood to hold inM(S2, q0, . . . , q3).
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8. Automorphisms and the mapping class group

The main result of this section is the following.

Theorem 39. Let R be a real algebraic surface that is obtained from S2 by blowing
up points and p1, . . . , pn ∈ R distinct marked points. Then the natural map

Aut(R, p1, . . . , pn) ։M(R, p1, . . . , pn) is surjective.

Proof. We prove that all the generators of the mapping class group listed in (37)
can be realized algebraically. There are 4 cases to consider:

(1) Dehn twists along CR ⊂ R for smooth curves C ⊂ S2 that pass through
either
(a) none of the points pi,
(b) exactly 2 of the points pi, or
(c) exactly 4 of the points pi.

(2) Cross-cap slides using a disc D ⊂ S2 that contains exactly 2 of the points
pi.

We start with the easiest case (39.1.a).

40 (Algebraic realization of Dehn twists). Let C ⊂ S2 be a smooth curve passing
through none of the points pi. After applying a suitable automorphism of S2, we
may assume that C is the big circle (x = 0).

Consider the map g : [−1, 1] → O(2) where g(t) = 1 for t ∈ [−1,−ǫ] ∪ [ǫ, 1] and
g(t) is the rotation by angle π(1 + t/ǫ) for t ∈ [−ǫ, ǫ]. Let M : [−1, 1]→ O(2) be an
algebraic approximation of g such that the corresponding twisting (28) ΦM is the
identity at the points pi. Then ΦM is an algebraic realization of the Dehn twist
around C.

On the torus, the same argument works for either of the S1-factors. Up to
isotopy and the natural GL(2,Z)-action, this takes care of all simple closed curves.

Next we deal with the hardest case (39.1.c).

41 (4 pt case). After applying a suitable automorphism of S2, we may assume that
C is close to a circle in S2 but the 4 points do not lie on a circle.

Let us take an annular neighborhood of C and blow up the 4 points p1, . . . , p4.
The resulting open surface is denoted by W ⊂ Bp1,...,p4

S2. It contains the curve
CR and the 4 exceptional curves E1, . . . , E4.

If we cut the blown-up annulus W along the 5 curves A1, . . . , A4, D as indicated
of the left hand side of Figure 9, we get the contractible surface U indicated on
the right hand side of Figure 9. The left and right hand sides of U are identified
to form a cylinder, giving a neighborhood of the curve CR ⊂ Bp1,...,p4

S2. The big
rectangle with lighter shading in U on the right corresponds to the lighter shaded
are in W on the left. The 4 top and 4 bottom line segments of U are identified to
form 4 Möbius bands.

Next, in Figure 10 we show the 4 exceptional curves.
Figure 11 shows the images of the curves Ei after the Dehn twist around CR.
These images can be deformed to obtain a configuration as in Figure 12. Note

that now Ei intersects E′
j iff i 6= j.

Next we convert this back to the annulus model W on the left hand side of
Figure 9. We obtain Figure 13.
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Figure 9. Two models of the annulus blown up in 4 points.

Figure 10. The 4 exceptional curves.

Figure 11. Effect of the Dehn twist around CR.

The images of the exceptional curves E1, . . . , E4 under the standard Cremona
transformation with base points p1, . . . , p4 are shown in Figure 1.

We see by direct inspection that the two quartets of curves in Figures 1 and 13
are isotopic. Thus, if we first apply the Dehn twist and then the (inverse) Cremona
transformation and a suitable isotopy, we get a diffeomorphism φ : Rn → Rn such
that φ(Ei) = Ei. That is, φ is lifted from a diffeomorphism of the g-pointed
sphere (S2, p1, . . . , pn). By (2), any such diffeomorphism is isotopic to an algebraic
automorphism. Hence the Dehn twist along CR is also algebraic.
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Figure 12. Deformation of Figure 11.

Figure 13. Images of the four exceptional curves.

42 (2 pt case). The proof is the same as in the 4 point case but the description is
easier.

A neighborhood of C gives an annulus with 2 blown-up points. After the Dehn
twist we get two curves E′

1, E
′
2 as in Figure 14.

Figure 14. Cremona transformation with 2 real base points.

We can assume that the two curves E′
1, E

′
2 are close to being circles, that is,

close to the intersections S2 ∩ Hi for some planes for i = 1, 2. Let q, q̄ be the
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2 (complex conjugate) points where these 2 planes Hi intersect the complexified
sphere Q. Then the Cremona transformation with base points p1, p2, q, q̄ is the
inverse of the Dehn twist, again up to a diffeomorphism of S2.

43 (Crosscap slides). Here the topological picture is given by Figure 15. Note that

Figure 15. Cross-cap slides.

E1 is mapped to itself and E2 is mapped to the (almost) circle E′
2. Up to isotopy,

we can replace E1 with a small circle E′
1 passing through p1.

As in (42), we obtain q, q̄ such that the Cremona transformation with base points
p1, p2, q, q̄ is the inverse of the Dehn twist, up to a diffeomorphism of S2.

44 (Proof of (4)). Let φ : (R, q1, . . . , qn)→ (R, q1, . . . , qn) be any diffeomorphism.
By (32), there is an automorphism Φ1 ∈ Aut(R, q1, . . . , qn) such that Φ−1

1 ◦ φ is
homotopic to the identity.

By (39), we can approximate Φ−1
1 ◦ φ by a sequence of automorphisms Ψs ∈

Aut(R, q1, . . . , qn). Thus Φ1 ◦Ψs ∈ Aut(R, q1, . . . , qn) converges to φ. �
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