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Abstract. Let X be a singular real rational surface obtained from a
smooth real rational surface by performing weighted blow-ups. Denote
by Aut(X) the group of algebraic automorphisms of X into itself. Let n

be a natural integer and let e = [e1, . . . , eℓ] be a partition of n. Denote
by Xe the set of ℓ-tuples (P1, . . . , Pℓ) of disjoint nonsingular curvilinear
subschemes of X of orders (e1, . . . , eℓ). We show that the group Aut(X)
acts transitively on Xe. This statement generalizes earlier work where
the case of the trivial partition e = [1, . . . , 1] was treated under the
supplementary condition that X is nonsingular.

As an application we classify singular real rational surfaces obtained
from nonsingular surfaces by performing weighted blow-ups.
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1. Introduction

Let X be a nonsingular compact connected real algebraic surface, i.e. X
is a nonsingular compact connected real algebraic subset of some R

m of
dimension 2. Recall that X is rational if the field of rational functions R(X)
ofX is a purely transcendental field extension of R of transcendence degree 2.
More geometrically, X is rational if there are nonempty Zariski open subsets
U and V of R

2 and X, respectively, such that there is an isomorphism
of real algebraic varieties—in the sense of [BCR98]—between U and V .
Loosely speaking, X is rational if a nonempty Zariski open subset of X
admits a rational parametrization by a nonempty Zariski open subset of R

2.
(The last condition only ensures that X is unirational, a priori. However,
in dimension 2, unirationality implies rationality). A typical example of a
rational compact real algebraic surface is the unit sphere S2 in R

3. A rational
parametrization in that case is the inverse of the stereographic projection.

It has recently been shown that any rational nonsingular compact real
algebraic surface is isomorphic either to the real algebraic torus S1 × S1,
or to a real algebraic surface obtained from the real algebraic sphere S2 by
blowing up a finite number of distinct points [BH07] (see also [HM09] for
another proof).

In the sequel, it will be convenient to identify the real algebraic surface X
with the affine scheme SpecR(X), where R(X) denotes the R-algebra of
all algebraic—also called regular—functions on X (see [BCR98]). A real-
valued function f on X is algebraic if there are real polynomials p and q
in x1, . . . , xm such that q does not vanish on X and such that f = p/q on X.
The algebra R(X) is the localization of the coordinate ring R[x1, . . . , xm]/I
with respect to the multiplicative system of all polynomials that do not
vanish on X, where I denotes the vanishing ideal of X. It is the subring
of R(X) of all rational functions on X that do not have any poles on X.

A curvilinear subscheme of X is defined to be a closed subscheme P of X
isomorphic to Spec R[x]/(xe), for some nonzero natural integer e. Let P be
a curvilinear subscheme of X isomorphic to SpecR[x]/(xe). The integer e
is called the length or the order of P . The reduced scheme Pred associated
to P is an ordinary point of X, the support of P . The curvilinear subscheme
P is said to be based on the point Pred.

A curvilinear subscheme of length 1 is an ordinary point of X. A curvilin-
ear subscheme of length 2 is a pair (P,L), where P is a point of X and L is a
1-dimensional subspace of the tangent space TPX of X at P . Equivalently,
a curvilinear subscheme P of X of length 2 is a point of the exceptional
divisor of the real algebraic surface obtained by blowing up X in an ordi-
nary point. By induction, a curvilinear subscheme P of X of length e is
a curvilinear subscheme of length e − 1 whose support is contained in the
exceptional divisor E of the blow-up of X at the point Pred.

Let P and Q be curvilinear subschemes of X. The subschemes P and Q
of X are said to be disjoint if their supports Pred and Qred of X are disjoint.

Let n be a natural integer and let e = [e1, . . . , eℓ] be a partition of n
of length ℓ, where ℓ is some natural integer. Denote by Xe the set of
ℓ-tuples (P1, . . . , Pℓ) of disjoint curvilinear subschemes P1, . . . , Pℓ of X of
orders e1, . . . , eℓ, respectively.
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Recall that an algebraic automorphism of X is a bijective map f from X
into itself such that all coordinate functions of f and f−1 are algebraic
functions on X (see [HM09]). Denote by Aut(X) the group of algebraic
automorphisms of X into itself. Equivalently, Aut(X) is the group of R-
algebra automorphisms of R(X). One has a natural action of Aut(X) onXe.

One of the main results of the paper is the following statement.

Theorem 1.1. Let X be a nonsingular rational compact real algebraic sur-

face. Let n be a natural integer and let e = [e1, . . . , eℓ] be a partition of n of

length ℓ, for some natural integer ℓ. Then the group Aut(X) acts transitively

on Xe.

Roughly speaking, Theorem 1.1 states that the group Aut(X) acts ℓ-
transitively on curvilinear subschemes of X, for any ℓ. The statement gener-
alizes earlier work where ℓ-transitivity was proved for ordinary points only,
i.e., in the case of the trivial partition e = [1, . . . , 1] (cf. [HM09, Theo-
rem 1.4]).

Theorem 1.1 shows that nonsingular rational compact real algebraic sur-
faces have much more automorphisms than one would expect from [HM09,
Theorem 1.4]. It led us to the following question.

Question 1.2. Let X be a nonsingular rational compact real algebraic sur-

face. Is the subset Aut(X) of algebraic automorphisms of X dense in the

set Diff(X) of all diffeomorphisms of X? Equivalently, can any diffeomor-

phism of X be approximated by algebraic automorphisms?

This question has now been answered affirmatively [KM09].
The problem of approximating smooth maps between real algebraic va-

rieties by algebraic maps has been studied by numerous authors, see e.g.
[BK87a, BK87b, BKS97, Ku99, JK03, JM04, Ma06].

It should be noted that Theorem 1.1 does not seem to follow from the
known n-transitivity of Aut(X) on ordinary points. The difficulty is that if
two n-tuples P and Q of ordinary distinct points of X tend to two ℓ-tuples
of mutually disjoint curvilinear subschemes with lengths e1, . . . , eℓ, then the
algebraic diffeomorphism mapping P to Q does not necessarily have a limit
in Aut(X).

Our proof of Theorem 1.1 goes as follows. First, we show that the state-
ment of Theorem 1.1 is valid for the real algebraic surfaces S2 and S1 ×S1,
by explicit construction of algebraic automorphisms (see Theorems 3.1 and
2.1). This step does use the earlier work mentioned above. Then, we use
the aforementioned fact that an arbitrary nonsingular rational compact real
algebraic surface is either isomorphic to S1 × S1, or to a real algebraic sur-
face obtained from S2 by blowing up a finite number of distinct ordinary
points (cf. [HM09, Theorem 4.3]).

Before giving an application of Theorem 1.1, we need to recall the follow-
ing. Let X be any, possibly singular, real algebraic surface. The notion of
curvilinear subscheme carries over verbatim to such a surface. A curvilinear
subscheme P of X is called nonsingular if it is based at a nonsingular point.
The blow-up of X at a nonsingular curvilinear subscheme P is the blow-
up BP (X) of X at the sheaf of ideals defined by the closed subscheme P .
Explicitly, if P is defined by the ideal (xe, y) on the real affine plane R

2, then
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the blow-up of R
2 at P is the real algebraic subvariety of R

2×P
1(R) defined

by the equation vxe−uy = 0, where (u : v) are homogeneous coordinates on
the real projective line P

1(R). The blow-up BP (X) is also called a weighted

blow-up, for obvious reasons. If e = 1, the blow-up BP (X) is the ordinary
blow-up of X at P . If e ≥ 2 then the blow-up BP (X) has a singular point.
A local equation of the singularity is xe = uy in R

3. This is often called a
singularity of type A−

e−1 (see e.g. [Ko00, Definition 2.1]).
Weighted blow-ups recently turned out to have several applications in real

algebraic geometry (see [Ko99, Ko00, CM08, CM09]).
As an application of Theorem 1.1, we study singular real rational surfaces

that are obtained from nonsingular ones by performing weighted blow-ups.
These surfaces have horns and do have a rather develish appearance. We
introduce the following terminology for the sake of brevity.

Definition 1.3. A, possibly singular, rational compact real algebraic surface

X is Dantesque if it is obtained from a nonsingular compact rational real

algebraic surface by performing finitely many successive weighted blow-ups

based at nonsingular points.

The first statement we prove about rational Dantesque surfaces is the
following.

Theorem 1.4. Let X be a rational Dantesque surface. Then

• there are disjoint curvilinear subschemes P1, . . . , Pℓ on S1 ×S1 such

that X is isomorphic to the real algebraic surface obtained from S1×
S1 by blowing up P1, . . . , Pℓ, or

• there are disjoint curvilinear subschemes P1, . . . , Pℓ on S2 such that X
is isomorphic to the real algebraic surface obtained from S2 by blow-

ing up P1, . . . , Pℓ.

Let X be a rational Dantesque surface. Let n be a natural integer and
let e = [e1, . . . , eℓ] be a partition of n of length ℓ, where ℓ is some natural
integer. Denote by Xe the set of ℓ-tuples (P1, . . . , Pℓ) of disjoint nonsingular
curvilinear subschemes P1, . . . , Pℓ of X of orders e1, . . . , eℓ, respectively.

Denote again by Aut(X) the group of algebraic automorphisms of the
possibly singular real algebraic surface X. Note that the definition of al-
gebraic automorphism of a nonsingular surface above makes perfectly sense
for singular ones. One has a natural action of Aut(X) on Xe.

We prove the following generalization of Theorem 1.1 above.

Theorem 1.5. Let X be a rational Dantesque surface. Let n be a natural

integer and let e = [e1, . . . , eℓ] be a partition of n of length ℓ, for some

natural integer ℓ. Then the group Aut(X) acts transitively on Xe.

More specifically, let (P1, . . . , Pℓ) and (Q1, . . . , Qℓ) be two ℓ-tuples of non-

singular curvilinear subschemes of X such that, for all i, Pi and Qi have the

same order. Then, there is an algebraic automorphism f of X, such that

f(Pi) = Qi, for all i.

Observe that Theorem 1.5 is not an immediate consequence of Theo-
rem 1.1 because an automorphism of the minimal resolution of X does not
descend, in general, to an automorphism of X. It is neither a direct by-
product of Theorem 1.1 and Theorem 1.4, since a curvilinear subscheme can
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be based on an exceptional divisor of the morphism to S2 or S1 × S1 given
by Theorem 1.4.

As an application of Theorem 1.1 and Theorem 1.4, we obtain the follow-
ing classification result.

Theorem 1.6. Let n be a natural integer and let e = [e1, . . . , eℓ] be a parti-

tion of n of length ℓ, for some natural integer ℓ. Let X and Y be two rational

Dantesque surfaces. Assume that each of the surfaces X and Y contains ex-

actly one singularity of type A−

ei
for each i = 1, . . . , ℓ. Then X and Y are

isomorphic as real algebraic surfaces if and only if they are homeomorphic

as singular topological surfaces.

Theorem 1.6 generalizes to certain singular real rational surfaces an earlier
classification result for nonsingular ones [BH07, Theorem 1.2] (see also [HM09,
Theorem 1.5] for another proof of the same statement).

We will show by an example that the statement of Theorem 1.6 does not
hold for the slightly more general class of real rational compact surfaces that
contain singularities of type A− (see Example 7.1).

2. Curvilinear subschemes on the torus

The object of this section is to prove Theorem 1.1 in the case of the real
algebraic torus:

Theorem 2.1. Let n be a natural integer and let e = [e1, . . . , eℓ] be a par-

tition of n of length ℓ, for some natural integer ℓ. The group Aut(S1 × S1)
acts transitively on (S1 × S1)e.

The above statement is a generalization of the following statement, that
we recall for future reference.

Theorem 2.2 ([BH07, Theorem 1.3]). Let n be a natural integer. The group

Aut(S1 × S1) acts n-transitively on S1 × S1. �

For the proof of Theorem 2.1, we need several lemmas. It will turn out
to be convenient to replace S1 by the isomorphic real projective line P

1(R).

Lemma 2.3. Let p, q ∈ R[x] be real polynomials in x of the same degree.

Suppose that q does not have any real roots. Define

ϕ : P
1(R) × P

1(R) −→ P
1(R) × P

1(R)

by

ϕ(x, y) =

(
x, y +

p

q

)
.

Then ϕ is an algebraic automorphism of P
1(R) × P

1(R) into itself.

Proof. It suffices to prove that ϕ is an algebraic map. We write ϕ in bi-
homogeneous coordinates:

ϕ([x0 : x1], [y0 : y1]) = ([x0 : x1], [q̂(x0, x1)y0 + p̂(x0, x1)y1 : q̂(x0, x1)y1]) ,

where p̂ and q̂ are the homogenizations of p and q, respectively. Since q
has no real zeros, the homogeneous polynomial q̂ does not vanish on P

1(R).
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Therefore, if

q̂(x0, x1)y0 + p̂(x0, x1)y1 = 0, and

q̂(x0, x1)y1 = 0

then y1 = 0 and y0 = 0. It follows that ϕ is a well defined algebraic map
from P

1(R) × P
1(R) into itself. �

Definition 2.4. Let P be a curvilinear subscheme of S1×S1. We say that P
is vertical if P is tangent to a vertical fiber {x} × S1, for some x ∈ S1, i.e.

if the scheme-theoretic intersection P · ({x} × S1) is not reduced.

Lemma 2.5. Let P1, . . . , Pℓ be mutually disjoint curvilinear subschemes

of P
1(R) × P

1(R). Then there is an algebraic automorphism ϕ of P
1(R) ×

P
1(R) such that

• ϕ(Pi) is based at the point (i, 0) of P
1(R) × P

1(R), and

• ϕ(Pi) is not vertical,

for all i.

Proof. By Theorem 2.2, we may assume that P1, . . . , Pℓ are based at the
points (1, 0), . . . , (ℓ, 0) of the real algebraic torus P

1(R)×P
1(R), respectively.

Let vi = (ai, bi) be a tangent vector to P
1(R)×P

1(R) at Pi that is tangent
to Pi. This means the following. If Pi is an ordinary point then vi = 0. If
Pi is not an ordinary point then vi 6= 0 and the 0-dimensional subscheme
of P

1(R) × P
1(R) of length 2 defined by vi is contained in the closed sub-

scheme Pi of P
1(R) × P

1(R).
Let p, q ∈ R[y] be real polynomials in y of the same degree such that

• q does not have any real roots,
• p(0) = 0, q(0) = 1, q′(0) = 0 and
• ai + bip

′(0) 6= 0 whenever vi 6= 0.

Define ϕ : P
1(R) × P

1(R) −→ P
1(R) × P

1(R) by

ϕ(x, y) =

(
x+

p

q
, y

)
.

According to Lemma 2.3—exchanging x and y—the map ϕ is an algebraic
automorphism of P

1(R) × P
1(R). Since p(0) = 0, one has ϕ((i, 0)) = (i, 0).

It follows that ϕ(Pi) is also based at (i, 0).
The Jacobian of ϕ at (i, 0) is equal to

D(i,0)ϕ =

(
1 p′(0)q(0)−p(0)q′(0)

q(0)2

0 1

)
=

(
1 p′(0)
0 1

)

By construction, (D(i,0)ϕ)vi has first coordinate nonzero whenever vi 6= 0.
Therefore, ϕ(Pi) is not vertical, for all i. �

Proof of Theorem 2.1. Let P1, . . . , Pℓ be mutually disjoint curvilinear sub-
schemes of the real algebraic torus P

1(R) × P
1(R) of orders e1, . . . , eℓ, re-

spectively. Let Qi be the curvilinear subscheme of P
1(R)×P

1(R) defined by
the ideal ((x − i)ei , y) in R(P1(R) × P

1(R)). It suffices to show that there
is an algebraic automorphism ϕ of P

1(R) × P
1(R) such that ϕ(Qi) = Pi for

all i.
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By Lemma 2.5, we may assume that the curvilinear subscheme Pi is based
at (i, 0) and that ϕ(Pi) is not vertical. It follows that Pi is defined by an
ideal of the form

((x− i)ei , y − fi),

where fi ∈ R[x].
Let p, q ∈ R[x] be of the same degree such that

• q does not have any real roots,
• p = fiq modulo (x− i)ei for all i.

Such polynomials abound by the Chinese Remainder Theorem.
By Lemma 2.3, the polynomials p and q give rise to an algebraic auto-

morphism ϕ of P
1(R) × P

1(R) defined by

ϕ(x, y) =

(
x, y +

p

q

)
.

In order to show that ϕ(Qi) = Pi for all i, we compute

(ϕ−1)⋆((x− i)ei) = (x− i)ei

and

(ϕ−1)⋆(y) = y − p

q
= y − fi

modulo (x−i)ei . Indeed, q is invertible modulo (x−i)ei , and p = fiq modulo
(x− i)ei , by construction of p and q. It follows that ϕ(Qi) = Pi. �

3. Curvilinear subschemes on the unit sphere

The object of this section is to prove Theorem 1.1 in the case of the real
algebraic sphere S2:

Theorem 3.1. Let n be a natural integer and let e = [e1, . . . , eℓ] be a par-

tition of n of length ℓ, for some natural integer ℓ. The group Aut(S2) acts

transitively on (S2)e.

The above statement is a generalization of the following statement, that
we recall for future reference.

Theorem 3.2 ([HM09, Theorem 2.3]). Let n be a natural integer. The

group Aut(S2) acts n-transitively on S2. �

For the proof of Theorem 3.1, we need several lemmas.

Lemma 3.3 ([HM09, Lemma 2.1]). Let p, q, r ∈ R[x] be such that

• r does not have any roots in the interval [−1, 1], and

• p2 + q2 = r2.

Define ϕ : S2 −→ S2 by

ϕ(x, y, z) =

(
x,
yp− zq

r
,
yq + zp

r

)
.

Then ϕ is an algebraic automorphism of S2. �

Definition 3.4. Let P be a curvilinear subscheme based at a point of the

equator {z = 0} of S2. We say that P is vertical if P is tangent to the great

circle of S2 passing through the North pole.
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As for the torus above, we need some standard points on S2. Let

Ri = (xi, yi, zi) =
(
cos( iπ

2ℓ+1), sin( iπ
2ℓ+1 ), 0

)

for i = 1, . . . , ℓ. Note that xi 6= 0 and yi 6= 0 for all i.

Lemma 3.5. Let P1, . . . , Pℓ be mutually disjoint curvilinear subschemes

of S2. Then there is an algebraic automorphism ϕ of S2 such that

• ϕ(Pi) is based at Ri, and

• ϕ(Pi) is not vertical,

for all i.

Proof. By Theorem 3.2, we may assume that Pi is based at the point Ri,
for all i. Let vi = (ai, bi, ci) be a tangent vector to S2 at Pi that is tangent
to Pi. Let p, q, r ∈ R[x] be such that

• r does not vanish on [−1, 1],
• p2 + q2 = r2,
• p(0) = 1, q(0) = 0, r(0) = 1, p′(0) = 0, r′(0) = 0, and
• ai − ciyiq

′(0) 6= 0 or bi + cixiq
′(0) 6= 0, whenever vi 6= 0.

Such polynomials abound. Take, for example,

p(z) = (1 + z2)2 − (λz)2, q(z) = 2(1 + z2)λz, r(z) = (1 + z2)2 + (λz)2,

where λ is any real number such that ai − 2λyici 6= 0 or bi + 2λxici 6= 0
whenever vi 6= 0.

Define ϕ : S2 −→ S2 by

ϕ(x, y, z) =

(
xp(z) − yq(z)

r(z)
,
xq(z) + yp(z)

r(z)
, z

)
.

According to Lemma 3.3—permuting the roles of x, y, z—the map ϕ is an
algebraic automorphism of S2. Since p(0) = 1, q(0) = 0 and r(0) = 1, the
curvilinear subscheme ϕ(Pi) is again based at Ri, for all i.

The Jacobian of ϕ at Ri is equal to

DRi
ϕ =




p(0)
r(0)

−q(0)
r(0)

xip
′(0)r(0)−yiq

′(0)r(0)−xip(0)r′(0)+yiq(0)r′(0)
r(0)2

q(0)
r(0)

p(0)
r(0)

xiq
′(0)r(0)+yip

′(0)r(0)−xiq(0)r
′(0)−yip(0)r′(0)

r(0)2

0 0 1


 =




1 0 −yiq
′(0)

0 1 xiq
′(0)

0 0 1




By construction, (DRi
ϕ)vi has first or second coordinate non zero when-

ever vi 6= 0. Therefore, ϕ(Pi) is not vertical, for all i. �

Lemma 3.6. Let e be a nonzero natural integer, and let i ∈ {1, . . . , ℓ}.
Let f, g, h ∈ R[x]/(x− xi)

e be such that

(3.7) x2 + f2 = 1, and x2 + g2 + h2 = 1

in R[x]/(x − xi)
e. Assume, moreover, that f(xi) = g(xi) = yi. Then there

is a ∈ R[x]/(x− xi)
e such that

(3.8) (1 − a2)f = (1 + a2)g, and 2af = (1 + a2)h
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in R[x]/(x− xi)
e. Moreover, there is such an element a such that 1 + a2 is

invertible in R[x]/(x− xi)
e.

Proof. If h = 0 then f = g, and one can take a = 0. Therefore, we may
assume that h 6= 0. Let d be the valuation of h, i.e., h = (x− xi)

dh′, where
h′ ∈ R[x]/(x − xi)

e is invertible. Since f(xi) = g(xi), one has h(xi) = 0,
i.e., h is not invertible in R[x]/(x − xi)

e and d 6= 0. By Hensel’s Lemma,

there are lifts f̂ , ĝ, ĥ in R[x]/(x − xi)
e+2d of f, g, h, respectively, satisfying

the equations (3.7) in the ring R[x]/(x−xi)
e+2d. Note that f̂+ ĝ is invertible

in R[x]/(x− xi)
e+2d, and that ĥ has valuation d.

In order to simplify notation, we denote again by f, g, h the elements
f̂ , ĝ, ĥ, respectively. Let k ∈ R[x]/(x − xi)

e+2d be the inverse of f + g.
Let a = hk. We verify that equations (3.8) hold and that 1+a2 is invertible
in R[x]/(x− xi)

e.
The element 1 + a2 is clearly invertible in R[x]/(x−xi)

e+2d since h is not
invertible.

Since

(f − g)(f + g) = f2 − g2 = (1 − x2) − (1 − x2 − h2) = h2,

one has

f − g = h2k = h2k2(f + g) = a2(f + g).

It follows that

(1 − a2)f = (1 + a2)g

in R[x]/(x− xi)
e+2d, and therefore also in R[x]/(x− xi)

e.
In order to prove that the other equation of (3.8) holds as well, observe

that

(f − g)2h− 2f(f − g)h + h3 = (f − g)h(f − g − 2f) + h3 =

− (f − g)h(f + g) + h3 = −(f2 − g2)h+ h3 = 0

by what we have seen above. Substituting f − g = ah, one obtains

0 = a2h3 − 2afh2 + h3 = h2(a2h− 2af + h)

in R[x]/(x−xi)
e+2d. Since the valuation of h is equal to d, one deduces that

a2h− 2af + h = 0 in R[x]/(x− xi)
e. Hence, 2af = (1 + a2)h, as was to be

proved. �

Proof of Theorem 3.1. Let P1, . . . , Pℓ be mutually disjoint curvilinear sub-
schemes of S2 of orders e1, . . . , eℓ, respectively. Let Qi be the curvilinear
subscheme of S2 defined by the ideal

((x− xi)
ei , y − fi, z)

in R[x, y, z], where fi is the Taylor polynomial in x− xi of
√

1 − x2 at xi of
order ei − 1. Note that Qi is based at Ri for all i. We show that there is an
algebraic automorphism ϕ of S2 such that ϕ(Qi) = Pi for all i.

By Lemma 3.5, we may assume that P1, . . . , Pℓ are based at the points
R1, . . . , Rℓ of S2, respectively, and that they are not vertical. It follows
that Pi is defined by an ideal of the form

((x− xi)
ei , y − gi, z − hi)
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where gi, hi ∈ R[x] are of degree < ei. Moreover, since Pi is a curvilinear
subscheme of S2, we have

x2 + g2
i + h2

i = 1 (mod (x− xi)
ei).

By Lemma 3.6, there is ai ∈ R[x]/(x− xi)
ei such that

(1 − a2
i )fi = (1 + a2

i )gi, and

2aifi = (1 + a2
i )hi

in R[x]/(x− xi)
ei , and, moreover, 1 + a2

i is invertible.
By the Chinese Remainder Theorem, there is a polynomial a ∈ R[x] such

that a = ai (mod (x− xi)
ei), for all i. Then

(1 − a2)fi = (1 + a2)gi (mod (x− xi)
ei)

2afi = (1 + a2)hi (mod (x− xi)
ei),

and 1 + a2 is invertible in R[x]/(x− xi)
ei , for all i.

Put

p = 1 − a2, q = 2a, r = 1 + a2.

Then

pfi = rgi (mod (x− xi)
ei)

qfi = rhi (mod (x− xi)
ei),

and r is invertible in R[x]/(x− xi)
ei , for all i. Moreover,

• r does not have any roots in the interval [−1, 1], and
• p2 + q2 = r2.

By Lemma 3.3, the polynomials p, q, r give rise to an algebraic automor-
phism ϕ of S2 defined by

ϕ(x, y, z) =

(
x,
yp− zq

r
,
yq + zp

r

)
.

In order to show that ϕ(Qi) = Pi for all i, we compute

(ϕ−1)⋆((x− xi)
ei) = (x− xi)

ei

ui = (ϕ−1)⋆(y − fi) =
yp+ zq

r
− fi

vi = (ϕ−1)⋆(z) =
−yq + zp

r
,

so that ϕ(Qi) is the curvilinear subscheme of S2 defined by the ideal ((x−
xi)

ei , ui, vi). We have

p

r
ui −

q

r
vi = y − p

r
fi = y − gi (mod (x− xi)

ei)

and
q

r
ui +

p

r
vi = z − q

r
fi = z − hi (mod (x− xi)

ei).

It follows that ϕ(Qi) = Pi. �
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4. algebraic automorphisms of nonsingular rational surfaces

The proof of Theorem 1.1 is now similar to the proof of [HM09, Theo-
rem 1.4]. We include it for convenience of the reader.

Proof of Theorem 1.1. Let X be a nonsingular real rational surface, and let
(P1, . . . , Pℓ) and (Q1, . . . , Qℓ) be two ℓ-tuples in Xe. As mentioned before,
X is isomorphic to S1 × S1 or to the blow-up of S2 at a finite number of
distinct points R1, . . . , Rm. If X is isomorphic to S1 ×S1 then Aut(X) acts
transitively on Xe by Theorem 2.1. Therefore, we may assume that X is
isomorphic to the blow-up BR1,...,Rm

(S2) of S2 at R1, . . . , Rm. Moreover, we
may assume that the points (P1)red, . . . , (Pn)red, (Q1)red, . . . , (Qn)red do not
belong to any of the exceptional divisors, by [HM09, Theorem 3.1]. Thus
we can consider the Pj , Qj as curvilinear subschemes of S2. It follows that
(R1, . . . , Rm, P1, . . . , Pℓ) and (R1, . . . , Rm, Q1, . . . , Qℓ) are two (m+ℓ)-tuples
in (S2)f , where f = [1, . . . , 1, e1, . . . , eℓ].

By Theorem 3.1, there is an automorphism ψ of S2 such that ψ(Ri) = Ri,
for all i, and ψ(Pj) = Qj , for all j. The induced automorphism ϕ of X has
the property that ϕ(Pj) = Qj , for all j.

�

5. Rational surfaces with A− singularities

The object of this section is to prove Theorem 1.4 that states that a
rational Dantesque surface is isomorphic to a real algebraic surface obtained
from S2 or S1 × S1 by blowing up a finite number of disjoint curvilinear
subschemes of S2 or S1 × S1, respectively.

The following is a particular case of [HM09, Theorem 3.1] that we recall
for future reference..

Lemma 5.1. Let X be a nonsingular rational real algebraic Klein bottle

Let S be a finite subset of X. Then there is an algebraic map f : X → S2

such that

(1) f is the blow-up of S2 at 2 distinct real points Q1, Q2, and

(2) Qi 6∈ f(S), for i = 1, 2.

Lemma 5.2. Let P be a curvilinear subscheme of S1 × S1, and let C be a

real algebraic curve in S1 × S1 such that there is a nonsingular projective

complexification X of S1 × S1 having the following properties:

(1) the Zariski closure C of C in X is nonsingular and rational,

(2) the self-intersection of C in X is even and non-negative,

(3) Pred ∈ C, and

(4) C is not tangent to P , i.e., the scheme-theoretic intersection P · C is

of length 1.

Then, there is an algebraic map

f : BP (S1 × S1) → Z

that is a blow-up at a curvilinear subscheme Q of Z whose exceptional curve

f−1(Qred) is equal to the strict transform of C in BP (S1 × S1), where Z is

either the real algebraic torus S1 × S1, or the rational real algebraic Klein

bottle K.
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m−1 m

Figure 1. The chain of exceptional curves in Ỹ.

Proof. Let Y be the blow-up of S1×S1 at P . Let β : Y → X be the blow-up
of X at P . It is clear that Y is a nonsingular projective complexification
of Y .

Let m + 1 be the length of the curvilinear subscheme P , where m ≥ 0.

Let ρ : Ỹ → Y be the minimal resolution of Y. If P is a point of length 1,
then ρ = id, of course. The morphism β◦ρ is a repeated blow-up of X . More
precisely, there is a sequence of morphisms of algebraic varieties over R

Ỹ = Xm+1

fm
// Xm

fm−1
// · · · f0

// X0 = X ,

with the following properties. Each morphism fi is an ordinary blow-up of Xi

at a nonsingular ordinary real point Pi of Xi, for all i. One has P0 = Pred,
i.e., f0 is the blow-up of X at Pred. Moreover, denoting by Ei the exceptional
curve of fi in Xi+1, the center of blow-up Pi+1 belongs to Ei but does not
belong to the strict transform of any of the curves Ej in Xi+1 for all j < i.

Denote again by Ei and C the strict transforms of Ei and C in Ỹ, re-
spectively. The curves E0, . . . , Em−1 have self-intersection −2, the curve Em

has self-intersection −1. Since C is not tangent to P , the curve C in Ỹ
has odd self-intersection ≥ −1. The curves C, E0, . . . , Em form a chain of
curves over R in Y, intersecting in real points only (See Figure 1). The

morphism ρ : Ỹ → Y is the contraction of the curves E0, . . . , Em−1. The
morphism β : Y → X is the contraction of ρ(Em), i.e., β−1(Pred) = ρ(Em).

Let k be the self-intersection of C in Ỹ. Since k ≥ −1 and k ≡ −1
(mod 2), the integer k + 1 is even and non-negative. Let R1, . . . , Rk+1

be pairwise complex conjugate of C. Denote by Ỹ ′ the blow-up of Ỹ in

R1, . . . , Rk+1. The algebraic variety Ỹ ′ is again defined over R. The strict

transform of C in Ỹ ′ is a nonsingular rational curve of self-intersection −1.
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Denote again by Ei the strict transform of Ei in Ỹ ′. The self-intersection
of Ei is equal to −2, if i 6= m, the self-intersection of Em is equal to −1.

Let Y ′ be the algebraic surface defined over R obtained from Ỹ ′ by con-

tracting the union of the curves E0 . . . , Em−1 to a point, and let ρ′ : Ỹ ′ → Y ′

be the contracting morphism. Let X ′ be the algebraic surface defined over R

obtained from Y ′ by contracting ρ′(C) to a point, and let β′ : Y ′ → X ′ be
the contracting morphism. Since β′ ◦ ρ′ is a repeated blow-down of −1-
curves, the algebraic surface X ′ is nonsingular. Moreover, the morphism β′

is a blow-up of X ′ at a nonsingular curvilinear subscheme Q of X ′. Denote
again by C the curve ρ′(C) in Y ′. The curve C in Y ′ is the exceptional curve
of β′.

Now take the associated real algebraic varieties, denoted by the corre-
sponding roman characters. Since the points R1, . . . , Rk+1 are non real, one

has Ỹ ′(R) = Ỹ(R), i.e., Ỹ ′ = Ỹ , the minimal resolution of Y . It follows
that Y ′ = Y , and that the induced algebraic map b : Y ′ → X ′ is the blow-
up of the curvilinear subscheme Q of the nonsingular compact connected
real algebraic surface X ′. The exceptional curve of b is equal to the strict
transform of C in Y .

The only thing that is left to prove is the fact that the real algebraic
surface X ′ is isomorphic to S1 × S1 or to the rational real algebraic Klein

bottle K. In order to establish this, observe that Ỹ , as an (m + 1)-fold
blow-up of S1 × S1, is homeomorphic to the connected sum of S1 × S1 and
m+1 copies of P

2(R). Since Y ′ also is homeomorphic to the connected sum
of X ′ and m + 1 copies of P

2(R), it follows that X ′ is homeomorphic to a
torus or a Klein bottle. By [Ma06, Theorem 1.3], or [BH07, Theorem 1.2],
or [HM09, Theorem 1.5], X ′ is isomorphic to S1 × S1 or the rational real
algebraic Klein bottle K. �

A similar, but easier, argument applies and proves the following lemma.

Lemma 5.3. Let P be a curvilinear subscheme of S2, and let C be a real

algebraic curve in S2 such that there is a nonsingular projective complexifi-

cation X of S2 having the following properties:

(1) the Zariski closure C of C in X is nonsingular and rational,

(2) the self-intersection of C in X is even and non-negative,

(3) Pred ∈ C, and

(4) C is not tangent to P , i.e., the scheme-theoretic intersection P · C is

of length 1.

Then, there is an algebraic map

f : BP (S2) → S2

that is the blow-up of S2 at a curvilinear subscheme Q. Moreover, the ex-

ceptional curve f−1(Q) is equal to the strict transform of C in BP (S2). �

Proof of Theorem 1.4. There is a nonsingular real rational compact sur-
face Y such that X is isomorphic to the real algebraic surface obtained
from Y by repeatedly blowing up a nonsingular curvilinear subscheme.
Since Y is a nonsingular rational compact real algebraic surface, Y is ob-
tained either from S2 or from S1×S1, by repeatedly blowing up an ordinary
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point (cf. [BH07, Theorem 3.1] or [HM09, Theorem 4.1]). Hence, there is a
sequence of algebraic maps

X = Xn

fn
// Xn−1

fn−1
// · · · f1

// X0 = Z ,

where Z = S2 or Z = S1×S1, and each map fi is a blow-up at a nonsingular
curvilinear subscheme Qi of Xi−1, possibly of length 1, for i = 1, . . . , n.
Denote by Ei the exceptional divisor f−1

i ((Qi)red) of fi in Xi.
Let F be the set of the curvilinear subschemes Qi. Define a partial order-

ing on F by Qi ≤ Qj if the composition fi◦· · ·◦fj−1 maps (Qj)red to (Qi)red.
It is clear that F is a forest, i.e., a disjoint union of trees.

Let s be the number of edges in the forest F . We show the statement of
the theorem by induction on s. The statement is clear for s = 0. Suppose,
therefore, that s 6= 0. We may assume that Q1 is the root of a tree of F of
nonzero height.

Let C be a real algebraic curve in Z satisfying the conditions of Lemma 5.2
if Z = S1 ×S1, and of Lemma 5.3 if Z = S2, with P = (Q1)red. Such curves
abound: one can take a bi-degree (1, 1) in S1 × S1, or a Euclidean circle
in S2, respectively. Moreover, we may assume that the strict transform of C
in Xi does not contain (Qi+1)red, for all i ≥ 1. Applying Lemma 5.2 and
Lemma 5.3, respectively, one obtains a sequence

X = Xn

fn
// Xn−1

fn−1
// · · · f2

// X1

f ′

1
// X ′

0 = Z ′ ,

where f ′1 contracts the strict transform of C in X1 to a point Q′

1. The
real algebraic surface Z ′ is either the real algebraic sphere S2, or the real
algebraic torus S1 × S1, or the rational real algebraic Klein bottle K. By
construction, the number of edges in the forest F ′ associated to the latter
sequence of blow-ups is equal to s−1. Therefore, if Z ′ = S2 or Z ′ = S1×S1,
we are done. If Z is the real algebraic Klein bottle K, then, according to
Lemma 5.1, there is a sequence of blow-ups

Z ′ = X ′

0

f0
// X ′

−1

f−1
// X−2 = S2

at ordinary points such that the images of the centers Q′

1, Q2, . . . , Qn in X−1

and X−2 are distinct from the centers of the blow-ups f0 and f−1. We
conclude also in this case by the induction hypothesis. �

A close inspection of the above proof reveals that the following slightly
more technical statement holds.

Theorem 5.4. Let X be a rational Dantesque surface, and let S ⊆ X be

a finite subset of nonsingular points of X. Then there is an algebraic map

f : X → S2 or f : X → S1 × S1 with the following properties:

(1) there are mutually disjoint curvilinear subschemes P1, . . . , Pℓ on S2

or S1×S1, respectively, such that f is the blow-up at P1, . . . , Pℓ, and

(2) (Pi)red 6∈ f(S), for all i. �

6. Curvilinear subschemes on a singular rational surface

The object of this section is to prove Theorem 1.5.
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Proof of Theorem 1.5. Let (P1, . . . , Pℓ) and (Q1, . . . , Qℓ) be two elements
of Xe. We prove that there is an algebraic automorphism ϕ of X such
that ϕ(Pi) = Qi, as curvilinear subschemes.

Let S be the set of ordinary points (P1)red, . . . , (Pℓ)red, (Q1)red, . . . , (Qℓ)red
of X. Since S is a finite set of nonsingular points of X, there is, by Theo-
rem 5.4, an algebraic map f : X → S2 or f : X → S1×S1 with the following
properties:

• there are mutually disjoint curvilinear subschemes R1, . . . , Rm on S2

such that f is the blow-up at R1, . . . , Rm, and
• (Ri)red 6∈ f(S), for all i.

Since f is an isomorphism at a neighborhood of S, the image f(Pi) is a
curvilinear subscheme of S2 of length ei, and the same holds for f(Qi), for
all i.

By Theorems 2.1 and 3.1, there is an algebraic automorphism ψ of S2

or S1 × S1, respectively, such that ψ(Pi) = Qi for i = 1, . . . , ℓ, and ψ(Ri) =
Ri for i = 1, . . . ,m. Then, ψ induces an algebraic automorphism ϕ of X
with the required property. �

7. Isomorphic rational real algebraic surfaces

Proof of Theorem 1.6. Let X and Y be rational Dantesque surfaces, such
that each of the surfacesX and Y contains exactly one singularity of typeA−

ei
,

for each i = 1, . . . , ℓ.
If X and Y are isomorphic, then, of course, the singular topological sur-

faces X and Y are homeomorphic.
Conversely, suppose that X and Y are homeomorphic. By Theorem 1.4,

there are nonsingular real rational surfaces X ′ and Y ′, and ℓ-tuples
(P1, . . . , Pℓ) ∈ (X ′)e and (Q1, . . . , Qℓ) ∈ (Y ′)e such that X is the blow-up
of X ′ at P1, . . . , Pℓ and Y is the blow-up of Y ′ at Q1, . . . , Qℓ. Since X and
Y are homeomorphic, X ′ and Y ′ are homeomorphic. It follows that X ′ and
Y ′ are isomorphic. By Theorem 1.1, there is an isomorphism ϕ : X ′ → Y ′

such that ϕ(Pi) = Qi for i = 1, . . . , ℓ. The isomorphism ϕ induces an iso-
morphism between X and Y . �

The following example shows that the statement of Theorem 1.6 does not
hold for the slightly more general class of rational compact connected real
algebraic surfaces that contain singularities of type A−.

Example 7.1. Let X be the real algebraic surface obtained from the real
algebraic torus S1 × S1 by contracting a fiber S1 × {⋆} to a point. Then X
is a rational compact connected real algebraic surface containing only one
singular point. Its singularity is of type A−

1 .
Let P be a point of P

2(R). The real algebraic surface K obtained from
P

2(R) by blowing up P is a real algebraic Klein bottle. Let Y be the real
algebraic surface obtained from the real algebraic Klein bottle K by con-
tracting to a point the strict transform of a real projective line in P

2(R) that
passes through P . Then Y is a rational compact connected real algebraic
surface containing only one singular point. Its singularity is of type A−

1 .
It is clear that X and Y are homeomorphic singular surfaces. Indeed, they

are both rational real algebraic models of the once-pinched torus (Figure 2).
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Figure 2. The once-pinched torus.

However, they are non isomorphic as real algebraic surfaces. Indeed, if they
were isomorphic, their minimal resolutions S1 ×S1 and K were isomorphic,
which is absurd.

Note that the real rational surface Y is Dantesque, whereas X is not.
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