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Abstract. We explore connections between existence of k-rational points for Fano varieties defined over
k, a subfield of C, and existence of Kähler-Einstein metrics on their geometric models. First, we show
that geometric models of del Pezzo surfaces with at worst quotient singularities defined over k ⊂ C admit
(orbifold) Kähler–Einstein metrics if they do not have k-rational points. Then we prove the same result for
smooth Fano 3-folds with 8 exceptions. Consequently, we explicitly describe several families of pointless
Fano 3-folds whose geometric models admit Kähler-Einstein metrics. In particular, we obtain new examples
of prime Fano 3-folds of genus 12 that admit Kähler–Einstein metrics. Our result can also be used to prove
existence of rational points for certain Fano varieties, for example for any smooth Fano 3-fold over k ⊂ C
whose geometric model is strictly K-semistable.
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Throughout this paper, all varieties are assumed to be projective, normal and geometrically irreducible.

1. Introduction

The study of Kähler–Einstein metrics is a half-century old problem in complex geometry, in which the
existence was proved for flat manifolds [76] and for manifolds with negative curvature [4]. The positive
curvature part, the so-called Fano manifolds, do not always admit Kähler–Einstein metrics, a phenomenon
that lead to the notion of K-stability and finally in the resolution of the Yau–Tian–Donaldson conjecture:
a complex Fano manifold admits a Kähler–Einstein metric if and only if it is K-polystable [20, 21, 22].
Another well-studied problem in algebraic geometry is the study of the existence of k-rational points on
(Fano) varieties defined over arbitrary fields k. The aim of this paper is to make a connection between
K-stability and the geometry of Fano varieties defined over subfields of the complex numbers.

In dimension one, there is only one complex Fano manifold, P1, which admits a Kähler–Einstein metric
and can be defined over Q. Two dimensional Fano manifolds are known as del Pezzo surfaces. They form
10 deformation families: P1 × P1 and blow up of P2 in at most 8 points in general position. In [74], Tian
proved that the only non-Kähler–Einstein (smooth) del Pezzo surfaces are

(1) the blowup of P2 at one point, the first Hirzebruch surface denoted by F1, and
(2) the blowup of P2 at two points, the del Pezzo surface of degree 7 denoted by S7.

On the other hand, both surfaces F1 and S7 can be defined over Q. Moreover, F1 has only one form
over Q, and every form of the surface S7 has a rational point. Therefore, if a (smooth) del Pezzo surface
defined over k ⊂ C does not have k-rational points, then its geometric model admits a Kähler–Einstein
metric. In this paper, we show that a similar result also holds for del Pezzo orbifolds, i.e., for del Pezzo
surfaces with at most quotient singularities.

1



Theorem A. Let S be a del Pezzo surface with quotient singularities defined over a subfield k of C.
Assume the geometric model of S does not admit an orbifold Kähler–Einstein metric. Then S has a
k-rational point.

However, this result does not mean that every non-Kähler–Einstein del Pezzo orbifold has a smooth
k-rational point. For example, consider S = {x21 + x22 + x23 = 0} ⊂ P3, a degree 8 del Pezzo surface over
Q, for which SC is K-unstable and S(Q) consists of only [0 : 0 : 0 : 1], the unique singular point of S.

In conclusion, two-dimensional Fano orbifolds defined over a subfield k ⊂ C whose geometric models
are non-Kähler–Einstein always have k-rational points. In higher-dimensions, this phenomenon has a
more complicated nature even for three-dimensional Fano manifolds (Fano 3-folds). For instance, let
X be a Fano 3-fold defined over a subfield k ⊂ C. Even if its geometric model XC does not admit a
Kähler–Einstein metric, we cannot always conclude that X has a k-rational point. Indeed, if X = C ×F1

or C ×S7, where C is a pointless conic (that is, C(k) = ∅ and CC ∼= P1), then XC is not Kähler–Einstein
while X is pointless. Surprisingly, there are not many other exceptions as indicated in our second result:

Theorem B. Let X be a smooth Fano 3-fold defined over a subfield k ⊂ C such that its geometric model
is not Kähler–Einstein. Then X has a k-rational point unless X = C × F1 or X = C × S for a pointless
conic C and a k-form S of S7, or the 3-fold X is one of the following:

(1) the blowup of a pointless quadric in P4 along a quartic elliptic curve;
(2) the blowup of a pointless quadric cone in P4 at its vertex;
(3) the blowup of the product P1×Q along a curve C such that π1(C) is a point, and π2(C) is a conic,

where Q is a pointless quadric in P3, and πi is the projection to the i-th factor;
(4) the blowup of a pointless k-form of P3 along a curve of anticanonical degree 4;
(5) the blowup of a Fano 3-fold described in (4) along a curve of anticanonical degree 2;
(6) the blowup of a Fano 3-fold described in (4) along a disjoint union of a curve of anticanonical

degree 2 and a geometrically irreducible curve of anticanonical degree 4.

The geometric models of the Fano 3-folds described in the eight exceptional cases in Theorem B are
not Kähler–Einstein. Moreover, all of them are K-unstable, so we have the following consequence.

Corollary 1.1. If X is a smooth Fano 3-fold defined over a subfield k ⊂ C such that its geometric model
is strictly K-semistable, then X(k) ̸= ∅.

Note also that pointless forms of the eight exceptional cases in Theorem B exist over many subfields of
C as, for instance, one can construct relevant examples over R. Such constructions are easy to obtain in
the cases (1), (2), (3). The example below provides pointless constructions in the remaining three cases.

Example 1.2. Let U be a three-dimensional Severi–Brauer variety defined over R with U ̸≃ P3
R. By

[34, 46], U exists uniquely and has no real points. Crucially, U contains a zero-dimensional irreducible
subscheme Z of degree 2 for which ZC is a union of two complex conjugate points in UC ≃ P3. It follows
that U also contains a unique curve L of anticanonical degree 4 containing Z. In [46], the curve L is called
twisted line as LC is a line in UC containing both points of ZC. Now, let f : X → U be the blowup of the
curve L, and let E be the f -exceptional divisor. Then X is a pointless real Fano 3-fold described in (4)
in Theorem B, and E ≃ L× L. Next, set C = f−1(Z). Then C is an irreducible geometrically reducible
smooth curve in X with −KX · C = 2. Moreover, every curve of anticanonical degree 2 in X can be
described in this way. By blowing up X along the curve C we obtain a pointless real Fano 3-fold, which
corresponds to (5) in Theorem B. Finally, let L′ be another twisted line in U , and let C ′ be its strict
transform on X. Then L ∩ L′ = ∅ so that −KX · C ′ = 4. Furthermore, every geometrically irreducible
curve of anticanonical degree 4 in X is a strict transform of a twisted line in U that is disjoint from L.
By blowing up X along the curves C and C ′, we obtain a pointless real Fano 3-fold described in (6) in
Theorem B.

Remark 1.3. Theorem B can be used to explicitly produce (new) examples of Kähler–Einstein Fano 3-
folds. For instance, real pointless smooth Fano 3-folds of Picard rank 1 and anticanonical degree 22 are
classified in [45], and all of them are K-polystable by Theorem B. This provides new Kähler–Einstein
Fano 3-folds in Family 1.10. For another example of a K-stable smooth Fano 3-fold in this deformation
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family, see [18]. Note that also that Family 1.10 contains non-Kähler–Einstein smooth Fano 3-folds that
can be defined over R [3, 75, 31].

Proof of Theorem B. Unlike the proof of Theorem A, the proof of Theorem B is somewhat classification
based. Recall that smooth Fano 3-folds have been classified into 105 deformation families by Iskovskikh
[37, 38, 39] and Mori–Mukai [60, 61, 62, 63, 64, 65]. We follow the Mori–Mukai numbering of the 105
families, written as “Family �m.n”, in which m is the rank of the Picard group of the 3-fold, ranging
from 1 to 10, and n is simply a list number. If X is a smooth Fano 3-fold defined over a subfield k ⊂ C,
then we will say that X is in a given family if XC is contained in this family. To prove Theorem B, we
partition 105 deformation families of smooth Fano 3-folds into the following three sets:

(i) 52 families in which all smooth elements are known to be Kähler–Einstein;
(ii) 27 families where all smooth members are non-Kähler–Einstein;
(iii) 26 families in which only general members are known to be Kähler–Einstein.

It is often a difficult task to verify whether a given Fano variety is Kähler–Einstein. Recent invention of
K-stability methods have enabled such studies although, as one expects, explicit K-stability verification
requires a detailed study of the geometry of the given Fano variety. With much effort in recent years it has
been verified that all smooth Fano 3-folds in the following 52 deformation families are Kähler–Einstein:

• Families �1.1, �1.2, �1.3, �1.4, �1.5, �1.6, �1.7, �1.8 [2, Theorem5.1];
• Families�1.11, �1.12, �1.13, �1.14, �1.15, �1.16, �1.17, �2.25, �2.27, �2.29, �2.32, �2.34,
�3.1, �3.9, �3.15, �3.17, �3.19, �3.20, �3.25, �3.27, �4.2, �4.3, �4.4, �4.6, �4.7, �5.1,
�5.3, �6.1, �7.1, �8.1, �9.1, �10.1 [3];

• Families �2.1, �2.2, �2.3, �2.4, �2.6, �2.7 [11];
• Family �2.8 [54];
• Family �2.15 [35];
• Families �2.18 and �3.4 [13];
• Family �3.3 [12];
• Family �4.1 [5].

These families are irrelevant for the proof of Theorem B — we listed them with appropriate referencing
for completeness of exposition. Similarly, the following is the list of 27 Fano 3-fold families without any
Kähler–Einstein smooth members: �2.23, �2.26, �2.28, �2.30, �2.31, �2.33, �2.35, �2.36, �3.14,
�3.16, �3.18, �3.21, �3.22, �3.23, �3.24, �3.26, �3.28, �3.29, �3.30, �3.31, �4.5, �4.8, �4.9,
�4.10, �4.11, �4.12, �5.2 [3, 16, 33]. In Section 4 we show that for each element in 19 of these families
every member has k-points when defined over k, hence producing the 8 families appearing in Theorem B
as exceptional cases. The varieties appearing in Theorem B are the only pointless members in each of
those 8 families. This is clear in (1), (2), (3), and for C × F1 and C × S7. Other cases are also easy to
see. For example, consider a pointless variety X for which XC is the blowup of P3 in a line. Then X is
the blowup of a non-trivial k-form U of P3 along a curve of anticanonical degree 4 so that its geometric
model is a line in P3, as in Example 1.2. The remaining 26 families are Families �1.9, �1.10, �2.5,
�2.9, �2.10, �2.11, �2.12, �2.13, �2.14, �2.16, �2.17, �2.19, �2.20, �2.21, �2.22, �2.24, �3.2,
�3.5, �3.6, �3.7, �3.8, �3.10, �3.11, �3.12, �3.13, �4.13. Among these we treat 8 families (Families
�2.9, �2.11, �2.14, �2.17, �2.20, �2.22, �3.8, �3.11) in Section 4 by showing that every member has
k-points when defined over k, and for the remaining 18 families we prove in Section 5 that the k-pointless
elements are K-polystable. As the reader expects, the latter is the main bulk of the proof. Note that
some of these families contain smooth complex non-Kähler–Einstein Fano 3-folds. □

Structure of the paper. Section 2 contains some preliminary technical results that we will use in the
article. In Section 3 we prove TheoremA. In Section 4 we prove existence of k-rational points for all
smooth members in 27 families of Fano 3-folds as explained above, which includes 8 families containing
K-polystable objects where K-(poly)stability is unknown (or sometimes known not to hold) for all smooth
elements. There remain 19 other families with that property, and in Section 5 we prove that any smooth
elements in those 19 families for which there exists a k-form with no k-points is K-polystable. In Section 6
we produce pointless examples for each of those 19 families, to illustrate the relevance of the proof of
TheoremB.
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2. Preliminaries

In this section, we collect some known technical results that we will be using in this article. The reader
may skip them and only consult them as they are referred to.

We first state the following classical result which is valid over any field k. We will use this theorem
repeatedly throughout the article.

Lemma 2.1 (Lang–Nishimura Lemma). Let V and W be projective integral varieties defined over a field
k such that there exists a rational map V 99KW . If V admits a smooth k-rational point, then W (k) ̸= ∅.

Proof. See, for example, [67, Theorem 3.6.11]. □

The next two elementary lemmas about Severi–Brauer varieties will be used frequently.

Lemma 2.2. Let U be a Severi–Brauer variety of dimension n over k. If U contains a divisor defined
over k whose degree is coprime to n+ 1, then U is isomorphic to Pnk .

Proof. This is well known to experts. See, for example, [34, Theorem 5.1.3] or [46]. □

Corollary 2.3 (cf. [36]). Let X be a variety of dimension ⩾ 2 such that XC is a hypersurface in Pn of
degree d such that (n, d) ̸= (2, 3), (n, d) ̸= (3, 4), and n+ 1 and d are coprime. Then X is a hypersurface
in Pn of degree d.

Proof. It follows from [23, Chapter 7] that X can be embedded in a k-form of Pn as twisted hypersurface
of degree d. Hence, it follows from Lemma 2.2 that this k-form of Pn is actually isomorphic to Pn, so the
result follows. □

Lemma 2.4. Let U be a Severi–Brauer variety of dimension three over k and C an irreducible curve in
U such that CC is contained in a plane in UC ≃ P3, but CC is not a line. Then U ∼= P3.

Proof. Let H be the plane in UC that contains CC. Then H is defined over k as otherwise there will be
at least two planes containing CC, which implies that CC is a line. Hence U ∼= P3 by Lemma 2.2. □

We will also need the following classification based result.

Lemma 2.5. Let X be a smooth Fano 3-fold defined over k with base extension XC being of Picard rank
ρ(XC) = 2 and not contained in the families �2.12 and �2.21. If XC admits an extremal birational
contraction π : XC → V , then there exists a morphism p : X → W defined over k such that the base
extension pC : XC →WC coincides with π.

Proof. The required assertion is well-known. See for example [69, Theorem 1.2]. If ρ(X) = 1, then two
extremal rays of the Mori cone NE(XC) would be permuted by the Galois group Gal(C/k). However, it
follows from the description of these extremal rays [60] that this is impossible, unless if XC is in Family
�2.12 or �2.21. Hence, ρk(X) = 2, so both contractions associated to the extremal rays of NE(XC) are
defined over k. This completes the proof. □

We now turn our attention to some certain stability threshold type invariants that allow estimations
that prove K-(poly)stability.

Let X be a smooth Fano 3-fold, and let S be an irreducible smooth surface in X. Set

τ = sup
{
u ∈ R⩾0

∣∣ the divisor −KX − uS is pseudo-effective
}
.

For u ∈ [0, τ ], let P (u) be the positive part of the Zariski decomposition of the divisor −KX − uS, and
let N(u) be its negative part. Set

SX(S) =
1

−K3
X

∫ ∞

0
vol
(
−KX − uS

)
du =

1

−K3
X

∫ τ

0

(
P (u)

)3
du.
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For every prime divisor F over S, following [3], we set

S
(
WS

•,•;F
)
=

3

(−KX)3

∫ τ

0

(
P (u) · P (u) · S

)
· ordF

(
N(u)

∣∣
S

)
du+

+
3

(−KX)3

∫ τ

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vF

)
dvdu.

Theorem 2.6 ([1]). For any point p ∈ S we have

δp(X) ⩾ min

{
1

SX(S)
, inf

F/S
p∈CS(F )

AS(F )

S
(
WS

•,•;F
)},

where the infimum is taken by all prime divisors over S whose center on S contains p.

This theorem can be used to show that δp(X) ⩾ 1. However, if S(WS
•,•;F ) > AS(F ) for at least one

prime divisor F over the surface S with p ∈ CF (S), then we cannot use Theorem 2.6 to prove that
δp(X) ⩾ 1. In this case, we use a similar approach to estimate the δ-invariant for prime divisors over X
whose centers on X are curves. To do this, let C be an irreducible curve in S. Write

N(u)
∣∣
S
= N ′(u) + ordC

(
N(u)

∣∣
S

)
C,

so N ′(u) is an effective R-divisor on S whose support does not contain C. For u ∈ [0, τ ], let

t(u) = sup
{
v ∈ R⩾0

∣∣ the divisor P (u)
∣∣
S
− vC is pseudo-effective

}
.

For v ∈ [0, t(u)], we let P (u, v) be the positive part of the Zariski decomposition of P (u)|S − vC, and we
let N(u, v) be the negative part of the Zariski decomposition of P (u)|S − vC. Then

S
(
WS

•,•;C
)
=

3

(−KX)3

∫ τ

0

(
P (u) · P (u) · S

)
· ordC

(
N(u)

∣∣
S

)
du+

+
3

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u, v)

)2
dvdu.

Theorem 2.7 ([1, 3]). Let E be a prime divisor over X such that CX(E) = C. Then

AX(E)

SX(E)
⩾ min

{
1

SX(S)
,

1

S
(
WS

•,•;C
)}.

In particular, if SX(S) < 1 and S(WS
•,•;C) < 1, then β(E) > 0.

Now, we suppose, in addition, that C is smooth and p ∈ C. Then, following [1, 3], we let

Fp
(
WS,C

•,•,•
)
=

6

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u, v) · C

)
· ordp

(
N ′(u)

∣∣
C
+N(u, v)

∣∣
C

)
dvdu

and

S
(
WS,C

•,•,•; p
)
=

3

(−KX)3

∫ τ

0

∫ t(u)

0

(
P (u, v) · C

)2
dvdu+ Fp

(
WS,C

•,•,•
)
.

We have the following estimate:

Theorem 2.8 ([1, 3]). One has

δp(X) ⩾ min

{
1

SX(S)
,

1

S
(
WS

•,•;C
) , 1

S
(
WS,C

•,•,•; p
)}.

In particular, if SX(S) < 1, S(WS
•,•;C) < 1 and S(WS,C

•,•,•; p) < 1, then δp(X) > 1.
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Now, let f : S̃ → S be a blowup of the surface S at the point p, let E be the f -exceptional curve, and

let Ñ ′(u) be the proper transform on S̃ of the divisor N(u)|S . For u ∈ [0, τ ], we let

t̃(u) = sup
{
v ∈ R⩾0

∣∣ f∗(P (u)|S)− vE is pseudo-effective
}
.

For v ∈ [0, t̃(u)], let P̃ (u, v) be the positive part of the Zariski decomposition of f∗(P (u)|S)− vE, and let

Ñ(u, v) be the negative part of this Zariski decomposition. Set

S
(
WS

•,•;E
)
=

3

(−KX)3

∫ τ

0

(
P (u)·P (u)·S

)
·ordE

(
f∗(N(u)|S)

)
du+

3

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v)

)2
dvdu.

Finally, for every point q ∈ E, we set

Fq
(
WS,E

•,•,•
)
=

6

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v) · E

)
× ordq

(
Ñ ′(u)

∣∣
E
+ Ñ(u, v)

∣∣
E

)
dvdu

and

S
(
WS,E

•,•,•; q
)
=

3

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v) · E

)2
dvdu+ Fq

(
WS,E

•,•,•
)
.

If p ̸∈ Supp(N(u)) for every u ∈ [0, τ ], the formulae for S(WS
•,•;E) and Fq(W

S,E
•,•,•) simplify as

S
(
WS

•,•;E
)
=

3

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v)

)2
dvdu,

Fq
(
WS,E

•,•,•
)
=

6

(−KX)3

∫ τ

0

∫ t̃(u)

0

(
P̃ (u, v) · E

)
× ordq

(
Ñ(u, v)

∣∣
E

)
dvdu.

Moreover, Theorem 2.8 can be generalized as follows:

Theorem 2.9 ([1, 3]). One has

δp(X) ⩾ min

{
1

SX(S)
,

2

S
(
WS

•,•;E
) , inf
q∈E

1

S
(
WS,E

•,•,•; q
)}.

3. Singular del Pezzo surfaces

The overall goal of this section is to prove Theorem A. We first gather some technical results about
birational invariants of del Pezzo surfaces that will be used in the proof.

3.1. On α-invariants of del Pezzo surfaces. Let k be a subfield of C, and let S be a del Pezzo surface
defined over k with quotient singularities. Recall that

α(S) = sup

{
λ ∈ R⩾0

∣∣∣∣ the log pair (S, λD) has log canonical singularities for

every effective Q-divisor D on S such that D ∼Q −KS

}
.

Lemma 3.1. Suppose that S(k) = ∅ and α(S) < 1. Then α(S) ∈ Q>0, and the surface S contains a
smooth geometrically irreducible and geometrically rational curve C such that

1

α(S)
= sup

{
u ∈ R⩾0

∣∣ the divisor −KS − uC is pseudo-effective
}
,

and −KS ∼Q
1

α(S)C +∆, where ∆ is an effective Q-divisor on S such that (S,C +α(S)∆) has purely log

terminal singularities.

Proof. Arguing as in the proof of [7, Proposition 3.4], we see that

(3.1) α(S) = lct(S,D)
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for some effective Q-divisor D ∼Q −KS on the surface S. One can deduce (3.1) without using the proof
of [7, Proposition 3.4], since it follows from Kollár–Shokurov connectedness theorem [48, Corollary 5.49]
that

α(S) = inf
{ 1

τ(C)

∣∣ C is an irreducible curve in S
}
,

where τ(C) = sup
{
u ∈ R⩾0

∣∣ the divisor −KS − uC is pseudo-effective
}
.

The log pair (S, α(S)D) has log canonical singularities, but it is not klt (Kawamata log terminal),
hence the locus Nklt(S, α(S)D) is not empty and it is connected by Kollár–Shokurov connectedness.
Since S(k) = ∅, we conclude that Nklt(S, α(S)D) is a connected union of irreducible curves and, in
particular, the surface S contains a k-irreducible curve C with D = τC +∆, where τ = 1

α(S) and ∆ is an

effective Q-divisor whose support does not contain C. This gives

τ = sup
{
u ∈ R⩾0

∣∣ the divisor −KS − uC is pseudo-effective
}
.

If C is not a minimal log canonical center of the log pair (S, α(S)D) = (S,C + α(S)∆), then using
Kawamata–Shokurov trick [19, Lemma 2.4.10], also known as tie breaking, we can replace the divisor D
by an effective Q-divisor

D′ ∼Q (1 + ϵ)
(
−KS

)
for some sufficiently small ϵ ∈ Q>0 such that the log pair (S, α(S)D′) has log canonical singularities but
Nklt(S, α(S)D′) consists of finitely many points. Now, using Kollár–Shokurov connectedness, we obtain
a contradiction with the assumption that S(k) = ∅. Hence, the curve C is a minimal log canonical center
of the log pair (S,C + α(S)∆), which implies that C is smooth [42].

Now, using properties of log canonical centers [41, 42], we conclude that Nklt(S, α(S)D) = C, which
implies that the curve C is connected and the log pair (S, α(S)D) is purely log terminal. Hence, the curve
C is geometrically irreducible. Finally, using Kawamata’s subadjunction theorem, we see that the curve
C is geometrically rational. □

Corollary 3.2. Suppose that S(k) = ∅, the rank of the Picard group of S is 2, and NE(S) is generated
by irreducible curves C1 and C2 such that C2

1 = C2
2 = 0 and C1 · C2 > 0. Then α(S) ⩾ 1

2 .

Proof. Suppose that α(S) < 1
2 . By Lemma 3.1, there is a geometrically irreducible curve C ⊂ S such that

−KS ∼Q
1

α(S)
C +∆,

where ∆ is an effective Q-divisor on S. Without loss of generality, we may assume that C · C1 > 0.
Observe that |nC1| is base point free for n≫ 0. Moreover, replacing k by its algebraic closure, we may

assume that |nC1| gives a morphism π : S → P1 such that its general fiber F ≃ P1. Then

2 = −KS · F =
1

α(S)
C · F +∆ · F ⩾

1

α(S)
C · F ⩾

1

α(S)
> 2,

which is absurd. □

Let C be a geometrically irreducible curve in S and set

τ = sup
{
u ∈ R⩾0

∣∣ the divisor −KS − uC is pseudo-effective
}
.

Then τ ∈ Q>0 and −KS ∼Q τC + ∆, where ∆ is an effective Q-divisor on S with C ̸⊆ Supp(∆). In
particular, we see that α(S) ⩽ 1

τ . Set

β(C) = 1− 1

(−KS)2

τ∫
0

vol
(
−KS − uC

)
du.

Lemma 3.3. Suppose that β(C) ⩽ 0. Then the following assertions hold:

(1) if C2 > 0, then τ > 2;
(2) if C2 ⩾ 0, then τ ⩾ 2;
(3) if C2 = 0 and τ = 2, then −KS ∼Q 2C + aZ, for a ∈ Q>0 and an irreducible curve Z ⊂ S with

Z2 = 0.
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Proof. All required assertions follow from [32, Lemma 9.7]. □

Let f : S̃ → S be the minimal resolution of the del Pezzo surface S, and denote by C̃ the strict transform

on S̃ of the curve C.

Lemma 3.4. If C̃2 < 0 then S̃(k) ̸= ∅ and S(k) ̸= ∅.

Proof. If C̃2 < 0, then it follows from the adjunction formula that C̃2 = −1, and C̃ is a k-form of P1.

Since −C̃|
C̃
is a line bundle of degree 1, we have C̃ ∼= P1 which implies that S̃(k) ̸= ∅. □

Corollary 3.5. If S(k) = ∅ and β(C) ⩽ 0, then either C2 > 0 or C2 = 0 and C ∩ Sing(S) = ∅.

Corollary 3.6. Suppose that S(k) = ∅ and β(C) ⩽ 0. Then either τ > 2 or S ≃ P1 ×C2 for a pointless
conic C2 ⊂ P2.

Proof. Suppose that τ ⩽ 2. Then C2 = 0 and C ∩ Sing(S) = ∅ by Lemma 3.3 and Corollary 3.5.
Moreover, it follows from Lemma 3.3 that τ = 2 and −KS ∼Q 2C+aZ, for some positive rational number
a and an irreducible curve Z ⊂ S with Z2 = 0. By Riemann–Roch formula, the linear system |C| is a
pencil that gives a conic bundle S → P1. Since S is a Mori Dream Space, the linear system |nZ| is base
point free for some positive integer n, and it also gives a conic bundle S → C2 where C2 is a conic defined
over k. If C2(k) ̸= ∅, that C2(k) ∼= P1 , and we can replace Z by a general fiber of the conic bundle
S → C2. Similarly, if C2(k) = ∅, we may assume that Z is an irreducible geometrically reducible curve
that is a preimage of a general irreducible zero-dimensional subscheme of the conic C2 of length 2. In
both cases, we have Z ∩ Sing(S) = ∅. Using adjunction formula, we get

2C · Z =
(
2C + aZ

)
· Z = −KS · Z =

{
2 if C2(k) ̸= ∅,
4 if C2(k) = ∅.

But C · Z ̸= 1, because S(k) = ∅. Thus, we see that C2 is a pointless conic and C · Z = 2. Now, taking
the product of the morphisms S → P1 and S → C2, we obtain the isomorphism S → P1 × C2. □

Let S → S′ be a birational morphism such that S′ is normal. Then S′ is a del Pezzo surface with
quotient singularities. Applying Lemma 3.1 and Corollary 3.5, we get the following result:

Corollary 3.7. The following assertions hold:

(1) if S(k) = ∅, then S′(k) = ∅;
(2) if S(k) = ∅ and α(S) < 1, then α(S′) ⩽ α(S).

Note that we cannot always deduce that α(S′) ⩽ α(S) without using the condition S(k) = ∅. Indeed,
if S′ = P1 × P1 and S is a blow up of a point in S′, then

1

3
= α(S) < α(S′) =

1

2
.

3.2. Real del Pezzo surfaces; a warm up. To convey the ideas, we first prove Theorem A for del
Pezzo surfaces defined over the real numbers. We then proceed with the proof over other fields.

Let S be a del Pezzo surface with quotient singularities defined over R.

Lemma 3.8. Suppose that α(S) < 1
2 . Then S(R) ̸= ∅.

Proof. Set τ = 1
α(S) and suppose that S(R) = ∅. Then it follows from Lemma 3.1 that S contains

a geometrically irreducible curve C with −KS ∼Q τC +∆ for some effective Q-divisor ∆ on S.

Let f : S̃ → S be the minimal resolution of the del Pezzo surface S and denote by C̃ and ∆̃, respectively,

the strict transforms on S̃ of the curve C and the divisor ∆. Then S̃(R) = ∅ and −K
S̃
∼Q τC̃ + ∆̃ + B̃,

where B̃ is an effective Q-divisor on the surface S̃ whose support consists of f -exceptional curves. Now,

applying Minimal Model Program to S̃, we obtain a birational morphism h : S̃ → S such that one of the
following two cases holds:

(1) S is a smooth del Pezzo surface of Picard rank 1;
8



(2) S is a smooth surface of Picard rank 2, and there is a (standard) conic bundle π : S → C2, where
C2 is a geometrically irreducible conic in P2.

In both cases, we have S(R) = ∅ by Lemma2.1. Note that C̃ is not h-exceptional, because C̃(R) = ∅.

Set C = h(C̃) and let ∆ and B be the strict transforms on S of the divisors ∆̃ and B̃, respectively. Then

(3.2) −KS ∼Q τC +∆+B.

Hence, if S is a smooth del Pezzo surface of Picard rank 1, then it follows from (3.2) and τ > 2 that
S is a Severi–Brauer surface and C is a twisted line on it [46], which implies that S ∼= P2, which is a
contradiction since S(R) = ∅.

Thus, there is a conic bundle π : S → C2. Now, using (3.2) and intersecting τC+∆+B with a general
fiber of the conic bundle π, we see that C is a fiber of π, because τ > 2. Then C2 ≃ P1. Now, using
ρ(S) = 2 and S(R) = ∅, we see that S is a form of Fn for some n ∈ Z⩾0, see [47, 57]. Then (3.2) and

τ > 2 give n ̸= 0, so the surface S contains the unique geometrically irreducible curve Z with Z
2
= −n.

Since Z · C = 1, we see that Z ∩ C consists of a single point in S(R), which is a contradiction. □

Corollary 3.9. Suppose that S(R) = ∅. Then SC is K-polystable.

Proof. Suppose that SC is not K-polystable. Then it follows from [33, 53, 77] that S contains a geomet-
rically irreducible curve C with β(C) ⩽ 0. Moreover, using Corollary 3.6, we see that −KS ∼Q τC +∆
for some rational number τ > 2 and an effective Q-divisor ∆ on the surface S. This gives α(S) ⩽ 1

τ <
1
2 ,

which contradicts Lemma 3.8. □

3.3. Del Pezzo surfaces of Picard rank one. Let k be a subfield of C, let S be a del Pezzo surface
with quotient singularities defined over k, and let ρ(S) be the rank of the Picard group of the surface S.

Lemma 3.10. Suppose that ρ(S) = 1 and α(S) < 1
2 . Then S(k) ̸= ∅.

Proof. Set τ = 1
α(S) and suppose that S(k) = ∅. By Lemma 3.1, there exists a geometrically irreducible

smooth and geometrically rational curve C ⊂ S with −KS ∼Q τC, and the log pair (S,C) has purely log
terminal singularities. Let us seek for a contradiction.

Let f : S̃ → S be the minimal resolution of S and let C̃ be the strict transform on S̃ of the curve C.

Then S̃(k) = ∅ and −K
S̃
∼Q τC̃ + B̃, where B̃ is an effective Q-divisor on the surface S̃ whose support

consists of f -exceptional curves. Now, applying Minimal Model Program to S̃, we obtain a birational

morphism h : S̃ → S such that one of the following two cases holds:

• S is a smooth del Pezzo surface of Picard rank 1;
• S is a smooth surface of Picard rank 2 and there is a (standard) conic bundle π : S → C2, where
C2 is a geometrically irreducible conic in P2.

Moreover, arguing as in the proof of Lemma 3.8, we see that the former case is impossible, which implies
that S is a smooth surface of Picard rank 2 and there exists a conic bundle π : S → C2. Note that
S(k) = ∅ by Lemma2.1.

Set C = h(C̃), and let B be the strict transform of the divisor B̃ on the surface S . Then

(3.3) −KS ∼Q τC +B.

Arguing as in the proof of Lemma 3.8, we see that C2 ≃ P1 and C is a fiber of the conic bundle π. Then

C̃2 ⩽ C
2
= 0, which implies that C̃2 = 0 by Lemma 3.4, because we know that S̃(k) = ∅. Hence, we see

that h is an isomorphism in a neighborhood of the curve C̃, and the complete linear system |C̃| gives the
composition morphism π ◦ h : S̃ → C2.

Let SC and S̃C be the models of the surfaces S and S̃ over the algebraic closure C of the field k, let
CC and C̃C be the curves in SC and S̃C that correspond to C and C̃, respectively. Then CC ≃ C̃C ≃ P1.

Note that C̃2
C = 0 < C2

C, which implies that CC ∩ Sing
(
SC
)
̸= ∅. Since (SC, CC) has purely log terminal

singularities, it follows from [42, 68] that CC contains at most three singular points of the surface SC, and
all these singular points are cyclic quotient singularities. Thus, since C(k) = ∅ and CC ≃ P1, the curve
CC contains two singular points of the surface SC, which are swapped by the action of Gal(C/k).
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Let P1 and P2 be the singular points of the surface SC contained in CC. Then the exceptional curves

of the minimal resolution S̃C → SC that are mapped to the singular points P1 and P2 form two disjoint
Hirzebruch–Jung strings, which are swapped by the action of the group Gal(C/k). Since (SC, CC) is

purely log terminal, the curve C̃C intersects the first (or the last) curves of these strings, which we denote
by E1 and E2, respectively. Set E = E1 + E2. Then E is defined over k, so we consider it as a curve in

S̃. Then E is the only f -exceptional curve that intersect the curve C̃. Hence, there exists the following
commutative diagram:

S̃
g

{{

f

##
Ŝ

q // S

where g is the contraction of all f -exceptional curves except for the curve E, and q is a partial resolution
of singularities of the surface S that contracts the strict transform of the curve E.

Let Ê = g(E) and Ĉ = g(C̃), Then −K
Ŝ
∼Q τĈ + aÊ for some a ∈ Q>0. On the other hand, we have

Ĉ2 = 0 and Ĉ · Ê = 2, because g is an isomorphism in a neighborhood of the curve C̃. Furthermore, we

have −K
Ŝ
· Ĉ = 2 by the adjunction formula. This gives a = 1, because

2 = −K
Ŝ
· Ĉ =

(
τĈ + aÊ

)
· Ĉ = aÊ · Ĉ = 2a.

Hence, since Ê is smooth, the subadjunction formula applied to Ê gives

−4 = deg
(
K
Ê

)
⩽
(
K
Ŝ
+ Ê

)
· Ê = −τĈ · Ê = −2τ < −4,

which is a contradiction. □

Corollary 3.11. Suppose that ρ(S) = 1 and S(k) = ∅. Then SC is K-polystable.

Proof. Suppose that SC is not K-polystable. Then it follows from [53, 33, 77] that S contains a geometri-
cally irreducible curve C such that β(C) ⩽ 0. Then −KS ∼Q τC for some rational number τ ⩾ 3, which
implies that α(S) ⩽ 1

τ ⩽ 1
3 <

1
2 , but this contradicts Lemma 3.10. □

3.4. The proof of Theorem A. Let k be a subfield of the field C, let S be a del Pezzo surface with
quotient singularities defined over k, and let ρ(S) be the rank of the Picard group of the surface S.

Lemma 3.12. Suppose that α(S) < 1
2 . Then S(k) ̸= ∅.

Proof. Let us prove the assertion by induction on ρ(S). The case ρ(S) = 1 is done by Lemma 3.10.
Suppose that ρ(S) ⩾ 2, and the assertion holds for del Pezzo surfaces with smaller Picard rank. We have
to show that S(k) ̸= ∅. Suppose that S(k) = ∅. Let us seek for a contradiction.

If there exists a non-biregular birational morphism S → S′ such that S′ is a normal surface, then S′ is
a del Pezzo surface with quotient singularities, and it follows from Corollary 3.7 that α(S′) ⩽ α(S) < 1

2
and S′(k) = ∅, which contradicts the induction hypotheses. Hence, we see that S does not admit any
non-biregular birational morphism to a normal surface. This is only possible when ρ(S) = 2, and NE(S)
is generated by irreducible curves C1 and C2 such that C2

1 = C2
2 = 0 and C1 ·C2 > 0. But in this case we

have α(S) ⩾ 1
2 by Corollary 3.2. □

Now, using Lemma 3.12 and arguing as in the proof Corollary 3.11, we obtain Main Theorem. Indeed,
if S(k) = ∅ and the surface SC is not K-polystable, then it follows from [53, 33, 77] that S contains a
geometrically irreducible curve C such that β(C) ⩽ 0, so it follows from Corollary 3.6 that−KS ∼Q τC+∆
for some rational number τ > 2 and an effective Q-divisor ∆ on the surface S, so α(S) ⩽ 1

τ <
1
2 , which

contradicts Lemma 3.12.

4. Smooth Fano 3-folds with k-points

In this section, we prove existence of points for a number of Fano 3-folds defined over any subfield k
of C. As stated in the introduction, there are 26 families of smooth Fano 3-folds containing K-polystable
members such that either they contain a non-K-polystable member or the K-stability picture for all
smooth elements is lacking. Among them, we single out 8 families and prove in Subsection 4.1 that any
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members in those families, when defined over k, contains k-rational points. There are also 27 families of
smooth Fano 3-folds where every smooth member is known to be non-Kähler-Einstein. In Subsection 4.2
we show that every smooth member in 19 families (out of 27) always contain k-rational points. This
leaves 8 families that contain exceptional cases of TheoremB.

4.1. Families containing K-polystable members.

Lemma 4.1. Suppose that X is contained in Family �2.9. Then X has a k-point.

Proof. By Mori–Mukai [60], we have the following commutative diagram

XC
f

yy
π

%%
P3 // P2

where f is the blowup of a smooth curve C of degree 7 and genus 5, π is a standard conic bundle with
discriminant curve ∆ ⊂ P2 of degree 5, and the dashed arrow is given by the two-dimensional linear
system of all cubic surfaces that contain the curve C. Moreover, it follows from Lemma 2.5 that this
diagram can be defined over k with XC replaced by X, P3 replaced by a k-form U of P3 and P2 replaced
by a k-form V of P2. Applying Lemma 2.2 to ∆ and V , we conclude that V ≃ P2. Let L be a line in V
and let S = f∗

(
π∗(L)

)
. Then applying Lemma 2.2 to S and U , we conclude that U ≃ P3. In particular,

we see that X(k) ̸= ∅. □

Lemma 4.2. Suppose that X is contained in Family �2.11. Then X has a k-point.

Proof. Arguing as in the proof of Lemma 4.1, we see that there exists the following commutative diagram

X
f

yy
π

%%
Y P2

where Y is a form of a smooth cubic hypersurface YC ⊂ P4, f is the blowup of a curve C ⊂ Y such that
CC is a line in the cubic hypersurface YC, π is a conic bundle. Then Y is a Y is a cubic hypersurface in
P4 by Corollary 2.3, so C is a line in it, which gives C(k) ̸= ∅. In particular, Y (k) ̸= ∅, and Lemma 2.1
says that X(k) ̸= ∅ as well. □

Lemma 4.3. Suppose that X is contained in Family �2.14. Then X has a k-point.

Proof. By Mori–Mukai [60], XC can be obtained by blowing up of the smooth quintic del Pezzo 3-fold V5
along an elliptic curve. Thus, it follows from Lemma 2.5 that X can be obtained by blowing up a k-form
of V5. By [49, Theorem 1.1], any k-form of V5 is k-rational, hence so is X, in particular X(k) ̸= ∅. □

Lemma 4.4. Suppose that X is contained in Family �2.17. Then X has a k-point.

Proof. It follows from Mori–Mukai [60] and Lemma 2.5 that there exists a birational morphism π : X → Q
such that Q is a k-form of a smooth quadric 3-fold in P4, and π is the blowup of a smooth elliptic curve
C such that −KQ · C = 15. Then Q is a quadric in P4 by Corollary 2.3, so C is a curve of degree 5 in
it. Now, taking hyperplane section of C, we obtain a zero-cycle in Q of degree 5 defined over k, which
implies that Q has a k-point, so X also has a k-point by Lemma 2.1. □

Lemma 4.5. Suppose that X is contained in Family �2.20. Then X has a k-point.

Proof. By Mori–Mukai [60], XC can be obtained by blowing up a smooth quintic del Pezzo 3-fold V5 along
a twisted cubic curve. Now, arguing as in the proof of Lemma 4.3, we conclude that X is rational over k
and, in particular, it has a k-point. □

Lemma 4.6. Suppose that X is contained in Family �2.22. Then X has a k-point.

Proof. By Mori–Mukai [60], XC can be obtained by blowing up a smooth quintic del Pezzo 3-fold V5
along a conic. Now, arguing as in the proof of Lemma 4.3, we conclude that X is rational over k and, in
particular, it has a k-point. □
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Lemma 4.7. Suppose that X is contained in Family �3.8. Then X has a k-point.

Proof. Note that XC ⊂ F1 × P2 is a divisor in the linear system |(ς ◦ pr1)∗(OP2(1))⊗ pr∗2(OP2(2))|, where
pr1 : F1 ×P2 → F1 and pr2 : F1 ×P2 → P2 are projections to the first and the second factors, respectively,
and ς : F1 → P2 is the blowup of a point. Combining ς ◦ pr1 and pr2, we obtain a morphism σ : XC → Y
such that Y is a smooth divisor of degree (1, 2) in P2×P2. Let π1 : Y → P2 and π2 : Y → P2 be projections
to the first and the second factors, respectively. Then σ is a blowup of a smooth curve C that is a fiber
of the morphism π1. Let p = π1(C). Then ς is a blowup of the point p with commutative diagram

XCθ

��
pr1|XC

��

σ //

pr2|XC

!!
Y

π1
��

π2 // P2

P1 F1
ϑoo ς // P2

where ϑ is a natural projection, θ is a fibration into del Pezzo surfaces of degree 5. Moreover, combining
morphisms θ and pr2|XC , we obtain a birational morphism υ : XC → P1×P2 that is a blowup of a smooth
curve of degree (4, 2). This shows that the Mori cone NE(XC) is simplicial and is generated by the
following extremal rays:

(1) the ray generated by the curves contracted by σ : XC → Y ,
(2) the ray generated by the curves contracted by υ : XC → P1 × P2,
(3) the ray generated by the curves contracted by pr1|XC : XC → F1.

Now, arguing as in the proof of Lemma 2.5, we see that the conic bundle pr1|XC : XC → F1 descends to a
conic bundle X → F1 defined over k, because F1 does not have non-trivial forms over k. Now, composing
this conic bundle with the projection ϑ : F1 → P1, we see that the del Pezzo fibration ϑ : XC → P1 is
also defined over k. Since del Pezzo surfaces of degree 5 are rational over any field, we see that X is
k-birational to P2 × P1, so that it is k-rational and, in particular, it has a k-point. □

Lemma 4.8. Suppose that X is contained in Family �3.11. Then X has a k-point.

Proof. Over C we have a commutative diagram

P1 × P2

pr2

��

pr1

		

XC σ

""

ϕ

}}

θ

zz

π

$$
ξ

��

ζ

OO

P1 Y
νoo

ϖ

$$

V7
ϑ

zz

η // P2

P3

==aa

where ϑ is the blowup of a point p ∈ P3, π is the blow up of the strict transform of a smooth quartic
elliptic curve C that passes through the point p, ζ is a birational contraction of the strict transform of the
cubic cone in P3 with vertex at p that contains the elliptic curve C to a smooth curve in P1×P2 of degree
(2, 3), ϖ is the blowup of the curve C, θ is the blowup of the fiber of ϖ over the point p, η is a P1-bundle,
ν is a fibration into quadric surfaces, σ is a conic bundle, the left dashed arrow is given by the pencil of
quadric surfaces that contain C, the right dashed arrow is the linear projection from the point p, and pr1
and pr2 are projections to the first and the second factors, respectively. This shows that the Mori cone
NE(XC) is simplicial and is generated by the following extremal rays:

(1) the ray generated by the curves contracted by θ : XC → Y ,
(2) the ray generated by the curves contracted by π : XC → V7,
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(3) the ray generated by the curves contracted by ζ : XC → P1 × P2.

Now, arguing as in the proof of Lemma 2.5, we see that these extremal rays are defined over k, so their
contractions can also be defined over k. Since V7 does not have non-trivial forms over k, see Lemma 4.12
below, we see that X is rational over k. In particular, we have X(k) ̸= ∅. □

4.2. K-unstable families.

Lemma 4.9. Suppose that X is contained in Family �2.26. Then X has a k-point.

Proof. By Mori–Mukai [62], XC can be obtained by blowing up a smooth quintic del Pezzo 3-fold V5 along
a line. Arguing as in the proof of Lemma 4.3, we conclude that X is rational over k and X(k) ̸= ∅. □

Lemma 4.10. Suppose that X is contained in Family �2.28 or in Family �2.30. Then X has a k-point.

Proof. Over C, the 3-fold XC can be obtained by blowing up P3 along a smooth plane curve of degree
3 or 2. Applying Lemma 2.5 and Lemma 2.4, we see that X is also obtained by blowing up P3 along a
smooth plane curve defined over k. This implies that X is rational over k, in particular X(k) ̸= ∅. □

Lemma 4.11. Suppose that X is contained in Family �2.31. Then X has a k-point.

Proof. By Mori–Mukai [62], the base extension XC can be obtained by blowing up a smooth quadric 3-fold
Q ⊆ P4 along a line. Let E be the exceptional divisor of this blowup. Then, by Lemma 2.5, the surface
E is defined over k. On the other hand, it is well known that EC is isomorphic to F1. Since F1 does not
have non-trivial forms over k, we conclude that E ≃ F1, so E(k) ̸= ∅. Hence, X(k) ̸= ∅ as well. This
also implies that X is k-rational, since forms of smooth quadrics containing k-points are k-rational. □

Lemma 4.12. Suppose that X is contained in Family �2.35. Then X is isomorphic to the blowup of P3

at a point. In particular, X has a k-point.

Proof. A variety in this family is often called V7. By Mori–Mukai [62], XC can be obtained by blowing up
P3 at a point p. By Lemma 2.5, X can be obtained by blowing up a k-form of P3, say X → U such that
the image p of the exceptional divisor yields a k-rational point of a Severi–Brauer 3-fold U , in particular,
U is isomorphic to P3. □

Lemma 4.13. Suppose that X is contained in Family �2.36. Then X has a k-point.

Proof. By Mori–Mukai [62], the base extension XC, which is isomorphic to P(OP2 ⊕OP2(−2)), possesses
two extremal contractions: a divisorial contraction f : XC → P(1, 1, 1, 1, 2) and a P1-bundle π : XC → P2.
Since the action of Gal(C/k) on the Mori cone NE(XC) leaves the two rays invariant, both f and π are
defined over k. With a slight abuse of notation, denote by π the descent π : X → U over k, where U is a
Severi–Brauer surface. The exceptional divisor E of f is defined over k, and π induces an isomorphism
E ≃ U . Moreover, applying Lemma 2.2 to the divisor E|E and the Severi–Brauer surface E, we conclude
that E ∼= P2. In particular, we have E(k) ̸= ∅, so X has a k-point. Indeed, one can show that X is
rational over k. □

Lemma 4.14. Suppose that X is contained in Family �3.14. Then X has a k-point.

Proof. Let Π be a plane in P3, and let p be a point in P3 with p ̸∈ Π, let ϕ : V7 → P3 be the blowup of this

point, and let Π̃ be the proper transform on V7 of the plane Π. Then there exists a birational morphism

π : XC → V7 that is a blowup of a smooth elliptic curve C ⊂ Π̃. Set C = ϕ(C). Then C is smooth plane
cubic curve in P3. Let EC be the π-exceptional surface, and let EP , HC , F be the proper transforms on
the 3-fold XC of the ϕ-exceptional surface, the plane Π, and the cubic cone in P3 over the curve C with

13



vertex p, respectively. Then we have the following commutative diagram:

P2 P
(
OP2 ⊕OP2(2)

)
oo // P(1, 1, 1, 2)

V7

ϕ
��

OO

XC
πoo

ψ

OO

φ
��

σ // Ŷ

OO

��
P3 P̃3

ϖ
oo

ς
// Y

where ϖ is the blowup of the curve C , φ is the contraction of the surface EP , σ and ψ are the contractions
of the surfaces HC and F , respectively, ς is the contraction of the surface φ(HC), Y is a Fano 3-fold that

has a singular point of type 1
2(1, 1, 1), the morphism Ŷ → Y is the blowup of a smooth point of the 3-fold

Y , both V7 → P2 and P(OP2⊕OP2(2)) → P2 are P1-bundles, the morphism P(OP2⊕OP2(2)) → P(1, 1, 1, 2)
is the contraction of the surface ψ(HC), and Ŷ → P(1, 1, 1, 2) is the contraction of σ(F ). This shows that
the Mori cone NE(XC) is generated by the extremal rays that are spanned by the curves contracted by ψ,
φ, π, σ. Since the Galois group Gal(C/k) cannot permute any of these rays, we see that the commutative
diagram above descents to k. Since V7 does not have non-trivial forms over k by Lemma 4.12, we see that
X is k-rational and, in particular, has a k-point. □

Lemma 4.15. Suppose that X is contained in Family �3.16. Then X has a k-point.

Proof. Let C be a twisted cubic curve in the space P3, let p be a point in the curve C , let ϕ : V7 → P3

be the blowup of this point, and let C be the proper transform of the cubic curve C on the 3-fold V7.
Then XC can be obtained as the blowup π : XC → V7 along the curve C. One can see that X fits into the
commutative diagram

W
p1

uu

p2

))P2 P2

XC
φ

))

π

uu

ψ

OO

V7

ϕ ))

OO

P̃3

ϖuu

OO

P3

where W is a smooth divisor of degree (1, 1) in P2 × P2, both p1 and p2 are P1-bundles, the morphism ϖ

is the blowup of P3 along C , the morphism P̃3 → P2 is a P1-bundle whose fibers are proper transforms of
the secant lines in P3 of the twisted cubic curve C , the morphism V7 → P2 is the P1-bundle whose fibers
are proper transforms of the lines in the space P3 that pass through p, and φ is the blowup of the fiber of
ϖ over p. Observe that the Mori cone NE(XC) is simplicial and is generated by the extremal rays spanned
by the curves contracted by ψ, φ, π. Since the Galois group Gal(C/k) cannot permute any of these rays,
we see that the commutative diagram above descents to k. Now, as in the proof of Lemma 4.14, we see
that X is rational over k. In particular, we have X(k) ̸= ∅. □

Lemma 4.16. Suppose that X is contained in Family �3.18. Then X has a k-point.
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Proof. The Fano 3-fold XC can be obtained as a blowup π : XC → P3 along a disjoint union of a smooth
conic C and a line L. There is a commutative diagram

Q̃

uu ))
Q P1

XC

π

��

ϕ

))
θ

uu

ψ

OO

V

φ ))

η

OO

Y

ϑuu

OO

P3

where ϑ is the blowup of the line L, the morphism φ is the blowup of the conic C, the morphisms θ and
ϕ are blowups of the proper transforms of the curves L and C, respectively, Q is a smooth quadric in P4,

the morphism η is the blowup of a point in Q, the morphism Q̃→ Q is the blowup of a conic (the proper

transform of the line L), the morphism Y → P1 is a P2-bundle, the morphism Q̃→ P1 is a fibration into
quadric surfaces, and ψ is the contraction of the proper transform of the plane in P3 containing C.

This shows that the Mori cone NE(XC) is simplicial and is generated by the extremal rays spanned by
the curves contracted by θ, ϕ, ψ. Since the Galois group Gal(C/k) cannot permute any of these rays, we
see that the commutative diagram above descends to k. In particular, we can obtain X as the blowup
of a Severi–Brauer 3-fold U along a disjoint union of a twisted line and a twisted conic. Now, applying
Lemma 2.5 to U and the twisted conic, we see that U ≃ P3. Hence, we see that X is rational over k. □

Lemma 4.17. Suppose that X is contained in Family �3.21. Then X has a k-point.

Proof. Over C, there exists a blowup π : XC → P1 × P2 of a smooth curve C of degree (2, 1). Let S be
the proper transform on X of the surface in P1 × P2 of degree (0, 1) that passes through the curve C, let
ℓ1 and ℓ2 be the rulings of the surface S ∼= P1 × P1 such that the curves π(ℓ1) and π(ℓ2) are of degree
(1, 0) and (0, 1) in P1 × P2, respectively. Let E be the π-exceptional surface, and let ℓ3 be a fiber of the
natural projection E → C. Then the curves ℓ1, ℓ2, ℓ3 generate the Mori cone NE(X), and the extremal
rays R⩾0[ℓ1] and R⩾0[ℓ2] give birational contractions X → U1 and X → U2, respectively. Moreover, it
follows from the proof of [17, Lemma 8.22] that there is a commutative diagram

P1 × P2

tt **P1 P2

XC

**tt

π

OO

U1

**

OO

U2

tt

OO

V

where the morphism U1 → P1 is a quadric bundle, the morphism U2 → P2 is a P1-bundle, the map
U1 99K U2 is a flop, and V is a Fano 3-fold in Family �1.15 with one isolated ordinary double point
singularity. For details, we refer the reader to the case (2.3.2) in [73, Theorem 2.3].

Since the Galois group Gal(C/k) cannot non-trivially permute extremal rays R⩾0[ℓ1], R⩾0[ℓ2], R⩾0[ℓ3],
we see that the diagram above is defined over k with XC replaced by X, P1 replaced by a (possibly
pointless) conic C2, and P2 is replaced by its k-form U . Then we may assume that C is a curve in C2×U
defined over k, and π is the blowup of the product C2 ×U along this curve. Then the image of the curve
C in U via the natural projection pr2 : C2 × U → U is a twisted line in the Severi–Brauer surface U , so
it follows from Lemma 2.2 that U ≃ P2 and pr2(C) is a line. Moreover, since pr2|C : C → pr2(C) is an
isomorphism, we see that C is isomorphic to P1, which implies in turn that C2 ≃ P1 via the projection
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pr1 : : C2 × U → C2 in consideration of Lüroth’s Theorem. Therefore X is birational to P1 × P2 over k,
so X is rational over k. In particular, we have X(k) ̸= ∅. □

Lemma 4.18. Suppose that X is contained in Family �3.22. Then X has a k-point.

Proof. Let pr1 : P1×P2 → P1 and pr2 : P1×P2 → P2 be the projections to the first and the second factors,
respectively, let H1 be a fiber of the map pr1, let H2 = pr∗2(OP2(1)), and let C be a conic in H1

∼= P2.
Then there is a blow up ψ : XC → P1 × P2 along the curve C.

Let EC be the ψ-exceptional surface, let H̃1 be the proper transform of the surface H1 on the 3-fold

X, let F be the surface in |H2| that contains C, and let F̃ be the proper transform of this surface on X.
We have the following commutative diagram:

P1 × P2
pr1

tt

pr2

,,P1 P2

XC
ϕ

++
π

tt

ψ

OO

Y

φ **

η

OO

P
(
OP2 ⊕OP2(2)

)
ϖss

σ

OO

P(1, 1, 1, 2)

where π and ϕ are the contraction of the surfaces H̃1
∼= P2 and F̃ ∼= P1×P1, respectively, the morphisms ϖ

and φ are the contractions of the surfaces ϕ(H̃1) and π(F̃ ), respectively, the morphism σ is a P1-bundles,

and η is a fibration into del Pezzo surfaces such that all its fibers except π(F̃ ) are isomorphic to P2, while

π(F̃ ) ∼= P(1, 1, 4). Note that the Mori cone NE(X) is simplicial and it is generated by the extremal rays
contracted by π, ϕ and ψ. As in the proof of Lemma 4.17, we see that the above diagram can be defined
over k with XC replaced by X, P1 replaced by a (possibly pointless) conic C2, and P2 is replaced by its
k-form U . Then π is a blow up of the product C2 ×U along a curve C defined over k such that pr1(C) is
a point in C2, and pr2(C) is a twisted conic in the Severi–Brauer surface U . Now, applying Lemma 2.2,
we see that C2

∼= P1 and U ∼= P2, so X is X is rational over k, which gives X(k) ̸= ∅. □

Lemma 4.19. Suppose that X is contained in Family �3.23. Then X has a k-point.

Proof. Let C be a smooth conic in P3, let p be an arbitrary point in the conic C , let ϕ : V7 → P3 be the
blowup of the point p, and let C be the proper transform on the 3-fold V7 of the conic C . Then, over C,
there exists a birational morphism π : XC → V7 that is the blowup of the curve C. One can see that X
fits into the commutative diagram

Q̂

vv ((P2 Q

X
φ

))
π

uu

ψ

OO

V7

ϕ ))

OO

P̃3

ϖuu uu

OO

P3

where Q is a smooth quadric 3-fold in P4, the morphism ϖ is the blowup of the conic C , the morphism

P̃3 → Q is the contraction to a point of the proper transform of the plane in P3 that contains C , φ is the

blowup of the fiber of the morphism ϖ over the point p, the morphism Q̂ → Q is the blowup of a line

in Q that passes through the latter point, and Q̂ → P2 is a P1-bundle. Hence, the Mori cone NE(XC) is
simplicial and is generated by the extremal rays spanned by the curves contracted by ψ, φ, π. Since the
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Galois group Gal(C/k) cannot permute any of these rays, the commutative diagram above descents to k.
Since V7 does not have non-trivial forms over k by Lemma 4.12, we see that X is k-rational. □

Lemma 4.20. Suppose that X is contained in Family �3.24. Then X has a k-point.

Proof. Over C, there is a blowup ϕ : XC → P1 ×P2 of a smooth curve C of degree (1, 1), and we have the
following commutative diagram

P1 × P2

pr1

��

pr2

��

XC

ϕ

OO

ζ

ww

π

��

α // W
ω1

  
P1 F1

ξ
oo γ // P2

where W is a divisor of degree (1, 1) on P2 × P2, ω1 is a natural P1-bundle, α contracts a smooth surface
E ∼= P1 × P1 to a fiber L of ω1, γ is the blowup of the point ω1(L), the morphism ξ is a P1-bundle, ζ is a
F1-bundle, pr1 and pr2 are projections to the first and the second factors, respectively. This commutative
diagram shows that the Mori cone NE(XC) is generated by the extremal rays spanned by the curves
contracted by π, α, ϕ. Since the Galois group Gal(C/k) cannot non-trivially permute these rays, we see
that the commutative diagram above descents to k with XC replaced by X, P1 replaced by a (possibly
pointless) conic C2, and P2 is replaced by its k-form U . Then we may assume that C is a curve in C2×U
defined over k, and π is the blowup of the product C2×U along this curve. But pr2(C) is a twisted line in
U , which gives U ≃ P2 by Lemma 2.2. Moreover, since pr2|C : C → pr2(C) is an isomorphism and pr2(C)
is a line, we see that C ∼= P1. Then C2 ≃ P1 as well, since pr1|C : C → C2 is an isomorphism. Therefore,
we see that X is birational to P1 × P2 over k. In particular, X has k-point. □

Lemma 4.21. Suppose that X is contained in Family �3.26. Then X has a k-point.

Proof. Let V7 be the blowup of P3 at a point p, let L be a line in P3 not containing p, and let C be its
strict transform on V7. Then XC can be obtained by blowing up V7 along the curve C, and it follows
from [60] and [62] that XC has exactly one divisorial contraction, the inverse of the blowing up XC → V7
of the curve C. Thus, the blowup XC → V7 descents to k, but V7 does not have non-trivial k-forms by
Lemma 4.12, which implies that X can be obtained by blowing up V7 over k. In particular, X(k) ̸= ∅. □

Lemma 4.22. Suppose that X is contained in Family �3.29. Then X has a k-point.

Proof. As in the proof of Lemma 4.21, let f : V7 → P3 be the blowup of a point p, let E be the f -
exceptional surface, and let C be a line in E ≃ P2. Then XC can be obtained by blowing up V7 along the
curve C. Moreover, it follows from [60] and [62] that XC has two extremal contractions, one of which is
to V7 and the other is to P(OP2 ⊕OP2(2)). In particular, they are both defined over k and we obtain the
required assertion as in the proof of Lemma 4.21. □

Lemma 4.23. Suppose that X is contained in Family �3.30. Then X has a k-point.

Proof. As in the proof of Lemmas 4.21 and 4.22, let f : V7 → P3 be the blowup of a point p. Then
V7 ∼= P(OP2 ⊕OP2(1)). Let L be a fiber of the natural projection V7 → P2. Then XC can be obtained by
blowing up V7 along L. Moreover, it follows from [60] and [62] that XC has two extremal contractions:
one of them is the birational morphism XC → V7, and the other one is a birational contraction of
V7 → P(O⊕2

P1 ⊕ OP1(1)). In particular, both morphisms must be defined over k. Now, arguing as in the
proof of Lemma 4.21, we see that X is k-rational and, in particular, it has a k-point. □

Lemma 4.24. Suppose that X is contained in Family �4.5. Then X has a k-point.

Proof. Let C be a curve of degree (2, 1) in P1 × P2, let L be a curve of degree (1, 0) in P1 × P2 that is

disjoint from C. let f : Y → P1 × P2 be the blowup of the curve C, and let L̃ be the strict transform of
the curve L on the 3-fold Y . Then it follows from [60, 62] that the base extension XC is isomorphic over
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C to the the blowup of Y along the curve L̃. Moreover, analyzing the Mori cone of the 3-fold XC, we see
that the birational morphism XC → Y descends to the k-birational morphism from X to a k-form of Y .
From the proof of Lemma 4.17, we know that all k-forms of Y are k-rational, so X is also k-rational. In
particular, X has a k-point. □

Lemma 4.25. Suppose that X is contained in Family �4.9. Then X has a k-point.

Proof. Let L1 and L2 be two disjoint lines in P3, let f : Y → P3 be the blowup of the curves L1 an L2,
let E1 and E2 be the f -exceptional surfaces such that f(E1) = L1 and f(E2) = L2, and let C be a fiber
of the natural projection E1 → L1. Then there exists a birational morphism g : XC → Y that blows up
the curve C.

Let EC be the g-exceptional surface, let Ẽ1 and Ẽ2 be the strict transforms on XC of the surfaces E1

and E2, respectively. Then there exists a birational contraction h : XC → V7 of the surfaces Ẽ1 and Ẽ2

such that V7 is the blowup of P3 at the point f(C), and h(EC) is the exceptional divisor of the morphism
V7 → P3. To be precise, we have the following commutative diagram:

XC
g

uu

h

))
Y

f ))

V7

uuP3

Moreover, it follows from [60] and [62] that this commutative diagram is defined over k, so that X is
k-rational, since V7 does not have non-trivial k-forms by Lemma 4.12. In particular, we see that X has a
k-point. □

Lemma 4.26. Suppose that X is contained in Family �4.11. Then X has a k-point.

Proof. Let V = P1 × F1, let S be a fiber of the natural projection V → P1, and let C be the (−1)-curve
in S ∼= F1. Then it follows from [60, 62] that there exists a birational morphism f : XC → P1 × F1 that
is the blowup of the curve C. Let E be the f -exceptional divisor. Then it follows from [58] that E is
defined over k. Since F1 does not have non-trivial forms over k, the 3-fold X is the blowup of C × F1,
where C is a conic in P2. However, the image of E in C × F1 is a curve that is contained in a fiber of
the natural projection C × F1 → C , which implies that C has a k-point. Therefore, X is k-birational to
P1 × F1 and, in particular, it has a k-point. □

Remark 4.27. As seen in the above argument, all k-forms of strictly K-semistable Fano 3-folds except for
those belonging to Family �2.11 are rational over k.

5. Pointless K-polystable Fano 3-folds

In this section, we work through the 18 families of Fano 3-folds that contain K-polystable elements
but K-polystability is not known for all elements. They also exhibit the phenomenon that their smooth
elements do not always admit k-points. The next section deals with examples in each case without
k-points.

Strategy of the proof in this section: In each case, we denote by X the smooth Fano 3-fold defined
over k ⊂ C, which we assume has no k-rational points, and by XC its geometric model, which we aim to
prove is K-polystable. The argument of the proof starts by assuming XC is not K-polystable. Suppose XC
is not K-polystable. Then it follows from the valuative criterion for K-stability ([33, 53]) that δ(XC) ⩽ 1.
Since δ(XC) <

4
3 , it follows from [55, Theorem 1.2] that there exists a prime divisor F over XC that

computes δ:

δ(XC) =
AX(F)

SX(F)
.

Moreover, if δ(XC) < 1 it follows from [77, Theorem 4.4] that F is defined over k. If δ(XC) = 1 we can
also assume F is defined over k by [77, Corollary 4.14], because XC is not K-polystable. Let Z ⊂ X
be the center of the divisor F. Then Z is not a surface by [3, Theorem 3.17]. On the other hand, since
X(k) = ∅, we conclude that Z is a geometrically irreducible curve defined over k. In each case, we get a
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contradiction, often by estimating lower bounds of greater than 1 for δC(XC) for all curves C ⊂ XC, and
noting that

δC(XC) = inf
AX(E)

SX(E)
,

where infimum runs over all prime divisors over XC whose centers contain C.

Lemma 5.1. Suppose that X is contained in Family �1.9 and X(k) = ∅. Then XC is K-polystable.

Proof. Let S be a very general surface in |−KXC |. Then S is a smooth K3 surface with Pic(S) = Z[−KXC ],
so that it follows from [43] and [2, Theorem A] that

δ
(
S,−KXC |S

)
⩾

4

5
,

so that

δ(XC) ⩽ 1 ⩽
4

3
δ(S,−KXC |S).

We are now in a position to apply [2, Corollary 5.6] to F over X. Note that [2, Corollary 5.6] applies over
k by tautology. Hence, it follows that at least one of the following two cases holds:

(1) either there exists an effective Q-divisor D on the 3-fold X such that D ∼Q −KX and Z is a center
of non-log canonical singularities of the log pair (X, 12D), so, in particular, the log pair (X, 12D)
is not log canonical along the curve Z;

(2) or there exists a mobile linear system M ⊂ |−nKX | such that Z is a center of non-klt singularities
of the log pair (X, 1

2nM).

In the second case, if M1 and M2 are general surfaces in M, then it follows from Corti’s inequality [25,
Theorem 3.1], see also [3, Theorem A.22], that M1 ·M2 = mZ + ∆ for some positive integer m ⩾ 16n2

and some effective one-cycle ∆ on the 3-fold X, which implies that

18n2 = −KX ·M1 ·M2 = m(−KX) · Z + (−KX) ·∆ ⩾ m(−KX) · Z ⩾ 16n2(−KX) · Z,

so that −KX · Z = 1, which is impossible, since −KX is very ample [39] and X(k) = ∅. So, we are left
to analyze the first case.

Now, arguing as in the proof of [3, Theorem 1.52], we can replace the effective Q-divisor D with another
Q-divisor D′ on the 3-fold X such that

D′ ∼Q D ∼Q −KX ,

the log pair (X,λD′) has log canonical singularities for some positive rational number λ < 1
2 such that the

singularities of the log pair (X,λD′) are not klt (not Kawamata log terminal), and the locus Nklt(X,λD′)
is geometrically irreducible, and consists of a minimal center of log canonical singularities of the pair
(XC, λD

′
C). Here, we implicitly used Nadel’s vanishing theorem and Kollár–Shokurov connectedness

theorem, see [3, Appendix A.1].
Set C = Nklt(X,λD′). Then C is not a surface, since Pic(X) is generated by −KX . Similarly, as

above, we see that C is not a point, because X(k) = ∅. Thus, we see that C is a geometrically irreducible
curve. Then it follows from the proof of [3, Theorem 1.52] that C is a smooth geometrically rational curve
with

−KX · C ⩽
2

1− λ
< 4.

Here, we have implicitly used basic properties of minimal centers of log canonical singularities and Kawa-
mata’s subadjunction theorem [41, 42].

As above, we see that −KX · C ̸= 1, because −KX is very ample. Similarly, we see that −KX · C ̸= 3
by Lemma 2.2, because C is geometrically rational and C(k) = ∅. Hence, we conclude that −KX ·C = 2.

Starting from now, we work with the geometric model XC and with abuse of notation we write X and
C for their geometric models over C. Moreover, we identify X with its anticanonical embedding in P11, so

C is a conic in X. Let ϕ : X̃ → X be the blowup of the conic C, and let E be the ϕ-exceptional surface.
Then it follows from [72, (2.13.2)] or from [39, Theorem 4.4.11] and [39, Corollary 4.4.3] that the linear
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system | −K
X̃
| is base point free, and the linear system | −K

X̃
−E| gives a birational map χ : X 99K P2

such that we have the following commutative diagram.

X̃

α $$ϕ

��

ζ // V

π

��

βzz
Y

X
χ // P2

where α is a small birational morphism given by the linear system | − K
X̃
|, Y is a Fano 3-fold with

Gorenstein non-Q-factorial terminal singularities such that −K3
Y = 12, the map ζ is a pseudo-isomorphism

that flops the curves contracted by α, β is a small birational morphism given by the linear systems |−KV |,
and π is a conic bundle. This shows that the cone of effective divisors of the 3-fold X̃ is generated by the
divisors E and −K

X̃
− E ∼ ϕ∗(−KX)− 2E. On the other hand, we have

multC
(
D′) ⩾ 1

λ
> 2.

This is a well-known fact, see for example [52, Proposition 9.5.13]. Thus, if D̃′ is the strict transform of

the divisor D′ on the 3-fold X̃, then

D̃′ ∼Q ϕ
∗(−KX

)
−multC

(
D′)E ∼Q

(
−K

X̃
− E

)
−
(
multC

(
D′)− 2

)
E,

which is a contradiction, since multC(D
′) > 2. □

Lemma 5.2. Suppose that X is contained in Family �1.10 and X(k) = ∅. Then XC is K-polystable.

Proof. Arguing as in the proof of Lemma 5.1, we see that there exists an effective Q-divisor D on X and
a positive rational number λ < 1

2 such that D ∼Q −KX , the pair (X,λD) has log canonical singularities,
and the locus Nklt(X,λD) consists of a geometrically irreducible smooth curve such that −KX · C = 1.
Then, as in the proof of Lemma 5.1, we see that

(5.1) multC
(
D
)
⩾

1

λ
> 2.

However, unlike the proof of Lemma 5.1, we cannot immediately use (5.1) to derive a contradiction.
Nevertheless, we are still able to obtain a contradiction via a more delicate analysis of the geometry of
the 3-fold X and the properties of the log pair (X,λD). As in the proof of Lemma 5.1, let us identify X
with its anticanonical embedding in P13, so that C is a conic in X.

Let ϕ : X̃ → X be the blowup along C, and let E be the ϕ-exceptional surface. Then it follows from
[72, (2.13.2)] or from [39, Theorem 4.4.11] and [39, Corollary 4.4.3] that the linear system | −K

X̃
| is base

point free, and the linear system | −K
X̃
− E| gives a birational map χ : X 99K Q, where Q is a smooth

(pointless over k) quadric 3-fold in P4. Moreover, we have the following commutative diagram

Q̂

π

��

β $$

X̃

αzz ϕ

��

ζoo

Y

Q X
χoo

where α is a small birational morphism given by | − K
X̃
|, Y is a Fano 3-fold with Gorenstein non-Q-

factorial terminal singularities with −K3
Y = 16, the map ζ is a pseudo-isomorphism that flops the curves

contracted by α, π is the blowup of a smooth rational sextic curve Γ ⊂ Q, and β is a small birational

morphism given by the linear systems | − K
Q̃
|. Let F be the π-exceptional surface, let F̃ be its strict

transform on X̃, and let F = ϕ(F̃ ). Then F̃ ∼ ϕ∗(−2KX)− 5E, and the cone of effective divisors of the

3-fold X̃ is generated by the surfaces F and E. Moreover, the divisors −K
X̃
−E and ϕ∗(−KX) generate

the movable cone of divisors on X̃, so it follows from (5.1) that F ⊂ Supp(D). Moreover, arguing as
20



in the proof of [3, Lemma A.34] and using Pic(X) = Z[−KX ], we see that the log pair (X, λ2F ) is also

non-klt along C. In particular, we see that the log pair (X, 14F ) is not log canonical along the curve C.
Let us show that the latter is impossible. Observe that

K
X̃
+

1

4
F̃ +

1

4
E ∼Q ϕ

∗(KX +
1

4
F
)
,

which implies that E contains an irreducible curve Z with ϕ(Z) = C, and the log pair (X̃, 14 F̃ + 1
4E)

is not log canonical along Z. Then the log pair (X̃, 14 F̃ + E) is also not log canonical along Z, so that

it follows from Inversion of Adjunction [48, Theorem 5.50] that the log pair (E, 14 F̃ |E) is also not log

canonical along Z. But this simply means that (F̃ · E)Z > 4. Now, intersecting the restriction F̃ |E with

a general (geometric) fiber of the projection E → C, we immediately see that (F̃ · E)Z = 5 and Z is a
section of this projection. In particular, we see that Z is a geometrically irreducible curve.

Now, we recall from [50, Theorem 1.1.1] and [50, Corollary 2.1.6] that the normal bundle of the smooth
conic CC ≃ P1 in XC is isomorphic either to OP1⊕OP1 or to OP1(1)⊕OP1(−1), so that either EC ≃ P1×P1

or EC ≃ F2. Moreover, it follows from elementary computations or from [39, Lemma 4.4.4] that the
restriction −K

X̃
|E is ample. In particular, the birational map ζ is an isomorphism in a neighborhood of

a general point of the curve Z. This gives
(
F · Ê

)
Ẑ
=
(
F̃ ·E

)
Z
= 5, where Ê and Ẑ are strict transforms

on Q̂ of the surface E and the curve Z, respectively. On the other hand, we have Ê ∼ π∗(2H)−F , where
H is the class of a hyperplane section of the quadric Q. Moreover, we have FC ≃ Fn for some n ∈ Z>0.
Let s be a section of the natural projection FC → ΓC such that s2 = −n, and let f be a geometric fiber

of this projection. Then 5ẐC + ∆ = ÊC
∣∣
FC

∼ s + af for some effective divisor ∆ on the surface FC and

some non-negative integer a. This gives ẐC · f = 0. Since the curve ZC is irreducible, we see that ẐC ∼ f ,

which implies that π(Ẑ) is a k-point in Q. Then X(k) ̸= ∅ by Lemma 2.1, which is a contradiction. □

Lemma 5.3. Suppose that X is contained in Family �2.5 and X(k) = ∅. Then XC is K-polystable.

Proof. It follows from [60, 62] and Lemma 2.5 that there exists the following diagram

X
π

yy
ϕ

%%
V P1

where V is a smooth cubic 3-fold in P4, the morphism π is the blowup of a smooth plane cubic curve
(defined over k), and ϕ is a morphism whose fibers are normal cubic surfaces.

Let p be any point in Z. Then δp(X) ⩽ 1, which we aim to contradict. Let E be the π-exceptional
surface, and let S be the fiber of ϕ that contains p. Then S is a possibly singular irreducible cubic surface
with at worst isolated singularities, so either S has Du Val singularities or it is a cone over a smooth cubic
curve. If S is Du Val, then it follows from [11, Lemma 2.1] that

(5.2) 1 ⩾ δp(X) ⩾


min

{16
11
,
16

15
δp(S)

}
if p ̸∈ E,

min
{16
11
,

16δp(S)

δp(S) + 15

}
if p ∈ E.

If ϕ(Z) = P1, we may assume that p is a general point in Z so that S is smooth. In this case, we know
from [2] or [3, Lemma 2.13] that δp(S) ⩾ δ(S) ⩾ 3

2 , which gives the desired contradiction. Hence, we

conclude that ϕ(Z) is a point in P1, so Z is contained in S. In that case, the surface S is defined over
k, since Z is defined over k. Note that S(k) = ∅ as X(k) = ∅. In particular, we see that the surface S
is not a cone, since otherwise its vertex would be defined over k. Then, it follows from [11, Lemma 2.2]
that Z ̸⊂ E, so we may assume that p ̸∈ E either. Thus, it follows from (5.2) that

δ(S) ⩽ δp(S) ⩽
15

16
.

On the other hand, all possible values of δ(S) have been computed in [29]. In particular, since δ(S) ⩽ 15
16 ,

it follows from [29, Main Theorem] that the cubic surface S is singular, and at least one of its C-singular
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points is not a singular points of type A1 or A2. Now, using the classification of Du Val cubic surfaces [9],
we see that such singular point is unique, hence defined over k, which is impossible since S(k) = ∅. □

Lemma 5.4. Suppose that X is contained in Family �2.10 and X(k) = ∅. Then XC is K-polystable.

Proof. It follows from [60, 62] and Lemma 2.5 that there exists the following diagram

X
π

yy
ϕ

%%
V P1

where V is a smooth complete intersection of two quadrics in P5, the morphism π is the blowup of a
smooth quartic elliptic curve (defined over k), and ϕ is a morphism whose fibers are normal complete
intersection of two quadrics in P4.

Let p be a general point in ZC, and let S be the fiber of ϕ that contains p. If S has at worst Du Val
singularities, then it follows from the proof of [11, Lemma 2.1] that

(5.3) 1 ⩾ δp(XC) ⩾


min

{16
11
,
16

15
δp(S)

}
if p ̸∈ E,

min
{16
11
,

16δp(S)

δp(S) + 15

}
if p ∈ E,

where E is the exceptional surface of the complexification of the blowup π. On the other hand, if
ϕ(Z) = P1, then S is smooth and we know from [3, Lemma 2.12] that δp(S) ⩾ δ(S) ⩾ 3

4 , which contradicts

(5.3). Thus, we conclude that ϕ(Z) is a point in P1, so Z is contained in S and, in particular, the surface
S is defined over k, since Z is defined over k. then the surface S is not a cone, since otherwise its vertex
would be defined over k. If δ(S) ⩾ 1, it follows from (5.3) that p ∈ E and

1 ⩾
AX(F)

SX(F)
⩾ δp(XC) ⩾

16δp(S)

δp(S) + 15
⩾ 1

which implies that δp(S) = δ(S) = 1. In this case, [1] and the proof of [11, Lemma 2.1] give a contradiction,
since Z ⊂ S. Hence, we see that δ(S) < 1.

Recall that S has Du Val singularities. The list of all possible singularities that can occur on S are
listed in [24]. Moreover, all possible values of δ(S) for singular surfaces are computed in [28]. Now, using
the classification of singularities in [24] and the computations in [28], we see that the inequality δ(S) < 1
implies that S has at least one singular point whose type is different from the other singular points of S
(if any). Hence, this singular point must be defined over k, which contradicts X(k) = ∅. □

Lemma 5.5. Suppose that X is contained in Family �2.12 and X(k) = ∅. Then XC is K-polystable.

Proof. The required assertion is [14, Corollary 9]. □

Lemma 5.6. Suppose that X is contained in Family �2.13 and X(k) = ∅. Then XC is K-polystable.

Proof. Using [60, 62] and Lemma 2.5, we see that there is a morphism f : X → Q such that Q is a form
of a smooth quadric 3-fold in P4, and f is the blowup of a smooth geometrically irreducible curve C ⊂ Q
such that C has genus 2 and −KQ · C = 18. Over C, we have the following diagram

XC
fC

yy
π

%%
QC P2

where π is a conic bundle with discriminant curve a quartic in P2. By Lemma 2.2, we may assume that
the conic bundle π is defined over k. Let ℓ be a line in P2 and S = π∗(ℓ). Then fC(SC) is cut out on
the quadric QC by another quadric hypersurface in P4. In particular, the linear system | −KQ − f(S)|
gives an embedding Q ↪→ P4, which implies that Q is a smooth quadric 3-fold. Note that Q(k) = ∅ by
Lemma 2.1.

We may have the following two cases for the curve Z:

(1) π(Z) is a point in P2;
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(2) π(Z) is a curve in P2.

In the first case, Z is a fiber of the conic bundle π, since otherwise f(Z) would be a line in Q, which
would contradict Q(k) = ∅. In this case, we let ℓ be a general line in P2 that passes through the point
π(Z). In the second case, let ℓ be a general line in P2. As before, let S = π∗(ℓ), which is smooth. It
follows from the adjunction formula that S is a del Pezzo surface of degree 4.

Starting from now, we work with geometrical models of X, S and Z. For simplicity, we denote them
by X, S and Z, respectively. Let p be a point in Z ∩ S, and let A be the fiber of the conic bundle π that
passes through p. Then A is smooth. Note that A = Z in the case when π(Z) is a point. By assumption,
we have δP (X) ⩽ 1. We apply Abban–Zhuang method [1] to the flag p ∈ A ⊂ S to show that δP (X) ⩾ 80

77 ,
which would imply the desired contradiction.

Let E be the f -exceptional surface, and let H = f∗(OQ(1)). Then −KX ∼ 3H − E and S ∼ 2H − E.
Let u be a non-negative real number. Then

−KX − uS ∼R (3− 2u)H + (u− 1)E,

which implies that the divisor −KX − uS is pseudoeffective if and only if u ⩽ 3
2 . For u ⩽ 3

2 , let us denote
by P (u) the positive part of Zariski decomposition of the divisor −KX − uS, and let us denote by N(u)
its negative part. Then

P (u) =


(3− 2u)H + (u− 1)E if 0 ⩽ u ⩽ 1,

(3− 2u)H if 1 ⩽ u ⩽
3

2
,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u− 1)E if 1 ⩽ u ⩽
3

2
.

This gives

P (u)
∣∣
S
=


−KS + (1− u)A if 0 ⩽ u ⩽ 1,

(3− 2u)(−KS) if 1 ⩽ u ⩽
3

2
.

Now, integrating (P (u))3, we get SX(S) =
41
80 . Then, using [1, Theorem 3.3] and [3, Corollary 1.102], we

get

δp(X) ⩾ min

 1

SX(S)
, inf

F/S
p∈CS(F )

AS(F )

S(WS
•,•;F )

 = min

80

41
, inf

F/S
p∈CS(F )

AS(F )

S(WS
•,•;F )


where the infimum is taken over all prime divisors F over S for which p contained in the center CS(F ) of
the divisor F on S. The value S(WS

•,•;F ) can be computed using [3, Corollary 1.108] as follows:

S
(
WS

•,•;F
)
=

3

(−KX)3

∫ 3
2

1

(
P (u)

∣∣
S

)2
(u− 1)ordF

(
E
∣∣
S

)
du+

3

(−KX)3

∫ 3
2

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vF

)
dvdu.

Recall that (−KX)
3 = 20. Hence, if δp(X) < 80

77 , then there exists a prime divisor F over the surface S
such that

(5.4)
3

20

∫ 3
2

1

(
P (u)

∣∣
S

)2
(u− 1)ordF

(
E
∣∣
S

)
du+

3

20

∫ 3
2

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vF

)
dvdu >

77

80
AS(F ).

Let us show that this is impossible. First, we observe that E|S is a smooth curve. Hence, the pair (S,E|S)
is log canonical. This gives

ordF
(
E
∣∣
S

)
⩽ AS(F ).
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Thus, we can estimate the first term in the left hand side of (5.4) as follows:

3

20

∫ 3
2

1

(
P (u)

∣∣
S

)2
(u− 1)ordF

(
E
∣∣
S

)
du ⩽

3

20

∫ 3
2

1

(
P (u)

∣∣
S

)2
(u− 1)AS(F )du =

=
3AS(F )

20

∫ 3
2

1
(3− 2u)2(−KS)

2(u− 1)du =
3AS(F )

5

∫ 3
2

1
(3− 2u)2(u− 1)du =

AS(F )

80
.

To estimate the second term in the left hand side of (5.4), let L = −KS + (1− u)A. Then L is an ample
divisor on S when u ∈ [0, 1]. In this case, it follows from [12, Lemma 23] that

δp(S,L) ⩾
24

u2 − 10u+ 28
,

where δp(S,L) is the (local) δ-invariant of the polarized pair (S,L) defined in [12, Appendix A]. Note also
that it follows from [3, Lemma 2.12] that

δp(S,−KS) = δp(S) ⩾ δ(S) =
4

3
,

since S is a smooth del Pezzo surface of degree 4. Now, using these estimates, we have

3

20

∫ 3
2

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vF

)
dvdu =

=
3

20

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

3

20

∫ 3
2

1

∫ ∞

0
vol
(
(3− 2u)(−KS)− vF

)
dvdu =

=
3

20

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

3

20

∫ 3
2

1
(3− 2u)3

∫ ∞

0
vol
(
(−KS)− vF

)
dvdu ⩽

⩽
3

20

∫ 1

0
L2 AS(F )

24
u2−10u+28

du+
3

20

∫ 3
2

1
(3− 2u)3(−KS)

2AS(F )

δ(S)
du =

= AS(F )

(
3

20

∫ 1

0
(8− 4u)

u2 − 10u+ 28

24
du+

9

20

∫ 3
2

1

∫ ∞

0
(3− 2u)3du

)
=

19

20
AS(F ).

This implies that the left hand side of (5.4) does not exceed 77
80AS(F ), which is a contradiction. □

Lemma 5.7. Suppose that X is contained in Family �2.16 and X(k) = ∅. Then XC is K-polystable.

Proof. Using [60, 62] and Lemma 2.5, we see that there is a morphism f : X → V such that V is a form
of a smooth complete intersection of two quadrics in P5, and f is the blowup of a smooth geometrically
rational curve C ⊂ V with −KV · C = 4. Over C, the curve CC is a smooth conic in VC ⊂ P5, and we
have the following commutative diagram:

XC
fC

yy
π

%%
VC // P2

where π is a conic bundle whose discriminant curve is a (possibly singular) reduced quartic curve in P2,
and the dashed arrow is induced by the linear projection from the plane in P5 that contains CC. Now,
arguing exactly as in the proof of Lemma 5.6, we see that the conic bundle π is defined over the field k,
and V is a (pointless) complete intersection of two quadrics in P5.

Arguing as in the proof of Lemma 5.6, we see that either Z is a smooth fiber of the conic bundle π,
or π(Z) is a curve in P2. Moreover, f(Z) is a curve in V , since otherwise f(Z) would be a k-point, but
V (k) = ∅ by Lemma 2.1.

Starting from now, we will work exclusively with geometrical models of X and Z, which (for simplicity)
we will denote by X and Z, respectively. Let E be the f -exceptional surface, and let H = f∗(OV (1)).
Then −KX ∼ 2H−E, the conic bundle π is given by the linear system |H−E|, the divisors E and H−E
generate the cone of effective divisors of the 3-fold X, the nef cone of the 3-fold X is generated by the
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divisors H and H −E, and the Mori cone NE(X) is generated by fibers of the natural projection E → C
and the fibers of the conic bundle π. We claim that Z ̸⊂ E. Indeed, suppose that this is not the case and
Z ⊂ E. Then f(Z) = C, since f(Z) is not a point. Let us seek for a contradiction using Abban–Zhuang
method [1]. Let u be a non-negative real number. Then −KX − uE is pseudoeffective if and only if the
divisor −KX − uE is nef if and only if u ⩽ 1, because

−KX − uE ∼R 2H − (1 + u)E.

Note that(
−KX−uE

)3
= −E3u3+(6H ·E2−3E3)u2+(12H ·E2−12E ·H2−3E3)u+8H3−12E ·H2−6H ·E2−E3.

This gives (−KX − uE)3 = 2u3 − 6u2 − 18u + 22, because H3 = 4, E · H2 = 0, H · E2 = −2 and
E3 = −c1(NC/V ) = −2. Now, integrating (−KX − uE)3, we get SX(E) = 23

44 . Then, it follows from [3,
Corollary 1.110] that

1 ⩾
AX(F)

SX(F)
⩾ min

{
1

SX(E)
,

1

S(WE
•,•;Z)

}
= min

{
44

23
,

1

S(WE
•,•;Z)

}
where

S
(
WE

•,•;Z
)
=

3

22

∫ 1

0

∫ ∞

0
vol
(
(−KX − uE)

∣∣
E
− vZ

)
dvdu.

Thus, we conclude that S(WE
•,•;Z) ⩾ 1. Let us show that S(WE

•,•;Z) < 1. First, we observe that either

E ≃ P1 × P1 or E ≃ F2. If E ∼= P1 × P1, we let s be a section of the natural projection E → C with
s2 = 0. Similarly, if E ∼= F2, we let s be the section of the projection E → C with s2 = −2. In both cases,
we let l be a fiber of the natural projection E → C2. Then

H
∣∣
E
∼ 2l,

−E
∣∣
E
∼ s+ al.

Note that −2 = E3 = (s+ al)2 = s2 + 2a. Thus, if E ∼= P1 × P1, then a = −1, which gives

(−KX − uE)
∣∣
E
∼R (1 + u)s+ (3− u)l.

Likewise, if E ∼= F2, then a = 0, which gives

(−KX − uE)
∣∣
E
∼R (1 + u)s+ 4l.

Observe also that |Z − s| ≠ ∅, because f(Z) = C. This implies that

S
(
WE

•,•;Z
)
⩽ S

(
WE

•,•; s
)
=

3

22

∫ 1

0

∫ ∞

0
vol
(
(−KX − uE)

∣∣
E
− vs

)
dvdu.

On the other hand, if E ∼= P1 × P1, then

3

22

∫ 1

0

∫ ∞

0
vol
(
(−KX − uE)

∣∣
E
− vs

)
dvdu =

3

22

∫ 1

0

∫ 1+u

0

(
(1 + u− v)s+ (3− u)l

)2
dvdu =

=
3

22

∫ 1

0

∫ 1+u

0
2(3− u)(1 + u− v)dvdu =

67

88
.

Similarly, if E ∼= F2, then

3

22

∫ 1

0

∫ ∞

0
vol
(
(−KX − uE)

∣∣
E
− vs

)
dvdu =

3

22

∫ 1

0

∫ 1+u

0

(
(1 + u− v)s+ 4l

)2
dvdu =

3

22

∫ 1

0

∫ 1+u

0
2(3− u+ v)(1 + u− v)dvdu =

41

44
.

This shows that S(WE
•,•;Z) < 1, which contradicts the inequality S(WE

•,•;Z) ⩾ 1 obtained earlier. Hence,
we conclude that the curve Z is not contained in the f -exceptional divisor E.

Now, we let S be a general surface in the linear system |π∗(OP2(1))| such that S ∩Z is not empty. Fix
a point p ∈ Z ∩ S, and let A be the fiber of the conic bundle π that passes through p. Then δp(X) ⩽ 1,
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and the curve A is smooth. One the other hand, arguing exactly as in the proof of Lemma 5.6, one can
show that δp(X) ⩾ 176

169 , which gives us the desired contradiction. For convenience of the reader, let us
present the details here. As above, E stands for the f -exceptional surface, H = f∗(OV (1)), and u is
a non-negative real number. Then −KX − uS ∼R (2 − u)H + (u − 1)E, so the divisor −KX − uS is
pseudoeffective ⇐⇒ u ⩽ 2. For u ∈ [0, 2], let P (u) be the positive part of the Zariski decomposition of
the divisor −KX − uS, and let N(u) be its negative part. Then

P (u) =

{
(2− u)H + (u− 1)E if 0 ⩽ u ⩽ 1,

(2− u)H if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)E if 1 ⩽ u ⩽ 2.

Now, integrating (P (u))3, we get SX(S) =
13
22 , so it follows from [1, Theorem 3.3] and [3, Corollary 1.102]

that

δp(X) ⩾ min

 1

SX(S)
, inf

F/S
p∈CS(F )

AS(F )

S(WS
•,•;F )

 = min

22

13
, inf

F/S
p∈CS(F )

AS(F )

S(WS
•,•;F )


where the infimum is taken by all prime divisors F over the surface S such that p ∈ CS(F ), and

S
(
WS

•,•;F
)
=

3

22

∫ 2

1

(
P (u)

∣∣
S

)2
(u− 1)ordF

(
E
∣∣
S

)
du+

3

22

∫ 2

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vF

)
dvdu.

So, since δp(X) ⩽ 1 < 176
169 , we see that there exists a prime divisor F over S such that

(5.5) S
(
WS

•,•;F
)
>

169

176
AS(F ).

Let us show that this inequality is impossible. Observe that the surface S is smooth by construction.
Moreover, it follows from the adjunction formula that −KS ∼ H|S . In particular, the divisor S is nef
and big, S is a smooth weak del Pezzo surface of degree (−KS)

2 = 4. However, the divisor −KS may
not be ample. Indeed, if Z = A and Z is contained in the f -exceptional divisor E, then E ≃ F2, Z is the
(−2)-curve in E, and S|E = Z + l1 + l2 for two distinct fibers l1 and l2 of the natural projection E → C.
In this case, the divisor −KS intersects both curves l1 and l2 trivially, and these are the only (irreducible)
curves in S that have trivial intersection with the anticanonical divisor −KS . However, this is the only
case when the divisor −KS is not ample. Thus, since we already proved that Z ̸⊂ E, we see that S is a
smooth del Pezzo surface of degree 4.

We prefer to think of S as of a complete intersection of two quadrics in P4. Then E|S is a smooth
conic, and A is also a smooth conic in S. These two conics are different, since E|S is not contracted by
π. Moreover, we have

P (u)
∣∣
S
=

{
−KS + (1− u)A if 0 ⩽ u ⩽ 1,

(2− u)(−KS) if 1 ⩽ u ⩽ 2.

26



This gives

S
(
WS

•,•;F
)
=

3

22

∫ 2

1

(
P (u)

∣∣
S

)2
(u− 1)ordF

(
E
∣∣
S

)
du+

3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

+
3

22

∫ 2

1

∫ ∞

0
vol
(
(2− u)(−KS)− vF

)
dvdu ⩽

3

22

∫ 2

1

(
P (u)

∣∣
S

)2
(u− 1)AS(F )du+

+
3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

3

22

∫ 2

1

∫ ∞

0
vol
(
(2− u)(−KS)− vF

)
dvdu =

=
3AS(F )

22

∫ 2

1
(2− u)2(−KS)

2(u− 1)du+
3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

+
3

22

∫ 2

1
(2− u)3

∫ ∞

0
vol
(
−KS − vF

)
dvdu =

6AS(F )

11

∫ 2

1
(2− u)2(u− 1)du+

+
3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

3

22

∫ 2

1
(2− u)3

∫ ∞

0
vol
(
−KS − vF

)
dvdu ⩽

⩽
AS(F )

22
+

3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

3

22

∫ 2

1
(2− u)3(−KS)

2AS(F )

δ(S)
du =

=
AS(F )

22
+

3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu+

9AS(F )

22

∫ 2

1
(2− u)3du =

=
13AS(F )

88
+

3

22

∫ 1

0

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
dvdu,

because δ(S) = 4
3 by [3, Lemma 2.12], and ordF (E|S) ⩽ AS(F ), since (S,E|S) has log canonical singular-

ities. Moreover, if u ∈ [0, 1], then it follows from [12, Lemma 23] that

1

(−KS + (1− u)A)2

∫ ∞

0
vol
(
−KS + (1− u)A− vF

)
⩽ AS(F )

u2 − 10u+ 28

24
,

where (−KS + (1− u)A)2 = 8− 4u. Thus, we have

S
(
WS

•,•;F
)
⩽

13AS(F )

88
+

3AS(F )

22

∫ 1

0

(u2 − 10u+ 28)(8− 4u)

24
du =

169

176
AS(F ),

which contradicts (5.5). This completes the proof of the lemma. □

Lemma 5.8. Suppose that X is contained in Family �2.19 and X(k) = ∅. Then XC is K-polystable.

Proof. Using [60, 62] and Lemmas 2.5 and 2.1, we see that there exists the following diagram:

X
π

yy
ϕ

%%
U V

where U is a pointless form of P3, V is a pointless form of a complete intersection of two quadrics in P5,
π is the blowup of a smooth geometrically irreducible curve C of genus 2 with −KU · C = 40, and ϕ is
the blowup of a smooth geometrically rational curve L such that −KV · L = 2. Moreover, the curve C
is contained in a unique smooth surface S ⊂ U with −KU ∼ 2S . In the following, we will denote by E
the π-exceptional surfaces, and we will denote by Q the proper transform of the surface S on the 3-fold
X. Over C, we have UC ≃ P3, the surface SC is a smooth quadric surface, the curve CC is a divisor of
degree (3, 2) in SC ≃ P1 × P1, and the curve LC is a line in VC.

Using an arithmetic analogues of [3, Lemma 1.42] and [3, Lemma 1.45], we see that there is an effective
Q-divisor D on the 3-fold X defined over k such that D ∼Q −KX and ZC is contained in the locus
Nklt(XC, λDC) for some positive rational number λ < 3

4 . Moreover, if R is an irreducible (but possibly
geometrically reducible) surface in X such that RC is contained in the locus Nklt(XC, λDC), then it follows
from the proof of [3, Lemma 4.43] that either RC = QC or πC(RC) is a plane in UC ≃ P3. Since U ̸≃ P3,
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the latter possibility is excluded by Lemma 2.4. Thus, the surface QC is the only surface that can (a
priori) be contained in the locus Nklt(XC, λDC).

We claim that ZC ̸⊂ QC. Indeed, it follows from the proof of [3, Lemma 4.41] that ZC ̸= EC ∩ QC.
Moreover, after a very minor modification, the proof of [3, Lemma 4.41] also gives Z ̸⊂ Q. To see this,
suppose that ZC ⊂ QC. Let H be a hyperplane in P3

C, and let u be a non-negative real number. Then the
divisor −KXC − uQC is nef for u ∈ [0, 1], and it is not pseudo-effective for u > 2. Moreover, if u ∈ [1, 2],
then the positive part of the Zariski decosmposition of the divisor −KXC − uQC is (4 − 2u)π∗C(H), and
its negative part is (u− 1)EC. Furthermore, we have SXC(QC) < 1 by [3, Theorem 3.17]. Since we know
that ZC ̸= EC ∩QC, it follows from [3, Corollary 1.110] that∫ 1

0

∫ ∞

0
vol
((

(4−2u)π∗C(H)+(u−1)EC
)∣∣
QC

−vZ
)
dvdu+

∫ 2

1

∫ ∞

0
vol
(
(4−2u)π∗C(H)

∣∣
QC

−vZ
)
dvdu ⩾

26

3
.

Let l1 be a curve in QC ≃ SC ≃ P1 × P1 of degree (0, 1), and let l2 be a curve in QC of degree (1, 0).
Then either |ZC − l1| ≠ ∅ or |ZC − l2| ≠ ∅ (or both). In the former case, we get a contradiction:∫ 1

0

∫ ∞

0
vol
((

(4− 2u)π∗C(H)+ (u− 1)EC
)∣∣
QC

− vZ
)
dvdu+

∫ 2

1

∫ ∞

0
vol
(
(4− 2u)π∗C(H)

∣∣
QC

− vZ
)
dvdu ⩽

⩽
∫ 1

0

∫ ∞

0
vol
((

(4−2u)π∗C(H)+(u−1)EC
)∣∣
QC

−vl1
)
dvdu+

∫ 2

1

∫ ∞

0
vol
(
(4−2u)π∗C(H)

∣∣
QC

−vl1
)
dvdu =

=

∫ 1

0

∫ u+1

0
4(u+ 1− v)dvdu+

∫ 2

1

∫ 4−2u

0
2(4− 2u− v)(4− 2u)dvdu =

20

3
,

because
(
(4− 2u)π∗C(H)+ (u− 1)EC

)
|QC is an R-divisor of degree (u+1, 2) on QC, and (4− 2u)π∗C(H)|QC

is an R-divisor of degree (4− 2u, 4− 2u). Similarly, if |ZC − l2| ≠ ∅, we also a contradiction:∫ 1

0

∫ ∞

0
vol
((

(4− 2u)π∗C(H)+ (u− 1)EC
)∣∣
QC

− vZ
)
dvdu+

∫ 2

1

∫ ∞

0
vol
(
(4− 2u)π∗C(H)

∣∣
QC

− vZ
)
dvdu ⩽

⩽
∫ 1

0

∫ ∞

0
vol
((

(4−2u)π∗C(H)+(u−1)EC
)∣∣
QC

−vl2
)
dvdu+

∫ 2

1

∫ ∞

0
vol
(
(4−2u)π∗C(H)

∣∣
QC

−vl2
)
dvdu =

=

∫ 1

0

∫ 2

0
2(u+ 1)(2− v)dvdu+

∫ 2

1

∫ 4−2u

0
2(4− 2u)(4− 2u− v)dvdu =

24

3
.

The obtained contradictions show that ZC ̸⊂ QC.
Since ZC ̸⊂ QC, ZC ⊂ Nklt(XC, λDC), and the locus Nklt(XC, λDC) does not contain surfaces except

possibly for QC, it follows from the proof of [3, Lemma 4.45] that the curve Z is geometrically rational.
In particular, we see that ZC ̸⊂ EC, because the only rational curves in EC are fibers of the natural
projection EC → CC, and ZC could not be one of them, since C (k) = ∅. Thus, we conclude that π(Z) is
a geometrically rational rational curve in U that is not contained in the surface S . Set Z = π(Z). Then
it follows from the proof of [3, Lemma 4.48] that ZC is a line UC ≃ P3.

Since ZC ̸⊂ SC, the line ZC transversally intersects the quadric SC in two distinct points, since
otherwise the intersection ZC∩SC would consist of a single point defined over k. This implies that either
the curves ZC and CC are disjoint, or they meet transversally in exactly two points. This and Bertini
theorem imply that a general plane in UC ≃ P3 that contains the line ZC intersects the curve CC by five
distinct points in linearly general position, because every trisecant of the curve CC ⊂ P3 is contained in
the quadric surface SC ≃ P1 × P1.

Let H be a sufficiently general plane in UC ≃ P3 that contains the line ZC, and let S be its proper
transform on XC. Then S is a smooth del Pezzo surface of degree 4. Let us apply Abban–Zhuang method
to the flag ZC ⊂ S. As above, let u be a non-negative real number. Then

−KXC − uS ∼R (2− u)π∗C(H) +QC.

This implies that the divisor −KXC −uS is nef for every u ∈ [0, 1], and it is not pseudo-effective for u > 2.
For u ∈ [0, 2], let P (u) be the positive part of the Zariski decomposition of the divisor −KXC − uS, and
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let N(u) be the negative part of the Zariski decomposition of the divisor −KXC − uS. Then

P (u) =

{
(4− u)π∗C(H)− EC if 0 ⩽ u ⩽ 1,

(2− u)
(
3π∗(H)− EC

)
if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(1− u)QC if 1 ⩽ u ⩽ 2.

In particular, we see that the curve ZC is not contained in the support of the divisor N(u) for u ∈ [0, 2].
Moreover, we have SX(S) < 1 by [3, Theorem 3.17], so [3, Corollary 1.110] gives S(WS

•,•;ZC) ⩾ 1, where

S
(
WS

•,•;ZC
)
=

3

26

∫ 2

0

∫ ∞

0
vol
(
P (u)

∣∣
S
− vZC

)
dvdu.

Let us compute S(WS
•,•;ZC). In the case when ZC ∩CC = ∅, this is done in the proof of [3, Lemma 4.49],

but we present the computations here for consistency. Let ϖ : S → H be the birational morphism induced
by πC. Then ϖ contracts 5 disjoint smooth curves e1, e2, e3, e4, e5 such that EC|S = e1+e2+e3+e4+e5.
Let ℓ be the proper transform of a general line in the plane H on the surface S, and let C = QC|S . Then
C2 = −1 and C ∼ 2ℓ− e1 − e2 − e3 − e4 − e5. Note that ϖ(C) is the smooth conic H ∩ SC.

Suppose that ZC ∩ CC = ∅. Then ZC ∼ ℓ. Thus, if u ∈ [0, 1] and v ∈ R⩾0, then

P (u)|S − vZC ∼R (4− u− v)ℓ−
5∑
i=1

ei ∼R (2− u− v)ℓ+ C,

which implies that P (u)
∣∣
S
−vZC is not pseudo-effective for v > 2−u, and P (u)

∣∣
S
−vZC is nef for v ⩽ 3−2u

2 .

Moreover, if 3−2u
2 ⩽ v ⩽ 2− u, then the Zariski decomposition of the divisor P (u)

∣∣
S
− vZC is

(2− u− v)
(
5ℓ− 2e1 − 2e2 − 2e3 − 2e4 − 2e5

)︸ ︷︷ ︸
positive part

+(2u+ 2v − 3)C︸ ︷︷ ︸
negative part

.

Thus, if u ∈ [0, 1], then

vol
(
P (u)

∣∣
S
− vZC

)
=


(4− u− v)2 − 5 if 0 ⩽ v ⩽

3− 2u

2
,

5(2− u− v)2 if
3− 2u

2
⩽ v ⩽ 2− u.

Similarly, if u ∈ [1, 2] and v ∈ R⩾0, then

P (u)|S − vZC ∼R (6− 3u− v)ℓ− (2− u)

5∑
i=1

ei ∼R (2− u− v)ℓ+ (2− u)C,

which implies that P (u)
∣∣
S
−vZC is not pseudo-effective for v > 2−u, and P (u)

∣∣
S
−vZC is nef for v ⩽ 2−u

2 .

Moreover, if 2−u
2 ⩽ v ⩽ 2− u, then the Zariski decomposition of the divisor P (u)

∣∣
S
− vZC is

(2− u− v)
(
5ℓ− 2e1 − 2e2 − 2e3 − 2e4 − 2e5

)︸ ︷︷ ︸
positive part

+(2u+ v − 3)C︸ ︷︷ ︸
negative part

.

Therefore, if u ∈ [1, 2], then

vol
(
P (u)

∣∣
S
− vZC

)
=


(6− 3u− v)2 − 5(2− u)2 if 0 ⩽ v ⩽

2− u

2
,

5(2− u− v)2 if
2− u

2
⩽ v ⩽ 2− u.
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Thus, we have

S
(
WS

•,•;ZC
)
=

3

26

∫ 1

0

∫ 3−2u
2

0
((4− u− v)2 − 5)dudv +

1

10

∫ 1

0

∫ 2−u

3−2u
2

5(2− u− v)2dudv+

+
3

26

∫ 2

1

∫ 2−u
2

0

(
(6− 3u− v)2 − 5(2− u)2

)
dudv +

1

10

∫ 2

1

∫ 2−u

2−u
2

5(2− u− v)2dudv =
119

208
< 1.

This shows that ZC ∩ CC ̸= ∅. Hence, the intersection ZC ∩ CC consists of two points among ϖ(e1),
ϖ(e2), ϖ(e3), ϖ(e4), ϖ(e5). Without loss of generality, we may assume that ZC ∩ CC = ϖ(e1) ∪ϖ(e2).
Then we have ZC ∼ ℓ− e1 − e2. Thus, if u ∈ [0, 1] and v ∈ R⩾0, then

P (u)|S − vZC ∼R (4− u− v)ℓ− (1− v)e1 − (1− v)e2 − e3 − e4 − e5.

This implies that P (u)
∣∣
S
− vZC is pseudo-effective if and only if v ⩽ 5−2u

2 . Moreover, this divisor is nef

for v ⩽ 1. Furthermore, if 1 ⩽ v ⩽ 2− u, then the Zariski decomposition of the divisor P (u)
∣∣
S
− vZC is

(4− u− v)ℓ− e3 − e4 − e5
)︸ ︷︷ ︸

positive part

+(v − 1)
(
e1 + e2

)︸ ︷︷ ︸
negative part

.

Finally, if 2− u ⩽ v ⩽ 5−2u
2 , then the Zariski decomposition of the divisor P (u)

∣∣
S
− vZC is

(5− 2u− 2v)
(
2ℓ− e3 − e4 − e5

)︸ ︷︷ ︸
positive part

+(v − 1)
(
e1 + e2

)
+ (v + u− 2)

(
L34 + L35 + L45

)︸ ︷︷ ︸
negative part

,

where L34, L35, L45 are (−1)-curves such that L34 ∼ ℓ − e3 − e4, L35 ∼ ℓ − e3 − e5, L45 ∼ ℓ − e4 − e5.
Thus, if u ∈ [0, 1], then

vol
(
P (u)

∣∣
S
− vZC

)
=


u2 + 2uv − v2 − 8u− 4v + 11 if 0 ⩽ v ⩽ 1,

u2 + 2uv + v2 − 8u− 8v + 13 if 1 ⩽ v ⩽ 2− u,

(5− 2u− 2v)2 if 2− u ⩽ v ⩽
5− 2u

2
.

Similarly, if u ∈ [1, 2] and v ∈ R⩾0, then

P (u)|S − vZC ∼R (6− 3u− v)ℓ− (2− u− v)
(
e1 + e2

)
− (2− u)

(
e3 + e4 + e5

)
.

This implies that P (u)
∣∣
S
− vZC is pseudo-effective if and only if v ⩽ 6−3u

2 , and this divisor is nef if and

only if v ⩽ 2 − u. Furthermore, if 2 − u ⩽ v ⩽ 6−3u
2 , then the Zariski decomposition of the divisor

P (u)
∣∣
S
− vZC is

(6− 3u− 2v)
(
2ℓ− e3 − e4 − e5

)︸ ︷︷ ︸
positive part

+(v + u− 2)
(
e1 + e2 + L34 + L35 + L45

)︸ ︷︷ ︸
negative part

.

Therefore, if u ∈ [1, 2], then

vol
(
P (u)

∣∣
S
− vZC

)
=

4u2 + 2uv − v2 − 16u− 4v + 16 if 0 ⩽ v ⩽ 2− u,

(6− 3u− 2v)2 if 2− u ⩽ v ⩽
6− 3u

2
.

Now, integrating, we obtain S(WS
•,•;ZC) =

183
208 , which contradicts the inequality S(WS

•,•;ZC) ⩾ 1 obtained
earlier. This completes the proof. □

Lemma 5.9. Suppose that X is contained in Family �2.21 and X(k) = ∅. Then XC is K-polystable.

Proof. The required assertion follows from [56]. Indeed, over C, we have the following diagram:

XC
π

yy
π′

%%
Q Q
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where Q is a smooth quadric 3-fold in P4
C, and the morphisms π and π′ are blowups of smooth twisted

quartic curves. Denote by E and E′ the exceptional divisors of the blowups π and π′, respectively. Then
it follows from [56, Technical Theorem 1] that δp(XC

)
> 1 for every point p ∈ XC with p ̸∈ E ∪ E′. It

follows from [56, Technical Theorem 1] that ZC ⊂ E ∪ E′, and it follows from [56, Technical Theorem 2]
that π(ZC) or π

′(ZC) is a point. Hence, without loss of generality, we may assume that π(ZC) is a point,
so that ZC is a fiber of the natural projection E → C4, where C4 is a twisted quartic curve in Q blown
up by π. Then π′(ZC) is a line, which implies that ZC ̸⊂ E′. Since Z is defined over k, we see that the
divisors E and E′ are also defined over k. Then π induces a birational morphism X → Q defined over k,
where Q is a form of a smooth quadric 3-fold. This morphism contracts Z to a point in Q, so Q(k) ̸= ∅,
which gives X(k) ̸= ∅ by Lemma 2.1, which is a contradiction. □

Note that Family �2.21 contains smooth Fano 3-folds that are not K-polystable.

Lemma 5.10. Suppose that X is contained in Family �2.24 and X(k) = ∅. Then XC is K-polystable.

Proof. Recall that the geometric model of X is a divisor of degree (1, 2) in P2 × P2. Let pr1 : XC → P2

and pr2 : XC → P2 be the projections to the first and the second factors, respectively. Then the morphism
pr1 is a conic bundle, and pr2 is a P1-bundle. Let C be the discriminant curve of the conic bundle pr1.
Then C is a reduced cubic curve. Moreover, since XC is smooth, the curve C is either smooth or nodal.
Furthermore, it has been been shown in [3, § 4.7] that we can choose coordinates ([x : y : z], [u : v : w])
on P2 × P2 such that either XC is given

(5.6)
(
µvw + u2

)
x+

(
µuw + v2

)
y +

(
µuv + w2

)
z = 0

for some µ ∈ C such that µ3 ̸= −1, or XC is given by

(5.7)
(
vw + u2

)
x+

(
uw + v2

)
y + w2z = 0,

or XC is given by

(5.8)
(
vw + u2

)
x+ v2y + w2z = 0.

Moreover, it follows from [3, Lemma 4.70] that XC is K-polystable if and only if XC can be given by (5.6)
for some µ ∈ C such that µ3 ̸= −1. In this case, the curve C is either smooth or a union of three lines
that do not share a common point. On the other hand, if XC is given by (5.7), then C is an irreducible
cubic curve with 1 singular point. Similarly, if XC is given by (5.8), then C is a union of a line and a
smooth conic that meet in two points.

Over k, the 3-fold X is a divisor in V ×U where V and U are k-forms of P2. We may assume that the
natural projection X → V is a conic bundle with discriminant curve C such that its geometric model is
isomorphic to C. We claim that X(k) ̸= ∅ if V ≃ P2. Indeed, if V ≃ P2, let P be a general k-point in
V , let F be the fiber of the conic bundle X → V over P , and let C be its image in U via the natural
projection X → U . Then CC is a conic in UC ≃ P2, so that U ≃ P2 by Lemma 2.2. Now, intersecting a
general fiber of the projection X → U with a pull back of a general line in V ≃ P2, we obtain a k-point
in X. Thus, if V ≃ P2, then X(k) ̸= ∅.

Now, we are ready to prove the requires assertion. Suppose that X is not K-polystable. Then either
XC is given by (5.7), or XC is given by (5.8). In the former case, Sing(CC) consists of one point, which
should be defined over k, so that V ≃ P2. In the latter case, we have V ≃ P2 by Lemma 2.2. Thus, we
see that V ≃ P2 in both cases, which implies X(k) ̸= ∅ as we proved earlier. □

Lemma 5.11. Suppose that X is contained in Family �3.2 and X(k) = ∅. Then XC is K-polystable.

Proof. The required assertion follows from [6, Lemma 6.1] and [6, Lemma 6.2]. To show this, let us
first describe the geometry of the geometric model of the 3-fold X. There are several ways to do this.
For instance, following [60, 62], we let

U = P
(
OP1×P1 ⊕OP1×P1

(
− 1,−1

)
⊕OP1×P1

(
− 1,−1

))
,

let π : U → P1 × P1 be the natural projection, and let L be a tautological line bundle on the scroll U .
Then XC can be described as a divisor in |2L+ π∗(OP1×P1(2, 3))|. Let ω : X → P1 × P1 be the restriction
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of the projection π to the 3-fold X, let π1 : P1 × P1 → P1 and π2 : P1 × P1 → P1 be projections to the
first and the second factors, respectively. Set ϕ1 = π1 ◦ ω and ϕ2 = π2 ◦ ω. Then a general fiber of the
morphism ϕ1 is a smooth cubic surface, a general fiber of the morphism ϕ2 is a smooth del Pezzo surface
of degree 6, and ω is a standard conic bundle. On the other hand, following [16, § 11], we let

R = P
(
OP1(2)⊕OP1(2)⊕OP1(1)⊕OP1(1)

)
,

letM be the tautological line bundle on the scroll R, and let F be a fiber of the natural projection R→ P1.
Then XC can also be described as a divisor in the linear system |3M − 4F |. In the notation of [70, §2],
we have R = F(2, 2, 1, 1), and X is given by the following equation:

α1
2(t1, t2)x

3
1 + α2

2(t1, t2)x
2
1x2 + α1

1(t1, t2)x
2
1x3 + α2

1(t1, t2)x
2
1x4 + α3

2(t1, t2)x1x
2
2 + α3

1(t1, t2)x1x2x3+

+ α4
1(t1, t2)x1x2x4 + α1

0(t1, t2)x1x
2
3 + α2

0(t1, t2)x1x3x4 + α3
0(t1, t2)x1x

2
4 + α4

2(t1, t2)x
3
2+

+ α5
1(t1, t2)x

2
2x3 + α6

1(t1, t2)x
2
2x4 + α4

0(t1, t2)x2x
2
3 + α5

0(t1, t2)x2x3x4 + α6
0(t1, t2)x2x

2
4 = 0,

where each αid(t1, t2) is a polynomial of degree d. Let S be the subscroll in R given by x1 = x2 = 0.
Then S ∼= P1×P1, and S is contained in X. Furthermore, the normal bundle of S in X is OP1×P1(−1,−1).
This implies the existence of the following commutative diagram:

(5.9) V

U1

ψ1

��

γ1
44

U2

ψ2

��

γ2
jj

XC

ω

��

ϕ1

tt

ϕ2

**

α

OO

β1
jj

β2
44

P1 P1

P1 × P1
π1

jj

π2

44

where U1 and U2 are smooth 3-folds, the morphisms β1 and β2 are contractions of the surface S to curves
in these 3-folds, the morphism α is a contraction of the surface S to an isolated ordinary double point of
the 3-fold V , the morphism ψ1 is a fibration into del Pezzo surfaces of degree 4, and ψ2 is a fibration into
quadric surfaces. This commutative diagram is well known to experts, see the proof of [73, Theorem 2.3],
the proof of [40, Proposition 3.8], and the proof of [17, Lemma 8.2]. Note that V is a Fano 3-fold such
that V has non-Q-factorial singularities, −K3

V = 16 and Pic(C) = Z[−KV ], and the morphisms γ1 and
γ2 are its two (distinct) small resolutions.

Now, we are ready to prove that XC is K-polystable. For every point p ∈ ZC, we have δp(XC) ⩽ 1
by assumption that XC is not K-polystable and that p ∈ ZC. On the other hand, it follows from [6,
Lemma 6.1] that δp(XC) > 1 for every point p in the α-exceptional surface S. Thus, we conclude that
ZC ∩ S = ∅. Similarly, if F is a smooth fiber of the fibration into cubic surfaces ϕ1, then it follows from
[6, Lemma 6.2] that δp(XC) > 1 for every point p ∈ F , which implies that ZC ∩F = ∅. This shows that
ϕ1(ZC) is a point in P1, and the fiber of ϕ1 over this point is singular.

Let F be the fiber of ϕ1 that contains ZC. Then F is singular. Then F is a normal cubic surface by
[6, Lemma 3.2]. On the other hand, the fiber F is defined over k, which implies, in particular, that F is
not a cone. Hence, we conclude that F is a singular cubic surface that has Du Val singularities.

Let C be a general fiber of the induced conic bundle ϕ2|F : F → P1. Then C is smooth, since F is
normal. Moreover, if C ∩ ZC ̸= ∅, then δp(XC) > 1 for every point p ∈ C ∩ ZC, which is impossible, since
δp(XC) ⩽ 1 for every point p ∈ ZC. Thus, we conclude that C ∩ ZC = ∅. This means that ZC is an
irreducible component of a fiber of the conic bundle ω. But S intersects every irreducible component of
every fiber of the conic bundle ω, which is a contradiction, since we already showed that ZC ∩S = ∅. □

Lemma 5.12. Suppose that X is contained in Family �3.5 and X(k) = ∅. Then XC is K-polystable.

Proof. The required assertion follows from [3, § 5.14] and [30]. To explain this in details, let us describe
the construction and geometry of the geometric model of the 3-fold X. So, for a while, we work over C.
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Set S = P1 ×P1. Then S contains a smooth rational curve C ⊂ S of degree (5, 1) such that XC can be
constructed from C as follows. Consider the embedding S ↪→ P1 × P2 given by(

[u : v], [x : y]
)
7→
(
[u : v], [x2 : xy : y2]

)
,

and identify S and C with their images in P1 × P2 using this embedding. Then there exists a birational
morphism π : XC → P1 × P2 that blows up C.

To describe geometry of the 3-fold XC, let pr1 : P1×P2 → P1 and pr2 : P1×P2 → P2 be the projections

to the first and the second factors, respectively. Then pr2(S) is a smooth conic in P2. Let S̃ be the proper
transform on XC of the surface S, let E be the π-exceptional surface, and let H2 = (pr2 ◦ π)∗(OP2(1)).

Then S̃ ∼ 2H2 − E. Set H1 = (pr1 ◦ π)∗(OP1(1)). Then

−KXC ∼Q 2H1 +
3

2
S̃ +

1

2
E.

Note that S̃ ∼= P1 × P1 and S̃|
S̃
is a line bundle of degree (−1,−1). Therefore, there exists a birational

morphism ϖ : XC → Y such that Y is a singular Fano 3-fold that has one isolated ordinary double point,

the morphism ϖ contracts S̃ to the singular point of the 3-fold Y , and −K3
Y = 22. Using this, we obtain

the following commutative diagram:

P1 × P2
pr1

tt

pr2

**P1 P2

XC

ϕ1
jj

ϕ2
44π

OO

ϖ

��

σ1

tt

σ2

**V

ψ1 **

φ1

OO

U

ψ2tt

φ2

OO

Y

where V and U are smooth weak Fano 3-folds, ϕ1 is a fibration into quartic del Pezzo surfaces, ϕ2 is a conic

bundle, σ1 and σ2 are birational contractions of the surface S̃ to smooth rational curves, ψ1 and ψ2 are
small resolutions of the 3-fold Y , ϕ1 is a fibration into quintic del Pezzo surfaces, and ϕ2 is a P1-bundle.

Now, we are ready to prove that XC is K-polystable. Let p be a general point in ZC, and let F be the
fiber of the del Pezzo fibration ϕ1 that contains p. Then F is a quartic del Pezzo surface with Du Val

singularities, and δp
(
XC
)
⩽ 1 for every point p ∈ ZC. On the other hand, if p ∈ S̃, then δp(XC) > 1 by [3,

Lemma 5.68]. Moreover, if F is smooth, then it follows from [3, Lemma 5.69] that δp(XC) > 1. Thus, we

conclude that p ̸∈ S̃, and the surface F is singular. The latter implies that ZC ⊂ F , since we assume that
p is a general point in ZC. In particular, we see that F is defined over k, because Z is defined over k. On
the other hand, if F has only ordinary double points, then it follows from the proof of [30, Main Theorem]
that δp(XC) > 1. Hence, we conclude that F has a singular point that is not an ordinary double points.
Now, using classification of singular quartic del Pezzo surfaces with Du Val singularities [24], we see that
F has a unique such singular point of F is unique, so it must be defined over k, which contradicts the
assumption X(k) = ∅. □

Lemma 5.13. Suppose that X is contained in Family �3.6 and X(k) = ∅. Then XC is K-polystable.

Proof. The required assertion follows from [10]. Indeed, it follows from [60, 62] that XC can be obtained
by blowing up P3 along a disjoint union of a line and a smooth quartic elliptic curve. Let L be this line
in P3, let C4 be this smooth quartic elliptic curve in P3 such that L ∩C4 = ∅, and let π : X → P3 be the
blowup of these two curves. Then we can choose coordinates x0, x1, x2, x3 on P3 such that

C4 =
{
x20 + x21 + λ(x22 + x23) = 0, λ(x20 − x21) + x22 − x23 = 0

}
⊂ P3

for some complex number λ ̸∈ {0,±1,±i}, and

L =
{
a0x0 + a1x1 + a2x2 = 0, b1x1 + b2x2 + b3x3 = 0

}
⊂ P3
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for some [a0 : a1 : a2] and [b1 : b2 : b3] in P2. Then we have the following commutative diagram:

P1 × P1 pr2

!!

pr1

}}
P1 XC

π ��

η
OO

ϕ //σoo P1

P3
φ

44

ς

jj

where ς is given by [x0 : x1 : x2 : x3] 7→ [a0x0 + a1x1 + a2x2 : b1x1 + b2x2 + b3x3], the map φ is given by

[x0 : x1 : x2 : x3] 7→
[
x20 + x21 + λ(x22 + x23) : λ(x

2
0 − x21) + x22 − x23

]
,

the map σ is a fibration into quintic del Pezzo surfaces, ϕ is a fibration into sextic del Pezzo surfaces, the
map η is a conic bundle, pr1 and pr2 are projections to the first and the second factors, respectively.

Suppose that XC is not K-polystable. Then, arguing as in the proof of Lemma 5.12, we see that X
contains a geometrically irreducible curve Z defined over k such that δp(XC) ⩽ 1 for every point p ∈ ZC.
Let us show that this leads to a contradiction.

Set H = π∗(OP3(1)). Let E and R be the exceptional surfaces of the blowup π such that π(E) = C4

and π(R) = L. Then the quintic del Pezzo fibration σ is given by the pencil |H − R|, the sextic del
Pezzo fibration φ is given by the pencil |2H − E|, the conic bundle η is given by |3H − E − R|. Note

that Eff(X) = ⟨E,R,H − R, 2H − E⟩, and the Mori cone NE(X) is generated by the classes of curves
contracted by the blow up π : X → P3 and the conic bundle η : X → P1 × P1.

Fix a general point p ∈ ZC. Let S be the surface in the pencil |H − R| that contains p, and let u be
a non-negative real number. Then S is a del Pezzo surface with at most Du Val singularities, and the
divisor −KX − uS is pseudo-effective if and only if u ⩽ 2. For u ∈ [0, 2], let P (u) be the positive part of
the Zariski decomposition of the divisor −KX − uS, and let N(u) be its negative part. Then

P (u) ∼R

{
(4− u)H − E + (u− 1)R if 0 ⩽ u ⩽ 1,

(4− u)H − E if 1 ⩽ u ⩽ 2,

and

N(u) =

{
0 if 0 ⩽ u ⩽ 1,

(u− 1)R if 1 ⩽ u ⩽ 2,

which gives SX(S) =
1
22

2∫
0

P (u)3du = 67
88 . Now, for every prime divisor F over the surface S, we set

S
(
WS

•,•;F
)
=

3

(−KX)3

τ∫
0

ordF
(
N(u)|S

)(
P (u)|S

)2
du+

3

(−KX)3

τ∫
0

∞∫
0

vol
(
P (u)

∣∣
S
− vF

)
dvdu,

where (−KX)
3 = 22. Then, following [1, 3], we let

δp
(
S,WS

•,•
)
= inf

F/S
p∈CS(F )

AS(F )

S
(
WS

•,•;F
) ,

where the infimum is taken by all prime divisors over the surface S whose center on S contains p. Then
it follows from [1, 3] that

1 ⩾ δp
(
XC
)
⩾ min

{
1

SX(S)
, δp
(
S,WS

•,•
)}
.

Therefore, since SX(S) < 1, we conclude that δp(S,W
S
•,•) ⩽ 1.

If σ(ZC) = P1, then S is a general fiber of the del Pezzo fibration σ, which implies, in particular, that
the surface S is smooth. In this case, we know from [10] that δp(S,W

S
•,•) > 1, which is a contradiction.

Thus, we conclude that the surface S is singular, and σ(ZC) is a point in P1. This means that S is the
unique fiber of the the del Pezzo fibration that contains the curve ZC. Hence, since Z is defined over k,
the surface S must also be defined over k. Now, using classification of singular quintic del Pezzo surfaces
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with Du Val singularities [24], we see that the worst singular point of the surface S is unique unless S has
exactly two ordinary double points. Thus, we conclude that S has exactly two ordinary double points,
because otherwise its worst singular point would be defined over k, which is impossible as X(k) = ∅.

Recall that the divisor −KS is very ample, so we can identify S with its anticanonical image in P5.
Then it follows from [24] that S contains a unique line that passes through two singular points of the
surface S. Denote this line by ℓ. Note that the line ℓ is also defined over k. Moreover, we have ℓ2 = 0
and the linear system |2ℓ| is a pencil that is free from base points. Observe that the pencil |2ℓ| contains
exactly two singular curves: the curve 2ℓ and another curve, let us denote it by C, that is a union of two
lines ℓ1 and ℓ2 such that the intersection ℓ1 ∩ ℓ2 consists of a single point. This shows that the singular
curve C = ℓ1+ℓ2 is defined over k and, therefore, the point ℓ1∩ℓ2 is also defined over k, which contradicts
our assumption X(k) = ∅. □

Lemma 5.14. Suppose that X is contained in Family �3.7 and X(k) = ∅. Then XC is K-polystable.

Proof. It follows from [60, 62, 58] that there exists the following diagram

X
π

yy
ϕ

%%
W C

where W is form of the smooth divisor of degree (1, 1) in P2 × P2, C is a smooth conic in P2 that is
defined over k, the morphism π is the blowup of a smooth elliptic curve C that is defined over k, and ϕ
is a morphism such that a general fiber of ϕC is a smooth del Pezzo surface of degree 6.

Let E be the π-exceptional surface, let p be a point in ZC, and let S be the fiber of ϕC that contains
p. Then E ≃ C × C, the surface S has isolated singularities, and δp(XC) ⩽ 1. Moreover, if S is Du Val,
then it follows from the proof of [11, Lemma 2.1] that

(5.10) δp(XC) ⩾


min

{16
11
,
16

15
δp(S)

}
if p ̸∈ EC,

min
{16
11
,

16δp(S)

δp(S) + 15

}
if p ∈ EC.

Furthermore, if S is smooth, then it follows from [28] that

(5.11) δp(S) =


1 if p is contained in a (−1)-curve in S,

6

5
otherwise.

Suppose that ϕ(ZC) is a point in CC ≃ P1. Then ZC ⊂ S, which implies that C ≃ P1 and S is defined
over k. If S is smooth, (5.10) and (5.11) implies that p ∈ EC and p is contained in a (−1)-curve in S.
Keeping in mind that p is any point in ZC, we conclude that ZC ⊂ EC|S and ZC is a (−1)-curve in S,
which is impossible, since EC|S is a smooth elliptic curve isomorphic to CC. Thus, S is singular.

Recall from [44] that S can have at most one non-Du Val singular point. Hence, since S is defined
over k and S does contain k-points, we conclude that S has Du Val singularities, and it has at least 2
singular points such that non of them is defined over k. Now, using [24, Proposition 8.3], we see that
S has exactly two isolated ordinary double points. Moreover, it follows from [24, Proposition 8.3] that
S contains a unique smooth geometrically rational curve ℓ such that ℓ2 = −1

2 , and this curve contains
exactly one singular point of S. This implies that ℓ and this singular point are both defined over k, which
contradicts our assumption X(k) = ∅. Thus, we see that ϕ(ZC) is not a point in CC ≃ P1, so ϕ(Z) = C.

From now one, we assume that p is a general point of the curve ZC. Then the surface S is smooth. As
above, using (5.10) and (5.11), we see that p ∈ EC, which immediately gives ZC ⊂ EC. Then π(Z) = C .
Indeed, if π(ZC) is a point in CC, this point would be defined over k, which would imply W (k) ̸= ∅, but
W (k) = ∅ by Lemma 2.1. Hence, we see that π(Z) = C . This easily leads to a contradiction.

Indeed, let H be a divisor in Pic(WC) such that −KWC ∼ 2H, and let u be a non-negative real number.
Then −KXC −uEC = π∗(2H)− (1+u)EC, which implies that −KXC −uEC is pseudoeffective if and only
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if u ⩽ 1, and for every u ∈ [0, 1], the divisor −KXC − uEC is nef. This gives

SXC(EC) =
1

24

∫ 1

0

(
−KXC − uEC

)3
du =

1

24

∫ 1

0
6(2u3 − 6u+ 4)du =

3

8
.

Thus, it follows from [3, Corollary 1.110] that S(WEC•,• ;ZC) ⩾ 1, where

S
(
WEC

•,• ;ZC
)
=

3

24

∫ 1

0

∫ ∞

0
vol
((

−KXC − uEC
)∣∣
S
− vZC

)
dvdu.

Recall that EC ∼= CC × CC ≃ CC × P1. Let s be a fiber of the projection ϕC|EC : EC → CC, and let f be
a fiber of the projection πC|EC : EC → CC. Then ZC ≡ as + bf for some non-negative integers a and b.
Moreover, we have a ⩾ 1, because π(ZC) = CC.

1 ⩽ S
(
WEC

•,• ;ZC
)
= S

(
WEC

•,• ; as+ bf
)
⩽ S

(
WEC

•,• ; s
)
,

where

S
(
WEC

•,• ; as+ bf
)
=

3

24

∫ 1

0

∫ ∞

0
vol
((

−KXC − uEC
)∣∣
S
− v
(
as+ bf

))
dvdu,

S
(
WEC

•,• ; s
)
=

3

24

∫ 1

0

∫ ∞

0
vol
((

−KXC − uEC
)∣∣
S
− vs

)
dvdu.

Hence, we see that S(WEC•,• ; s) ⩾ 1. But S(WEC•,• ; s) is easy to compute. Namely, if v ∈ R⩾0, then(
−KXC − uEC

)∣∣
EC

− vs ≡ (1 + u− v)s+ 6(1− u)f ,

which gives

1 ⩽ S
(
WEC

•,• ; s
)
=

3

24

∫ 1

0

∫ 1+u

0

(
(1+u−v)s+6(1−u)f

)2
dvdu =

3

24

∫ 1

0

∫ 1+u

0
12(1−u)(1+u−v)dvdu =

11

16
.

The latter is absurd. □

Lemma 5.15. Suppose that X is contained in Family �3.10 and X(k) = ∅. Then XC is K-polystable.

Proof. It follows from [58, 60, 62] that there exists the following diagram

X
π

yy
η

$$
Q S

where Q is form of a smooth quadric 3-fold, S is a form of a smooth quadric surface, π is the blowup of
a geometrically reducible curve C such that CC = C1 + C2, where C1 and C2 are disjoint conics in the
quadric 3-fold QC ⊂ P4, and η is a conic bundle. Let C be the discriminant curve of the conic bundle η.
Then CC is a reduced curve in SC ≃ P1 × P1 that has degree (2, 2).

Over C, we can choose coordinates [x : y : z : t : w] on P4 such that

C1 = {x = 0, y = 0, w2 + zt = 0},
C2 = {z = 0, t = 0, w2 + xy = 0},

and one of the following three cases hold:

(A) QC =
{
w2 + xy + zt+ a(xt+ yz) + b(xz + yt) = 0

}
,

where (a, b) ∈ C2 such that a± b ̸= ±1, or

(B) QC =
{
w2 + xy + zt+ a(xt+ yz) + xz = 0

}
,

where a ∈ C such that a ̸= ±1, or

(C) QC =
{
w2 + xy + zt+ xt+ xz = 0

}
.

Moreover, it follows from [3, §5.17] that XC is K-polystable if and only if we are in case (C).
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Over C, we have the following commutative diagram:

XCα2

yy

γ1

xx

ηC
��

α1

%%

γ2

&&
Y1

β1 //

π1 //

P1 SC
pr1oo pr2 // P1 Y2

β2oo

π2ooQC

δ1

ff

δ2

88OO

where δ1 is the map given by [x : y : z : t : w] 7→ [x : y], the map δ2 is given by [x : y : z : t : w] 7→ [z : t],
the maps π1 and π2 are blowups of the quadric QC along the smooth conics C1 and C2, respectively,
α1 and α2 are blowups of the proper transforms of these conics, respectively, β1 and β2 are fibrations
into quadric surfaces, γ1 and γ2 are fibrations into sextic del Pezzo surfaces, pr1 and pr2 are natural
projections of SC ≃ P1

x,y × P1
z,t to its factors, and the map QC 99K SC is given by

[x : y : z : t : w] 7→ ([x : y], [z : t]).

Here and below, we identified SC = P1
x,y × P1

z,t with coordinates ([x : y], [z : t]).
Over C, the equation of the curve CC can be computed as follows. If we are in case (A), it is given by

a2
(
x2t2 + y2z2

)
+ 2ab

(
xyz2 + xyt2 + ztx2 + zty2

)
+ b2

(
x2z2 + y2t2

)
+ 2
(
a2 + b2 − 2

)
yzxt = 0.

If we are in case (B), the curve CC is given in SC = P1
x,y × P1

z,t by the following equation:

a2t2x2 + (2a2 − 4)xyzt+ 2atzx2 + a2y2z2 + 2ayz2x+ z2x2 = 0.

If a ̸= 0, the curve CC is irreducible that has a node at ([0 : 1], [0 : 1]). If a = 0, then

CC = {zx(zx− 4yt) = 0} ⊂ P1
x,y × P1

z,t,

so CC is a union of curves of degrees (0, 1), (1, 0), (1, 1), and

Sing
(
CC
)
=
{
([0 : 1], [0, 1]), ([1 : 0], [0 : 1]), ([0 : 1], [1 : 0])

}
.

Finally, if we are in case (C), the curve CC is given by x(t2x + 2txz − 4tyz + xz2) = 0, so CC splits as
a union of a curve of degree (0, 1) and a smooth curve of degree (2, 1).

Now, we are ready to prove the assertion of the lemma. Suppose the Fano 3-fold XC is not K-polystable.
Then either we are in case (B), or we are in case (C). Let us show that X has a k-point in both cases.
We will do this geometrically.

First, we consider case (C). In this case, we have C = L+Z, where L and Z are smooth geometrically
rational curves in S such that both of them are defined over k, LC = {x = 0} ⊂ SC ≃ P1 × P1 and
ZC = {t2x+ 2txz − 4tyz + xz2 = 0}. Set H = π∗(η

∗(L)). Then −KQ ∼ 2H , and the linear system |H |
gives an embedding Q ↪→ P4, which implies that Q is a pointless quadric 3-fold in P4. Observe also that
the surface HC is cut out on QC by the hyperplane {x = 0}, which implies that HC is a quadric cone
with one singular point. This shows that Sing(HC) is defined over k and, in particular, Q(k) ̸= ∅, so
that X(k) ̸= ∅ by Lemma 2.1, which contradicts to our assumption.

Thus, we are in case (B). Suppose that a = 0. Then C is reducible. Namely, we have C = ∆ + ∆′

where ∆ is a geometrically irreducible curve such that ∆C = {zx − 4yt = 0} ⊂ SC ≃ P1 × P1, ∆′ is a
geometrically reducible curve such that ∆′

C = L1 + L2 for L1 = {z = 0} and L2 = {x = 0}. This implies
that S is a quadric surface in P3, and the curves ∆ and ∆′ are its hyperplane sections. Moreover, the
conic bundle ηC has exactly three non-reduced fibers: the fibers over the singular points of the curve SC.
These are the fibers over the points L1 ∩∆, L2 ∩∆, L1 ∩ L2. Denote them by F1, F2, F3, respectively.
Then F1 = 2ℓ1, F2 = 2ℓ2, F3 = 2ℓ3, where ℓ1, ℓ2, ℓ3 are irreducible smooth curves. Moreover, on QC ⊂ P4,
the curves πC(ℓ1), πC(ℓ2), πC(ℓ3) are lines that can be described as follows:

πC(ℓ1) = {x = 0, t = 0, w = 0},
πC(ℓ2) = {y = 0, z = 0, w = 0},
πC(ℓ3) = {x = 0, z = 0, w = 0}.
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Note that the hyperplane section {w = 0} ∩QC is the unique hyperplane section of QC that contains all
these three lines. Thus, this hyperplane section is defined over k, since the one-cycles ℓ1 + ℓ2 and ℓ3 are
defined over k. Therefore, as above, we see that Q is a smooth quadric 3-fold in P3, and this quadric
3-fold that contains a line that is defined over k — the image of the curve ℓ3. This shows that Q(k) ̸= ∅,
so X(k) ̸= ∅ by Lemma 2.1, which contradicts our assumption.

Hence, we see that a ̸= 0. Then CC is geometrically irreducible, and it has one singular point. Moreover,
the restrictions pr1|CC : CC → P1 and pr2|CC : CC → P1 are double covers such that each of them is ramified
in two points away from the singular point of the curve CC. These these ramification points are(

[−a : 1], [1 : 0]
)
,
(
[a− a3 : 1], [1− a2 : a]

)
,
(
[1 : 0], [−a : 1]

)
,
(
[1− a2 : a], [a− a3 : 1]

)
.

Note that the union of these four points is a zero-cycle in C that is defined over k. Moreover, one can
check that the fibers of the conic bundle ηC over these four points are reducible reduced conics, and the
images of their singular points in QC via πC are the following four points:

[0 : 0 : 1 : 0 : 0], [a− a3 : 1 : a2 − 1 : −a : 0], [1 : 0 : 0 : 0 : 0], [a2 − 1 : −a : a− a3 : 1 : 0].

Again, the union of these four points is a zero-cycle in Q that is defined over k. One can check that these
four points in P4 are in linearly general position, since a ̸= ±1. Thus, there exists a unique hyperplane
section of the quadric QC that contains these four points, which implies that it is also defined over k. This
implies that Q is a smooth quadric 3-fold in P4. Now, we let F be the fiber of the conic bundle η over the
singular point of the curve C . Observe that F is defined over k, and F = 2ℓ, where ℓ is a geometrically
irreducible curve in X that is also defined over k. Then π(ℓ) is a line in Q, which implies that Q(k) ̸= ∅,
so that X(k) ̸= ∅ by Lemma 2.1, which is a contradiction. □

Lemma 5.16. Suppose that X is contained in Family �3.12 and X(k) = ∅. Then XC is K-polystable.

Proof. It follows from [60, 62, 58] and Lemma 2.1 that there exists a birational morphism π : X → U such
that U is a pointless form of P3, and π is the blowup of two disjoint smooth geometrically irreducible and
geometrically rational curves L and C such that −KU · L = 4 and −KU · C = 12. Over C, the curve LC
is a line in UC ≃ P3, and CC is a twisted cubic. Let f : V → U be the blowup of the curve L, and let C̃
be the strict transform of the curve C on V . Then there exists a Sarkisov link

V
f

yy
g

%%
U Z

where Z is a conic in P2, and gC is a P2-bundle over ZC ≃ P1. Moreover, the map gC induces a finite

morphism ω : C̃ → Z of degree 3. Furthermore, it follows from [27] that XC is not K-polystable if and

only if the triple cover ωC : C̃C → ZC has a unique ramification point of ramification index 3. Thus, if XC
is not K-polystable, then the set C̃(k) is not empty — it contains the ramification point of index 3 of the
finite morphism ω, so X(k) ̸= ∅ by Lemma 2.1. So, if X(k) = ∅, then XC is K-polystable. □

Lemma 5.17. Suppose that X is contained in Family �3.13 and X(k) = ∅. Then XC is K-polystable.

Proof. Let V be the complete intersection in P2×P2×P2 that is given by the following system of equations:
x1y1 + x2y2 + x3y3 = 0,

y1z1 + y2z2 + y3z3 = 0,

x1z2 + x2z1 + x2z3 − x3z2 − 2x3z3 = 0,

where ([x1 : x2 : x3], [y1 : y2 : y3], [z1 : z2 : z3]) are coordinates on the product P2
x1,x2,x3×P2

y1,y2,y3×P2
z1,z2,z3 .

If XC is not K-polystable, then it follows from [3, § 5.19] that X is a k-form of V . Let us show that any
k-form of V has a k-point. Set

Wx,y = {x1y1 + x2y2 + x3y3 = 0} ⊂ P2
x1,x2,x3 × P2

y1,y2,y3 ,

Wy,z = {y1z1 + y2z2 + y3z3 = 0} ⊂ P2
y1,y2,y3 × P2

z1,z2,z3 ,

Wx,z = {x1z2 + x2z1 + x2z3 − x3z2 − 2x3z3 = 0} ⊂ P2
x1,x2,x3 × P2

z1,z2,z3 .
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Then Wx,y, Wy,z, Wx,z are smooth, and natural projections of P2
x1,x2,x3 × P2

y1,y2,y3 × P2
z1,z2,z3 to its factor

induce birational morphisms πx,y : V → Wx,y, πy,z : V → Wy,z, πx,z : V → Wx,z. Let Ex,y, Ey,z, Ex,z be
the exceptional surfaces of the morphisms πx,y, πy,z, πx,z, respectively. Then

Ex,y = {x1y3 − x2y2 + 2x3y2 − x3y3 = 0, x1y1 − x2y2 − x3y1 = 0, x2y1 − x2y3 − 2x3y1 = 0} ∩Wx,y,

Ey,z = {y2z2 + 2y2z3 + y3z1 + y3z3 = 0, y1z1 + y1z3 − y2z2 = 0, y1z2 + 2y1z3 + y3z2 = 0} ∩Wy,z,

Ex,z = {x2z3 − x3z2 = 0, x1z2 − x2z1 = 0, x1z3 − x3z1 = 0} ∩Wx,z.

The divisors Ex,y, Ey,z, Ex,z generate the cone of effective divisors of the 3-fold VC. Over C, we have

Ex,y ∩ Ey,z ∩ Ex,z =
(
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]

)
.

This shows that every k-form of V contains a k-point — the unique singular point of multiplicity 3 of the
unique effective reduced divisor that splits over C into the sum of three surfaces that generate the cone
of effective divisors of the geometric model of the k-form. □

Lemma 5.18. Suppose that X is contained in Family �4.13 and X(k) = ∅. Then XC is K-polystable.

Proof. Using [60, 62, 58], we see that there is a birational morphism π : X → S×Z such that S is a possibly
pointless form of P1 × P1, Z is a conic in P2, and π is the blowup of a smooth geometrically irreducible
and geometrically rational curve C such that CC is a curve of degree (1, 1, 3) in SC × ZC ≃ P1 × P1 × P1.
Over C, one can choose coordinates ([x0 : x1], [y0 : y1], [z0 : z1]) on P1 × P1 × P1 such that CC is given by
one of the following two equations:

x0y1 − x1y0 = x30z0 + x31z1 + λ
(
x0x

2
1z0 + x20x1z1

)
= 0

for some λ ∈ C \ {±1,±3}, or

(5.12) x0y1 − x1y0 = x30z0 + x31z1 + x0x
2
1z0 = 0.

Moreover, it follows [3, § 5.12] that XC is always K-semistable, and XC is not K-polystable if and only if
the curve CC can be given by the equation (5.12). Note that in this (non-K-polystable) case, the natural
triple cover CC → ZC has a unique ramification point with ramification index 3, which implies that this
point is defined over k and, in particular, the set C(k) is not empty. Hence, if XC is not K-polystable,
then X(k) ̸= ∅ by Lemma 2.1, which contradicts our assumption. □

6. Examples of pointless smooth Fano 3-folds

In this section, we provide examples of pointless smooth Fano 3-folds in the families studied in Section 5.

Example 6.1. It follows from [71] that there exists a unique pointless Q-form V of the five-dimensional
homogeneous space G2/P of the exceptional simple algebraic group of type G2 by a maximal parabolic
subgroup P . By [51, Theorem 3.1], we can describe V as the subvariety of the Grassmannian Gr(2, V7)
parametrizing planes on which the octonionic multiplication is identically zero, where V7 is a seven-
dimensional vector space of imaginary octonions. Note that V is a G2-torsor defined by the unique
non-zero pure Rost symbol {−1,−1,−1} in the Milnor K-theory KM

3 (Q)/2 modulo 2. It follows from
[65] that VC is a smooth Fano 5-fold, and its Picard group Pic(VC) is generated by a divisor H with
−KVC ∼ 3H and H5 = 18. We also know that |H| gives an embedding VC ↪→ P13. Since the class H is

Gal(Q/Q)-invariant, we also have an embedding V ↪→ U into a k-form U of P13. Set D = KU |V − 5KV .
Then D is defined over Q and DC ∼ HC, so |D| gives an embedding of V into P13. Now we take
X = D1 ∩D2 where D1 and D2 are general divisors in |D|. Then X is a pointless Q-form of a smooth
Fano 3-fold belonging to Family �1.9.

Example 6.2. It follows from [45, Theorem 1.1] that there exists a non-empty connected family of smooth
prime Fano 3-folds X of degree 22 defined over R such that XC is smooth Fano 3-fold in Family �1.10
and X(R) = ∅.

Example 6.3. Let V be a smooth cubic 3-fold in P4 defined over Q without Q-points [59], let C be an
intersection of V with any codimension two linear subspace such that C is smooth, and let π : X → V be
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the blowup of the curve C. Then X(Q) = ∅, and XC is a smooth Fano 3-fold in Family �2.5. To present
an explicit example of V and C, let

Y =
{
x31 + 2x32 + 4x33 + x1x2x3 + 7(x34 + 2x35 + 4x36 + x4x5x6) = 0

}
⊂ P5,

where x1, x2, x3, x4, x5, x6 are coordinates on P5. Then Y is a smooth cubic 4-fold defined over Q, which
does not contain Q-points [26]. Indeed, the congruence x31+2x32+4x33+x1x2x3 ≡ 0 mod 7 has only trivial
solutions, which easily implies that Y does not have points over Q7, so it does not have Q-points either.
Now, we can let V = Y ∩ {x6 = 0} and C = V ∩ {x4 = x5 = 0}.

Example 6.4. Let V be a pointless smooth complete intersection of two quadrics in P5 defined over R.
For instance, let

V =
{ 6∑
i=1

x2i =
6∑
i=1

aix
2
i = 0

}
⊂ P5,

where a1, a2, a3, a4, a5, a6 are real numbers such that ai ̸= aj whenever i ̸= j, and x1, x2, x3, x4, x5, x6 are
coordinates on P5. Now, we take C to be an intersection of V with any codimension two linear subspace
such that C is smooth, e.g. C = {x0 = x1 = 0} ∩ V , and let π : X → V be the blowup of the curve C.
Then X(R) = ∅, and XC is a smooth Fano 3-fold in Family �2.10.

Example 6.5. Explicit examples of real pointless smooth Fano 3-folds whose geometric models belong
to Family 2.12 have been constructed in [14].

Example 6.6. Over R, let

C = {x6 + x4y2 + x2y4 + y6 + z2 = 0} ⊂ P(1x, 1y, 3z),

and let ϕ : P(1x, 1y, 3z) → P4 given by [x : y : z] 7→ [x3 : x2y : xy2 : y3 : z]. Then C is a smooth pointless
real hyperelliptic curve of genus 2, and ϕ(C) ≃ C is a curve of degree 6 that is contained in the smooth
pointless real quadric 3-fold

Q =
{
x21 + x22 + x23 + x24 + x25 = 0

}
⊂ P4,

where x1, x2, x3, x4, x5 are projective coordinates on P4. Let π : X → Q be the blowup of the curve ϕ(C).
Then XC is a smooth Fano 3-fold in Family �2.13, and X(R) = ∅ by Lemma 2.1.

Example 6.7. Over R, let

C = {x21 + x22 + x23 = 0, x5 = 0, x6 = 0, x6 = 0} ⊂ P5,

and let V be the complete intersection of two quadrics in P5 that is given by{
x21 + x22 + x23 + x24 + x25 + x26 = 0,

1983x1x4 + 1973x2x5 + 1967x3x6 = 0,

where x1, x2, x3, x4, x5, x6 are coordinates on P5. Then both C and V are smooth and pointless. Let
π : X → V be the blowup of the conic C. Then XC is a smooth Fano 3-fold in Family �2.16, and
X(R) = ∅ by Lemma 2.1.

Example 6.8. Let U be the unique real form of P3 that has no real points. Then Pic(U) = Z[Q] with
−KU ∼ 2Q, and U contains a twisted line L, that is, LC is a line in UC ≃ P3. Let S be a general surface
in |Q| containing L. Then SC ≃ P1 × P1, since otherwise SC would be a quadric cone whose vertex yields
an R-point in U . Since S contains L, it follows that S is isomorphic to P1×C for some pointless conic C.
Now we let Γ be a general curve in | −KS +L|, and let X → U be the blowup of U along Γ. Then XC is
a smooth Fano 3-fold in Family �2.19, and it follows from Lemma 2.1 that X(R) = ∅, as U(R) = ∅.

Example 6.9. Let C be the conic {x2 + y2 + z2 = 0} ⊂ P2, where x, y, z are projective coordinates on
P2. Then C is smooth and without R-points. Let ϕ : P2 → P5 be the second Veronese embedding given
by [x : y : z] 7→ [x2 : y2 : z2 : xy : xz : yz]. Then

ϕ(C) =
{
F1 = F2 = F3 = F4 = F5 = F6 = x1 + x2 + x3 = 0

}
⊂ P5,
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where F1 = x1x2 − x24, F2 = x1x3 − x25, F3 = x2x3 − x26, F4 = x1x6 − x4x5, F5 = x2x5 − x4x6,
F6 = x3x4 − x5x6, and x1, x2, x3, x4, x5, x6 are coordinates on P5. Let

Q̃ =
{ 5∑
i=0

x2i = 0
}
=
{
(x1 + x2 + x3)

2 − 2(F1 + F2 + F3) = 0
}
⊂ P5.

Then Q̃(R) = ∅ and ϕ(C) ⊂ Q̃. Let H = {x1 + x2 + x3 = 0} and Q = H ∩ Q̃. Then Q is a smooth
pointless quadric hypersurface in H ≃ P4 containing ϕ(C). Thus, blowing up Q along ϕ(C), we obtain a
pointless smooth Fano 3-fold, over R, whose geometric model is contained in Family �2.21.

Example 6.10. Let S be a pointless Q-form of P2, and let V = S×S. Then it follows from [23, Chapter 7]
that Pic(V ) contains a line bundle L such that LC is a divisor of degree (1,−1) on VC ≃ P2 × P2. Let X
be a general divisor in the linear system |L+π∗2(−KS)|, where π2 : V → S is the projection to the second
factor. Then X is smooth, and XC is a smooth Fano 3-fold in Family �2.24. By construction, we have
X(Q) = ∅, because V does not have points in Q.

Example 6.11. Let C be a pointless conic in P2 over R, and let E be the restriction of the tangent
bundle of P2 to C. Then it follows from [8] that E is an indecomposable vector bundle on C and EC splits
as OP1(3)⊕OP1(3) on CC ≃ P1. Set

V = P
(
OC(−KC)⊕OC(−KC)⊕ E ⊗OC(KC)

)
,

let η : V → C be the natural projection, let M be the tautological vector bundle on V , and let X be a
general divisor in the linear system |3M − π∗(−KC)|. Then X is smooth, and it follows from [16, § 11]
that XC is a smooth Fano 3-fold in Family �3.2. We have X(R) = ∅, since C(R) = ∅.

Example 6.12. Let C be a pointless real conic in P2, let S = C × C, let ∆ be the diagonal curve in S,
and let B be a general curve in the linear system |∆+ pr∗2(−2KC)|, where pr2 : S → C is the projection
to the second factor. Then BC is a divisor of degree (1, 5) on SC ≃ P1 × P1. Now, we identify S with a
surface in C×P2 via the embedding C ↪→ P2 of the second factor of S and regard B as a curve in C×P2.
Let π : X → C × P2 be the blowup of the curve B. Then X(R) = ∅, and XC is a smooth Fano 3-fold in
Family �3.5.

Example 6.13. In the notations and assumptions of Example 6.8, let Q1 and Q2 be two general surfaces
in |Q|, let C = Q1 ∩Q2, and let π : X → U be the blowup of the curves L and C. Then X(R) = ∅, and
XC is a smooth Fano 3-fold in Family �3.6.

Example 6.14. Let S be a Q-form of P2 with no Q-points, and let S′ be the pointless Q-form of P2

whose class in the Brauer group of Q is the inverse of the class of S. Set V = S × S′. Then Pic(V )
contains a divisor D such that DC is a divisor of degree (1, 1) on VC ≃ P2 × P2. Let Y1, Y2, Y3 be general
divisors in |D|, set C = Y1 ∩ Y2 ∩ Y3, and let π : X → Y1 be the blowup of the curve C. Then X(Q) = ∅,
and XC is smooth Fano 3-fold in Family �3.7.

Example 6.15. Let Q be a pointless real smooth quadric 3-fold in P4, let Π1 and Π2 be general disjoint
two-dimensional linear subspaces in P4, and let π : X → Q be the blowup of the conics Q∩Π1 and Q∩Π2.
Then X(R) = ∅, and XC is a smooth Fano 3-fold in Family �3.10.

Example 6.16. In the notations and assumptions of Example 6.8, let S1 and S2 be two general surfaces
in |Q| that contain the twisted line L. Then it follows from Example 6.8 that Q1 ·Q2 = L+ C where C
is a smooth geometrically rational curve such that CC is a twisted cubic curve in UC ≃ P3. Let L′ be a
twisted line in U such that L′

C∩CC = ∅, and let π : X → U be the blowup of the curves L′ and C. Then,
by construction, X(R) = ∅, and XC is a smooth Fano 3-fold in Family �3.12.

Example 6.17. Let Q be the real smooth pointless quadric in P4 given by

x2 + y2 + z2 + t2 + w2 = 0,

where x, y, z, t, w are coordinates on P4. Let S be the hyperplane section of Q that is cut out by w = 0.
Then SC contains conjugated lines L1 = {w = 0, x = iy, z = it} and L2 = {w = 0, x = −iy, z = −it}, and
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the curve L1 + L2 is defined over R. Let α : Q̃ → Q be the blowup of the curve L1 + L2. Then we have
the following commutative diagram:

Q̃
α

{{

β

$$
Q χ

// W

where W is a smooth Fano 3-fold with WC a divisor of degree (1, 1) in P2×P2, β is a birational morphism

that contracts the strict transform of the surface S on the threefold Q̃ to a smooth curve in W , and χ is
a birational map. Now, let C2 be the conic in Q that is cut out by the plane {x+ t = 0, y + z = 0}. The
conic C2 is disjoint from the curve L1+L2. Set C = χ(C2), which is a smooth curve in W , where pr1(CC)
and pr2(CC) are conics in P2, and the induced morphisms CC → P2 gives isomorphisms CC ≃ pr1(CC)
and CC ≃ pr2(CC), where pr1 : WC → P2 and pr2 : WC → P2 are projections to the first and the second
factors of P2×P2, respectively. Thus, if we blowup W along C, we obtain a pointless 3-fold over R, whose
geometric model is a smooth Fano 3-fold in Family �3.13.

Example 6.18. Let Q = C×C, where C is a pointless conic defined over R and set V = Q×C. Consider
a divisor Z ⊂ Q such that ZC has degree (1, 1) on QC ∼= P1×P1. Let S = pr∗1(Z) ⊂ V , where pr1 : V → Q
is the projection onto the first factor, so that S ∼= Z × C. Observe that SC ∼= ZC × CC ∼= P1 × P1. As
both Z and C are pointless, and P1 has only one nontrivial form, we conclude that Z ∼= C. Once again,
let D ⊂ S be a divisor so that DC has degree (1, 1) on SC ∼= P1 × P1. Let B be a general curve in
|D + π∗1(−KZ)| where π1 : S → Z is the natural projection. Note that BC is a divisor on SC ∼= P1 × P1

of degree (3, 1), hence BC is a curve on VC of degree (1, 1, 3). Let π : X → V be the blowup of V along
B. Then we obtain a pointless 3-fold over R, whose geometric model is a smooth Fano 3-fold in Family
�4.13.
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