CREMONA GROUPS OF REAL SURFACES

JÉRÉMY BLANC AND FRÉDÉRIC MANGOLTE

Abstract

We give an explicit set of generators for various natural subgroups of the real Cremona group $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. This completes and unifies former results by several authors.

MSC 2000: 14E07, 14P25, 14J26
Keywords: real algebraic surface, rational surface, birational geometry, algebraic automorphism, Cremona transformation

1. INTRODUCTION

1.1. On the real Cremona group $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. The classical Noether-Castelnuovo Theorem [Cas1901] (see also [A02, Chapter 8] for a modern exposition of the proof) gives generators of the group $\operatorname{Bir}_{\mathbb{C}}\left(\mathbb{P}^{2}\right)$ of birational transformations of the complex projective plane. The group is generated by the biregular automorphisms, which form the group $\operatorname{Aut}_{\mathbb{C}}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}(3, \mathbb{C})$ of projectivities, and by the standard quadratic transformation

$$
\sigma_{0}:(x: y: z) \longrightarrow(y z: x z: x y)
$$

This result does not work over the real numbers. Indeed, recall that a base point of a birational transformation is a (possibly infinitely near) point of indeterminacy; and note that two of the base points of the quadratic involution

$$
\sigma_{1}:(x: y: z) \longrightarrow\left(y^{2}+z^{2}: x y: x z\right)
$$

are not real. Thus σ_{1} cannot be generated by projectivities and σ_{0}. More generally, we cannot generate this way maps having non real base-points. Hence the group $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ of birational transformations of the real projective plane is not generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}(3, \mathbb{R})$ and σ_{0}.

The first result of this note is that $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right), \sigma_{0}, \sigma_{1}$, and a family of birational maps of degree 5 having only non real base-points.

Theorem 1.1. The group $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right), \sigma_{0}, \sigma_{1}$, and the standard quintic transformations of \mathbb{P}^{2} (defined in Example 3.1).

The proof of this result follows the so-called Sarkisov program, which amounts to decompose a birational map between Mori fibre spaces as a sequence of simple maps, called Sarkisov links. The description of all possible links has been done in [Isko96] for perfect fields, and in [Poly97] for real surfaces. We recall it in Section 2 and show how to deduce Theorem 1.1 from the list of Sarkisov links.

[^0]Note that a family of generators of $\operatorname{Bir}_{\mathbb{K}}\left(\mathbb{P}^{2}\right)$ is given in [Isko91], for any perfect field \mathbb{K}. When taking $\mathbb{K}=\mathbb{R}$, the list is however longer than the one given in Theorem 1.1.

Let X be an algebraic variety defined over \mathbb{R} (always assumed to be geometrically irreducible), we denote as usual by $X(\mathbb{R})$ the set of real points endowed with the induced algebraic structure. The topological space $\mathbb{P}^{2}(\mathbb{R})$ is then the real projective plane, letting $\mathbb{F}_{0}:=\mathbb{P}^{1} \times \mathbb{P}^{1}$, the space $\mathbb{F}_{0}(\mathbb{R})$ is the torus $\mathbb{S}^{1} \times \mathbb{S}^{1}$ and letting $Q_{3,1}=\left\{(w: x: y: z) \in \mathbb{P}^{3} \mid w^{2}=x^{2}+y^{2}+z^{2}\right\}$, the real locus $Q_{3,1}(\mathbb{R})$ is the sphere \mathbb{S}^{2}.

Recall that an isomorphism $X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ is a birational map $\varphi: X \rightarrow Y$ defined over \mathbb{R} such that φ is defined at all real points of X and φ^{-1} at all real points of Y. The set of automorphisms of $X(\mathbb{R})$ form a $\operatorname{group} \operatorname{Aut}(X(\mathbb{R}))$, and we have natural inclusions

$$
\operatorname{Aut}_{\mathbb{R}}(X) \subset \operatorname{Aut}(X(\mathbb{R})) \subset \operatorname{Bir}_{\mathbb{R}}(X)
$$

The strategy used to prove Theorem 1.1 allows us to treat similarly the case of natural subgroups of $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$, namely the groups $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$, $\operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ and $\operatorname{Aut}\left(\mathbb{F}_{0}(\mathbb{R})\right)$ of three minimal real rational surfaces (see Corollary 2.10). This way, we give a unified treatment to prove three theorems on generators, the first two of them already proved in a different way in [RV05] and [KM09].

Observe that $\operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ and $\operatorname{Aut}\left(\mathbb{F}_{0}(\mathbb{R})\right)$ are not really subgroups of $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$, but each of them is isomorphic to a subgroup which is determined up to conjugation. Indeed, for any choice of a birational map $\psi: \mathbb{P}^{2} \rightarrow X\left(X=Q_{3,1}\right.$ or $\left.\mathbb{F}_{0}\right)$, $\psi^{-1} \operatorname{Aut}(X(\mathbb{R})) \psi \subset \operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$.

Theorem $1.2([\operatorname{RV} 05])$. The group $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}(3, \mathbb{R})$ and by standard quintic transformations.

Note that up to the action of $\operatorname{PGL}(3, \mathbb{R})$, the standard quintic transformations form an algebraic variety of (real) dimension 4 . This is in contrast with the complex case, where the set of standard quadratic transformations is $\left\{\sigma_{0}\right\}$, up to the action of $\operatorname{PGL}(3, \mathbb{C})$.

Theorem $1.3([\operatorname{KM} 09])$. The group $\operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)=$ $\mathrm{PO}(3,1)$ and by standard cubic transformations.

Here the real dimension of the variety of standard cubic transformations, modulo $\mathrm{PO}(3,1)$, is 2 .
Theorem 1.4. The group $\operatorname{Aut}\left(\mathbb{F}_{0}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{F}_{0}\right) \cong \operatorname{PGL}(2, \mathbb{R})^{2} \rtimes$ $\mathbb{Z} / 2 \mathbb{Z}$ and by the involution

$$
\tau_{0}:\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right) \rightarrow\left(\left(x_{0}: x_{1}\right),\left(x_{0} y_{0}+x_{1} y_{1}: x_{1} y_{0}-x_{0} y_{1}\right)\right)
$$

In each case, we don't know any easy way of computing the relations between the given generators. (See [IKT93] for a description in a more general setting, whose application to the real case does not fit our set of generators.)

The proof of theorems 1.1, 1.2, 1.3, 1.4 is given in Sections 4, 3, 5, 6, respectively. Section 7 is devoted to present some related recent results on birational geometry of real projective surfaces.

In the sequel, surfaces and maps are assumed to be real. In particular if we consider that a real surface is a complex surface endowed with a Galois-action of
$G:=\operatorname{Gal}(\mathbb{C} \mid \mathbb{R})$, a map is G-equivariant. On the contrary, points and curves are not assumed to be real a priori.

We would like to thank the referee whose remarks helped us to improve the exposition and Igor Dolgachev for indicating us references.

2. Mori theory for real rational surfaces and Sarkisov program

We work with the tools of Mori theory. A good reference in dimension 2, over any perfect field, is [Isko96]. The theory, applied to smooth projective real rational surfaces, becomes really simple. The description of Sarkisov links between real rational surfaces has been done in [Poly97], together with a study of relations between these links. In order to state this classification, we first recall the following classical definitions (which can be found in [Isko96]).

Definition 2.1. A smooth projective real rational surface X is said to be minimal if any birational morphism $X \rightarrow Y$, where Y is another smooth projective real surface, is an isomorphism.

Definition 2.2. A Mori fibration is a morphism $\pi: X \rightarrow W$ where X is a smooth projective real rational surface and one of the following occurs
(1) $\rho(X)=1, W$ is a point (usually denoted $\{*\}$), and X is a del Pezzo surface;
(2) $\rho(X)=2, W=\mathbb{P}^{1}$ and the map π is a conic bundle.

Note that for an arbitrary surface, the curve W in the second case should be any smooth curve, but we restrict ourselves to rational surfaces which implies that W is isomorphic to \mathbb{P}^{1}.

Proposition 2.3. Let X be a smooth projective real rational surface. If X is minimal, then it admits a morphism $\pi: X \rightarrow W$ which is a Mori fibration.

Proof. Follows from [Isko79, Theorem 1]. See also [Mori82].
Definition 2.4. A Sarkisov link between two Mori fibrations $\pi_{1}: X_{1} \rightarrow W_{1}$ and $\pi_{2}: X_{2} \rightarrow W_{2}$ is a birational map $\varphi: X_{1} \rightarrow X_{2}$ of one of the following four types, where each of the diagrams is commutative:
(1) Link of Type I

where $\varphi^{-1}: X_{2} \rightarrow X_{1}$ is a birational morphism, which is the blow-up of either a real point or two non-real conjugate points of X_{1}, and where τ is the contraction of $W_{2}=\mathbb{P}^{1}$ to the point W_{1}.
(2) Link of Type II

where $\sigma_{i}: Z \rightarrow X_{i}$ is a birational morphism, which is the blow-up of either a real point or two non-real conjugate points of X_{i}, and where τ is an isomorphism between W_{1} and W_{2}.
(3) Link of Type III

where $\varphi: X_{1} \rightarrow X_{2}$ is a birational morphism, which is the blow-up of either a real point or two non-real conjugate points of X_{2}, and where τ is the contraction of $W_{1}=\mathbb{P}^{1}$ to the point W_{2}. (It is the inverse of a link of type I.)
(4) Link of Type IV

where $\varphi: X_{1} \rightarrow X_{2}$ is an isomorphism and $\pi_{1}, \pi_{2} \circ \varphi$ are conic bundles on X_{1} with distinct fibres.

Remarks 2.5.
(1) The morphism τ is important only for links of type II, between two surfaces with a Picard group of rank 2 (in higher dimension τ is important also for other links).
(2) There is only one possible W_{1} and one possible W_{2} in cases I, III, IV but a priori several possibilities in case II.
(3) We shall see in Example 2.13(2) that indeed there exists links of type II where $W_{1}=W_{2}=\{*\}$. This is a feature of the real case that does not arise in the complex case.
Definition 2.6. If $\pi: X \rightarrow W$ and $\pi^{\prime}: X^{\prime} \rightarrow W^{\prime}$ are two (Mori) fibrations, an isomorphism $\psi: X \rightarrow X^{\prime}$ is called an isomorphism of fibrations if there exists an isomorphism $\tau: W \rightarrow W^{\prime}$ such that $\pi^{\prime} \psi=\tau \pi$.

Note that the composition $\alpha \varphi \beta$ of a Sarkisov link φ with some automorphisms of fibrations α and β is again a Sarkisov link. We have the following fundamental result:

Proposition 2.7. If $\pi: X \rightarrow W$ and $\pi^{\prime}: X^{\prime} \rightarrow W^{\prime}$ are two Mori fibrations, then any birational map $\psi: X \rightarrow X^{\prime}$ is either an isomorphism of fibrations or admits a decomposition into Sarkisov links $\psi=\varphi_{n} \ldots \varphi_{1}$ such that
(i) for $i=1, \ldots, n-1$, the birational $\operatorname{map} \varphi_{i+1} \varphi_{i}$ is not biregular;
(ii) for $i=1, \ldots, n$, every base-point of φ_{i} is a base-point of $\varphi_{n} \ldots \varphi_{i}$.

Proof. Follows from [Isko96, Theorem 2.5] (see also the appendix of [Cort95]).
Let us give an idea of the strategy here, and refer to [Isko96] for the details. If ψ is not an isomorphism of fibrations, then one can associate with it a Sarkisov degree, which is a triple of numbers (a, r, m) (see Definition at page 601 of [Isko96]).

The number $a \in \mathbb{Q}$ is given by the degree of the linear system \mathcal{H}_{X} on X associated with ψ, the number $r \in \mathbb{N}$ is the maximal multiplicity of the base-points of this system and m is the number of base-points that realise this maximum. Then, we have the following dichotomy:
(i) If $r>a$, we denote by $\pi: \hat{X} \rightarrow X$ the blow-up of one real point or two conjugate non-real points that realise the multiplicity, then find that either \hat{X} admits a structure of Mori fibration and $\varphi_{1}=\pi^{-1}$ is a link of type I, or find a contraction $\pi^{\prime}: \hat{X} \rightarrow X_{1}$ such that $\varphi_{1}=\pi^{\prime} \pi^{-1}: X \rightarrow X_{1}$ is a link of type III.
(ii) If $r \leq a$, we either find a contraction $\varphi_{1}: X \rightarrow X_{1}$ which is a link of type III or find a link of type IV, which is an automorphism $\varphi_{1}: X \rightarrow X$.

In each case, it is shown that the Sarkisov degree of $\psi\left(\varphi_{1}\right)^{-1}: X_{1} \rightarrow X^{\prime}$ is smaller than the one of ψ, for the lexicographical ordering. The set of all possible Sarkisov degrees beeing discrete and bounded from below ([Isko96, last paragraph of page 601]), the procedure ends at some point.

Moreover, the construction of the links implies that the two properties described above hold.

Remark 2.8. In the above decomposition, if ψ has no real base-point (for instance when ψ induces an isomorphism $\left.X(\mathbb{R}) \rightarrow X^{\prime}(\mathbb{R})\right)$, then φ_{1} and φ_{2} have no real base-point. However, the maps φ_{i} for $i \geq 3$ can have some real base-points, which have been artificially created, and correspond in fact to the base-points of $\left(\varphi_{j}\right)^{-1}$ for $j<i$.

This phenomenon happens for any $\psi \in \operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right) \backslash \operatorname{Aut}\left(\mathbb{P}^{2}\right)$, as the first link φ_{1} will blow-up two non-real base-point and contract the line through these two, onto a real point, base-point of $\left(\varphi_{1}\right)^{-1}$ and of $\varphi_{n} \ldots \varphi_{2}$ (see Example 2.13(2) below).
Theorem 2.9 ([Com14] (see also [Isko79])). Let X be a real rational surface, if X is minimal, then it is isomorphic to one of the following:
(1) \mathbb{P}^{2},
(2) the quadric $Q_{3,1}=\left\{(w: x: y: z) \in \mathbb{P}^{3} \mid w^{2}=x^{2}+y^{2}+z^{2}\right\}$,
(3) a Hirzebruch surface $\mathbb{F}_{n}=\left\{((x: y: z),(u: v)) \in \mathbb{P}^{2} \times \mathbb{P}^{1} \mid y v^{n}=z u^{n}\right\}$ with $n \neq 1$.

By [Mang06], if $n-n^{\prime} \equiv 0 \bmod 2, \mathbb{F}_{n}(\mathbb{R})$ is isomorphic to $\mathbb{F}_{n^{\prime}}(\mathbb{R})$. We get:
Corollary 2.10. Let $X(\mathbb{R})$ be the real locus of a real rational surface. If X is minimal, then $X(\mathbb{R})$ is isomorphic to one of the following:
(1) $\mathbb{P}^{2}(\mathbb{R})$,
(2) $Q_{3,1}(\mathbb{R})$, diffeomorphic to \mathbb{S}^{2},
(3) $\mathbb{F}_{0}(\mathbb{R})$, diffeomorphic to $\mathbb{S}^{1} \times \mathbb{S}^{1}$,
(4) $\mathbb{F}_{3}(\mathbb{R})$, diffeomorphic to the Klein bottle.

Remark 2.11. Note that $\mathbb{F}_{3}(\mathbb{R})$ and $\mathbb{F}_{1}(\mathbb{R})$ are isomorphic. However, \mathbb{F}_{1} is not minimal although \mathbb{F}_{3} is.

In the same vein, there exists a birational morphism $\mathbb{P}^{2}(\mathbb{R}) \rightarrow Q_{3,1}(\mathbb{R})$, that contracts a real line (the map φ^{-1} in Example 2.13(2)).

We give a list of Mori fibrations on real rational surfaces, and will show that, up to isomorphisms of fibrations, this list is exhaustive.
Example 2.12. The following morphisms $\pi: X \rightarrow W$ are Mori fibrations on the plane, the sphere, the Hirzebruch surfaces, and a particular Del Pezzo surface of degree 6 .
(1) $\mathbb{P}^{2} \rightarrow\{*\}$;
(2) $Q_{3,1}=\left\{(w: x: y: z) \in \mathbb{P}_{\mathbb{R}}^{3} \mid w^{2}=x^{2}+y^{2}+z^{2}\right\} \rightarrow\{*\}$;
(3) $\mathbb{F}_{n}=\left\{((x: y: z),(u: v)) \in \mathbb{P}^{2} \times \mathbb{P}^{1} \mid y v^{n}=z u^{n}\right\} \rightarrow \mathbb{P}^{1}$ for $n \geq 0$ (the map is the projection on the second factor);
(4) $\mathcal{D}_{6}=\left\{(w: x: y: z),(u: v) \in Q_{3,1} \times \mathbb{P}^{1} \mid w v=x u\right\} \rightarrow \mathbb{P}^{1}$ (the map is the projection on the second factor).

Example 2.13. The following maps between the surfaces of Example 2.12 are Sarkisov links (in the list, fibers refer to those of the Mori fibrations introduced in Example 2.12):
(1) The contraction of the exceptional curve of \mathbb{F}_{1} (or equivalently the blow-up of a real point of \mathbb{P}^{2}), is a link $\mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$ of type III. Note that the inverse of this link is of type I.
(2) The stereographic projection from the North pole $p_{N}=(1: 0: 0: 1)$, $\varphi: Q_{3,1} \longrightarrow \mathbb{P}^{2}$ given by

$$
\varphi:(w: x: y: z) \rightarrow(x: y: w-z)
$$

and its inverse $\varphi^{-1}: \mathbb{P}^{2} \rightarrow Q_{3,1}$ given by

$$
\varphi^{-1}:(x: y: z) \longrightarrow\left(x^{2}+y^{2}+z^{2}: 2 x z: 2 y z: x^{2}+y^{2}-z^{2}\right)
$$

are both Sarkisov links of type II.
The map φ decomposes into the blow-up of p_{N}, followed by the contraction of the strict transform of the curve $z=w$ (intersection of $Q_{3,1}$ with the tangent plane at p_{N}), which is the union of two non-real conjugate lines. The map φ^{-1} decomposes into the blow-up of the two non-real points ($1: \pm \mathbf{i}: 0$), followed by the contraction of the strict transform of the line $z=0$.
(3) The projection on the first factor $\mathcal{D}_{6} \rightarrow Q_{3,1}$ which contracts the two disjoint conjugate non-real (-1)-curves $(0: 0: 1: \pm \mathbf{i}) \times \mathbb{P}^{1} \subset \mathcal{D}_{6}$ onto the two conjugate non-real points $(0: 0: 1: \pm \mathbf{i}) \in Q_{3,1}$ is a link of type III.
(4) The blow-up of a real point $q \in \mathbb{F}_{n}$, lying on the exceptional section if $n>0$ (or any point if $n=0$), followed by the contraction of the strict transform of the fibre passing through q onto a real point of \mathbb{F}_{n+1} not lying on the exceptional section is a link $\mathbb{F}_{n \rightarrow-} \mathbb{F}_{n+1}$ of type II.
(5) The blow-up of two conjugate non-real points $p, \bar{p} \in \mathbb{F}_{n}$ lying on the exceptional section if $n>0$, or on the same section of self-intersection 0 if $n=0$, followed by the contraction of the strict transform of the fibres passing through p, \bar{p} onto two non-real conjugate points of \mathbb{F}_{n+2} not lying on the exceptional section is a link $\mathbb{F}_{n} \rightarrow \mathbb{F}_{n+2}$ of type II.
(6) The blow-up of two conjugate non-real points $p, \bar{p} \in \mathbb{F}_{n}, n \in\{0,1\}$ not lying on the same fibre (or equivalently not lying on a real fibre) and not on the same section of self-intersection $-n$ (or equivalently not lying on a real section of self-intersection $-n$), followed by the contraction of the fibres passing through p, \bar{p} onto two non-real conjugate points of \mathbb{F}_{n} having the same properties is a link $\mathbb{F}_{n \rightarrow-} \mathbb{F}_{n}$ of type II.
(7) The exchange of the two components $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a link $\mathbb{F}_{0} \rightarrow \mathbb{F}_{0}$ of type IV.
(8) The blow-up of a real point $p \in \mathcal{D}_{6}$, not lying on a singular fibre (or equivalently $p \neq((1: 1: 0: 0),(1: 1)), p \neq((1:-1: 0: 0),(1:-1)))$, followed
by the contraction of the strict transform of the fibre passing through p onto a real point of \mathcal{D}_{6}, is a link $\mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ of type II.
(9) The blow-up of two non-real conjugate points $p, \bar{p} \in \mathcal{D}_{6}$, not lying on the same fibre (or equivalently not lying on a real fibre), followed by the contraction of the strict transform of the fibres passing through p, \bar{p} onto two non-real points of \mathcal{D}_{6} is a link $\mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ of type II.

Remark 2.14. Note that in the above list, the three links $\mathbb{F}_{n} \rightarrow \mathbb{F}_{m}$ of type II can be put in one family, and the same is true for the two links $\mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$. We distinguished here the possibilities for the base points to describe more precisely the geometry of each link. The two links $\mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ could also be arranged into extra families, by looking if the base points belong to the two exceptional sections of self-intersection -1 , but go in any case from \mathcal{D}_{6} to \mathcal{D}_{6} (see Definition 2.16 below).

Proposition 2.15. Any Mori fibration $\pi: X \rightarrow W$, where X is a smooth projective real rational surface, belongs to the list of Example 2.12.

Any Sarkisov link between two such Mori fibrations is equal to $\alpha \varphi \beta$, where φ or φ^{-1} belongs to the list described in Example 2.13 and where α and β are isomorphisms of fibrations.

Proof. Since any birational map between two surfaces with Mori fibrations decomposes into Sarkisov links and all links of Example 2.13 involve only the Mori fibrations of Example 2.12, it suffices to check that any link starting from one of the Mori fibrations of 2.12 belongs to the list 2.13 . This is an easy case-by-case study; here are the steps.

Starting from a Mori fibration $\pi: X \rightarrow W$ where W is a point, the only links we can perform are links of type I or II centered at a real point or two conjugate non-real points. From Theorem 2.9, the surface X is either $Q_{3,1}$ or \mathbb{P}^{2}, and both are homogeneous under the action of $\operatorname{Aut}(X)$, so the choice of the point is not relevant. Blowing-up a real point in \mathbb{P}^{2} or two non-real points in $Q_{3,1}$ gives rise to a link of type I to \mathbb{F}_{1} or \mathcal{D}_{6}. The remaining cases correspond to the stereographic projection $Q_{3,1} \longrightarrow \mathbb{P}^{2}$ and its converse.

Starting from a Mori fibration $\pi: X \rightarrow W$ where $W=\mathbb{P}^{1}$, we have additional possibilities. If the link is of type IV, then X admits two conic bundle structures and by Theorem 2.9 , the only possibility is $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$. If the link is of type III, then we contract a real (-1)-curve of X or two disjoint conjugate non-real (-1) curves. The only possibilities for X are respectively \mathbb{F}_{1} and \mathcal{D}_{6}, and the image is respectively \mathbb{P}^{2} and $Q_{3,1}$ (these are the inverses of the links described before). The last possibility is to perform a link a type II, by blowing up a real point or two conjugate non-real points, on respectively one or two smooth fibres, and to contract the strict transform. We go from \mathcal{D}_{6} to \mathcal{D}_{6} or from \mathbb{F}_{m} to $\mathbb{F}_{m^{\prime}}$ where $m^{\prime}-m \in\{-2,-1,0,1,2\}$. All possibilities are described in Example 2.13.

We end this section by reducing the number of links of type II needed for the classification. For this, we introduce the notion of standard links.

Definition 2.16. The following links of type II are called standard:
(1) links $\mathbb{F}_{m} \rightarrow \mathbb{F}_{n}$, with $m, n \in\{0,1\}$;
(2) links $\mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ which do not blow-up any point on the two exceptional section of self-intersection -1 .
The other links of type II will be called special.

The following result allows us to simplify the set of generators of our groups.
Lemma 2.17. Any Sarkisov link of type IV decomposes into links of type I, III, and standard links of type II.

Proof. Note that a link of type IV is, up to automorphisms preserving the fibrations, equal to the following automorphism of $\mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
\tau:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto\left(\left(y_{1}: y_{2}\right),\left(x_{1}: x_{2}\right)\right)
$$

We denote by $\psi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ the birational map $(x: y: z) \rightarrow((x: y),(x: z))$ and observe that $\tau \psi=\psi \sigma$, where $\sigma \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. Hence, $\tau=\psi \tau \psi^{-1}$. Observing that ψ decomposes into the blow-up of the point $(0: 0: 1)$, which is a link of type III, followed by a standard link of type II, we get the result.

Lemma 2.18. Let $\pi: X \rightarrow \mathbb{P}^{1}$ and $\pi^{\prime}: X^{\prime} \rightarrow \mathbb{P}^{1}$ be two Mori fibrations, where X, X^{\prime} belong to the list $\mathbb{F}_{0}, \mathbb{F}_{1}, \mathcal{D}_{6}$. Let $\psi: X \rightarrow X^{\prime}$ be a birational map, such that $\pi^{\prime} \psi=\alpha \pi$ for some $\alpha \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{1}\right)$. Then, ψ is either an automorphism or $\psi=\varphi_{n} \cdots \varphi_{1}$, where each φ_{i} is a standard link of type II. Moreover, if ψ is an isomorphism on the real points (i.e. is an isomorphism $X(\mathbb{R}) \rightarrow X^{\prime}(\mathbb{R})$), the standard links φ_{i} can also be chosen to be isomorphisms on the real points.

Proof. We first show that $\psi=\varphi_{n} \cdots \varphi_{1}$, where each φ_{i} is a link of type II, not necessarily standard. This is done by induction on the number of base-points of ψ (recall that we always count infinitely near points as base-points). If ψ has no basepoint, it is an isomorphism. If q is a real proper base-point, or q, \bar{q} are two proper non-real base-points (here proper means not infinitely near), we denote by φ_{1} a Sarkisov link of type II centered at q (or q, \bar{q}). Then, $\left(\varphi_{1}\right)^{-1} \psi$ has less base-points than ψ. The result follows then by induction. Moreover, if ψ is an isomorphism on the real points, i.e. if ψ and ψ^{-1} have no real base-point, then so are all φ_{i}.

Let $\varphi: \mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ be a special link of type II. Then, it is centered at two points $p_{1}, \overline{p_{1}}$ lying on the (-1)-curves $E_{1}, \overline{E_{1}}$. We choose then two general non-real conjugate points $q_{1}, \overline{q_{1}}$, and let $q_{2}:=\varphi\left(q_{1}\right)$ and $\overline{q_{2}}:=\varphi\left(\overline{q_{1}}\right)$. For $i=1,2$, we denote by $\varphi_{i}: \mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ a standard link centered at q_{i}, \bar{q}_{i}. The image by φ_{2} of E_{1} is a curve of self-intersection 1. Hence, $\varphi_{2} \varphi\left(\varphi_{1}\right)^{-1}$ is a standard link of type II.

It remains to consider the case where each φ_{i} is a link $\mathbb{F}_{n_{i} \rightarrow-} \mathbb{F}_{n_{i+1}}$. We denote by N the maximum of the integers n_{i}. If $N \leq 1$, we are done because all links of type II between \mathbb{F}_{j} and $\mathbb{F}_{j^{\prime}}$ with $j, j^{\prime} \leq 1$ are standard. We can thus assume $N \geq 2$, which implies that there exists i such that $n_{i}=N, n_{i-1}<N, n_{i+1} \leq N$. We choose two general non-real points $q_{i-1}, \overline{q_{i-1}} \in \mathbb{F}_{n_{i-1}}$, and write $q_{i}=\varphi_{i-1}\left(q_{i-1}\right)$, $q_{i+1}=\varphi_{i}\left(q_{i}\right)$. For $j \in\{i-1, i, i+1\}$, we denote by $\tau_{j}: \mathbb{F}_{n_{j} \rightarrow-\mathbb{F}_{n_{j}^{\prime}}}$ a Sarkisov link centered at $q_{j}, \overline{q_{j}}$. We obtain then the following commutative diagram

where $\varphi_{i-1}^{\prime}, \varphi_{i}^{\prime}$ are Sarkisov links. By construction, $n_{i-1}^{\prime}, n_{i}^{\prime}, n_{i+1}^{\prime}<N$, we can then replace $\varphi_{i} \varphi_{i-1}$ with $\left(\tau_{i+1}\right)^{-1} \varphi_{i}^{\prime} \varphi_{i-1}^{\prime} \tau_{i-1}$ and "avoid" \mathbb{F}_{N}. Repeating this process if needed, we end up with a sequence of Sarkisov links passing only through \mathbb{F}_{1} and

CREMONA GROUPS OF REAL SURFACES
\mathbb{F}_{0}. Moreover, since this process does not add any real base-point, it preserves the regularity at real points.

Corollary 2.19. Let $\pi: X \rightarrow W$ and $\pi^{\prime}: X^{\prime} \rightarrow W^{\prime}$ be two Mori fibrations, where X, X^{\prime} are either $\mathbb{F}_{0}, \mathbb{F}_{1}, \mathcal{D}_{6}$ or \mathbb{P}^{2}. Any birational map $\psi: X \rightarrow X^{\prime}$ is either an isomorphism preserving the fibrations or decomposes into links of type I, III, and standard links of type II.

Proof. Follows from Proposition 2.7, Lemmas 2.17 and 2.18, and the description of Example 2.13.

3. Generators of the group $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$

We start this section by describing three kinds of elements of $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$, which are birational maps of \mathbb{P}^{2} of degree 5 . These maps are associated to three pairs of conjugate non-real points; the description is then analogue to the description of quadratic maps, which are associated to three points.
Example 3.1. Let $p_{1}, \overline{p_{1}}, \overline{p_{2}}, \overline{p_{2}}, p_{3}, \overline{p_{3}} \in \mathbb{P}^{2}$ be three pairs of non-real points of \mathbb{P}^{2}, not lying on the same conic. Denote by $\pi: X \rightarrow \mathbb{P}^{2}$ the blow-up of the six points, which induces an isomorphism $X(\mathbb{R}) \rightarrow \mathbb{P}^{2}(\mathbb{R})$. Note that X is isomorphic to a smooth cubic of \mathbb{P}^{3}. The set of strict transforms of the conics passing through five of the six points corresponds to three pairs of non-real (-1)-curves (or lines on the cubic), and the six curves are disjoint. The contraction of the six curves gives a birational morphism $\eta: X \rightarrow \mathbb{P}^{2}$, inducing an isomorphism $X(\mathbb{R}) \rightarrow \mathbb{P}^{2}(\mathbb{R})$, which contracts the curves onto three pairs of non-real points $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}, q_{3}, \overline{q_{3}} \in \mathbb{P}^{2}$; we choose the order so that q_{i} is the image of the conic not passing through p_{i}. The map $\psi=\eta \pi^{-1}$ is a birational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ inducing an isomorphism $\mathbb{P}^{2}(\mathbb{R}) \rightarrow \mathbb{P}^{2}(\mathbb{R})$.

Let $L \subset \mathbb{P}^{2}$ be a general line of \mathbb{P}^{2}. The strict transform of L on X by π^{-1} has selfintersection 1 and intersects the six curves contracted by η into 2 points (because these are conics). The image $\psi(L)$ has then six singular points of multiplicity 2 and self-intersection 25 ; it is thus a quintic passing through the q_{i} with multiplicitiy 2 . The construction of ψ^{-1} being symmetric as the one of ψ, the linear system of ψ consists of quintics of \mathbb{P}^{2} having multiplicity 2 at $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$.

One can moreover check that ψ sends the pencil of conics through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$ onto the pencil of conics through $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}$ (and the same holds for the two other real pencil of conics, through $p_{1}, \overline{p_{1}}, p_{3}, \overline{p_{3}}$ and through $\left.p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}\right)$.
Example 3.2. Let $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}} \in \mathbb{P}^{2}$ be two pairs of non-real points of \mathbb{P}^{2}, not on the same line. Denote by $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{2}$ the blow-up of the four points, and by $E_{2}, \bar{E}_{2} \subset X_{1}$ the curves contracted onto $p_{2}, \overline{p_{2}}$ respectively. Let $p_{3} \in E_{2}$ be a point, and $\overline{p_{3}} \in \bar{E}_{2}$ its conjugate. We assume that there is no conic of \mathbb{P}^{2} passing through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$ and let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blow-up of $p_{3}, \overline{p_{3}}$.

On X, the strict transforms of the two conics C, \bar{C} of \mathbb{P}^{2}, passing through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}$ and $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, \overline{p_{3}}$ respectively, are non-real conjugate disjoint (-1) curves. The contraction of these two curves gives a birational morphism $\eta_{2}: X_{2} \rightarrow Y_{1}$, contracting C, \bar{C} onto two points $q_{3}, \overline{q_{3}}$. On Y_{1}, we find two pairs of non-real (-1)-curves, all four curves being disjoint. These are the strict transforms of the exceptional curves associated to $p_{2}, \overline{p_{2}}$, and of the conics passing through $p_{1}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$ and $\overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$ respectively. The contraction of these curves gives a birational morphism $\eta_{1}: Y_{1} \rightarrow \mathbb{P}^{2}$, and the images of the four curves are
points $q_{2}, \overline{q_{2}}, q_{1}, \overline{q_{1}}$ respectively. Note that the four maps $\pi_{1}, \pi_{2}, \eta_{1}, \eta_{2}$ are blow-ups of non-real points, so the birational map $\psi=\eta_{1} \eta_{2}\left(\pi_{1} \pi_{2}\right)^{-1}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ induces an isomorphism $\mathbb{P}^{2}(\mathbb{R}) \rightarrow \mathbb{P}^{2}(\mathbb{R})$.

In the same way as in Example 3.1, we find that the linear system of ψ is of degree 5 , with multiplicity 2 at the points p_{i}, \bar{p}_{i}. The situation is similar for ψ^{-1}, with the six points $q_{i}, \overline{q_{i}}$ in the same configuration: $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}$ lie on the plane and $q_{3}, \overline{q_{3}}$ are infinitely near to $q_{2}, \overline{q_{2}}$ respectively.

One can moreover check that ψ sends the pencil of conics through $p_{1}, \overline{p_{1}}, \overline{p_{2}}, \overline{p_{2}}$ onto the pencil of conics through $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}$ and the pencil of conics through $p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$ onto the pencil of conics through $q_{2}, \overline{q_{2}}, q_{3}, \overline{q_{3}}$. But, contrary to Example 3.1, there is no pencil of conics through $q_{1}, \overline{q_{1}}, q_{3}, \overline{q_{3}}$ (because $q_{3}, \overline{q_{3}}$ are infinitely near to $\left.q_{2}, \overline{q_{2}}\right)$.

Example 3.3. Let $p_{1}, \overline{p_{1}}$ be a pair of two conjugate non-real points of \mathbb{P}^{2}. We choose a point p_{2} in the first neighbourhood of p_{1}, and a point p_{3} in the first neighbourhood of p_{2}, not lying on the exceptional divisor corresponding to p_{1}. We denote by $\pi: X \rightarrow \mathbb{P}^{2}$ the blow-up of $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3} \overline{p_{3}}$. We denote by $E_{i}, \bar{E}_{i} \subset X$ the irreducible exceptional curves corresponding to the points p_{i}, \bar{p}_{i}, for $i=1,2,3$. The strict transforms of the two conics through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}$ and $p_{1}, \overline{p_{1}}, \overline{p_{2}}, \overline{p_{2}}, \overline{p_{3}}$ respectively are disjoint (-1)-curves on X, intersecting the exceptional curves $E_{1}, \bar{E}_{1}, E_{2}, \bar{E}_{2}$ similarly as E_{3}, \bar{E}_{3}. Hence, there exists a birational morphism $\eta: X \rightarrow$ \mathbb{P}^{2} contracting the strict transforms of the two conics and the curves $E_{1}, \bar{E}_{1}, E_{2}, \bar{E}_{2}$.

As in Examples 3.1 and 3.2, the linear system of $\psi=\eta \pi^{-1}$ consists of quintics with multiplicity two at the six points $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$.

Definition 3.4. The birational maps of \mathbb{P}^{2} of degree 5 obtained in Example 3.1 will be called standard quintic transformations and those of Example 3.2 and Example 3.3 will be called special quintic transformations respectively.

Lemma 3.5. Let $\psi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be a birational map inducing an isomorphism $\mathbb{P}^{2}(\mathbb{R}) \rightarrow \mathbb{P}^{2}(\mathbb{R})$. The following hold:
(1) The degree of ψ is $4 k+1$ for some integer $k \geq 0$.
(2) Every multiplicity of the linear system of ψ is even.
(3) Every curve contracted by ψ is of even degree.
(4) If ψ has degree 1 , it belongs to $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)=\operatorname{PGL}(3, \mathbb{R})$.
(5) If ψ has degree 5, then it is a standard or special quintic transformation, described in Examples 3.1, 3.2 or 3.3, and has thus exactly 6 base-points.
(6) If ψ has at most 6 base-points, then ψ has degree 1 or 5 .

Remark 3.6. Part (1) is [RV05, Teorema 1].
Proof. Denote by d the degree of ψ and by m_{1}, \ldots, m_{k} the multiplicities of the basepoints of ψ. The Noether equalities yield $\sum_{i=1}^{k} m_{i}=3(d-1)$ and $\sum_{i=1}^{k}\left(m_{i}\right)^{2}=$ $d^{2}-1$.

Let C, \bar{C} be a pair of two curves contracted by ψ. Since $C \cap \bar{C}$ does not contain any real point, the degree of C and \bar{C} is even. This yields (3), and implies that all multiplicities of the linear system of ψ^{-1} are even, giving (2).

In particular, $3(d-1)$ is a multiple of 4 (all multiplicities come by pairs of even integers), which implies that $d=4 k+1$ for some integer k. Hence (1) is proved.

If the number of base-points is at most $k=6$, then by Cauchy-Schwartz we get

$$
9(d-1)^{2}=\left(\sum_{i=1}^{k} m_{i}\right)^{2} \leq k \sum_{i=1}^{k}\left(m_{i}\right)^{2}=k\left(d^{2}-1\right)=6\left(d^{2}-1\right)
$$

This yields $9(d-1) \leq 6(d+1)$, hence $d \leq 5$.
If $d=5$, the Noether equalities yield $k=6$ and $m_{1}=m_{2}=\cdots=m_{6}=2$. Hence, the base-points of ψ consist of three pairs of conjugate non-real points $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$. Moreover, if a conic passes through 5 of the six points, its free intersection with the linear system is zero, so it is contracted by ψ, and there is no conic through the six points.
(a) If the six points belong to \mathbb{P}^{2}, the map is a standard quintic transformation, described in Example 3.1.
(b) If two points are infinitely near, the map is a special quintic transformation, described in Example 3.2.
(c) If four points are infinitely near, the map is a special quintic transformation, described in Example 3.3.

Before proving Theorem 1.2, we will show that all quintic transformations are generated by linear automorphisms and standard quintic transformations:

Lemma 3.7. Every quintic transformation $\psi \in \operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ belongs to the group generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and standard quintic transformations.
Proof. By Lemma 3.5, we only need to show the result when ψ is a special quintic transformation as in Example 3.2 or Example 3.3.

We first assume that ψ is a special quintic transformation as in Example 3.2, with base-points $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$, where $p_{3}, \overline{p_{3}}$ are infinitely near to $p_{2}, \overline{p_{2}}$. For $i=1,2$, we denote by $q_{i} \in \mathbb{P}^{2}$ the point which is the image by ψ of the conic passing through the five points of $\left\{p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}\right\} \backslash\left\{p_{i}\right\}$. Then, the basepoints of ψ^{-1} are $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}, q_{3}, \overline{q_{3}}$, where $q_{3}, \overline{q_{3}}$ are points infinitely near to q_{2}, $\overline{q_{2}}$ respectively (see Example 3.2). We choose a general pair of conjugate nonreal points $p_{4}, \overline{p_{4}} \in \mathbb{P}^{2}$, and write $q_{4}=\psi\left(p_{4}\right), \overline{q_{4}}=\psi\left(\overline{p_{4}}\right)$. We denote by φ_{1} a standard quintic transformation having base-points at $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{4}, \overline{p_{4}}$, and by φ_{2} a standard quintic transformation having base-points at $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}, q_{4}, \overline{q_{4}}$. We now prove that $\varphi_{2} \psi\left(\varphi_{1}\right)^{-1}$ is a standard quintic transformation; this will yield the result. Denote by $p_{i}^{\prime}, \bar{p}_{i}^{\prime}$ the base-points of $\left(\varphi_{1}\right)^{-1}$, with the order associated to the p_{i}, which means that p_{i}^{\prime} is the image by φ_{i} of a conic not passing through p_{i} (see Example 3.1). Similary, we denote by q_{i}^{\prime}, \bar{q}_{i}^{\prime} the base-points of $\left(\varphi_{2}\right)^{-1}$. We obtain the following commutative of birational maps, where the arrows indexed by points are blow-ups of these points:

Each of the surfaces $X_{1}, X_{2}, X_{3}, X_{4}$ admits a conic bundle structure $\pi_{i}: X_{i} \rightarrow \mathbb{P}^{1}$, which fibres corresponds to the conics passing through the four points blown-up
on \mathbb{P}^{2} to obtain X_{i}. Moreover, $\hat{\varphi}_{1}, \hat{\psi}, \hat{\varphi}_{2}$ preserve these conic bundle structures. The map $\left(\hat{\varphi}_{1}\right)^{-1}$ blows-up $p_{4}, \bar{p}_{4}{ }^{\prime}$ and contract the fibres associated to them, then $\hat{\psi}$ blows-up $p_{3}, \overline{p_{3}}$ and contract the fibres associated to them. The map $\hat{\varphi}_{2}$ blow-ups the points $q_{4}, \overline{q_{4}}$, which correspond to the image of the curves contracted by $\left(\hat{\varphi}_{1}\right)^{-1}$, and contracts their fibres, corresponding to the exceptional divisors corresponding to the points $p_{4}, \overline{p_{4}{ }^{\prime}}$. Hence, $\hat{\varphi}_{2} \hat{\psi} \hat{\varphi}_{1}$ is the blow-up of two conjugate non-real points $p_{3}^{\prime}, \overline{p_{3}}{ }^{\prime} \in X_{1}$, followed by the contraction of their fibres. We obtain the following commutative diagram

and the points $p_{3}^{\prime}, \overline{p_{3}}{ }^{\prime}$ correspond to point of \mathbb{P}^{2}, hence $\varphi_{2} \psi\left(\varphi_{1}\right)^{-1}$ is a standard quintic transformation.

The remaining case is when ψ is a special quintic transformation as in Example 3.3 , with base-points $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{3}, \overline{p_{3}}$, where $p_{3}, \overline{p_{3}}$ are infinitely near to $p_{2}, \overline{p_{2}}$ and these latter are infinitely near to $p_{1}, \overline{p_{1}}$. The map ψ^{-1} has base-points $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}, q_{3}, \overline{q_{3}}$, having the same configuration (see Example 3.3). We choose a general pair of conjugate non-real points $p_{4}, \overline{p_{4}} \in \mathbb{P}^{2}$, and write $q_{4}=\psi\left(p_{4}\right)$, $\overline{q_{4}}=\psi\left(\overline{p_{4}}\right)$. We denote by φ_{1} a special quintic transformation having base-points at $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}, p_{4}, \overline{p_{4}}$, and by φ_{2} a special quintic transformation having base-points at $q_{1}, \overline{q_{1}}, q_{2}, \overline{q_{2}}, q_{4}, \overline{q_{4}}$. The maps φ_{1}, φ_{2} have four proper base-points, and are thus given in Example 3.2. The same proof as before implies that $\varphi_{2} \psi\left(\varphi_{1}\right)^{-1}$ is a special quintic transformation with four base-points. This gives the result.

Lemma 3.8. Let $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be a birational map, that decomposes as $\varphi=$ $\varphi_{5} \cdots \varphi_{1}$, where $\varphi_{i}: X_{i-1} \rightarrow X_{i}$ is a Sarkisov link for each i, where $X_{0}=\mathbb{P}^{2}$, $X_{1}=Q_{3,1}, X_{2}=X_{3}=\mathcal{D}_{6}, X_{4}=Q_{3,1}, X_{5}=\mathbb{P}^{2}$. If φ_{2} is an automorphism of $\mathcal{D}_{6}(\mathbb{R})$ and $\varphi_{4} \varphi_{3} \varphi_{2}$ sends the base-point of $\left(\varphi_{1}\right)^{-1}$ onto the base-point of φ_{5}, then φ is an automorphism of $\mathbb{P}^{2}(\mathbb{R})$ of degree 5 .

Proof. We have the following commutative diagram, where each π_{i} is the blow-up of two conjugate non-real points and each η_{i} is the blow-up of one real point. The two maps $\left(\varphi_{2}\right)^{-1}$ and φ_{4} are also blow-ups of non-real points.

The only real base-points are those blown-up by η_{1} and η_{2}. Since η_{2} blows-up the image by $\varphi_{4} \varphi_{3} \varphi_{2}$ of the real point blown-up by η_{1}, the map φ has at most 6 basepoints, all being non-real, and the same holds for φ^{-1}. Hence, φ is an automorphism of $\mathbb{P}^{2}(\mathbb{R})$ with at most 6 base-points. We can moreover see that $\varphi \notin \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$, since the two curves of Y_{2} contracted by π_{2} are sent by $\varphi_{4} \pi_{3}$ onto conics of $Q_{3,1}$, which are therefore not contracted by φ_{5}.

Lemma 3.5 implies that ψ has degree 5 .
Proposition 3.9. The group $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and by elements of $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ of degree 5 .

Proof. Let us prove that any $\varphi \in \operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and elements of $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ of degree 5 . Applying Proposition 2.7 , we decompose φ into Sarkisov links $\varphi=\varphi_{r} \cdots \varphi_{1}$ such that
(i) for $i=1, \ldots, r-1$, the map $\varphi_{i+1} \varphi_{i}$ is not biregular;
(ii) for $i=1, \ldots, r$, every real base-point of φ_{i} is a base-point of $\varphi_{r} \ldots \varphi_{i}$.

In particular, φ_{1} has no real base-point.
We proceed by induction on r, the case $r=0$, corresponding to $\varphi \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$, being obvious. We also observe that the decompositions of smaller length obtained by the induction process still satisfy property (ii) above. We can assume that (i) is also satisfied, because removing a biregular map $\varphi_{i+1} \varphi_{i}$ produces a decomposition of smaller length, still having the property (ii).

Since φ_{1} has no real base-point, the first link φ_{1} is then of type II from \mathbb{P}^{2} to $Q_{3,1}$, and $\varphi_{r} \cdots \varphi_{2}$ has a unique real base-point $r \in Q_{3,1}$, which is the base-point of $\left(\varphi_{1}\right)^{-1}$. If φ_{2} would blow-up this point, then $\varphi_{2} \varphi_{1}$ would be biregular, hence φ_{2} is a link of type I from $Q_{3,1}$ to \mathcal{D}_{6}. We can write the map $\varphi_{2} \varphi_{1}$ as $\eta \pi^{-1}$, where $\pi: X \rightarrow \mathbb{P}^{2}$ is the blow-up of two pairs of non-real points, say $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$ and $\eta: X \rightarrow \mathcal{D}_{6}$ is the contraction of the strict transform of the real line passing through $p_{1}, \overline{p_{1}}$, onto a real point $q \in \mathcal{D}_{6}$. Note that $p_{1}, \overline{p_{1}}$ are proper points of \mathbb{P}^{2}, blown-up by φ_{1} and $p_{2}, \overline{p_{2}}$ either are proper base-points or are infinitely near to $p_{1}, \overline{p_{1}}$.

The fibration $\mathcal{D}_{6} \rightarrow \mathbb{P}^{1}$ corresponds to conics through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$. If φ_{3} was a link of type III, then $\varphi_{3} \varphi_{2}$ would be biregular, so φ_{3} is of type II.

If q is a base-point of φ_{3}, then $\varphi_{3}=\eta^{\prime} \eta^{-1}$, where $\eta^{\prime}: X \rightarrow \mathcal{D}_{6}$ is the contraction of the strict transform of the line through $p_{2}, \overline{p_{2}}$. We can then write $\varphi_{3} \varphi_{2} \varphi_{1}$ into only two links, exchanging p_{1} with p_{2} and $\overline{p_{1}}$ with $\overline{p_{2}}$, and this decreases r, and preserves property (ii) on real base-points.

The remaining case is when φ_{3} is the blow-up of two non-real points $p_{3}, \overline{p_{3}}$ of \mathcal{D}_{6}, followed by the contraction of the strict transforms of their fibres. We denote by $q^{\prime} \in \mathcal{D}_{6}(\mathbb{R})$ the image of q by φ_{3}, consider $\psi_{4}=\left(\varphi_{2}\right)^{-1}: \mathcal{D}_{6} \rightarrow Q_{3,1}$, which is a link of type III, and write $\psi_{5}: Q_{3,1} \rightarrow \mathbb{P}^{2}$ the stereographic projection by $\psi_{4}\left(q^{\prime}\right)$, which is a link of type II centered at $\psi_{4}\left(q^{\prime}\right)$. By Lemma 3.8, the map $\chi=\psi_{5} \psi_{4} \varphi_{3} \varphi_{2} \varphi_{1}$ is an element of $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ of degree 5 . Since $\varphi \chi^{-1}$ decomposes into one link less than φ, with a decomposition having still property (ii), this concludes the proof by induction.

Proof of Theorem 1.2. By Proposition 3.9, $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and by elements of $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ of degree 5 . Thanks to Lemma 3.7, $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is indeed generated by projectivities and standard quintic transformations.

4. Generators of the group $\operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$

Lemma 4.1. Let $\varphi: Q_{3,1} \rightarrow Q_{3,1}$ be a birational map, that decomposes as $\varphi=$ $\varphi_{3} \varphi_{2} \varphi_{1}$, where $\varphi_{i}: X_{i-1} \rightarrow X_{i}$ is a Sarkisov link for each i, where $X_{0}=Q_{3,1}=$ $X_{2}, X_{1}=\mathcal{D}_{6}$. If φ_{2} has a real base-point, then, φ can be written as $\varphi=\psi_{2} \psi_{1}$, where $\psi_{1},\left(\psi_{2}\right)^{-1}$ are links of type II from $Q_{3,1}$ to \mathbb{P}^{2}.

Proof. We have the following commutative diagram, where each of the maps η_{1}, η_{2} blow-ups a real point, and each of the maps $\left(\varphi_{1}\right)^{-1}, \varphi_{3}$ is the blow-up of two conjugate non-real points.

The map φ has thus exactly three base-points, two of them being non-real and one being real; we denote them by $p_{1}, \overline{p_{1}}, q$. The fibres of the Mori fibration $\mathcal{D}_{6} \rightarrow \mathbb{P}^{1}$ correspond to conics of $Q_{3,1}$ passing through the points $p_{1}, \overline{p_{1}}$. The real curve contracted by η_{2} is thus the strict transform of the conic C of $Q_{3,1}$ passing through $p_{1}, \overline{p_{1}}$ and q. The two curves contracted by φ_{3} are the two non-real sections of self-intersection -1 , which corresponds to the strict transforms of the two non-real lines L_{1}, L_{2} of $Q_{3,1}$ passing through q.

We can then decompose φ as the blow-up of p_{1}, p_{2}, q, followed by the contraction of the strict transforms of C, L_{1}, L_{2}. Denote by $\psi_{1}: Q_{3,1} \rightarrow \mathbb{P}^{2}$ the link of type II centered at q, which is the blow-up of q followed by the contraction of the strict transform of L_{1}, L_{2}, or equivalenty the stereographic projection centered at q. The curve $\psi_{1}(C)$ is a real line of \mathbb{P}^{2}, which contains the two points $\psi_{1}\left(p_{1}\right), \psi_{1}\left(\overline{p_{1}}\right)$. The map $\psi_{2}=\varphi\left(\psi_{1}\right)^{-1}: \mathbb{P}^{2} \rightarrow Q_{3,1}$ is then the blow-up of these two points, followed by the contraction of the line passing through both of them. It is then a link of type II.

Proof of Theorem 1.1. Let us prove that any $\varphi \in \operatorname{Bir}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ is in the group generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right), \sigma_{0}, \sigma_{1}$, and standard quintic transformations of \mathbb{P}^{2}. We decompose φ into Sarkisov links: $\varphi=\varphi_{r} \cdots \varphi_{1}$. By Corollary 2.19, we can assume that all the φ_{i} are links of type I, III, or standard links of type II.

We proceed by induction on r, the case $r=0$, corresponding to $\varphi \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$, being obvious.

Note that φ_{1} is either a link of type I from \mathbb{P}^{2} to \mathbb{F}_{1}, or a link of type II from \mathbb{P}^{2} to $Q_{3,1}$. We now study the possibilities for the base-points of φ_{1} and the next links:
(1) Suppose that $\varphi_{1}: \mathbb{P}^{2} \rightarrow \mathbb{F}_{1}$ is a link of type I, and that φ_{2} is a link $\mathbb{F}_{1} \rightarrow \mathbb{F}_{1}$. Then, φ_{2} blows-up two non-real base-points of \mathbb{F}_{1}, not lying on the exceptional curve. Hence, $\psi=\left(\varphi_{1}\right)^{-1} \varphi_{2} \varphi_{1}$ is a quadratic transformation of \mathbb{P}^{2} with three proper base-points, one real and two non-real. It is thus equal to $\alpha \sigma_{1} \beta$ for some $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. Replacing φ with $\varphi \psi^{-1}$, we obtain a decomposition with less Sarkisov links, and conclude by induction.
(2) Suppose that $\varphi_{1}: \mathbb{P}^{2} \rightarrow \mathbb{F}_{1}$ is a link of type I, and that φ_{2} is a link $\mathbb{F}_{1} \rightarrow \mathbb{F}_{0}$. Then, $\varphi_{2} \varphi_{1}$ is the blow-up of two real points p_{1}, p_{2} of \mathbb{P}^{2} followed by the contraction of the line through p_{1}, p_{2}. The exceptional divisors corresponding to p_{1}, p_{2} are two (0)-curves of $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$, intersecting at one real point.
(2a) Suppose first that φ_{3} has a base-point which is real, and not lying on E_{1}, E_{2}. Then, $\psi=\left(\varphi_{1}\right)^{-1} \varphi_{3} \varphi_{2} \varphi_{1}$ is a quadratic transformation of \mathbb{P}^{2} with three proper base-points, all real. It is thus equal to $\alpha \sigma_{0} \beta$ for some $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. Replacing φ with $\varphi \psi^{-1}$, we obtain a decomposition with less Sarkisov links, and conclude by induction.
(2b) Suppose now that φ_{3} has non-real base-points, which are q, \bar{q}. Since φ_{3} is a standard link of type II, it goes from \mathbb{F}_{0} to \mathbb{F}_{0}, so q and \bar{q} do not lie on a (0)-curve, and then do not belong to the curves E_{1}, E_{2}. We can then decompose $\varphi_{2} \varphi_{3}: \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$ into a Sarkisov link centered at two non-real points, followed by a Sarkisov link centered at a real point. This reduces to case (1), already treated before.
(2c) The remaining case (for (2)) is when φ_{3} has a base-point p_{3} which is real, but lying on E_{1} or E_{2}. We choose a general real point $p_{4} \in \mathbb{F}_{0}$, and denote by $\theta: \mathbb{F}_{0} \rightarrow \mathbb{F}_{1}$ a Sarkisov link centered at p_{4}. We observe that $\psi=\left(\varphi_{1}\right)^{-1} \theta \varphi_{2} \varphi_{1}$ is a quadratic map as in case $(2 a)$, and that $\varphi \psi^{-1}=\varphi_{n} \ldots \varphi_{3} \theta^{-1} \varphi_{1}$ admits now a decomposition of the same length, but which is in case $(2 a)$.
(3) Suppose now that $\varphi_{1}: \mathbb{P}^{2} \rightarrow Q_{3,1}$ is a link of type II and that φ_{2} is a link of type II from $Q_{3,1}$ to \mathbb{P}^{2}. If φ_{2} and $\left(\varphi_{1}\right)^{-1}$ have the same real base-point, the map $\varphi_{2} \varphi_{1}$ belongs to $\mathrm{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. Otherwise, $\varphi_{2} \varphi_{1}$ is a quadratic map with one unique real base-point q and two non-real base-points. It is then equal to $\alpha \sigma_{0} \beta$ for some $\alpha, \beta \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. We conclude as before by induction hypothesis.
(4) Suppose that $\varphi_{1}: \mathbb{P}^{2} \rightarrow Q_{3,1}$ is a link of type II and φ_{2} is a link of type I from $Q_{3,1}$ to \mathcal{D}_{6}. If φ_{3} is a Sarkisov link of type III, then $\varphi_{3} \varphi_{2}$ is an automorphism of $Q_{3,1}$, so we can decrease the length. We only need to consider the case where φ_{3} is a link of type II from \mathcal{D}_{6} to \mathcal{D}_{6}. If φ_{3} has a real base-point, we apply Lemma 4.1 to write $\left(\varphi_{2}\right)^{-1} \varphi_{3} \varphi_{2}=\psi_{2} \psi_{1}$ where $\psi_{1},\left(\psi_{2}\right)^{-1}$ are links $Q_{3,1} \rightarrow \mathbb{P}^{2}$. By (3), the map $\chi=\psi_{1} \varphi_{1}$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and σ_{0}. We can then replace φ with $\varphi \chi^{-1}=\varphi_{r} \cdots \varphi_{3} \varphi_{2}\left(\psi_{1}\right)^{-1}=\varphi_{r} \cdots \varphi_{4} \varphi_{2} \psi_{2}$, which has a shorter decomposition. The last case is when φ_{3} has two non-real base-points. We denote by $q \in Q_{3,1}$ the real base-point of $\left(\varphi_{1}\right)^{-1}$, write $q^{\prime}=\left(\varphi_{2}\right)^{-1} \varphi_{3} \varphi_{2}(q) \in Q_{3,1}$ and denote by $\psi: Q_{3,1} \rightarrow \mathbb{P}^{2}$ the stereographic projection centered at q^{\prime}. By Lemma 3.8, the map $\chi=\psi\left(\varphi_{2}\right)^{-1} \varphi_{3} \varphi_{2} \varphi_{1}$ is an automorphism of $\mathbb{P}^{2}(\mathbb{R})$ of degree 5 , which is generated by $\mathrm{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$ and standard automorphisms of $\mathbb{P}^{2}(\mathbb{R})$ of degree 5 (Lemma 3.7). We can thus replace φ with $\varphi \chi^{-1}$, which has a decomposition of shorter length.

5. Generators of the group $\operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$

Example 5.1. Let $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}} \in Q_{3,1} \subset \mathbb{P}^{3}$ be two pairs of conjugate non-real points, not on the same plane of \mathbb{P}^{3}. Let $\pi: X \rightarrow Q_{3,1}$ be the blow-up of these points. The non-real plane of \mathbb{P}^{3} passing through $p_{1}, \overline{p_{2}}, \overline{p_{2}}$ intersects $Q_{3,1}$ onto a conic, having self-intersection 2: two general different conics on $Q_{3,1}$ are the trace of hyperplanes, and intersect then into two points, being on the line of intersection of the two planes. The strict transform of this conic on X is thus a (-1)-curve. Doing the same for the other conics passing through 3 of the points $p_{1}, \overline{p_{1}}, \overline{p_{2}}, \overline{p_{2}}$, we obtain four disjoint (-1)-curves on X, that we can contract in order to obtain
a birational morphism $\eta: X \rightarrow Q_{3,1}$; note that the target is $Q_{3,1}$ because it is a smooth projective rational surface of Picard rank 1. We obtain then a birational $\operatorname{map} \psi=\eta \pi^{-1}: Q_{3,1} \rightarrow Q_{3,1}$ inducing an isomorphism $Q_{3,1}(\mathbb{R}) \rightarrow Q_{3,1}(\mathbb{R})$.

Denote by $H \subset Q_{3,1}$ a general hyperplane section. The strict transform of H on X by π^{-1} has self-intersection 2 and has intersection 2 with the 4 curves contracted. The image $\psi(H)$ has thus multiplicity 2 and self-intersection 18 ; it is then the trace of a cubic section. The construction of ψ and ψ^{-1} being similar, the linear system of ψ consists of cubic sections with multiplicity 2 at $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$.

Example 5.2. Let $p_{1}, \overline{p_{1}} \in Q_{3,1} \subset \mathbb{P}^{3}$ be two conjugate non-real points and let $\pi_{1}: X_{1} \rightarrow Q_{3,1}$ be the blow-up of the two points. Denote by $E_{1}, \bar{E}_{1} \subset X_{1}$ the curves contracted onto $p_{1}, \overline{p_{1}}$ respectively. Let $p_{2} \in E_{1}$ be a point, and $\overline{p_{2}} \in \bar{E}_{1}$ its conjugate. We assume that there is no conic of $Q_{3,1} \subset \mathbb{P}^{3}$ passing through $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$ and let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blow-up of $p_{2}, \overline{p_{2}}$.

On X, the strict transforms of the two conics C, \bar{C} of \mathbb{P}^{2}, passing through $p_{1}, \overline{p_{1}}, p_{2}$ and $p_{1}, \overline{p_{1}}, \overline{p_{2}}$ respectively, are non-real conjugate disjoint (-1) curves. The contraction of these two curves gives a birational morphism $\eta_{2}: X_{2} \rightarrow Y_{1}$. On this latter surface, we find two disjoint conjugate non-real (-1)-curves. These are the strict transforms of the exceptional curves associated to $p_{1}, \overline{p_{1}}$. The contraction of these curves gives a birational morphism $\eta_{1}: Y_{1} \rightarrow Q_{3,1}$. The birational map $\psi=\eta_{1} \eta_{2}\left(\pi_{1} \pi_{2}\right)^{-1}: Q_{3,1} \rightarrow Q_{3,1}$ induces an isomorphism $Q_{3,1}(\mathbb{R}) \rightarrow Q_{3,1}(\mathbb{R})$.
Definition 5.3. The birational maps of $Q_{3,1}$ of degree 3 obtained in Example 5.1 will be called standard cubic transformations and those of Example 5.2 will be called special cubic transformations.

Note that since $\operatorname{Pic}\left(Q_{3,1}\right)=\mathbb{Z} H$, where H is an hyperplane section, we can associate to any birational map $Q_{3,1} \rightarrow Q_{3,1}$, an integer d, which is the degree of the map, such that $\psi^{-1}(H)=d H$.

Lemma 5.4. Let $\psi: Q_{3,1} \rightarrow Q_{3,1}$ be a birational map inducing an isomorphism $Q_{3,1}(\mathbb{R}) \rightarrow Q_{3,1}(\mathbb{R})$. The following hold:
(1) The degree of ψ is $2 k+1$ for some integer $k \geq 0$.
(2) If ψ has degree 1 , it belongs to $\operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)=\mathrm{PO}(3,1)$.
(3) If ψ has degree 3, then it is a standard or special cubic transformation, described in Examples 5.1 and 5.2, and has thus exactly 4 base-points.
(4) If ψ has at most 4 base-points, then ψ has degree 1 or 3 .

Proof. Denote by d the degree of ψ and by a_{1}, \ldots, a_{n} the multiplicities of the base-points of ψ. Denote by $\pi: X \rightarrow Q_{3,1}$ the blow-up of the base-points, and by $E_{1}, \ldots, E_{n} \in \operatorname{Pic}(X)$ the divisors being the total pull-back of the exceptional (-1)curves obtained after blowing-up the points. Writing $\eta: X \rightarrow Q_{3,1}$ the birational morphism $\psi \pi$, we obtain

$$
\begin{aligned}
\eta^{*}(H) & =d \pi^{*}(H)-\sum_{i=1}^{n} a_{i} E_{i} \\
K_{X} & =\pi^{*}(-2 H)+\sum_{i=1}^{n} E_{i}
\end{aligned}
$$

Since H corresponds to a smooth rational curve of self-intersection 2, we have $\left(\eta^{*}(H)\right)^{2}$ and $\eta^{*}(H) \cdot K_{X}=-4$. We find then

$$
\begin{aligned}
2 & = & \left(\eta^{*}(H)\right)^{2} & =2 d^{2}-\sum_{i=1}^{n}\left(a_{i}\right)^{2} \\
4 & = & -K_{X} \cdot \eta^{*}(H) & =4 d-\sum_{i=1}^{n} a_{i}
\end{aligned}
$$

Since multiplicities come by pairs, $n=2 m$ for some integer m and we can order the a_{i} so that $a_{i}=a_{n+1-i}$ for $i=1, \ldots, m$. This yields

$$
\begin{aligned}
d^{2}-1 & =\sum_{i=1}^{m}\left(a_{i}\right)^{2} \\
2(d-1) & =\sum_{i=1}^{m} a_{i}
\end{aligned}
$$

Since $\left(a_{i}\right)^{2} \equiv a_{i}(\bmod 2)$, we find $d^{2}-1 \equiv 2(d-1) \equiv 0(\bmod 2)$, hence d is odd. This gives (1).

If the number of base-points is at most 4 , we can choose $m=2$, and obtain by Cauchy-Schwartz

$$
4(d-1)^{2}=\left(\sum_{i=1}^{m} a_{i}\right)^{2} \leq m \sum_{i=1}^{m}\left(a_{i}\right)^{2}=m\left(d^{2}-1\right)=2\left(d^{2}-1\right)
$$

This yields $2(d-1) \leq d+1$, hence $d \leq 3$.
If $d=1$, all a_{i} are zero, and $\psi \in \operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)$.
If $d=3$, we get $\sum_{i=1}^{m}\left(a_{i}\right)^{2}=8, \sum_{i=1}^{m} a_{i}=4$, so $m=2$ and $a_{1}=a_{2}=2$. Hence, the base-points of ψ consist of two pairs of conjugate non-real points $p_{1}, \overline{p_{1}}, p_{2}, \overline{p_{2}}$. Moreover, if a conic passes through 3 of the points, its free intersection with the linear system is zero, so it is contracted by ψ, and there is no conic through the four points.
(a) If the four points belong to $Q_{3,1}$, the map is a standard cubic transformation, described in Example 5.1.
(b) If two points are infinitely near, the map is a special cubic transformation, described in Example 5.2.

Lemma 5.5. Let $\varphi: Q_{3,1} \rightarrow Q_{3,1}$ be a birational map, that decomposes as $\varphi=$ $\varphi_{3} \varphi_{2} \varphi_{1}$, where $\varphi_{i}: X_{i-1} \rightarrow X_{i}$ is a Sarkisov link for each i, where $X_{0}=Q_{3,1}=$ $X_{2}, X_{1}=\mathcal{D}_{6}$. If φ_{2} is an automorphism of $\mathcal{D}_{6}(\mathbb{R})$ then φ is a cubic automorphism of $Q_{3,1}(\mathbb{R})$ of degree 3 described in in Examples 5.1 and 5.2. Moreover, φ is a standard cubic transformation if and only if the link φ_{2} of type II is a standard link of type II.

Proof. We have the following commutative diagram, where each of the maps π_{1}, $\pi_{2},\left(\varphi_{1}\right)^{-1}, \varphi_{3}$ is the blow-up of two conjugate non-real points.

Hence, φ is an automorphism of $\mathbb{P}^{2}(\mathbb{R})$ with at most 4 base-points. We can moreover see that $\varphi \notin \operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)$, since the two curves of Y contracted by π_{2} are sent by $\varphi_{3} \pi_{2}$ onto conics of $Q_{3,1}$, contracted by φ^{-1}.

Lemma 3.5 implies that φ is cubic automorphism of $Q_{3,1}(\mathbb{R})$ of degree 3 described in Examples 5.1 and 5.2. In particular, φ has exactly four base-points, blown-up by $\left(\varphi_{1}\right)^{-1} \pi_{1}$. Moreover, φ is a standard cubic transformation if and only these four points are proper base-points of $Q_{3,1}$. This corresponds to saying that the two
base-points of φ_{2} do not belong to the exceptional curves contracted by $\left(\varphi_{1}\right)^{-1}$, and is thus the case exactly when φ_{2} is a standard link of type II.

Proof of Theorem 1.3. Let us prove that any $\varphi \in \operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)$ and standard cubic transformations of $\operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ of degree 3. Applying Proposition 2.7, we decompose φ into Sarkisov links: $\varphi=\varphi_{r} \cdots \varphi_{1}$, and assume that every real base-point of φ_{i} is a base-point of $\varphi_{r} \ldots \varphi_{i}$. This property implies that all links are either of type I, from $Q_{3,1}$ to \mathcal{D}_{6}, of type II from \mathcal{D}_{6} to \mathcal{D}_{6} with non-real base-points, or of type III from \mathcal{D}_{6} to $Q_{3,1}$. In particular, all base-points of the φ_{i} and their inverses are non-real. (Note that here the situation is easier than in the case of \mathbb{P}^{2}, since no link produces "artificial" real base-points).

By Lemma 2.18, we can also assume that all links of type II are standard.
We proceed by induction on r. The first link φ_{1} is of type I from $Q_{3,1}$ to \mathcal{D}_{6}. If φ_{2} is of type III, then $\varphi_{2} \varphi_{1} \in \operatorname{Aut}_{\mathbb{R}}\left(Q_{3,1}\right)$. We replace these two links and conclude by induction. If φ_{2} is a standard link of type II, then $\psi=\left(\varphi_{1}\right)^{-1} \varphi_{2} \varphi_{1}$ is a standard cubic transformation. Replacing φ with $\varphi \psi^{-1}$ decreases the number of links, so we conclude by induction.

Twisting maps and factorisation. Choose a real line $L \subset \mathbb{P}^{3}$, which does not meet $Q_{3,1}(\mathbb{R})$. The projection from L gives a morphism $\pi_{L}: Q_{3,1}(\mathbb{R}) \rightarrow \mathbb{P}^{1}(\mathbb{R})$, which induces a conic bundle structure on the blow-up $\tau_{L}: \mathcal{D}_{6} \rightarrow Q_{3,1}$ of the two non-real points of $L \cap Q_{3,1}$.

We denote by $T\left(Q_{3,1}, \pi_{L}\right) \subset \operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ the group of elements $\varphi \in \operatorname{Aut}\left(Q_{3,1}(\mathbb{R})\right)$ such that $\pi_{L} \varphi=\pi_{L}$ and such that the lift $\left(\tau_{L}\right)^{-1} \varphi \tau_{L} \in \operatorname{Aut}\left(\mathcal{D}_{6}(\mathbb{R})\right)$ preserves the set of two non-real (-1)-curves which are sections of the conic bundle $\pi_{L} \tau_{L}$.

Any element $\varphi \in T\left(Q_{3,1}, \pi_{L}\right)$ is called a twisting map of $Q_{3,1}$ with axis L.
Choosing the line $w=x=0$ for L, we can get the more precise description given in [HM09, KM09]: the twisting maps corresponds in local coordinates $(x, y, z) \mapsto$ (1:x:y:z) to

$$
\varphi_{M}:(x, y, z) \mapsto(x,(y, z) \cdot M(x))
$$

where $M:[-1,1] \rightarrow O(2) \subset \operatorname{PGL}(2, \mathbb{R})=\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ is a real algebraic map.
Proposition 5.6. Any twisting map with axis L is a composition of twisting maps with axis L, of degree 1 and 3 .

Proof. We can assume that L is the line $y=z=0$.
The blow-up $\tau_{L}: \mathcal{D}_{6} \rightarrow Q_{3,1}$ is a link of type III, described in Example 2.13(3), which blows-up two non-real points of $Q_{3,1}$. The fibres of the Mori Fibration $\pi: \mathcal{D}_{6} \rightarrow \mathbb{P}^{1}$ correspond then, via τ_{L}, to the fibres of $\pi_{L}: Q_{3,1}(\mathbb{R}) \rightarrow \mathbb{P}^{1}(\mathbb{R})$. Hence, a twisting map of $Q_{3,1}$ corresponds to a map of the form $\tau \varphi \tau^{-1}$, where $\varphi: \mathcal{D}_{6} \rightarrow \mathcal{D}_{6}$ is a birational map such that $\pi \varphi=\pi$, and which preserves the set of two (-1)curves. This implies that φ has all its base-points on the two (-1)-curves. It remains to argue as in Lemma 2.18, and decompose φ into links that have only base-points on the set of two (-1)-curves.

6. Generators of the group $\operatorname{Aut}\left(\mathbb{F}_{0}(\mathbb{R})\right)$

Proof of Theorem 1.4. Let us prove that any $\varphi \in \operatorname{Aut}\left(\mathbb{F}_{0}(\mathbb{R})\right)$ is generated by $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{F}_{0}\right)$ and by the the involution

$$
\tau_{0}:\left(\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right)\right) \rightarrow\left(\left(x_{0}: x_{1}\right),\left(x_{0} y_{0}+x_{1} y_{1}: x_{1} y_{0}-x_{0} y_{1}\right)\right)
$$

Observe that τ_{0} is a Sarkisov link $\mathbb{F}_{0} \rightarrow \mathbb{F}_{0}$ that is the blow-up of the two non-real points $p=((\mathbf{i}: 1),(\mathbf{i}: 1)), \bar{p}=((-\mathbf{i}: 1),(-\mathbf{i}: 1))$, followed by the contraction of the two fibres of the first projection $\mathbb{F}_{0} \rightarrow \mathbb{P}^{1}$ passing through p, \bar{p}.

Applying Proposition 2.7, we decompose φ into Sarkisov links: $\varphi=\varphi_{r} \cdots \varphi_{1}$, and assume that every real base-point of φ_{i} is a base-point of $\varphi_{r} \ldots \varphi_{i}$. This property implies that all links are either of type IV from \mathbb{F}_{0} to \mathbb{F}_{0}, or of type II, from $\mathbb{F}_{2 d}$ to $\mathbb{F}_{2 d^{\prime}}$, with exactly two non-real base-points. In particular, as for the case of $Q_{3,1}$, there is no real base-point which is artificially created.

By Lemma 2.18, we can also assume that all links of type II are standard, so all go from \mathbb{F}_{0} to \mathbb{F}_{0}.

Each link of type IV is an element of $\operatorname{Aut}_{\mathbb{R}}\left(\mathbb{F}_{0}\right)$.
Each link φ_{i} of type II consists of the blow-up of two non-real points q, \bar{q}, followed by the contraction of the fibres of the first projection $\mathbb{F}_{0} \rightarrow \mathbb{P}^{1}$ passing through q, \bar{q}. Since the two points do not belong to the same fibre by any projection, we have $q=((a+\mathbf{i} b: 1),(c+\mathbf{i} d: 1))$, for some $a, b, c, d \in \mathbb{R}, b d \neq 0$. There exists thus an element $\alpha \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{F}_{0}\right)$ that sends q onto p and then \bar{q} onto \bar{p}. In consequence, $\tau_{0} \alpha\left(\varphi_{i}\right)^{-1} \in \operatorname{Aut}_{\mathbb{R}}\left(\mathbb{P}^{2}\right)$. This yields the result.

7. Other Results

Infinite transitivity on surfaces. The group of automorphisms of a complex projective algebraic variety is small: in most of the cases it is a finite dimensional algebraic group. Moreover, the group of automorphisms is 3 -transitive only if the variety is \mathbb{P}^{1}. On the other hand, it was proved in [HM09] that for a real rational surface X, the group of automorphisms $\operatorname{Aut}(X(\mathbb{R}))$ acts n-transitively on $X(\mathbb{R})$ for any n. The next theorem determines all real algebraic surfaces X having a group of automorphisms which acts infinitely transitively on $X(\mathbb{R})$.

Definition 7.1. Let G be a topological group acting continuously on a topological space M. We say that two n-tuples of distinct points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ are compatible if there exists an homeomorphism $\psi: M \rightarrow M$ such that $\psi\left(p_{i}\right)=q_{i}$ for each i. The action of G on M is then said to be infinitely transitive if for any pair of compatible n-tuples of points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ of M, there exists an element $g \in G$ such that $g\left(p_{i}\right)=q_{i}$ for each i. More generally, the action of G is said to be infinitely transitive on each connected component if we require the above condition only in case, for each i, p_{i} and q_{i} belong to the same connected component of M.

Theorem 7.2. [BM10] Let X be a nonsingular real projective surface. The group $\operatorname{Aut}(X(\mathbb{R}))$ is then infinitely transitive on each connected component if and only if X is geometrically rational and $\# X(\mathbb{R}) \leq 3$.

Density of automorphisms in diffeomorphisms. In [KM09], it is proved that $\operatorname{Aut}(X(\mathbb{R}))$ is dense in $\operatorname{Diff}(X(\mathbb{R}))$ for the \mathcal{C}^{∞}-topology when X is a geometrically rational surface with $\# X(\mathbb{R})=1$ (or equivalently when X is rational). In the cited paper, it is said that $\# X(\mathbb{R})=2$ is probably the only other case where the density holds. The following collect the known results in this direction.

Theorem 7.3. [KM09, BM10]
Let X be a smooth real projective surface.

- If X is not a geometrically rational surface, then $\overline{\operatorname{Aut}(X(\mathbb{R}))} \neq \operatorname{Diff}(X(\mathbb{R}))$;
- If X is a geometrically rational surface, then
- If $\# X(\mathbb{R}) \geq 5$, then $\overline{\operatorname{Aut}(X(\mathbb{R}))} \neq \operatorname{Diff}(X(\mathbb{R}))$;
- if $\# X(\mathbb{R})=1$, then $\overline{\operatorname{Aut}(X(\mathbb{R}))}=\operatorname{Diff}(X(\mathbb{R}))$.

For $i=3,4$, there exists smooth real projective surfaces X with $\# X(\mathbb{R})=i$ such that $\overline{\operatorname{Aut}(X(\mathbb{R}))} \neq \operatorname{Diff}(X(\mathbb{R}))$.

In the above statements, the closure is taken in the \mathcal{C}^{∞}-topology.

References

[A02] M. Alberich-Carramiñana, Geometry of the plane Cremona maps, Lecture Notes in Math., 1769, Springer, Berlin (2002).
[BM10] J. Blanc, F. Mangolte, Geometrically rational real conic bundles and very transitive actions, Compos. Math. 147 (2011), no. 1, 161-187.
[Cas1901] G. Castelnuovo. Le trasformazioni generatrici del gruppo cremoniano nel piano. Atti della R. Accad. delle Scienze di Torino, 36, 861-874, 1901.
[Com14] A. Comessatti, Sulla connessione delle superficie razionali reali, Ann. Mat. Pura Appl. 23 (1914), 215-283.
[Cort95] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223-254.
[HM09] J. Huisman, F. Mangolte, The group of automorphisms of a real rational surface is n-transitive, Bull. London Math. Soc. 41, 563-568 (2009).
[Isko79] V.A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no 1, 19-43, 237.
[Isko91] V.A. Iskovskikh, Generators of the two-dimensional Cremona group over a nonclosed field. Trudy Mat. Inst. Steklov. 200 (1991), 157-170; translation in Proc. Steklov Inst. Math. 1993, no. 2 (200), 173188.
[Isko96] V.A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory. Uspekhi Mat. Nauk 51 (1996) no 4 (310), 3-72.
[IKT93] V.A. Iskovskikh, F.K. Kabdykairov, S.L. Tregub, Relations in a two-dimensional Cremona group over a perfect field. Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 3, 3-69.
[KM09] J. Kollár, F. Mangolte, Cremona transformations and diffeomorphisms of surfaces, Adv. in Math. 222, 44-61 (2009).
[Mang06] F. Mangolte, Real algebraic morphisms on 2-dimensional conic bundles, Adv. Geom. 6 (2006), 199-213.
[Mori82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), 133-176.
[Poly97] Yu. Polyakova, Factorization of birational mappings of rational surfaces over the field of real numbers, Fundam. Prikl. Mat. 3 (1997), no. 2, 519-547.
[RV05] F. Ronga, T. Vust, Diffeomorfismi birazionali del piano proiettivo reale, Comm. Math. Helv. 80 (2005), 517-540.

Jérémy Blanc, Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Schweiz

E-mail address: Jeremy.Blanc@unibas.ch
Frédéric Mangolte, LUNAM Université, LAREMA, Université d'Angers, Bd. Lavoisier, 49045 Angers Cedex 01, France

E-mail address: frederic.mangolte@univ-angers.fr

[^0]: First author supported by the SNSF grant no PP00P2_128422 /1.
 This research was partially supported by ANR Grant "BirPol" ANR-11-JS01-004-01.

