
REAL ALGEBRAIC MORPHISMS ON 2-DIMENSIONAL CONIC
BUNDLES

FRÉDÉRIC MANGOLTE

Abstract. Given two nonsingular real algebraic varieties V and W , we con-
sider the problem of deciding whether a smooth map f : V → W can be

approximated by regular maps in the space of C∞ mappings from V to W in

the C∞ topology.
Our main result is a complete solution to this problem in case W is the

usual 2-dimensional sphere and V is a real algebraic surface of negative Kodaira

dimension.

1. Introduction

We deal with regular maps between real algebraic varieties. Here the term real
algebraic variety stands for a locally ringed space isomorphic to a locally closed
subset of Pn(R), for some n, endowed with the Zariski topology and the sheaf of
R-valued regular functions. Morphisms between real algebraic varieties are called
regular maps.

An equivalent description of real algebraic varieties can be obtained using quasi-
projective varieties defined over R. Given such a variety X, the Galois group G =
{1, σ} of C|R acts on X(C), the set of complex points of X, via an antiholomorphic
involution. The real part X(R) is then precisely the set of fixed points under this
action. If X(R) is Zariski dense in X, then we consider it as a real algebraic variety
whose structure sheaf is the restriction of the structure sheaf of X. Therefore,
a regular map V → W in the above sense is the restriction of a rational map
X(C) 99K Y (C) with no poles on V = X(R).

Every real algebraic variety is isomorphic to a Zariski closed subvariety of Rn.
Thus, all topological notions about real algebraic varieties will refer to the Euclidean
topology of Rn.

Given two nonsingular real algebraic varieties V and W , with V compact, we
consider the set R(V,W ) of all regular maps from V into W as a subset of the
space C∞(V,W ) of all C∞ maps from V into W equipped with the C∞ topology.
We want to study which C∞ maps from V into W can be approximated by regular
maps. The classical Stone-Weierstrass approximation theorem implies that all C∞
maps from V into W can be approximated by regular maps when W = Rm for
some m. In this paper, we will mainly consider the case when W = S2 is the usual
two dimensional Euclidean sphere.

The main achievement of this paper is a complete answer to the approximation
problem of smooth maps from a real algebraic surface of negative Kodaira dimension
into the 2-sphere.
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In dimension less than three, a complex algebraic variety of negative Kodaira
dimension is uniruled. In dimension two, such a variety is ruled. A complex (resp.
real) algebraic variety X is uniruled if there is a complex (resp. real) algebraic
variety Y , with dim(Y ) = dim(X)−1, and a dominant rational map Y ×P1 99K X.
By definition, a ruled complex surface X is birationally equivalent to a product
P1 × B, where B is a complex algebraic curve. When the genus g(B) of B is non
vanishing, the surface X admits a relatively minimal model Y over C endowed with
a P1-bundle structure Y −→ B.

When X is defined over R, X may not be R-birational to a product though it is
C-birational to P1 × B; consider for example a maximal real Del Pezzo surface of
degree 2 or 1.

Even when g(B) 6= 0, it may occur that no relatively R-minimal model Y of X
is a P1-bundle. In this case, the surface X admits only relatively R-minimal models
which are not C-minimal: these are the real conic bundles, see Section 4.

Among all the surfaces of negative Kodaira dimension are the rational surfaces.
There are several ways to define real algebraic varieties, hence several ways to define
real rational surfaces. A real algebraic surface V is C-rational (or geometrically
rational) if its complexification X is C-birationally equivalent to P2

C. Similarly, the
surface V is R-rational if V is R-birationally equivalent to P2

R.
The approximation problem of smooth maps from R-rational surfaces into the

2-sphere was solved by J. Bochnak and W. Kucharz [BK87a, BK87b].
In collaboration with N. Joglar, we generalized this to the case when the source

space is a C-rational real algebraic surface [JM04].
In this paper, we solve the problem for all the surfaces of negative Kodaira

dimension.
Let V = X(R) be a real algebraic surface such that X is of negative Kodaira

dimension and X is not C-rational. Hence X admits a ruling ρ : X −→ B defined
over R, see Definition 4.1. The image by ρ of a connected component M ⊂ X(R)
can be a topological segment or a topological circle in B(R). We will say that
a connected component of X(R) which is diffeomorphic to the Klein bottle is a
minimal Klein component if its image by ρ is a topological circle in B(R). Recall
that a connected component of X(R) may be diffeomorphic to a torus, a sphere or
any nonorientable surface.

Theorem 1.1. Let V be a uniruled non C-rational real algebraic surface. Given a
smooth map f : V −→ S2, the following conditions are equivalent:

(1) f can be approximated by regular maps;
(2) f is homotopic to a regular map;
(3) for each component M of V diffeomorphic to a torus, deg(f)|M = 0 and for

each pair of minimal Klein components N , L, degZ/2(f)|N = degZ/2(f)|L .

In [Ku99], W. Kucharz gave another kind of generalization of his result with
J. Bochnak about R-rational surfaces. Namely, he solved the approximation prob-
lem of smooth maps from R-rational surfaces into R-rational surfaces.

We extend this result as follows (recall that a C-rational real algebraic surface
V = X(R) is R-rational if and only if V is connected):

Theorem 1.2. Let V = X(R) and W = Y (R) be connected real algebraic surfaces
such that X is C-ruled and Y is C-rational. Then the space R(V,W ) is dense in the
space C∞(V,W ), except when V is diffeomorphic to a torus and W is diffeomorphic
to a sphere.

In the latter case, the closure of R(V,W ) in C∞(V,W ) consists precisely of the
null homotopic maps.
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Furthermore, we have answered a question raised by J. Bochnak. The following
result is independent of the previous ones.

Theorem 1.3. Let V be a R-rational real algebraic surface diffeomorphic to the
Klein bottle. Then V is biregularly isomorphic to the blow-up of the real projective
plane over one point. In other words, a R-rational Klein surface always admits a
non minimal smooth complexification.

This result fits with the more general setting: a rational model of a connected
compact variety M is a R-rational real algebraic surface diffeomorphic to M .

By Comessatti classification, if M is orientable its genus must be less than 2.
It is known that the sphere and the torus each admit a unique rational model
modulo biregular isomorphism. Thanks to the latter theorem, there is also only
one rational model for the Klein bottle. Hence, the next natural question is: ”how
large should h be for the nonorientable surface of Euler characteristic 1− h admits
several rational models?”.

One of the main tools used in the proof of Theorems 1.1 and 1.2 is a new charac-
terization of a classical invariant of real algebraic varieties used in the approximation
problem in case the target space is the usual sphere.

Given a compact nonsingular real algebraic variety V , consider a smooth pro-
jective variety X over R, such that V and X(R) are isomorphic as real algebraic
varieties. We denote by H2

alg(X(C), Z) the subgroup of H2(X(C), Z) that con-
sists of the cohomology classes that are Poincaré dual to the homology classes in
H2n−2(X(C), Z) represented by divisors in XC. We set

H2
C−alg(X(R), Z) = i∗(H2

alg(X(C), Z)) ,

where i : X(R) ↪→ X(C) is the inclusion map. It is easy to check that for a given
nonsingular real algebraic variety V , the group H2

C−alg(X(R), Z) does not depend
on the associated variety X. We can identify V and X(R) and set

H2
C−alg(V, Z) = H2

C−alg(X(R), Z) .

We will denote by Γ(V ) the quotient group H2(V, Z)/H2
C−alg(V, Z).

There is a close connection between the subgroup H2
C−alg(V, Z) and the topolog-

ical closure of the space R(V, S2) in C∞(V, S2). More precisely, the following result
is well-known, cf. [BCR98, Chapter 13] and [BBK89].

Proposition 1.4. Let V be a compact nonsingular real algebraic variety. A given
C∞ map f : V → S2 can be approximated by regular maps in the C∞ topology, if and
only if f∗(κ) ∈ H2

C−alg(V, Z). Here κ is a fixed generator of the group H2(S2, Z).

In terms of the quotient Γ, here are the already known cases:

Theorem 1.5 ([BK87a, BK87b]). Let V be a R-rational real algebraic surface.
Then

Γ(V ) =

{
Z if V is diffeomorphic to S1 × S1

0 in all other cases.

On the other hand, a complex surface X is a Del Pezzo surface iff X is irreducible
and the anticanonical divisor −KX is ample. The degree of X is deg(X) = K2

X .
For Del Pezzo surfaces, it is known that 1 ≤ deg(X) ≤ 9. A real Del Pezzo surface
V = X(R) is C-rational and is not R-rational when X(R) is not connected.

Theorem 1.6 ([JM04]). Let V be a real algebraic surface biregularly isomorphic
to the real part of a maximal real Del Pezzo surface of degree 2, then

Γ(V ) = Z/2 .
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Theorem 1.7 ([JM04]). Let V be a C-rational real algebraic surface. Then

Γ(V ) =


Z if V is diffeomorphic to S1 × S1

Z/2 if V is as in Theorem 1.6
0 in all other cases.

Convention. A real algebraic variety is smooth projective and geometrically irre-
ducible, unless otherwise stated.

2. Algebraic morphisms to the standard sphere

Let again i : X(R) ↪→ X(C) be the canonical injection of the set of real points
into the set of complex points of an algebraic surface defined over R. Consider the
induced restriction morphism

i∗ : H2(X(C), Z) → H2(X(R), Z) .

We will use the notation Xor for the disjoint union of the orientable connected
components of the real part and Xnor for the nonorientable part. The morphism i∗

has the natural splitting H2(X(C), Z) → H2(Xor, Z)⊕H2(Xnor, Z). Since Xnor is
nonorientable of dimension 2, H2(Xnor, Z) is canonically isomorphic to the group
H2(Xnor, Z/2) by reduction modulo 2. To see this, apply twice the universal-
coefficient theorem [Sp66, 5.5.10].

We will identify the group H2(X(R), Z) with the direct sum H2(Xor, Z) ⊕
H2(Xnor, Z/2) and still use the notation i∗ for the composed morphism

H2(X(C), Z) → H2(Xor, Z)⊕H2(Xnor, Z/2) .

The manifolds X(C) and X(R) are compact and X(C) is orientable. The Gysin
morphism i! can be defined by the commutative diagram:

(2.1)

H2(X(C), Z) i∗−−−−→ H2(Xor, Z)⊕H2(Xnor, Z/2)

DC

y∼= Dor
R ⊕Dnor

R

y∼=
H2(X(C), Z) i!−−−−→ H0(Xor, Z)⊕H0(Xnor, Z/2) ,

where the isomorphisms DC, Dor
R and Dnor

R come from Poincaré duality applied
to the orientable 4-dimensional manifold X(C), the orientable 2-dimensional man-
ifold Xor and the nonorientable 2-dimensional manifold Xnor.

Let S and M be two transverse oriented submanifolds in an oriented manifold
X. We attach +1 to a point P ∈ S∩M if the orientation of the tangent space TP X
coincide with the orientation given by the direct oriented sum TP S⊕TP M and −1
otherwise. With this convention in mind, we obtain a well-defined class [S t M ] in
H0(M, Z). Now if M is nonorientable, the class [S t M ] is well-defined modulo 2
in H0(M, Z/2) [Hr76]. The following lemma is an exercise in algebraic topology.

Lemma 2.2. Let S be an oriented 2-dimensional closed submanifold of X(C) trans-
verse to X(R), denote by [S] its fundamental class in H2(X(C), Z), then

i!([S]) = [S t Xor]⊕ [S t Xnor] .

Let X be an algebraic surface defined over R and suppose that X(R) 6= ∅.
Denote by {Mj}j∈J the set of connected components of X(R). The Z-module
H2(X(R), Z) splits into a direct sum ⊕j∈JH2(Mj , Z).

Let J ′ ⊂ J be a subset and l be a class in H2(X(C), Z), we will call the image
of l by the composed map H2(X(C), Z) → H2(X(R), Z) → H2(⊕j∈J′Mj , Z) the
restriction of i∗(l) to ⊕j∈J′Mj . For a connected component Mj of X(R), we will
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say that a generator class ηj of H2(Mj , Z) belongs to H2
C−alg(X(R), Z) iff the class

1ηj ⊕
⊕

a6=j 0ηa belongs to H2
C−alg(X(R), Z).

3. Birational equivalence, orientability and regular maps

Let X be a smooth projective surface over R. We say that a smooth complex
curve E of XC is a (−1)-curve if it is rational and E2 = −1. If a (−1)-curve E is
defined over R, there exists a blowdown π : X → Y over R onto a smooth surface
such that E contracts to a real point P = π(E) ∈ Y (R) (in particular, Y (R) and
X(R) are not empty and have the same number of connected components). If E
is not defined over R, then σ(E) is another (−1)-curve. If the intersection number
E · σ(E) = 0, then we can blowdown over R the divisor E + σ(E). We say that a
smooth projective surface over R is relatively R-minimal if it contains neither real
(−1)-curves nor pairs of disjoint complex conjugated (−1)-curves. If E · σ(E) 6= 0,
then we cannot blowdown E + σ(E) over R and the surface can be R-minimal but
not C-minimal, see the next section.

Let L be an algebraic curve defined over R on an algebraic surface X over R.
There are two algebraic bundles naturally associated to L. Namely the C-line
bundle E = OX(L) over X(C) and the R-line bundle L over X(R) satisfying the
relation

(3.1) L ⊗ C = E|Y (R) .

We will use the first Chern class c1(L) = c1(OX(L)) in H2(X(C), Z) and the first
Stiefel-Whitney class w1(L) in H1(X(R), Z/2). We denote by β : H1(X(R), Z/2) →
H2(X(R), Z) the Bockstein homomorphism induced in cohomology by the usual
exact sequence

0 → Z ×2−−−→ Z → Z/2 → 0 .

Lemma 3.2. Let X be an algebraic surface over R and let L be a smooth algebraic
curve over R on X, then i∗(c1(L)) = β ◦w1(L) in H2

C−alg(X(R), Z). In particular,
the class i∗(c1(L)) is 2-torsion.

Proof. From (3.1), we get i∗(c1(E)) = c1(L ⊗ C) by functoriality of Chern classes.
Since L ⊕ L and L ⊗ C are naturally isomorphic as oriented real vector bundles
and c1(L ⊗ C) = β ◦ w1(L) [MS74, Problem 15.D and Lemma 14.9], the lemma
follows. �

Corollary 3.3. For a smooth curve L defined over R, the class i∗(c1(L)) 6= 0 in
H2

C−alg(X(R), Z) if and only if there exists a connected component M of X(R) such
that degM (w1(L)2) is odd. In particular, if L · L is odd, i∗(c1(L)) is a nontrivial
class of order 2 in H2

C−alg(X(R), Z).

Proof. The image of the Bokstein homomorphism is given by

β(w1(L)) = w1(L) ∪ w1(L)
thanks to the Whitney duality theorem. Furthermore, we have deg(w1(L)2) ≡ L ·L
mod 2. Indeed deg(w1(L)2) ≡ L(R) · L(R) mod 2 in H1(X(R), Z/2) and L · L ≡
L(R) · L(R) mod 2 [Si89, Chap. III]. �

Remark 3.4. This result was known in case X(R) is connected [BCR98, 12.6.13].

Proposition 3.5. Let X be an algebraic surface over R containing a (−1)-curve L
defined over R. There is only one connected component M of X(R) meeting L(R).
Furthermore M must be nonorientable and we have

ηM = i∗(c1(L)) .
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Hence, the generator class ηM of H2(M, Z) is a nontrivial 2-torsion class of
H2

C−alg(X(R), Z).

Proof. By Corollary 3.3, i∗(c1(L)) is a nontrivial 2-torsion class. Another conse-
quence of L · L = −1 is that L must have a real point. Let M be a connected
component of X(R) having a nontrivial intersection with L(R). The curve L is
smooth and rational, hence have a connected real part. Then L(R) ⊂ M and M
must be nonorientable and finally ηM = i∗(c1(L)). �

We recovered the well-known fact that Γ is not a birational invariant. But we will
prove more: Γ is not even an invariant of relative minimal models, see Theorem 4.14
and Corollary 4.15.

Given a dominant R-birational morphism X −→ Y between smooth algebraic
surfaces over R, we have a natural injection Γ(X(R)) ↪→ Γ(Y (R)). In case X admits
a unique minimal model, i.e. when kod(X) ≥ 0, we can reduce the computation of
Γ(X(R)) to that of Γ(Y (R)).

In case X is ruled, the result depends on the real minimal model and the domi-
nant map.

Proposition 3.6. Let X be an algebraic surface over R and denote by KX its
canonical line bundle. The class i∗(c1(KX)) is zero in H2

C−alg(X(R), Z) if and only
if the Euler characteristic χ(M) is even for any nonorientable component M .

Proof. Indeed, if X(R) 6= ∅, KX is representable by a real divisor and i∗(c1(KX))
belongs to H2(Xnor, Z) by Lemma 3.2. We have then

i∗(c1(KX)) ≡mod 2 w2(TX(R))

and we conclude by [MS74, Cor. 11.12] about Stiefel-Whitney numbers. �

4. Real conic bundles over curves

Let X be a smooth algebraic surface defined over R and B a smooth algebraic
curve defined over R. A connected component M of X(R) is said to be a spherical
(resp. torus, resp. Klein) component if M is diffeomorphic to the sphere S2 (resp.
the torus, resp. the Klein bottle).

Definition 4.1. A morphism ρ : X → B is a ruling iff the generic fiber is isomorphic
to P1. The morphism ρ is a conic bundle iff every fiber is isomorphic to a plane
conic.

When the map ρ is defined over R, we will say that a fiber of ρ is real if it is
located over B(R) and imaginary otherwise.

A ruling is C-minimal iff no fiber contains a (−1)-curve. A real ruling is R-
minimal iff no real fiber contains a real (−1)-curve and no imaginary fiber contains
a (−1)-curve. A C-minimal real ruling is clearly R-minimal but the converse does
not hold in general. A C-minimal ruling is isomorphic to a locally trivial P1-bundle.
A R-minimal ruling is a real conic bundle.

Recalling that K-ruled means K-birational to a product P1 ×B, we have:

Proposition 4.2. A given R-minimal, C-ruled and non C-rational real algebraic
surface is R-ruled if and only if it is C-minimal.

A surface X endowed with a minimal ruling (over C or over R) in the above sense
is not a minimal model in the sense of Mori theory, it is only relatively minimal
when g(B) 6= 0. Indeed, there exist many birationally equivalent minimal rulings.
A birational equivalence between two minimal ruling is a composition of elementary
transformations. Over C, an elementary transformation centered at a point p is the



REAL CONIC BUNDLES 7

blow-up centered at p composed by the contraction of the strict transform of the
fiber containing p.

Over R, there are two kinds of elementary transformations. We denote by elmp

the elementary transformation centered at a real point p that is smooth in Xρ(p)

and by elmp,σ(p) the composition of the elementary transformations centered at p
and σ(p) provided that Xρ(p) and Xρ(σ(p)) are distinct conjugated fibres.

We will use the following classification theorem:

Theorem 4.3. Let X be an algebraic surface over R with a real ruling ρ : X → B
over a algebraic curve B over R. Then X is R-birational to the smooth R-minimal
projective completion Xg of the real conic bundle defined in some affine open subset
of A2 ×B by an equation

(4.4) x2 + y2 = g(z) ,

where g is a real rational function over B with no pole in B(R), and whose all real
zeros are simple.

Proof. See [Si89, V.2] and [Si89, VI.3]. �

Remark 4.5. Note the number of real zeros of g that belong to a connected com-
ponent B1 of B(R) is even. Indeed, the function g changes sign in the neighborhood
of a zero in the topological circle B1.

Proposition 4.6. Denote by n the number of connected components of B(R) and
by 2s the number of real zeros of g. Then the real part Xg(R) of Xg is diffeomorphic
to the disjoint union of t tori and s spheres, where t satisfies t ≤ n.

Proof. From Equation 4.4, the topology of Xg(R) is easy to understand. The real
zeros {zl}1≤l≤2s of the function g determine s connected arcs in B(R) over which
the real fibers Xg

z (R) are not empty. Over each of these arcs, there is a connected
component of Xg(R) which is homeomorphic to a sphere. The torus components
are located over components of B(R) where g is strictly positive. �

Let M be a spherical component of Xg(R) and Xg
zl

be a real fiber over a zero of
g such that Xg

zl
(R) ⊂ M . The real singular fiber Xg

zl
is the union of two complex

conjugated (−1)-curves E and σ(E) whose intersection point p is the only real point
of the fiber.

Lemma 4.7. Let X be a C-ruled surface defined over R, then

H2
C−alg(X(R), Z) = Im i∗ .

Proof. By definition, we have H2
C−alg(X(R), Z) = i∗(NS(XC)). Moreover, for a

complex nonsingular variety V , we have the long exact sequence coming from the
exponential exact sequence. In addition, considering the isomorphism Pic(V ) ∼=
H1(V,O∗), we obtain the following exact sequence

· · · → H1(V,O) → Pic(V ) c1−−→ H2(V, Z) → H2(V,O) → · · ·
The Lemma is now clear since NS(V ) = c1(Pic(V )) and, for a C-ruled surface V ,
dim H2(V,O) = 0. �

Let X be a R-minimal conic bundle, by Theorem 4.3, there exist a surface Xg

and a finite sequence T of real elementary transformations such that T (Xg) = X.
The connected components {Mj}j∈J of X(R) are then spherical, toral or of Klein

type. We call respectively S ⊂ J, T ⊂ J,K ⊂ J the subsets of indexes corresponding
to the spherical, torus and Klein components respectively. In particular, we have
Xnor = ⊕j∈KMj .
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Now, for each spherical component Mj of X(R), there exist two singular fibers
Ec

j +σ(Ec
j ), c = 1, 2, such that Ec

j∩σ(Ec
j ) ∈ Mj is reduced to a single real point. Let

us denote by Ec
j the associated algebraic C-line bundles and by N the submodule

of H2(X(C), Z) generated by the 2s classes {c1(Ec
j )}c∈{1,2},j∈S .

Lemma 4.8. Let X be a R-minimal conic bundle.
(1) The Néron-Severi group NS(XC) is generated by N , the class f of a fiber

and the class h of a section.
(2) The canonical class is given by

c1(KX) = rf − 2h +
∑

c∈{1,2},j∈S

c1(Ec
j )

for some integer r ∈ Z.

Proof. Indeed, over C, we can blow down the curves Ec
j to obtain a C-minimal

complex ruled surface ρ′ : Y −→ B whose Néron-Severi group is generated by the
class f ′ of a fiber and the class h′ of a section. Moreover, the canonical class c1(KY )
is a linear combination

(4.9) rf ′ − 2h′

for some integer r ∈ Z [B78, III.18].
The strict transform of a generic fiber of Y is a fiber of X and the strict transform

of a section of Y is a section of X. Furthermore, for a blow-up centered at p ∈ Y ,
the total transform of the fiber Yρ′(p) is a singular fiber for X → B of the form
E + σ(E), where E is a (−1)-curve.

Hence, the group NS(XC) is generated by the classes c1(Ec
j ), the class f of a fiber

and the class h of a section. Furthermore, we deduce from (4.9) that c1(KX) =
rf − 2h +

∑
c1(Ec

j ). �

Lemma 4.10. Given any R-minimal conic bundle X → B, the canonical class and
the class of a fiber satisfy i∗(KX) = 0 and i∗(f) = 0 in H2(X(R), Z).

Proof. We may assume that X(R) 6= ∅ hence there exist a fiber F of ρ and a
canonical divisor which are real. Then F.F = 0 as a fiber and the conclusion about
f follows from Corollary 3.3. By Lemma 3.2, i∗(KX) is a 2-torsion class, hence
trivial when restricted to an orientable component. Furthermore, the restriction of
i∗(KX) to a Klein component Mj , j ∈ K, is trivial as w2(Mj) = 0. �

Lemma 4.11. For each spherical component Mj ⊂ X(R), any generator class ηj

of H2(Mj , Z) belongs to H2
C−alg(X(R), Z). More precisely, we have

i∗(N) = ⊕j∈SH2(Mj , Z) .

Proof. By Theorem 4.3, there exist a real ruling ρ′ : Xg −→ B and a finite se-
quence of real elementary transformations T (Xg) = X, where Xg is the R-minimal
projective completion of the conic bundle defined by

{(x, y, z) ∈ A2 ×B |x2 + y2 = g(z)} and ρ′(x, y, z) = z .

As ρ and ρ′ are R-minimal, we may assume that there is no center of elementary
transformation of T that belongs to a reducible fiber. In particular, restricted
to a neighborhood of a spherical component M of Xg(R) in Xg(C), T is a real
isomorphism.

Let Xg
z be a real fiber over a zero of g such that Xg

z (R) ⊂ M . The real singular
fiber Xg

z is the union of two complex conjugated lines E and σ(E) whose intersection
point p is the only real point of the fiber. The tangent plane to Xg(R) at p is
generated by ∂

∂x1
and ∂

∂y1
, where x = x1 + ix2 and y = y1 + iy2. It is easy to check
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that the tangent plane to E at p is generated by i ∂
∂x1

− ∂
∂x2

and ∂
∂y1

+ i ∂
∂y2

. Then
E is transverse to Xg(R) at p in Xg(C).

Hence T (E) is transverse to X(R) at T (p) in X(C). By Lemma 2.2, the image
of [T (E)] by the Gysin morphism i! is a generator of

H0(T (M), Z) ↪→ H0(Xor, Z)⊕H0(Xnor, Z/2) .

Therefore, we conclude by using the commutative diagram 2.1. �

Lemma 4.12. Let Mj be a torus component. Then for any generator class ηj of
H2(Mj , Z) we have ηj 6∈ H2

C−alg(X(R), Z).

Proof. By Lemmas 4.8, 4.10 and 4.11, it suffices to prove that the restriction of
i∗(h) to a torus component is trivial.

The canonical class c1(KX) is a linear combination rf − 2h +
∑

c1(Ec
j ) for some

integer r ∈ Z. From Lemma 4.11 and Lemma 4.10, the restrictions of i∗(2h) and
i∗(KX) to a torus component are equal. Moreover, the class i∗(KX) is trivial when
restricted to an orientable component. The restriction of i∗(h) to a torus component
is then a 2-torsion class, hence trivial. �

Lemma 4.13. Let h be the class of a section on a R-minimal conic bundle X, then
the restriction of i∗(h) to the nonorientable part is the class ⊕j∈Kηj ∈ H2(X(R), Z).

Proof. The restriction of i∗(h) to the nonorientable part is 2-torsion. We will prove
that we can choose a section H transverse to X(R) such that #(H ∩M) is odd for
any nonorientable component. The conclusion will then follow from Lemma 2.2.

As in the proof of lemma 4.11, we will use the surface Xg and the transform T .
Let Σ be the finite set of real centers of elementary transformations of T . If M is
spherical, T (M) is also spherical. If M is a torus component, then T (M) is a torus
component when #(Σ ∩M) is even and a Klein component if #(Σ ∩M) is odd.

Let H ′ be a section of Xg. The curve H = T (H ′) is then a section of X. Since
Σ is finite, we can move H ′ to ensure that for all z ∈ ρ′(Σ), Xg

z (R) ∩H ′(C) = ∅.
Hence the point p = T (Xg

z ) is real and belongs to the intersection H ∩ σ(H).
For each z ∈ ρ′(Σ), the intersection H∩σ(H) is transverse at p and real. Hence H

is transverse to X(R) at p. If necessary, we can perturb H to obtain transversality
to X(R) at each point.

Now for a non spherical component T (M) of X, the degree of the restriction of
i!([H]) to T (M) is equal to the sum of the degree of i!([H ′])|M and #(Σ ∩M).

By Lemma 4.12, i!([H ′])|M = 0 for a torus component M of Xg(R) and #(Σ∩M)
is odd when T (M) is a Klein component of X(R). The conclusion follows. �

Given a R-minimal conic bundle X, from Lemmas 4.7 to 4.13 we get

H2
C−alg(X(R), Z) =

〈⊕
j∈K

ηj , {ηj ; j ∈ S}

〉
.

In other words, the group H2
C−alg(X(R), Z) is generated by the spherical classes

and the sum of all the Klein classes. We deduce the theorem:

Theorem 4.14. Let X → B be a R-minimal conic bundle. Denote by t the number
of torus components of X(R) and by k the number of Klein components. Then

Γ(X(R)) =

{
Zt if k = 0
Zt ⊕ (Z/2)k−1 if k 6= 0

Corollary 4.15. Given a real ruling X → B on a surface with orientable real part
X(R), we have Γ(X(R)) = Zt, where t is the number of torus components.
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Proof. The orientability of the real part implies that the real ruling gives rise to a
R-minimal conic bundle by making contractions in imaginary fibers only. �

5. Surfaces of negative Kodaira dimension

Recall that for a real algebraic surface V = X(R), V is uniruled if and only if X
is uniruled if and only if kod(X) = −∞.

To prove Theorems 1.1 and 1.2, we will use the following (recall that the subgroup
H1

alg(V, Z/2) ⊂ H1(V, Z/2) is generated by the cohomology classes Poincaré dual to
the homology classes represented by Zariski closed algebraic hypersurfaces of V ):

Theorem 5.1 ([Ku99]). Let V be a compact nonsingular real algebraic variety and
W be a compact connected nonsingular rational real algebraic surface. Given a C∞
map f : V → W , the following conditions are equivalent:

(1) f can be approximated by regular maps;
(2) f is homotopic to a regular map;
(3) either W is diffeomorphic to a sphere and

f∗(H2(W, Z)) ⊂ H2
C−alg(V, Z/2) ,

or W is not diffeomorphic to a sphere and

f∗(H1(W, Z)) ⊂ H1
alg(V, Z/2) .

Given a real algebraic surface V = X(R), we denote by t the number of torus
components, and by k the number of Klein components. In case X admits a real
ruling ρ : X → B, we denote by k′ the number of minimal Klein components of
X(R) (see introduction).

Theorem 5.2. Let V be a uniruled real algebraic surface, then

Γ(V ) =


Z/2 if V is as in Theorem 1.6
Zt if k′ = 0 and V is not as in Theorem 1.6
Zt ⊕ (Z/2)k′−1 if k′ 6= 0

Proof. Suppose that V is not C-rational. Let X be a smooth complexification of
V . Let Y be a R-minimal model of X, thus the number of Klein components of
Y (R) is exactly k′ and by Theorem 4.14, we know Γ(Y (R)). The conclusion follows
from Proposition 3.5. �

Theorem 5.3. Let V be an orientable uniruled real algebraic surface. Denoting by
t the number of components diffeomorphic to a torus, we have

Γ(V ) = Zt ,

except in case V is the maximal real Del Pezzo surface of degree 2 for which V is
the disjoint union of 4 spheres and Γ(V ) = Z/2.

Remark 5.4. It is an amazing fact that the torus components measure the ob-
struction to approximate differentiable maps. Indeed, the only case that is known
so far is the rational torus S1 × S1 realized as the real part of the quadric surface
P1 × P1 endowed with the usual real structure. The proof of Γ(S1 × S1) = Z uses
the torus decomposition as a product of real algebraic curves.

Proof. Since V is orientable, we may assume that X is R-minimal. Thus, we get the
conclusion from Theorem 4.15 in case X admits a real ruling and from theorems 1.6
and 1.7 when X is C-rational. �
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Corollary 5.5. Let V be an orientable uniruled real algebraic surface which is not
biregular to a maximal real Del Pezzo surface of degree 2.

The space of regular maps R(V, S2) is dense in the space of C∞maps C∞(V, S2)
if and only if all the connected components of V are spherical.

Proof of Theorem 1.1. Theorem 1.1 follows from Theorem 5.1 and Theorem 5.2 �

Proof of Theorem 1.2. We got the conclusion in case W is diffeomorphic to a sphere
from Theorem 1.1 and when W is not diffeomorphic to a sphere by Theorem 5.1, and
the fact that a connected uniruled real algebraic surface V satisfies H1

alg(V, Z/2) =
H1(V, Z) [Ab00, M03]. �

6. Rational Klein bottles

This short section is devoted to the proof of Theorem 1.3.

Theorem 6.1. The Klein bottle admits a unique rational model. Namely, the real
part of the real Hirzebruch surface F (1).

Here we can use interchangably the words C-rational or rational because con-
nected C-rational surfaces are R-rational [Si89].

Proof. We want to prove that M is biregularly isomorphic to the real part of the
Hirzebruch surface F (1). Let M be a C-rational real algebraic surface diffeomorphic
to the Klein bottle. Let X be a R-minimal smooth projective complexification of M .
As M ∼= X(R) is connected, X is C-minimal and it is a Hirzebruch surface F (n).
Furthermore, n is odd and n > 1. Indeed, the only C-minimal R-rational surfaces
are the real Hirzebruch surfaces F (n) with n 6= 1 and F (n)(R) is nonorientable if
and only if n ≡ 1 mod 2 [Si89].

Let us denote by H the unique section of the natural real ruling ρ : X → P1 such
that H2 = −n. Choose n−1

2 points p1, . . . , pn−1
2

of H that belong to imaginary
fibres of ρ and let X ′ = elmp1,σ(p1) ◦ · · · ◦ elmp n−1

2
,σ(p n−1

2
)(X).

Then X ′(R) is biregularly isomorphic to X(R) and n′ = n − 2(n−1
2 ). Further-

more, the transformed surface X ′ of X is C-isomorphic to F (1). �
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Bourget-du-Lac Cedex, France, Tél : (33) 4 79 75 86 60, Fax : (33) 4 79 75 81 42

E-mail address: mangolte@univ-savoie.fr


