EVERY ORIENTABLE SEIFERT 3-MANIFOLD IS A REAL
COMPONENT OF A UNIRULED ALGEBRAIC VARIETY
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ABSTRACT. We show that any orientable Seifert 3-manifold is diffeomorphic
to a connected component of the set of real points of a uniruled real algebraic
variety, and prove a conjecture of Janos Kolldr.

Toute 3-variété de Seifert est une composante réelle
d’une variété algébrique uniréglée

RESUME. Nous montrons que toute 3-variété de Seifert orientable est difféomorphe
a une composante connexe de la partie réelle d’une variété algébrique réelle
uniréglée et prouvons une conjecture de Janos Kollar.
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1. INTRODUCTION

A smooth compact connected 3-manifold M is a Seifert manifold if it admits a
smooth fibration f: M — S over a smooth surface .S, whose fibers are circles, such
that f is locally trivial, with respect to the ramified Grothendieck topology on S.
More precisely, for every point P of S, there is a ramified covering U — U of an open
neighborhood U of P such that the fiber product M xg U — U is a locally trivial
smooth circle bundle over U (see Section 2 for another—but equivalent—definition).

A smooth, projective and geometrically irreducible real algebraic variety X
is called ruled if there is a real algebraic variety Y such that ¥ x P! and X
are birational. The variety X is uniruled if there is a real algebraic variety Y,
with dim(Y) = dim(X) — 1, and a dominant rational map ¥ x P! --» X. Of
course, a ruled real algebraic variety is uniruled, but not conversely.

Let X be a uniruled real algebraic variety of dimension 3 such that X (R) is
orientable. Janos Kolldr has proved that each connected component of X (R) be-
longs to a given list of manifolds, containing the Seifert manifolds [Ko01, Th. 6.6].
He conjectured, conversely, that each orientable Seifert manifold is diffeomorphic
to a connected component of the set of real points of a uniruled real algebraic
variety [KoO1, Conj. 6.7.2]. In this paper we prove that conjecture.

Theorem 1.1. Every orientable Seifert manifold is diffeomorphic to a real compo-
nent of a uniruled real algebraic variety.

The strategy of our proof is the following. Let M be an orientable Seifert man-
ifold, and let f: M — S be a Seifert fibration as above. In case M admits a
spherical geometry, Kollar has constructed a uniruled real algebraic variety having
a real component diffeomorphic to M. Therefore, we may assume that M does
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not admit a spherical geometry. Then, we show that there is a ramified Galois
covering p: S — S of smooth surfaces such that the fiber product

f :M=MxgS— 8
is a locally trivial circle bundle (Theorem 2.3). In particular, there is a finite
group G acting on the fiber bundle f such that f/G 2 f. We show that there is a
structure of a real algebraic surface on S, and that there is a real algebraic vector
bundle L of rank 2 on S admitting
(1) a real algebraic action of G on the total space of L, and
(2) a G-equivariant real algebraic metric X on L,

such that the unit circle bundle in L is G-equivariantly diffeomorphic to M. The
statement of Theorem 1.1 will then follow.

Conventions. A manifold is smooth, compact and connected, and without bound-
ary, unless stated otherwise. A Riemann surface is compact and connected. A real
algebraic variety is smooth projective and geometrically irreducible, unless stated
otherwise.

Acknowledgement. We are grateful to Janos Kollar for pointing out a mistake
in an earlier version of the paper. The second author wants to thank Jacques
Lafontaine for helpful discussions.

2. SEIFERT FIBRATIONS

Let S! x D? be the solid torus where S' is the unit circle {u € C, |u| = 1} and
D? is the closed unit disc {z € C,|z| < 1}. A Seifert fibration of the solid torus is
a smooth map

fpq: St x D* = D? [(u,2) > ul2?
where p, g are relatively prime integers satisfying 0 < g < p.

Definition 2.1. Let M be a 3-manifold. A Seifert fibration of M is a smooth
map [ : M — S to a surface S having the following property. FEvery P € S has
a closed neighborhood U such that the restriction of f to f~1(U) is diffeomorphic
to a Seifert fibration of the solid torus. More precisely, there are relatively prime
integers p and q, with 0 < q < p, and there are diffeomorphisms g: U — D?
and h: f~Y(U) — S x D? such that the diagram

fﬁl(U) T’ Sl XD2

lf\f’l(U) lfm

U —  D?
g

commutes. We will say that M is a Seifert manifold if M admits a Seifert fibration.

In the literature, e.g. [Sc83], nonorientable local models are also allowed. Fol-
lowing Kollar, we kept Seifert’s original definition of a Seifert manifold.

Let us show that Seifert fibrations, as defined above, satisfy the property men-
tioned in the Introduction. The converse is easy to prove, and is left to the reader.

Proposition 2.2. Let f: M — S be a Seifert fibration. Then, for every P € S,
there is a ramified covering U — U of an open neighborhood U of P such that the
the fiber product M xs U — U is a locally trivial smooth circle bundle over U.

Note that, the fiber product M xg U is to be taken in the category of smooth
manifolds. We will see that, in general, it does not coincide with the set-theoretic
fiber product!
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Proof. According to the definition of a Seifert fibration, it suffices to show that
there is a ramified covering g: D? — D? such that the fiber product

fNI F = (Sl X Dz) Xfp,q,Dz,g _D2 — .D2

is a trivial smooth circle bundle over D2
Let g: D? — D? be the ramified covering g(w) = w?. Then, the set theoretic
fiber product of S' x D? and D? over D? is the set

F = {(u,z,w) € S* x D* x D*|u?zP = wP}.
It is easy to see that F' is not necessarily smooth along the subset S* x {0} x {0}.
Let f: F — D? be the map defined by f(u,z,w) = w. Let ¢': F — S x D? be the
map defined by g(u, z,w) = (u, z), so that the diagram

F ——— St x D?
g/

lf lfp.q

D? —— D?
g
commutes.

The fiber product F is the manifold defined by
F = {(u,z,x) € S* x D* x S'u? = 2P}

The desingularization map is the map d: F — F defined by S(u, z,2) = (u, z,22).
Let f: F — D? be the map defined by f(u,z,z) = xz. Then, the diagram

F —— F

b
D? —— D?
id
commutes, i.e., the fibration f is the desingularization of f.
Now, the map f is a trivial fibration. Indeed, F'is a homogeneous space over D?
under the action of S* defined by v-(u, z,7) = (vPu,v"%2,v%2). Moreover, f admits

a smooth section s defined by s(z) = (1,z,1). Therefore, f is a trivial fibration
of F over D?. O

A point P on a 2-dimensional orbifold S is a cone point with cone angle 27 /p
if a neighbourhood of P is orbifold diffeomorphic to the orbifold quotient C//pp,
where p,, is the group of p-th roots of unity. A cone point is a trivial cone point,
or a smooth cone point, if its cone angle is equal to 27.

Let f: M — S be a Seifert fibration. It follows from the local description of f
that the surface S has a natural structure of an orbifold with only finitely many
nontrivial cone points. Indeed, with the notation above, the fibration f, 4 is the
quotient of the trivial fibration f by the action of ftp defined on Fbyé¢- (u,z,x) =
(u, z,€x). The target of f,, acquires the orbifold structure of D?//p,.

Recall that a manifold M admits a geometric structure if M admits a complete,
locally homogeneous metric. In that case, the universal covering space M’ of M
admits a complete homogeneous metric. The manifold M has then a geometric
structure modeled on the (Isom(M'), M')-geometry.

More generally, a geometry is a pair (I,V) where V is a simply connected man-
ifold and I a real Lie group acting smoothly and transitively on V with compact
point stabilisers. We will only consider geometries (I,V) that admit a compact
quotient, i.e., there is a subgroup H C I such that the projection V. — V/H is
a covering map onto a compact quotient. Two geometries (I,V) and (I’,V’) are
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equivalent if I is isomorphic to I’ and there is a diffeomorphism ¢: V — V' which
transform the action p: I — Diff (V') onto the action p’: I’ — Diff(V’). We restrict
ourselves to geometries where [ is maximal. Namely, if I’ is a strict subgroup of I
and p’: I’ — Diff (V) is the restriction of p: I — Diff(V'), we will only consider the
(I,V) geometry.

Thurston has classified the 3-dimensional geometries: there are eight of them.
In general, a 3-manifold does not possess a geometric structure. However, it turns
out that every Seifert manifold admits a geometric structure and that the geometry
involved is unique [Sc83, Sec. 4]. Let M be a Seifert manifold, the geometry of M
is modeled on one of the six following models (see [Sc83] for a detailed description
of each geometry):

53,82 x R, E3 Nil, H?> x R,SL, R
where E? is the 3-dimensional euclidean space and H? is the hyperbolic plane.
The appropiate geometry for a Seifert bundle can be determined from the two

invariants x and e, where y is the Euler number of the base orbifold and e is the
Euler number of the Seifert bundle [Sc83, Table 4.1].

x>0 | x=0| x<0
e=0|S?’xR| E3 |H?xR
e#0 S3 Nil SLo R

Table 1: Geometries for Seifert manifolds.

Theorem 2.3. Let M be an orientable Seifert manifold that does not admit a
spherical geometry, and let f: M — S be a Seifert fibration. Then there is an
orientable surface S and a finite ramified Galois covering S — S such that the fiber
product

f :M=MxgS— 8
is a locally trivial smooth circle bundle.

A group of isometries of a Riemannian manifold B is discrete if for any = € B,
the orbit of x intersects a small neighborhood of = only finitely many times. The
quotient B/T of B by a discrete group I' of isometries, is a surface. The projection
map B — B/T" is a local homeomorphism except at points x where the isotropy
subgroup T', is nontrivial. In that case, T'; is a cylic group Z/pZ for some p > 1,
and the projection is similar to the projection of a meridian disk cutting across a
singular fiber of a Seifert fibration.

For convenience, let us denote by S%(p,q), 1 < q < p, the orbifold whose un-
derlying surface is S? with two cone points with angles 27/q and 27 /p. If ¢ = 1,
S2(p,1) = S?(p) is the teardrop orbifold. From [Sc83, Th. 2.3, Th. 2.4 and Th. 2.5],
we can state the following:

Theorem 2.4 (Scott). Every closed 2-dimensional orbifold S with only cone points,
and which is different from S?(p, q), p # q, is finitely covered by a smooth surface S.

For the convenience of the reader we recall the main ideas of the proof.

Proof. Every 2-dimensional orbifold with only cone points, and which is different
from S%(p,q), p # ¢, is isomorphic, as an orbifold, to the quotient of S2?, E? or
H? by some discrete group of isometries I We need to show that any finitely
generated, discrete group I' of isometries of S2?, E? or H? with compact quotient
space contains a torsion free subgroup of finite index. This is trivial for S? and
easy for E?. For H? it is a corollary of Selberg’s Lemma below.
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Let us denote by I'' C T' a torsion-free normal subgroup of finite index, the
orbifold quotient S = S?/T", E? /T or H?/T", respectively, is then a smooth surface.
O

Selberg’s Lemma. [Ra94, Chap. 7] Every finitely generated subgroup of GL,,(C)
contains a torsion-free normal subgroup of finite index. O

Remark 2.5. The fact that any finitely generated, discrete group of isometries of H?
admits a torsion free subgroup of finite index was conjectured by Fenchel and the
first proof was completed by Fox [Fo52]. From the modern point of view, however,
this result is a corollary of the Selberg’s Lemma

Proof of Theorem 2.3. Let M be an orientable Seifert manifold that does not admit
a spherical geometry. Let M — S be a Seifert fibration. Let us show that the base
orbifold S is not isomorphic to one of the orbifolds S?(p, q), with 1 < ¢ < p. Indeed,
the Euler number x of S%(p, q) is strictly positive, and the Euler number e of any
Seifert fibration over S?(p,q) is nonzero (see [Sc83], in particular, the discussion
before Lemma 3.7). Therefore, by Table 1, if S = S?(p, ¢), the manifold M would
admit a spherical geometry. This shows that S is not isomorphic to S?(p,q). It
follows from Theorem 2.4 that there is a finite ramified Galois covering S — S of
the orbifold .S by a smooth surface S. Moreover, we may assume S to be orientable,
taking the Galois closure of the orientation double covering if necessary. It is clear
that the fiber product f is locally trivial. (|

3. KLEIN SURFACES

In this section we recall the definition of a Klein surface, and we prove some
statements that we need for the proof of Theorem 1.1. Classically, a Klein surface
is defined as a topological surface endowed with an atlas whose transition functions
are either holomorphic or antiholomorphic [AGT71]. This seems to be a less suitable
point of view for what we need since, with that definition, a Klein surface is not a
locally ringed space. In particular, the definition of a line bundle over such a Klein
surface is cumbersome, and, we would not have at our disposal a first cohomology
group of the type H(S, O*) classifying all line bundles on a given Klein surface S.
Therefore, we will use another definition of a Klein surface, giving rise to a category
equivalent to the category of Klein surfaces of [AGT71].

Let D be the double open half plane C\R. On I one has the sheaf of holomorphic
functions H. The Galois group ¥ = Gal(C/R) acts naturally on D. Let o denote
complex conjugation in Y. We consider the following algebraic action of ¥ on the
sheaf ‘H over the action of ¥ on D. If U C D is open and f is a section of ‘H over U,
then we define o - f € H(c - U) by

(0 f)(z) = f(Z)
for all z € o-U. Let (H,O) be the quotient of (D, H) by the action of ¥ in the
category of locally ringed spaces. In particular, H = D/¥ is homeomorphic to the
open upper half plane—or lower half plane for that matter. Let p: D — H be the
quotient map. Then O is the sheaf (p,H)* of Y-invariant sections over H. The
sheaf O on H is a sheaf of local R-algebras. FEach stalk of O is noncanonically
isomorphic to the R-algebra C{z} of complex convergent power series in z.

A Klein surface is a locally ringed space (S,0), where O is a sheaf of local
R-algebras, such that S is compact connected and separated, and (S, Q) is locally
isomorphic to (H, ©). With the obvious definition of morphisms of Klein surfaces,
we have the category of Klein surfaces. Note that, here, we have only defined the
notion of a compact connected Klein surface without boundary. For a more general
definition of Klein surfaces, the reader may refer to [Hu02].
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Basic examples of Klein surfaces are the following. A Riemann surface is a Klein
surface. More generally, let S be a Riemann surface. A Klein action of a finite
group G on S is an action of G on S as a Klein surface. Let be given a Klein action
of G on S. Suppose that S contains only finitely many fixed points for the action
of G. Then the quotient S/G has a natural structure of a Klein surface.

The following statement is well known.

Theorem 3.1. Let S be a compact connected smooth surface. Then S admits the
structure of a Klein surface.

Proof. If S is orientable, then S admits the structure of a Riemann surface. In
particular, S admits the structure of a Klein surface. Therefore, we may assume
that S is not orientable. This means that S is a (g + 1)-fold connected sum of real
projective planes, for some natural integer g. Let C' be any real algebraic curve
of genus g without real points. Then, the set of complex points C(C) of C' is a
Riemann surface of genus g. Since C is real, the Galois group ¥ = Gal(C/R) acts
on C(C) by holomorphic or antiholomorphic automorphisms. Since C has no real
points, the action of ¥ on C(C) is fixed point-free, i.e., we are in the presence of a
Klein action of ¥ on S. Therefore, the quotient C(C)/3 has a natural structure of
a Klein surface. It is clear that C(C)/X is diffeomorphic to S as a smooth surface.
Hence, S admits the structure of a Klein surface. O

There is also a Klein version of the Riemann Existence Theorem. It can either be
proven as the Riemann Existence Theorem, or it can be proven using the Riemann
Existence Theorem.

Theorem 3.2. Let S be a Klein surface and let S be a compact connected smooth
surface. If f: S — S is a ramified covering of smooth surfaces, then there is
a unique structure of a Klein surface on S such that f is a morphism of Klein
surfaces. O

Let (S,0) be a Klein surface. A line bundle over S is an invertible sheaf of O-
modules. The group of isomorphism classes of line bundles is isomorphic to the
group H'(S,0%).

We will also need the notion of a smooth line bundle over S. Let C*> be the
sheaf of smooth complex valued functions on the open double half plane . The
Galois group ¥ = Gal(C/R) acts on C*°, in a similar way as its action on H. This
action extends the action of X2 on H. Denote by C the induced sheaf of Y-invariant
sections on H. We call it the sheaf of smooth functions on H. The sheaf C on H
contains O as a subsheaf. It is now clear that a Klein surface (S,0) carries an
induced sheaf C of smooth functions which contains the sheaf O as a subsheaf.

A smooth line bundle on a Klein surface (S, Q) is an invertible sheaf of C-modules.
Again, the group of isomorphism classes of smooth line bundles on S is isomorphic
to H'(S,C*). Of course, if L is a line bundle on S, then L ®¢ C is a smooth line
bundle on S. Let L’ be a smooth line bundle on S. We say that L’ admits the
structure of a Klein bundle if there is a line bundle L over S such that L®oC = L'.
The following statement shows that every smooth line bundle on a Klein surface
does admit the structure of a Klein bundle.

Theorem 3.3. Let (S,0) be a Klein surface and let C be the induced sheaf of
smooth functions on S. If L' is a smooth line bundle on S then there is a line
bundle L on S such that

LeoC=L.

Proof. We show that the natural map
H(S,0%) — H(S,C*)
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is surjective. As in [Hu02], we have exponential morphisms
exp: O — O* and exp:C — C*.

They are both surjective, and their kernels are isomorphic. Let K denote their
kernels. Then we have a morphism of short exact sequences

o - K - 0 — 0 — 0

l ! !
0O - K — C — C* — 0

It induces the following commutative diagram with exact rows.
H(S,0) — HY(S,0%) — H?*S,K) — H?(S,0)
HY(S,C) — Hl(é’,C*) — H2(g, K) — HQ(,lS’,C)
Now, C is a fine sheaf. Hence, H'(S,C) = 0, and the map
HY(S,C*) — H?*(S,K)
is injective. Moreover, H2(S,0) = 0 [Hu02]. Hence, the map
H'(S,0%) — H?*(S,K)
is surjective. It follows that the natural map
H'(S,0*) — H'(S,C*)

is surjective. O

4. EQUIVARIANT LINE BUNDLES ON RIEMANN SURFACES

Let S be a Riemann surface and let L be a smooth complex line bundle on S. Let
be given a Klein action of a finite group G on S. A smooth Klein action of G on L
is an action of G on L over the action of G on S such that g € G acts antilinearly
on L if and only if g acts antiholomorphically on S, for all g € G. If, moreover, L
is a holomorphic line bundle on S and G acts by holomorphic or antiholomorphic
automorphisms on the total space L, then the smooth Klein action is a Klein action
of G on L.

Theorem 4.1. Let S be a Riemann surface and let L be a smooth complex line
bundle over S. Let be given a faithful Klein action of a finite group G on S and a
smooth Klein action of G on L. Then, there is a structure of a holomorphic line
bundle on L such that the smooth Klein action of G is a Klein action of G on L.

Proof. Since the action of G on S is a Klein action, S contains finitely many fixed
points Py, ..., P,. Let Gy, ..., G, be the isotropy groups of P, ..., P,, respectively.
Since the action of G on S is a Klein action, each isotropy group G; is a finite cyclic
group of order p;, acting holomorphically on S. Let p; be the induced 1-dimensional
representation of GG; on the complex tangent space T;S of S at P;. Since p; is a
faithful representation and since the induced action of GG; on the fiber L; over P;
is complex linear, there is a unique integer ¢; € {0,...,p; — 1} such that the 1-
dimensional representation L; is isomorphic to pi'.

Let K be the holomorphic line bundle O(>" ¢; P;) on S. It is clear that K comes
along with a Klein action of G. Then, K ® L is a smooth complex line bundle
on S with a smooth Klein action of G such that the group G; acts trivially on the
fiber K; ® L; over P;. Now, it suffices to show that K ® L admits a structure of
a holomorphic complex line bundle such that the smooth action of G on K ® L
is a Klein action. Therefore, replacing L by K ® L, we may assume that ¢; = 0,
for : = 1,...,n. More precisely, we may assume that, for each i, the action of G;
on the fiber L; of L over P; is trivial.
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Let S’ be the quotient Klein surface S/G, and let p: S — S’ be the quotient map.
Since the action of G; on L; is trivial, there is a smooth line bundle L’ on S’ such
that p*L’ is G-equivariantly isomorphic to L. By Theorem 3.3, L’ has a structure
of a Klein bundle over S’. It follows that p*L’ has the structure of a holomorphic
line bundle such that the action of G on p*L’ is a Klein action. (]

5. UNIRULED ALGEBRAIC MODELS

Proof of Theorem 1.1. Let M be an orientable Seifert manifold. We show that there
is a uniruled real algebraic variety X such that M is diffeomorphic to a connected
component of X(R). That statement is known to be true if M admits a spherical
geometry [Ko99, Ex. 10.4]. Therefore, we may assume that M does not admit a
spherical geometry.
Choose a Seifert fibration f: M — S of M. By Theorem 2.3, there is a ramified
Galois covering
p:S— S
such that the Seifert fibration
Fidt— 8,
obtained from f by base change, is a locally trivial circle fibration. Moreover, we
may assume S and M to be oriented. Let G be the Galois group of S over S.
Then G acts naturally on M and f is G-equivariant. The quotient of f: M — S
by G is isomorphic to f: M — S as Seifert fibrations. This means that there is a
quotient map
p: M— M
for the action of G on M such that the diagram
M —2 M

lf lf

P . g
commutes.

Since S is a compact connected surface without boundary, S admits a struc-
ture of a Klein surface by Theorem 3.1. By the Riemann Existence Theorem for
Klein surfaces, there is a unique structure of a Klein surface on S such that the
map p: S — Sisa morphism of Klein surfaces. In particular, the group G acts
on S by automorphisms of S. In fact, since S is an oriented Klein surface without
boundary, S is a Riemann surface. The action of G on the Riemann surface S is
by holomorphic or antiholomorphic automorphisms, i.e., we are in the presence of
a so-called Klein action of G on the Riemann surface S.

Choose a smooth relative Riemannian metric x on M/S. Since @ is finite, one
may assume that p is G-equivariant. Since f is locally trivial, and since M and S are
oriented, there is a relative orientation of M / S. Hence, the structure group of the
locally trivial circle bundle M/S is SO(2). Since SO(2) = SU(1), there is a smooth
complex line bundle L on S, that comes along with a hermitian metric, whose unit
circle bundle is M. We also have an action of G on L over the action of G on S
that extends the action of G on M. The action of G on L is a smooth Klein action
since G acts by orientation preserving automorphisms on M. By Theorem 4.1,
there is a structure of a homolomorphic line bundle on L such that the action of G
is a Klein action. By the GAGA-principle, S is a complex algebraic curve and L is a
complex algebraic line bundle on S. Moreover, the action of G on L is by algebraic
or antialgebraic automorphisms. The restriction of scalars R(g) is a real algebraic
surface whose set of real points is diffeomorphic to S [Hu92, Hu00]. The restriction
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of scalars R(L) is a real algebraic vector bundle over R(S) of rank 2, whose set of
real points is diffeomorphic to L. The action of G on L induces an algebraic action
of G on R(L).

Let U be an affine Zariski open subset of R(S) containing the real points of R(S)
and which is G-equivariant. Since R(L) is a real algebraic vector bundle over an
affine real algebraic variety, there is a vector bundle V' over U such that the direct
sum

Ve (R(L)w)

is trivial. Since V @ (R(L)|yy) is trivial, there is a real algebraic metric A on the

restriction of R(L) to U. Since G is finite, we may assume that X is G-equivariant.
Let T be the unit circle bundle A = 1 in R(f,)w. Then T(R) is G-equivariantly dif-
feomorphic to M. In particular, the quotient T(R)/G is diffeomorphic to M. Let X
be a smooth projective model of T/G. Since G acts fixed point-freely on T(R), the
quotient T(R)/G is smooth and is, therefore, a connected component of X (R).

The real algebraic variety X is uniruled since a smooth projective model of T is
ruled. U
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