
ON A QUESTION OF SUPPORTS
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Abstract. We give a sufficient condition in order that n closed connected subsets in the n-
dimensional real projective space admit a common multitangent hyperplane.

1. Introduction

The motivation for the present note is a step in the proof of the following statements [JPM04,
Corollary 5.5 and Theorem 6.1] or [Man17, Man20, §5.3]:

Theorem 1. Let X be a real del Pezzo surface of degree 2 such that X(R) is homeomorphic
to the disjoint union of 4 spheres. Then a smooth map f : X(R) → S2 can be approximated by
regular maps if and only if its topological degree is even.

Theorem 2. Let X be a real del Pezzo surface of degree 1 such that X(R) is homeomorphic to
the disjoint union of 4 spheres and a projective plane. Then every smooth map f : X(R) → S2
can be approximated by regular maps.

In the statements above S2 ⊂ R3 is the real locus of the quadric x21+x22+x23 = 1 and a regular
map is only regular on real algebraic loci, see [Man17, Man20, Definitions 1.2.54 and 1.3.4] for
details.

One key point in the proof of the former statements was the existence of a bitangent line to
any pair of connected components of a plane quartic and the existence of a tritangent conic to
any triple of connected components of certain space sextic. To be precise we need the following:

Proposition 3. Let n = 2, 3 and X ⊂ Pn be a smooth real algebraic curve of degree 2n whose
real locus X(R) has at least n+ 1 connected components. If n = 3, assume furthermore that X
lies on a singular quadric.

Choose n connected components Ω1, . . . ,Ωn of X(R). Then there exists a hyperplane of Pn(R)
which is tangent to Ωi for all 1 ⩽ i ⩽ n.

Given a pair of embedded circles in the plane, it seems rather clear that a line tangent to each
of them exists provided that the circles are unnested. Anyway, finding a rigorous proof of this
is not straightforward and we did not find proper reference in the literature. It’s less obvious
to find a tritangent conic to three embedded circles in a cone. More generally, we can wonder
how to generalize the obvious necessary condition to be unnested in a more general setting and,
even better we can seek for a necessary and sufficient condition. We find a sufficient (but still
not necessary) condition in a rather general setting. This is the main result of this short note
(Theorem 10) from which we derive easily Proposition 3 as a particular case. Sections 2 and 3
are devoted to the proof of this theorem. In Section 3, we prove Proposition 3 and propose a
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conjecture with a sufficient condition weaker than Theorem 10. We refer to the cited references
for the proofs of Theorems 1 and 2.

2. Some reminders

We start with some well-known definitions from convex geometry.

Definition 4 (Convex hull). Let E be an Euclidean space of dimension n. A subset A ⊂ E is
called convex in E if and only if for all x, y ∈ A and every t ∈ [0, 1] we have

tx+ (1− t)y ∈ A,

i.e. the line segment joining x and y is contained in A. The convex hull of a subset A ⊂ E is the
smallest (in the inclusion sense) convex subset of E containing A.

Definition 5 (Extremal point). Let E be an Euclidean space of dimension n and A ⊂ E be a
subset. We say that a point x ∈ A is an extremal point of A if the convex hull of A \ {x} is still
convex.

Theorem 6 (Krein-Milman). Every non-empty compact convex subset of a Euclidean space
admits an extremal point.

Proof. See for instance [Bou53, Chap. II.4 Th. 1]. □

Corollary 7. Every non-empty compact subset of a euclidean space admits an extremal point.

Proof. Let A be a non-empty compact subset of a Euclidean space. Let Ac be the convex hull
of A. By Krein-Milman, there exists an extremal point x ∈ Ac. If x /∈ A, then the convex set
Ac \ {x} contains A and it is a strict subset of Ac, which contradicts Ac being the convex hull of
A. Therefore, x ∈ A. □

3. n-supporting hyperplanes

Definition 8 (Supporting hyperplane). Let H be a hyperplane of a Euclidean space E given
by the equation l(x) = a, where l is a linear form and a ∈ R. We denote by H+ and H− the
half-spaces

H+ := {x ∈ E | l(x) ≥ a} H− := {x ∈ E | l(x) ≤ a}.
Let A ⊂ E be a subset of E and x ∈ A. We say that H is a supporting hyperplane of A in x (or
that H leans on A in x) if and only if the following hold:

(1) x ∈ A ∩H
(2) A ⊂ H+ or A ⊂ H−.

If A is a subset of Pn(R) and x ∈ A, we say that H leans on A in x if and only if there exists
an affine chart E of Pn(R) such that x ∈ E and H leans on A in x inside E.

Definition 9 (r-supporting hyperplane). Let A1, . . . , Ar be subsets of Pn(R). We say that H is
a hyperplane of r-support of A1, . . . , Ar if there exist points x1 ∈ A1, x2 ∈ A2, . . . , xr ∈ Ar such
that H is a supporting hyperplane of Ai in xi for all 1 ≤ i ≤ r.

Theorem 10. Let n ∈ N and let A1, . . . , An ⊂ Pn(R) be closed connected subsets of Pn(R).
Suppose that there exists a point p ∈ Pn(R) such that no hyperplane passing through p meets all
the Ai. Then there exists an n-supporting hyperplane of A1, . . . , An.
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Proof. We write P = Pn(R) and P∗ = (Pn(R))∗ for the dual projective space. To each hyperplane
H ⊂ P given by an equation

∑
λkxk = 0, we associate the point H∗ := (λ0 : λ1 : · · · : λn) in P∗.

To each point q ∈ P we associate the dual hyperplane q∗ := {H∗ | q ∈ H} in P∗.
The hypothesis that there exists a point p ∈ P such that no hyperplane passing through p

meets all the Ai implies that the Ai are pairwise disjoint. Let H be the set of hyperplanes in
P that meet all the Ai. Since there is a hyperplane through n points in P, we see that H is
non-empty. Let H∗ be the image of H in the dual space P∗ via the above correspondance. Since
p∗ corresponds to the set of hyperplanes in P passing through p, the set H∗ is contained in the
complement of the hyperplane p∗ in P∗. Let Up be the open affine complement of p∗ in P∗.

Lemma 11. The set H∗ is compact in Up.

Proof. For each 1 ≤ i ≤ n, let Hi be the set of hyperplanes that meet Ai. We have H∗ =
∩n
i=1(Hi)

∗. The set Ai being closed implies that (Hi)
∗ is closed. We start by showing that the

complement of H∗ in Up is open.
Indeed, the natural map Rn+1 \ {0} → P, (x0, x1, . . . , xn) 7→ [x0 : x1 : · · · : xn] induces a

continuous double cover Sn → P. The inverse image Bi of Ai through this map is a closed subset
in the unit sphere of Rn+1. If H is an hyperplane in P that does not meet Ai, then its preimage
H ′ is an hyperplane in Rn+1 which does not meet Bi. The intersection H ′∩Sn is the unit sphere
of dimension n− 1 in H ′ and in particular is closed in Sn.

If d > 0 is the distance between the two compacts Bi and H ′, we can take Ui the subset of P∗

formed by the duals of hyperplanes whose traces on Sn are at distance less than 1
2 of Bi. Then

Ui \ {p} is open in Up.
This shows that the complement of (Hi)

∗ in P∗ is open. It follows that H∗ is closed in P∗.
Moreover, the set H∗ is bounded in Up because it is closed and H∗ ∩ p∗ = ∅. Hence H∗ is
compact in Up. □

By Corollary 7 of Krein-Milman and Lemma 11, the set H∗ admits an extremal point H∗. Let
us show that H is an n-supporting hyperplane of A1, . . . , An.

We proceed by contradiction and without loss of generality, we can suppose that H does not
support A1. Since H ∈ H, there exists for each i = 2, . . . , n a point yi ∈ Ai ∩H. Let P1 be a
hyperplane passing through p and y2, . . . , yn and recall that P1 does not meet A1 by hypothesis.
Since H does not lean on A1, it does not lean on A1 in the affine chart E = P \ P1. We place
ourselves inside E. The hyperplane H ∩ E defines two half-spaces H+ and H− in E and there
exists x1 ∈ A1 ∩H+ \H and x2 ∈ A1 ∩H− \H.

Let S be the closed segment [x1, x2] in E. It intersects H. Let us show that

(1) any hyperplane in E that meets S also meets A1.

Let P be a hyperplane of E meeting S. If it meets S in x1 or x2, we are finished. Suppose that
P ∩S ⊂]x1, x2[ and A1 ∩P = ∅. Let O+ = P+ \P and O− = P− \P . The sets O+ and O− are
open subsets of E and A1 ⊂ O+∪O−. The subspace A1 being connected in E, we have A1 ⊂ O+

or A1 ⊂ O−. This is impossible because x1 ∈ O+ and x2 ∈ O− (or the other way around). this
ends the proof of (1).

Let y ∈ S. Since y2, . . . , yn are pairwise distinct and are not contained in E (remember that
yi ∈ Ai ∩P1 for i ∈ {2, . . . , n} by definition of P1) and S ⊂ E, there exists a hyperplane Hy ⊂ P
through y, y2, . . . , yn. The hyperplane Hy is contained in H because it meets A1 by property (1).

The points y2, . . . , yn define a line D in P∗ and we have (Hy)
∗ ∈ D. Therefore, the set of

(Hy)
∗, y ∈ S, is a closed segment S∗. It is contained in Up, because p /∈ Hy, and S∗ is contained
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in H∗ as a consequence of (1). Let y0 = S ∩ H, where H∗ is the extremal point of H∗ from
above. Then H∗ = (Hy0)

∗ is a point in the interior of S∗. It is therefore contained in the convex
hull of H∗ and cannot be an extremal point, because we lose convexity if we take it away. Hence
the contradiction. □

4. Conclusion

Proof of Proposition 3. First recall that any hyperplane meets any connected component of X(R)
in an even number of intersection points, counted with multiplicity, see e.g. [Man17, Man20,
Lemma 2.7.8]. Let p be a point of X(R) \∪Ωi. By definition of the degree, a hyperplane passing
through p cannot meet n other components of X(R) because X has degree 2n in Pn.

The conclusion follows from Theorem 10. □

Theorem 10 is enough to prove Proposition 3, but it’s easy to see that the existence of a point
p such that no hyperplane passing through p meets all the Ai is not necessary. Take for example
two intersecting circles in the plane: as in Theorem 10, these are two subsets in the 2-dimensional
plane, but by any point p, there is a line meeting the two circles. Anyway, there is clearly a line
tangent to them.

We propose the following conjecture using a weaker sufficient condition (which can be applied
to the former example):

Conjecture 12. Let {Ai}1≤i≤n be closed connected subsets contained in an affine subset of
Pn(R). Let Ci be the union of all (n− 2)-dimensional linear subspaces P ⊂ Pn(R) such that for
all j ̸= i, 1 ≤ j ≤ n, P meets the convex hull of Aj. Assume that for all 1 ≤ i ≤ n, Ai is not
included in interior of Ci, then there exists an n-supporting hyperplane of A1, . . . , An.

Remark that this new sufficient condition is still unnecessary: consider three disjoint spheres
A1, A2 and A3 with the same radius and whose center are on the same line. If A1 is not the
sphere in the middle it is in the interior of the union of all lines meeting A2 and A3.

We can see that the sufficient condition of the conjecture is weaker than the one of Theorem 10,
by contraposition. If the condition of the conjecture is not satisfied, then there exists i such that
Ai is included in the interior of the union of the (n − 2)-dimensional linear subspaces meeting
each convex hull of Aj , j ̸= i. Then there exists a (n−2)-dimensional linear subspace P meeting
each convex hull of Ai. Let p ∈ P, then the hyperplane generated by p and P meet each convex
hull of Ai, hence each Ai as they are connected, which contradicts the condition of the theorem.

We could also ask about the number of multi-tangent planes.

Proposition 13. Under the conditions of Theorem 10, if each Ai contains a non empty open
subset, then there is at least n+ 1 distinct a n-supporting hyperplanes of A1, . . . , An.

Proof. If each Ai contains a non empty open subset, so does H∗. This implies that there is at
least n+ 1 distinct extremal points for H∗. Indeed, if H∗ as less than n+ 1 extremal points, it
is the convex-hull of its extremal points and therefore it is an hyperplane of dimension at most
n− 1 hence does not contain any open set. Then, the proof of theorem 10 establishes that each
extremal points for H∗ corresponds to a distinct n-supporting hyperplanes. □

However, it seems that the conditions of this theorem implies that we have 2n extremal points
(in dimension 2: 4 bitangent lines, 8 in dimension 3, etc.) By going either below or above each
Ai. This suggest that H∗ ressemble to a cube. Moreover, all the examples we studied lead us to
propose the following conjecture.
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Conjecture 14. The main condition of Theorem 10 is sufficient and necessary to have 2n multi-
tangent planes when the Ai are not thin (i.e. contain an open subset).
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