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The Teichmüller space of a surface naturally embeds as a connected
component in the moduli space of representations from the fundamental
group of the surface into the group of isometries of the hyperbolic plane.
We present invariants that distinguish all the connected components of
the space of representations. This allows us to compute the number of
connected components of these spaces both in the orientable and in the
non-orientable case.

1. Introduction

Let G be a Lie group and S be a closed surface (orientable or not) with Euler

characteristic χ(S) < 0. Its fundamental group is denoted by π = π1(S)

with respect to a base point. The representation space Hom(π,G) is the set

of all homomorphisms φ : π → G. The group G acts by conjugation on the

representation space, and the quotient of Hom(π,G) by this action is called

the moduli space of representations

Hom(π1(S), G)/G = X (S,G)

Moduli spaces of representations appear naturally in many contexts,

depending on the group G. For example we can identify the moduli space

as the set of isomorphism classes of flat G-bundles on the surface. These

spaces admit a natural action of the mapping class group exhibiting very

interesting dynamics ([8, 14]).

When G is non-compact, the moduli space X (S,G) contains contractible

components which correspond to locally homogeneous geometric structures

on the surface (see [9] for a survey on such structures). In particular, when
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G = Isom(H2) is the group of isometries of the hyperbolic plane, the related

geometric structures on the surface will be hyperbolic. Other geometric

structures can be recovered from other groups G such as complex projective

structures when G = PSL(2,C)(see [5]), or convex projective structures

when G = PSL(3,R) (see [4]).

The Teichmüller space T (S) is equivalent by the uniformization theo-

rem to the set of equivalence classes of complete hyperbolic structures on S.

There is an isomorphism between Isom(H2) and the Lie group PGL(2,R)

through the identification of H2 with the upper-half plane. When the surface

S is given a hyperbolic structure, the holonomy map gives a representation

of π into PGL(2,R). This representation is only well defined up to conjuga-

tion by an element of PGL(2,R) (corresponding to a choice of a base point

for π1(S)). Hence we have a well defined map

hol : T (S) −→ X (S,PGL(2,R)).

This map is a proper embedding, and its image is exactly the set of

PGL(2,R)-equivalence classes of discrete and faithful representations. The

subset of such representations is well-understood inside the moduli space

as shown in the following theorem (see [7]):

Theorem 1.1: Let S be a closed surface (orientable or not). The set of

PGL(2,R)-equivalence classes of discrete and faithful representations is a

connected component of the moduli space X (S,PGL(2,R)).

Obviously, representation spaces and moduli spaces contain more rep-

resentations than the discrete and faithful ones, so these spaces have more

than one connected component. A natural question is to find some topo-

logical invariants that allow one to distinguish the connected components

and hence compute the number of components.

For representation φ : π1(S) → PGL(2,R), a classical invariant is the

so-called Euler class that is associated to the circle bundle over the surface

defined by φ. This invariant can be defined in several ways, and the main

objective of this note is to give a simple construction valid both in the

orientable and the non-orientable case. And we give some insight into how

this invariant distinguishes the connected components of the representation

space.

In the classical case of orientable surfaces, the holonomy of a hyperbolic

structure lies in the group of orientation-preserving isometries Isom+(H2),

which is identified with the group PSL(2,R).
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In Section 2, we will give some basic properties of the group PSL(2,R)

and its universal cover. In particular, we will study the behavior of the

map corresponding to the relation of the fundamental group of the surface.

This is the key ingredient to define a topological invariant using a simple

algorithm.

In Section 3, we first define this invariant for closed orientable surfaces,

and then generalize it to orientable surfaces with boundary. This invariant

is all that we need to distinguish the connected components of the repre-

sentation space Hom(π1(Σ),PSL(2,R)), and give a characterization for the

discrete and faithful representations. In [7], Goldman proves the following :

Theorem 1.2: Let Σ be a closed orientable surface with χ(Σ) < 0. The

representation space Hom(π,PSL(2,R)) has 2|χ(Σ)| + 1 connected compo-

nents, indexed by the Euler class χ(Σ) ≤ e ≤ −χ(Σ).

Moreover, a representation is discrete and faithful if and only if it is in

the maximal components satisfying |e| = |χ(Σ)|.

We give only some elements of the proof of this result and refer to Gold-

man’s original paper for a complete proof. This question has also been

generalized and solved for a variety of other Lie groups, for example when

G = PSL(n,R) (see [10]), G = Sp(2n,R) (see [2, 6]), or when the symmetric

space associated to G is Hermitian (see [17]).

In Section 4, we extend the construction of the topological invariant

defined in Section 3 to the case of a non-orientable surface N . In this case,

the invariant is only well defined in Z/2Z and the representation space

Hom(π1(N),PSL(2,R)) has only 2 connected components. These compo-

nents do not contain any holonomy representations for hyperbolic structures

(see [15]).

In this case, it is natural to consider not only orientation-preserving

isometries, but also orientation reversing isometries. Hence, the interest-

ing representation space is Hom(π,PGL(2,R)). For representation into

PGL(2,R), we have to define another invariant that takes values in (Z/2Z)k,

and then understand the set of representations for each value of this invari-

ant. The main result of [16] is the following :

Theorem 1.3: Let N be a closed non-orientable surface with χ(N) < 0,

then the representation space Hom(π,PGL(2,R)) has 23−χ(n) − 2χ(N)− 1

connected components indexed by two obstruction classes.
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2. The group PSL(2,R)

The fundamental group of a surface is a finitely presented group with p

generators and q relations. So for any Lie group G the representation space

Hom(π,G) can be identified with the subset of Gp defined by q equations

in words in G, corresponding to the q relations. So to understand the rep-

resentation space, we study the properties of G and of the map

Gp −→ Gq

(g1, . . . , gp) 7−→ (R1(g1, . . . , gp), . . . , Rq(g1, . . . , gp))

where the Ri are the q relations, each in p G-valued unknowns.

In the following section, we shall note Ĝ = SL(2,R) and G =

PSL(2,R) = Ĝ/{±I}. We see that Ĝ is a double cover of G.

2.1. Universal cover

The standard polar decomposition of SL(2,R) allows one to decompose any

A ∈ Ĝ in a unique way into A = R · P , with R ∈ SO(2) and P ∈ Sym, the

group of symmetric positive definite matrices of determinant 1. The group

Sym being contractible, we have a natural deformation retraction of G onto

the circle SO(2) ' S1 ' R/Z.

So, the fundamental group of G is π1(G) ' π1(S1) ' Z. Let G̃ be the

universal cover of G and p : G̃ → G, the covering map. The center of G̃,

Z(G̃) = ker(p) is isomorphic to Z and G ' G̃/Z. We denote by z a generator

of Z(G̃) so that Z(G̃) = 〈z〉.
Two lifts of the same element will differ by an element of Z(G̃). In other

words, if A,B ∈ G̃ satisfy p(A) = p(B), then there exists n ∈ Z such that

A = znB.

The group Ĝ is a connected 2-fold cover of G, and thus G̃ is also the

universal cover of Ĝ. We have a canonical identification G = G̃/〈z2〉.

2.2. Classification of elements

The orientation-preserving isometries can be classified through their num-

ber of fixed points on the boundary. An element f in Isom+(H)2 \ {Id},
is said to be elliptic (resp. parabolic and hyperbolic) when f has no fixed

points on the boundary ∂H2 (resp. one and two fixed points)

This can be interpreted in terms of the trace of corresponding elements

of PSL(2,R). Notice that only the absolute value of the trace is well defined
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in G. An element A in G \ {I}, is elliptic (resp. parabolic and hyperbolic)

when | tr(A)| < 2 (resp. when | tr(A)| = 2 or | tr(A)| > 2.

Lifts of elliptic (resp. parabolic, hyperbolic) elements in the universal

cover G̃ will also be called elliptic (resp. parabolic, hyperbolic) and we

denote by E , P and H the corresponding subsets of G̃. These subsets de-

compose G̃ into infinitely many disjoint subsets, indexed by integers Z cor-

responding to different copies of G inside G̃, according to Figure 1.

Fig. 1. Domains of G̃

We can distinguish these regions using a simple invariant of A ∈ G̃. The

action of G on H2 extends to an action on the circle at infinity ∂H2 ' S1.

This action lifts to an action of G̃ on S̃1 ' R. Hence for any element in G̃

we can define

mA = min{A · x− x |x ∈ R},
mA = max{A · x− x |x ∈ R}.

Using these invariants, we can give the following characterizations [11]:

A ∈ Ei ⇐⇒ [mA,mA] ⊂]i, i+ 1[,

A ∈ Hi ⇐⇒ i ∈ ]mA,mA[,

A ∈ P+
i ⇐⇒ mA = i < mA,

A ∈ P−i ⇐⇒ mA < i = mA.

There are some direct consequences of these formulas, that are impor-

tant to understand the case of surfaces with Euler characteristic −1. For

example, we have the following proposition (see [7]):

Proposition 2.1: If A,B ∈ H0 and AB ∈ Hi then i ∈ {−1, 0, 1}.
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We will see in Section 3 how this will be useful to understand the case of

the pair-of-pants.

2.3. The commutator map

The fundamental group of an orientable surface of genus g is given by :

π1(Σg) = 〈X1, Y1, . . . , Xg, Yg |
g∏
1

[Xi, Yi]〉.

Let A1, B1, . . . , Ag, Bg be elements of G and choose arbitrary lifts

Ã1, . . . , B̃g in G̃. The element defined by :

R̃g(A1, . . . , Bg) = [Ã1, B̃1] · · · [Ãg, B̃g],

is independent of the chosen lifts. Indeed two different lifts differ by a central

element of Z(G̃) which will cancel out in R̃. For example, assume that we

have two different lifts Ã1

′
= gÃ1 where g ∈ Z(G̃) then

R̃g
′

= [Ã1

′
, B̃1] · · · [Ãg, B̃g] = (gÃ1) · B̃1 · (Ã1

−1
g−1) · B̃1

−1
· · · [Ãg, B̃g]

= gg−1 · [Ã1, B̃1] · · · [Ãg, B̃g] = R̃g(A1, . . . , Bg).

So we can define the map

R̃g : G2g −→ G̃. (2.1)

When g = 1, the image of the commutator map R̃1 can be explicitely

described using the following proposition (see [7]).

Proposition 2.2: If R̃1(A,B) is in Hi then i ∈ {−1, 0, 1}.

We will see in Section 3 how this will be useful to understand the case of

the one-holed torus.

2.4. The square map

The fundamental group of a non-orientable surface of genus k is given by

π1(Nk) =
〈
X1, . . . , Xk | X2

1 · · ·X2
k

〉
.

Let A1, . . . , Ak be elements of G and choose arbitrary lifts Ã1, . . . , Ãk
in G̃. The element defined by

Qk(A1, . . . , Ak) =
(
Ã1

)2
· · ·
(
Ãk

)2
,
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is not independent of the chosen lifts. For example, assume that we have

two different lifts Ã1

′
= gÃ1 where g ∈ Z(G̃) then

Q′k =
(
Ã1

′)2
· · ·
(
Ãk

)2
= g2

(
Ã1

)2
· · ·
(
Ãk

)2
= g2Qk.

However, we see that this gives a well defined element of G̃/ < z2 >= Ĝ,

hence this defines a continuous map :

Qk : G −→ Ĝ. (2.2)

Using this, we can define the corresponding lifted square map Q̃k : G̃k −→
G̃.

When k = 1, the image of Q1 is easily computed (see [15]) to be :

Im(Q1) = J = {K ∈ SL(2,R)| tr(K) > −2} ∪ {I}.

Hence, the image of the lifted square map is :

Im(Q̃1) = J = G̃ \

(⋃
k∈Z
H2k+1 ∪ P2k+1

)
. (2.3)

We will see in Section 4 how this will be useful to understand the case of

one-holed projective plane.

3. Components for orientable surfaces

In this section, we give a simple algorithm to compute the Euler class of a

representation φ : π → G when the surface is orientable and G = PSL(2,R).

3.1. A topological invariant

Let π = π1(Σg) be the fundamental group of the closed orientable surface

of genus g and let φ be an element of Hom(π,G). The relation of the

fundamental group implies that the element R̃(φ(X1), . . . , φ(Yg)) defined

by (2.3) is an element ker(p) = Z, i.e. there exists n ∈ Z such that

R̃(φ(X1), . . . , φ(Yg)) = zn.

We define o2(φ) = n ∈ Z and call this number the second obstruction class

of the representation φ. (We shall see the first obstruction class in the last

section). This defines a map :

o2 : Hom(π,PSL(2,R)) −→ Z.

This map is continuous and takes values in a discrete set, so o2 is constant

on connected components of the representation space.
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We can relate this invariant with other classical invariants, such as the

characteristic class w2(Eφ) of the flat G-bundle Eφ → Σ, the Euler class

e(φ) of the associated circle bundle over Σ, or also the Toledo invariant T (φ)

of the representation. All these invariants coincide when G = PSL(2,R).

However, in higher dimension they give different generalizations. For precise

definitions and relations between these invariants, we refer to [3].

3.2. Milnor-Wood inequality and a result of Goldman

A circle bundle over Σ is simply a fiber bundle E → Σ whose fibers are

isomorphic to S1. A representation ρ : π(S) → PSL(2,R) defines a circle

bundle over Σ through the embedding G ↪→ Homeo(S1) defined by the

action of G on ∂H2.

Consider the free product P = Σ̃ × S1 and the action of π1(Σ) on P

given by :

π1(Σ)× (Σ̃× S1) −→ Σ̃× S1

γ · (x, θ) 7−→ (γ · x, ρ(γ) · θ)

where the action of π1(Σ) on Σ̃ is by deck transformations. The quotient

of P by this action defines a circle bundle over the surface S :

Eρ = (Σ̃× S1)/π1(Σ),

since the action on the first factor is free. The Euler class of the representa-

tion, denoted e(ρ) ∈ Z is defined to be the evaluation of the characteristic

class e(Eρ) of the circle bundle on the fundamental cycle [Σ]. We have

e(ρ) = o2(ρ).

Euler classes of circles bundles were studied by Milnor and Wood [12, 13]

who established the so-called Milnor-Wood inequality, stating that the Eu-

ler class of an orientable circle bundle E over Σ is bounded by the Euler

characteristic of S, namely

|e(E)| ≤ |χ(Σ)|.

Hence the Euler class e(ρ) of a representation can only take

2|χ(Σ)| + 1 values, corresponding to the integers contained in the inter-

val [χ(Σ),−χ(Σ)]. The Theorem 1.2 establishes the converse result and we

can reformulate it as :

Theorem 3.1: Let Σ be an orientable closed surface with χ(Σ) < 0, for

all n ∈ Z, if |n| ≤ |χ(Σ)| then e−1(n) is non-empty and connected.
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The proof of the theorem goes by induction on smaller surfaces that are

necessarily surfaces with boundary. So next, we define the invariant in this

case and generalize Theorem 1.2 for surfaces with boundary.

3.3. Surfaces with boundary

For surfaces with boundary, we need to be a little more precise in the

definition of the obstruction class. Let Σ = Σ(g,m), the genus g surface

with m ≥ 1 boundary components denoted ∂1Σ, . . . , ∂mΣ. Its fundamental

group has the following presentation :

π1(Σ) =

〈
X1, Y1, . . . , Xg, Yg, C1, . . . , Cm

∣∣ g∏
1

[Xi, Yi] · C1 · · ·Cm

〉
.

where, Ci corresponds to the boundary circle ∂iΣ. It is clear that π1(Σ) is

isomorphic to the free group FN in N = 2g+m− 1 generators, because we

can express one of the Ci as a word in the other generators.

In this case, the representation space Hom(FN , G) is simply the product

group GN , which is naturally connected as G is itself connected. Indeed

when one tries to apply Milnor’s algorithm to the presentation above, we

get that the element of π1(G) obtained, depends on the choice of the lifts of

the image of the m generators C1, . . . , Cm. So in order to have a non-trivial

topological invariant, we need to be able to choose canonical lifts for the

image of these generators.

An element g in G will have a canonical lift in G̃ if it has a fixed point

on ∂H ' S1. The canonical lift, denoted g̃0, is the unique lift of g in G̃

that also has fixed points on S̃1 ' R. By the classification of hyperbolic

isometries, an isometry has a fixed point if and only if it is not elliptic. The

canonical lift of a non-elliptic element will belong to {I} ∪ H0 ∪ P0.

Now, we can define an invariant on the set

W (Σ) = {φ ∈ Hom(π1(Σ), G) | ∀Ci ⊂ ∂Σ, φ(Ci) is not elliptic} .

Let φ be an element of W (Σ). Choose arbitrary lifts φ̃(A1), . . . , φ̃(Bg) of

the images of the generators into G̃. The relation of the fundamental group

implies that the element

R̃ =
[
φ̃(X1), φ̃(Y1)

]
. . .
[
φ̃(Xg), φ̃(Yg)

]
· φ̃(C1)

0

· · · φ̃(Cm)
0

,

is a lift of the identity element of G into G̃ that is independent of the chosen

lifts. So there exists n ∈ Z such that R̃ = zn. We define o2(φ) = n and call



January 8, 2012 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in Palesi*-*Connected*components*(v3)

10 Frédéric Palesi

it the relative second obstruction class of the representation φ. This defines

the map o2 : W (Σ) −→ Z
The following theorem is the generalization of Theorem 1.2

Theorem 3.2: Let S be an orientable surface with χ(S) < 0. For all n ∈ Z,

if |n| ≤ |χ(S)| then o−12 (n) is non-empty and connected.

As a consequence, the space W (Σ) has 2|χ(Σ)| + 1 connected compo-

nents. We can see that Theorem 1.2 is just a particular case of Theorem

3.2, when Σ has no boundaries.

3.4. Summary of the proof

The proof of this theorem goes by induction. First, we prove the theorem

for surface of Euler characteristic −1, namely the pair-of-pants Σ(0,3) and

the one-holed torus Σ(1,1). This is mostly a consequence of Propositions 2.1

and 2.2, that can describe the set W (Σ).

Next, we decompose any orientable surface into surfaces of characteristic

−1. We want the graph dual to this decomposition to be a tree so that

the induction process works. For the surface Σ(g,m), such a decomposition

consists of g one-holed tori and g + m − 2 pair-of-pants. One can find a

continuous path from any representation to a representation such that the

curves defining the decomposition are sent to hyperbolic elements. So it

is possible to compute the relative Euler class on each subsurface of the

decomposition. Then, using the result on Σ(0,3) and Σ(1,1), one can show

that if two representations have their relative Euler class coincide on each

subsurface, then they are in the same connected component.

Then it suffices to show that if two representations have the same Euler

class, we can find paths to representations such that the relative Euler

classes coincide on each subsurface. First, one can prove this fact for each

surface obtained by gluing two surfaces of Euler characteristic −1, namely

Σ2,Σ(1,2) and Σ(0,4). Using this, one can prove the result on a general

surface by induction along the tree corresponding to the dual graph of the

decomposition (see [7] for a complete proof of these arguments).

4. Non-orientable surfaces

In this section, we extend the definition of the obstruction invariant to

the representation of the fundamental group of a non-orientable surface

into PSL(2,R), and then in PGL(2,R). We denote G+ = PSL(2,R) and
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G± = PGL(2,R). So the group G± is the disjoint union G+ t G−, where

G− is the set of orientation-reversing isometries of H2.

4.1. Non-orientable surface group

Recall that a closed non-orientable surface Nk is homeomorphic to the

connected sum of k projective planes. The number k is called the non-

orientable genus of the surface and the Euler characteristic is χ(Nk) = 2−k.

The fundamental group is given by the following presentation :

π1(Nk) = 〈A1, . . . , Ak|A2
1 · · ·A2

k〉.

In this presentation, the generators are represented by one-sided curves,

which are curves whose neighborhoods are Mobiüs strips. In particular,

when Nk is given an hyperbolic structure on Nk , the holonomy of a one-

sided curve is sent to an orientation-reversing isometry.

4.2. Second obstruction class

Let us first understand the connected components of Hom(π,G+), where

π = π1(Nk). Let φ ∈ Hom(π,G+). The relation defining the fundamental

group implies that the element Qk(A1, . . . , Ak) defined in Section 2.2 is a

lift of the identity in G+ to Ĝ. This defines a map into the group Z(Ĝ) =

{±I} ' Z/2Z. So we have the following map :

o2 : Hom(π,G+)→ Z/2Z.

As the map Qk is continuous, the map o2 is also continuous and takes

values in a discrete set, so we can infer that o2 is constant on connected

components of the representation space.

We can also generalize the construction to non-orientable surfaces with

boundaries, denoted N(k,m). As in the orientable case, we have to impose

the condition that boundary components are sent to non-elliptic elements,

so we define

W (N(k,m)) =
{
φ ∈ Hom(π,G+) | ∀C ∈ ∂N(k,m), φ(C) is not elliptic

}
.

The map o2 : W (N(k,m))→ Z/2Z is defined as in the case of orientable

surfaces. The characteristic class o2 is sufficient to distinguish the connected

components of W (N), and we can state the following :

Theorem 4.1: Let N(k,m) be a non-orientable surface with χ(N(k,m)) < 0.

For [n] ∈ Z/2Z, the set o−12 ([n]) ⊂W (N(k,m)) is non-empty and connected.
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This establishes that the representation space Hom(π1(Nk), G+) has

exactly 2 connected components.

It may seem surprising that in the non-orientable case, the number

of connected components does not depend on the non-orientable genus.

In fact, representations in G+ do not parametrize hyperbolic structures

on the surfaces or oriented circle bundles over the surface. Indeed, if a

representation φ : Hom(π1(N), G±) defines an oriented circle bundle over

N , then necessarily if A ∈ π1(N) is represented by a one-sided curve, then

φ(A) ∈ G−. Hence we have to study representations in G±.

4.3. Non-orientable Euler class

The groupG± is not connected anymore asG± = G+tG−, hence π0(G±) '
Z/2Z. When studying the representation into G±, one has to use another

topological invariant for the representation, namely the first obstruction

class denoted o1 and defined as follows.

The obstruction class o1(φ) of a representation φ ∈ Hom(π,G±) is an

element of the set Hom(π, π0(G±)) and is obtained by composition of the

representation φ : π → G± with the epimorphism G± → π0(G±). As π

is finitely generated by {A1, . . . , Ak}, the image of the generators by the

map o1(φ) completely determines o1(φ). So we can see Hom(π, π0(G±)) as

a subset of (π0(G±))k ' (Z/2Z)k. We have the following notation for the

first obstruction :

o1 : Hom(π1(Nk), G±)→ (Z/2Z)k.

For example the representation space Hom(π,G+) is exactly the set of

representations φ ∈ Hom(π,G±) such that o1(φ) = (0, . . . , 0).

On the other hand, given a hyperbolic structure φ on N , the holonomy

along a 1-sided curve is necessarily an orientation-reversing isometry as the

curve reverse the orientation on the surface. Hence, the image of the 1-

sided curves are all orientation-reversing isometries. The generators in the

standard presentation are represented by 1-sided curves, so any holonomy

representation of a hyperbolic structure satisfies o1(φ) = (1, . . . , 1).

4.4. Square map

To understand the representations inside the non-zero components

o−11 (ε1, . . . , εk), we need to understand squares of orientation-reversing

isometries. First, we notice that if A ∈ G−, then A2 ∈ G+. Moreover,

all orientation-reversing isometries are glide-reflections, i.e. the product of
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a reflection and a hyperbolic translation along the same axis. Hence, the

square A2 of a glide-reflection is an hyperbolic element or the identity ele-

ment. Simple matrix calculation (see [15]) also shows that the square map

:

G− −→ H ∪ {I}
A 7−→ A2

is continuous, surjective with connected fibers.

Let ε = (ε1, . . . , εk) ∈ (Z/2Z)k and define l as the number of εi that

are zero. The fundamental group π1(N(l,k−l)) can be seen as a subgroup of

π1(Nk) by cutting the surface along the curve A2
i whenever εi 6= 0.

Using this property we can define a map :

Tε : o−11 (ε) −→W (Nl,n)

φ 7−→ Tε(φ),

where Tε(φ)(Ai) = φ(Ai) if εi = 0 and else Tε(φ)(Ai) = φ(Ai)
2. This map is

continuous, surjective with connected fibers because the square map defined

above is. We infer that o−11 (ε1, . . . , εk) and W (N(l,n)) have the same number

of connected components.

For all ε such that l > 0, Theorem 4.1 asserts that W (N(l,n)) has two

connected components indexed by o2 ∈ Z/2Z. However, when l = 0, we

identify N(0,k) = Σ(0,k) as the n-holed sphere. In this case, Theorem 3.2

tells us that W (Σ(0,k)) has 2k − 3 connected components indexed by the

relative obstruction class o2 ∈ Z.

We can now state the following theorem on the total number of con-

nected component of Hom(π,G±).

Theorem 4.2: The representation space Hom(π1(Nk),PGL(2,R)) has

2k+1 + 2k − 5 connected components.

The set of representations such that l = 0 is the fiber o−11 (1, . . . , 1).

Through the map Tε we can define the obstruction of a representation

φ ∈ o−11 (1, . . . , 1) as the relative obstruction class of Tε(φ) ∈ W (Σ(0,k)).

It can be shown that this invariant coincides with the Euler class of the

oriented circle bundle overNk defined by φ. The components of Hom(π,G±)

consisting of discrete and faithful representations are exactly the ones with

ε = (1, . . . , 1) and maximal Euler class.



January 8, 2012 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in Palesi*-*Connected*components*(v3)

14 Frédéric Palesi

4.5. General Formula

In [18], Xia proves that for an orientable surface of genus g, the space

Hom(π1(Σg), G±) has 22g+1 + 4g − 5 connected components. When trans-

lating the formula in terms of the Euler characteristic of the surface, one

obtain the following general result.

Theorem 4.3: Let S be a closed surface orientable or not, with Euler

characteristic χ(S) < 0 and G± = PGL(2,R), then the number N(S) of

connected components of the space Hom(π1(S), G±) is given by :

N(S) = 23−χ(S) − 2χ(S)− 1.
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