Exercice 1 (Hyperbolic Geometry).

In this exercise, we will always abuse notation and use the same symbol for an isometry $g \in \text{Isom}^+(\mathbb{H})$ and one of its matrix representatives $g \in \text{SL}(2,\mathbb{R})$.

(1) (a) Let $f = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$.

Prove that ad > 1 if and only if f is an hyperbolic isometry whose axis intersects the imaginary line $i\mathbb{R}$.

(b) Let f and g be two hyperbolic isometries. Show that the axis of f and g intersect if and only if :

$$\operatorname{tr}^{2}(f) + \operatorname{tr}^{2}(g) + \operatorname{tr}^{2}(fg) - \operatorname{tr}(f)\operatorname{tr}(g)\operatorname{tr}(fg) - 4 < 0.$$

- (2) (a) Let F be a quadrilateral in \mathbb{H} with vertices $P, Q, R, S \in \mathbb{H}$ and respective angles $\alpha, \beta, \gamma, \delta$. We assume that there are side pairings $g, h \in \text{Isom}(\mathbb{H})$, such that g sends side [SR] on [PQ] and h sends [QR] on [PS]. Write the (reduced) vertex cycle associated to vertex P.
 - (b) Write conditions on angles α, β, γ, δ, so that the group Γ = ⟨g, h⟩ generated by g, h is Fuchsian of signature (1; 3).
 (Recall that signature (1; 3) means genus 1 with a single period 3.)
 - (c) In that case, what is the area of the quotient \mathbb{H}/Γ ?

(3) Let
$$h = \begin{pmatrix} \cosh(\mu) & \sinh(\mu) \\ \sinh(\mu) & \cosh(\mu) \end{pmatrix} \in \mathrm{SL}(2,\mathbb{R}), \text{ with } \mu \in \mathbb{R}^*.$$

- (a) Justify that h is an hyperbolic isometry. Determine the axis of h and its translation length in terms of μ .
- (b) (Bonus : Hard) Let $g = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{-\lambda} \end{pmatrix}$, with $\lambda > 0$.

Show that if $4\sinh^2(\lambda)\sinh^2(\mu) = 3$ then the group $\Gamma = \langle g, h \rangle$ is Fuchsian of signature (1; 3).

Solution

(1) (a) Assume ad > 1, and compute the fixed points of M. Let $z \in \mathbb{C}$ such that $\frac{az+b}{cz+d} = z$. So we have $cz^2 + (d-a)z - b = 0$. $\Delta = (d-a)^2 + 4bc = (d-a)^2 + 4(ad-1) > 0$

So M has two fixed points that are in $\partial \mathbb{H}$, and hence is hyperbolic. The two roots are :

$$z_1 = \frac{(a-d) + \sqrt{(a-d)^2 + 4(ad-1)}}{2c} \quad z_2 = \frac{(a-d) - \sqrt{(a-d)^2 + 4(ad-1)}}{2c}$$

As $\sqrt{(a-d)^2 + 4(ad-1)} > (a-d)$ we see that z_1 and z_2 are of opposite sign. The axis of M is the geodesic line joining z_1 to z_2 , and hence it will intersect the vertical line $i\mathbb{R}$.

Reciprocally, if M is an hyperbolic isometry whose axis intersect the imaginary line, then the two endpoints of that axis are of opposite sign. These fixed points are the solutions of $cz^2 + (d-a)z - b = 0$. Hence we have $z_1z_2 = \frac{-b}{c} < 0$. So b and c have the same sign (and are both non zero). Which means that ad = 1 + bc > 1.

(b) Up to isometry, we can assume that ϕ is an hyperbolic geometry whose axis is the imaginary line, of the form $\phi = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, and $\psi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. In that case we have that $\operatorname{tr}(\phi) = \lambda + \lambda^{-1}$, $\operatorname{tr}(\psi) = a + d$ and $\operatorname{tr}(\phi\psi) = \lambda a + \lambda^{-1}d$. So we get :

$$\begin{aligned} \operatorname{tr}^{2}(\phi) + \operatorname{tr}^{2}(\psi) + \operatorname{tr}^{2}(\psi\phi) - \operatorname{tr}(\psi)\operatorname{tr}(\phi)\operatorname{tr}(\phi\psi) - 4 \\ = & (\lambda + \lambda^{-1})^{2} + (a + d)^{2} + (\lambda a + \lambda^{-1}d)^{2} - (\lambda + \lambda^{-1})(a + d)(\lambda a + \lambda^{-1}d) - 4 \\ = & \lambda^{2} + \lambda^{-2} + 2 + a^{2} + d^{2} + 2ad + \lambda^{2}a^{2} + \lambda^{-2}d^{2} + 2ad \\ & - (\lambda^{2}a^{2} + ad + \lambda^{2}ad + d^{2} + a^{2} + \lambda^{-2}ad + ad + \lambda^{-2}d^{2}) - 4 \\ = & (\lambda - \lambda^{-1})^{2} - ad(\lambda^{2} + \lambda^{-2} - 2) \\ = & (\lambda - \lambda^{-1})^{2}(1 - ad) \end{aligned}$$

So we see that $(\lambda - \lambda^{-1})^2(1 - ad) < 0$ if and only if ad > 1.

(2) (a) The vertex cycle is given by

$$P \xrightarrow{g^{-1}} S \xrightarrow{h^{-1}} R \xrightarrow{g} Q \xrightarrow{h} P$$

(b) The genus of the surface obtained by identification of the side of the quadrilateral is g such that 2 - 2g = F - E + V = 1 - 2 + 1 = 0. Hence g = 1.

For the period to be 3, we need to have the sum of the angles of the vertex cycle to be equal to $\frac{2\pi}{3}$. As there is a unique vertex cycle, it means that

$$\alpha + \beta + \gamma + \delta = \frac{2\pi}{3}$$

By Poincare Polygon Theorem, this condition is sufficient for Γ to be a Fuchsian group.

(c) We have $\operatorname{Area}(\mathbb{H}/\Gamma) = \operatorname{Area}(F)$, which is given by

$$A(F) = 2\pi - (\alpha + \beta + \gamma + \delta) = \frac{4\pi}{3}$$

Note that we can also use the signature of the Fuchsian group

$$A(\mathbb{H}/\Gamma) = 2\pi \left((2g-2) + \sum_{i=1}^{r} (1-\frac{1}{m_i}) \right) = 2\pi (0 + (1-\frac{1}{3})) = \frac{4\pi}{3}$$

(3) Let $h = \begin{pmatrix} \cosh(\mu) & \sinh(\mu) \\ \sinh(\mu) & \cosh(\mu) \end{pmatrix} \in PSL(2, \mathbb{R})$, with $\mu \in \mathbb{R}^*$.

(a) We have $tr(h) = 2 \cosh(\mu) > 2$ so h is an hyperbolic isometry. A simple computation shows that the fixed points are $\{1, -1\}$, and hence the axis of h is the unit circle.

If l is the translation length, then the formula gives $2\cosh\left(\frac{l}{2}\right) = \operatorname{tr}(h) = 2\cosh(\mu)$. So we get that the translation length is $l = 2\mu$.

(b) (Bonus : Hard) An explicit computation gives that

$$tr(ghg^{-1}h^{-1}) = (\cosh^2(\mu) - 2\sinh^2(\mu)e^{2\lambda}) + (\cosh^2(\mu) - \sinh^2(\mu)e^{-2\lambda})$$

= $2\cosh^2\mu - \sinh^2(\mu)(\cosh(2\lambda))$
= $2 + 2\sinh^2(\mu)(1 - \cosh 2\lambda) = 2 - 2\sinh^2(\mu)(2\sinh^2(\lambda)) = -1$

So $ghg^{-1}h^{-1}$ is an elliptic element of angle $\frac{4\pi}{3}$.

Let P be its unique fixed point in \mathbb{H} . And we denote $Q = h^{-1}(P)$, $R = g^{-1}h^{-1}(P)$ and $S = hg^{-1}h^{-1}(P)$. We see that the quadrilateral PQRS satisfies the side pairings of question 2.

From the vertex cycle, we see that the sum of the angle around vertex P is going in the opposite direction compared to the angle of $ghg^{-1}h^{-1}$, and hence the sum of the angle is $-\frac{4\pi}{3} = \frac{2\pi}{3}$. So Γ is Fuchsian of signature (1;3).