Exercice 1 (Hyperbolic Geometry).
In this exercise, we will always abuse notation and use the same symbol for an isometry $g \in \operatorname{Isom}^{+}(\mathbb{H})$ and one of its matrix representatives $g \in \operatorname{SL}(2, \mathbb{R})$.
(1) (a) Let $f=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})$.

Prove that $a d>1$ if and only if f is an hyperbolic isometry whose axis intersects the imaginary line $i \mathbb{R}$.
(b) Let f and g be two hyperbolic isometries. Show that the axis of f and g intersect if and only if :

$$
\operatorname{tr}^{2}(f)+\operatorname{tr}^{2}(g)+\operatorname{tr}^{2}(f g)-\operatorname{tr}(f) \operatorname{tr}(g) \operatorname{tr}(f g)-4<0
$$

(2) (a) Let F be a quadrilateral in \mathbb{H} with vertices $P, Q, R, S \in \mathbb{H}$ and respective angles $\alpha, \beta, \gamma, \delta$. We assume that there are side pairings $g, h \in \operatorname{Isom}(\mathbb{H})$, such that g sends side $[S R]$ on $[P Q]$ and h sends $[Q R]$ on $[P S]$. Write the (reduced) vertex cycle associated to vertex P.
(b) Write conditions on angles $\alpha, \beta, \gamma, \delta$, so that the group $\Gamma=\langle g, h\rangle$ generated by g, h is Fuchsian of signature $(1 ; 3)$.
(Recall that signature $(1 ; 3)$ means genus 1 with a single period 3.)
(c) In that case, what is the area of the quotient \mathbb{H} / Γ ?
(3) Let $h=\left(\begin{array}{cc}\cosh (\mu) & \sinh (\mu) \\ \sinh (\mu) & \cosh (\mu)\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})$, with $\mu \in \mathbb{R}^{*}$.
(a) Justify that h is an hyperbolic isometry. Determine the axis of h and its translation length in terms of μ.
(b) (Bonus : Hard) Let $g=\left(\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{-\lambda}\end{array}\right)$, with $\lambda>0$.

Show that if $4 \sinh ^{2}(\lambda) \sinh ^{2}(\mu)=3$ then the group $\Gamma=\langle g, h\rangle$ is Fuchsian of signature $(1 ; 3)$.

Solution
(1) (a) Assume $a d>1$, and compute the fixed points of M. Let $z \in \mathbb{C}$ such that $\frac{a z+b}{c z+d}=z$. So we have $c z^{2}+(d-a) z-b=0$.

$$
\Delta=(d-a)^{2}+4 b c=(d-a)^{2}+4(a d-1)>0
$$

So M has two fixed points that are in $\partial \mathbb{H}$, and hence is hyperbolic. The two roots are :

$$
z_{1}=\frac{(a-d)+\sqrt{(a-d)^{2}+4(a d-1)}}{2 c} \quad z_{2}=\frac{(a-d)-\sqrt{(a-d)^{2}+4(a d-1)}}{2 c}
$$

As $\sqrt{(a-d)^{2}+4(a d-1)}>(a-d)$ we see that z_{1} and z_{2} are of opposite sign. The axis of M is the geodesic line joining z_{1} to z_{2}, and hence it will intersect the vertical line $i \mathbb{R}$.
Reciprocally, if M is an hyperbolic isometry whose axis intersect the imaginary line, then the two endpoints of that axis are of opposite sign. These fixed points are the solutions of $c z^{2}+(d-a) z-b=0$. Hence we have $z_{1} z_{2}=\frac{-b}{c}<0$. So b and c have the same sign (and are both non zero). Which means that $a d=1+b c>1$.
(b) Up to isometry, we can assume that ϕ is an hyperbolic geometry whose axis is the imaginary line, of the form $\phi=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$, and $\psi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
In that case we have that $\operatorname{tr}(\phi)=\lambda+\lambda^{-1}, \operatorname{tr}(\psi)=a+d$ and $\operatorname{tr}(\phi \psi)=\lambda a+\lambda^{-1} d$. So we get :

$$
\begin{aligned}
& \operatorname{tr}^{2}(\phi)+\operatorname{tr}^{2}(\psi)+\operatorname{tr}^{2}(\psi \phi)-\operatorname{tr}(\psi) \operatorname{tr}(\phi) \operatorname{tr}(\phi \psi)-4 \\
= & \left(\lambda+\lambda^{-1}\right)^{2}+(a+d)^{2}+\left(\lambda a+\lambda^{-1} d\right)^{2}-\left(\lambda+\lambda^{-1}\right)(a+d)\left(\lambda a+\lambda^{-1} d\right)-4 \\
= & \lambda^{2}+\lambda^{-2}+2+a^{2}+d^{2}+2 a d+\lambda^{2} a^{2}+\lambda^{-2} d^{2}+2 a d \\
& -\left(\lambda^{2} a^{2}+a d+\lambda^{2} a d+d^{2}+a^{2}+\lambda^{-2} a d+a d+\lambda^{-2} d^{2}\right)-4 \\
= & \left(\lambda-\lambda^{-1}\right)^{2}-a d\left(\lambda^{2}+\lambda^{-2}-2\right) \\
= & \left(\lambda-\lambda^{-1}\right)^{2}(1-a d)
\end{aligned}
$$

So we see that $\left(\lambda-\lambda^{-1}\right)^{2}(1-a d)<0$ if and only if $a d>1$.
(2) (a) The vertex cycle is given by

$$
P \xrightarrow{g^{-1}} S \xrightarrow{h^{-1}} R \xrightarrow{g} Q \xrightarrow{h} P
$$

(b) The genus of the surface obtained by identification of the side of the quadrilateral is g such that $2-2 g=F-E+V=1-2+1=0$. Hence $g=1$.

For the period to be 3 , we need to have the sum of the angles of the vertex cycle to be equal to $\frac{2 \pi}{3}$. As there is a unique vertex cycle, it means that

$$
\alpha+\beta+\gamma+\delta=\frac{2 \pi}{3}
$$

By Poincare Polygon Theorem, this condition is sufficient for Γ to be a Fuchsian group.
(c) We have $\operatorname{Area}(\mathbb{H} / \Gamma)=\operatorname{Area}(F)$, which is given by

$$
A(F)=2 \pi-(\alpha+\beta+\gamma+\delta)=\frac{4 \pi}{3}
$$

Note that we can also use the signature of the Fuchsian group

$$
A(\mathbb{H} / \Gamma)=2 \pi\left((2 g-2)+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right)=2 \pi\left(0+\left(1-\frac{1}{3}\right)\right)=\frac{4 \pi}{3}
$$

(3) Let $h=\left(\begin{array}{cc}\cosh (\mu) & \sinh (\mu) \\ \sinh (\mu) & \cosh (\mu)\end{array}\right) \in \operatorname{PSL}(2, \mathbb{R})$, with $\mu \in \mathbb{R}^{*}$.
(a) We have $\operatorname{tr}(h)=2 \cosh (\mu)>2$ so h is an hyperbolic isometry. A simple computation shows that the fixed points are $\{1,-1\}$, and hence the axis of h is the unit circle.
If l is the translation length, then the formula gives $2 \cosh \left(\frac{l}{2}\right)=\operatorname{tr}(h)=$ $2 \cosh (\mu)$. So we get that the translation length is $l=2 \mu$.
(b) (Bonus: Hard) An explicit computation gives that

$$
\begin{aligned}
\operatorname{tr}\left(g h g^{-1} h^{-1}\right) & =\left(\cosh ^{2}(\mu)-2 \sinh ^{2}(\mu) e^{2 \lambda}\right)+\left(\cosh ^{2}(\mu)-\sinh ^{2}(\mu) e^{-2 \lambda}\right) \\
& =2 \cosh ^{2} \mu-\sinh ^{2}(\mu)(\cosh (2 \lambda)) \\
& =2+2 \sinh ^{2}(\mu)(1-\cosh 2 \lambda)=2-2 \sinh ^{2}(\mu)\left(2 \sinh ^{2}(\lambda)\right)=-1
\end{aligned}
$$

So $g h g^{-1} h^{-1}$ is an elliptic element of angle $\frac{4 \pi}{3}$.
Let P be its unique fixed point in \mathbb{H}. And we denote $Q=h^{-1}(P), R=$ $g^{-1} h^{-1}(P)$ and $S=h g^{-1} h^{-1}(P)$. We see that the quadrilateral $P Q R S$ satisfies the side pairings of question 2 .
From the vertex cycle, we see that the sum of the angle around vertex P is going in the opposite direction compared to the angle of $g h g^{-1} h^{-1}$, and hence the sum of the angle is $-\frac{4 \pi}{3}=\frac{2 \pi}{3}$. So Γ is Fuchsian of signature $(1 ; 3)$.

