General remark about these exercises : In many cases, the idea is to first use an isometry to place yourself in a nice situation where the computations can be made explicitly without trouble. So, for example, remember that you can use the action of Isom($\mathbb{H})$ to send any geodesic to the geodesic of your choice (and still get an extra degree of freedom).

Exercise 11: (Fellow travelling) Let $\left(x_{n}\right) \in \mathbb{H}^{\mathbb{N}}$ such that $x_{n} \rightarrow x_{\infty} \in \partial \mathbb{H}$. (Recall that this is the usual convergence in $\hat{\mathbb{C}})$. Let $\left(y_{n}\right) \in \mathbb{H}^{\mathbb{N}}$ such that $d_{\mathbb{H}}\left(x_{n}, y_{n}\right) \leq R$. Then $y_{n} \rightarrow x_{\infty}$.

Proof : In the upper half-plane model, we have the formula

$$
\sinh \left(d\left(x_{n}, y_{n}\right)\right)=\frac{\left|x_{n}-y_{n}\right|}{2 \sqrt{\operatorname{Im}\left(x_{n}\right) \operatorname{Im}\left(y_{n}\right)}} \leq \sinh (R)
$$

Without loss of generality, we can assume that $x_{\infty}=0$ and hence that $x_{n} \rightarrow 0$ in $\widehat{\mathbb{C}}$ and so $\operatorname{Im}\left(x_{n}\right) \rightarrow 0$. As $d\left(x_{n}, y_{n}\right)$ is bounded, it means that $\frac{\left|x_{n}-y_{n}\right|^{2}}{\operatorname{Im}\left(y_{n}\right)} \rightarrow 0$. From this, we deduce easily that $\frac{\left|y_{n}\right|^{2}}{\operatorname{Im}\left(y_{n}\right)} \rightarrow 0$. As $\left|y_{n}\right| \geq \operatorname{Im}\left(y_{n}\right)$, we get immediately that $\left|y_{n}\right| \rightarrow 0$.

Exercise 12: Let l an hyperbolic line in \mathbb{H}.

1. Prove that for any $z \in \mathbb{H}$ there is a unique point $S(z)$ such that $d(z, S(z))=2 d(z, l)=$ $2 d(S(z), l)$. The map S is called the reflexion about line l.
2. Show that if $z \neq S(z)$ then the line l is the perpendicular bisector of the segment $[z S(z)]$.
3. Prove that reflexions are isometries (but not orientation-preserving).
4. Let $M \in \operatorname{PGL}(2, \mathbb{R})$ be the matrix representative of a reflexion. Prove that $\operatorname{tr}(M)=0$.

Proof :

1. (An hypothesis is missing from this question (mea culpa). One has to assume additionally that $S(z)$ and z are not on the same side of the line l)
If $z \in l$, then $S(z)=z$ satisfies the hypothesis, and is unique. So we assume that $z \notin l$.
Up to isometry, we can assume that l is the hyperbolic line represented by the eucliden unit circle, and $z=i a$ with $a>1$. We denote $R=d(z, l)$ and a simple computation gives $R=\ln (a)$. We see that the point $z^{\prime}=i / a$ satisfies all the hypothesis of the question, which gives the existence of the point $S(z)$.
Let's now prove that such a point is unique. A point satisfying the hypothesis should be on the hyperbolic circle of radius $2 R$ and center z, which is represented in \mathbb{H} by a euclidean circle centered at a point $i \omega$ which passes through z^{\prime}.
Such a point should also be on the hypercycle of points at distance R from l passing through z^{\prime} (which is where we use the additional hypothesis), which is represented by a euclidean circle centered at a point $i \omega^{\prime}$ which passes through z^{\prime}.
These two euclidean circles are tangent to each other and intersect at a single point which is z^{\prime}, which proves unicity.
(Remark : A more direct geometric proof is possible using the triangle inequality)
2. In the previous example, the perpendicular bisector of $i a$ and i / a is the hyperbolic line l. This property is invariant by isometry.
3. Up to isometry, we can assume that l is now the vertical imaginary line. In that case, one can show that $S(z)=-\bar{z}$. This is an Anti-Mobius map and hence, an orientation reversing isometry.
4. The previous anti-Mobius map is represented by the matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ which has $\operatorname{tr}(M)=0$. A reflexion is conjugated to the previous anti-Mobius map (conjugated by an isometry sending the line l to the imaginary line), and trace is invariant by conjugation.

Remark: One can show that if $M \in \operatorname{PGL}(2, \mathbb{R})$ with $\operatorname{det}(M)=-1$ and $\operatorname{tr}(M)=0$, then M is the matrix representative of a reflexion.

Exercise 13: Isometries as product of reflexions.

1. Prove that any element of $\operatorname{Isom}^{+}(\mathbb{H})$ can be written as the product of two reflexions about hyperbolic lines. (It suffices to prove that you can do this for any element in K, A and N.)
2. Prove that if ϕ is the product of S_{1} and S_{2} the reflexions about lines l_{1} and l_{2}, then we have that ϕ is elliptic (resp. hyperbolic, parabolic) if and only if l_{1} and l_{2} intersect (resp. are ultraparallel, are limiting parallels).
3. Assume that g, h are two elliptic isometries without a common fixed point. Using the previous question, give a geometric proof that the commutator $g h g^{-1} h^{-1}$ is an hyperbolic isometry.

Proof :

1. Let $\phi \in \operatorname{Isom}^{+}(\mathbb{H})$ and P the matrix representative of ϕ. Then P is conjugated in $\operatorname{PSL}(2, \mathbb{R})$ to an element M in K, A or N.

- If $M=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right) \in K$. Then

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right)
$$

- If $M=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in N$. Then

$$
\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & -b \\
0 & -1
\end{array}\right)
$$

- If $M=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$ in A Then

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & a^{-1} \\
a & 0
\end{array}\right)
$$

2. If l_{1} and l_{2} intersect at a point z, then $\phi(z)=S_{1}\left(S_{2}(z)\right)=S_{1}(z)=z$. Hence ϕ has a fixed point in \mathbb{H} and hence is elliptic.
If l_{1} and l_{2} are ultraparallel, then there exists a unique line d perpendicular to l_{1} and l_{2}. The line d is stable by S_{1} and S_{2}, and hence the line d is stable by ϕ. Which means that the two endpoints d^{+}and d^{-}in $\partial \mathbb{H}$ are fixed points of ϕ. Hence ϕ has two fixed points in $\partial \mathbb{H}$ and is hyperbolic.
If l_{1} and l_{2} are limiting parallel, then they share an endpoint $x_{\infty} \in \partial \mathbb{H}$. As before, we have $\phi\left(x_{\infty}\right)=$ x_{∞}. Hence ϕ has a fixed point in $\partial \mathbb{H}$ and hence is parabolic.
3. Let $\phi=g h g^{-1} h^{-1}$. Assume that g is an elliptic element with oriented angle θ and center ω. The element $h g^{-1} h^{-1}$ is conjugated to g^{-1} and hence is an elliptic element with angle $-\theta$ and center $\omega^{\prime}=h(\omega)$. As g and h do not share fixed point, we have $\omega^{\prime} \neq \omega$. Let d be the line joining ω and ω^{\prime}, and S the reflexion along d.
One can write g as a product $g=S_{1} S$, with S_{1} the reflection along line d_{1} passing through ω where the oriented angle between d and d_{1} is $\frac{\theta}{2}$. Similarly one can write $h g^{-1} h^{-1}$ as a product $S S_{2}$ where the oriented angle between d_{2} and d is equal to $\frac{-\theta}{2}$. So $g h g^{-1} h^{-1}=S_{1} S_{2}$.
But d_{1} and d_{2} intersect d with the same angle θ (in the same orientation), and hence they are ultraparallel (if d, d_{1} and d_{2} formed a triangle, we would have that the sum of angles is $\theta / 2+(\pi-$ $\theta / 2)+\alpha \geq \pi$.) And the product of two reflections along ultraparallel lines is hyperbolic.

Exercise 14: Let g, h be two hyperbolic elements without common fixed points.

1. Prove that for all large $n, m>0$, the element $g^{n} h^{m}$ is hyperbolic.
2. Show that the fixed points of $g^{n} h^{m}$ are disjoint with those of g, h.
3. Same questions with g parabolic and h hyperbolic.

Proof :

1. Up to isometry, we can consider that $g=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$ with $\lambda>1$, and $h=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a+d>2$. As g and h do not share a fixed point, we can see that $b c \neq 0$.

$$
\operatorname{tr}\left(g^{n} h\right)=\operatorname{tr}\left(\left(\begin{array}{cc}
\lambda^{n} & 0 \\
0 & \lambda^{-n}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\lambda^{n} a+\lambda^{-n} d
$$

If $a \neq 0$, then $\lim \left|\lambda^{n} a+\lambda^{-n} d\right|=+\infty$ and hence for n large enough we have that $\lambda^{n} a+\lambda^{-n} d>2$. If $a=0$, then $h^{2}=\left(\begin{array}{cc}b c & b d \\ c d & d^{2}+b c\end{array}\right)$. We can then apply the previous reasoning to $g^{n} h^{2}$ because $b c \neq 0$.
2. We keep the same notation as before. So $h^{m}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ with $b^{\prime} c^{\prime} \neq 0$ because h^{m} and h have the same fixed point (which are disjoint from 0 and ∞). Hence

$$
g^{n} h^{m}=\left(\begin{array}{cc}
\lambda^{n} a^{\prime} & \lambda^{n} b^{\prime} \\
\lambda^{-b} c^{\prime} & \lambda^{-n} d^{\prime}
\end{array}\right)
$$

We can see that $\left(\lambda^{n} b^{\prime}\right)\left(\lambda^{-n} c^{\prime}\right)=b^{\prime} c^{\prime} \neq 0$ which means $g^{n} h^{m}$ does not fixes 0 nor ∞.
3. A similar reasoning holds. Up to isometry, one can assume $g=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $h=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \neq 0$. In that case

$$
g^{n} h=\left(\begin{array}{cc}
a+n c & b+n d \\
c & d
\end{array}\right)
$$

So $\operatorname{tr}\left(g^{n} h\right)=a+d+n c \rightarrow \pm \infty$ and $g^{n} h$ does not fixes ∞.

