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Abstract/Résumé

We prove that two disjoint graphs must always be drawn separately on the Klein
bottle in order to minimize the crossing number of the whole drawing.

Keywords: Klein bottle, topological graph theory, crossing number.

Dans ce rapport, nous prouvons que deux graphes disjoints doivent toujours être
dessinés séparément sur la bouteille de Klein lorsque le nombre de croisements
du dessin est minimal.

Mots-clés: bouteille de Klein, graphes topologiques, croisements.



Introduction

All graphs in this paper are finite, undirected and without loops. A path of G
is a sequence of vertices v0, . . . , vk of G such that for each integer i between 1
and k − 1, vivi+1 is an edge of G and all edges are distinct. A circuit of G is
a path v0, . . . , vk such that v0 = vk. A graph with a circuit that visits each of
its edges exactly once is called eulerian. A graph is connected if for every pair
of vertices u and v there is a path v0, . . . , vk such that v0 = u and vk = v. We
refer to [2] for an introduction to graph theory.

A surface is a two-dimensional manifold, with or without boundary. Accord-
ing to [1], there are two infinite classes of compact connected surfaces without
boundary: the orientable surfaces homeomorphic to a sphere with handles at-
tached, and the non-orientable surfaces homeomorphic to a connected sum of
projective planes. For an orientable surface, the number of handles is called the
orientable genus. For a non-orientable surface, the number of projective planes
is called the non-orientable genus. The non-orientable surfaces of genus 1 and
2 are the projective plane and the Klein bottle, respectively. Formal definitions
of these surfaces can be found in [7].

Every curve considered throughout this paper is undirected and we do not
distinguish between a curve and its image. A drawing of a graph G on a surface
Σ is a representation Ψ of G on Σ where vertices are distinct points of Σ, and
edges are curves of Σ joining the points corresponding to their endvertices. A
drawing is proper if edges are simple curves without vertices of the graph in their
interiors. A crossing is a transversal intersection of two curves on Σ. In this
paper, we restrict our attention to proper drawings where two incident edges
do not cross each other, two non-incident edges cross at most once and no more
than two edges cross at a single point. The crossing number of a drawing Ψ,
denoted by cr(Ψ), is the number of crossings between each pair of curves in
Ψ. The crossing number of a graph G on a surface Σ is the minimum crossing
number among all drawing of G on Σ. A drawing that achieves the crossing
number of a graph is said optimal. A drawing with no crossing is an embedding.
For background material about topological graph theory, the reader can refer
to [6].

The crossing number of a graph on a surface leads to many unsolved prob-
lems, see [4, 5]. DeVos, Mohar and Samal conjectured the following in [3].

Conjecture 1. Let G be the disjoint union of two connected graphs H and K
and let Σ be a surface. For every optimal drawing of G on Σ, the restrictions
to H and K do not intersect.

This conjecture is obviously true for the sphere or equivalently for the Eu-
clidean plane. It was announced proved for the projective plane in [3]. The
problem remains open in the general case. In this paper, we prove that Conjec-
ture 1 holds if Σ is the Klein bottle.

Theorem 2. Let G be the disjoint union of two connected graphs H and K.
For every optimal drawing of G on the Klein bottle, the restrictions to H and
K do not cross.

We introduce the following notations. A closed curve is one-sided if its
neighborhood is a Möbius strip, two-sided otherwise. There exist two non freely
homotopic one-sided simple curves a and b on the Klein bottle, a two-sided
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simple curve m that cuts open the Klein bottle into a cylinder, and a two-sided
simple curve e that separates the Klein bottle into two Möbius strips. A closed
curve not contractible is called essential. According to Negami in [8], each
essential simple closed curve on the Klein bottle is freely homotopic to either a,
b, m or e.

For each curve c on Σ, [c] denotes the set of curves freely homotopic to
c. For each couple of curves (c, d), cr([c], [d]) denotes the minimum number of
crossings, counting multiplicities, taken over all couples of [c] × [d]. Let c be a
curve on Σ and I a collection of curves. The number of crossings between c and
I is denoted by cr(c, I). The minimum of cr(c′, I) taken over all curves c′ in [c]
is denoted by cr([c], I). If I is a drawing of a graph G, the minimum cr([c], I)
is taken on the curves in [c] that do not contain any vertex of G.

We define two relations on freely homotopy classes of closed curves on the
Klein bottle. Two classes [c] and [d] are said to be orthogonal if cr([c], [d]) ≥ 1,
otherwise disjoint. These definitions slightly differ from those of Luo in [13].
Let Ψ be a drawing on the Klein bottle. The circuits c of Ψ orthogonal to [a]
and disjoint from [b] are called a-circuits. The circuits orthogonal to [b] and
disjoint from [a] are called b-circuits. The circuits orthogonal to [a] and [b] are
called m-circuits. Finally, the circuits orthogonal to [m] and disjoint from [a]
and [b] are called e-circuits.

We will apply the following result.

Theorem 3. (De Graaf, Schrijver [9]) Let Ψ be an embedding of an eulerian
graph on a metrizable surface Σ. Then Ψ can be decomposed into a collection
of circuits I such that for each closed curve c on Σ,

cr([c], Ψ) =
∑

d∈I

cr([c], [d]).

Decomposing a drawing Ψ of a graph G into a collection of circuits I means
that each edge of G in Ψ is visited by exactly one element of I and by that
element only once. Theorem 3 was first proved by Lins in [10] for the projective
plane and for compact orientable surfaces by Schrijver in [12].

Schrijver proved in [11] an extension of Lins’ result to the Klein bottle:
the maximum number of pairwise edge-disjoint one-sided circuits equals the
minimum number of edges intersecting all one-sided circuits. Using Theorem 3
and operations on circuits similar to the product studied for oriented surfaces
in [13], we give another expression of this number as follows.

Proposition 4. Let Ψ be an embedding of an eulerian graph on the Klein bottle.
Then the maximum number of pairwise edge-disjoint one-sided circuits equals

min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)).

Moreover, we can decompose Ψ into a collection of circuits I that achieves the
maximum number of one-sided circuits and such that the number of m-circuits
in I is

1

2
(cr([a], Ψ) + cr([b], Ψ) − min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ))) .

Similarly, we express the maximum number of edge-disjoint a-circuits.

4



Proposition 5. Let Ψ be an embedding of an eulerian graph on the Klein bottle.
Then the maximum number of edge-disjoint a-circuits equals

min(cr([a], Ψ), cr([m], Ψ)).

Let us sketch the proof of Theorem 2. Let G be a disjoint union of two
connected graphs H and K. To prove Theorem 2, we start with a drawing Ψ
of G where H and K cross each other and we construct by topological surgery
another drawing Ψ′ of G where H and K do not. Proposition 4 and Proposition
5 provide lower bounds on the number of crossings between the drawings of two
disjoint graphs on the Klein bottle. They allow us to show that the drawing Ψ′

has strictly fewer crossings than Ψ.
This paper is organized as follows. Section 1 deals with drawing graphs on

surfaces of smaller genus. Section 2 is devoted to the proof of Proposition 4 and
Section 3 to the proof of Proposition 5. Theorem 2 is proved in Section 4.

1 Drawing graphs on surfaces of smaller genus

In this section, starting with a drawing of a graph on a surface, we define new
drawings of the same graph on surfaces of smaller genus. We compute the
crossing numbers of these drawings.

1.1 Removing a crosscap

Let Σ be the non-orientable surface of genus g and Σ′ be the non-orientable
surface of genus g − 1.

Proposition 6. Let Ψ denote a drawing of a graph G on Σ. Let c be a simple
closed one-sided curve on Σ which does not contain any vertex of G. There is
a drawing Ψ′ of G on Σ′ such that

cr(Ψ′) = cr(Ψ) +
cr(c, Ψ)(cr(c, Ψ) − 1)

2
.

Proof. We cut open Σ along c and we obtain the non-orientable surface Σ′ with
one hole. We can glue a disk D along the boundary component to obtain Σ′.
Let Ψ′ be the drawing of G defined by restricting Ψ to Σ \ c and redrawing the
edges of Ψ that crossed c on D, crossing exactly once pairwise. The crossings
of these edges add to the crossings of Ψ to give the correct number of crossings
of Ψ′ stated in Proposition 6.

The non-orientable surface of genus g can be seen as a sphere with g crosscaps
attached. Attaching a crosscap to a surface Σ means removing an open disk D
of Σ and identifying opposite points on the boundary of D.

Corollary 7. Let G be the disjoint union of two eulerian connected graphs H
and K. If G has a drawing on the projective plane such that the restrictions
to H and K are embeddings that cross each other, then we can find another
drawing of G on the projective plane with strictly fewer crossings such that the
restrictions to H and K do not cross.
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Proof. Let Ψ be a drawing of G on the projective plane such that the restriction
ΨH to H and the restriction ΨK to K are embeddings.

All one-sided simple essential closed curves on the projective plane are freely
homotopic. Let c be such a curve. By a theorem of Lins [10], the maxi-
mum number of edge-disjoint one-sided circuits of ΨH and ΨK are cr([c], ΨH)
and cr([c], ΨK), respectively. We may assume that cr([c], ΨH) is smaller than
cr([c], ΨK).

Two one-sided circuits cross at least once. Hence, each one-sided circuit of
ΨH crosses each one-sided circuit of ΨK , and

cr(Ψ) ≥ cr([c], ΨH) × cr([c], ΨK).

Let c′ be an one-sided closed curve on the projective plane that achieves
cr([c], ΨH). By Proposition 6, there exists a drawing Ψ′

H
of G on the Euclidean

plane such that

cr(Ψ′

H) =
cr(c′, ΨH)(cr(c′, ΨH) − 1)

2
< cr([c], ΨH) × cr([c], ΨK)

≤ cr(Ψ).

Let Ψ′ denote the drawing of G on the projective plane obtained by disjoint
union of the drawings Ψ′

H
and ΨK . The drawings Ψ′

H
and ΨK do not cross

each other and since ΨK is an embedding, all crossings of Ψ′ are crossings of
Ψ′

H
. It follows that the drawing Ψ′ of G on the projective plane has strictly

fewer crossings than Ψ and the restrictions to H and K do not cross.

1.2 Removing the two crosscaps of the Klein bottle

Proposition 8. Let Ψ denote a drawing of a graph G on the Klein bottle. Let a′

be a simple curve freely homotopic to a and m′ a simple curve freely homotopic
to m such that neither a′ nor m′ contains any vertex of G, and such that a′ and
m′ cross only once. Then there is a drawing Ψ′ of G on the Euclidean plane
such that

cr(Ψ′) = cr(Ψ) + cr(a′, Ψ) × cr(m′, Ψ) +
cr(m′, Ψ)(cr(m′, Ψ) − 1)

2
.

Proof. We cut the Klein bottle open along m′, disconnecting cr(m′, Ψ) edges
of Ψ. By definition of m, the resulting surface is a cylinder. We reconnect
the cut edges such that their new part remains in a small neighborhood of a′,
creating exactly cr(a′, Ψ) crossings for each cut edge. Moreover, we can draw the
cr(m′, Ψ) edges so that they cross each other only once. We obtain a drawing
of G on the cylinder with the desired crossing number, therefore a drawing Ψ′

on the Euclidean plane with the same crossing number.

2 Maximum number of pairwise edge-disjoint

one-sided circuits

Proposition 9. Let Ψ be an embedding of an eulerian graph on the Klein bottle.
Then the maximum number of pairwise edge-disjoint one-sided circuits equals

min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)).

6



Moreover, we can decompose Ψ into a collection of circuits I that achieves the
maximum number of one-sided circuits and such that the number of m-circuits
in I is

1

2
(cr([a], Ψ) + cr([b], Ψ) − min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ))) .

Proof. Let Ψ be an embedding of an eulerian graph G on the Klein bottle.
Consider a collection I of edge-disjoint one-sided circuits of Ψ. Every one-sided
circuit intersects either a or b. Consequently, for each circuit c in I, cr([a], c) ≥ 1
or cr([b], c) ≥ 1. Hence,

cr([a], Ψ) + cr([b], Ψ) ≥
∑

c∈I

(cr([a], [c]) + cr([b], [c])) ≥ |I|.

Similarly, every one-sided circuit intersects m. Hence,

cr([m], Ψ) ≥
∑

c∈I

cr([m], [c]) ≥ |I|.

Therefore the maximum number of pairwise edge-disjoint one-sided circuits is
smaller than min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)).

To complete the proof of Proposition 9, it remains to decompose Ψ into a
collection of circuits that contains

min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ))

one-sided circuits and

1

2
cr([a], Ψ) + cr([b], Ψ) − min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ))

m-circuits.
Let I be a collection of circuits given by Theorem 3, with na a-circuits, nb

b-circuits, nm m-circuits and ne e-circuits. By definition of I, the following
equalities hold.

cr([a], Ψ) = na + nm

cr([b], Ψ) = nb + nm

cr([m], Ψ) = na + nb + 2ne.
(1)

If nm or ne equals zero, then the result follows. Now assume that nm and
ne are positive.

Let r = min(nm, ne). Consider r distinct m-circuits m1, . . . , mr and r dis-
tinct e-circuits e1, . . . , er in I. For every integer i between 1 and r, the circuits
mi and ei intersect and can be decomposed into an a-circuit ai and an b-circuit
bi. Thus, we get na + r a-circuits, nb + r b-circuits, nm− r m-circuits and ne − r
e-circuits. The resulting collection of circuits I ′ still decomposes Ψ. According
to (1),

(na + r) + (nb + r) = min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)),

and

2(nm − r) = cr([a], Ψ) + cr([b], Ψ) − min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)).

Thus I ′ is the desired collection of circuits.
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3 Maximum number of edge-disjoint a-circuits

Proposition 10. Let Ψ be an embedding of an eulerian graph on the Klein
bottle. Then the maximum number of edge-disjoint a-circuits equals

min(cr([a], Ψ), cr([m], Ψ)).

Proof. Let Ψ be an embedding of an eulerian graph on the Klein bottle. Con-
sider a collection I of edge-disjoint a-circuits of Ψ. Every a-circuit intersects a.
Hence,

cr([a], Ψ) ≥
∑

c∈I

cr([a], c) ≥ |I|.

Similarly, every a-circuit intersects m. Hence,

cr([m], Ψ) ≥
∑

c∈I

cr([m], c) ≥ |I|.

Therefore the maximum number of pairwise edge-disjoint a-circuits is smaller
than min(cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)).

To complete the proof of Proposition 10, it remains to exhibit min(cr([a], Ψ), cr([m], Ψ))
a-circuits.

Let I be a collection of circuits of Ψ as stated in Theorem 3, with na a-
circuits, nb b-circuits, nm m-circuits and ne e-circuits. If na or nm equals zero,
then the result follows. Now assume that na and nm are positive.

Let r = min(nm, ne). Consider r distinct m-circuits m1, . . . , mr and r dis-
tinct e-circuits e1, . . . , er in I. For every integer i between 1 and r, the circuits
mi and ei intersect and can be decomposed into an a-circuit ai and an b-circuit
bi. Consequently, we get na + r a-circuits, nb + r b-circuits, nm − r m-circuits
and ne − r e-circuits. The resulting collection of circuits I ′ still decomposes Ψ.

Let s = min(nm − r, nb + r). If nm ≤ ne, then s equals zero and we have
found cr([a], Ψ) a-circuits. Otherwise, consider s distinct b-circuits b1, . . . , bs

and s distinct m-circuits m′

1, . . . , m
′

s of I ′. For every integer i between 1 and
r, the circuits bi and m′

i
intersect and can be decomposed into an a-circuit a′

i
.

And so, we get na + r + s a-circuits.
According to (1),

na + r + m = na + r + min(nm − r, nb + r)

= na + min(nm, nb + 2ne)

= min(cr([a], Ψ), cr([m], Ψ)).

Proposition 10 is proved.

Note that Proposition 10 still holds when replacing a by b.

4 Main result

This section is devoted to the proof of our main result. First, we need to prove
the following special case of the theorem.

8



Lemma 11. Let G be the disjoint union of two eulerian connected graphs H
and K. If G has a drawing on the Klein bottle such that the restrictions to H
and K are embeddings that cross each other, then we can find another drawing
of G on the Klein bottle with strictly fewer crossings such that the restrictions
to H and K do not cross.

Proof. Let Ψ be a drawing of G on the Klein bottle such that the restrictions
ΨH to H and ΨK to K are embeddings.

To prove Lemma 11, it is enough to find two drawings Ψ′

H
and Ψ′

K
of H

and K on two disjoint subsurfaces of the Klein bottle such that the sum of the
crossings of Ψ′

H
and the crossings of Ψ′

K
is strictly less than the crossings of Ψ.

Indeed, let Ψ′

H
and Ψ′

K
be such drawings and let Ψ′ denote the drawing of G

on the Klein bottle plane obtained by disjoint union of the drawings Ψ′

H
and

Ψ′

K
. Then the number of crossings of Ψ′ is the sum of the crossings of Ψ′

H
and

the crossings of Ψ′

K
. It follows that the drawing Ψ′ of G on the Klein bottle has

strictly fewer crossings than Ψ and the restrictions to H and K do not cross.
For convenience, we denote cr([a], ΨH), cr([b], ΨH) and cr([m], ΨH) by ha, hb

and hm, respectively. Similarly, we denote cr([a], ΨK), cr([b], ΨK) and cr([m], ΨK)
by ka, kb and km, respectively.

We can assume without loss of generality that hm ≤ km.
By Proposition 4, there exist a decomposition of ΨH into pairwise edge-

disjoint circuits with min(hm, ha+hb) one-sided circuits and (ha + hb − min(hm, ha + hb)) /2
m-circuits. Each one-sided circuit crosses ΨK at least min(ka, kb) times, and
each m-circuit crosses ΨK at least km times. Counting the crossings between
ΨH and ΨK gives the following inequality.

cr(Ψ) ≥ min(hm, ha +hb)×min(ka, kb)+
1

2
(ha + hb − min(hm, ha + hb))× km.

(2)
With a similar decomposition of ΨK we obtain

cr(Ψ) ≥ min(km, ka + kb)×min(ha, hb) +
1

2
(ka + kb − min(km, ka + kb))× hm.

(3)
Beside, by Proposition 5, there exist min(ka, km) pairwise edge-disjoint a-

circuits of ΨK . Each of them crosses ΨH at least ha times, therefore

cr(Ψ) ≥ min(ka, km) × ha. (4)

Similarly, considering b-circuits gives

cr(Ψ) ≥ min(kb, km) × hb. (5)

Let m1 ≤ m2 ≤ m3 ≤ m4 be an ordering of the numbers ha, hb, ka, kb.
(Case 1) If km ≥ m2, then applying twice Proposition 6 provides a drawing
Ψ′

H
of H and a drawing Ψ′

K
of K on disjoint subsurfaces of the Klein bottle

such that

cr(Ψ′

H
) + cr(Ψ′

K
) =

1

2
m1 × (m1 − 1) +

1

2
m2 × (m2 − 1).

By definition of m2 and since km ≥ m2,

m2 × m2 ≤ max(min(ka, km)ha, min(kb, km)hb).
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Hence, by (4) and (5),

cr(Ψ′

H
) + cr(Ψ′

K
) < m2 × m2 ≤ cr(Ψ).

(Case 2) If km < m2, then

hm ≤ km ≤ m1 + m2 ≤ ha + hb.

Thus, (2) becomes

cr(Ψ) ≥ hm × min(ka, kb) +
1

2
(ha + hb − hm) × km. (6)

Since km ≤ ka + kb, the (3) becomes

cr(Ψ) ≥ km × ha +
1

2
(ka + kb − km) × hm. (7)

(Case 2.1) If hm ≤ ka + kb − km, then by Proposition 8 there exists a drawing
Ψ′

H
of H on the Euclidean plane such that

cr(Ψ′

H) = hm × ha +
1

2
hm × (hm − 1).

We get by (7)

cr(Ψ′

H) + cr(ΨK) = hm × ha +
1

2
hm × (hm − 1)

≤ km × ha +
1

2
(ka + kb − km) × (hm − 1)

< cr(Ψ).

(Case 2.2) If hm > ka + kb − km, then km < m2 implies

hm + max(ka, kb) ≥ hm + km > ka + kb.

Hence hm > min(ka, kb) = m1.

(Case 2.2.1) If m1 < km/2 then we apply Proposition 8. There exists a drawing
Ψ′

K
of K on the Euclidean plane such that

cr(Ψ′

K) = km × m1 +
1

2
km × (km − 1).

By (6),

cr(ΨH) + cr(Ψ′

K
) ≤ km × m1 +

1

2
km × (km − 1)

≤ hm × m1 + (km − hm) × m1 +
1

2
km × (km − 1)

< hm × m1 + (2km − hm) ×
1

2
km

< hm × min(ka, kb) +
1

2
(ha + hb − hm) × km

< cr(Ψ).
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(Case 2.2.2) If m1 ≥ km/2 and m2 < 2km, then applying twice Proposition 6
provides a drawing Ψ′

H
of H and a drawing Ψ′

K
of K on disjoint subsurfaces of

the Klein bottle such that

cr(Ψ′

H
) + cr(Ψ′

K
) =

1

2
m1 × (m1 − 1) +

1

2
m2 × (m2 − 1).

Since

m1 < hm, m2 > km, m2 ≤ ha and m1 + m2 ≤ ka + kb,

we get, by (7),

cr(Ψ′

H) + cr(Ψ′

K) =
1

2
m2 × (m2 − 1) +

1

2
m1 × (m1 − 1)

<
1

2
m2 × 2km +

1

2
m1 × (hm − 1)

< ha × km +
1

2
(m1 + m2 − km) × hm

< ha × km +
1

2
(ka + kb − km) × hm

< cr(Ψ).

(Case 2.2.3) If m1 ≥ km/2 and m2 ≥ 2km then we apply Proposition 8. There
exists a drawing Ψ′

K
of K on the Euclidean plane such that

cr(Ψ′

K
) = km × m1 +

1

2
km × (km − 1).

Hence, by (4),

cr(ΨH) + cr(Ψ′

K
) = km × m1 +

1

2
km × (km − 1)

< km ×

(

m1 +
1

2
km

)

< km × (2m1)

< m1 × m2

< cr(Ψ).

Now, we may prove the Theorem.

Theorem 12. Let G be the disjoint union of two connected graphs H and K.
For every optimal drawing of G on the Klein bottle, the restrictions to H and
K do not cross.

Proof. Let G be the disjoint union of two connected graphs H and K. Let Ψ
be an optimal drawing on the Klein bottle of G.

First, assume that the restrictions to H and K are embeddings. Duplicate
each edge of G and denote by G′, G′

1, G′

2 the resulting eulerian graphs and
by Ψ′ the resulting drawing. The drawing Ψ′ has 4 cr(Ψ) crossings. Since
G′ is eulerian, by Proposition 11, we can find a drawing Ψ′′ of G′, where the

11



graphs H ′ and K ′ do not cross each other, which has strictly less than 4 cr(Ψ)
crossings. Moreover, we can assume that every pair of parallel edges are drawn
close enough to have the same crossings. Therefore, two pairs of parallel edges
intersect each other either four times or do not. Thus, by deleting one copy of
each edge, we get a drawing of G with strictly less than cr(Ψ) crossings such
that the drawings of H and K do not intersect.

Secondly, suppose that the restrictions to H and K are not embeddings.
Consider the graphs G′′

1 and G′′

2 obtained from H and K by adding a vertex for
each internal crossing. The corresponding drawings are embeddings and we can
now apply what was shown just above. Theorem 2 is proved when we replace
the new vertices by the former crossings.

Remark 13. Applying the same arguments of the proof of Theorem 2 and using
Corollary 7 instead of Proposition 11, we can prove that Conjecture 1 holds for
the projective plane.
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