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Abstract

We introduce achievement positional games, a convention for positional games which
encompasses the Maker-Maker and Maker-Breaker conventions. We consider two hyper-
graphs, one red and one blue, on the same vertex set. Two players, Left and Right, take
turns picking a previously unpicked vertex. Whoever �rst �lls an edge of their color,
blue for Left or red for Right, wins the game (draws are possible). We establish general
properties of such games. In particular, we show that a lot of principles which hold for
Maker-Maker games generalize to achievement positional games. We also study the algo-
rithmic complexity of deciding whether Left has a winning strategy as �rst player when
all blue edges have size at mot p and all red edges have size at most q. This problem is
in P for p, q ≤ 2, but it is NP-hard for p ≥ 3 and q = 2, coNP-complete for p = 2 and
q ≥ 3, and PSPACE-complete for p, q ≥ 3. A consequence of this last result is that, in the
Maker-Maker convention, deciding whether the �rst player has a winning strategy on a
hypergraph of rank 4 after one round of (non-optimal) play is PSPACE-complete. A full
version of this paper is available at [6].

1 Introduction

Positional games. Positional games have been introduced by Hales and Jewett [7] and
later popularized by Erd®s and Selfridge [3]. The game board is a hypergraph H = (V,E),
where V is the vertex set and E ⊆ 2V is the edge set. Two players take turns picking a
previously unpicked vertex of the hypergraph, and the result of the game is de�ned by some
convention. The two most popular conventions are called Maker-Maker and Maker-Breaker.
As they revolve around trying to �ll an edge i.e. pick all the vertices of some edge, they are
often referred to as �achievement games�. In the Maker-Maker convention, whoever �rst �lls
an edge wins (draws are possible), whereas in the Maker-Breaker convention, Maker aims at
�lling an edge while Breaker aims at preventing him from doing so (no draw is possible). For
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all conventions, the main question is the result of the game with optimal play (who wins, or
is it a draw), including the complexity of the associated algorithmic problems.

The Maker-Maker convention was the �rst one to be introduced, in 1963 by Hales and
Jewett [7]. The game of Tic-Tac-Toe is a famous example. As a simple strategy-stealing

argument [7] shows that the second player cannot have a winning strategy, the question is
whether the given hypergraph H is a �rst player win or a draw with optimal play. This
decision problem is trivially tractable for hypergraphs of rank 2 i.e. whose edges have size at
most 2, but it is PSPACE-complete for hypergraphs that are 6-uniform i.e. whose edges have
size exactly 6 (by a combination of [8] and [1]). Maker-Maker games are notoriously di�cult
to handle since both players must manage o�ense and defense at the same time.

The Maker-Breaker convention was introduced for that reason, in 1978 by Chvátal and
Erd®s [2]. It is by far the most studied, as it presents some convenient additional properties
compared to the Maker-Maker convention thanks to the players having complementary goals,
the most crucial one being subhypergraph monotonicity. The problem of deciding which player
has a winning strategy when, say, Maker starts, is tractable for hypergraphs of rank 3 [5] but
PSPACE-complete for 5-uniform hypergraphs [8] (a very recent improvement on the previously
known result for 6-uniform hypergraphs [10]).

Uni�ed achievement games. We introduce achievement positional games. Such a
game is a triple G = (V,EL, ER), where (V,EL) and (V,ER) are hypergraphs which we see
as having blue edges and red edges respectively. There are two players, taking turns picking a
previously unpicked vertex: Left aims at �lling a blue edge, while Right aims at �lling a red
edge. Whoever reaches their goal �rst wins the game, or we get a draw if this never happens.
Achievement positional games include all Maker-Maker and Maker-Breaker games. Indeed,
Maker-Maker games correspond to the case EL = ER, while Maker-Breaker games correspond
to the case ER = ∅ (or EL = ∅) or equivalently to the case where each of EL and ER is
the set of all minimal transversals of the other (a transversal of a set of edges E is a set of
vertices that intersects each element of E). That last interpretation of Maker-Breaker games
puts their asymmetrical nature into question, which is another motivation for the introduction
of a unifying convention.

Objectives and results. We �rst establish elementary properties of achievement posi-
tional games in general. In particular, we look at some general principles which hold in the
Maker-Maker convention to see if they generalize to achievement positional games. For all
those that we consider, we show that this is indeed the case, emphasizing the fact that most
properties of Maker-Maker games come from their �achievement� nature rather than symme-
try. Our second objective is the study of the algorithmic complexity of the game. We get
results for almost all edge sizes, which are summed up in Table 1. As a corollary, we also show
that deciding whether the next player has a winning strategy for the Maker-Maker game on a
hypergraph of rank 4 after one round of (non-optimal) play is PSPACE-complete.

2 Preliminaries

In this paper, a hypergraph is a pair (V,E) where V is a �nite vertex set and E ⊆ 2V \{∅}
is the edge set. An achievement positional game is a triple G = (V,EL, ER) where (V,EL)
and (V,ER) are hypergraphs. The elements of EL and ER are called blue edges and red edges

respectively. Two players, Left and Right, take turns picking a vertex in V that has not been
picked before. We say a player �lls an edge if that player has picked all the vertices of that
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q
p

0 , 1 2 3 4 5+

0 , 1
LSPACE

[trivial]

LSPACE

[9]

P

[5]
open

PSPACE-c
[8]

2
LSPACE

[trivial]

P

[Th. 4.1]

NP-hard
[Th. 4.3]

NP-hard
[Th. 4.3]

PSPACE-c
[8]

3+
LSPACE

[trivial]

coNP-c
[Th. 4.2]

PSPACE-c
[Th. 4.4]

PSPACE-c
[Th. 4.4]

PSPACE-c
[8]

Table 1: Algorithmic complexity of deciding whether Left has a winning strategy as
�rst player, for blue edges of size at most p and red edges of size at most q.

edge. The blue and red edges can be seen as the winning sets of Left and Right respectively,
so that the result of the game is determined as follows:

� If Left �lls a blue edge before Right �lls a red edge, then Left wins.
� If Right �lls a red edge before Left �lls a blue edge, then Right wins.
� If none of the above happens before all vertices are picked, then the game is a draw.
For algorithmic considerations, we introduce the problem AchievementPos(p,q) which

consists in deciding, given an achievement positional game G such that all blue edges have
size at most p and all red edges have size at most q, whether Left has a winning strategy on
G as �rst player.

Like all positional games, AchievementPos(p,q) is in PSPACE as the game cannot
last more than |V | moves. We can also notice that, for all k, AchievementPos(0,k) and
AchievementPos(1,k) are trivial problems. Meanwhile, for all k, AchievementPos(k,0)
and AchievementPos(k,1) are equivalent to the Maker-Breaker game played on hypergraphs
of rank k, so the literature provides some results.

Proposition 2.1. AchievementPos(k,0) and AchievementPos(k,1) are in LSPACE for

k ≥ 2, in P for k = 3, but are PSPACE-complete for k ≥ 5. Moreover, AchievementPos(0,k)
and AchievementPos(1,k) are in LSPACE for all k.

3 General results

A lot of convenient properties of Maker-Maker games generalize to achievement positional
games. For instance, this is the case for the well-known strategy-stealing argument [7] which
ensures that the second player can never have a winning strategy in the Maker-Maker conven-
tion.

Lemma 3.1 (Strategy Stealing). Let G = (V,EL, ER) be an achievement positional game. If

there exists a bijection σ : V → V such that σ(e) ∈ EL and σ−1(e) ∈ EL for all e ∈ ER, then
Left has a non-losing strategy on G as �rst player.

Pairing strategies are an important tool in both Maker-Breaker and Maker-Maker conven-
tions [7]. A complete pairing of a hypergraph H is a set Π of pairwise disjoint pairs of vertices
such that every edge of H contains some element of Π. If H admits a complete pairing, then
the outcome is a Breaker win for the Maker-Breaker game or a draw for the Maker-Maker
game, as picking one vertex from each pair prevents the other player from �lling an edge. We
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observe that, in general achievement positional games, pairing strategies may still be used as
non-losing strategies which block the opponent.

Let us also mention the following monotonicity property: adding or shrinking blue edges
cannot harm Left, and adding or shrinking red edges cannot harm Right.

4 Complexity results

Theorem 4.1. AchievementPos(2,2) is in P.

Sketch of the proof. After a series of forced moves, we get a situation where all edges have
size exactly 2. At this point, the player who is next to play can be assumed not to have a
P3 (path on 3 vertices) of their color, as they would have a winning strategy in two moves.
In particular, assume that Right is next to play, otherwise Right has a non-losing pairing
strategy. Right must force all of Left's moves until she has broken every blue P3. Any move
u by Right triggers a sequence of forced moves, corresponding to an alternating red-blue path
P (u) which is easy to compute. If P (u) ends with a red edge for some u, then we can assume
that Right picks u and all forced moves along P (u) are played, as Right keeps the initiative.
However, if P (u) ends with a blue edge for all u, then Right avoids a loss if and only if she
can trigger one last sequence of forced moves after which every blue P3 is broken.

Theorem 4.2. AchievementPos(2,3) is coNP-complete.

Proof. We consider the complement of this problem, or rather an equivalent version of it. We
show that it is NP-complete to decide whether Left has a non-losing strategy as �rst player
on an achievement positional game where all blue (resp. red) edges have size at most 3 (resp.
at most 2).

Let us �rst show membership in NP. Consider the following strategy S for Right: pick
some u that wins in one move if such u exists, otherwise pick some v that prevents Left from
winning in one move if such v exists, otherwise pick some w at the center of an intact red
P3 is one exists, otherwise (Left has a non-losing pairing strategy) pick an arbitrary vertex.
Clearly, if Right has a winning strategy on G as second player, then S is one. Moreover, the
move prescribed by S in any given situation is easily computed in polynomial time. Therefore,
a polynomial certi�cate for Left's non-losing strategy is simply the sequence of all of Left's
moves, assuming that Right plays according to S.

We now reduce 3-SAT to our problem. Consider an instance ϕ of 3-SAT, with a set of
variables V and a set of clauses C. We build a game G = (V,EL, ER) as follows (see Figure 1
for a visual example):

� For all x ∈ V , we de�ne Vx = {x,¬x}.
� For all c = ℓ1∨ℓ2∨ℓ3 ∈ C, with literals ℓ1, ℓ2, ℓ3, we de�ne Vc =

{
cℓ1 , cℓ2 , cℓ3 , c

′
ℓ1
, c′ℓ2 , c

′
ℓ3

}
.

� V =
⋃
x∈V Vx ∪

⋃
c∈C Vc ∪ {ω, ω̌, ω̂}.

� EL =
⋃
x∈V {{x,¬x}} ∪

⋃
c=ℓ1∨ℓ2∨ℓ3∈C

{{
ℓ1, cℓ1 , c

′
ℓ1

}
,
{
ℓ2, cℓ2 , c

′
ℓ2

}
,
{
ℓ3, cℓ3 , c

′
ℓ3

}}
.

� ER =
⋃
c=ℓ1∨ℓ2∨ℓ3∈C {{cℓ1 , cℓ2} , {cℓ2 , cℓ3} , {cℓ3 , cℓ1}} ∪ {{ω, ω̌} , {ω, ω̂}}.

Since there are multiple pairwise vertex-disjoint red P3's, every move from Left must
threaten to win on the next move until the last red P3 is broken.

As such, Left must start by picking ℓ ∈ {x,¬x} for some x ∈ V , which forces Right to
pick the other one since {x,¬x} ∈ ER. After that, it can easily be shown that it is optimal
for Left to pick cℓ for each clause c which contains the literal ℓ, as it forces Right to pick c′ℓ in
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response since {ℓ, cℓ, c′ℓ} ∈ ER. This breaks every red P3 in the clause gadgets corresponding
to clauses containing ℓ.

Left must repeat this process of picking a literal and then breaking all clause gadgets of
clauses containing that literal, until he has picked at least one of cℓ1 , cℓ2 or cℓ3 for each clause
c = ℓ1 ∨ ℓ2 ∨ ℓ3 ∈ C.

If there exists a valuation µ which satis�es ϕ, then Left succeeds in doing so, by picking x
if µ(x) = T or ¬x if µ(x) = F, for all x ∈ V . After that, he can simply pick ω, thus ensuring
not to lose the game. If such a valuation does not exist, then Left will have to play a move
that does not force Right's answer while leaving at least one red P3 intact, thus losing the
game. All in all, Left has a non-losing strategy on G as �rst player if and only if ϕ is satis�able,
which concludes the proof.

x ¬x

c
¬x cz

cy
c′
¬x

d
¬y dt

dz

y ¬y z ¬z t ¬t

c′y
c′z

d′
¬y

d′z

d′t

ω̂ ω̌

ω

Figure 1: The full gadget from the proof of Theorem
4.2 for a set of two clauses c = ¬x ∨ y ∨ z and d =
¬y ∨ z ∨ t.

Figure 2:

A blue
butter�y.

Theorem 4.3. AchievementPos(3,2) is NP-hard.

Proof. We use the same construction as in the previous proof (see Figure 1), except we add
two copies of the blue butter�y gadget (see Figure 2) to transform draws into wins for Left.
Indeed, the game unfolds in the same way until/if Left breaks the last red P3, after which Left
will be able to play the �rst move in one of the butter�ies to win the game.

Theorem 4.4. AchievementPos(3,3) is PSPACE-complete.

Sketch of the proof. We perform a reduction from 3-QBF[11]. The input is a logic formula ϕ
in CNF form, with clauses of size exactly 3 and variables x1, . . . , x2n. Two players, Satis�er
and Falsi�er, take turns setting the variables x1, . . . , x2n (in that order) to T or F. Satis�er
starts the game, and wins if ϕ is satis�ed, otherwise Falsi�er wins. Given ϕ, we build an
instance G of AchievementPos(3,3) such that Left has a winning strategy on G as second
player if and only if Falsi�er has a winning strategy on ϕ.

The variable gadget associated to x1 is pictured in Figure 3. Its edges of size 2 are the
only ones in the entire game, so Right is forced to pick either t1,R (interpreted as µ(x1) = T)
or f1,R (µ(x1) = F). This triggers a forced sequence of moves on the four vertices at the
top. These moves update the variable gadget associated to x2, which becomes as pictured
in Figure 4. Left is forced to pick either t2,L (µ(x2) = T) or f2,L (µ(x2) = F), etc. until all
variable gadgets have been played in. This marks the end of Phase 1, with half the vertices in
U =

⋃
1≤i≤2n{ti,R, fi,R} having been picked by Right (by genuine choice for odd i, by forced

choice for even i). The (blue) clause-edges are de�ned using U and parities, e.g. a clause
c = x1 ∨ x2 ∨¬x3 yields a blue edge {t1,R, f2,R, f3,R}. During Phase 2, we use blue butter�ies
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to allow Left to pick the remaining half of U , thus �lling a clause-edge if and only if µ does
not satisfy ϕ.

fi,L ti,Lui vi

fi,Rti,R

Figure 3: The variable gadget for
odd i.

fi,L ti,Lui vi

fi,Rti,R

Figure 4: The variable gadget for
even i.

Corollary 4.5. Deciding whether the �rst player has a winning strategy for the Maker-Maker

game on a hypergraph of rank 4 with one round having already been played is PSPACE-complete.

Proof. Let G be an instance of AchievementPos(3,3). We add a vertex uL to each e ∈ EL
and a vertex uR to each e ∈ ER, then we forget about the colors. We get a hypergraph H
such that, after one round of the Maker-Maker game on H where the players pick uL and uR
respectively, we get precisely G.

5 Conclusion

We have introduced achievement positional games, a new convention for positional games
where the players try to �ll di�erent edges. We have established some of their general prop-
erties (see [6] for all the results), which are not any weaker compared to the subfamily of
Maker-Maker games, and obtained complexity results for almost all edge sizes. A corollary
is that the Maker-Maker convention is PSPACE-complete for positions that can be obtained
from a hypergraph of rank 4 after just one round of play, which is the �rst known complexity
result on this convention for edges of size between 3 and 5.

We have not determined the exact complexity of the cases (p, q) ∈ {(3, 2), (4, 2)}, even
though we know they are NP-hard. The commonplace intuition within the community is that
Maker-Breaker games on hypergraphs of rank 4 are PSPACE-complete, which would imply that
AchievementPos(4,2) also is. As for AchievementPos(3,2), a proof of either membership
in NP or PSPACE-hardness would be compelling.

A natural prospect would be to de�ne avoidance positional games, where whoever �rst �lls
an edge of their color loses. Since the case EL = ER (Avoider-Avoider convention) is already
PSPACE-complete for edges of size 2 [4], the complexity aspects would not be as interesting.
However, an analogous study to that of Section 3 could be performed to better understand
general properties of avoidance games.
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