1. Exercices d'échauffement

Exercice 1. Le nombre $\frac{\ln(3)}{\ln(2)}$ est-il rationnel ou irrationnel ?

Exercice 2. (1) Soit $n \in \mathbb{N}^*$ et $N_n := 0, 201920192019 \dots 2019$ (n fois). Mettre N_n sous la forme d'une fraction rationnelle.

- (2) Soit $M:=0,201920192019\dots$ (à l'infini). Donner le rationnel dont l'écriture en décimales est M.
- (3) Même question avec

$$x = 0,1111...+0,2222...+0,3333...+0,4444...+0,5555...+0,6666...+$$

 $+0,7777...+0,8888...+0,9999...$

Exercice 3. Déterminer la moyenne entre les nombres suivants :

$$\frac{1+2+3}{3}$$
, $\frac{2+3+4}{3}$, $\frac{3+4+5}{3}$, ..., $\frac{998+999+1000}{3}$

Exercice 4. Trouver le nombre en centième position de la suite suivante :

$$1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 9, \dots$$

Vous pourrez trouver plein d'autres exercices ludiques du même type à l'adresse suivante: https://images.math.cnrs.fr/-Defis-du-Calendrier-mathematique-.html

2. Propriétés de R, quantificateurs....

Exercice 5. Soient A et B deux parties non vides et bornées de \mathbb{R} . On note $A+B=\{a+b\mid (a,b)\in A\times B\}$. Les assertions suivantes sont-elles vraies ou fausses ?

- (1) $A \subset B \Longrightarrow \sup(A) \le \sup(B)$
- $(2) \ A \subset B \Longrightarrow \inf(A) \le \sup(B)$
- (3) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$
- (4) $\sup(A) + \sup(B)$ est un majorant de A + B
- (5) $\sup(A+B) < \sup(A) + \sup(B)$
- (6) $\sup(A+B) = \sup(A) + \sup(B)$
- $(7) \sup(-A) = -\inf(A)$

Exercice 6. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ croissante, telle que, pour tout $x \in \mathbb{R}$, $f \circ f(x) = x$. Montrer que, pour tout $x \in \mathbb{R}$, f(x) = x.

Exercice 7. Soit $f:]0, +\infty[\longrightarrow \mathbb{R}$ croissante telle que

$$g: \quad]0, +\infty[\quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{f(x)}{x}$$

soit décroissante. Montrer que f est continue.

Exercice 8. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction (pas forcément croissante). On note

$$E := \{g : \mathbb{R} \longrightarrow \mathbb{R} \text{ croissante } | g \leq f\}.$$

On pose, pour tout $x \in \mathbb{R}$, $\widetilde{f}(x) = \sup\{g(x) \mid g \in E\}$.

- (1) Montrer que $\widetilde{f} \in E$.
- (2) Montrer que f admet des limites à droite et à gauche en tout point.
- (3) On suppose que f est continue. Montrer alors que \widetilde{f} est continue. (Indication : si $\lim_{x^+} \widetilde{f} \neq \lim_{x^-} \widetilde{f}$, montrer que l'on peut construire une fonction de E supérieure à \widetilde{f}).

3. Continuité - Théorème des valeurs intermédiaires

Exercice 9. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que f(a)=f(b). Montrer que la fonction $g(t)=f(t+\frac{b-a}{2})-f(t)$ s'annule en au moins un point de $[a,\frac{a+b}{2}]$.

Application : une personne parcourt 4 km en 1 heure. Montrer qu'il existe un intervalle de 30 mn pendant lequel elle parcourt exactement 2 km.

Exercice 10. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ et T > 0. On suppose que f est T-périodique, c'est-à-dire que, pour tout $x \in \mathbb{R}$, f(x+T) = f(x).

- (1) Si f possède une limite finie en $+\infty$, montrer que f est constante.
- (2) Si f est continue et non constante, montrer que f admet une plus petite période (indication : considérer l'ensemble E des périodes de f, et montrer que la borne inférieure de E appartient à E).
- (3) Si f est continue, montrer que f est bornée et atteint ses bornes.

Exercice 11. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue en 0 telle que pour chaque $x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.

Exercice 12. Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions continues. On pose pour tout $x \in \mathbb{R}$, $h(x) := \max\{f(x), g(x)\}$. Montrer que $h : \mathbb{R} \longrightarrow \mathbb{R}$ est continue.

Exercice 13. Soient I un intervalle de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ une fonction continue, telle que pour tout $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Exercice 14. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction uniformément continue. Pour $x \in \mathbb{R}$, on pose $g(x) := \sup_{t \in [x,x+1]} f(t)$. Montrer que g est continue. Est-ce que cela reste vrai si f est seulement supposée continue?

Exercice 15. Soit $f:[0,+\infty[\longrightarrow \mathbb{R}]$ une fonction continue possédant une limite $l \in \mathbb{R} \cup \{\pm \infty\}$ en $+\infty$. Montrer que f prend toutes les valeurs entre f(0) et l (l étant exclu).

Exercice 16.

- (1) Soit $f:[0,1] \longrightarrow [0,1]$ continue. Montrer que f admet un point fixe, c'est-à-dire qu'il existe $x \in [0,1]$ tel que f(x) = x.
- (2) Soient $f, g : [0,1] \longrightarrow [0,1]$ continues telles que $f \circ g = g \circ f$. Montrer qu'il existe $x \in [0,1]$ tel que f(x) = g(x). (Indication : on étudiera l'ensemble des points fixes de f).

Exercice 17. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue et supposons qu'il existe $a \in \mathbb{R}$ avec $f \circ f(a) = a$. Est-ce que f admet un point fixe ? (Indication : étudier la fonction $x \longmapsto f(x) - x$ entre a et f(a)).