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Preface 

In publishing this English edition I have tried to make a rather extensive 
revision. Most of the mistakes and insufficiencies in the original edition 
have, I hope, been corrected, and some theorems have been improved. 
Some topics have been added in the form of Appendices to individual 
sections. Only Appendices A, B and C are from the original. The final 
section, $33, of the original edition was entitled ‘Kunz’ Theorems’ 
and did not substantially differ from a section in the second edition of 
my previous book Commutative Algebra (Benjamin, 2nd edn 1980) so I 
have replaced it by the present $33. The bibliography at the end of 
the book has been considerably enlarged, although it is obviously 
impossible to do justice to all of the ever-increasing literature. 

Dr Miles Reid has done excellent work of translation. He also pointed 
out some errors and proposed some improvements. Through his efforts this 
new edition has become, I believe, more readable than the original. To him, 
and to the staff of Cambridge University Press and Kyoritsu Shuppan Co., 
Tokyo, who cooperated to make the publication of this English edition 
possible, I express here my heartfelt gratitude. 

Hideyuki Matsumura 
Nagoya 
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Introduction 

In addition to being a beautiful and deep theory in its own right, 
commutative ring theory is important as a foundation for algebraic 
geometry and complex analytic geometry. Let us start with a historical 
survey of its development. 

The most basic commutative rings are the ring Z of rational integers, and 
the polynomial rings over a field. Z is a principal ideal ring, and so is too 
simple to be ring-theoretically very interesting, but it was in the course of 
studying its extensions, the rings of integers of algebraic number fields, that 
Dedekind first introduced the notion of an ideal in the 1870s. For it was 
realised that only when prime ideals are used in place of prime numbers do 
we obtain the natural generalisation of the number theory of Z. 

Meanwhile, in the second half of the 19th century, polynomial rings 
gradually came to be studied both from the point of view of algebraic 
geometry and of invariant theory. In his famous papers of the 1890s on 
invariants, Hilbert proved that ideals in polynomial rings are finitely 
generated, as well as other fundamental theorems. After the turn of the 
present century had seen the deep researches of Lasker and Macaulay on 
primary decomposition of polynomial ideals came the advent of the age of 
abstract algebra. A forerunner of the abstract treatment of commutative 
ring theory was the Japanese Shozij Sono (On congruences, I-IV, Mem. 
Coil. Sci. Kyoto, 2 (19 17), 3 (19 18- 19)); in particular he succeeded in giving 
an axiomatic characterisation of Dedekind rings. Shortly after this Emmy 
Noether discovered that primary decomposition of ideals is a consequence 
of the ascending chain condition (1921), and gave a different system of 
axioms for Dedekind rings (1927), in work which was to have a decisive 
influence on the direction of subsequent development of commutative ring 
theory. The central position occupied by Noetherian rings in commutative 
ring theory became evident from her work. 

However, the credit for raising abstract commutative ring theory to a 
substantial branch of science belongs in the first instance to Krull (1899- 
1970). In the 1920s and 30s he established the dimension theory of 
Noetherian rings, introduced the methods of localisation and completion, 

ir 



X Introduction 

and the notion of a regular local ring, and went beyond the framework of 
Noetherian rings to create the theory of general valuation rings and Krull 
rings. The contribution of Akizuki in the 1930s was also considerable; in 
particular, a counter-example, which he obtained after a year’s hard 
struggle, of an integral domain whose integral closure is not finite as a 
module was to become the model for many subsequent counter-examples. 

In the 1940s Krull’s theory was applied to algebraic geometry by 
Chevalley and Zariski, with remarkable success. Zariski applied general 
valuation theory to the resolution of singularities and the theory of 
birational transformations, and used the notion of regular local ring to give 
an algebraic formulation of the theory of simple (non-singular) point of a 
variety. Chevalley initiated the theory of multiplicities of local rings, and 
applied it to the computation of intersection multiplicities of varieties. 
Meanwhile, Zariski’s student I.S. Cohen proved the structure theorem for 
complete local rings [l], underlining the importance of completion. 

The 1950s opened with the profound work of Zariski on the problem of 
whether the completion of a normal local ring remains normal (Sur la 
noimalite analytique des varietes normales, Ann. Inst. Fourier 2 (1950)) 
taking Noetherian ring theory from general theory deeper into precise 
structure theorems. Multiplicity theory was given new foundations by 
Samuel and Nagata, and became one of the powerful tools in the theory of 
local rings. Nagata, who was the most outstanding research worker of the 
195Os, also created the theory of Hensel rings, constructed examples of non- 
catenary Noetherian rings and counter-examples to Hilbert’s 14th prob- 
lem, and initiated the theory of Nagata rings (which he called pseudo- 
geometric rings). Y. Mori carried out a deep study of the integral closure 
of Noetherian integral domains. 

However, in contrast to Nagata and Mori’s work following the Krull 
tradition, there was at the same time a new and completely different 
movement, the introduction of homological algebra into commutative ring 
theory by Auslander and Buchsbaum in the USA, Northcott and Rees in 
Britain, and Serre in France, among others. In this direction, the theory of 
regular sequences and depth appeared, giving a new treatment of Cohen- 
Macaulay rings, and through the homological characterisation of regular 
local rings there was dramatic progress in the theory of regular local rings. 

The early 1960s saw the publication of Bourbaki’s AlgPbre commutative, 
which emphasised flatness, and treated primary decomposition from a new 
angle. However, without doubt, the most characteristic aspect of this 
decade was the activity of Grothendieck. His scheme theory created a 
fusion of commutative ring theory and algebraic geometry, and opened up 

ways of applying geometric methods in ring theory. His local cohomology 
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is an example of this kind of approach, and has become one of the 
indispensable methods of modern commutative ring theory. He also 
initiated the theory of Gorenstein rings. In addition, his systematic 
development, in Chapter IV of EGA, of the study of formal libres, and the 
theory of excellent rings arising out of it, can be seen as a continuation and a 
final conclusion of the work of Zariski and Nagata in the 1950s. 

In the 1960s commutative ring theory was to receive another two 
important gifts from algebraic geometry. Hironaka’s great work on the 
resolution of singularities [l] contained an extremely original piece of 
work within the ideal theory of local rings, the ring-theoretical significance 
of which is gradually being understood. The theorem on resolution of 
singularities has itself recently been used by Rotthaus in the study of 
excellent rings. Secondly, in 1969 M. Artin proved his famous approxim- 
ation theorem; roughly speaking, this states that if a system of simultaneous 
algebraic equations over a Hensel local ring A has a solution in the 
completion A, then there exist arbitrarily close solutions in A itself. This 
theorem has a wide variety of applications both in algebraic geometry and 
in ring theory. A new homology theory of commutative rings constructed 
by M. Andre and Quillen is a further important achievement of the 1960s. 

The 1970s was a period of vigorous research in homological directions by 
many workers. Buchsbaum, Eisenbud, Northcott and others made detailed 
studies of properties of complexes, while techniques discovered by Peskine 
and Szpiro [l] and Hochster [H] made ingenious use of the Frobenius 
map and the Artin approximation theorem. Cohen-Macaulay rings, 
Gorenstein rings, and most recently Buchsbaum rings have been studied in 
very concrete ways by Hochster, Stanley, Kei-ichi Watanabe and S. Goto 
among others. On the other hand, classical ideal theory has shown no sign 
of dying off, with Ratliff and Rotthaus obtaining extremely deep results. 

TO give the three top theorems of commutative ring theory in order of 
importance, I have not much doubt that Krull’s dimension theorem 
(Theorem 13.5) has pride of place. Next perhaps is IS. Cohen’s structure 
theorem for complete local rings (Theorems 28.3, 29.3 and 29.4). The fact 
that a complete local ring can be expressed as a quotient of a well- 
understood ring, the formal power series ring over a field or a discrete 
valuation ring, is something to feel extremely grateful for. As a third, I 
would give Serre’s characterisation of a regular local ring (Theorem 19.2); 
this grasps the essence of regular local rings, and is also an important 
meeting-point of ideal theory and homological algebra. 

This book is written as a genuine textbook in commutative algebra, and 
is as self-contained as possible. It was also the intention to give some 
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thought to the applications to algebraic geometry. However, both for 
reasons of space and limited ability on the part of the author, we are not 
able to touch on local cohomology, or on the many subsequent results of 
the cohomological work of the 1970s. There are readable accounts of these 
subjects in [G6] and [HI, and it would be useful to read these after this 
book. 

This book was originally to have been written by my distinguished friend 
Professor Masao Narita, but since his tragic early death through illness, I 
have taken over from him. Professor Narita was an exact contemporary of 
mine, and had been a close friend ever since we met at the age of 24. Well- 
respected and popular with all, he was a man of warm character, and it was 
a sad loss when he was prematurely called to a better place while still in his 
forties. Believing that, had he written the book, he would have included 
topics which were characteristic of him, UFDs, Picard groups, and so on, 
I have used part of his lectures in 920 as a memorial to him. I could 
wish for nothing better than to present this book to Professor Narita and to 
hear his criticism. 

Hideyuki Matsumura 
Nagoya 



Conventions and terminology 

(1) Some basic definitions are given in Appendixes A-C. The index contains 
references to all definitions, including those of the appendixes. 

(2) In this book, by a riny we always understand a commutative ring with 
unit; ring homomorphisms A -B are assumed to take the unit element 
of A into the unit element of B. When we say that A is a subring of B 
it is understood that the unit elements of A and B coincide. 

(3) If f:A -B is a ring homomorphism and J is an ideal of B, then 
f - l(J) is an ideal of B, and we denote this by A n J; if A is a subring of 
B and f is the inclusion map then this is the same as the usual set-theoretic 
notion of intersection. In general this is not true, but confusion does not 
arise. 

Moreover, if I is an ideal of A, we will write ZB for the ideal f(l)B of B. 

(4) If A is a ring and a,, . . . , a, elements of A, the ideal of A generated by 
these is written in any of the following ways: a,A + a,A + ... + anA, 1 a,A, 

(a I,..., a,) or (a,, . , . , u&l. 

(5) The sign c is used for inclusion of a subset, including the possibility of 
equality; in [M] the sign c was used for this purpose. However, when we 
say that ‘M, c M, c”. is an ascending chain’, M, $ M, $ ... is intended. 

(6) When we say that R is a ring of characteristic p, or write char R = p, we 
always mean that p > 0 is a prime number. 

(7) In the exercises we generally omit the instruction ‘prove that’. Solutions 
or hints are provided at the end of the book for most of the exercises. Many of 
the exercises are intended to supplement the material of the main text, so it 
is advisable at least to glance through them. 

(8) The numbering Theorem 7.1 refers to Theorem 1 of 57; within 
one paragraph we usually just refer to Theorem 1, omitting the section 
number. 





1 
Commutative rings and modules 

This chapter discusses the very basic definitions and results. 
$1 centres around the question of the existence of prime ideals. In $2 

we treat Nakayama’s lemma, modules over local rings and modules of 
finite presentation; we give a complete proof, following Kaplansky, of the 
fact that a projective module over a local ring is free (Theorem 2.5), 
although, since we will not make any subsequent use of this in the infinitely 
generated case, the reader may pass over it. In 93 we give a detailed 
treatment of finiteness conditions in the form of Emmy Noether’s chain 
condition, discussing among other things Akizuki’s theorem, IS. Cohen’s 
theorem and Formanek’s proof of the EakinNagata theorem. 

1 Ideals 

If A is a ring and 1 an ideal of A, it is often important to consider 
the residue class ring A/I. Set A = A/I, and write f:A ---+A for the 
natural map; then ideals Jof A and ideals J = ,f - ’ (J) of A containing I are 
in one-to-one correspondence, with 6= J/1 and A/J N A/J. Hence, when 
we just want to think about ideals of A containing I, it is convenient to 
shift attention to A/I. (If I’ is any ideal of A then f(1’) is an ideal of A, 
with f - ‘(f(Z’)) = I + I’, and S(Z’) = (I + Z')/Z.) 

A is itself an ideal of A, often written (1) since it is generated by the 
identity element 1. An ideal distinct from (1) is called a proper ideal. An 
element a~,4 which has an inverse in A (that is, for which there exists 
U’EA with aa’ = 1) is called a unit (or invertible element) of A; this holds 
if and only if the principal ideal (a) is equal to (1). If a is a unit and x is 
nilpotent then a +x is again a unit: indeed, if x” = 0 then setting y = 
-u-l x, we have y” = 0; now 

(l-y)@ +y+...+yn-‘)= 1 -y”= 1, 

so that a + x = a (1 - y) has an inverse. 
In a ring A we are allowed to have 1 = 0, but if this happens then it 

follows that a = 1.u = 0.u = 0 for every UEA, so that A has only one 
element 0; in this case we write A = 0. In definitions and theorems about 
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rings, it may sometimes happen that the condition A # 0 is omitted even 
when it is actually necessary. A ring A is an integral domain (or simply a 
domain) if A # 0, and if A has no zero-divisors other than 0. If A is an 
integral domain and every non-zero element of A is a unit then A is a 
jield. A field is characterised by the fact that it is a ring having exactly 
two ideals (0) and (1). 

An ideal which is maximal among all proper ideals is called a maximal 
ideal; an ideal m of A is maximal if and only if A/m is a field. Given a 
proper ideal I, let M be the set of ideals containing I and not containing 
1, ordered by inclusion; then Zorn’s lemma can be applied to M. Indeed, 
IEM so that M is non-empty, and if L c M is a totally ordered subset 
then the union of all the ideals belonging to L is an ideal of A and obviously 
belongs to 44, so is the least upper bound of L in M. Thus by Zorn’s 
lemma A4 has got a maximal element. This proves the following theorem. 

Theorem 1.1. If I is a proper ideal then there exists at least one maximal 
ideal containing I. 

An ideal P of A for which A/P is an integral domain is called a prime 
ideal. In other words, P is prime if it satisfies 

(i) P # A and (ii) x,y$P+xy$P for x,y~A 
A field is an integral domain, so that a maximal ideal is prime. 

If I and J are ideals and P a prime ideal, then 

Indeed, taking x~l and YEJ with x,y$P, we have XYEIJ but xy#P. 
A subset S of A is multiplicative if it satisfies 
(i) x,y~S+xy~S, and (ii) 1~s; 

(here condition (ii) is not crucial: given a subset S satisfying (i), there will 
usually not be any essential change on replacing S by Su (1)). If I is 
an ideal disjoint from S, then exactly as in the proof of Theorem 1 we see 
that the set of ideals containing I and disjoint from S has a maximal 
element. If P is an ideal which is maximal among ideals disjoint from S 
then P is prime. For if x$P, y#P, then since P + xA and P + yA both 
meet S, the product (P + xA) (P + yA) also meets S. However, 

(P$xA)(P+yA)cP+xyA, 

so that we must have xy$P. We have thus obtained the following theorem. 

Theorem 1.2. Let S be a multiplicative set and I an ideal disjoint from S; 
then there exists a prime ideal containing I and disjoint from S. 

If I is an ideal of A then the set of elements of A, some power of which 
belongs to I, is an ideal of A (for X”EZ and y”~I=>(x + J$‘+~-~EI and 



91 Ideals 3 

(ax)“EZ). This set is called the radical of I, and is sometimes written JZ: 

JZ = (aEAla”eZ for some n > O}. 

If P is a prime ideal containing Z then X”EZ c P implies that XEP, and 
hence ,,/I c P; conversely, if x#JZ then S, = {1,x,x2,. . .} is a multi- 
plicative set disjoint from I, and by the previous theorem there exists a 
prime ideal containing Z and not containing x. Thus, the radical of Z is 
the intersection of all prime ideals containing I: 

JI= ,nlp. 2 
In particular if we take Z = (0) then J(O) is the set of all nilpotent elements 
of A, and is called the nilradical of A; we will write nil(A) for this. Then 
nil(A) is intersection of all the prime ideals of A. When nil(A) = 0 we say 
that A is reduced. For any ring A we write Ared for A/nil(A);A,,, is of 
course reduced. 

The intersection of all maximal ideals of a ring A( # 0) is called the 
Jacobson radical, or simply the radical of A, and written rad(A). If 
xerad(A) then for any aEA, 1 + ax is an element of A not contained in 
any maximal ideal, and is therefore a unit of A by Theorem 1. Conversely 
if XEA has the property that 1 + Ax consists entirely of units of A then 
xErad(A) (prove this!). 

A ring having just one maximal ideal is called a local ring, and a 
(non-zero) ring having only finitely many maximal ideals a semilocal ring. 
We often express the fact that A is a local ring with maximal ideal m by 
saying that (A, m) is a local ring; if this happens then the field k = A/m is 
called the residue field of A. We will say that (A, m, k) is a local ring to 
mean that A is a local ring, m = rad(A) and k = A/m. If (A, m) is a local 
ring then the elements of A not contained in m are units; conversely a 
(non-zero) ring A whose nan-units form an ideal is a local ring. 

In general the product II’ of two ideals I, I’ is contained in Z n I’, but 
does not necessarily coincide with it. However, if Z + I’ = (1) (in which case 
we say that Z and I’ are coprime), then II’ = 1 nZ’; indeed, then 
Znl’ = (ZnZ’)(Z + I’) c ZZ’ c ZnZ’. Moreover, if Z and I’, as well as Z 
and I” are coprime, then I and I’I” are coprime: 

(1) = (I + Z’)(Z + Z”) c 1 + Z’Z” C (1). 

By induction we obtain the following theorem. 

Theorem 1.3. If I,, I,, . . . ,Z, are ideals which arc coprime in pairs then 
z,z,. . . Z,=IlnZ,n~~~nZ,. 

In particular if A is a semilocal ring and m,, . . . m, are all of its maximal 
ideals then 
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Furthermore, if I + I’ = (1) then A/II’ N A/I x A/I’. To see this it is 
enough to prove that the natural injective map from A/If’ = A/I r‘l I’ to 
A/I x A/I’ is surjective; taking etzl, e/El’ such that e + e’= 1, we 
have ae’ + a’e = a (mod I) ae’+ a’e E a’ (mod 1’) for any a, u’EA, 
giving the surjectivity. By induction we get the following theorem. 

Theorem 1.4. If I,,. . , I, are ideals which are coprime in pairs then 

AJI,. .I, z AJI, x ... x AJI,,. 

Example 1. Let A be a ring, and consider the ring A[Xj of formal power ’ 
series over A. A power series f’ = a, + a, X + u,X2 + ... with U,EA is a 
unit of A[Xj if and only if a0 is a unit of A. Indeed, if there exists an 
inverse f- ’ =bO+b,X+... then a,b,= 1; and conversely if &‘EA, 
then 

=u,b,+(a,b, +u,b,)X+(u,b,+a,b, +u,b,)X2+... 

can be solved for b,, b,,. .: we just find b,, b,,.. . successively from 
u,b,= 1, u,b, +u,b,=O,.... 

Since the formal power series ring in several variables A [X,, . . . ,X,1 
can be thought ofas (AIXl,. ..,X,-,J)[X,J, herealsof=u,+ xa,X,+ 
CaijXiXj+... is a unit if and only if the constant term a, is a unit of A; 
from this we see that if y@X1,. . .,X,) then 1 + gh is a unit for any power 
series h, so that gErad(A[X, ,. . ,X,1), and hence 

(X 1,..3,X,)crad(A[X, ,..., X”]). 

If k is a field then k[X,,. . .,X,1 is a local ring with maximal ideal 
(X,,. . . ,X,). If A is any ring and we set B = A[X,,. . . ,X,1, then since 
any maximal ideal of B contains (X,, ,X,), it corresponds to a maximal 
idealofB/(X,,...,X,)-A,andsoisoftheformmB+(X,,...,X,),where 
m is a maximal ideal of A. If we write m for this then m n A = m. 

By contrast the case of polynomial rings is quite complicated; here it 
is just not true that a maximal ideal of A[X] must contain X. For example, 
X - 1 is a non-unit of A[X], and so there exists a maximal ideal m 
containing it, and X#nr. Also, if m is a maximal ideal of A[X], it does 
not necessarily follow that m n A is a maximal ideal of A. 

If A is an integral domain then so are both A[X] and A[Xj: if 
f  =u,X’+a,+,X’+’ +... and g=b,XS+b,+lXS”+~~~ with u,#O, 
6, # 0 then f g = a,b,X*+S + . . # 0. If I is an ideal of A we write I[X] or 
1[Xj for the set of polynomials or power series with coefficients in I; 
these are ideals of A[X] or A [Xl, the kernels of the homomorphisms 

A [Xl -(A/O [Xl or 4x]--, (A/I) 1x1 
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obtained by reducing coefficients modulo I. Hence 

&wPCxl = (40 CXI, and A[Xj/Z[Xj 2: (A/Z)[xl; 

in particular if P is a prime ideal then P[X] and P[Xj are prime ideals 
of A[X] and A [ix], respectively. 

If I is finitely generated, that is I = a, A + ... + alA, then I[XJ = 

4.4 Hi + ..* + a,A [[Xl = I.A[XIJ; however, if I is not finitely generated 
then r[XJ is bigger than 1.A [Xl. In the polynomial ring this distinction 
does not arise, and we always have l[X] = I.A[X]. 

Example 2. For a ring A and a, bE A, we have aA c bA if and only if a 
is divisible by b, that is a = bc for some CEA. We assume that A is an 
integral domain in what follows. An element a6A is said to be irreducible 
if a is not a unit of A and satisfies the condition 

a=bc+b or c is a unit of A. 

This is equivalent to saying that aA is maximal among proper principal 
ideals. If aA is a prime ideal then a is said to be prime. As one sees easily, 
a prime element is irreducible, but the converse does not always hold. 

Suppose that an element a has two expressions as products of prime 
elements: 

a = PlP2 . ..p.=p;... p;, with pi and pi prime. 

Then n = m, and after a suitable reordering of the pi we have piA = p;A; 
for pi. ..pk is divisible by pl, and so one of the factors, say pi, is 
divisible by pl. Now since both p1 and pi are irreducible, p1 A = pi A 
hence pi = upI, with u a unit, and p2”‘p,, = up; ..pL. We can replace 
pi by up>, and induction on n completes the proof. In this sense, 
factorisation into prime elements (whenever possible) is unique. 

An integral domain in which any element which is neither 0 nor a unit 
can be expressed as a product of prime elements is called a unique 
factorisation domain (abbreviated to UFD), or a factorial ring. It is well 
known that a principal ideal domain, that is an integral domain in which 
every ideal is principal, is a UFD (see Ex. 1.4). If A is a principal ideal 
domain then the prime ideals are of the form (0) or pA with p a prime 
element, and the latter are maximal ideals. 

If k is a field then k[X,, . . , X,] is a UFD, as is well-known (see Ex. 20.2). 
If f(X,, . .,X,) is an irreducible polynomial then (,f) is a prime ideal, 
but is not maximal if n > 1 (see $5). 

Z[J--51 is not a UFD; indeed if z=n +mJ-5 with II, rnEZ then 
Ck? = n2 + 5m2, and since 2 = n2 + 5m2 has no integer solutions it 
follows that 2 is an irreducible element of Z[J- 51, but we see from 
2.3 = (1 + J- 5)(1 -J- 5) that 2 is not a prime element. We write 
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A = Z[J - 5]= Z[X]/(X” + 5); then setting k = Z/22 we have 

A/2A = Z[X]/(2:X2 + 5) = k[X]/(X” - 1) = k[X]/(X - 1)2. 

ThenP=(2,1-J-5)’ IS a maximal ideal of A containing 2. 

Exercises to 51. Prove the following propositions. 

1.1. Let A be a ring, and I c nil(A) an ideal made up of nilpotent elements; if 
aEA maps to a unit of A/I then a is a unit of A. 

1.2. Let A 1 ,. . , A, be rings; then the prime ideals of A, x x A, are of the form 

A, x ... x Ai-, x Pi x A,+, x ... x A,, 
where Pi is a prime ideal of Ai. 

1.3. Let A and B be rings, and J‘:A -B a surjective homomorphism. 

(a) Prove that f’(rad A) c rad B, and construct an example where the 
inclusion is strict. 

(b) Prove that if A is a semilocal ring then f(rad A) = rad B. 

1.4. Let A be an integral domain. Then A is a UFD if and only if every 
irreducible element is prime and the principal ideals of A satisfy the 
ascending chain condition. (Equivalently, every non-empty family of 
principal ideals has a maximal element.) 

1.5. Let {I’,),,, be a non-empty family of prime ideals, and suppose that the P, 

are totally ordered by inclusion; then nPI is a prime ideal. Also, if I is 
any proper ideal, the set ofprime ideals containing I has a minimal element. 

1.6. Let A be a ring, I, P, ,. .,P, ideals of A, and suppose that P,,. , P, are 
prime, and that I is not contained in any of the Pi; then there exists an 
element xeI not contained in any Pi. 

2 Modules 

Let A be a ring and M an A-module. Given submodules N, N 
of M, the set {aEA[aN’ c N) is an ideal of A, which we write N:N 
or (N:N’),. Similarly, if I CA is an ideal then {xEM~ZX c N) is a 
submodule of M, which we write N:I or (N:I),. For agA we define 
N:a similarly. The ideal 0:M is called the annihilator of M, and written 
arm(M). We can consider M as a module over A/ann(M). If arm(M) = 0 
we say that M is a faithful A-module. For .XEM we write arm(x) = 
(aEAlax = O}. 

If M and M’ are A-modules, the set of A-linear maps from M to M’ 
is written Hom,(M, M’). This becomes an A-module if we define the sum 
f + g and the scalar product af by 

(f + g)(x) = f(x) + g(x), (af)(x) = a.fW; 
(the fact that af is A-linear depends on A being commutative). 
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To say that M is an A-module is to say that M is an Abelian group 
under addition, and that a scalar product ax is defined for SEA and 
REM such that the following hold: 

(*I u(x + y) = ax + ay, (ab)x = u(bx), (a + b)x = ax + bx, lx = x; 

for fixed UEA the map x-ax is an endomorphism of M as an additive 
group. Let E be the set of endomorphisms of the additive group M; 
defining the sum and product of A, ,ueE by 

(A + P)(X) = 44 + A-4, (44(x) = Wx)) 
makes E into a ring (in general non-commutative), and giving M an 
A-module structure is the same thing as giving a homomorphism 
A -E. Indeed, if we write a, for the element of E defined by XHUX then 
(*) become 

(ub), = a,b,, (a + b)L = uL -t b,, (l/JL = 1,. 

We can express the fact that cp:M -M is A-linear by saying that 
cpcE and that cp commutes with uL for USA, that is uLcp = cpu,. Since 

’ A is commutative, a, is itself an A-linear map of M for UE A. We normally 
write simply a: M -M for the map uL. 

If M is a B-module and f: A --+B a ring homomorphism, then we 
can make M into an A-module by defining u.x = f(u).x for UEA and 
xeM. This is the A-module structure defined by the composite of 
f: A -B with B -E, where E is the endomorphism ring of the additive 
group of M, and B --+ E is the map defining the B-module structure of M. 

If M is finitely generated as an A-module we say simply that M is a 
finite A-module, or is finite over A. A standard technique applicable to 
finite A-modules is the ‘determinant trick’, one form of which is as follows 
(taken from Atiyah and Macdonald [AM]). 

Theorem 2.1. Suppose that M is an A-module generated by n elements, 
and that cpEHom,(M, M); let I be an ideal of A such that q(M) c ZM. 
Then there is a relation of the form 

(**) (p~+alcp”-l+~~~+u,-,~+u,=O, 

with Ui~Z’ for 1 d i 6 n (where both sides are considered as endomorph- 
isms of M). 
Proof. Let M = Ao, + ... + AU,; by the assumption cp (M) c IM there exist 
Uij~l such that cp(oi) = cJ= i uijwj. This can be rewritten 

jil ((~6, - 6,) uj = 0 (for 1 d i < n), 

where aij is the Kronecker symbol. The coefficients of this system of linear 
equations can be viewed as a square matrix ((~6~~ - aij) of elements of A’[q], 
the commutative subring of the endomorphism ring E of M generated by 
the image A’ of A together with cp; let b, denote its (i,j)th cofactor, and 
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d its determinant. By multiplying the above equation through by b, and 
summing over i, we get do, = 0 for 1 d k d n. Hence d.M = 0, so that d = 0 

as an element of E. Expanding the determinant d gives a relation of the 
form (**). W 

Remark. As one sees from the proof, the left-hand side of (**) is the 
characteristic polynomial of (aij), 

f(X) = det (X6,, - aij) 

with cp substituted for X. If M is the free A-module with basis 
oi,. . .,a,, and I = A, the above result is nothing other than the classical 
Cayley-Hamilton theorem: let f(X) be the characteristic polynomial of 
the square matrix cp = (aij); then f(cp) = 0. 

Theorem 2.2 (NAK). Let M be a finite A-module and I an ideal of A. If 
M = IM then there exists aEA such that aM = 0 and a = 1 mod I. If in 
addition I c rad (A) then M = 0. 

Proof. Setting cp = 1, in the previous theorem gives the relation a = 
l+a,+ .. . + a, = 0 as endomorphisms of M, that is aM = 0, and 
a = 1 modI. If I c rad(A) then a is a unit of A, so that on multiplying 
both sides of aM = 0 by a-l we get M L 0. n 

Remark. This theorem is usually referred to as Nakayama’s lemma, but 
the late Professor Nakayama maintained that it should be referred to as 
a theorem of Krull and Azumaya; it is in fact difficult to determine which 
of these three first had the result in the case of commutative rings, so we 
refer to it as NAK in this book. Of course, this result can easily be proved 
without using determinants, by induction on the number of generators 
of M. 

Corollary. Let A be a ring and I an ideal contained in rad(A). Suppose 
that M is an A-module and N c M a submodule such that M/N is finite 
over A. Then M = N + ZM implies M = N. 

Proof. Setting M = M/N we have &i = Ii@ so that, by the theorem, 
iiT=o. n 

If W is a set of generators of an A-module M which is minimal, in the 
sense that any proper subset of W does not generate M, then W is said 
to be a minimal basis of M. Two minimal bases do not necessarily have 
the same number of elements; for example, when M = A, if x and y are 
non-units of A such that x + y = 1 then both {l} and {x, y} are 
minimal bases of A. However, if A is a local ring then the situation is clear: 

Theorem 2.3. Let (A, m, k) be a local ring and M a finite A-module; set 
R = M/mM. Now M is a finite-dimensional vector space over k, and we 
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write n for its dimension. Then: 
(i) If we take a basis {tii,..., U,) for M over k, and choose an 

inverse image UiE M of each y then {ul ,. . . ,u,} is a minimal basis 
of M; 

(ii) conversely every minimal basis of M is obtained in this way, and 
so has n elements. 

(iii) If {q,. . .,u,} and {ui ,. . . ,u,} are both minimal bases of M, and 
ui = 1 UijUj with Uij~A then det (aij) is a unit of A, SO that (aij) is an 
invertible matrix. 

Proof: (i) M = xAui + mM, and M is finitely generated (hence also 
M/xAui), so that by the above corollary M = xAui. If {ul,. .,u,} is 
not minimal, so that, for example, {u2,. . . , un} already generates M 
then (&,..., tin} generates fi, which is a contradiction. Hence 
{ul, _ . . , u,> is a minimal basis. 

(ii) If {ui, . . . , u,} is a minimal basis of M and we set Ui for the image 
of ui in M, then u,,. . . , U, generate A, and are linearly independent 
over k; indeed, otherwise some proper subset of {tii , . . . ,U,,,} would 
be a basis of M, and then by (i) a proper subset of {ui,. . ,u,} would 
generate M, which is a contradiction. 

- - 
(iii) Write Zij for the image in k of aij, so that Ui = Caijuj holds in 

M. Since (aij) is the matrix transforming one basis of the vector space 
I$ into another, its determinant is non-zero. Since det (aij) modm = 
det (aij) # 0 it follows that det (aij) is a unit of A. By Cramer’s formula 
the inverse matrix of (aij) exists as a matrix with entries in A. n 

We give another interesting application of NAK, the proof of which is 
due to Vasconcelos [2]. 

Theorem 2.4. Let A be a ring and M a finite A-module. If f:M -M is 
an A-linear map and f is surjective then f is also injective, and is thus 
an automorphism of M. 
Proof. Since f commutes with scalar multiplication by elements of A, we 
can view M as an A[X]-module by setting X.m = f(m) for meM. Then by 
assumption XM = M, so that by NAK there exists YEA[X] such that 
(1 +XY)M =O. Now for uEKer(f) we have 0 = (1 + XY)(u) = 
u + Yf(u) = u, so that f is injective. n 

Theorem 2.5. Let (A,m) be a local ring; then a projective module over A 
is free (for the definition of projective module, see Appendix B, p. 277). 

Proof. This is easy when M is finite: choose a minimal basis ol,. . . , w, of 
M and define a surjective map cp:F -+ M from the free module F = 
Ae, O...@Ae, to M by cp(xaiei) = c a,~,, 1 we set K = Ker(cp) then, from . . ‘f 
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the minimal basis property, 

Capi = 0 s- aiEm for all i. 

Thus K c mF. Because M is projective, there exists $: M -F such that 
F = $(M)@ K, and it follows that K = mK. On the other hand, K is a 
quotient of F, therefore finite over A, so that K = 0 by NAK and F N M. 

The result was proved by Kaplansky [2] without the assumption that 
M is finite. He proves first of all the following lemma, which holds for 
any ring (possibly non-commutative). 

Lemma 1. Let R be any ring, and F an R-module which is a direct sum of 
countably generated submodules; if M is an arbitrary direct summand ofF 
then M is also a direct sum of countably generated submodules. 
Proof of Lemma 1. Suppose that F = M @ N, and that F = oloA E,, where 
each E, is countably generated. By translinite induction, we construct a 
well-ordered family {F,} of submodules of F with the following properties: 

(i) ifa<Bthen F,cF,, 
(ii) F = ua F,, 
(iii) if c1 is a limiting ordinal then F, = UBcaFB, 
(iv) F,, ,/F, is countably generated, 
(v) F,= M,@N,, where M,= MnF,, N,= NnF,, 
(vi) each F, is a direct sum of E, taken over a suitable subset of A. 

We now construct such a family {FE). Firstly, set F, = (0). For an 
ordinal cc, assume that F, has been defined for all ordinals p < CI. If a is 
a limiting ordinal, set F, = Us<= F,. If tl is of the form a=,&+ 1, let Q1 
be any one of the E, not contained in F, (if F, = F then the construction 
stops at Fp). Take a set xrl, x12,. . . of generators of Qi, and decompose 
xi1 into its M- and N-components; now let Q, be the direct sum of the 
finitely many E, which are necessary to write each of these two components 
in the decomposition F = GE,, and let xzl, xz2,. . . be generators of Qz. 
Next decompose xi2 into its M- and N-components, let Q3 be the direct 
sum of the finitely many E, needed to write these components, and let 
x3l, x32,*.. be generators of Q3. Then carry out the same procedure with 
xzl, getting xbl, xa2,. . . , then do the same for x13. Carrying out the same 
procedure for each of the xij in the order x~l,x~2,xz1,x~3,x22,x31,... 
we get ‘countably many elements xij. We let F, be the submodule of F 
generated by F, and the xii, and this satisfies$all our requirements. This 
gives the family {Fb} . 

Now M = u M,, with each M, a direct summand of F, and M,, 1 =) M,, 
so that M, is also a direct summand of M,+l. Moreover, 

F,+ JFn = W,+ ,lMJOW,+ JNa), 
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and hence M,, ,/M, is countably generated. Thus we can write 

M a+l = M,@M&+,, with Mi,, countably generated. 

When a is a limit ordinal, since M, = up < a M,, we set Mh = 0. Then finally 
we can write 

M = @ Mi with Mb (at most) countably generated. n 

Of course aolfree module satisfies the assumption of Lemma 1, so that, 
in particular, we see that any projective module is a direct sum of countably 
generated projective modules. Thus in the proof of Theorem 2.5 we can 
assume that M is countably generated. 

Lemma 2. Let M be a projective module over a local ring A, and XEM. 
Then there exists a direct summand of M containing x which is a free 
module. 
Proof of Lemma 2. We write M as a direct summand of a free module 
F = M @ N. Choose a basis B = {ui}ipl of F such that the given element 
x has the minimum possible number of non-zero coordinates when 
expressed in this basis. Then if x = ulal + ... + ~,a,, with 0 # Ui~A, we have 

ai4 1 Aaj for i = 1, 2,. . . , n; 
J#i 

indeed, if, say, a, = 1; - i biai then x = C;- i (ui + u,b,)q, which contradicts 
the choice of B. Now set ui = yi + zi with y,gM and z,EN; then 

X=&Ui=piyi. 

If we write yi = I;= 1 cijuj + ti, with ti linear combinations of elements of 
B other than ui, . . . , u,, we get relations a, = CJ= I ajcji, and, hence, in view 
of what we have seen above, we must have 

1 - ci+m and cijEm for i #j. 

It follows that the matrix (cij) has an inverse (this can be seen from the 
fact that the determinant is s 1 mod m, or by elimination). Thus replacing 
Ul,..., unbyy,,..., y, in B, we still have a basis of F. Hence, F, = CYiA is 
a direct summand of F, and hence also of M, and satisfies all the 
requirements of Lemma 2. n 

To prove the theorem, let M be a countably generated projective module, 
M=co,A+o,~+.... By Lemma 2, there exists a free module F, such 
that o,EF,, and M = F, GM,, where M, is a projective module. Let w; 
be the M ,-component of o2 in the decomposition M = F I @M 1, and take 
a free module F, such that o;EF~ and M, = F, GM,, where M, is a 
Projective module. Let oj be the M,-component of wj in M = F, @ 
F, 0 M,; proceeding in the same way, we get 

M=F,@F,@..., 

so that M is a free module. n 
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We say that an A-module M # 0 is a simple module if it has no 
submodules other than 0 and M itself For any 0 # UEM, we then have 
M = Ao. Now Ao N A/ann(o), but in order for this to be simple, arm(o) 
must be a maximal ideal of A. Hence, any simple A-module is isomorphic 
to A/m with m a maximal ideal, and conversely an A-module of this form 
is simple. If M is an A-module, a chain 

of submodules of M is called a composition series of M if every Mi/Mi+ 1 is 
simple; r is called the length of the composition series. If a composition series 
of M exists, its length is an invariant of M independent of the choice of 
composition series. More precisely, if M has a composition series of length 
r, and if MI N, I>... =3 N, is a strictly descending chain of sub- 
modules, then we have s < r. This invariance corresponds to part of the 
basic JordanHolder theorem in group theory, but it can easily be proved 
on its own by induction, and the reader might like to do this as an exercise. 
The length of a composition series of M is called the length of M, and written 
2(M); if M does not have a composition series we set l(M) = co. A necessary 
and sufficient condition for the existence of a composition series of M is that 
the submodules of M should satisfy both the ascending and descending 
chain conditions (for which see 93). In general, if N c M is a submodule, 
we have 

l(M) = l(N) + l(M/N). 

IfO+M, -M2 -..’ - M, -+ 0 is an exact sequence of A-modules and 
each Mi has finite length then 

i$l (- 1)‘NMJ = 0. 
If m is a maximal ideal of A and is finitely generated over A then 

1(A/m”) < co. In fact, 

1(A/m”) = 1(A/m) + l(m/m2) + ... + l(mv-l/mv); 

now each m’/m i+l is a finite-dimensional vector space over the field 
k = A/m, and since its A-submodules are the same thing as its vector 
subspaces, ,(mi/mifl) is equal to the dimension of m’/m’+ l as k-vector 
space. (This shows that A/m” is an Artinian ring, see $3.) 

Considering /(A/m”) for all v, we get a function of v which is intimately 
related to the ring structure of A, and which also plays a role in the resolution 
of singularities in algebraic and complex analytic geometry; this is studied in 
Chapter 5. 

We say that an A-module M is of finite presentation if there exists an 
exact sequence of the form 

A*-Aq+M+O. 
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This means that M can be generated by 4 elements ol,. . . , wq in such a way 
that the module R = {(a,,. .., a,)~A~lCa~o~ = 0) of linear relations 
holding between the oi can be generated by p elements. 

Theorem 2.6. Let A be a ring, and suppose that M is an A-module of finite 
presentation. If 

O+K-N-M-0 

is an exact sequence and N is finitely generated then so is K. 
Proof. By assumption there exists an exact sequence of the form 

L, 2 L, L M -+ 0, where L, and L2 are free modules of finite rank. 
From this we get the following commutative diagram (see Appendix B): 

If we write N = At, + ... + A<,,, then there exist ui~L, such that 
cp(li)=f(ui). Set 5: = ti -a(~,); then (p(&)=O, so that we can write 
I$ = @(vi) with ~],EK. Let us now prove that 

K=j3(L2)+4,+..++Aq,. 
For any ~EK, set $(r]) = xaiti; then 

$(S - Cailli) = Cai(ti - 5;) = cc(Cuiui)3 
and since 0 = (~a(1 aiui) = f(C a,~, , .) we can write cuiui = g(u) with UEL,. 
Now 

IcIPf”) = crS(u) = 4x Vi) = $411 - 1 uiUi), 
SO that q = /I(u) + 1 uiqi, and this proves our assertion. w 

Exercises to $2. Prove the following propositions. 

2.1. Let A be a ring and I a finitely generated ideal satisfying I = 1’; then I is 
generated by an idempotent e (an element e satisfying ez = e). 

2.2. Let A be a ring, I an ideal of A and M a finite A-module; then 
Jann(M/IM)= J(ann(M) +I). 

2.3. Let M and N be submodules of an A-module L. If M + N and M n N are 
finitely generated then so are M and N. 

2.4. Let A be a (commutative) ring, A # 0. An A-module is said to be free of rank 
n if it is isomorphic to A”. 

(a) If A” N Am then n = m; prove this by reducing to the case of a field. 
(Note that there are counter-examples to this for non-commutative rings.) 
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(b) Let C = (cij) be an n x m matrix over A, and suppose that C has a non- 
zero r x r minor, but that all the (r + 1) x (r + 1) minors are 0. Show then 
that if r < m, the m column vectors of C are linearly dependent. (Hint: you 
can assume that m = r + 1.) Deduce from this an alternative proof of (a). 

(c) If A is a local ring, any minimal basis of the free module A” is a basis 
(that is, a linearly independent set of generators). 

2.5. Let A be a ring, and 0 + L 4 M - N + 0 an exact sequence of A- 
modules. 

(a) If L and N are both of finite presentation then so is M. 
(b) If L is finitely generated and M is of finite presentation then N is of 

finite presentation. 

3 Chain conditions 

The following two conditions on a partially ordered set I- are 
equivalent: 

(*) any non-empty subset of r has a maximal element; 
(**) any ascending chain y1 < yz <. . . of elements of r must stop after a 

finite number of steps. 
Theimplication(*)+(**)isobvious. Weprove(**)*(*).LetPbeanon- 

empty subset of r. If r’ does not have a maximal element, then by the axiom 
of choice, for each y Er’ we can choose a bigger element of Y, say q(y). Now if 
we choose any y1 EI-’ and set y2 = cp(y,), y3 = I&Y&. . . then we get an infinite 
ascending chain y1 < y2 <... , contradicting (**). 

When these conditions are satisfied we say that I’ has the ascending chain 
condition (a.c.c.), or the maximal condition. Reversing the order we can define 
the descending chain condition (d.c.c.), or minimal condition in the same way. 

If the set of ideals of a ring A has the a.c.c., we say that A is a Noetherian 
ring, and if it has the d.c.c., that A is an Artinian ring. If A is Noetherian (or 
Artinian) and B is a quotient of A then B has the same property; this is 
obvious, since the set of ideals of B is order-isomorphic to a subset of 
that of A. 

The am. and d.c.c. were first used in a paper of Emmy Noether (1882-1935), Idealtheorie 
in Ringbereichen, Math. Ann., 83 (1921). Emil Artin (1898-1962) was, together with Emmy 
Noether, one of the founders of modern abstract algebra. As well as studying non-com- 
mutative rings whose one-sided ideals satisfy the d.c.c., he also discovered the Artin- 
Rees lemma, which will turn up in $8. 

In the same way, we say that a module is Noetherian or Artinian if its set of 
submodules satisfies the a.c.c. or the d.c.c. If M has either of these properties, 
then so do both its quotient modules and its submodules. (A subring of a 
Noetherian or Artinian ring does not necessarily have the same property: 
why not?) 
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A ring A is Noetherian if and only if every ideal of A is finitely generated. 
(Proof, ‘only if’: given an ideal I, consider a maximal element of the set of 
finitely generated ideals contained in I; this must coincide with I. ‘If’: given 
an ascending chain I, c I, c ... of ideals, u I, is also an ideal, so that by 
assumption it can be generated by finitely many elements a,, . , a,. There is 
some I, which contains all the ai, and the chain must stop there.) 

In exactly the same way, an A-module M is Noetherian if and only if 
every submodule of M is finitely generated. In particular M itself must be 
finitely generated, and if A is Noetherian then this is also sufficient. Thus we 
have the well-known fact that finite modules over a Noetherian ring are 
Noetherian; we now give a proof of this in a more general form. 

Theorem 3.1. Let A be a ring and M an A-module. 
(i) Let M’ c M be a submodule and 9: M + M/M’ the natural map. If 

N, and N, are submodules of M such that N, c N,, N, n M’ = N, n M’ 
and cp(N,) = cp(N,) then N, = Nz. 

(ii) Let 0 -+ M’ -M + M” + 0 be an exact sequence of A-modules; 
if M’ and M” are both Noetherian (or both Artinian), then so is M. 

(iii) Let M be a finite A-module; then if A is Noetherian (or Artinian), 
so is M. 

Proof. (i) is easy, and we leave it to the reader. 
(ii) is obtained by applying (i) to an ascending (respectively descending) 

chain of submodules of M. 
(iii) If M is generated by n elements then it is a quotient of the free module 

A”, so that it is enough to show that A” is Noetherian (respectively Artinian). 
However, this is clear from (ii) by induction on n. w 

For a module M, it is equivalent to say that M has both the a.c.c. and 
the d.c.c., or that M has finite length. Indeed, if I(M) < 00 then I(M i) < 1(M,) 
for any two distinct submodules MI c M2 c M, so that the two chain 
conditions are clear. Conversely, if M has the d.c.c. then we let M, be a 
minimal non-zero submodule of M, let M, be a minimal element among all 
submodules of M strictly containing M, , and proceed in the same way to 
obtain an ascending chain 0 = MO c M 1 c M, c ...; if M also has the a.c.c. 
then this chain must stop by arriving at M, so that M has a composition 
series, 

Every submodule of the Z-module Z is of the form nZ, so that Z is 
Noetherian, but not Artinian. Let p be a prime, and write W for the Z- 
module of rational numbers whose denominator is a power of p; then 
the Z-module W/Z is not Noetherian, but it is Artinian, since every proper 
submodule of W/Z is either 0 or is generated by p-” for n = 1,2,. . . . This 
shows that the a.c.c. and d.c.c. for modules are independent conditions, 
but this is not the case for rings, as shown by the following result. 
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Theorem 3.2 (Y. Akizuki). An Artinian ring is Noetherian. 
Proof. Let A be an Artinian ring. It is sufficient to prove that A has finite 
length as an A-module. First of all, A has only finitely many maximal ideals. 
Indeed,ifp,,p,,... is an infinite set of distinct maximal ideals then it is easy 
to see that p1 3 plpz =) p1p2p3”. is an infinite descending chain of ideals, 
which contradicts the assumption. Thus, we let pl, pz,. . . , pr be all the 
maximal ideals of A and set I = p1p2.. . p, = rad (A). The descending chain 
III2 2 ‘.. stops after finitely many steps, so that there is an s such that 
I” = Z’+i. If we set (0:I”) = J then 

(J:Z) = ((0:P):I) = (O:r+l) = J; 

let’s prove that J = A. By contradiction, suppose that J # A; then there exists 
an ideal J’ which is minimal among all ideals strictly bigger than J. For any 
XEJ’ - J we have J’ = Ax + J. Now I = rad (A) and J # J’, so that by NAK 
J’ # Ix + J, and hence by minimality of J’ we have Ix + J = J, and this gives 
Ix c J. Thus XE(J:I) = J, which is a contradiction. Therefore J = A, so that 
I” = 0. Now consider the chain of ideals 

Let M and Mpi be any two consecutive terms in this chain; then MIMpi is a 
vector space over the field A/p,, and since it is Artinian, it must be tinite- 
dimensional. Hence, l(M/Mp,) < co, and therefore the sum 1(A) of these 
terms is also finite. a 

Remark. This theorem is sometimes referred to as Hopkins’ theorem, but it was proved in the 
above form by Akizuki [2] in 1935. It was rediscovered four years later by Hopkins [l], and 

he proved it for non-commutative rings (a left-Artinian ring with unit is also left-Noetherian). 

Theorem 3.3. If A is Noetherian then so are A[X] and A[Xj. 
Proof. The statement for A[X] is the well-known Hilbert basis theorem 
(see, for example Lang, Algebra, or [AM], p. 81), and we omit the proof. 
We now briefly run through the proof for A[Xj. Set B = A[XJ, and 
let I be an ideal of B; we will prove that I is finitely generated. Write 
Z(r) for the ideal of A formed by the leading coefficients a, of f = a,X’ + 
a *+1 

xr+1 
+ . . ’ as f runs through In X’B; then we have 

I(0) c 1(l) C 1(2) C . . . . 

Since A is Noetherian, there is an s such that I(s) = I(s + 1) = “.; moreover, 
each Z(i) is finitely generated. For each i with 0 < i < s we take finitely many 
elements aivEA generating Z(i), and choose giVEI nXiB having Ui, as the 
coefficient of Xi. These giV now generate 1. Indeed, for f~1 we can take 
a linear combination go of the g,,” with coefficients in A such that 
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f -geEZn XB, then take a linear combination gi of the glV with 

coefficients in A such that f - go - g,EZnX’B, and proceeding in the 
same way we get 

f-go-g1 --...-g,ElnX”+‘B. 

Now Z(s + 1) = Z(s), so we can take a linear combination gs+ i of the Xg,, 
with coefficients in A such that 

f-g90-g1--~~-gs+lEznX”+2B. 

We now proceed in the same way to get gs+ *,. . . For i < s, each gi 
is a linear combination of the giy with coefficients in A, and, for 
i > s, a combination of the elements XiPsgsV. For each i > s we write 
gi = ~vaivXi-“g,,, and then for each v we set h,, = ~im,saivXi~S; h, is an 
element of B, and 

f=gO+...+gs-l+ChYgSY. n . 

A ring A[b,,. . .,b,] which is finitely generated as a ring over a 
Noetherian ring A is a quotient of a polynomial ring A[X,, . . . ,X,1, and 
so by the Hilbert basis theorem is again Noetherian. We now give some 
other criteria for a ring to be Noetherian. 

Theorem 3.4 (I. S. Cohen). If all the prime ideals of a ring A are finitely 
generated then A is Noetherian. 
Proof. Write r for the set of ideals of A which are not finitely generated. 
If r # fa then by Zorn’s lemma r contains a maximal element I. Then I is 
not a prime ideal, so that there are elements x, YEA with x$Z, ~$1 but 
xy~l. Now Z+Ay is bigger than I, and hence is finitely generated, so 
that we can choose ui,. . .,u,EZ such that 

Z+Ay=(u, ,..., u,,y). 

Moreover, Z:y= {aEAlayeZ} contains x, and is thus bigger than 
I, so it has a finite system of generators (ur,. .,u,}. Finally, it is 
easy to check that Z = (ui ,..., y,u,y,.. .,v,y); hence, Z$r, which is a 
contradiction. Therefore r = 121. n 

Theorem 3.5. Let A be a ring and M an A-module. Then if M is a 
Noetherian module, A/ann(M) is a Noetherian ring. 
Proof. If we set A = Alann (M) and view M as an A-module, then the 
submodules of M as an A-module or A-module coincide, so that M is 
also Noetherian as an A-module. We can thus replace A by 2, and then 
arm(M) = (0). Now letting M = Ao, + ... + Aw,, we can embed A in M” 
by means of the map a++(au r, . . . , aw,). By Theorem 1, M” is a Noetherian 
module, so that its submodule A is also Noetherian. (This theorem can 
be expressed by saying that a ring having a faithful Noetherian module 
is Noetherian.) n 
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Theorem 3.6 (E. Formanek Cl]). Let A be a ring, and B an A-module 
which is finitely generated and faithful over A. Assume that the set of 
submodules of B of the form 1B with I an ideal of A satisfies the a.c.c.; 
then A is Noetherian. 

Proof. It will be enough to show that B is a Noetherian A-module. By 
contradiction, suppose that it is not; then the set 

i 1 

IB I is an ideal of A and B/IB is / 
non-Noetherian as A-module i 

contains (0) and so is non-empty, so that by assumption it contains a 
maximal element. Let ZB be one such maximal element; then replacing B 
by BJIB and A by A/ann(B/IB) we see that we can assume that B is a 
non-Noetherian A-module, but for any non-zero ideal I of A the quotient 
BjZB is Noetherian. 

Next we set 

I = (NIN is a submodule of B and B/N is a faithful A-module}. 

If B = Ab, + *a. + Ab, then for a submodule N of B, 

NElYoVaaA-0, {ab, ,..., ab,} $N. 

From this, one sees at once that Zorn’s lemma applies to I; hence there 
exists a maximal element N, of I. If B/N,, is Noetherian then A is a 
Noetherian ring, and thus B is Noetherian, which contradicts our 
hypothesis. It follows that on replacing B by B/N, we arrive at a module 
B with the following properties: 

(1) B is non-Noetherian as an A-module; 
(2) for any ideal I # (0) of A, B/IB is Noetherian; 
(3) for any submodule N # (0) of B, B/N is not faithful as an A-module. 
Now let N be any non-zero submodule of B. By (3) there is an element 

aeA with a # 0 such that a(B/N) = 0, that is such that aB c N. By (2) 
B/aB is a Noetherian module, so that N/aB is finitely generated; but since 
B is finitely generated so is aB, and hence N itself is finitely generated. 
Thus, B is a Noetherian module, which contradicts (1). n 

As a corollary of this theorem we get the following result. 

Theorem 3.7. 
(i) (Eakin-Nagata theorem). Let B be a Noetherian ring, and Aa subring 

of B such that B is finite over A; then A is also a Noetherian ring. 
(ii) Let B be a non-commutative ring whose right ideals have the a.c.c., 

and let A be a commutative subring of B. If B is finitely generated as a 
left A-module then A is a Noetherian ring. 

(iii) Let B be a non-commutative ring whose two-sided ideals have the 
a.c.c., and let A be a subring contained in the centre of B; if B is finitely 
generated as an A-module then A is a Noetherian ring. 
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proof. B has a unit, so is faithful as an A-module. Hence it is enough to 
apply the previous theorem. n 

Remark. Part (i) of Theorem 7 was proved in Eakin’s thesis [l] in 1968, 
and the same result was obtained independently by Nagata [9] a little 
later. Subsequently many alternative proofs and extensions to the non- 
commutative case were published; the most transparent of these seems to 
be Formanek’s result [l], which we have given above in the form of 
Theorem 6. However, this also goes back to the idea of the proofs of 
Eakin and Nagata. 

Exercises to $3. Prove the following propositions. 

3.1. Letl ,,...,I,beidealsofaringAsuchthatI,n...nI,=(O);ifeachA/I,isa 
Noetherian ring then so is A. 

3.2. Let A and B be Noetherian rings, and f:A --f C and g:B -C ring 
homomorphisms. If both ,f and g are surjective then the fibre product 
A x,B (that is, the subring of the direct product A x B given by 
{(a,b)~A x Blf(a) = g(b)] is a Noetherian ring. 

3.3. Let A be a local ring such that the maximal ideal m is principal and 

n “,,,m” = (0). Then A is Noetherian, and every non-zero ideal of A is a 
power of m. 

3.4. Let A be an integral domain with field of fractions K. A fractional ideal I of 
A is an A-submodule I of K such that I # 0 and al c A for some 0 # c(EK. 
The product of two fractional ideals is defined in the same way as the 
product of two ideals. If I is a fractional ideal of A we set I- ’ = { C(E K(aZ 
c A}; this is also a fractional ideal, and II ’ c A. In the particular case 
that II- ’ = A we say that I is inoertible. An invertible fractional ideal of A 
is finitely generated as an A-module. 

3.5. If A is a UFD, the only ideals of A which are invertible as fractional ideals 
are the principal ideals. 

3.6. Let A be a Noetherian ring, and cp: A --+ A a homomorphism of rings. 
Then if rp is surjective it is also injective, and hence an automorphism of A. 

3.7. If A is a Noetherian ring then any finite A-module is of finite presentation, 
but if A is non-Noetherian then A must have finite A-modules which are 
not of finite presentation. 



2 
Prime ideals 

The notion of prime ideal is central to commutative ring theory. The set 
SpecA of prime ideals of a ring A is a topological space, and the 
‘localisation’ of rings and modules with respect to this topology is an 
important technique for studying them. These notions are discussed in 94. 
Starting with the topology of Spec A, we can define the dimension of A and 
the height of a prime ideal as notions with natural geometrical content. In 
55 we treat elementary dimension theory using only field theory, developing 
especially the dimension theory of ideals in polynomial rings, including the 
Hilbert Nullstellensatz. We also discuss, as example of an application of the 
notion of dimension, the theory of Forster and Swan on estimates for the 
number of generators of a module. (Dimension theory will be the subject of 
a detailed study in Chapter 5 using methods of ring theory). In $6 we discuss 
the classical theory of primary decomposition as modernised by Bourbaki. 

4 Localisation and Spec of a ring 

Let A be a ring and S c A a multiplicative set; that is (as in 
$1) suppose that 

(i) x, y~S+xy& and (ii) 1~3. 

Definition. Suppose that f:A -B is a ring homomorphism satisfying the 
two conditions 

(1) f(x) is a unit of B for all XES; 
(2) if g:A + C is a homomorphism of rings taking every element of S to 

a unit of C then there exists a unique homomorphism 

h:B-+C such that g=hf; 

then B is uniquely determined up to isomorphism, and is called the 
localisation or the ring of .jimtions of A with respect to S. We write 
B = S- ‘A or A,, and call f: A --+ A, the canonical map. 

We prove the existence of B as follows: define the relation - on the 
set A x S by 

(a, s) - (b, s’)e3 teS such that t(s’a - sb) = 0; 

20 
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it is easy to check that this is an equivalence relation (if we just had 
s’a = sb in the definition, the transitive law would fail when S has 
zero-divisors). Write a/s for the equivalence class of (a,s) under N, and 
let B be the set of these; sums and products are defined in B by the usual 
rules for calculating with fractions: 

a/s + b/s’ = (as’ + bs)/ss’, (a/s).(b/s’) = ablss’. 

This makes B into a ring, and defining f: A --+ B by f(a) = a/l we see that 
f is a homomorphism of rings satisfying (1) and (2) above. Indeed, if seS 
then f(s) = s/l has the inverse l/s; and if g:A -C is as in (2) then we just 
have to set h(a/s) = g(a)g(s)-’ (the reader should check that a/s = b/s’ 
implies g(a)g(s)- l = g(b)g(s’)-‘). From this construction we see that the 
kernel of the canonical map f:A --P A, is given by 

Kerf = (aeAJsa =0 for some SES}. 

Hence f is injective if and only if S does not contain any zero-divisors 
of A. In particular, the set of all non-zero-divisors of A is a multiplicative 
set; the ring of fractions with respect to S is called the total ring of fractions 
of A. If A is an integral domain then its total ring of fractions is the same 
thing as its field of fractions. 

In general, let f:A -B be any ring homomorphism, I an ideal of A 
and J an ideal of B. According to the conventions at the beginning of the 
book, we write ZB for the ideal f(Z)B of B. This is called the extension of 
I to B, or the extended ideal, and is sometimes also written I’. Moreover, 
we write Jn A for the ideal f-‘(Z) of A. This is called the contracted ideal 
of J, and is sometimes also written J”. In this notation, the inclusions 

I”” ~1 and J”” c.l 

follow immediately from the definitions; from the first inclusion we get 
I ece 1 I’, but substituting J = I’ in the second gives I”“’ c I”, and hence 

(*) I”“’ = I’, and similarly J”“” = Jc. 

This shows that there is a canonical bijection between the sets (ZBlZ 
is an ideal of A} and (J nA )J is an ideal of B}. 

If P is a prime ideal of B then B/P is an integral domain, and since 
A/P” can be viewed as a subring of B/P it is also an integral domain, so 
that P” is a prime ideal of A. (The extended ideal of a prime ideal does 
not have to be prime.) 

An ideal J of B is said to be primary if it satisfies the two conditions: 
(1) l&J, and (2) for x,y~B, if xy~J and x#J then y”eJ for some 
fl> 0; in other words, all zero-divisors of B/J are nilpotent. The property 
that all zero-divisors are nilpotent passes to subrings, so that just as for 
prime ideals we see that the contraction of a primary ideal remains primary. 
If J is prim& then ,,/J is a prime ideal (see Ex. 4.1). 
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The importance of rings of fractions for ring theory stems mainly from 
the following theorem. 

Theorem 4.1. 
(i) All the ideals of A, are of the form IA,, with I an ideal of A. 
(ii) Every prime ideal of A, is of the form pA, with p a prime ideal of 

A disjoint from S, and conversely, pA, is prime in A, for every such p; 
exactly the same holds for primary ideals. 
Proof. (i) If J is an ideal of A,, set I = .Z n A. If x = a/sEJ then 
x.f(s) = f(a)~J, so that ael, and then x = (l/s)*f(a)~ZA~. The converse 
inclusion IA, c J is obvious, so that J = IA,. 

(ii) If P is a prime ideal of A, and we set p = Pn A, then p is a prime 
ideal of A, and from the above proof P = pA,. Moreover, since P does 
not contain units of A,, we have p nS = a. Conversely, if p is a prime 
ideal of A disjoint from S then 

ab 
-.-EPA, with s,teS=>rab~p for some r~s, 
s t 

and since r$p we must have aEp or bEp, so that a/s or bItEpA,. One 
also sees easily that l$pAs, so that pAs is a prime ideal of A,. 

For primary ideals the argument is exactly the same: if p is a primary 
ideal of A disjoint from S and if rabep with reS, then since no power 
of r is in p we have abEp. From this we get either u/s~pA, or (b/t)“EpAs 
for some n. n 

Corollary. If A is Noetherian (or Artinian) then so is As. 
Proof. This follows from (i) of the theorem. n 

We now give examples of rings of fractions As for various multiplicative 
sets S. 

Example 1. Let UEA be an element which is not nilpotent, and set 
S=(l,a,a2,... }. In this case we sometimes write A, for As. (The reason 
for not allowing a to be nilpotent is so that O$S. In general if 0~s then 
from the construction of As it is clear that A, = 0, which is not very 
interesting.) The prime ideals of A, correspond bijectively with the prime 
ideals of A not containing a. 

Example 2. Let p be a prime ideal of A, and set S = A - p. In this case 
we usually write A, for As. (Writing A, and AcA--pj to denote the same thing 
is totally illogical notation, and the Bourbaki school avoids As, writing 
S-IA instead; however, the notation As does not lead to any confusion.) 
The localisation A, is a local ring with maximal ideal PA,. Indeed, as we saw 
in Theorem 1, pA, is a prime ideal of A,, and furthermore, if J c A, is any 
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proper ideal then I = J n A is an ideal of A disjoint from A - p, and so Z c p, 
giving .Z = IA, c PA,. The prime ideals of A, correspond bijectively with 
the prime ideals of A contained in p. 

Example 3. Let I be a proper ideal of A and set S = 1 + Z = (1 + 
xlx~l}. Then S is a multiplicative set, and the prime ideals of A, 
correspond bijectively with the prime ideals p of A such that Z + p #A. 

Example 4. Let S be a multiplicative set, and set s” = {a~A/abgS for 
some SEA}. Then s” is also a multiplicative set, called the saturation 
of S. Since quite generally a divisor of a unit is again a unit, we see from 
the definition of the ring of fractions that A, = A,, and gis maximal among 
multiplicative sets T such that A, = A,. Indeed, one sees easily that s”= 
{a~Alu/l is a unit in A,}. The multiplicative set S= A -p of 
Example 2 is already saturated. 

Theorem 4.2. Localisation commutes with passing to quotients by ideals. 
More precisely, let A be a ring, S c A a multiplicative set, I an ideal of A 
and S the image of S in A/I; then 

AdzAs = (4% 
Proof. Both sides have the universal property for ring homomorphisms 
g:A -+ C such that 

(1) every element of S maps to a unit of C, 
and (2) every element of Z maps to 0; 
the isomorphism follows by the uniqueness of the solution to a universal 
mapping problem. In concrete terms the isomorphism is given by 

afs mod IA,++@, where ti=u+Z, S=s+Z. n 

In particular, if p is a prime ideal of A then 

A&A, 21 (A/P),,. 
The left-hand side is the re.sidue field of the local ring A,, whereas the 
right-hand side is the field of fractions of the integral domain A/p. This 
field is written K(P) and called the residue field of p. 

Theorem 4.3. Let A be a ring, S c A a multiplicative set, and 
f:A -A, the canonical map. If B is a ring, with ring homomorphisms 
g:A --+B and h:B -A, satisfying 

(1) f= 4, 
and (2) for every b~Z3 there exists s~S such that g(s).kg(A), then A, 
can also be regarded as a ring of fractions of B. More precisely, 

A, = B,(,, = B,, where T= {teBlh(t)r is a unit of A,). ~- 
Proof. We can factorise h as B -+B, -+ A,; write CI:B=- A, for 
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the second of these maps. Now g(S) c T, so that the composite A -+ B 
-+ B, factorises as A --+ A, -B,; write fi:As -B, for the second of 
these maps. Then 

so that E/J = 1, the identity map of A,. Moreover by assumption, for kB 
there exist aEA and SES such that bg(s) = g(a). Hence, fl(a/s) = g(a)/g(s) = 
b/l. In particular for tcT, if we take UEA, such that t/l =b(u) then 
u = @p(u) = a(t/l) = h(t), so that u is a unit of A,. Hence, b/t = fl(a/s)b(u-‘), 
and /3 is surjective. Thus CI and fi are mutually inverse, giving an 
isomorphism A, N B,. The fact that A, 2: Bqcs, can be proved similarly. 
(Alternatively, this follows since T is the saturation of the multiplicative 
set g(S). The reader should check this fo,r himself.) w  

Corollary 1. If p is a prime ideal of A, S = A - p and B satisfies the 
conditions of the theorem, then setting P = pA, n B we have A, = B,. 
Proof. Under these circumstances the T in the theorem is exactly B - P. 

Corollary 2. Let S c A be a multiplicative set not containing any zero- 
divisors; then A can be viewed as a subring of A,, and for any intermediate 
ring A c B c A,, the ring A, is a ring of fractions of B. 

Corollary 3. If S and T are two multiplicative subsets of A with S c T, 
then writing T’ for the image of T in A,, we have (AS)T, = A,. 

Corollary 4. If S c A is a multiplicative set and P is a prime ideal of A 
disjoint from S then (AS)PA,7 = A,. In particular if P c Q are prime ideals of 
A, then 

(A&Ap = A,. 

Definition. The set of all prime ideals of a ring A is called the spectrum 
of A, and written SpecA; the set of maximal ideals of A is called the 
maximal spectrum of A, and written m-Spec A. 

By Theorem 1.1 we have 

A # Oom-Spec A # @oSpec A # @. 

If Z is any ideal of A, we set 

V(Z)={pESpecAIp=,I}. 

Then 

V(Z)u V(Z’) = V(Z n I’) = V(lI’), 

and for any family {I,},,, of ideals we have 

From this it follows that B = (V(Z)lZ is an ideal of A} is closed under 
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finite unions and arbitrary intersections, so that there is a topology on 
SpecA for which 9 is the set of closed sets. This is called the Zariski 
ropo2ogy. From now on we will usually consider the spectrum of a ring 
together with its Zariski topology. m-Spec A will be considered with the 
subspace topology, which we will also call the Zariski topology. 

For aeA we set D(a) = {p&pecAIa$p}; this is the complement 
of V(aA), and so is an open set. Conversely, any open set of SpecA can 
be written as the union of open sets of the form D(a). Indeed, if 
u = Spec A - V(I) then U = UaGl D(a). Hence, the open sets of the form 

D(U) form a basis for the topology of Spec A. 
Let f:A -B be a ring homomorphism. For PESpecB, the ideal 

PnA = f-i P is a point of SpecA. The map SpecB -+SpecA defined by 
taking P into P n A is written “jY As one sees easily, (“f)- ‘(V(I)) = V(IB), 
so that “f is continuous. If g:B - C is another ring homomorphism then 
obviously “(gf) = “J“‘y. Hence, the correspondence A w-+ Spec A and 
f+-+“fdefines a contravariant functor from the category of rings to the , 
category of topological spaces. If “f(P) = p, that is if Pn A = p, we say 
that P lies over p. 

Remark. For P a maximal ideal of B it does not necessarily follow that 
PnA is a maximal ideal of A; for an example we need only consider the 
natural inclusion A -B of an integral domain A in its field of fractions 
B. Thus the correspondence AHm-SpecA is not functorial. This is one 
reason for thinking of SpecA as more important than m-SpecA. On the 
other hand, one could say that SpecA contains too many points; for 
example, the set {p} consisting of a single point is closed in SpecA if and 
only if n is a maximal ideal (in general the closure of (p} coincides with 
v(n)), SO that Spec A almost never satisfies the separation axiom T,. 

Let M be an A-module and S c A a multiplicative set; we define the 
localisation M, of M in the same way as A,. That is, 

M,= n(m~M, SES 
s 

, 

and 
m m’ 
-= --ot(s’m - sin’) = 0 
s s’ 

for some t6S. 

If v+e define addition in M, and scalar multiplication by elements of 

As by 
m/s + m’/s’ = (s’nr + sm’)/ss’ and (a/s).(m/s’) = am/& 

then MS becomes an -As-module, and a canonical A-linear map M - Ms 
is given by m++m/l; the kernel is {mEMJsm = 0 for some SES}. If S = 
A - p is the complement of a prime ideal p of A we write MP for M,. The set 
{PESpecAIM,#O}’ is called the support of M, and written Supp (M). If M is 
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finitely generated, and we let M = Awi + ... + Au,, then 

PE Supp (M)oMp # 003i such that wi # 0 in M, 

o3i such that ann(o,) c poann(M) = h ann(o,) c p, 
i=l 

so that Supp(M) coincides with the closed subset V(ann(M)) of Spec A. 

Theorem 4.4. M, E M QA As. 
Proof. The map M x As -M, defined by (m, a/s)wam/s is A-bilinear, 
so that there exists a linear map cz: M @As ----) M, such that a(m @ a/s) = 
am/s. Conversely we can define 8: MS -+ M @ As by /?(m/s) = m @ (l/s); 
indeed, if m/s = m’Js’ then ts’m = tsm’ for some t ES, and so 

m @ (l/s) = m @ (ts’ltss’) = ts’m @ (l/tss’) = tsm’ @3 (l/tss’) 
= m’ Q ( 1 is’). 

Now it is easy to check that CI and /3 are mutually inverse As-linear 
maps. Hence, MS and M @A As are isomorphic as As-modules. 

Theorem 4.5. M-M, is an exact (covariant) functor from the category 
of A-modules to the category of As-modules. That is, for a morphism of 
A-modules f:M - N there is a morphism fs: MS --+ N, of As-modules 
such that 

(id), = id (where id is the identity map of M or Ms), 

(Sf)s = Ysfsi 
and such that an exact sequence 0 +M’-M-M”+0 goes into an 
exact sequence 0 + Mk - MS --+ Mg --t 0. 
Proof. To prove the exactness of 0 + M; -MS on the last line, view M’ 
as a submodule of M; then for XEM’ and SES, 

x/s=0 in M,otx =0 for some tES 
ox/s =0 in Ms, 

as required. The remaining assertions follow from the properties of the 
tensor product (see Appendix A) and from the previous theorem. (Of 
course they can easily be proved directly.) n 

It follows from this that localisation commutes with @ and with Tor, 
and we will treat all this together in the section on flatness in 47. 

Let A be a ring, M an A-module and p~Spec A. There are at least 
two interpretations of what it should mean that some property of A or M 
holds ‘locally at p’. Namely, this could mean that A, (or MJ has the 
property, or it could mean that A, (or M,,) has the property for all q in 
some neighbourhood U of p in Spec A. The first of these is more commonly 
used, but there are cases when the two interpretations coincide. In any 
case, we now prove a number of theorems which assert that a local property 
implies a global one. 
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Theorem 4.6. Let A be a ring, M an A-module and XEM. If x = 0 in M, 
for every maximal ideal p of A, then x = 0. 
Proof. 

x = 0 in M,osx = 0 for some .SEA - poann (x) + p. 

. However, if 1 $ann(x) then by Theorem 1.1, there must exist a maximal 
ideal containing ann (x). Therefore 1 Eann (x), that is x = 0. H 

Theorem 4.7: Let A be an integral domain with field of fractions K; set 
x = m-Spec A. We consider any ring of fractions of A as a subring of K. 

’ Then in this sense we have 

A = n A,,,. 
IIEX 

Proof. For XEK the set I= (aEAlaxEA} is an ideal of A. Now 
XEA, is equivalent to I $ p, so that if XEA,,, for every maximal ideal 
m then 1~1, that is XEA. w 

Remark. The above I is the ideal consisting of all possible denominators 
of x when written as a fraction of elements of A, together with 0, and this 
can be called the ideal of denominators of x; similarly Ix can be called 
the ideal of numerators of x. 

Theorem 4.8. Let A be a ring and M a finite A-module. If M OAIc(m) = 0 
for every maximal ideal m then M = 0. 

Proof. I = A,/mA,, so that M @~c(m) = M,ImM,,,, and by NAK 
(Theorem 2.2), M 0 JC(~) = OoM,,, = 0. Thus the assertion follows from 
Theorem 4.6. n 

The theorem just proved iseasy, but we can-weaken the assumption 
that M is finite over A; we have the following result. 

Theorem 4.9. Let f: A --t B be a homomorphism of rings, and M a finite 
B-modules; if M OAic(p) = 0 for every p&pec A, then M = 0. 
Proof. If M # 0 then by Theorem 6 there is a maximal ideal P of B such 
that M, # 0, so that by NAK, M,/PM, # 0. If we now set p = Pn A then, 
since pM, c PM,, we have M,/pM, # 0. Set T = B -P and S = A - p; 
then the localisation Ms = M, of M as an A-module and the localisation 
Mf,s, of M as a B-module coincide (both of them are {m/slm # M, SES} ). 
We have f(S) c T, so that 

MP = MT = O-f/& = (Mph, 
and hence 

MP/PM,J = (M,IW,h = Wf 0, ~P))T; 

it follows that M OA+) # 0. w  
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Remark. In Theorem 4.9 we cannot restrict p to be a maximal ideal of 
A. As one sees from the proof we have just given, M = 0 provided that 
M @ rc(p) = 0 for every ideal p which is the restriction of a maximal ideal 
of B. However, if for example (A, m) is a local integral domain with field 
of fractions B, and M = B, then M @ rc(m) = B/mB = 0, but M # 0. 

Theorem 4.10. Let A be a ring and M a finite .4-module. 
(i) For any non-negative integer r set 

U, = {pESpec AIM, can be generated over A, by r elements}; 
then U, is an open subset of Spec A. 

(ii) If M is a module of finite presentation then the set 

U, = {p E Spec A I M, is a free AD-module} 

is open in Spec A. 
Proof. (i) Suppose that A, = M,o, +. . + A,w,. Each oi is of the form 
Oi = mi/si with SiEA - p and mgM, but since si is a unit of A, we can 
replace Wi by mi, and so assume that oi is (the image in M, of) an element 
of M. Define a linear map cp: A’ --+ M from the direct sum of r copies of 
A to M by (a,, . . , a,)++caiwi, and write C for the cokernel of cp. Localising 
the exact sequence A’-+ M -+ C+O at a prime ideal q, we get an 
exact sequence 

A;-M,-C,+O, 

and when q = p we get C, = 0. C is a quotient of M, so is finitely generated, 
so that the support Supp(C) is a closed set, and hence there is an open 
neighbourhood I/ of p such that C, = 0 for qE V. This means that V c U,. 
(In short, if Oi,. . . , O,EM generate M, at p then they generate M, for all q 
in a neighbourhood of p.) 

(ii) Suppose that M, is a free A,-module, and let wi, . . . , w, be a basis. 
As in (i) there is no loss of generality in assuming that oi~M. Moreover, 
if we choose a suitable D(a) as a neighbourhood of p in Spec A, ml,. . . , O, 
generate M, for every qeD(a). Thus, replacing A by A, and M by M, 
we can assume that the elements w  1,. . . , 0, satisfy M, = C A ,a, for every 
prime ideal q of A. Then by Theorem 6, 

M/~Ao,=O, thatisM=Aw,+...+Aw,. 

(We think of replacing A by A, as shrinking Spec A down to the 
neighbourhood o(a) of p.) Now, defining cp:A’ -M as above, and letting 
K be its kernel, we get the exact sequence 

,0-+K--+A’---+M+0; 

moreover, K, = 0. By Theorem 2.6, K is finitely generated, so that applying 
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(i) with r = 0, we have that K, = 0 for every q in a neighbourhood V of 

p; this gives (A,)’ N M,, SO that I/ c U,. w 

Exercise to 54. Prove the following propositions. 

4.1. The radical.of a primary ideal is prime; also, if I is a proper ideal containing 
a power my of a maximal ideal m then I is primary and JI = m. 

4.2. If  P is a prime ideal of a ring A then the symbolic nth power of P is the ideal 
PC”) given by 

PC”’ = P”A, n A. 
This is a primary ideal with radical P. 

4.3. If  S is a multiplicative set of a ring A then Spec(A,) is homeomorphic to 

the subspace {p 1 p n S = @a) c Spec A; this is in general neither open nor 
closed in Spec A. 

4.4. If  I is an ideal of A then Spec (A/I) is homeomorphic to the closed subset 
V(I) of Spec A. 

4.5. The spectrum of a ring Spec A is quasi-compact, that is, given an open 
covering { UAjl,, of X = Spec A (with X = UA U,), a finite number of the 

U, already cover X. 

4.6. If  Spec A is disconnected then A contains an idempotent e (an element e 
satisfying e2 = e) distinct from 0 and 1. 

4.7. If  A and B are rings then Spec(A x B) can be identified with the disjoint 
union Spec A Ll SpecB, with both of these open and closed in 
Spec (A x B). 

4.8. If  M is an A-module, N and N’ submodules of M, and S c A a 
multiplicative set, then N, n N’s = (N n N’)s, where both sides are consi- 
dered as subsets of M,. 

4.9. A topological space is said to be Noetherian if the closed sets satisfy the 
descending chain condition. If  A is a Noetherian ring then SpecA is a 
Noetherian topological space. (Note that the converse is not true in 
general.) 

4.10. We say that a non-empty closed set Ii in a topological space is reducible if 
it can be expressed as a union V = V, u V, of two strictly smaller closed 
sets V, and Vz, and irreducible if it does not have any such expression. If  
peSpec A then V(p) is an irreducible closed set, and conversely every 
irreducible closed set of Spec A can be written as V(p) for some pESpec A. 

4.11. Any closed subset of a Noetherian topological space can be written as a 
union of finitely many irreducible closed sets. 

4.12. Use the results of the previous two exercises to prove the following: for I a 
proper ideal of a Noetherian ring, the set of prime ideals containing I has 
only finitely many minimal elements. 
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5 The Hilhert Nullstellensatz and first steps in 
dimension theory 

Let X be a topological space; we consider strictly decreasing (or 
strictly increasing) chains 2,) Z, , . . . , Z, of length r of irreducible closed 
subsets of X. The supremum of the lengths, taken over all such chains, is 
called the combinatorial dimension of X and denoted dimX. If X is a 
Noetherian space then there are no infinite strictly decreasing chains, but it 
can nevertheless happen that dimX = co. 

Let Y be a subspace of X. If S c Y is an irreducible closed subset of Y then 
its closure in X is an irreducible closed subset SC X such that Sn Y = S. 
Indeed,ifS= VuWwith Vand WclosedinXthenS=(YnY)u(WnY), 
so that say S = Vn Y, but then V = S. It follows easily from this that 
dim Y < dim X. 

Let A be a ring. The supremum of the lengths r, taken over all strictly 
decreasing chains p,, 3 p1 3 ..’ 3 p, of prime ideals of A, is called the Krull 
dimension, or simply the dimension of A, and denoted dim A. As one sees 
easily from Ex. 4.10, the Krull dimension of A is the same thing as the 
combinatorial dimension of Spec A. For a prime ideal p of A, the supremum 
of the lengths, taken over all strictly decreasing chains of prime ideals 

P=Po=Pl= ... 1 p,. starting from p, is called the height of p, and denoted 
ht p; (if A is Noetherian it will be proved in Theorem 13.5 that ht p < co). 
Moreover, the supremum of the lengths, taken over all strictly increasing 
chain of prime ideals p = p. c p1 c ... c p, starting from p, is called the 
coheight of p, and written coht p. It follows from the definitions that 

ht p = dim A,, coht p = dim A/p and ht p + coht p 6 dim A. 

Remark. In more old-fashioned terminology ht p was usually called the 
rank of p, and coht p the dimension of p; in addition, Nagata [Nl] calls 
dim A the altitude of A. 

Example 1. The prime ideals in the ring Z of rational integers are the ideals 
pH generated by the primes p = 2,3,5,. . . , together with (0): Hence, every pZ 
is a maximal ideal, and dim Z = 1. More generally, any principal ideal 
domain which is not a field is one-dimensional. 

Example 2. An Artinian ring is zero-dimensional; indeed, we have seen in 
the proof of Theorem 3.2 that there are only a finite number of maximal 
idealsp,,..., p,, and that the product of ail of these is nilpotent. If then p is a 
prime ideal, p 2 (0) = (pl.. . p,)’ so that p 2 pi for some i; hence, p = pi, SO 

that every prime ideal is maximal. 

Example 3. A zero-dimensional integral domain is just a field. 
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Example 4. The polynomial ring k[X,, . . . , X,] over a field k is an integral 
domain, and since 

4X 1,...,Xnl/(Xl,.,,rXi)NkCXi+I,..-,X,l, 

(X l,. . . ,Xi) is a prime ideal of k[X,, . . . , X,]. Thus 

(o)=(x,)=(x,,x,)=~~~~(x,,...,x”) 
is a chain of prime ideals of length n, and dim k[X, , . . . , X,] > n. In fact we 
will shortly be proving that equality holds. 

For an ideal I of a ring A we define the height of I to be the intimum of the 
heights of prime ideals containing I: 

htI=inf{htpIIcp&pecA). 

Here also we have the inequality 

ht I -t dim A/I < dim A. 

If M is an A-module we define the dimension of M by 

dim M = dim (Alann (M)). 

If M is finitely generated then dim M is the combinatorial dimension of the 
closed subspace Supp (M) = V(ann (M)) of Spec A. 

A strictly increasing (or decreasing) chain pO, pi , . . . of prime ideals is said 
to be saturated if there do not exist prime ideals strictly contained between 
any two consecutive terms. We say that A is a catenary ring if the following 
condition is satisfied; for any prime ideals p and p’ of A with p c p’, there 
exists a saturated chain of prime ideals starting from p and ending at p’, and 
all such chains have the same (finite) length. 

If a local domain (A, m) is catenary then for any prime ideal p we have 
ht p + coht p = dim A. Conversely, if A is a Noetherian local domain and 
this equality holds for all p then A is catenary (Ratliff [3], 1972); the proof 
of this is difficult, and we postpone it to Theorem 31.4. Practically all the 
important Noetherian rings arising in applications are known to be 
catenary; the first example of a non-catenary Noetherian ring was 
discovered in 1956 by Nagata [IS]. 

We now spend some time discussing the elementary theory of dimensions 
of rings which are finitely generated over a field k. 

Theorem 5.1. Let k be a field, L an algebraic extension of k and 
al,..., a,& then 

(i) k[a,, . . . ,~l =kh,...,q,). 
(ii) Write q:k[X,, . . . ,X,] --+ k(a,, . . , a,) for the homomorphism 

over k which maps Xi to cci; then Ker cp is the maximal ideal generated 
by n elements of the form fl(X,), f2(X1, X,),. . . ,f,,(X,, . . . ,X,), where 
each .fi can be taken to be manic in Xi. 
Proof. Let fi(X) be the minimal polynomial of a1 over k; then (fl(X,)) is a 
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maximal ideal of k[X,], so that k[aJ z k[X,]/(fl(X,)) is a field, and hence 
k[~~] = @a,). Now let (p2(X) be the minimal polynomial of a2 over k(cr,); 
then since k(cr,) = k[~r], the coefficients of pDz can be expressed as 
polynomials in a1, and there is a polynomial f,~k[X,, X,], manic in X,, 
such that (p2(X2) = .fi(ai, X,). Thus 

kC~,>4 = 4dC~l =kt~l>Q ‘v k(a,)Cxzl/(fi(crl,x,)). 
Proceeding in the same way, for l<i<n there is an 
fi(X,,...,Xi)EkCXl,..., X,], manic in Xi, such that 

4a 1). . . ) ai] = k(a,). . . ) ai) 

-k(cx,,...,cci-,)[xil/(.l;(crl,...,ai-,,Xi)). 

Now if P(X)Ek[X,,. . ,X,] is in the kernel of q, we have q(P) = 

P(a 1 ,..., sr,)=O, so that P(a,,. . .,a,-r,X,,) is divisible by f,,(c~~,. , 
CI,,-~ ,X,); dividing P(X,, . , X,) as a polynomial in X, by the 
manic polynomial f,,(X, , . . , X,) and letting R,(X I , . . . , X,) be the remain- 
der, we can write P = QJ,, + R,, with Rn(al,. . . ,cI,_ l,Xn) = 0. Similarly, 
dividing R,(X, , . . . , X,) as a polynomial in X, - 1 by f,, - I(X 1, . . , X, - 1) and 
letting R, - ,(X1,. . . , X,) be the remainder, we get 

R,=Q,-If,-I +k1, 
with 

L,(a 1,...,a,-2,Xn-1,Xn)=0. 

Proceeding in the same way we get P = 1 Qifi + R, with R(X,, . . . , X,) = 0; 
that is R = 0 and P = 1 Qifi, so that Kercp=(f,,f, ,..., f,,). n 

The following theorem can be regarded as a converse of Theorem 1, (i). 

Theorem 5:2. Let k be a field and A = k[cc 1,. . . , a,] an integral domain, and 
write r = tr. deg, A for the transcendence degree of A (that is, of its field of 
fractions) over k. Then if r > 0, A is not a field. 
Proof. Suppose that czl,, . . , q is a transcendence basis for A over k, and set 
K = k(cr,, . . . , a,). Then since c(,+ 1,. . . , a, are algebraic over K, there exist 
polynomials ,fi(X,+ I , , X,)EK [X,, 1,. . . , Xi], manic of degree di in Xi, 
such that 

~C~,+I~...,hJ 2.KCX,+1,...,X,ll(f,+l,...,fn) 
and 

di = CKCar + 13. . . 1 ai):K(xr+ 1) ‘. .2 + 111. 
The coefficients of fi are in K, so that for suitable 0 # gsk[a,, . . . , r,] we 
have gfi~k[cr, )...) cI,][X,+1,... ,X,1. In other words, if we set B = 
4-a 1,. . . , a,, g-‘1 then the fi are polynomials with coefftcients in B. We 
are now going to show that A[g- ‘I= B[cl,+ 1,. . , n,] is g free module over 
B with basis in;=;+ 1 $‘I 0 < e, < di}. Every element of B[a,+ r , . . . , a,] can 
be written as P(x,.+~,. . . ,a,,) for some PcB[X,+, , . ,X,1; dividing P as a 
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polynomial in X, by f,, and replacing P by the remainder, we can assume 
that P has degree at most d, - 1 in X,; then dividing P as a polynomial 
in X,-i by f,- i, and replacing by the remainder, we can assume that P 
has degree at most d, _ 1 - 1 in X,- r. Proceeding in the same way, we 
can assume that P has degree at most di - 1 in Xi for each i; in addition, 
the elements (a110 < e < di} are linearly independent over K(cr,+ i, . . . , 
gi- i). Hence A[g - ‘1 is a free B-module. However, B is not a field; for 

Ma 1,. . . , a,] is a polynomial ring in Y variables over k, and hence it contains 
infinitely many irreducible polynomials (the proof of this is exactly the 
same as Euclid’s proof that there exist infinitely many primes). Hence, 
there is an irreducible polynomial hek[a,, . . . , a,] which does not divide 
g, and then obviously h-‘$k[a,,... ,a,,g-I]. Therefore B contains an 
ideal Z with Z # 0, B, and since A[g-‘1 is a free module over B, ZA[g-‘1 
is a proper ideal of A[g-‘1. Thus A[g-‘1 is not a field. But if A were a 
field then we would have Al-g-‘] = A, and hence A is not a field. n 

Theorem 5.3. Let k be a field, and let m be any maximal ideal of the 
polynomial ring k[X, , . . , X,]; then the residue class field k[X,, . . . , X,1/m 
is algebraic over k. Hence m can be generated by n elements, and in 
particular if k is algebraically closed then m is of the form m = 
(Xl-al,..., X, - a,) for aiEk. 
Proof. Set k[X,, . . . , X,1/m = K, and write. cli for the image of Xi in K; then 
K = k[a, , . . . , a,]. By the previous theorem, since K is a field it is algebraic 
over k, and then by Theorem 1, (ii), m is generated by n elements. If k is 
algebraically closed then k = K, so that each Xi is congruent modulo m to 
some aiEk; then (Xi -al,...,X,-a,J cm. On the other hand 

(X1-%..., X, - a,) is obviously a maximal ideal, so that equality must 
hold. a 

Let k be a field and k its algebraic closure. Suppose that CD c 
kCx i,. . . ,X,1 is a subset. An n-tuple CI = (a,, . . . , a,) of elements a,Ekis an 
algebraic zero of @ if it satisfies f(a) = 0 for every f(X)&. 

Theorem 5.4 (The Hilbert Nullstellensatz). 
(i) If @ is a subset of k[X l,. . . ,X,1 which does not have any algebraic 

~ zeros then the ideal generated by @ contains 1. 
(ii) Given a subset CD of k[X,, . . . ,X,] and an element fek[X,, . . .,X,1, 

suppose that f vanishes at every algebraic zero of Q. Then some power off 
: belongs to the ideal generated by a’, that is there exist v > 0, 

BiEk[X,, , , X,] and hi& such that f” = xgihi. 
‘Proof. (i) Let Z be the ideal generated by @; if 141 then there exists a 
maximal ideal m containing I. By the previous theorem, k[X, , . . . , X,1/m 

“i: 
” 

is algebraic over k, so that it has a k-linear isomorphic embedding 8 into 

t 

k. If we set &Xi mod m) = ai then for all g(X)Em we have 0 = @g(X)) = 
j,. 
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gb, 9 *. ., a,,), and therefore c( = (~1~). . . , a,) is an algebraic zero of m, and 
hence also of @. This contradicts the hypothesis; hence, 1~1. 

(ii) Inside k[X, , . . . , X,, Y] we consider the set 0 u (1 - Yj(X)}; then this 
set has no algebraic zeros, so that by (i) it generates the ideal (1). Therefore 
there exists a relation of the form 

1 = 1 Pi@, Yh(W + Q(X, VU - Yf(X)), 
with h,(X)&. This is an identity in Xi,. . . , X, and Y, so that it still holds if 
we substitute Y = f(X)-‘. Hence we have 

l = 1 pi(x, f - ‘)hi(X), 
SO that multiplying through by a suitable power of f and clearing 
denominators gives f’ = c g,(X)h,(X), with g,gk[X, , , . , X,] and 
high. n 

Remark. The above proof of (ii) is a classical idea due to Rabinowitch 
[I]. In a modern form it can be given as follows: let I c k [Xi,. . . , X,] = A 
be the ideal generated by @‘; then in the localisation A, with respect off (see 
$4, Example l), we have IA, = A,, so that a power of S is in 1. 

Theorem 5.5. Let k be a field, A a ring which is finitely generated over k, and 
I a proper ideal of A; then the radical of I is the intersection of all maximal 
ideals containing I, that is ,/I = nlcmm. 
Proof. Let A = k[a,, . . . , a,], so that A is a quotient of k[X,,. .,X,1. 
Considering the inverse image of I in k[X] reduces to the case A = k[X], 
and the assertion follows from Theorem 4, (ii). n 

Compared to the result ,/I = nIcP P proved in $1, the conclusion of 
Theorem 5 is much stronger. It is equivalent to the condition on a ring 
that every prime ideal P should be expressible as an intersection of maximal 
ideals. Rings for which this holds are called Hilbert rings or Jacobson 
rings, and they have been studied independently by 0. Goldmann [l] and 
W. Krull [7]. See also Kaplansky [K] and Bourbaki [B-5]. 

Theorem 5.6. Let k be a field and A an integral domain which is finitely 
generated over k; then 

dim A = tr.deg, A. 

Proof. Let A = k[X 1,. . . , X,1/P, and set r = tr.deg, A. To prove that 
r > dim A it is enough to show that if P and Q are prime ideals of 
k[X] = k[X,, . . . , X,] with Q 3 P and Q #P then 

tr. deg, k [Xl/Q < tr. deg, k[X]/P. 

The k-algebra homomorphism k [Xl/P -+ k [Xl/Q is onto, so that tr. deg, 
k(X)/Q d tr. deg,k [Xl/P is obvious. Suppose that equality holds. Let 
k[X]/P = k[a,, . . . , a,] and k[X]/Q = k[pl,. . ,&,]; we can assume that 
/Ii,. . . , p,. is a transcendence basis for k(j3) over k. Then a,, . . . , c(, are also 
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algebraically independent over k, so that they form a transcendence basis 
for &cc) over k. Now set S = k[X, , . , X,] - { 0); S is a multiplicative set in 
k[X] with PnS=@ and QnS=@. Setting R=k[X,,...,X,] and 

K=k(X,,..., X,), we have R, = K[X,+ r,. . . , X,], and 

Rs/PRsNk(cr,,...,x,)Ccr,+,,...,a,l, 
~0 that R,/PR, is algebraic over K = k(X,,. ..,X,) 2: k(a,,.. .,r,), and 
therefore by Theorem 1, PR, is a maximal ideal of R,; but this contradicts 

. the assumptions P c Q with P # Q and Q n S = fzr. 
Now let us prove that r < dim A by induction on r. If r = 0 then, by 

Theorem 1, A is a field, so dim A = 0 and the assertion holds. Now let r > 0, 
and suppose that A = k[a,, . , r,] with g1 transcendental over k; setting 
S = k[X,] - (0) and R = k[X,, . . .,X,] we get 

R, = k(X,)[X,, . , X,] and R,/PR, N k(x,)[a,, . . , a,]. 

Hence R,/PR, has transcendence degree r - 1 over k(X,), so that by 
induction dim R,/PR, > r - 1. Thus there exists a strictly increasing chain 

PRs=QocQl c~~~cQ,~,ofprimeidealsofR,.IfwesetPi=QinRthen 
Pi is a prime ideal of R disjoint from S; in particular, the residue class of 
X, in R/P,-, is not algebraic over k, and so tr.deg, R/P,-, > 0. Then 
P,-, is not a maximal ideal of R by Theorem 3, and therefore R has a 
maximal ideal P, strictly bigger than P,- r. Hence dim A = coht P 3 r. n 

Corollary. If k is a field then dim k[X,, ,.,X,1 = n. 
We now turn to a different topic, the theorem of Forster and Swan on the 

number of generators of a module. Let A be a ring and M a finite A-module; 
for peSpec A, write x(p) for the residue field of A,, and let ~(p, M) denote the 
dimension over rc(p) of the vector space M 0 rc(p) = M&M, (in the usual 
sense of linear algebra). This is the cardinality of a minimal basis of the 
A,-module M,. Hence, if p 3 p’ then ~(p, M) 3 ~(p’, M). 

In 1964 the young function-theorist 0. Forster surprised the experts in 
algebra by proving the following theorem [I]. 

Theorem 5.7. Let A be a Noetherian ring and M a finite A-module. Set 

b(M) = sup {~(p, M) + coht pJp~Supp M}; 

then M can be generated by at most b(M) elements. 

This theorem is a very important link between the number of local and 
global generators. However, there was room for improvement in the bound 
for the number of generators, and in no time R. Swan obtained a better 
bound. We will prove Swan’s bound. For this we need the concept ofj-Spec 
A introduced by Swan. This is a space having the same irreducible closed 
subsets as m-Spec A, but has the advantage of having a ‘generic point’, not 
Present in m-Spec A, for every irreducible closed subset. 
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A prime ideal which can be expressed as an intersection of maximal 
ideals is called a j-prime ideal, and we write j-SpecA for the set of all 
j-prime ideals. We consider j-Spec A also with its topology as a subspace 
of Spec A. Set M = m-SpecA and J = j-Spec A. If F is a closed subset of 
J then there is an ideal I of A such that F = V(I)n J. One sees easily that 
a prime ideal P belongs to F if and only if P can be expressed as an 
intersection of elements of F n M = V(Z)n M. Hence F is determined by 
FnM, so that there is a natural one-to-one correspondence between 
closed subsets of J and of M. It follows that if M is Noetherian so is J, 

and they both have the same combinatorial dimension. Now let B be an 
irreducible closed subset of J, and let P be the intersection of all the 
elements of B. If B = V(I)n J then I c P and we can also write 
B = V(P)n J. If P is not a prime ideal then there exist f, gEA such that 
f $P, gq!P and fgEP; but then 

B=(V(P+fA)nJ)u(V(P+gA)nJ), 

and by definition of P there is a QEB not containing f and a Q’EB not 
containing g, which implies that B is reducible, a contradiction. Therefore 
P is a prime ideal. Hence PEB and B = V(P)n J. This P is called the 
generic point of B. Conversely if P is any element of J then V(P)n J is 
an irreducible closed subset of J, and is the closure in J of (P}. We will 
write j-dim P for the combinatorial dimension of V(P)n J. 

For a finite A-module M and ~EJ we set 

b(p,M) = 
0 ifM,=O 
j-dim p + ~(p, M) if M, # 0. 

Theorem 5.8 (Swan [l]). Let A be a ring, and suppose that m-Spec A is 
a Noetherian space. Let M be a finite A-module. If 

sup {b(p, M)lp~j-Spec A} = Y < cc 

then M is generated by at most Y elements. 
Proof. 

Step 1. For p&pecA and XEM, we will say that x is basic at p if x 
has non-zero image in M 0 rc(p). It is easy to see that this condition is 
equivalent to ~(p, M/Ax) = ~(p, M) - 1. 

Lemma. Let M be a finite A-module and pi ,. . . ,pne Supp (M). Then there 
exists XEM which is basic at each of pi,. . . ,p,. 
Proof. By reordering pi ,. . , p, we assume that pi is maximal among 

{Pi3Pi+l,..., p,} for each i. By induction on n suppose that X’E M is basic at 

Pl,..., p,- i. If x’ is basic at p,, then we can take x = x’. Suppose then that X’ 

is not basic at pn. By assumption M,” # 0 so that we can choose some YE M 
which is basic at p,,. We have p 1 . . pn _ 1 $ p,, so that if we take an element 
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UEPl.. . Pn- 1 not belonging to p,, and set x = x’ + ay, this x satisfies our 
requirements. This proves the lemma. 

Step 2. Setting sup (b(p, M)(pEj-Spec A} = r, we now show that there are 
just a finite number of primes p such that b(p, M) = r. Indeed, for n = 

1,2,..., the subset X, = {pej-Spec AI&, M) 2 n} is closed in j-Spec A by 
Theorem 4.10; it has a finite number of irreducible components (by 
Ex. 4.1 l), and we let pni (for 1 d i 6 v,) be their generic points. If M is 
generated by s elements then X, = @ for n > s, so that the set {P,~},,~ is 

finite. Let us prove that if b(p,M) = r then p~{p,,~),,~. Suppose 
&,M) = n; then pox,,, so that by construction p 2 pni for some i. But 
ifp # pni then j-dim p <j-dim pni, and since ,~(p, M) = n = p(pni, M) we have 
b(p, M) < b(pni, M), which is a contradiction. Hence p = pni. 

Step 3. Let us choose an element x~M which is basic for each of the 
finitely many primes p with b(p, M) = r, and set A = M/Ax; then clearly 
b(p, n;i) < Y - 1 for every pEj-Spec A. Hence by induction &? is generated by 
r - 1 elements, and therefore M by r elements. w 

Swan’s paper contains a proof of the following generalisation to non- 
commutative rings: let A be a commutative ring, A a possibly non- 
commutative A-algebra and M a finite left A-module. Suppose that 
m-Spec A is Noetherian, and that for every maximal ideal p of A the 
&-module M, is generated by at most r elements; then M is generated as a 
A-module by at most r + d elements, where d is the combinatorial 
dimension of m-Spec A. 

The Forster-Swan theorem is a statement that local properties imply 
global ones; remarkable results in this direction have been obtained by 
Mohan Kumar [2] (see also Cowsik-Nori [l] and Eisenbud-Evans [l], 
[2]). The number of generators of ideals in local rings is the subject of 
a nice book by J. Sally [Sal. 

Exercises to $5. Prove the following propositions. 

5.1. Let k be a field, R=k[X,,...,X,] and let PESpecR; then htP+ 
coht P = n. 

5.2. A zero-dimensional Noetherian ring is Artinian (the converse to Example 
2 above). 

6 Associated primes and primary decomposition 

Most readers will presumably have come across primary decom- 
Position of ideals in Noetherian rings. This was the first big theorem 
obtained by Emmy Noether in her abstract treatment of commutative 
rings. Nowadays, as exemplified by Bourbaki [B4], the notion of associated 
Prime is considered more important than primary decomposition itself. 
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Let A be a ring and M an A-module. A prime ideal P of A is c&d an 

associated prime ideal of M if P is the annihilator ann (x) of some XEM. The 
set of associated primes of M is written Ass(M) or Ass,(M). For I an ideal 
of A, the associated primes of the A-module A/I are referred to as the prime 
divisors of I. We say that aEA is a zero-divisor for M if there is a non-zero 
XEM such that ax = 0, and otherwise that a is M-regular. 

Theorem 6.1. Let A be a Noetherian ring and M a non-zero A-module. 
(i) Every maximal element of the family of ideals F = (ann (x) 10 # XE M) 

is an associated prime of M, and in particular Ass(M) # a. 
(ii) The set of zero-divisors for M is the union of all the associated primes 

of M. 
Proof. (i) We have to prove that if ann (x) is a maximal element of F then it 
is prime: if a, be.4 are such that abx = 0 but bx # 0 then by maximality 
ann (bx) = ann (x); hence, ax = 0. 

(ii) If ax = 0 for some x # 0 then asann (x)EF, and by (i) there is an 
associated prime of M containing arm(x). n 

Theorem 6.2. Let S c A be a multiplicative set, and N an As-module. 
Viewing Spec (A,) as a subset of Spec A, we have Ass,(N) = Ass,~(N). If A 
is Noetherian then for an A-module M we have Ass(M,) == 
Ass(M)nSpec(A,). 
Proof. For xeN we have annA(x)=ann,,(x)nA, so that if PeAss,dN) 
then PnAeAss,(N). Conversely if p~Ass*(N) and we choose XEN 
such that p = arm,(x) then x # 0, and hence, p n S = @ and pA, is a prime 
ideal of A, with pA, = ann,,(x). For the second part, if p~Ass(M)n 
Spec(A,) then pnS = a, and p = arm,(x) for some XEM; if (a/s)x = 0 in 
M, then there is a YES such that tax =0 in M, and t$p, taE:p gives 
aep, so that ann,,(x)=pA, and pA,gAss(M,). Conversely, if PE 
Ass(M,) then without loss of generality we have P = annA. with XEM. 
Setting p = Pn A we have P = pA,. Now p is finitely generated since A is 
Noetherian, and it follows that there exists some tES such that p = 
ann,(tx). Therefore pass..,. n 

Corollary. For a Noetherian ring A, an A-module M and a prime ideal P of 
A we have 

Theorem 6.3. Let A be a ring and O+ M’ - M -M” +O an exact 
sequence of A-modules; then 

Ass(M) c Ass (M’) u Ass (M”). 

Proof. If PEASS (M) then M contains a submodule N isomorphic to A/P. 
Since P is prime, for any non-zero element x of N we have arm(x) = P. 
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Therefore if N n M’ # 0 we have PEASS (M’). If N n M’ = 0 then the image 
of N in M” is also isomorphic to A/P, SO that PEAss(M”). H 

Theorem 6.4. Let A be a Noetherian ring and M # 0 a finite A-module. 
Then there exists a chain 0 = M, c M 1 c ... c M, = M of submodules of M 
such that for each i we have M,/M,- 1 N A/Pi with PiESpeC A. 
Proof. Choose any P,EAss(M); then there exists a submodule M, of M 
with M1 N A/P,. If M, # M and we choose any P,gAss (M/M,) then there 
exists Mz c M such that M,/M, N A/P,. Continuing in the same way and 
using the ascending chain condition, we eventually arrive at M, = M. n 

Theorem 6.5. Let A be a Noetherian ring and M a finite A-module. 
(i) Ass(M) is a finite set. 

(ii) Ass (M) c Supp (M). 
(iii) The set of minimal elements of Ass (M) and of Supp (M) coincide. 

Proof. (i) follows from the previous two theorems; we need only note 
that Ass (A/P) = {P}. For (ii), if 0 -+ A/P -M is exact then SO is 0 + 
A~/PA, + Mp, and therefore M, # 0. For (iii) it is enough to show that 
if P is a minimal element of Supp (M) then PEASS (M). We have M, # 0 
so that by Theorem 2 and (ii), 

121#Ass(M,)=Ass(M)nSpec(A,)cSupp(M)nSpec(A,) 
= (PI. 

Therefore we must have PEAss(M). n 

Let A be a Noetherian ring and M a finite A-module. Let Pi,. . . , P, be the 
minimal elements of Supp (M); then Supp (M) = V(P,) LJ”. u V(P,), and the 
v(PJ are the irreducible components of the closed set Supp(M) (see 
Ex. 4.11). The prime ideals P,, . . . , P, are called the isolated associated 
primes of M, and the remaining associated primes of M are called embedded 
Primes. If I is an ideal of A then Supp,(A/I) is the set of prime ideals 
containing I, and the minimal prime divisors of I (that is the minimal 
associated primes of the A-module A/Z) are precisely the minimal prime 
ideals containing I. We have seen in Ex. 4.12 that there are only a finite 
number of such primes, and Theorem 5 now gives a new proof of this. 
(For examples of embedded primes see Ex. 6.6 and Ex. 8.9.) 

Definition. Let A be a ring, M an A-module and N c M a submodule. We 
saY that N is a primary submodule of M if the following condition holds for 
all a6A and XEM: 

x$N and axEN=a’M c N for some v. 

This definition in fact only depends on the quotient module M/N. It can be 
restated as 

if aeA is a zero-divisor for M/N then aEJ(ann(M/N)). 
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A primary ideal is just a primary submodule of the A-module A. One 
might wonder about trying to set up a notion of prime submodule 
generalising prime ideal, but this does not turn out to be useful. 

Theorem 6.6. Let A be a Noetherian ring and M a finite A-module. Then a 
submodule N c M is primary if and only if Ass (M/N) consists of one 
element only. In this case, if Ass (M/N) = {P] and ann (M/N) = I then I is 
primary and JI = P. 
Proof. If Ass(M/N) = {P> then by the previous theorem Supp(M/N) = 
V(P), so that P = ,/(ann(M/N)). N ow if aEA is a zero-divisor for M/N it 
follows from Theorem 1 that aEP, so that aEJ(ann(M/N)); hence, N is a 
primary submodule of M. Conversely, if N is a primary submodule and 
PgAss(M/N) then every aeP is a zero-divisor for M/N, so that by 
assumption aEJI, where I = ann (M/N). Hence P c JI, but from the 
definition of associated prime we obviously have I c P, and hence JI c P, 
so that P = JI. Thus Ass (M/N) has just one element JI. We prove that in 
this case I is a primary ideal: let a, SEA with b$Z; if abel then ab(M/N) = 0, 
but b(M/N) # 0, so that a is a zero-divisor for M/N, and therefore 
aEP=JI. w 

Definition. If Ass (M/N) = (P} we say that N c M is a P-primary sub- 
module, or a primary submodule belonging to P. 

Theorem 6.7. If N and N’ are P-primary submodules of M then so is N n N’. 
Proof. We can embed M/(N n N’) as a submodule of (M/N) 0 (M/N’), so 
that 

Ass(M/(NnN’)) cAss(M/N)uAss(M/N’)= {P]. n 

If N c M is a submodule, we say that N is reducible if it can be written as 
an intersection N = N, n N, of two submodules N,, N, with Ni # N, and 
otherwise that N is irreducible; note that this has nothing to do with the 
notion of irreducible modules in representation theory (= no submodules 
other than 0 and M), which is a condition on M only. 

If M is a Noetherian module then any submodule N of M can be written 
as a finite intersection of irreducible submodules. Proof: let 9 be the set 
of submodules N c M having no such expression. If F # @ then it has a 
maximal element N,. Then N, is reducible, so that N, = N, n N,, and 
Ni#9. Now each of the Ni is an intersection of a finite number of 
irreducible submodules, and hence so is N,. This is a contradiction. 

Remark. The representation as an intersection of irreducible submodules is 
in general not unique. For example, if A is a field and M an n-dimensional! 
vector space over A then the irreducible submodules of M are just its; 
(n - I)-dimensional subspaces. An (n - 2)-dimensional subspace can be’ 
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written in lots of ways as an intersection of (n - 1)-dimensional subspaces. 
In general we say that an expression of a set N as an intersection 

N= N1 n...n N, is k-redundant if we cannot omit any Ni, that is if 
N#Nln..*nNi-lnNi+ln . ..n N,.. If M is an A-module, we call an 
expression N = N 1 n ... n N, of a submodule N as an intersection of a finite 
number of submodules Ni c M a decomposition of N; if each of the Ni is 
irreducible we speak of an irreducible decomposition, if primary of a primary 
decomposition. Let N = N, n ‘.. n N, be an irredundant primary decompo- 
sition with ASS (M/N,) = {Pi}; if Pi = Pj then N,n Nj is again primary, SO 

that grouping together all of the Ni belonging to the same prime ideal we get 
a primary decomposition such that Pi # Pj for i #j. A decomposition with 
this property will be called a shortest primary decomposition, and the Ni 
appearing in it the primary components of N; if Ni belongs to a prime P we 
sometimes say that Ni is the P-primary component of N. 

Theorem 6.8. Let A be a Noetherian ring and M a finite A-module. 
(i) An irreducible submodule of M is a primary submodule. 
(ii) If 

N=N,n..,nN, with Ass (M/N,) = (Pi} 

is an irredundant primary decomposition of a proper submodule N c M 
then Ass(M/N) = {P,, . . . , Pl}. 

(iii) Every proper submodule N of M has a primary decomposition. If N is 
a proper submodule of M and P is a minimal associated prime of M/N then 
the P-primary component of N is (pp l(Np), where (pp: M -M, is the 
canonical map, and therefore it is uniquely determined by M, N and P. 
Proof. (i) It is enough to prove that a submodule N c M which is not 
primary is reducible: replacing M by M/N we can assume that N = 0. By 
Theorem 6, Ass (M) has at least two elements P, and P,. Then M contains 
submodules Ki isomorphic to A/Pi for i = 1,2. Now since ann (x) = Pi for 
any non-zero x~K, we must have K, n K, = 0, and hence 0 is reducible. 

(ii) We can again assume that N = 0. If 0 = N, n...n N, then M is 
isomorphic to a submodule of M/N, @... 0 M/N,, so that 

ASS(M) c ASS ASS (M/NJ = {PI 2.. .) Pl}’ 

On the other hand N,n...nN,#O, and taking O#xEN,n...nNN, we 
have arm(x) = 0:x = N, :x. But N, : M is a primary ideal belonging to PI, SO 

that Pr M c N, for some v > 0. Therefore P; x = 0; hence there exists i 3 0 
such that Pix # 0 but Py l x = 0, and choosing 0 # y~P;x we have 
PIY = 0. However, since YEN, n..’ n N, it follows that y#N,, and by 
the definition of primary submodule ann (y) c P, , so that P, = ann (y) and 
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P,EAss(M). The same works for the other Pi, and this proves that 
{P1,...,P,} cAss(M). 

(iii) We have already seen thal a proper submodule has an irreducible 
decomposition, so that by(i) it has a primary decomposition. Suppose that 
N = N, n.-.n N, is a shortest primary decomposition, and that N, is the 
P-primary component with P = P,. By Ex. 4.8 we know that N, = 

V%n- n(N,&, and for i > 1 a power of Pi is contained in ann (M/N,); 
then since Pi # P, we have (M/Ni)p = 0, and therefore (Ni), = M,. Thus 
N, = (N1)P, and hence qP1(Np) = (PPI((N~)~); it is easy to check that 
the right-hand side is N,. n 

Remark. The uniqueness of the P-primary component N, proved in (iii) for 
minimal primes P, does not hold in general; see Ex. 6.6. 

Exercises to $6. 

6.1. Find Ass(M) for the Z-module M = Z @(Z/37). 

6.2. If M is a finite module over a Noetherian ring A, and M,, M, are 
submodules of M with M = M, +-M, then can we say that Ass(M) = 
Ass(M,)uAss(M,)? 

6.3. Let A be a Noetherian ring and let x6,4 be an element which is neither a 
unit nor a zero-divisor; prove that the ideals xA and x”A for n = 1,2.. 
have the same prime divisors: 

Ass,(A/xA) = Ass,(A/x”A). 

6.4. Let I and J be ideals of a Noetherian ring A. Prove that if JA, c IA, for 
every PcAssA(A/I) then J c 1. 

6.5. Prove that the total ring of fractions of a reduced Noetherian ring A is a 
direct product of fields. 

6.6. (Taken from [Nor 11, p. 30.) Let k be a field. Show that in k[X, yl we have 
(X’,XY) =(X)n(X’, Y) = (X)n(X’,XY, Y’). 

6.7. Let f:  A -+ B be a homomorphism of Noetherian rings, and M a finite B- 
module. Write “f:SpecB ---+ SpecA as in $4. Prove that “f(Ass,(M)) = 
Ass,(M). (Consequently, Ass,(M) is a finite set for such M.) 

Appendix to 56. Secondary representations of a module 

I.G. Macdonald Cl] has developed the theory of attached prime ideals 
and secondary representations of a module, which is in a certain sense 
dual to the theory of associated prime ideals and primary decompositions. 
This theory was successfully applied to the theory of local cohomology 
by him and R.Y. Sharp (Macdonald & Sharp Cl], Sharp [7]). 

Let A be a commutative ring. An A-module M is said to be secondary 
if M # 0 and, for each aEA, the endomorphism cpll:M --+ M defined 
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by cp,(m) = am (for rn~M) is either surjective or nilpotent. IfM is secondary, 
then P = ,,/(ann M) is a prime ideal, and M is said to be P-secondary. Any 
non-zero quotient of a P-secondary module is P-secondary. 

Example 1. If A is an integral domain, its quotient field K is a (0)-secondary 
A-module. 

Example 2. Let W = Z[p- ‘1, where p is a prime number, and consider the 
Artinian Z-module W/Z (see $3). This is also a (0)-secondary Z-module. 

Example 3. If A is a local ring with maximal ideal P and if every element of 
p is nilpotent, then A itself is a P-secondary A-module. 

Example 4. If P is a maximal ideal of A, then A/P” is a P-secondary A- 
module for every n > 0. 

A secondary representation of an A-module M is an expression of M as a 
finite sum of secondary submodules: 

(*) M=N,+...+N,. 

The representation is minimal if (1) the prime ideals Pi: = J(ann Ni) are all 
distinct, and (2) none of the Ni is redundant. It is easy to see that the sum of 
two P-secondary submodules is again P-secondary, hence if M has a 
secondary representation then it has a minimal one. 

A prime ideal P is called an attached prime ideal of M if M has a P- 
secondary quotient. The set of the attached prime ideals of M is denoted by 
Att (M). 

Theorem,6.9. If (*) is a minimal secondary representation of M and Pi = 
J(ann Ni), then Att (M) = (P, ,. . . ,P.}. 
Proof. Since M/(N, + ... + Ni- I + Ni+ 1 + ... f NJ is a non-zero quotient 
of Ni, it is a Pi-secondary module. Thus (PI,. . . ,P,} c Att (M). Conver- 
sely, let PEAtt (M) and let W be a P-secondary quotient of M. Then W = 
m, + *.. + Ii/,, where iVi is the image of Ni in W. From this we obtain a 
minimal secondary representation W = Nil + ... + m,,, and then 
Att(w) 3 (P. II,. . . ,P,,>. On the other hand Att (W) = {P} since W is 
P-secondary. Therefore P = Pi for some i. n 

Theorem 6.10. If O+M’ -M -M” -+O is an exact sequence of 
A-modules, then Att (M”) c Att (M) c Att (M’)u Att (M”). 
Proof. The first inclusion is trivial from the definition. For the second, let 
PEAtt (M) and let N be a submodule such that M/N is P-secondary. If 
M’ + N = M then M/N is a non-trivial quotient of M’, hence PEAtt (M’). 
If M’ + N #M then M/(M’ + N) is a non-trivial quotient of M” as well 
as Of M/N, hence M” has a P-secondary quotient and PEAtt(M”). H 
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An A-module M is said to be sum-irreducible if it is neither zero nor the 
sum of two proper submodules. 

Lemma. If M is Artinian and sum-irreducible, then it is secondary. 
Proof. Suppose M is not secondary. Then there is aGA such that M # aM 
and a”M # 0 for all n > 0. Since M is Artinian, we have a”M = u”+ ‘M for 
some n. Set K = (x~Mla”x = O}. Then it is immediate that M = K + aM, 
and so M is not sum-irreducible. n 

Theorem 6.11. If M is Artinian, then it has a secondary representation. 
Proof. Similar to the proof of Theorem 6.8, (iii). n 

The class of modules which have secondary representations is larger 
than that of Artinian modules. Sharp [8] proved that an injective module 
over a Noetherian ring has a secondary representation. 

Exercises to Appendix to $6. 

6.8. An A-module M is coprimary if Ass(M) has just one element. Show that a 
finite module M # 0 over a Noetherian ring A is coprimary if and only if 

the following condition is satisfied: for every UEA, the endomorphism 
a:M +M is either injective or nilpotent. In this case Ass M = (P). 
where P = J(ann M). 

6.9. Show that if M is an A-module of finite length then M is coprimary if and 
only if it is secondary. Show also that such a module M is a direct sum of 

secondary modules belonging to maximal ideals, and Ass(M) = Att (M). 
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Properties of extension rings 

Flatness was formulated by Serre in the 1950s and quickly grew into one of 
the basic tools of both algebraic geometry and commutative algebra. This is 
an algebraic notion which is hard to grasp geometrically. Flatness is defined 
quite generally for modules, but is particularly important for extensions of 
rings. The model case is that of completion. Complete local rings have a 
number of wonderful properties, and passing to the completion of a local 
ring is an effective technique in many cases; this is analogous to studying an 
algebraic variety as an analytic space. The theory of integral extension of 
rings had been studied by Krull, and he discovered the so-called going-up 
and going-down theorems. We show that the going-down theorem also 
holds for flat extensions, and gather together flatness, completion and 
integral extensions in this chapter. We will use more sophisticated argu- 
ments to study flatness over Noetherian rings in Chapter 8, and completion 
in Chapter 10. 

7 Flatness 

Let A be a ring and M an A-module. Writing Y to stand for a 
sequence . ..+N’+N4N”-... of A-modules and linear 
maps, we let Y QAM, or simply 9’0 M stand for the induced sequence ... 
-N’O,M-NOAM-N”OAM-.... 

Definition. M is flat over A if for every exact sequence Y the sequence 
YBAM is again exact. We sometimes shorten this to A-flat. 

M is faithfully flat if for every sequence P’, 

9’ is exact-Y OAM is exact. 
Any exact sequence Y can be broken up into short exact sequences of 

the form O+N, + N, -+ N, + 0, so that in the definition of flatness 
we need only consider short exact sequences 9’. Moreover, in view of the 
fight-exactness of tensor product (see Appendix A, Formula 8) we can 
restrict attention to exact sequences ,4p of the form 0 -+ N, -N, and 
need only check the exactness of Y 0 M: 0 + N, 0 M - N 0 M. 

If f: A ------f I3 is a homomorphism of rings and B is flat as an A-module, 
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46 Properties of extension rings 

we say that ,f is a flat homomorphism, or that B is a flat A-algebra. For 
example, the localisation A, of A is a flat A-algebra (Theorems 4.4 and 4.5). 
Transitioity. Let B be an A-algebra and M a B-module. Then the following 
hold; 

(1) B is flat over A and M is flat over B* M is flat over A; 
(2) B is faithfully flat over A and M is faithfully flat over B* M is 

faithfully flat over A; 
(3) M is faithfully flat over B and flat over A*B is flat over A; 
(4) M is faithfully flat over both A and B G= B is faithfully flat over A. 

Each of these follows easily from the fact that (9 0, B) &M = Y @A B for 
any sequence of A-modules .Y’. 
Change of coefficient ring. Let B be an A-algebra and M an A-module. 
Then the following hold: 

(1) M is flat over A*M @,,,B is flat over B; 
(2) M is faithfully flat over A = M OA B is faithfully flat over B. 

These follow from that fact that ,Y@,(B @A M) = Y @A M for any 
sequence of B-modules 9’. 

Theorem 7.1. Let A -B be a homomorphism of rings and M a B- 
module. A necessary and sufficient condition for M to be flat over A is that 
for every prime ideal P of B, the localisation M, is flat over A, where 
p = PnA (or the same condition for every maximal ideal P of B). 
Proof. First of all we make the following observation: if S c A is a 
multiplicative set and M, N are A,-modules, then M @*,N = M aA N. 
This follows from the fact that in N OA M we have 

for XEM, YEN, aEA and SEX (In general, if B is an A-algebra and 
M and N are B-modules, it can be seen from the construction of the tensor 
product that M QN is the quotient of M @,4 N by the submodule generated 
by {bx@y-x@byIx~M, YEN and beB}.) 

Assume now that M is A-flat. The map A -B induces A, -B,, 
and M, is a BP-module, therefore an A,,-module. Let Y be an exact 
sequence of A,-modules; then, by the above observation, 

YOAyMP=~POAMP=(~~*M)OBBP, 

and the right-hand side is an exact sequence, so that M, is A,-flat. 
Next, suppose that M, is A,-flat for every maximal ideal P of B. 

Let O+ N’ -N be an exact sequence of A-modules, and write K 
for the kernel of the B-linear map N’@, M -N GA M, so that 
0 + K -N’ @ M ----f N @ M is an exact sequence of B-modules. For 
any PEm-Spec B the localisation 



§7 Flatness 47 

O-K,-N’Q,M,-N&M, 

is exact, and since N’@,M,= N’ga(ApBApMP)= NkBapMp, and 
similarly N0,J4P=NpO~DMP, we have K,=O by hypothesis. There- 
fore by Theorem 4.6 we have K = 0, and this is what we have to prove. 

Theorem 7.2. Let A be a ring and M an A-module. Then the following 
conditions are equivalent: 

(1) M is faithfully flat over A; 
(2) M is A-flat, and N OAM # 0 for any non-zero A-module N; 
(3) M is A-flat, and mM # M for every maximal ideal m of A. 

Proof. (l)=(2). Let .Y be the sequence 0 -+ N -+O. If N @ M = 0 then 
y@ M is exact, so .Y is exact, and therefore N = 0. 

(2)+(3). This is clear from M/mM = (A/m)@,M. 
(3)+(2). If N # 0 and 0 # XEN then Ax rr A/ann(x), so that taking a 

maximal ideal m containing arm(x), we have M # mM 1 ann(x).M; 
hence, Ax@ M # 0. By the flatness assumption, Ax @ M -N @ M is 
injective, so that N @ M # 0. 

(2)=>(l). Consider a sequence of A-modules 

Y:N’&V&N”. 
If 

is exact then gMof, = (gOf)M = 0, so that by flatness, Im(gof)@ M = 
Im(g,of,) = 0. By assumption we then have Im(gof) = 0, that is gof = 0; 
hence Ker g I> Im f. If we set H = Ker g/Im f then by flatness, 

H 0 M = Ker (gM)/Im (fM) = 0, 

so that the assumption gives H = 0. Therefore 9’ is exact. n 

A ring homomorphism f: A - B induces a map “f : Spec B - Spec A, 
under which a point pESpecA has an inverse image “f-‘(p) = 
{PESpecBJPnA=p} which is homeomorphic to Spec(B OAic(n)). 
Indeed, setting C = BOAT and S = A - p, and defining g:B -C by 
g(b)= b@ 1, then since ~c(p) = (A/p)@ A,, we have 

C=@&WO~A~ =(BhB), =(B/PB)~~~,. 

Thus ‘g: Spec c -Spec B has the image 

(PESpecBJP 1 pB and Pnf(S) = a} 

= {PESpecBIPnA=p), 

which is “f-‘(p), and ug induces a homomorphism of SpecC with 
“f-‘(P). For this reason we call SpecC = Spec(B@K(p)) the fibre ouer p. 
The inverse map a~ - l(p) - SpecC takes P@f - ‘(p) into PC = PB,/pB,. 
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For P*ESpecC we set P = P*n B; then by Theorems 4.2 and 4.3, we have 

P* = PC and C,. = (B&B,),, = B,/pB, = B,@,K(~) 

Theorem 7.3. Let f:A -B be a ring homomorphism and M a B- 
module. Then 

(i) M is faithfully flat over A*“f(Supp(M)) = Spec A. 
(ii) If M is a finite B-module then 

M is A-flat and “f(Supp(M)) 3 m-Spec AoM is faithfully flat over A. 
Proof. (i) For p E Spec A, by faithful flatness we have M OAx(p) # 0. Hence, 
if we set C=BQadp) and M’= M@,k.(p)= M&C, the C-module 
M’ #O, so that there is a P*ESpecC such that M’,* #O. Now set 
P= P*nB; then 

M~t=MOgCP*=MOg(BPOBpCP*)=MPOBpCP, 

so that M, # 0, that is P~supp(M). But P*~spec(B@ ti(p)), so that as 
we have seen Pn A = p. Therefore p&‘f(Supp(M)). 
(ii) It is enough to show that M/mM # 0 for any maximal ideal m of A. By 
assumption there is a prime ideal P of B such that Pn A = m and 
M, # 0. By NAK, since M, is finite over B, we have MJPM, # 0, and 
a fortiori M,/mM, = (M/mM), # 0, so that M/mM # 0. W 

Let (A, m) and (B,n) be local rings, and f: A -B a ring homomor- 
phism; f is said to be a local homomorphism if f(m) c n. If this happens then 
by Theorem 2, or by Theorem 3, (ii), we see that it is equivalent to say that f 
is flat or faithfully flat. 

Let S be a multiplicative set of A. Then it is easy to see that Spec(A,) 
-+ SpecA is surjective only if S consists of units, that is A = A,. Thus 
from the above theorem, if A # A, then A, is flat but not faithfully flat over 
A. 

Theorem 7.4. 
(i) Let A be a ring, M a flat A-module, and N,, N, two submodules of an 

A-module N. Then as submodules of N @ M we have 

(N,nN,)@M=(N,OM)n(N,@M). 

(ii) Let A -B be a flat ring homomorphism, and let I, and I, be 
ideals of A. Then 

(I,nZ,)B=I,Bnl,B. 

(iii) If in addition I, is finitely generated then 

(I,:I,)B = Z,B:Z,B. 

Proof. (i) Define cp:N -N/N, @ N/N, by q(x) = (.Y + N,, x + N,); then 
O-+ N, n N, - N - NJN, @N/N, is exact, and hence so is 

O-+(N,nN,)@M-NOM- 

(N 0 MW, 0 M) 0 (N 0 W/(Nz 0 M). 
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This is the assertion in (i). 
(ii) This is a particular case of(i) with N = A, M = B, in view of the fact 

that for an ideal I of A the subset I OAB of A OAB = B coincides with IB. 
(iii) If I, = Aa, + .. . + Aa, then since (I,:I,) = ni(ll:ai), we can use 

(ii) to reduce to the case that I, is principal. For aeA we have the exact 
sequence 

and tensoring this with B gives the assertion. H 

Example. Let k be a field, and consider the subring A = k[x2, x3] of the 
polynomial ring B = k[x] in an indeterminate x. Then x2A nx3A is the set 
of polynomials made up of terms of degree 3 5 in x, so that (x2 A n x3A)B 
=.x5& but on the other hand x2Bnx3B = x3B. Therefore by the above 
theorem, B is not flat over A. 

Theorem 7.5. Let ,f:A - B be a faithfully flat ring homomorphism. 
(i) For any A-module M, the map M-M BAB defined by mint @ 1 

is injective; in particular .f’: A -B is itself injective. 
(ii) If I is an ideal of A then IBn A = I. 

Proof. (i) Let 0 # mEM. Then (Am) 0 B is a B-submodule of M 0 B which 
can be identified with (ma l)B. But by Theorem 2, (Am)@B # 0, so that 
m@l#O. 

(ii) follows by applying (i) to M = A/Z, using (A/I)@B = B/IB. 

Theorem 7.6. Let A be a ring and M a flat A-module. If aijEA and xj~M 
(for 1 < i 6 I and 1 d j < n) satisfy 

TaijXj=O for all i, 

then there exists an integer s and bjkEA, yk~M (for 1 d j 6 n and 1 6 k d s) 
such that 

c aijbjk = 0 for all i, k, and xj = 1 bj,y, for all j. 
j j 

Thus the solutions in a flat module M of a system of simultaneous linear 
equations with coefficients in A can be expressed as a linear combination of 
solutions in A. Conversely, if the above conclusion holds for the case of a 
single equation (that is for Y = l), then M is flat. 
Procf. Set cp: A” -A’ for the linear map defined by the matrix (aij), and 
let cp,,,,:M” - M’ be the same thing for M; then ‘pM = cp@ 1, where 1 is 
the identity map of M. Setting K = Ker cp and tensoring the exact sequence 

K A A” A A’ with M, we get the exact sequence 
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By assumption cpM(xl,. , x,) = 0, so that we can write 

(X I,...,x.)=(iOl)(~~~B*~y*) with &EK and y,cM. 

If we write out Bk as an element of A” in the form Pk = (b,,, . . . , bnk) with 
~,EA then the conclusion follows. The converse will be proved after the 
next theorem. n 

Theorem 7.7. Let A be a ring and M an A-module. Then M is flat over A if 
and only if for every finitely generated ideal I of A the canonical map 
I @,, M - A BAM is injective, and therefore I @ M N ZM. 
Proqf. The ‘only if’ is obvious, and we prove the ‘if’. Firstly, every ideal 
of A is the direct limit of the finitely generated ideals contained in it, so 
that by Theorems A 1 and A2 of Appendix A, I @ M -M is injective for 
every ideal 1. Moreover, if N is an A-module and N’ c N a submodule, 
then since N is the direct limit of modules of the form N’ + F, with F 
finitely generated, to prove that N’ @ M - N @ M is injective we can 
assume that N = N’ + Aw, + ... + AU,,. Then setting Ni = N’ + AU, 
+. .. + Aoi (for 1 < i < n), we need only show that each step in the 
chain 

N’@M-N1@M-N2@M-...-N@M 

is injective, and finally that if N = N’ + Ao then N’ @ M -N @ M 
is injective. Now we set Z = {a~ A(u~EN’}, and get the exact sequence 

O+N’--+N-+A~I+O. 

This induces a long exact sequence (see Appendix B, p. 279) 

. ..-Tor.4(M,A/Z)--+N’@M--*N@M-(A/Z)OM+O; 

hence it is enough to prove that 

(*) Torf(M, A/Z) = 0. 

For this consider the short exact sequence 

O+Z--+A-A/Z+0 

and the induced long exact sequence 

Tor:(M, A) = 0 --+ Tort(M, A/Z) - Z 0 M - M - *. ‘; 

since Z 0 M -M is injective, (*) must hold. W 
From this theorem we can prove the converse of Theorem 6. Indeed, if 

Z = Au, + ... + Au, is a finitely generated ideal of A then an element 5 of 
Z @ M can be written as 5 = c; a, @ mi with miE M. Suppose that < is 0 in M, 
that is that Cairni = 0. Now if the conclusion of Theorem 6 holds for M, 
there exist bijEA and y,eM such that 

Cuibij = 0 for all j, and mi = Cbijyj for all i. 
i 
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Then 5 = xai@ m, = ~i~juihij@ yj = 0, so that I @ M -M iS injec- 
tive, and therefore M is flat. 

Theorem 7.8. Let A be a ring and M an A-module. The following 
conditions are equivalent: 

(1) M is flat; 
(2) for every A-module N we have Tor:(M, N) = 0; 
(3) Torf(M, A/Z) = 0 for every finitely generated ideal I. 

proof. (l)+-(2) If we let “‘-Li-Li-,-“.-Lo--‘NjO 
be a projective resolution of N then 

. ..---tLiOM-Li_.OM-...-L,OM 

is exact, so that Tor:(M, N) = 0 for all i > 0. 
(z)+(3) is obvious. 
(3)=+(l) The short exact sequence 0 --f I - A -A/I + 0 induces a 

long exact sequence 

Torf(M,A/I)= O+I@M+M-+M@A/I+O, 

and hence I @ M -M is injective; therefore by the previous theorem M 
is flat. W 

Theorem 7.9. Let 0 --t M’ + M -M” +O be an exact sequence of A- 

modules; then if M’ and M” are both flat, so is M. 
Proof. For any A-module N the sequence Tor,(M’, N) -Tor,(M, N) 
-Torl(M”, N) is exact, and since the first and third groups are zero, 
also Tor,(M, N) = 0. Therefore by the previous theorem M is flat. n 

A free module is obvious faithfully flat (if F is free and Y is a sequence of 
A-modules then Y @F is just a sum of copies of Y in number equal to the 
cardinality of a basis of F). Conversely, over a local ring the following 
theorem holds, so that for finite modules flat, faithfully flat and free are 
equivalent conditions. 

Theorem 7.10. Let (A,m) be a local ring and M a flat A-module. If 
Xl,... ,&EM are such that their images Xi,. . .,X, in M = M/mM are 
linearly independent over the field A/m then xi,. . . ,x, are. linearly 
independent over A. Hence if M is finite, or if m is nilpotent, then any 
minimal basis of M (see $2) is a basis of M, and M is a free module. 
proo! By induction on n. If n = 1, and EA is such that ax, = 0 then 
hY Theorem 6 there are b,, . . . ,b,EA such that abi = 0 and XE~ biM; by 
aSsumPtion x1 $mM, so that among the bi there must be one not contained 
in me This bi is then a unit, so that we must have a = 0. 

For n > 1, let caixi = 0 ; then there are bijgA and ~,EM (for 1 <<j < s) 
Such that C Uibij = 0 and xi = C b,y,. NOW x,$mM, sp that among the !J,,~ at 
least one is a unit. Hence a, is a linear combination of a,, . . . . , a,- 1, that 
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is a, = c:Zf aici for some c,EA. Therefore we have 

al(xl +clx,)+~~~+a,-,(x,-, +c,-1x,)=O; 
however, the (n - 1) elements X, + Fix,,, . . . ,X,- 1 + C, - I X, of R are linearly 
independent over A/m, so that by induction, a, = . . . = a, _ 1 = 0. Hence also 
a,=O. n 

Theorem 7.11. Let A be a ring, M and N two A-modules, and B a flat A- 
algebra. If M is of finite presentation then we have 

Hom,(M, N)O,B = Hom,(M@,B, N OAB). 

Proof. Fixing N and B, we define contravariant functors F and G of an 
A-module M by 

F(M) = Hom,(M, N) aA B 
and 

G(M) = Hom,(M @A B, N OA B); 

then we can define a morphism of functors J:F --+ G by 

Il(f @b) = b.(f @ lB) for f EHom,(M, N) and &B. 
Both F and G are left-exact functors. 

Now if M is of finite presentation there is an exact sequence of the form 
AP - A4 --+ M + 0, and from this we get a commutative diagram 

O+ F(M) - F(A4) - F(Ap) 

11 “I “1 
0 -+ G(M) - G(Aq) - G(AP) 

having two exact rows. Now F(AP) = NP 0 B and G(AP) = (N @ B)j’, so that 
the right-hand il is an isomorphism, and similarly the middle ;I is an 
isomorphism. Thus, as one sees easily, the left-hand i is also an 
isomorphism. n 

Corollary. Let A, M and N be as in the theorem, and let p be a prime ideal of 
A. Then 

HomAW, N) OAAp = HomAp(M,, NJ. 

Theorem 7.12. Let A be a ring and M an A-module of finite presentation. 
Then M is a projective A-module if and only if M, is a free A,,,-module for 
every maximal ideal m of A. 
Proof of ‘only if’. If M is projective it is a direct summand of a free module 
and this property is preserved by localisation, so that M, is projective over 
A,,,, and is therefore free by Theorem 2.5. 
Proof of ‘if’. Let N, --+ N, -+O be an exact sequence of A-modules. 
Write C for the cokernel of 

HomAW, N,) - HomAW N,); 
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then for any maximal ideal m of A we have 

Cm = CokeriHomAJM,,, WA,) - Hom,+,(M,,, (M,,)} = 0. 

Hence C = 0 by Theorem 4.6, and this is what we had to prove . m 

Corollary. If A is a ring and M is an A-module of finite presentation, then 
M is flat if and only if it is projective. 
Proof. This follows from Theorems 1, 12 and 10 

Exercises to $7. Prove the following propositions. 

7.1. If  B is a faithfully flat A-algebra then for an A-module M we have 

BBaM is B-flat-M is A-flat, 
and similarly for faithfully flat. 

7.2. Let A and B be integral domains with A c B, and suppose that A and B 
have the same field of fractions; if B is faithfully flat over A then A = B. 

7.3. Let B be a faithfully flat A-algebra; for an A-module M we can view M as a 
submodule of B@, M (by Theorem 7.5). Then if {ml) is a subset of M 

which generates B @ M over B, it also generates M over A. 

1.4. Let A be a Noetherian ring and (M } 1 Is,, a family of flat A-modules; then 
the direct product module nlS,, M is also flat. In particular the formal 

power series A[X,, , X,] is a flat A-algebra (Chase [I]). 

7.5. Let A be a ring and N a flat A-module; if acA is A-regular, it is also N- 
regular. 

7.6. Let A be a ring, and C. a complex of A-modules; for an A-module N we 
write C.@N for the complex . ..-Ci+.@N--,Ci@N--,..,. I f  
N is flat over A then H,(C.)@ N = H,(C.@ N) for all i. 

7.7. Let A be a ring and B a flat A-algebra; then if M and N are A-modules, 

Tor$M,N)@AB=Tory(M@B, NOB) for all i. 

I f  in addition M is finitely generated and A is Noetherian then 

Exta(M, N) 0, B = ExtB(M @,4 B, N @,, B) for all i. 

7.8. Theorem 7.4, (i) does not hold for the intersection of infinitely many 
submodules; explain why, and construct a counter-example. 

7.9. If  B is a faithfully flat A-algebra and B is Noetherian then A is Noetherian. 

Appendix to $7. Pure submodules 

Let A be a ring and M an A-module. A submodule N of M is said to be pure 
if the sequence o + N @ E + M @ E is exact for every A-module E. Since 
tensor product and exactness commute with inductive limits, we need only 
consider A-modules E of finite presentation. 
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Example 1. If M/N is a flat A-module, then N is a pure submodule of 
M. This follows from the exact sequence Tor$(M/N, E) - N@ E 
-MOE. 

Example 2. Any direct summand of M is a pure submodule. 

Example 3. If A = B, a submodule N of M is pure if and only if N n mM 
= mN for all m > 0. In fact the condition is equivalent to the exactness 
of 0 -+ N @ Z/mZ - M @ Z/m& and every finitely generated Z-module 
is a direct sum of cyclic modules. 

Theorem 7.13. A submodule N of M is pure if and only if the following 
condition holds: if xi = cj=, aijmj (for 1 < i < r), with mjEM, xi~N and 
aijEA, then there exist yj~N (for 1 <j <s) such that xi = c;= la,iyj 
(for 1 d i < r). 

Proof. Suppose N is pure in M. Consider the free module A’ with basis 
e,, . . . ,e, and let D be the submodule of A’generated by ~,aijei, 1 <j < s. Set 
E = A*/D, and let ei denote the image of ei in E. Then in M @ E we have 

hence C xi 0 2, = 0 in N 0 E by purity. But this means that, in N 0 A’, the 
element Cixi @ e, is of the form cjyjo Ciaijei for some YjE N. 

Conversely, suppose the condition is satisfied. Let E be an A-module of 
finite presentation. Then we can write E = A’/D with D generated by a finite 
number of elements of A’, say xi= iaijei, 1 <j d s. Then reversing the 
preceding argument we can see that N @ E -+ M @ E is injective. H 

Theorem 7.14. If N is a pure submodule and M,fN is of finite presentation, 
then N is a direct summand of M. 
Proof. We will prove that O+ N 2 M --% M,lN +O splits, where i 
and p are the natural maps. For this we need only construct a linear map 

f  :M/N -M such that pf is the identity map of M/N. Let {tl,. . , tl> 
be a set of generators of M/N, so that M/N N A’IR, where R is the 
submodule of relations among the tj; let {(ail,. . . ,ail)I 1 < id sj be a 
set of generators of R. Choose a pre-image tj of tj in M for each j. Then 
set rji = xaij5jeN (for 1 <ids). By the preceding theorem there exist 
~JEN such that uli = xaij<J (for 1 d i <s). Then xaij(tj - <>) = 0 (for 
1 < i < s), and setting ,f(tj) = tj - S;, we obtain a linear mapf:M/N -M 
which satisfies the requirement. n 
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8 Completion and the Artin-Rees lemma 

Let A be a ring and M an A-module; for a directed set A, suppose 

that 9 = {M,} le,, is a family of submodules of M indexed by A and such 
that A< p 3 M, 1 M,. Then taking 5 as a system of neighbourhoods of 0 
makes M into a topological group under addition. In this topology, for any 
XE M a system of neighbourhoods of x is given by {x + M,),,,. In M 
addition and subtraction are continuous, as is scalar multiplication xt-+ax 
for any aeA. When M = A each M, is an ideal, so that multiplication is also 
continuous: 

(a + M,)(b + M,) c ab + M,. 

This type of topology is called a linear topology on M; it is separated 
(that is, Hausdorff) if and only if n,M, = 0. Each M, c M is an open set, 
each coset x + M, is again open, and the complement M -M, of M, is a 
union of cosets, so is also open. Hence MA is an open and closed subset; 
the quotient module M/MA is then discrete in the quotient topology. 

M/nnM, is called the separated module associated with M. Moreover, 
since for i. <p there is a natural linear map (P~~:M/M,, -M/M,, 
we can construct the inverse system {M/M,; (P,+} of A-modules; its 
inverse limit @M/M, is called the completion of M, and is written M. 
We give each M/M, the discrete topology, the direct product n2 M/M, the 
product topology, and M the subspace topology in RAM/M,. Let 
$: M -+ M be the natural A-linear map; then $ is continuous, and $(M) is 
dense in M. Write p,:,@ -M/M, for the projection, and set Ker pI = 
Mf; it is easy to see that the topology of M coincides with the linear 
topology defined by 9 = { Mz),,,. The map pn is surjective (in fact 
p,($(M)) = M/M,), so that &/MT = M/M,, and the completion of M 
coincides with M itself. If $:M +M is an isomorphism, we say that M 
is complete. (Caution: in Bourbaki terminology this is ‘complete and 
separated’; we shorten this to ‘complete’ throughout.) 

If 9’ = {MI}+- is another family of submodules of M indexed by a 
directed set r, then 9 and 9’ give the same topology on M if and only if for 
each M, there is a YEI- such that Mt c M,, and for every MI, there is a PEA 
such that M, c MI. It is then easy to see that there is an isomorphism of 
topological modules $r M/M, 2 @r M/MI.. Thus M depends only on 

the topology of M, as does the question of whether M is complete. 
When M = A, (M/M,; qns} becomes an inverse system of rings, M = A 

is a ring, and $:A -A a ring homomorphism. MX c A is not just 
an A-submodule, but an ideal of A^; this is clear from the fact that 
pn: A^ -A/M, is a ring homomorphism. 

If N c M is a submodule, then the closure N of N in M is given by the 
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following formula: 

N= n(N+M,). 

Indeed, 
.xfzNo(x+M,)nN#IZ( forallA. 

-xEN + M, for all 1. 
If we write M; for the image of M, in the quotient module M/N, the 

quotient topology of M/N is just the linear topology defined by {MA),,,,. 
In fact, let G c M be the inverse image of G’ c M/N; then 

G’ is open in the quotient topology of M/N 
OG is open in M 
0 for every XEG there is an M, such that x + M, c G 
0 for every x’EG’ there is an M’, such that x’ + M’ c G’. 

Hence the condition for M/N to be separated is that n,M; = 0, that is 

n(N + MJ = N, or in other words, that N is closed in M. Moreover, the 
subspace topology of N is clearly the same. thing as the linear topology 
defined by {N n MA},,*. Set M/N = M’; then 

O-+ NJ(N n Ml) - MJM, - M’JM; = MJ(N + MA)+0 
is an exact sequence, so that taking the inverse limit, we,see that 

O-+fi-A? -(M/N)- 
is exact. If we view N as a submodule of M, the condition that 5 = (<l)n,,~M 
belongs to N is that each tn can be represented by an element of N, or in 
other words that ~E$(N) + MR for each A. Hence N is the same thing as the 
closure of $(N) in M. In general it is not clear whether M -(M/Nj‘is 
surjective, but this holds in the case A = { 1,2,. . . }. In fact then 

(M/N)-= lim M/(N + M,); 

given an elemen?-t’ = (t;, t;, . .)E(MJN)~ with ~LEM/(N + M,), let 
x1 EM be an inverse image of 4;) and ~,EM an inverse image of 5;; 
then y, -x1 EN + M,, so that we can write 

y2-x1=t+m, with tEN and rn,~M,. 

If we set x2 = y, - t then X,E M is also an inverse image of 5;) and satisfies 
x2 - xi EM~. Similarly we can successively choose inverse images X,EM of 
ther:,insuchawaythatforn=1,2,...,wehavex,+,-X,EM,.Ifweset 
(“GM/M, for the image of x,, then by construction r = (ti, c2,. . .) is an 
element of lim M/M, = M which maps to 5’ in (M/N)-. This proves the 
following thzrem. 

Theorem 8.1. Let A be a ring, M an A-module with a linear topologY, and 
N c M a submodule. We give N the subspace topology, and M/N the 
quotient topology. Then these are both linear topologies, and we have: 

(i) 0 -+ N -ii? + (M/N)- is an exact sequence, and N is the closure 
of $(N) in I&, where $: M -M is the natural map. 
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(ii) If moreover the topology of M is defined by a decreasing chain of 
submodules M i 3 M2 1. . ‘, then 

O-&-w@-(M/N)-+0 

is exact. In other words, (M/N)^~fi/fl. n 

Now suppose that M and N are two A-modules with linear topologies, 
and let f: M - N be a continuous linear map. If the topologies of M and 
N are given by {M,},,, and (Ny}YEr, then for any YET there 
exists JEA such that ML c f -‘(NY). Define cpv:fi+ NJN, as the 
composite i6i -Q/M: -N/N,, where the first arrow is the natural 
map, and the second is induced by f; one sees at once that (py does not 
depend on the choice of A for which M, c f -‘(NJ. Also, for y < y’ if we 
let yQ,,* denote the natural map N/N,, -N/N,, it is easy to see that 

vpy = $yv”%‘; hence there is a continuous linear map ?:I$ --+fl 

defined by the ((~,,)~~r, and the following diagram is commutative (the 
vertical arrows are the natural maps): 

I M-N 

Moreover, f is determined uniquely by this diagram and by continuity. 
Similarly, if A and B are rings with linear topologies, and f: A -B is 
a continuous ring homomorphism, then f induces a continuous ring 
homomorphism J‘: A -+ B. 

Among the linear topologies, those defined by ideals are of particular 
importance. Let I be an ideal of A and M an A-module; the topology on M 

defined by {I”M),= 1,2,... is called the I-adic topology. If we also give A the Z- 
adic topology, the completions A and ti of A and M are called I-adic 
completions; it is easy to see that fi is an A-module: for c1= (aI, a2,. . .) 
EAIwitha,EA/l”and5=(x,,x 2,. . .)~fi with X,E M/PM (for all n), we can 
just set 

at = (alxl, a2x2,. .)Efi. 

AS one can easily check, to say that M is complete for the I-adic topology is 
equivalent to saying that for every sequence xi, x2,. . of elements of M 
satisfying xi - xi + 1 EZ’M for all i, there exists a unique XEM such that 
x - xiEl’M for all i. We can define a Cauchy sequence in M in the usual 
way ({xi} is Cauchy if and only if for every positive integer r there is an 
00 such that x,+ 1 - x,EI’M for n > no), and completeness can then be 
expressed as saying that a Cauchy sequence has a unique limit. 

Theorem 8.2. Let A be a ring, I an ideal, and M an A-module. 
(i) If A is I-adically complete then I c rad(A); 
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(ii) If M is I-adically complete and awl, then multiplication by 1 + a is an 
automorphism of M. 
Proof. (i) For u~l, 1 - a + a* - a3 + ... converges in A, and provides an 
inverse of 1 + a; hence 1 + a is a unit of A. This means (see $1) that 
I c rad (A). 

(ii) M is also an A-module, and 1 + a (or rather, its image in A) is a unit in 
A^, so that this is clear. n 

The following two results show the usefulness of completeness. 

Theorem 8.3 (Hensel’s lemma). Let (A, m, k) be a local ring, and suppose 
that A is m-adically complete. Let F(X)E A[X] be a manic polynomial, and 
let FEk[X] be the polynomial obtained by reducing the coefficients of F 
modulo m. If there are manic polynomials g, hek[X] with (g, h) = 1 
and such that P = gh, then there exist manic polynomials G, H with coeffi- 
cients in A such that F = GH, G = g and E7 = h. 
Proof. If we take polynomials G,, H, EA[X] such that g = Gi , h = 8, then 
F 3 G,H, mod m[X]. Suppose by induction that manic polynomials G,, 
H, have been constructed such that F E G,H, mocim”[X], and G,, = y, 
I?,, = h; then we can write 

F - G,H, = cw,U,(X), with ODES” and deg Ui < deg F. 

Since (g, h) = 1 we can find ui, w,ek[X] such that Di = gui + hwi. Replacing 
Di by its remainder modulo h, and making the corresponding correction to 
wi we can assume deg vi < deg h. Then 

deg hWi = deg ( Ui - gUi) < deg F, hence deg wi < deg g. 

Choosing Vi, W,EA[X] such that Vi = ui, deg vi= degvi, lVi = Wi, 
deg Wi = deg wi, and setting G,, i = G, + cwiWi, H,, 1 = H, + 10~ Vi, 
we get 

We construct in this way sequences of polynomials G,, H, for n = 1,2,. . ; 

then lim G, = G and lim H, = H clearly exist and satisfy F = GH. Obvi- 
ously, C = G, = g, R = R, = h. n 

Theorem 8.4. Let A be a ring, I an ideal, and M and A-module. Suppose 
that A is I-adically complete, and M is separated for the I-adic topology. If 
MIIM is generated over A/I by W,,.. ., o,, and o,gM is an arbitrary 
inverse image of Oi in M, then M is generated over A by o1 , . . . , 0,. 
Proof. By assumption M = 1 Aoi + ZM, SO that M = 1 Aoi + I(1 Ami f 
ZM) = 1 Aoi + Z’M, and similarly, M = c Aq + I’M for all v > 0. For 
any (EM, write 5 = 1 uiwi + t1 with 5, EIM, then lI = c ui,i Oi + l2 with 
u,,,EI and (2~12M, and choose successively u~.~EI’ and ~;,EI”M to satisfy 

~v=~ui,vui+~,+l for v=1,2 ,.... 
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Then ai + ai,l + ai,z + ... converges in A. If we set bi for this sum then 

This theorem is extremely handy for proving the finiteness of M. For a 
Noetherian ring A, the I-adic topology has several more important 
properties, which are based on the following theorem, proved independ- 
ently by E. Artin and D. Rees. 

Theorem 8.5 (the Artin-Rees lemma). Let A be a Noetherian ring, M a 
finite A-module, N c M a submodule, and I an ideal of A. Then there exists 
a positive integer c such that for every n > c, we have 

I”Mn N = I”-‘(I’MnN). 

Proof. The inclusion 3 is obvious, so that we only have to prove c. 
Suppose that I is generated by r elements a,, . . . , a,, and M by s elements 

al,-.., w,. An element of PM can be written as ylfi(a)oi, where 
fi(X)=fi(xl,..~,xr) is a homogeneous polynomial of degree n with 
coefficients in A. Now set A[X i , . . . , X,] = B, and for each n > 0 set 

fi are homogeneous of degree n 

and 1; ,fi(a)oiEN 

let C c B” be the B-submodule generated by Un, ,J,. Since B is Noetherian, 
C is a finite B-module, so that C = xi= i BUj, where each Uj is a linear 
combination of elements of u J,; therefore C is generated by finitely 
many elements of UJn. Suppose 

C = Bu, + ... + Bu,, where uj = (Ujl,. . , Ujs)EJd, for 1 <j d t. 

Setc=max(d,,... , d,}. Now if q~l”M n N, we can write q = 1 fi(a)wi with 
vi,... ,f&J,,, and hence 

(fi,...,f,)=Cpj(X)~j, with PjEB=A[X1,...,X,]. 
The left-hand side is a vector made up of homogeneous polynomials of 
degree n only, so that the terms of degree other than n on the right-hand side 
must cancel out to give 0. Hence we can suppose that the Pj(X) are 
homogeneous of degree n - dj. Then ye = 1 fi(a)wi = Cjpj(a)Ciuji(a)oi, 
and CiUji(a)oiEZdJM n N, so that if n > c, pj(a)EZ”-CZc-dJ, giving 

~EI”-‘(Z’M~ N) for any n > c. w 

Theorem 8.6. In the notation of the above theorem, the I-adic topology of 
N coincides with the topology induced by the I-adic topology of M on the 
subspace N c M. 
Proof. By the previous theorem, for n > c, we have I”N c PM n N 
C 1”-‘N. The topology of N as a subspace of M is the linear topology 
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defined by {Z”Mn N},= 1,2 ,..., and the above formula says that this defines 
the same topology as {Z”Nj,= 1,2 ,,,,. m 

Theorem 8.7. Let A be a Noetherian ring, I and ideal, and M a finite A- 
module. Writing A, A for the I-adic completions of M and A we have 

Hence if A is I-adically complete, so is M. 
Proof. By Theorems 1 and 6, the I-adic completion of an exact sequence of 
finite A-modules is again exact. Now given M, let A” --+ A4 -M +O be 
an exact sequence; the commutative diagram 

has exact rows. Here the vertical arrows are the natural maps; since 
completion commutes with direct sums, the two left-hand arrows are 
obviously isomorphisms, and hence the right-hand arrow is an 
isomorphism, as required. n 

Theorem 8.8. Let A be a Noetherian ring, Z an ideal, and A the I-adic 
completion of A; then A is flat over A. 
Proof. By Theorem 7.7 it is enough to show that a@ A --tA^ is injective 
for every ideal a c A; but a @ A = 6, and by Theorems 1 and 6,a -+ A is 
injective. n 

Theorem 8.9 (Krull). Let A be a Noetherian ring, Z an ideal, and M 
a finite A-module; set (7n,0 Z”M = N. Then there exists SEA such that 
a= 1modZ and aN=O. 
Proof. By NAK, it is enough to show that N = IN. By the Artin-Rees 
lemma, Z”M n N c IN for sufficiently large n; now by definition of N, the 
left-hand side coincides with N. 

Theorem 8.10 (the Krull intersection theorem). 
(i) Let A be a Noetherian ring and Z an ideal of A with Z c rad A; then for 

any finite A-module the I-adic topology is separated, and any submodule is 
a closed set. 

(ii) If A is a Noetherian integral domain and Z c A a proper ideal, then 

.Q 1” = (0). 

Proof. (i) In this case the a of the previous theorem is a unit of A, so that 
N = 0, and M is separated. If M’ c M is a submodule then M/M’ is also 
I-adically separated, which is the same as saying that M’ is closed in M. 

(ii) Setting M = A in the previous theorem, from 1 $I we get that a # 0, 
and since a is not a zero-divisor, N = 0. n 
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Theorem 8.11. Let A be a Noetherian ring, I and J ideals of A, and M a 
hnite A-module; write ^ for the completion of an A-module in the I-adic 

topology, and ti :M ---+M for the natural map. Then 

(JM)̂ = J@ = the closure of $(JM) in M, 

and 
(M/JM)-= M/J@. 

proof. By Theorems 1 and 6, (JMj is the kernel of &i -(M/JM)? and 
this is equal to the closure of $(JM) in M by Theorem 1. Now suppose J 
=C’,a,A and define cp:M’--+M by (tl,...,<,.) ct cai&. Then the 

sequence 

M’LM 2 MfJM+O, 

where ~1 is the natural map, is exact. The I-adic completion, 

is again exact. On the other hand (j is given by the same formula 

(t l,...,~,)~~ai~i as cp, hence (JM)-= Ker(,r?) = Im(@) =ca,M = J&i. n 
As is easily seen, the (X 1, . , X,)-adic completion of the polynomial ring 

ACX r,. . . , X,] over A can be identified with the formal power series ring 
A[[X,, . . . , X,,l] . Using this we get the following theorem. 

Theorem 8.12. Let A be a Noetherian ring, and Z = (a,, , a,) an ideal of 
A. Then the I-adic completion A of A is isomorphic to A[X I,. . ,X,]/ 

(Xl -a,,..., X, - a,,). Hence A is a Noetherian ring. 
Proof. Let B = A[X,,..., X,], and set I’ =xX,B, J =c(Xi - a,)B; 

then BfJ N A, and the I’-adic topology on A considered as the B-module 
B/J coincides with the I-adic topology of A. Now writing  ̂ for the I’-adic 
completion of B-modules, we have 

AI=B/.F=&JB=A[x, ,..., x,]/(x,-a, ,..., Xn-a,). n 

Theorem 8.13. Let A be a Noetherian ring, I an ideal, M a finite A-module, 
and fi the I-adic completion of M; then the topology of M is the I-adic 
topology of M as an A-module, and is the IA-adic topology of M as 
an A-module. 
Proof. If we let M,* be th e k ernel of the map from A = @ (M/Z”M) to 
MIZ”M, the topology of M is that defined by {Mzj. Thus it is enough to 
Prove that M,* = Z”M. Since M/Z”M is discrete in the Z-adic topology, we 
have (M/Z”M)̂ = M/Z”M and the kernel of ti --+(M/Z”M)̂  is ZnM by 
Theorem 11. Therefore M,* = I’M. Moreover, Z”fi can also be written 
(I”&@, and Z”A = (lay, so that the topology of M is also the IA-adic 
topology. 
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Theorem 8.14. Let A be a Noetherian ring and I an ideal. If we consider A 
with the I-adic topology, the following conditions are equivalent: 

(I) I c rad (A); 
(2) every ideal of A is a closed set; 
(3) the I-adic completion A^ of A is faithfully flat over A. 

Proof. We have already seen (l)+(2). 
(2) a(3) Since A^ is flat over A, we need only prove that VIA # A^ for every 

maximal ideal nr of A. By assumption, (0) is closed in A, so that we can 
assume that A c A, and by Theorem 11, rn;i is the closure of m in A^. 
However, m is closed in A, so that rnff n A = m, and so rn2 # A^. 

(3) *(l) By Theorem 7.5, ndn A = m for every maximal ideal m of A. 
Now mA  ̂c A^ is a closed set by Theorems 2, (i) and 10, (i), and since the 
natural map A - A^ is continuous, m = mA  ̂n A is closed in A. If I $ m. 
then I” + rn = A for every n > 0, so that m is not closed. Thus I c m. l 

If the conditions of the above theorem are satisfied, the topological ring A 
is said to be a Zariski ring, and I an ideal of definition of A. An ideal of 
definition is not uniquely determined; any ideal defining the same topology 
will do. The most important example of a Zariski ring is a Noetherian local 
ring (A, m) with the m-adic topology. When discussing the completion of a 
local ring, we will mean the m-adic completion unless otherwise specified. 

Theorem 8.15. Let A be a semilocal ring with maximal ideals m,, . . , m,, 
and set I = rad(A) = m1m2.. . m,. Then the I-adic completion Â  of A 
decomposes as a direct product. 

‘24, x-.x‘&, 

where Ai = A,,,, and Ai is the completion of the local ring Ai. 
Proof. Since for i #j and any n > 0 we have my + my = A, Theorem 1.4 
gives 

A/Z”= A/m; x*.. x A/m: for n>O. 

Hence taking the limit we get 

A^ = IF A/I” = ( 9 A/m;) x ... x ( 1E A/m:). 

If we set Ai for the localisation of A at mi, then, since A/m; is already local, 

A/ml = (A/m:),, = Ai/‘(miAJ”, 

and SO lim A,hr~ can be identified with Ai. n 

We no;summarise the main points proved in this section for a local 
Noetherian ring. Let (A,nr) be a local Noetherian ring; then we have: 

(1) f-LO m” = (0). 
(2) For M a finite A-module and N t M a submodule, 

G (N 
+ nt”M) = N. 
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(3) The completion A^ of A is faithfully flat over A; hence A c A^, and 
IA~\A = I for any ideal I of A. 

(4) A^ is again a Noetherian local ring, with maximal ideal m2, and it has 
the same residue class field as A; moreover, A^/m”A^ = A/N” for all IZ > 0. 

(5) If A is a complete local ring, then for any ideal I # A, A/I is again a 
complete local ring. 

Remark 1. Even if A is complete, the localisation A, of A at a prime p may 

not be. 

Remark 2. An Artinian local ring (A, m) is complete; in fact, it is clear from 
the proof of Theorem 3.2 that there exists a v such that my = 0, so that 
A= 12 A/m”= A. 

Exercises to $8. Prove the following propositions. 

8.1. If  A is a Noetherian ring, I and J are ideals of A, and A is complete both for 
the I-adic and J-adic topologies, then A is also complete for the (I + J)- 
adic topology. 

8.2. Let A be a Noetherian ring, and 11 J ideals of A; if A is I-adically 
complete, it is also J-adically complete. 

8.3. Let A be a Zariski ring and A  ̂its completion. If  a c A is an ideal such that 
aA  ̂ is principal, then a is principal. 

8.4. According to Theorem 8.12, if y~n,l” then 

YE ~ (Xi-aj)AuX,,‘.‘,x,3 
i=l 

Verify this directly in the special case I = eA, where ez = e. 

8.5. Let A be a Noetherian ring and I a proper ideal of A; consider the 

multiplicative set S = 1 + I as in $4, Example 3. Then A, is a Zariski ring 
with ideal of definition IA,, and its completion coincides with the I-adic 
completion of A. 

8.6. If  A is I-adically complete then B = A[X] is (IB + XB)-adically complete. 

8.7. Let (A, m) be a complete Noetherian local ring, and a, 3 a2 1.. a chain of 
ideals of A for which nvav = (0); then for each n there exists v(n) for which 

avCnj c m”. In other words, the linear topology defined by {av}V= 1,2,... is 
stronger than or equal to the m-adic topology (Chevalley’s theorem). 

8.8. Let A be a Noetherian ring, a,, , a, ideals of A; if M is a finite A-module 
and N c M a submodule, then there exists c > 0 such that 

n, a~,..., n,~c~a;‘...a:‘MnN=a;‘-‘...a~-‘(a;...a:MnN). 

8.9. Let A be a Noetherian ring and PEASS (A). Then there is an integer c > 0 
such that PEASS (A/I) for every ideal I c PC (hint: localise at P). 

8.10. Show by example that the conclusion of Ex. 8.7. does not necessarily hold 
if A is not complete. 
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9 Integral extensions 

If A is a subring of a ring B we say that B is an extension ring of A. 
In this case, an element beB is said to be integral over A if b is a root of a 
manic polynomial with coefficients in A, that is if there is a relation of the 
form b” + a, b”- ’ + ... + a, = 0 with a,eA. If every element of B is integral 
over A we say that B is integral over A, or that B is an integral extension of A. 

Theorem 9.1. Let A be a ring and B an extension of A. 
(i) An element bEB is integral over A if and only if there exists a ring C 

with A c C c B and bgC such that C is finitely generated as an A-module. 
(ii) Let A” c B be the set of elements of B integral over A; then A” is 

a subring of B. 
Proof. (i) If b is a root of f(X) = X” + a,X”-l + ... + a,, for any P(X)E 
A[XJ let r(X) be the remainder of P on dividing by f; then P(b) = r(b) 
and deg r < n. Hence 

A[b] = A + Ab + ... + Ah”-‘, 

SO that we can take C to be A[b]. Conversely if an extension ring C of A is a 
finite A-module then every element of C is integral over A: for if C = Ao, 
+ ... + Aw, and bEC then 

bw,= CQijWj with u~~EA, 

so that by Theorem 2.1 we get a relation b” + uIbn-l + ... + a, = 0. (The left- 
hand side is obtained by expanding out det (b6,, - aij).) 

(ii) If b, b’EA” then we see easily that A[b, b’] is finitely generated as an A- 
module, so that its elements bb’ and b ) b’ are integral over A. w 

The A” appearing in (ii) above is called the integral closure of A in B; if 
A = A” we say that A is integrally closed in B. In particular, if A is an integral 
domain, and is integrally closed in its field of fractions, we say that A is an 
integrally closed domain. If for every prime ideal p of A the localisation A, is 
an integrally closed domain we say that A is a normal ring. 

Remark. ‘Normal ring’ is often used to mean ‘integrally closed domain’; in 
this book we follow the usage of Serre and Grothendieck. If A is a 
Noetherian ring which is normal in our sense, and pl,. . .,p, are all 
the minimal prime ideals of A then it can be seen (see Ex. 9.11) that 
A = A/p, x ... x A/p,, and then each A/p, is an integrally closed domain 
(see Theorem 4.7). Conversely, the direct product of a finite number of 
integrally closed domains is normal (see Example 3 below). 

Let A c C c B be a chain of ring extensions; if an element beB is integral 
over C and C is integral over A then b is integral over A. Indeed, if 
b”+cIb”-’ +...+c,=O with C,EC then 

n-1 
A Cc, ,...,c,,bl = v~o~C~w..,~,lbY> 
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and since A[c,, . , c,] is a finite A-module, so is A[c,, . . . , c,, b]. In 
particular, if we take C to be the integral closure 2 of A in B we see that 
2 is integrally closed in B. 

Example 1. A UFD is an integrally closed domain -the proof is easy. 

Example 2. Let k be a field and t an indeterminate over k; set A = 
k[t2, t3] c B = k[t]. Then A and B both have the same field of fractions 
K = k(t). Since B is a UFD, it is integrally closed; but t is integral over 
A, so that B is the integral closure of A in K. 

Note that in this example A N k[X, Y]/(Y2 -X3). Thus A is the 
coordinate ring of the plane curve Y2 = X3, which has a singularity at the 
origin. The fact that A is not integrally closed is related to the existence of 
this singularity. 

Example 3. If B is an extension ring of A, S c A is a multiplicative set, and ,? 
is the integral closure of A in B, then the integral closure of A, in B, is A”,. 
The proof is again easy. It follows from this that if A is an integrally closed 
domain, so is A,. 

Theorem 9.2. Let A be an integrally closed domain, K the field of fractions 
of A, and L an algebraic extension of K. Then an element acL is integral 
over A if and only if its minimal polynomial over K has all its coefficients 
in A. 
Proof. Letf(X)=X”+a,X”-I+... + a, be the minimal polynomial of tl 
over K. We have f(a) = 0, so that if all the a, are in A then a is integral over 
A. Conversely, if a is integral over A, then letting L be an algebraic closure of 
L we have a splitting f(X) = (X - tli). . . (X - a,) of f(X) in E[X] into linear 
factors; each of the a, is conjugate to a over K, so that there is an 
isomorphism K[cl] 2: K[cq] fixing the elements of K and taking a into ai, 
and therefore the a, are also integral over A. Then a,, . . . ,a,~A[cl~, . . . ,a,,], 
and hence they are integral over A; but U,EK and A is integrally closed, 
so that finally u,EA. 

Example 4. Let A be a UFD in which 2 is a unit. Let SEA be square-free, 
(that is, not divisible by the square of any prime of A). Then A[Jf] is an 
integrally closed domain. 
Proof. Let a be a square root off. Let K be the field of fractions of A; then 
A is integrally closed in K by Example 1, so that if aE:K we have aE A and 
A[a] = A, and the assertion is trivial. If aq!K then the field of fractions of 
NIal is K(a) = K + Ka, and every element [EK(a) can be written in a 
Unique way as 5 = x + ya with x, ye K. The minimal polynomial of 5 over K 
is X2 - 2xX + (x’ - y’f), so that using the previous theorem, if 5 is integral 
Over A we get 2x4 and x2 - y2fcA. By assumption, 2x~A implies x~4. 
Hence y2fe A. From this, if some prime p of A divides the denominator of y 
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we get p2 ) f, which contradicts the square-free hypothesis. Thus YEA, and 
SEA + Aa = A[a], so that A[E] is integrally closed in K(a). w  

Lemma I. Let B be an integral domain and A c B a subring such that B is 
integral over A. Then 

A is a field o B is a field. 

Pro@. (a) If 0 # bEB then there is a relation of the form h” + aih”-l + ... 
+ a, = 0 with a+A, and since B is an integral domain we can assume a, # 0. 
Then 

b-l= --a,-‘(b”-‘+a,b”-2+...+a,-,)~B. 

(0 If 0 # UEA then u-~EB, so that there is a relation u-” + clam”+’ 
+ ... + c, = 0 with c~EA. Then 

u-l = -(cl +c,u+~~~+c,a”-‘)EA. n 

Lemma 2. Let A be a ring, and B an extension ring which is integral over A. 
If P is a maximal ideal of B then Pn A is a maximal ideal of A. Conversely if 
p is a maximal ideal of A then there exists a prime ideal P of B lying over p, 
and any such P is a maximal ideal of B. 
Proof. For PESpec B let Pn A = p; then the extension A/p c BJP is 
integral. Thus by Lemma 1 above, P is maximal if and only if p is maximal. 
Next, to prove that there exists P lying over a given maximal ideal p of A, it 
is enough to prove that pB # B. For then any maximal ideal P of B 
containing pB will satisfy P n A 3 p and 1 $P n A, so that P n A = p. By 
contradiction, assume that pB = B; then there is an expression 1 = 1: 7Cibi 
with b,EB and rci~p. If we set C = A[b, ,. . . ,b,] then C is finite over A and 
pC = C. Letting C = Au, + ... + Au, we get ui = C rcijuj for some nijEu, so 
that A = det(aij - zij) satisfies Auj = 0 for each j, and hence AC = 0. But 
1 EC, so that A = 0, and on the other hand A E 1 mod p; therefore 1 EP, 
which is a contradiction. n 

Theorem 9.3. Let A be a ring, B an extension ring which is integral over 
A and p a prime ideal of A. 

(i) There exists a prime ideal of B lying over p. 
(ii) There are no inclusions between prime ideals of B lying over p. 
(iii) Let A be an integrally closed domain, K its field of fractions, and L a 

normal field extension of K in the sense of Galois theory (that is K c L is 
algebraic, and for any tl~ L, all the conjugates of c( over K are in L); if B is the 
integral closure of A in L then all the prime ideals of B lying over P 
are conjugate over K. 
Proof. Localising the exact sequence O-+ A + B at p gives an exact 
sequence O-+ A, --+ B, = BOaA, in which B, is an extension ring 
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integral over A,. From the commutative diagram 

A,-B 

t TP 
A-B 

we see that the prime ideals of B lying over p correspond bijectively with the 
maximal ideals of BP lying over the maximal ideal pA, of A,. Hence, to prove 
(i) and (ii) it is enough to consider the case that p is a maximal ideal, which 
has already been done in Lemma 2. 

Now for (iii). Let P, and P, be prime ideals of B lying over p. First of all 
we consider the case [L:K] < cc; let G = (el,. . . ,(T,} be the group of K- 
automorphisms of L. If P, # a,:‘(P1) for any j then by (ii) we have 

p2 + o,:‘(PJ, so that there is an element XEP, not contained in any 
0; ‘(PI) for 1 <j < I (see Ex. 1.6). Set y = (njaj(X))‘, where 4 = 1 if char 
K = 0, and 4 = p’ for a sufficiently large integer v if char K = p > 0. Then 
y&, and is integral over A, so that YEA. However, the identity map of L is 
contained among the aj, so that YEP,, and hence YEP, n A = p c PI. This 
contradicts a,(x)$P1 for all j. Therefore P, = aj’(P1) for some j. 

If [L:K] = cc we need Galois theory for infinite extensions. Let K’ c L be 
the fixed subfield of G = Aut (L/K); then L is Galois over K’ and K c K’ is a 
purely inseparable extension. If K’ # K we must have char K = p > 0, and 
setting A’ for the integral closure of A in K’ we see easily that 

p’ = (x~A’(x~~p for some q = p’> 

is the unique prime ideal of A’ lying over p. Thus replacing K by K’ we can 
assume that L is a Galois extension of K. For any finite Galois extension 
K c L’ contained in L we now set 

then by the case of finite extensions we have just proved, F(E) # 0. 
Moreover, F(Z) c G is closed in the Krull topology. (Recall that the Krull 
topology of G is the topology induced by the inclusion of G into the direct 
product of finite groups n,.Aut (C/K); with respect to this topology, G is 
compact. For details see textbooks on field theory.) If Li for 1 < i < n are 
finite Galois extensions of K contained in L then their composite L” is 
also a finite Galois extension of K, and C)F(Li) 3 F(L”) # 0, so that the 
family (F(L’))L’ c L is a finite Galois extension of K) of closed subsets 
of G has the finite intersection property; since G is compact, 
nF(L’) # 0. T a mg oe&F(L’) we obviously have a(Pl) = P,. k’ m 

For a ring A and an A-algebra B, the following statement is called the 
j going-up theorem: given two prime ideals p c p’ of A and a prime ideal P of B 

lying over p, there exists P’ESpec B such that P c P’ and P’nA = u’. 
1:; Similarly, the going-down theorem is the following statement: given p c p’ 
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and P’ESpec B lying over p’, there exists PESpec B such that P c P’ and 
PnA=p. 

Theorem 9.4. (i) If B 2 A is an extension ring which is integral over A then 
the going-up theorem holds. 

(ii) If in addition B is an integral domain and A is integrally closed, the 
going-down theorem also holds. 
Proof. (i) Suppose p c p’ and P are given as above. Since P n A = p, we can 
think of B/P as an extension ring of A/p, and it is integral over A/p because 
the condition that an element of B is integral over A is preserved by the 
homomorphism B -+ B/P. By (i) of the previous theorem there is a prime 
ideal of B/P lying over p’/p, and writing P’ for its inverse image in B we have 
P’ESpec B and P’ n A = p’. 

(ii) Let K be the field of fractions of A, and let L be a normal extension 
field of K containing B; set C for the integral closure of A in L. Suppose 
given prime ideals p c p’ of A and P’ ESpec B such that P’ n A = p’, and 
choose Q’ESpec C such that Q’n B = P’. Choose also a prime ideal Q of C 
over p, so that using the going-up theorem we can find a prime ideal Q1 of C 
containing Q and lying over p’. Both Q1 and Q’ lie over p’, so that by (iii) of 
the previous theorem there is an automorphism aeAut(L/K) such that 
c(Qi) = Q’. Setting o(Q) = Qz we have Qz c Q’, and Q2 n A = Qn A = p, 

so that setting P=Q,nB we get PnA=p, PcQ’nB=P’. (For 
a different proof of (ii) which does not use Theorem 3, (iii), see [AM], (5.16), 
or [Kunz].) q 

We now treat another important case in which the going-down theorem 
holds. 

Theorem 9.5. Let A be a ring and B a flat A-algebra; then the going-down 
theorem holds between A and B. 
Proof. Let p c p’ be prime ideals of A, and let P’ be a prime ideal of B lying 
over p’; then B,. is faithfully flat over A,., so that by Theorem 7.3 
Spec(B,.) --+ Spec(A,.) is surjective. Hence there is a prime ideal $1, 
of B,, lying over PA,, and setting $@nB = P we obviously have P c P’ 
and PnA=p. n 

Theorem 9.6. Let A c B be integral domains such that A is integrally closed 
and B is integral over A; then the canonical map f:SpecB-Spec A is 
open. More precisely, for teB, let X” + a,X”- i + . . . + a, be amonic poly- 
nomial with coefficients in A having t as a root and of minimal degree; then 

f(W) = ij %4)> 
i=l 

where the notation D( ) is as in $4. 
Proof (H. Seydi [4]). By Theorem 2, F(X) = X” + a,X”-’ + ... + a, is 
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irreducible over the field of fractions of A; if we set C = A[t] then 

c s A cm(w) )> SO C is a free A-module with basis 1, t, t2,. . , tnpl, and 
is hence faithfully flat over A. Suppose that PeD(t), so that PESpecB 

with t$P, and set p = Pn A; then pEUiD(ai), since otherwise aigp for 
all i, and SO t”EP, hence t EP, which is a contradiction. 

Conversely, given pEIJiD(aJ, suppose that t EJ(~C); then for sufficiently 
large m we have t”’ = EYE I bitnpi with b+p. We can take m > n. Then X”’ 
- c’j biXnvi is divisible by F(X) in A[X], which implies that X” is divisible 

by F(X) = x” + CiiiXn-i in (A/p)[X]; since at least one of the 2, is non- 
zero, this is a contradiction. Thus t$J(pC), so that there exists QESpec C 
with t$Q and pC c Q. Setting Qn A = q we have p c q, so that by the 
previous theorem there exists P, ESpec C satisfying P, n A = p and P, c Q. 
Since B is integral over C there exists PESpec B lying over P,. We have 
PeD(t), since otherwise tePnC = P, c Q, which contradicts t$Q. This 
proves that 

Any open set of SpecB is a union of open sets of the form D(r), and hence 

f: Spec B - Spec A is open. 

Exercises to $9. Prove the following propositions. 

9.1. Let A be a ring, A c B an integral extension, and p a prime ideal of A. 
Suppose that B has just one prime ideal P lying over p; then B, = B,. 

9.2. Let A be a ring and A c B an integral extension ring. Then dim A = 
dim B. 

9.3. Let A be a ring, A c B a finitely generated integral extension of A, and p a 
prime ideal of A. Then B has only a finite number of prime ideals lying over 

P. 

9.4. Let A be an integral domain and K its field offractions. We say that XEK is 

almost integral over A if there exists 0 # as A such that ax”EA for all n > 0. 
I f  x is integral over A it is almost integral, and if A is Noetherian the 
converse holds. 

9.5. Let A c K be as in the previous question. Say that A is completely 
integrally closed if every XEK which is almost integral over A belongs to A. 
I f  A is completely integrally closed, so is A[Xj. 

9.6. Let A be an integrally closed domain, K its field of fractions, and let 
f(XkA[X] be a manic polynomial. Then if S(X) is reducible in K[X] it is 
also reducible in A[X]. 

g.7. Let msH be square-free, and write A for the integral closure of H in 
QCJm]. Then A = Z[( 1 + Jm)/2] if m z 1 mod 4, and A = 
ZCJrn] otherwise. 
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9.8. Let A be a ring and A c B an integral extension. If  P is a prime ideal of B 
with p= PnA then htP<htp. 

9.9. Let A be a ring and B an A-algebra, and suppose that the going-down 
theorem holds between A and B. If  P is a prime ideal of B with p = Pn A 
then ht P > ht p. 

9.10. Let K be a field and L an extension field of K. If  P is a prime ideal of 
L[X, ,..., X,] and p=PnK[X, ,..., X,] then htP&htp, and equality 
holds if L is an algebraic extension of K. Moreover, if two polynomials 

f(x), g(x)EK[X, ,..., X,] have no common factors in K[X, ,..., X,], 
they have none in L[X 1,. , X,]. 

9.11. Let A be a Noetherian ring and p 1,. . , p, all the minimal prime ideals of A. 
Suppose that A, is an integral domain for all pESpecA. Then (i) Ass A 
= {p,,...,~~};(ii)p,n . ..np. =nil(A)=O;(iii)pi+ njiipj= Aforall i.It 
follows that A N A/p, x .‘. x A/p,. 



4 
Valuation rings 

From Hensel’s theory of p-adic numbers onwards, valuation theory has 
been an important tool of number theory and the theory of function fields in 
one variable; the main object of study was however the multiplicative 
valuations which generalise the usual notion of absolute value of a number. 
In contrast, Krull defined and studied valuation rings from a more ring- 
theoretic point of view ([3], 1931). His theory was immediately applied to 
algebraic geometry by Zariski. In 9 10 we treat the elementary parts of their 
theory. Discrete valuation rings (DVRs) and Dedekind rings, the classical 
objects of study, are treated in the following § 11, which also includes the 
Krull-Akizuki theorem, so that this section contains the theory of one- 
dimensional Noetherian rings. In 3 12 we treat Krull rings, which should be 
thought of as a natural extension of Dedekind rings; we go as far as a recent 
theorem of J. Nishimura. 

This book is mainly concerned with Noetherian rings, and general 
valuation rings and Krull rings are the most important rings outside this 
category. The present chapter is intended as complementary to the theory 
of Noetherian rings, and we have left out quite a lot on valuation theory. 
The reader should consult [B6,7], [ZS] or other textbooks for more 
information. 

10 General valuations 

An integral domain R is a valuation ring if every element x of its 
field of fractions K satisfies 

X$R-X -‘ER; 

Iif we write R- i for the set of inverses of non-zero elements of R then this 
condition can be expressed as Ru R-’ = K). We also say that R is a 
valuation ring of K. The case R = K is the trivial valuation ring. 

If R is a valuation ring then for any two ideals I, J of R either I c J 
or J cl must hold; indeed, if xd and x$J then for any O#yd we 
have x/y$R, so that y/x~R and y = x(y/x)~I, therefore J c I. Thus the 
ideals of R form a totally ordered set. In particular, since R has only one 
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maximal ideal, R is a local ring. We write m for the maximal ideal of R. 
Then as one sees easily, K - R = {x~K*lx-‘em}, where we write 
K* for the multiplicative group K - (0). Thus R is determined by R 
and m. 

If R is a valuation ring of a field K then any ring R’ with R c R’ c K is 
obviously also a valuation ring, and in fact we have the following stronger 
statement. 

Theorem 10.1. Let R c R’ c K be as above, let rtt be the maximal ideal ofR 
and p that of R’, and suppose that R #R’. Then 

(i)pcmcRcR’andp#m. 
(ii) p is a prime ideal of R and R’ = R,. 
(iii) R/p is a valuation ring of the field RI/p. 
(iv) Given any valuation ring Sof the field R’/p, let S be its inverse image 

in R’. Then S is a valuation ring having the same field of fractions K as R’. 
Proof. (i)Ifx~pthenx-‘4R’,sox-‘~Randhencex~R;xisnotaunitofR, 
so that xEm. Also, since R # R’ we have p # m. 

(ii) We know that p c R, so that p = p n R, and this is a prime ideal of R. 
Since R - p c R’ - p = {units of R’} we have R, c R’, and moreover by 
construction, the maximal ideal of R, is contained in the maximal ideal p of 
R’. Thus by (i), R, = R’. 

(iii) Write cp:R’ --* R’/p for the natural map; then for XER’ - p, if XER 
we have cp(x)~R/p, and if x$R we have q(x)-’ = cp(x-‘)cR/p, and 
therefore R/p is a valuation ring of RI/p. 

(iv) Note that p c S and S/p = S, so that if XER’ and x$S then x is 
a unit of R’, and cp(x)$S Thus cp(x-‘) = q(x)-‘ES, and hence x-i~S. 
If on the other hand XEK - R’ then x-rep c S, so that we have proved 
that SvS-’ = K. n 

The valuation ring S in (iv) is called the composite of R’ and S. According 
to (iii), every valuation ring of K contained in R’ is obtained as the 
composite of R’ and a valuation ring of RI/p. 

Quite generally, we write mR for the maximal ideal of a local ring R. If R 
and S are local rings with R 1 S and mR n S = m, we say that R dominates Sj 
and write R 3 S. If R >, S and R # S, we write R > S. 

Theorem 10.2. Let K be a field, A c K a subring, and p a prime ideal of A. 
Then there exists a valuation ring R of K satisfying 

RxA and m,nA=p. 

Proof. Replacing A by A, we can assume that A is a local ring with P = mA. 

Now write 9 for the set of all subrings B of K containing A and such that 
l$pB. Now AEF, and if $6 c F is a subset totally ordered by inclusion 
then the union of all the elements of 9 is again an element of 9, so that, by 
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Zorn’s lemma, 9 has an element R which is maximal for inclusion. Since 
pR # R there is a maximal ideal m of R containing pR. Then R c R,,,E~, so 
that R = R,, and R is local. Also p c m and p is a maximal ideal of A, so that 
m n A = p. Thus it only remains to prove that R is a valuation ring of K. If 
xEK and x#R then since R[x]$F we have l~-pR[x], and there 
exists a relation of the form 

1 = a, + a,x + ... + a,x” with aiEpR. 

Since 1 - a, is unit of R we can modify this to get a relation 
(*) 1 = b,x + ... + b,x” with &em. 

Among all such relations, choose one for which n is as small as possible. 
Similarly, if x-l $ R we can find a relation 

(**) 1 = ci .x-l + ... + c,,,x-~ with ciEm, 

and choose one for which m is as small as possible. If n 2 m we multiply 
(**) by b,x” and subtract from (*), and obtain a relation of the form (*) 
but with a strictly smaller degree n, which is a contradiction; if 11 < m then 
we get the same contradiction on interchanging the roles of x and ,Y- l. 
Thus if x&R we must have x~~ER. n 

Theorem 10.3. A valuation ring is integrally closed. 
Proof. Let R be a valuation ring of a field K, and let XEK be integral over R, 
sothatx”+a,x”-’ +...+a,=Owitha,~R.Ifx$Rthenx-‘~m,,butthen 

1 +a,x-’ +...+a,x-“=O, 

and we get 1 EmR, which is a contradiction. Hence XE R. n 

Theorem 10.4. Let K be a field, A c K a subring, and let B be the integral 
closure of A in K. Then B is the intersection of all the valuation rings of K 
containing A. 
Proof. Write 8 for the intersection of all valuation rings of K containing 
A, SO that by the previous theorem we have B’ 3 B. To prove the opposite 
inclusion it is enough to show that for any element XEK which is not inte- 
gral over A there is a valuation ring of K containing A but not x. Set 
x-l = y. The ideal yA[y] of A[y] does not contain 1: for if 1 = a,y + 
a,y2+ .-. + any” with a,eA then x would be integral over A, contradicting 
the assumption. Therefore there is a maximal ideal p of A[y] containing 
Y~[Y], and by Theorem 2 there exists a valuation ring R of K such that 
R=A[y] and m,nA[y] = p. Now y = x-l~rn~, so that x$R. w 

Let K be a field and A c K a subring. If a valuation ring R of K contains A 
we SaY that R has a centre in A, and the prime ideal mR n A of A is called the 
Centre of R in A. The set of valuation rings of K having a centre in A is called 
the Zariski space or the Zariski Riemann surface of K over A, and written 
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Zar (K, A). We will treat Zar (K, A) as a topological space, introducing a 
topology as follows. 

For x r ,..., x,EK, set U(x, ,..., x,)= Zar(K,A[x, ,..., x,]). Then since 

U(X I,... ,x,)nU(Y,,...,y,)=Uix,,...,x,,y,, . . . . y,), 

the collection 9 = { U(x,, . . ,x,)ln > 0 and X,EK 3 is the basis for the 
open sets of a topology on Zar (K, A). That is, we take as open sets the 
subsets of Zar (K, A) which can be written as a union of elements of 9, 
As in the case of Spec, this topology is called the Zariski topology. 

Theorem 10.5. Zar (K, A) is quasi-compact. 
Proof. It is enough to prove that if .d is a family of closed sets of Zar (K, A) 
having the finite intersection property (that is, the intersection of any finite 
number of elements of .d is non-empty) then the intersection of all the 
elements of & is non-empty. By Zorn’s lemma there exists a maximal family 
of closed sets &’ having the finite intersection property and containing d. 
Since it is then enough to show that the intersection ofall the elements of& 
is non-empty, we can take LX!’ = &‘. Then it is easy to see that & has the 
following properties: 

(4 F ,,...,F,Ed=>F,n...nF,E~, 

(p) Zr,...,Z,, are closed sets and Z,u~~~uZ,,~.d+Z~~d for some i; 
(y) if a closed set F contains an element of d then FE&. 

For a subset F c Zar (K, A) we write F” to denote the complement of F. 
If FEd and F” = UnUA then F = nJJ;, and moreover if u(x,, . . , x,)~ = 
(Jr=, U(Xi)CE~ then by (a) b a ove one of the U(x,)” must belong to d. 
Hence the intersection of all the elements of d is the same thing as the 
intersection of the sets of the form U(x)c belonging to d. Set 

1- = (ydc u(y-‘)“Ed.). 

Now since the condition for REZar(K, A) to belong to U(y-‘)” is that 
yEmR, the intersection of all the elements of d is equal to 

{REZar(K,A)lm, =I r}. 
Write I for the ideal of A[lJ generated by r. If 1 $1 then by Theorem 2, the 
above set is non-empty, as required to prove. But if 1 EZ then there is a 
finite subset (y,, . . , y,} c r such that 1 EC y,A[y,, . . . , y,]; but then 
U(y; ‘)“n ... n U(y; l)c = 0, which contradicts the finite intersection 
property of &. n 

When K is an algebraic function field over an algebraically closed field k 
of characteristic 0 (that is, K is a finitely generated extension of k), Zariski 
gave a classification of valuation rings of K containing k, and using this and 
the compactness result above, he succeeded in giving an algebraic proof in 
characteristic 0 of the resolution of singularities of algebraic varieties of 

dimension 2 and 3. However, Hironaka’s general proof of resolution ef 
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singularities in characteristic 0 in all dimensions was obtained by other 
methods, without the use of valuation theory. 

As we saw at the beginning of this section, the ideals of R form a totally 
ordered set under inclusion. This holds not just for ideals, but for all R- 
modules contained in K. In particular, if we set 

G=(xR[xEK and x#O], 

then G is a totally ordered set under inclusion; we will, however, give G the 
opposite order to that given by inclusion. That is, we define 6 by 

xR ,( yRoxR =I yR. 

Mvreover, G is an Abelian group with product (xR)-(yR) = xyR. In general, 
an Abelian group H written additively, together with a total order relation 
2 is called an ordered group if the axiom 

x2y,z>t*x+z>y+t 

holds. This axiom implies 
(1) x>O, y>O*x+y>O, and (2) x>y+-y>-x. 

We make an ordered set Hu {co) by adding to H an element 00 bigger 
than all the elements of H, and fix the conventions co + LX= 00 for CCEH 
and a + a = cc. A mapv:K-Hu{co} from a field K to HU{EJ} 
is called an additive valuation or just a valuation of K if it satisfies the 
conditions 

(1) VbY) = v(x) + v(y); 

:, (2) vb + y) 3 min { 44, V(Y)); 
’ (3) v(x)= 000x=0. 

If we write K* for the multiplicative group of K then u defines a 
bmomorphism K * -H; the image is a subgroup of H, called the value 
BtOUps of 0. We also set 

1. R”= {x~Klv(x) 3 0) and m, = (XEK~V(X) > 0}, 

obtaining a valuation ring R, of K with m, as its maximal ideal, and call R, 
tie valuation ring of v, and m, the valuation ideal of u. Conversely, if R is a 

‘-balGation ring of K, then the group G = {xRlx~K*} described above is an 
“‘tiered group, and we obtain an additive valuation of K with value group 
.l.pby defining v: K ---+ G u {CO} by u(0) = co and v(x) = xR for XEK* (there 
&Q n0 real significance in whether or not we rewrite the multiplication in 

::& additively); the valuation ring of v is R. The additive valuation corres- .*_I 
,-f:pMng to a valuation ring R is not quite unique, but if u and v’ are 
*Y?$?o additive valuations of K with value groups H and H’ and both having 
-$fie valuation ring R then there exists an order-isomorphism cp:H -H’ ;.y,r, 
.2@eh that v’ = cpv (prove this!). Thus we can think of valuation rings and 

itive valuations as being two aspects of the same thing. 
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We now give some examples of ordered groups: 
(1) the additive group of real numbers R (this is isomorphic to the 

multiplicative group of positive reals), or any subgroup of this; 
(2) the group Z of rational integers; 
(3) the direct product Z” of n copies of Z, with lexicographical order, 

that is 

(a,,...,a”)<(b,,...,b,)o 
the first non-zero element of 
b 

1 
-al,...,b -a is positive 

n n 

An ordered group G is said to be Archimedean if it is order-isomorphic to 
a suitable subgroup of R. The name is explained by the following theorem: 
the condition in it is known as the Archimedean axiom. (Note that our 
usage is completely unrelated to that in number theory, where non- 
Archimedean fields are p-adic fields, as opposed to subfields of (w and @ with 
the usual ‘Archimedean’ metrics.) 

Theorem 10.6. Let G be an ordered group; then G is Archimedean if and 
only if the following condition holds: 

if a, LEG with a > 0, there exists a natural number n such that na > b. 
Proof. The condition is obviously necessary, and we prove sufficiency. If 
G = (0) then we can certainly embed G in R. Suppose that G # {O}. 
Fix some 0 < XEG. For any LEG, there is a well-defined largest integer 
n such that nx d y (if y 2 0 this is clear by assumption; if y < 0, let m be 
the smallest integer such that - y d mx, and set n = - m). Let this be no. 
Now set Y, = y - nOx and let n, be the largest integer n such that nx < 10 y,; 
we have 0 d n, < 10. Set y2 = lOy, - nix and let n2 be the largest integer 
n such that nx < IOy,. Continuing in the same way, we find integers no, 
n1,n2,..., and set q(y) = CI, where tl is the real number given by the decimal 
expression n, + O.n,n,n,. . . . Then it can easily be checked that cp: G -+ R 
is order-preserving, in the sense that y < y’ implies q(y) < q(y’). 

We also see that cp is injective. For this, we only need to observe that 
if y < y’ then there exists a natural number r such that x < lo*(y’ -Y); 
the details are left to the reader. 

Finally we show that cp is a group homomorphism. For LEG, we write 
n/10’ with neZ to denote the number obtained by taking the first r 
decimal places of q(y); the numerator n is determined by the property that 
nx < 10’~ < (n + 1)x. For ~‘EG, if n’x < 10’~’ < (n’ + 1)x then we have 

(n + n’)x d lol(y + y’) < (n + n’ + 2)x, 

and hence 
q(y+y’)-(n+n’).lO-‘<2.10-‘, 

so that 

l~(Y+Y’)-~(Y)-~cp(Y’)l~4.~o-‘~ 
and since r is arbitrary, q(Y + y’) = q(Y) + &‘). B 
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A non-zero group G order-isomorphic to a subgroup of Iw is said to have 
rank 1. The rational rank of an ordered group G of rank 1 is the maximum 
number of elements of G (viewed as a subgroup of [w) which are linearly 
independent over Z. For example, the additive group G = Z + ZJ2 c iw is 
an ordered group of rank 1 and rational rank 2. 

Theorem 10.7. Let R be a valuation ring having value group G. Then G has 
rank IoR has Krull dimension 1. 
proof. (a) Since G # 0, R is not a field. Suppose that p is a prime ideal ofR 
distinct from mR. Let 5EmR be such that t$p, and set v(t) = x, where u is the 
additive valuation corresponding to R. Suppose that 0 # nip, and set JI = 
u(q); then yeG and x > 0, so that nx > y for some sufficiently large natural 
number n. This means that <“/PIER, so that YEI] R c p; then since p is prime 
we have REP, which is a contradiction. Therefore p = (Cl). The only prime 
ideals of R are mR and (0), which means dim R = 1. 

(CL) If 0 # VEmR then mR is the unique prime ideal containing qR, and 
hence ,/(ryR) = mR. Thus for any 5~rrt~ there exists a natural number n such 
that l”~qR. From this one sees easily that G satisfies the Archimedean 
axiom. n 

Exercises to $10. Prove the following propositions. 

10.1. In a valuation ring any finitely generated ideal is principal. 

10.2. If R is a valuation ring then an R-module A4 is flat if and only if it is torsion- 
free(thatis,a#O,x#O~ax#Ofora~R,x~M). 

10.3. In Theorem 10.4, if A is a local ring then B is the intersection of the 
valuation rings of K dominating A. 

10.4. IfR is a valuation ring of Krull dimension > 2 then the formal power series 
ring R[Xj is not integrally closed ([BS], Ex. 27, p. 76 and Seidenberg Cl]). 

10.5. If  R is a valuation ring of Krull dimension 1 and K its field of fractions then 
there do not exist any rings intermediate between R and K. In other words 
R is maximal among proper subrings of K. Conversely if a ring R, not a 
field, is a maximal proper subring of a field K then R is a valuation ring of 
Krull dimension 1. 

10.6. If  u is an additive valuation of a field K, and if ct,/?~K are such that 

u(a) # u(B) then v(a + /I) = min (v(a), u(@). 

10.7. If  c is an additive valuation of a field K and c(i , . . , CI,E K are such that 

a1 + ... + CI, = 0 then there exist two indices i, j such that i #j and 
u(Cii) = U(@Ij). 

10.8. Let K c L be algebraic field extension of degree [LK] = n, and let S be 
a valuation ring of L; set R = S n K. Write k, k’ for the residue fields of S 
and R, and set [k:k’] = f.  Now let G be the value group of S, and let G’ be 

,- 
:~ 
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the image of K* under the valuation map L* -+ G; set 1 G: G’J = e. Then 
ef < n. (The numbers f  and e are called the degree and the ramification 
index of the valuation ring extension S/R.) 

10.9. Let L, K, S and R be as in the previous question, and let S, # S be a 
valuation ring of Lsuch that S, n K = R. Then neither of S or S, contains 
the other. 

10.10 Let A be an integral domain with field of fractions K, and let H be an 
ordered group. If a map v: A - H u {co} satisfies conditions (1) (2) and (3) 
of an additive valuation (on elements of A), then u can be extended 
uniquely to an additive valuation K --+ H u { co}. 

10.11 Let k be a field, X and Y indeterminates, and suppose that 01 is a positive 
irrational number. Then the map o:k[X, Y] - IRU { co} defined by 
taking ~c,,,X”Y”’ (with c,,,ek) into u(~c,,,X”Ym) = min{ n + 
maJc,,, #0} determines a valuation of k(X, Y) with value group 
iZ+ZcC. 

11 DVRs and Dedekind rings 

A valuation ring whose value group is isomorphic to Z is called 
a discrete valuation ring (DVR). Discrete refers to the fact that the value 
group is a discrete subgroup of Iw, and has nothing to do with the 
m-adic topology of the local ring being discrete. 

Theorem 11 .l. Let R be a valuation ring. Then the following conditions are 
equivalent. 

(1) R is a DVR; 
(2) R is a principal ideal domain; 
(3) R is Noetherian. 

Proof. Let K be the field of fractions of R and m its maximal ideal. 
(1) =z-(2) Let vR the additive valuation of R having value group Z; this is 

called the normalised additive valuation corresponding to R. There exists 
tan such that us(t) = 1. For 0 # XE~, the valuation a&) is a positive 
integer, say vR(x) = n; then vJx/t”) = 0, so that we can write x = t”u with u a 
unit of R. In particular m = tR. Let I # (0) be any ideal of R; then 
(u&4 IO # aEl) is a set of non-negative integers, and so has a smallest 
element, say n. If n = 0 then I contains a unit of R, so that I = R. If n > 0 then 
there exists an x~l such that uR(x) = n; then I = xR = t”R. Therefore R is a 
principal ideal domain, and moreover every non-zero ideal of R is a power 
of m = tR. 

(2)=>(3) is obvious. 
(3) *(2) In general, given any two ideals of a valuation ring, one contains 

the other, so that any finitely generated ideal a,R + *.. + a,R is equal to one 
of the a,R, and therefore principal. Hence, if R is Noetherian every ideal ofR 
is principal. 
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(z)=>(l) We can write m = xR for some x. Now if we set I = ny”= l~YR 
then this is also a principal ideal, so that we can write I = yR. If we set 

Y =XZ, then from y~x’R we get ZEX”-~ R, and since this holds for every 
v, we have ZEI, hence we can write z = yu. Since y = xz = xyu, we have y(l 
- XU) = 0, but then since XE~ we must have y = 0, and therefore I= (0). 
Because of this, for every non-zero element UER, there is a well-defined 
integer v > 0 such that aExYR but a$x “+ ‘R; we then set z(a) = v. It is not 
difficult to see that if a, b, c, dER - (0) satisfy a/b = c/d then 

u(a) - u(b) = u(c) - v(d); 

therefore setting o(5) = u(a) - o(h) for [ = a/beK* gives a map u:K* -Z 
which can easily be seen to be an additive valuation of K whose valuation 
ring is R. The value group of u is clearly Z, so that R is a DVR. n 

If R is a DVR with maximal ideal m then an element tER such that 
m = tR is called a un$olformising element of R. 

Remark. A valuation ring S whose maximal ideal m, is principal does not 
have to be a DVR. To obtain a counter-example, let K be a field, and R 
a DVR of K; set k = R/m,, and suppose that ‘93 is a DVR of k. Now let 
S be the composite of R and 93. Letfbe a uniformising element of R, and 
ge:S be any element mapping to a uniformising element S of ‘33. Then 
q = fR c m, c S c R, and m$m, = @X = J(S/m,), and so 

m,=m,+gS. 

On the other hand g- ’ ER, so that for any hEm, we have h/gem, c S, and 
hence mR c g S, so that 

m, = gS. 

However, mR = fR is not finitely generated as an ideal of S, being generated 
by .A h-l, fg-2,.... The value group of S is Z2, with the valuation 
V:K* -+ h2 given by 

U(X) = (n, m), where n = vR(x) and m = u.Jq(xf-“)), 
where cp: R -+ R/m, = k is the natural homomorphism. 

The previous theorem gives a characterisation of DVRs among valuation 
rings; now we consider characterisations among all rings. 

Thvern 11.2. Let R be a ring; then the following conditions are 
equivalent: 

(1) R is a DVR; 
(2) R is a local principal ideal domain, and not a field; 
(3) R is a Noetherian local ring, dim R > 0 and the maximal ideal mR is 

Principal; 
(4) R is a one-dimensional normal Noetherian local ring. 
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Proqf. We saw (l)+(2) in the previous theorem; (2)+(3) is obvious. 
(3)+(l) Let xR be the maximal ideal of R. If x were nilpotent then we 

would have dim R = 0, and hence xv # 0 for all v. By the Krull intersection 
theorem (Theorem 8.10, (i)) we have n ,“= 1 x’R = (0), so that for 0 # ycR 
there is a well-determined v such that y~x’R and y$x”+‘R. If y = x”u, then 
since u$xR it must be a unit. Similarly, for 0 # ZER we have z = x%, with u a 
unit. Therefore yz = xYtp uu # 0, and so R is an integral domain. Finally, 
any element t of the fraction field of R can be written t = x”u, with u a unit of 
R and veB, and it is easy to see that setting v(t) = v defines an additive 
valuation of the field of fractions of R whose valuation ring is R. 

(l)*(4) In a DVR the only ideals are (0) and the powers of the maximal 
ideal, so that the only prime ideals of R are (0) and mR, and hence 
dim R = 1. By the previous theorem R is Noetherian, and it is normal 
because it is a valuation ring. 

(4)=>(3) By assumption R is an integral domain. Write K for the field of 
fractions and nr for the maximal ideal of R. Then m # 0, so that by Theorem 
8.10, nt # m2; choose some xEm - m2. Since dim R = 1 the only prime 
ideals of R are (0) and m, so that m must be a prime divisor of xR, and there 
exists PER such that xR:y = m. Set a = yx-‘; then a$R, but am c R. Now 
wesetm- ’ = {heK(bm c R), so that R c m-‘, and R f nr-’ since aErn-l. 
Consider the ideal m -lrn of R; since R c m Ml we have m c m - ‘m. If we 
had m = n-l m then we would get am c m, and then a would be integral 
over R by Theorem 2.1, so that UER, which is a contradiction. Hence we 
must have m- ’ m = R. Moreover, xm-l c R is an ideal, and if xm -I c ITI 
then we would have XR = xm-lrn c m2, contradicting x@n2. Therefore 
xnr-’ = R, and hence xR = xm-’ m = m, so that m is principal. n 

Quite generally, if R is an integral domain and K its fields of fractions, we 
say that an R-submodule I of K is a fractional ideal of R if I # 0, and 
there exists a non-zero element cx~R such that crl c R (see Ex. 3.4). As 
an R-module we have I N al, so that if R is a Noetherian integral domain 
then any fractional ideal is finitely generated. For I a fractional ideal we 
set I-’ = (aeKlct1 c R}; we say that I is invertible if I- ‘I= R. 

Theorem 11.3. Let R be an integral domain and I a fractional ideal of R. 
Then the following conditions are equivalent: 

(1) I is invertible; 
(2) I is a projective R-module; 
(3) I is finitely generated, and for every maximal ideal P of R, the 

fractional ideal I, = IR, of R, is principal. 
Proof. (l)-(2) If I-‘I = R then there exist a@ and b&’ such that 
x;aibi= l.Thena,,..., a, generate I, since for any x~l we have C(xbi)ai = 
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x, and xb,eR. Let F = Re, + ... + Re, be the free R-module with basis 
el,. . , e,,; we define the R-linear map cp:F -I by cp(ei) = ai, so that cp is 
surjective. Then we defined $:I -F by writing $i:I -R for the map 
tii(x) = b,x, and setting I)(X) = C $;(x)ei. We then have q@(x) = x, SO that cp 
splits, and I is isomorphic to a direct summand of the free module F, and 

therefore projective. 
(2)+-(l) Every R-linear map from I to R is given by multiplication by 

some element of K (prove this!). If we let cp: F - I be a surjective map from 
a free module F = @ Rei, by assumption there exists a splitting $:I + F 
such that cp$ = 1. Write $(x) = 1 A;( ) .f x e, or x~l; then by what we have said, 
each Ai determines a b,EK such that &(x) = bix, and since for each x that 
are only finitely many i such that /$(x) # 0, we have hi = 0 for all but finitely 
many i. Letting b,, . , b, be the non-zero ones, we have c aibix = x for all 
xel, where ai = q(ei). Thus c; a,b, = 1. Moreover, since hiI = Ai c R we 
have biGI- ‘, and therefore I ~’ I = R. 

(l)=>(3) As we have already seen, I is finitely generated. Now if c aibi = 1 
and P is any prime ideal then at least one of aibi must be a unit of R,, 
and I, = a,R,. Hence I, is a principal fractional ideal. 

(3)*(l) If I is finitely generated then (IP’),=(Z,))‘. Indeed, the 
inclusion c holds for any ideal; for 3, if I = a, R + ... + a,R and x@Z,)) ’ 
then xa,ER,, so there exist c+R - P such that xa,c,ER, so that setting 
C=C 1...c, we have (cx)a,ER for all i, which gives cxeZ-’ and x@~‘),. 
From the fact that I, is principal, we get ZP.(lP)- ’ = R,. Now if II- ’ # R 
then we can take a maximal ideal P such that II-’ c P, and then 
Zp.(Zp)- l = z,jz - ‘)p c PR,, which is a contradiction. Thus we must have 
II-‘=R. n 

Theorem 1 I .4. Let R be a Noetherian integral domain, and P a non-zero 
prime ideal of R. If P is invertible then ht P = 1 and R, is a DVR. 
Proof. If P is invertible the maximal ideal PR, of R, is principal, and 
condition (3) of Theorem 2 is satisfied; thus R, is a DVR, and so dim R, = 1. 

Theorem I1 S. Let R be a normal Noetherian domain. Then we have 

(i) all the prime divisors of a non-zero principal ideal have height 1; 
(ii) R = nhtp=, R,. 

p?! (i) Suppose 0 # aER and that P is one of the prime divisors of aR; 
then there exists an element bE R such that aR: b = P. We set PR, = nr, and 
then aR,:b=m, so that baPIEmP’ and ba-‘q!R,. If ba-‘mcm then 
bY the determinant trick ba-’ is integral over R,, which contradicts the 
fact that R, is integrally closed. Thus ba- ‘m = R,, so that m- ‘m = R,, and 
then by the previous theorem we get ht m = ht P = 1. 

(ii) It is sufficient to prove that for a, bER with a ~0, bEaR, for every 
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height 1 prime PESpec R implies bEaR. Let Pr,..., P, be the prime 
divisors of aR, and let aR = q, n . . . nq, be a primary decomposition of 
aR, where qi is a Pi-primary ideal for each i. Then since ht Pi = 1, we have 
bEaR,,nR=q, for i= l,..., n, and therefore bE fi qi = uR. H 

Corollary. Let R be a Noetherian domain. The following two conditions 
are necessary and sufficient for R to be normal: 

(a) for P a height 1 prime ideal, R, is a DVR; 
(b) all the prime divisors of a non-zero principal ideal of R have height 1. 

Proof: We have already seen necessity. For sufficiency, note that the proof 
of (ii) above shows that (b) implies R = n,,,,= i R,. Then by (a) each R, 
is normal, so that R is normal. n 

Definition. An integral domain for which every non-zero ideal is invertible 
is called a Dedekind ring (sometimes Dedekind domain). 

Theorem 11.6. For an integral domain R the following conditions are 
equivalent: 

(1) R is a Dedekind ring; 
(2) R is either a field or a one-dimensional Noetherian normal domain; 
(3) every non-zero ideal of R can be written as a product of a finite 

number of prime ideals. 
Moreover, the factorisation into primes in (3) is unique. 

Proof. (l)-(2) Every non-zero ideal is invertible, and therefore finitely 
generated, so that R is Noetherian. Let P be a non-zero prime ideal of R; 
then by Theorem 4, the local ring R, is a DVR and ht P = 1, and therefore 
either R is a field or dim R = 1. Also, by Theorem 4.7 we know that R is the 
intersection of the R, as P runs through all the maximal ideals of R, but 
since each R, is a DVR it follows that R is normal. 

(2) *(l) If R is a field there is no problem. If R is not a field then for every 
maximal ideal P of R the local ring R, is a one-dimensional Noetherian 
local ring and is normal, so that by Theorem 2 it is a principal ideal ring. 
Thus by Theorem 3, R is a Dedekind ring. 

(l)*(3) Let I be a non-zero ideal. If I = R then we can view it as the 
product of zero ideals; if I is itself maximal then it is the product of just one 
prime ideal. We have already seen that R is Noetherian, so that we can use 
descending induction on 1, that is assume that I #R and that every ideal 
strictly bigger than J is a product of prime ideals. If I # R then there is a 
maximal ideal P containing I, and I c IPpl c R. If IP-l = I then using 
P-'P = R we would have I = IP, and by NAK this would lead to a 
contradiction. Hence ZP-l #I, so that by induction we can write IP-’ = 
Qi.. . Q,, with Q,&pec R. Multiplying both sides by P gives I = Qi.. . Q*P. 

The proof of (3) +(l) is a little harder, and we break it up into four steps. 
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Step 1. In general, any non-zero principal ideal aR of an integral domain 
R is obviously invertible. Moreover, suppose that I and J are non-zero 
fractional ideals and B = IJ; then obviously I and J invertible implies B 
invertible, but the converse also holds. TO see this, from I-‘J-‘B c R we 
get I-‘J-’ c B-’ 9 and also from B-‘ZJ c R we get B-‘Z c J-’ and 
B-‘J C I-‘; now if B is invertible then multiplying the last two inclusions 

together we get B -’ =Bm’B-lIJcl-‘J-l, and hence B-’ =I-‘Jpl. 

Therefore 
R=BB-‘=IJI-‘J-‘=(II-‘)(JJ-‘), 

and we must have II-’ = JJ-’ = R. 

SreP 2. Let P be a non-zero prime ideal. Let us prove that if I is an ideal 
strictly bigger than P then IP = P. For this it is sufficient to show that if 
I = p + aR with a$P then P c IP. Consider expressions of 1’ and a2R + P 

as product of prime ideals, 1’ = P,. . . P, and a2R + P = Q1 . . . Q,. Then Pi 
and Qj are prime ideals containing I, and so are prime ideals strictly bigger 
than P, We now set R = R/P, and write - to denote the image in R of 
elements or ideals of R. Then we have 

(*) P,... Pr = a2R = (il.. Q,, 
and applying Step 1 to the domain R we find that pi and gj are all invertible, 
and are prime ideals of 8. We can suppose that P, is a minimal element of 
the set {Pl,..., P?>. Moreover, at least one of Q, ,. . . ,Q, is contained 
in P,, so that we can assume that Q, c P,, and, on the other hand, since 
Q1 is also a prime ideal and P r...prccQ1 we must have Q,3Bi for 
some i. Then pi c Qi c B,, and by the minimality of Pi we have pi = 
Pl = Q,. M u hi 1 . p ymg through both sides of (*) by P; ’ gives 

P2~..P~=Q2...Qs. 

proceeding in the same way, we see that Y = s, and that after reordering the 
Qi we can assume that Pi = Qi for i = 1 ,..., r.FromthiswegetPi=Qi,and 
a2R+P=(P+aR)2 =P2 +aP+ a2R. Thus any element XGP can be 
Written 

x=y+az+a’t with YEP’, ZEP and tER. 

Smce a#P we must have td, and then as required we have 
PcP2+aP=(P+aR)P. 

Step 3. Let bER be a non-zero element; then in the factorisation 
bR=p 1 . . . P,, every Pi is a maximal ideal of R. Indeed, if I is any ideal 
stfictlY greater than Pi then ZPi = Pi, and by Step 1 Pi is invertible, so that 
I-R. 

SteP 4. Let P be a prime ideal of R, and 0 # aGP. If aR = P,. . . P, with 
PieSPec R then P must contain one of the Pi, but from Step 3 we know that 
Pi is maximal, so that P = Pi. We deduce that P is a maximal ideal and is 
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invertible. If every non-zero prime ideal is invertible then any non-zero ideal 
of R is invertible, since it can be written as a product of primes. This 
completes the proof of (3)*(l). 

Finally, if(l), (2) and (3) hold, then as we have seen in Step 2 above, the 
uniqueness of factorisation into primes is a consequence of the fact that 
the prime ideals of R are invertible. n 

Theorem 11.7 (the Krull-Akizuki theorem). Let A be a one-dimensional 
Noetherian integral domain with field of fractions K, let L be a finite 
algebraic extension held of K, and B a ring with A c B c L; then B is a 
Noetherian ring of dimension at most 1, and ifJ is a non-zero ideal of B then 
B/J is an A-module of finite length. 
Proof. We follow the method of proof of Akizuki [l] in the linear algebra 
formulation of [BS]. First of all we prove the following lemma. 

Lemma. Let A and K be as in the theorem, and let M be a torsion-free 
A-module (see Ex. 10.2) of rank r < co. Then for 0 # UGA we have 

l(M/aM) < r.l(A/aA). 

Remark. The rank of a module M over an integral domain A is the maximal 
number of elements of M linearly independent over A; this is equal to the 
dimension of the K-vector space MBAK. 
Proof of the lemma. First we assume that M is finitely generated. Choose 
elementst,,..., &EM linearly independent over A and set E = C A[,; then 
for any Y]E M there exists teA with t # 0 such that tqEE. If we set C = M/E 
then from the assumption on M we see that C is also finitely generated, so 
that rC = 0 for suitable 0 # t EA. Applying Theorem 6.4 to C, we can find 
C = C, 3 C, 3 ... 2 C, = 0, such that C,/C,+ I N A/p, with p,&GpecA. 
NOW tqi, and since A is one-dimensional each pi is maximal, so that 
1(C) = m < m. If 0 # aeA then the exact sequence 

EIa”E -M/a”M -C/a”C-+O 
gives 

(*) l(M/a”M) < l(E/a”E) + l(C) for all n > 0. 

Now E and M are both torsion-free A-modules, and one sees easily that 
a’M/a’+‘M N M/aM, and similarly for E. Hence (*) can be written 
n.l(M/aM) d n.l(E/uE) + l(C) for all n > 0, which gives l(M/aM) d l(E/aE), 
Since E N A’ we have l(E/aE) = r.l(A/aA). This completes the proof in the 
case that M is finitely generated. If M is not finitely generated, take a finitely 
generated submodule fl= Ac5, + ..’ + Ati, of &! = M/aM. Then chaos- 
ing an inverse image wi in M for each tii, and setting M, = CAmi, we get 

1(x A&) = l(M,/M, naM) d l(M,/aM,) < r.l(A/aA). 
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The right-hand side is now independent of N, so that li;i is in fact finitely 
generated, and l(M) < r’I(A/aA). 

We return to the proof of the theorem. We can replace L by the field of 
fractions of B. Set [L:K] = r; then B is a torsion-free A-module of rank r. 
Hence by the lemma, for any 0 # UCA we have l,(B/aB) < 00. Now if J # 0 is 
an ideal of B and 0 # ~EJ then since b is algebraic over A it satisfies a 

relation 
a,b”‘+ amplbm-’ +...+a,b+a,=O with SEA. 

B is an integral domain, so that we can assume a, # 0. Then 0 # a,czJ r\ A 
and so 

l,(B/J) d I,(B/a,B) < n3. 

Moreover, one sees from ldJ/q,B) 6 l,(J/a,B) < l,(B/a,B) < co that J/a,B 
is a finite B-module; hence, J itself is a finite B-module, and therefore B is 
Noetherian. If P is a non-zero prime ideal of B then B/P is an Artinian 
ring and an integral domain, and therefore a field. Thus P is maximal and 
dimB= 1. 

Corollary. Let A be a one-dimensional Noetherian integral domain, K its 
field of fractions, and L a finite algebraic extension field of K; write B for the 
integral closure of A in L. Then B is a Dedekind ring, and for any maximal 
ideal P of A there are just a finite number of primes of B lying over P. 
Proof. By the theorem B is a one-dimensional Noetherian integral domain 
and is normal by construction; hence it is a Dedekind ring. It is easy to see 
that if we factorise PB as a product PB = Q;‘. . . QF of a finite number of 
prime ideals, then Q 1,. . . Q, are all the prime ideals of B lying over P. 

Exercises to $11. Prove the following propositions. 

11.1. Let A be a DVR, K its field of fractions, and Z? an algebraic closure of K; 
then any valuation ring of R dominating A is a one-dimensional non- 
discrete valuation ring. 

11.2. Let A be a DVR, K its field of fractions, and La finite extension field of K; 
then a valuation ring of L dominating A is a DVR. 

11.3. Let A be a DVR and m its maximal ideal; then the m-adic completion A  ̂of 
A is again a DVR. 

11.4. Let u: K -+ [w u { cc } be an Archimedean additive valuation of a field K, 
and let c be a real number with 0 < c < 1. For CI, @K, set d(a, fi) = c”(‘-~); 
then d satisfies the axioms for a metric on K (that is d(a, fi) 2 0, d(cc, p) 
= O-cl = 8, d(a, /?) = d(,!I, c() and d(cc, y) < d(a, /r) + d@‘, y)), and the to- 
pology of K defined by d does not depend on the choice of c. Let R be the 
valuation ring of u and m its valuation ideal; if R is a DVR then the 
topology determined by d restricts to the m-adic topology on R. 
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11.5. Any ideal in a Dedekind ring can be generated by at most two elements. 

11.6. Let A be the integral closure of E in Q(,/lO); then A is a Dedckind ring but 
not a principal ideal ring. 

11.7. If a Dedekind ring A is semilocal then it is a principal ideal ring. 

11.8. A module over a Dedekind ring is flat if and only if it is torsion-free. 

11.9. Let A be an integral domain (not necessarily Noetherian). The following 
two conditions are equivalent: 

(1) A, is a valuation ring for every maximal ideal P of A; 
(2) an A-module is flat if and only if it is torsion-free. (An integral 

domain satisfying these conditions is called a Priifer domain.) 

11.10. A finite torsion-free module over a Dedekind ring is projective, and is 
isomorphic to a direct sum of ideals. 

12 Krull rings 

Let A be an integral domain and K its field of fractions. We write 
K* for the multiplicative group of K. We say that A is a Krull ring if there is 
a family 8 = {R,} IcA of DVRs of K such that the following two conditions 
hold, where we write vI for the normalised additive valuation correspond- 
ing to R,: 

(1) A = &R,; 
(2) for every XEK* there are at most a finite number of ,~EA such that 

un(x) # 0. 
The family F of DVRs is said to be a defining family of A. Since DVRs are 

completely integrally closed (see Ex. 9.5), so are Krull rings. If A is a Krull 
ring then for any subfield K’ c K the intersection An K’ is again Krull. 

Theorem 12.1. If A is a Krull ring and S c A a multiplicative set, then A, is 
again Krull. If F = (R,},,, is a defining family of A then the subfamily 

Pnln,r, where I- = (1~A1 R, 1 A,) is a defining family of A,. 
Proof. Setting m, for the maximal ideal of R, we have 

kreSn m, = 0. 

Let 0 # x~r)~,,R,; there are at most finitely many REA such that Us < 0; 
let A= (Al,..., n 1 } be the set of these. If SEA then ,%$I-, hence we can find 
t,Em, n S. Replacing tn by a suitable power, we can assume that u,(t,x) b 0. 
We then set t = nn,, A, t so that for every IeA we have u,(tx) 3 0, and 
therefore txeA; but on the other hand tES so that XEA, and we have 
proved that A, I nnEr I. R The opposite inclusion is obvious. The finiteness 
condition (2) holds for A, so also for the subset r. n 

Krull rings defined by a finite number of DVRs have a simple structure. 

Lemma 1 (Nagata). Let K be a field and R, , . . . , R, valuation rings of K; 
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set A = 0 Ri. Then for any given a~ K there exists a natural number s 3 2 

such that 
(l+a+-~+a”-l)-’ and a.(1 +a+...+~“-~)-’ 

both belong to A. 
pr& We consider separately each Ri. Note first that (1 - a) (1 + a + ... 
+~-l)=l-u”.Ifu~Rithenu -‘urns, and any s >, 2 will do. If UER~ then 
Provided that there does not exist t such that 1 - u’~rn~, any s 2 2 will do. 
of I- aEmi then any s which is not a multiple of the characteristic of Ri/mi 
will do. If on the other hand 1 - u$mi but 1 - u’ern, for some t > 2, letting 
to be the smallest value of t for which this happens, we see that 1 - aSEmi 
only for s multiples of to, so that we only have to avoid these. Thus for each i 
the bad values of s (if any) are multiples of some number di > 1, so that 
choosing s not divisible by any of these di we get the result. H 

Theorem 12.2, Let K be a field and R,, . . . , R, valuation rings of K such 
that Ri qk Rj for i fj; set m, = rad (Ri). Then the intersection A = nl= 1 Ri is 
a semilocal ring, having pi = m, n A for i = 1,. . . , II as its only maximal 
ideals; moreover A,, = R,. If each Ri is a DVR then A is a principal ideal 
ring. 
Proof. The inclusion A, c Ri is obvious. For the opposite inclusion, let 
UCRi; choosing s > 2 as in the lemma, and setting u = (1 + a + ... + us- ‘)- 1 
we get UEA and UEA. Obviously u is a unit of Ri, so that UEA -pi 
and a = (uu)/u~A,~. This proves that A,< =Ri. It follows from this 
that there are no inclusions among pl, . . . , p,. If I is an ideal of A not 
contained in any pi then (by Ex. 1.6) there exists xgl not contained in 
u~=Ipi; then x is a unit in each Ri, and hence in A, SO that I = A. Thus 
Pl,..., p, are all the maximal ideals of A. 

If each Ri is a DVR then we have mi # rn;, and hence pi # pi*‘, (where p(*) 
denotes p’A,n A). Thus there exists xi~pi such that x&1”, and xi$pj for 
i #j; then pi = x,A. If1 is any ideal of A and ZRi = xyi Ri for i = 1,. . . , n then it 
is easy to see that I = XII.. . x,yA. n 

If a Krull ring A is defined by an infinite number of DVRs then the 
defining family of DVRs is not necessarily unique, but the following 
theorem tells us that among them there is a minimal family. 

Theorem 12.3. Let A be a Krull ring, K its field of fractions, and p a height 1 
lPdmeidealofA;thenif,9=={R > 1 IsA is a family of DVRs of K defining A, we 
must have A,EB. If we set 9, = {A,Ip~Spec A and htp = l} then .9-o is a 
defining family of A. Thus 9-O is the minimal defining family of DVRs of A. 
%of. By Theorem 1, A, is a KrulI ring defined by the subfamily Y1 = 
(R,IA, c R,} c 9; if A, c R, then the elements of A - p are units of R, 
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SO that p 3 m,nA. If nt,n A = (0) then RI 3 K which is a contradiction, 
hence m,n A # (0); since ht p = 1, we must have p = mln A. Thus if we fix 
some 0 # x~p, then ul(x) > 0 for all RIeFI, and hence F-, is a finite set, 
Now by the previous theorem and Ex. 10.5, the elements of 9, correspond 
bijectively with maximal ideals of A,, and 9, has just one element A,. Thus 
A,EF, in other words 8, c 9. 

To prove that 9-O is a defining family of DVRs of A it is enough to show 
that A 1 n,,,,=, A,. That is, it is enough to prove the implication 

for a, kA with a # 0, beaA, for all A,ES,*~EUA. 

As one sees easily, this is equivalent to saying that aA can be written as 
the intersection of height 1 primary ideals. The set of REB such that 
aR # R is finite, so we write R,, . . , R, for this. If we set 

aRinA = qi and rad(R,)nA = pi 

then qi is a primary ideal belonging to pi for each i, and aA = ql.. . n q,. 
Eliminating redundant terms from this expression, we get an irredundant 
expression, say aA = q1 n. . . nq,. It is enough to show that then ht pi = 1 
for 1 < i < r. By contradiction, suppose that ht p1 > 1. By Theorem 1, A,,1 is 
a Krull ring with defining family F’ = {REBIA,,, c R), but is not itself 
a DVR, and hence by Theorem 2, F’ is infinite. Thus there exists R’6P-I 
such that aR’ = R’; we set p’ = rad (R’)n A. We have a$p’, and ApI c R’ 
implies that p’ c pl. Now by assumption aA #q, n...nq,., and RI is a 
DVR, so that (rad(R,))” caR, for some v >O, and hence pi cql. 

Therefore there exists an i 3 0 such that 

aA+p’,nq,n...nq, and aAIpl+‘nq,n...nq, 

Hence there exist by A such that b$aA but bp, c aA. In particular bp’ c aA, 

but since a is a unit of R’ we have 

(b/a)p’ c An rad (R’) = p’. 

Taking 0 # cep’ then for every n > 0 we have (b/a)“cEp’ c A, and since A is 
completely integrally closed, b/aEA. This is a contradiction, and it proves 
that ht pi = 1 for 1 6 i < r. H 

Corollary. Let A be a Krull ring and 9 the set of height 1 prime ideals of A. 
For 0 # aEA set u,(a) = n,; then 

aA = n pW, 
w.9 

where p(“) denotes the symbolic nth power p”A,n A. 
Proof. According to the theorem we have aA = n,,,(aA,nA)* 
but aA, = p”pA, so that aA,n A = p(“p). n 

Theorem 12.4. (i) A Noetherian normal domain is a Krull ring. 
(ii) Let A be an integral domain, K its field of fractions, and L an extension 

field of K. If (Ai)i,, is a family of Krull rings contained in L satisfying 
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the two conditions (1) A = nAi and (2) given any 0 # aeA we have 
a,-& = Ai for all but finitely many i, then A is a Krull ring. 

(iii) If A is a Krull ring then so is A[X] and A[Xj. 
,J+oof. (i) 7%’ f 11 IS o ows from Theorem 11.5 and the fact that for any non- 
zero UEA there are only finitely many height 1 prime ideals containing aA 
(because these are the prime divisors of aA). 

(ii) is easy, and we leave it to the reader. 
(iii) K [X] . 1s a p rincipal ideal ring and therefore a Krull ring. Moreover, 

if we let 9 be the set of height 1 prime ideals of A then for YES 
the ideal p[X] is prime in A[X], and by Theorem 11.2, (3), the local ring 

AL-Xl,,x, is a DVR of K(X). (If we write u for the additive valuation of K 
corresponding to the valuation ring A,, we can extend u to an additive 
valuation of K(X) by setting u(F(X)) = min (u(q)} for a polynomial 

F(X) = a, f u,X + ... + u,X’ (with u,EK), 

and v(F/G) = u(F) - v(G) for a rational function F(X)/G(X); then the 
,valuation ring of u in K(X) is A [XI,,,,.) Now we have K[X] A 

ACW,,x, = A,[X] (prove this!), and so 

by (ii) this is a Krull ring. 
Now for A[Xl], let CR,},,,, be a family of DVRs of K defining A; then 

inside Ic[yXj we have A[X]l= nnRn[X$ also by Ex. 9.5, RA[Xj is an 
integrally closed Noetherian ring, and is therefore a Krull ring by (i). 
However, we cannot use (ii) as it stands, since X is a non-unit of all the rings 
Z&[Xj, so we set R,[XI][X-I] =Bb and note that A[Xj =K[X]n 

(n$J; now the hypothesis in (ii) is easily verified. Indeed, 

~~(X)=U,X’+U,+,X”~+~..EA~XI] with a,#0 

is a non-unit of B, if and only if a, is a non-unit of R,, and there are only 
finitely many such j”. Therefore A[Xj is a Krull ring. n 

Remark 2. Note that the field of fractions of A[Xl is in general smaller 
than the field of fractions of K[TXJ. 

Remark 2. The B, occurring above are Euclidean rings ([B7], 9 1, Ex. 9). 

Theorem 12.5. The notions of Dedekind ring and one-dimensional Krull 
ring coincide. 
Proof. A Dedekind ring is a normal Noetherian domain, and therefore a 
KruII ring. Conversely, if A is a one-dimensional Krull ring, let US prove that 

.r -4 is Noetherian. Let I be a non-zero ideal of A, and let 0 # u~l. If we can 
‘- Prove that AIaA is Noetherian then IluA is finitely generated, and thus so is 
;:. 
a 
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1. By the corollary of Theorem 3 we can write aA = q, n.*.nq,, where 
qi are symbolic powers of prime ideals pi and pi # pj if i #j; now since 
dim A = 1 each pi is maximal and we have 

A/aA = A/q, x .” x A/q, 

by Theorem 1.3 and Theorem 1.4. But A/q, is a local ring with maximal 
ideal pi/qi, and hence A/qi % A,,/qi A,,; now since each A, is a DVR, A/aA is 

Noetherian (in fact even Artinian). Hence A is one-dimensional Noetherian 
integral domain, and is normal, and is therefore a Dedekind ring. w  

Theorem f2.6. Let A be a Krull ring, K its field of fractions, and write 9 
for the set of height I prime ideals of A. Suppose given any pl,. . . p,.e~ 
and e , , . . , ~,EZ. Then there exists XEK satisfying 

q(x) = e, for 1 <i < r 
and 

u,(x)>0 for all PEP-{pl,...,pr}. 

Here ui and u,, stand for the normalised additive valuations of K 
corresponding to pi and p. 

Proof. If y,eA is chosen so that y,ep, but y,$p’:‘up, u”‘upr, then 
o&i) = 6,, for 1 <if r. Similarly we choose y,,...,y,~A such that 
Ui(yj) = bij. Then we set 

y= fi yp'; 

i=l 

let pi,. . . , P: be all the primes PEP - (p,,...,pr} for which o,(y) ~0. 
Then choosing for each j = 1,. . . , s an element tjep; not belonging to 
PI U”’ u P,, and taking v to be sufficiently large, we see that 

x = y(t1 . . t,)’ 

satisfies the requirements of the theorem. n 

Theorem 12.7 (Y. Mori and J. Nishimura). Let A and 9” be as in the 
previous theorem. If A/p is Noetherian for every pe.9 then A is 
Noetherian. 
Proof (J. Nishimura). As in the proof of Theorem 5, it is enough to show 
that A/p’“’ is Noetherian for p ~9 and any n > 0. If n = 1 this holds by 
hypothesis. For n > 1 we proceed as follows. Applying the previous 
theorem with r = 1 and e = - 1 we can find an element x in the field Of 
fractions of A such that u,(x) = 1 and u,(x) < 0 for every other qE9. Set 
B= .4[x]. If yip then y/x~A so that y~xxB, and conversely Bc A, and 
xBcpA,, so that p=xBnA. Moreover, B=A+xB and so 

BfxB = A/p. 
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Now x’B/x’+ ’ B ‘v B/xB for each i, so that by induction on i we see that 

B/x’B is a Noetherian B-module for each i, and hence a Noetherian ring. 

NOW we have 

and B/x”B is a finite A/(x”B n A)-module, being generated by the images of 

l,X,...,P, so that by the Eakin-Nagata theorem (Theorem 3.7), 
A/(~“B~A) is Noetherian ring; therefore its quotient A/p(“) is also 

Noetherian. W 

Remark. If A is a Noetherian integral domain and K its field of fractions, 
then the integral closure of A in K is a possibly non-Noetherian Krull ring 
([Nl], (33.10)). This was proved by Y. Mori (1952) in the local case, and 
in the general case by M. Nagata (1955). Theorem 12.7 was proved by 
Mori [l] in 1955 as a theorem on the integral closure of Noetherian 
rings. His proof was correct (in spite of a number of easily rectifiable 
inaccuracies), and was an extremely interesting piece of work, but due to 
its difficulty, and the fact that it appeared in an inaccessible journal, the 
result was practically forgotten. After Marot Cl], (1973) applied it 
successfully, Mori’s work attracted attention once more, and J. Nishimura 
[l], (1975) reformulated the result as above as a theorem on Krull rings 
and gave an elegant proof. 

More results on Krull rings can be found in [Nl], [B7], [F], among 
others. 

Exercises to $12. Prove the following propositions. 

12.1. Let K c L be a finite extension of fields, and R a valuation ring of K. Then 
there are a finite number of valuation rings of L dominating R, and if L is a 
normal extension of K then these are all conjugate to one another under 
elements of the Galois group Aut,(L). 

12.2. Let R be a valuation ring of a field K, and let KC L be a (possibly infinite) 

algebraic extension; write R for the integral closure of R in L. Then the 
localisation of R at a maximal ideal is a valuation ring dominating R, and 

conversely every valuation ring of L dominating R is obtained in this way. 

12.3. Let A be a Krull ring, K its field of fractions, and K c L a finite extension 
field; if B is the integral closure of A in L, then B is also a Krull ring. 

12.4. Let A be an integral domain and K its field of fractions. For I a fractional 
ideal, write I= (I- ‘) - I. If I = f we say that I is divisorial. I f  A is a Krull 
ring, then an ideal of A is divisorial if and only if it can be expressed as the 
intersection of a finite number of height 1 primary ideals. 



5 
Dimension theory 

The dimension theory of Noetherian rings is probably the greatest of 
Kruil’s many achievements; with his principal ideal theorem 
(Theorem 13.5) the theory of Noetherian rings gained in mathematical 
profundity. Then the theory of multiplicities was first treated rigorously 
and in considerable generality by Chevalley, and was simplified by Samuel’s 
definition of multiplicity in terms of the Samuel function. 

Here we follow the method of EGA, proving Theorem 13.4 via the 
Samuel function, and deducing the principal ideal theorem as a corollary. 
The Samuel function is of importance as a measure of singularity in 
Hironaka’s resolution of singularities, but in this book we can only cover its 
basic properties. In $15 we exploit the notion of systems of parameters to 
discuss among other things the dimension of the tibres of a ring 
homomorphism and the dimension formula for finitely generated extension 
rings. 

13 Graded rings, the Hilhert function and the Samuel function 

Let G be an Abehan semigroup with identity element 0; (that is, G 
is a set with an addition law + satisfying associativity (x + y) + z = x + 
(y + z), commutativity x + y = y + x, and such that 0 + x = x). A graded (or 
G-graded) ring is a ring R together with a direct sum decomposition of R as 
an additive group R = eitcRi satisfying RiRjc Ri+i. Similarly, a graded 
R-module is an R-module M together with a direct sum decomposition M = 
OkGMi satisfying RiM,i c Mi+? An element XEM is homogeneous if 
XE Mi for some iEG, and i is then called the degree of x. A general element 
XEM can be written uniquely in the form x = Ciacxi with xieMi and only 
finitely many xi # 0; xi is called the homogeneous term of x of degree i. 

A submodule N c M is called a homogeneous submodule (or graded 
submodule) if it can be generated by homogeneous elements. This 
condition is equivalent to either of the following two: 

(1) For XEM, if XEN then each homogeneous term of x is in N; 
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For a homogeneous submodule N c M we set Ni = Min N; then 
M/N = eisG M,/N, is again a graded R-module. 

One sees from the definition that R, c R is a subring, and that each 
graded piece Mi of a graded R-module M is an R,-module. 

The notion of graded ring is most frequently used when G is the 

semigroup {@I, 2,. . .} o non-negative integers, which we denote by lW. In f 
this case, we set R ’ = In > 0 R,; then R+ is an ideal of R, with R/R+ N R,. 

The polynomial ring R = R, [X,, . , X,] over a ring R, is usually made 
into an N-graded ring by defining the degree of a monomial Xt’ . . X2 as 
the total degree a, + ... + a,; however, R has other useful gradings. For 

example, R has an lk4”-grading in which X;l ...Xz has degree (a,, . . . , a,); 
the value of systematically using this grading can be seen in Goto- 
Watanabe [l]. Alternatively, giving each of the Xi some suitable weight 
di and letting the monomial Xb;l . ..X. have weight Iaid, defines an 
N-grading of R. For example, the ring R,[X, Y, Z]/(f), where f = aiXa + 
a,Y@ + a,ZY can be graded by giving the images of X, Y, Z the weights 
fly, ay and ~$3, respectively. 

A filtration of a ring A is a descending chain A = J, 3 J, I... of ideals 
such that J,J, c J,+,; the associated graded ring gr(A) is defined as 
follows. First of all as a module we set gr,(A) = J,,/J,,+ 1 for n 3 0, and 
gr(A) = @ ,,Ngr,(A); then we define the product by 

(x+ J,+&(Y + Jm+,)=xy+ Jn+m+l for XEJ, and YEJ, 

It is easy to see that gr(A) becomes a graded ring. The filtration 
J1lJzt ... defines a linear topology on A (see §8), and the completion A^ of 
A in this topology has a filtration JT 2 5; =, . . . such that a/J; N A/J, for 
all n, hence J,*/J,*+I ‘v J,,“+l, and 

u(A) = gr(AI). 

Let A be a ring, I an ideal, and let B = @,201n/Zn+1 be the graded ring 
associated with the filtration I 2 I2 I... of A by powers of I; the various 
notations gr,(A), gr’(A) and G,(I) are used to denote B in the current 

., literature. An element of B, = Zn/Znfl can be expressed as a linear 
: combination of products of n elements of B, = J/J2, so that B is generated 
” “, over the subring B, = A/I by elements of B,. If I = Ax, + ... + Ax, and ci 

c denotes the image of xi in B, = I/I2 then 

h ,; 
‘.x‘< B = iv-,(A) = (A/N<, 1.. , &I, 
‘f,~, and B is a quotient of the polynomial ring (A/I)[X,, . . . ,X,1 as a graded 
;,:; “jing. 
/ 

An N-graded ring R = @,,oR, is Noetherian if and only if 
ian and R is finitely generated as a ring over R,. 
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Proof. The ‘if’ is obvious, and we prove the ‘only if ‘: suppose that R is 
Noetherian. Then since R, z R/R’, R, is Noetherian. R’ is a home- 
geneous ideal, and is finitely generated, so that we can suppose that it is 
generated by homogeneous elements xi,. . . ,x.. Then it is easy to see that 
R=R,[x,,... ,x,1; in fact it is enough to show that R, c R,[x,, . . , x,~ 
for every n. Now writing di for the degree of Xi we have 

(*) R, = xlRnpdI + x~R~-‘,~ + ... + x,R,-‘j,. 

Indeed, for PER,,, write y = cXifi with fiER; then setting g, for the 
homogeneous term of degree n - di of fi (with gi = 0 if n - di < 0), we also 
have y = Cxigi. From (*) it follows by induction that R, c RJx,, . . . ,xr], m 

Let R = Bna,,Rn be a Noetherian graded ring; then if M = &,,M, 
is a finitely generated graded R-module, each M, is finitely generated 
as R,-module. In fact when M = R this is clear from (*) above. In the general 
case M can be generated by a finite number of homogeneous elements wi: M 
= Ro, + ... + Rw,. Now letting e, be the degree Of Wi, we have as above that 

M,=R,_,,o,+...+R,_.~o, (where R,=O for i<O), 

and hence M, is a finite R,-module. In particular if R, is an Artinian ring, 
then 1(~,) < a3, where 1 denotes the length of an R,-module. In this case we 
define the Hilbert series P(M, t) of M by the formula: 

P(M, t) = f l(M,,)t”&Z[tJ 
n=o 

[In combinatorics it is a standard procedure to associate with a sequence of 
numbers a,, a,, u2,. . . the generating function 1 ait’.] 

Theorem 13.2. Let R = BnaoR, be a Noetherian graded ring with R, 
Artinian, and let M be a finitely generated graded R-module. Suppose that 
R= RO[xl,..., x,] with xi of degree di, and that P(M, t) is as above. Then 
P(M, t) is a rational function of t, and can be written 

P(M, t) = f(t)/ fi (1 - tdi), 
i=l 

where f(t) is a polynomial with coefficients in Z. 
Proof. By induction on r’, the number of generators of R. When r = Q we 
have R = R,, so that for n sufficiently large, M, = 0, and the power series 
P(M, t) is a polynomial. When Y > 0, multiplication by x, defines an Ro- 
linear map M, - M, + d,; writing K, and L, + d, for the kernel and cokernely 

we get an exact sequence 

Set K = OK,, and L = @ L,. Then K is a submodule of M, and L = MIxrM9 
so that K and L are finite R-modules; moreover x,K = x,L = 0 SO tha 

tK 

i 
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and L can be viewed as R/x,R-modules, and hence we can apply the 
induction hypothesis to P(K, t) and P(L, t). Now from the above exact 
sequence we get 

W,) - 4M”) + w, +d,) - 4L +d,) = 0. 
If we multiply this by tnfdp and sum over n this gives 

tdrP(K, t) - tdrP(M, t) + P(A4, t) - P(L, t) = g(t), 

where g(t)EZ[t]. The theorem follows at once from this. n 

A lot of information on the values of 1(M,) can be obtained from the 
above theorem. Especially simple is the case d, = ... = d, = 1, so that R is 
generated over R, by elements of degree 1. In this case P(M, t) = f(t) 
(I - t)-‘; if f(t) has (1 - t) as a factor we can cancel to get P in the form 

P(M,t)=f(t)(l - t)-d with ,f~Z[t], d>O, 
and if d>O then ,f(l)#O. 

If this holds, we will write d = d(M). Since (1 - t)- 1 = 1 + t + t2 + . . . , we 
can repeatedly differentiate both sides to get 

(This can of course be proved in other ways, for example by induction on d.) 

Iff(t)=a,+a,t+...+a,ts then 

(*I W,) = a, (d~rr’)+a~(d:~~2)+...+a~(d+~~~-1); 

= 0 for m < d - 1. The right-hand side of (*) can be 

formally rearranged as a polynomial in n with rational coefficients, say cp(n); 
then 

f(l) 
‘(X)=(d- I)! pXd-’ + (terms of lower degree). 

Since coincides with the polynomial m(m - 1). . . (m - d + 2)/ 

(d- I)! for m >, 0, this implies the following result. 

Corollary. If d, = ... = d, = 1 in Theorem 2, and d = d(M) is defined as 
above, then there is a polynomial q,(X) of degree d - 1 with rational 
coefficients such that for n 2 s + 1 - d we have QM,) = cpM(n). Here s is the 
degree of the polynomial (1 - t)dP(A4, I). 

The polynomial (pM appearing here is called the Hilbert polynomial of the 
graded module M. The numerical function /(M,) itself is called the Hilbert 
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function of M; by the degree of a Hilbert function we mean the degree of the 
corresponding Hilbert polynomial. 

Remark. For general d r, . . . , d,, it is no longer necessarily the case that l(M,) 
can be represented by one polynomial. 

Example I. When R = R,[X,,X,,... ,X,1, the number of monomials of 

holds for every n > 0, and the right-hand side is qR(n). Thus qR(X) = 
(l(R,),‘r!)(X + r)(X + r - 1). . .(X + 1). 

Example 2. Let k be a field, and F(X,, . . ,X,) a homogeneous poly- 
nomial of degree s; set R = k[X,, . . . , X,]/(F(X)). Then for IZ > s, 

l(R,,)=(n:‘)-(n-;+r), 

and hence, setting =(l/r!)nr+alnr-‘+..., we have 

pR(X)=i[X’-(X-s)‘]+a,CX*-‘-(X-s)’-’]+... 

= ----X’- ’ + (terms of lower degree). 
(r ” l)! 

Example 3. Let k be a field, and R = k[X, ,. . , , X,]/P = k[t,,. . “, [,I, 
where P is a homogeneous prime ideal. Let t be the transcendence degree 
of R over k, and suppose that tr,. . . , <, are algebraically independent 

over k; then there are 
n+t-1 

( ) t-l 
monomials of degree n in the 

5 tt3 I,‘.., and these are linearly independent over k, so that 

Wn) 3 
n+t-1 

( 1 t-l ’ 
from which it follows that d 2 t. In fact we will prove 

later (Theorem 8) that d = t. 
A homogeneous ideal of the polynomial ring k[X,, . . ,X,] over a field 

k defines an algebraic variety in r-dimensional projective space P’, and 
the Hilbert polynomial plays an important role in algebraic geometry, 
For example, note that the numerator of the leading term of qR in Example 
2 is equal to the degree of F. This holds in more generality, but we must 
leave details of this to textbooks on algebraic geometry [Ha]. 

The idea of using the construction of gr,,(A) to relate the study of a 
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general Noetherian local ring (A, m) to the theory of ideals in a polynomial 
ring over a field was one of the crucial ideas introduced by Krull in his 
article ‘Dimension theory of local rings’ [6], a work of monumental 
significance for the theory of Noetherian rings. If m is generated by r 
elements then gr,,(A) is of the form k[X I , . . . ,X,1/1, where k = A/m and I is a 
homogeneous ideal. However, the Hilbert function of this graded ring was 
first used in the study of the multiplicity of A by P. Samuel (1951). 

Samuel functions 

In a little more generality, let A be a Noetherian semilocal ring, and m 
the Jacobson radical of A. If I is an ideal of A such that for some v > 0 
we have my c I c m, we call I an ideal of definition; the I-adic and m-adic 
topologies then coincide, so that ‘ideal of definition’ means ‘ideal defining 
the m-adic topology’. Let M be a finite A-module. If we set 

gr,(M)= @l”M/P’+lM 
PI>0 

then gr,(M) is in a natural way a graded module over gr,(A) = @ l”/l”+ ‘. 
For brevity write gr,(A) = A’ and gr,(M) = M’. Then the ring A; = A/I is 
Artinian, and if I= c’, XiA, and ti is the image of xi in Z/1’, then 
A’ = Ab[tr, . . , &I. If also M = c; Awi then M’ = zA’wi (where Oi is the 
image of Wi in Mb = M/ZM), so that we can apply Theorem 2 and its 
corollary to M’. Noting that l(ML) = l(I”M/l”+‘M) (where on the left-hand 
side 1 is the length as an Ah-module, on the right-hand side as an A-module), 
we have 

i$,o l(M;) = l(M/l”+’ M). 

we now set l&(n) = l(M/I”+l M). In particular we abbreviate &(n) to 
X&r), and call it the Samuel function of the A-module M. 

Repeatedly using the well-known formula (;)=(yZ:)+(in;l) 

we get 

SO that from formula (*) on p. 95 we get 

; ‘with a,EZ. When n > s this is a polynomial in n of degree d. This degree d 
;I h determined by M, and does not depend on I; to see this, if I and J are 
ii-both ideals of d e nn ion of A then there exist natural numbers a and b f ‘t’ 

gij ,, 
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such that I” c J, J” c I, so that 

~L(an + a - 1) >, X”,(n) and &(bn + b - 1) > X’,(n). 

We thus write d = d(M). It is natural to think of d(M) as a measure of the size 
of M. 

Theorem 13.3. Let A be a semilocal Noetherian ring, and 0 + M’ - 
M -M” + 0 an exact sequence of finite A-modules; then 

d(M) = max(d(M’), d(M”)) 

If I is any ideal of definition of A, then XL - xfu” and xf\l, have the same 
leading coefficient. 
Pro@. We can assume M” = MJM’. Then since M”/l*Mn = MJ(M’ + I”M) 
we have 

l(M/I”M) = l(M/M’ + I”M) + l(M’ + I”M/I”M) 
= I(M”/I”M”) + l(M’/M’ n I”M). 

Thus setting q(n) = I(M’/M’n I”+ ’ M), we have & = XL,, + 9. Since 
moreover both &, and cp take on only positive values, d(M) coincides with 
whichever is the greater of d(M”) and deg cp. However, by the Artin-Rees 
lemma, there is a c > 0 such that 

n~~~l”~lM’cM’nl”~lMcI”~c~lM’, 

and hence 

xL,(n) 2 q(n)> x',,(n - c); 

therefore cp and XL, have the same leading coefficient. n 

We now define a further measure 6(M) of the size of M: let 6(M) be the 
smallest value of n such that there exist x1,. . . , X,EIII for which l(M/x, M + 
... + x,M) < a. When l(M) < rx, we interpret this as 6(M) = 0. If I is any 
ideal of definition of A then l(M/IM) < co, so that 6(M) < number of 
generators of I. Conversely, in the case that A is a local ring and M = A, 
then 1(A/Z) < co implies that I is an m-primary ideal. Therefore in this case 
6(A) is the minimum of the number of generators of m-primary ideals. 

We have now arrived at the fundamental theorem of dimension theory. 

Theorem 13.4. Let A be a semilocal Noetherian ring and M a finite 
A-module; then we have 

dim M = d(M) = 6(M). 

Proof. 
Step 1. Each of d(M) and 6(M) are finite, but the finiteness of dimM 

has not yet been established. First of all, let us prove that d(A) 3 dim A 
for the case M = A, by induction on d(A). Set m = rad (A). If d(A) = 0 then 
l(A/m”) is constant for n >> 0, so that for some n we have m” = m”+’ and 
by NAK, mn = 0. Hence any prime ideal of A is maximal and dim A = 0. 
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Next suppose that d(A) > 0; if dim A = 0 then we’re done. If dim A > 0, 
consider a strictly increasing sequence p,, c p1 c ... c pe of prime ideals 
of A, choose some element x~p, - p,, and set B = A/(p, + xA); then by 
the previous theorem applied to the exact sequence 

O+A/po %4/p, -B+O, 

we have d(B) < d(A), and so by induction 

dimB<d(B)<d(A)- 1. 

(The values of d(B) and dim B are independent of whether we consider B as 
an A-module or as a B-module, as is clear from the definitions.) In B, the 
image of p1 c ... c p, provides a chain of prime ideals of length e - 1, so that 

e- 1 ddimB<d(A)- 1; 

hence e < d(A). Since this holds for any chain of prime ideals of A, this 
proves dim A < d(A). For general M, by Theorem 6.4, there are submodules 
MisuchthatO=M,cM,c...cM,=Mwith 

M,/M,- 1 E A/p, and p,eSpecA. 

Since for an exact sequence O-+ M’ -M + M”+O of finite A- 
modules we have 

Supp(M) = Supp(M’)uSupp(M”) 

and 

dim M = max (dim M’, dim M”), 

it is easy to see that 

d(M) = max {d(A/p,)} 3 max {dim(A/p,)} = dim M. 

Step2. We show that 6(M) 3 d(M). IfG(M) = Othen l(M) < CC so that x,(n) 
is bounded, hence d(M) = 0. Next suppose that 6(M) = s > 0, choose 

Xl ,...,x,EITI such that l(M/x,M+.~~+x,M)<~, and set Mi=M/X,M+ 
..* + XiM; then clearly 6(Mi) = 6(M) - i. On the other hand, 

~(M,/v~‘M,) = I(M/x,M + m”M) 

= I(M/m”M) - I(x,M/x,Mnm”M) 
= I(M/m”M) - I(M/(m”M:x,)) 
3 1(M/m”M) - /(M/m”- ‘M), 

so that d(M,) > d(M) - 1. Repeating this, we get d(M,) 2 d(M) - s, but since 
6(M,) = 0 we have d(M,) = 0, so that s 3 d(M). 

Step 3. We show that dim M 3 6(M), by induction on dim M. If dim M = 0 
then Supp(M) c m-Spec A = b’(m) so that for large enough n we have 
m” C ann M, and l(M) -C co, therefore 6(M) = 0. Next suppose that 
dim M > 0, and let pi for 1 < i ,< t be the minimal prime divisors of ann (M) 
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with coht pi = dim M; then the pi are not maximal ideals, so do not contain 
tn. Hence we can choose X~E~ not contained in any pi. Setting 
M, = M/x,M we get dim M, < dim M. Therefore by the inductive hypo- 
thesis 6(M,) 6 dim M,; but obviously 6(M) d @MI) + 1, so that 6(M) 6 
dimM, + 1 <dimM. n 

Theorem 13.5. Let A be a Noetherian ring, and I = (a,, . . ,a,) an ideal 
generated by Y elements; then if p is a minimal prime divisor of I we have 
ht p < Y. Hence the height of a proper ideal of A is always finite. 
Proof. The ideal IA, c A, is a primary ideal belonging to the maximal 
ideal, so that ht p = dim A, = 6(A,) < Y. w  

Remark. Krull proved this theorem by induction on r; the case r = 1 is 
then the hardest part of the proof. Krull called the r = 1 case the principal 
ideal theorem (Hauptidealsatz), and the whole of Theorem 5 is sometimes 
known by this name. Here Theorem 5 is merely a corollary of Theorem 4, 
but one can also deduce the statement dim M = 6(M) of Theorem 4 from 
it. As far as proving Theorem 5 is concerned, Krull’s proof, which does 
not use the Samuel function, is easier. For this proof, see [Nl] or [K]. 
More elementary proofs of the principal ideal theorem can be found in 
Rees [3] and Caruth [l]. 

The definition of height is abstract, and even when one can find a lower 
bound, one cannot expect an upper bound just from the definition, so 
that this theorem is extremely important. The principal ideal theorem 
corresponds to the familiar and obvious-looking proposition of geo- 
metrical and physical intuition (which is strictly speaking not always true) 
that ‘adding one equation can decrease the dimension of the space of 
solutions by at most one’. 

Theorem 13.6. Let P be a prime ideal of height r in a Noetherian ring A. 
Then 

(i) P is a minimal prime divisor of some ideal (a,, . . , a,) generated by 
r elements; 

(ii) if b 1,. . . , b,EP we have ht P/(b,, . . . , b,) 3 r - s; 

(iii) if a,, . . . , a, are as in (i) we have 

htP/(a,,...,u,)=r-i for ldibr. 

Proof. (i) A, is an r-dimensional local ring, so that by Theorem 4 we can 
choose r elements a,, . . . , u,EPA~ such that (a,, . , u,)A, is PAP-primary. 
Each ui is of the form an element of P times a unit of A,, so that without 
loss of generality we can assume that a+P. Then P is a minimal Prime 
divisor of (a,, . . . , u,)A. 

(ii) Set A = A/(b,, . . . , b,), B = P/(bI , . . , b,) and ht P = t. Then by (i), 
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there exist Cl,..., C,EP such that P is a minimal prime divisor of 

(El,..., t ;)A. Then P is a minimal prime divisor of (b,, . . . , b,, cl,. . . ,cJ, 

and hence Y d s + t by Theorem 5. 
(iii) The ideal P/(al , . . , i) a is a minimal prime divisor of (a,, 1,. . , &) 

kA/(al,..., ai), hence ht P/(al, . , ai) d r - i. The opposite inequality was 
proved in (ii). W 

Theorem 13.7. Let A = @nBOAn be a Noetherian graded ring. 
(i) If I is a homogeneous ideal and P is a prime divisor of I then P is also 

homogeneous. 
(ii) If P is a homogeneous prime ideal of height Y then there exists a 

sequence P = P, 1 P, 3 ... 3 P, of length r consisting of homogeneous 
prime ideals. 
J+YK$ (i) P can be expressed in the form P = ann (x) for a suitable element 
x of the graded A-module A/Z. Let UEP, and let x = x0 +x1 + ... + x, 
anda=a,+a,+, + ... + a, be decompositions into homogeneous terms. 
Then since ax = 0, 

apxO = 0, apxl +a,+,x,=O, a,x,+a,+,x, +ap+2x0=0,..., 

from which we get six, = 0, six, = 0,. . . , and finally a;+‘~ = 0. It follows 
that aif EP, but since P is prime, apEP. Thus ap+l + ... + a,EP, so 

‘that in turn a p+ l~P. Proceeding in the same way, we see that all the homo- 
geneous terms of a are in P, so that P is a homogeneous ideal. 

(ii) First of all note that we can assume that A is an integral domain. 
To see this, if we take a chain P = p0 2 ... 1 p, of prime ideals of length 
r then p, is a minimal prime divisor of (0), and so by (i) is a homogeneous 
ideal; so we can replace A by A/p,. Now choose a homogeneous element 
0 # b, EP; then by Theorem 6, ht (P/b, A) = r - 1, and so there is a minimal 
.prime divisor Q of b, A such that ht (P/Q) = r - 1; since Q # (0), it is a 
height 1 homogeneous prime ideal. By the inductive hypothesis on r 
applied to P/Q there exists a chain P = P, I P, I ... I> P,- 1 = Q of homo- 

’ geneous prime ideals of length r - 1, and adding on (0) we get a chain 
,Of length r. w 

,./ 
:. Let us investigate more closely the relation between local rings and 
;- @aded rings. 

-!l Theorem 13.8. Let k be a field, and R = k[<,,. . ., ~$1 a graded ring 
1%. generated by elements tl,. . *.**. 
pgj mEMA. 

,<, of degree 1; set M = c 5iR, A = R, and 

“% (i) Let x be the Samuel function of the local ring A, and cp the Hilbert 
.function of the graded ring R; then q(n) = x(n) - x(n - 1); 
j (ii)dimR=htM=dimA=degcp+l; 

(iii) gr,(A) N R as graded rings. 
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Proof. M is a maximal ideal of R so that 

m”/m”+’ N Mn/Mni 1 2: R,; 

hence x(n) - x(n - 1) = l(mn/m”+l) = 1(R,) = q(n), and so dim A = deg x = 1 + 
deg cp. Then since A = R,, we have dim A = ht M. After this it is enough 
to prove that dim R = ht M. First of all, assume that R is an integral 
domain, so that by Example 3 in the section on Hilbert functions and by 
Theorem 5.6, we have 

l+degcp>tr.deg,R=dimR>,htM; 

putting this together with ht M = dim A = 1 + deg cp, we get dim R = ht M. 
Next for general R, let P,, . . . , P, be the minimal prime ideals of R; then by 
Theorem 7, these are all homogeneous ideals, and each R/Pi is a graded 
ring. Choosing P, such that dim R = dim R/P, and using the above result, 
we get 

dim R = dim R/P, = ht M/P, < ht M ,< dim R, 

so that dim R = htM as required. We have R, c M” c m” with m”/m”+ ’ 1 
R,, and so taking an element x of R, into its image in m”/m”+ ’ we obtain 
a canonical one-to-one map R 1gr,,,A, and it is clear from the definition 
that this is a ring isomorphism. n 

Theorem 13.9. Let (A, m, k) be a Noetherian local ring, and set G = gr,,A; 
then dim A = dim G. 
Proof. Letting q be the Hilbert polynomial of G, we have dim A = 
1 + deg cp (by Theorem 4), and by the previous theorem this is equal to 
dim G. n 

In fact the following more general theorem holds: for I a proper ideal in a 
Noetherian local ring A, set G = gr,(A); then dim A = dim G. This will be 
proved a little later (Theorem 15.7). 

Exercises to 813. Prove the following propositions. 

13.1. LetR=R,+R, +...beagradedring,anduaunitofR,.ThenthemapT, 

defined by T,,(x,+x,+~~~+x,)=x,+x,u+~~~+x,u”(where~,~R~)i~ 
an automorphism of R. I f  R, contains an infinite field k, then an ideal I of R 
is homogeneous if and only if T,(I) = I for every aEk. 

13.2. Let R = R, + R, + ... be a graded ring, I an ideal of R and t an 
indeterminate over R. Set R’ = R[t, t -‘I and consider R’ as a graded ring 
where t has degree 0 (that is, Rk = R,[t, t-l]). Then an ideal I of R is 
homogeneous if and only if T,(IR’) = IR’. 

13.3. Let A be a Noetherian ring having an embedded associated prime. If aEA 
is a non-zero divisor satisfying n ,“= 1 a”,4 = (0), then A/(a) also has an 
embedded associated prime. 

13.4. Let R = @ntaR, be a Z-graded ring. For an ideal I of R, let I* denote the 
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greatest homogeneous ideal of R contained in I, that is the ideal of R 
generated by all the homogeneous elements of 1. 

(i) If P is prime so is P*. 

(ii) If P is a homogeneous prime ideal and Q is a P-primary ideal then Q* 
is again P-primary. 

13.5. Let R be a Z-graded integral domain; write S for the multiplicative set 
consisting ofall non-zero homogeneous elements of R. Then R, is a graded 
ring, and its component of degree 0 is a field (R,), = K; if R # R, then R, 
N K[X, X- ‘1, where the degree of X is the greatest common divisor of the 
degrees of elements of S. 

13.6. Let R be a H-graded ring and P an inhomogeneous prime ideal of R; then 
there are no prime ideals contained between P* and P. If ht P < w then 
ht P = ht P* + 1 (MatijeviccRoberts [ 11). 

&pen&x to $13. Determinantal ideals (after Eagon-Northcott [ 11) 

Let M = (u,) be an r x s matrix (r < s) with elements aij in a Noetherian ring 
A, and let I, be the ideal of A generated by the t x t minors (that is 
s&determinants) of M. When t = r and A is a polynomial ring 

kCX 1,. . . ,X,1 over a field k, Macaulay proved that all the prime divisors of 
I, have height <s-r + 1 ([Mac], p. 54). In his Ph.D. thesis, Eagon 
generalised this result as follows: for an arbitrary Noetherian ring A, every 
minimal prime divisor of I, has height < (r - t + l)(s - t + 1). The following 
ingeneous proof is taken from EagonNorthcott [l]. We begin with some 
Preliminary observations. 

The following operations on a matrix M with elements in a ring A are 
called elementary row operations: (1) permutation of the rows; (2) replacing 
C, by UC, + uCj, where Ci and C,(i #j) are two distinct rows of M, u is a unit 
Of A and u is an element of A; elementary column operations are defined 
similarly. The ideal I, does not change under these operations. Now, if an 
element of M is a unit in A, we can transform M by a finite number of 
elementary row and column operations to the following form: 

I 0 ... 0 
0 

\ ii 

N 

0 1 
I and 1, is equal to the ideal of A generated by the (t - 1) x (t - 1) minors of N. 

&mma. 
‘;p’ 

Let (A, P) be a Noetherian local ring and set B = A[X]. Let J be a 
Primary ideal of A and J’ an ideal of B such that J’ c pB and 

J d’ + XB = JB + XB. Then PB is a minimal prime divisor of J’. : 5 



104 Dimension theory 

Proof. PB + XB is a maximal ideal of B, and is the radical of JB + XB = 
J’ + XB. Thus, in the ring B/J’ we have that (PB +XB)/J’ is a minimal 
prime divisor of the principal ideal (J’ + XB)/J’. Hence ht((PB + XB)/ 
J’) = 1. Since PB,JJ’ is a prime ideal in B/J’, we have ht(PB/J’) = 0. n 

Theorem 13.10 (Eagon). Let A be a Noetherian ring and M be an r x s 
matrix (I d s) of elements of A. Let Ir be the ideal of A generated by the t x t 
minors of M. If P is a minimal prime divisor of I, then we have 

ht P d (r - t + l)(s - t + 1). 

Proof. Induction on r. When Y = 1 we have t = 1, and so (r - t + l)(s - t + 
1) = s. The ideal I, is generated by s elements, so that the assertion is just 
the principal ideal theorem (Theorem 5) in this case. Next assume that r > 1. 
Localising at P we may assume that A is a local ring with maximal ideal P, 
and that I, is P-primary. 

If t = 1, then I, is generated by rs elements and (r - t + 1) (s - t + 1) = rs, 
so our assertion holds also for this case. Therefore we assume t > 1. If at 
least one of the elements of M is a unit of A, then by what we said above, I, is 
generated by (t - 1) x (t - 1) minors of a (r - 1) x (s - 1) matrix, and again 
we are done. Therefore we assume that all the elements of M are in P. Now 
comes the brilliant idea. Let M’ be the matrix with elements in B = A[X] 
obtained from M by replacing a, 1 by a,, + X, and let I’ be the ideal of B 
generated by the t x t minors of M’. Since t > 1 and aijgP for all i and j we 
have I’ c PB. We also have I’ + XB = Z,B + XB since both sides have the 
same image in B/XB = A. Therefore PB is a minimal prime divisor of I’ by 
the lemma. Since the element a, 1 + X of M’ is not in PB, we have 
ht PB < (r - t + l)(s - t + 1) by our previous argument. Since ht PB = ht P, 
as we can see by Theorems 4 and 5, we are done. n 

14 Systems of parameters and multiplicity 

Let (A, m) be an r-dimensional Noetherian local ring; by Theorem 
13.4, there exists an m-primary ideal generated by r elements, but none 
generated by fewer. If a,,. . . , a,~nt generate an m-primary ideal, 

Iu I,‘.., a,} is said to be a system of parameters of A (sometimes 
abbreviated to s.0.p.). If M is a finite A-module with dim M = s, there exist 
Yl,..., y,Em such that l(M/(y, ,..., y,)M) < cc, and then (y, ,..., y,} is 
said to be a system of parameters of M. 

If we set A/m = k, the smallest number of elements needed to generate 
m itself is equal to rank,m/m’; (here rank, is the rank of a free module 
over k, that is the dimension of m/m2 as k-vector space). This number is 
called the embedding dimension of A, and is written emb dim A. In general 

dim A < emb dim A, 
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and equality holds when m can be generated by I elements; in this case 
A is said to be a regular local ring, and a system of parameters generating 
,,, is called a regular system of parameters. 

Theorem 14.1. Let (A, m) be a Noetherian local ring, and x1,. . . , x, a system 
of parameters. Then 

(i) dim A/(x,, . . . , xi) = r - i for 1 < i < r. 
(ii) although it is not true that ht (x1,. . . , Xi) = i for all i for an arbitrary 

system of parameters, there exists a choice of x1,. . . , x, such that every 
subset Fc(xr,..., x,] generates an ideal of A of height equal to the 
number of elements of F. 
proof. (i) is contained in Theorem 13.6. We now prove the second half of 
(iii. If r< 1 the assertion is obvious; suppose that r > 1. Let poj (for 1 < 
l<ee) be the prime ideals of A of height 0. Choosing xrom not contained 
in any poj, we have ht (xi) = 1. Next letting plj (for 1 <j 6 e,) be the minimal 
prime divisors of (xi), SO that ht Plj = 1, and choosing xZEm not contained 
in any poj or any plj, we have ht(xJ = 1, ht(x,,x,) = 2; if r = 2 we’re 
done. If r > 2 we choose x3Em not contained in any minimal prime 
divisor of (0), (x,), (x,), (x1, x,), and proceed in the same way to obtain 
the result. 

We now give an example where ht (x1,. . , xi) < i. Let k be a field and 
set R = k[X, Y, Zj; let I = (X)n( Y, Z), and write A = R/Z, and x, y, z for 
the images in A of X, Y, Z. The minimal prime ideals of A are (x) and 
TV, z); now A/(X) = R/(X) N k[lx Z] is two-dimensional and A/(y, z) N 
R/( y, Z) N k[X] . is one-dimensional, so that dim A = 2. {y, x + Z} is a 
system of parameters of A; in fact xy = xz = 0. so that x2 =x(x + a)~ 
(.Y,x + Z) and z* = z(x + z)~(y,x + z). However, y is contained in the 
.minimal prime ideal (y, z) of A, and hence ht (y) = 0. n 

Theorem 14.2. Let (R, m) be an n-dimensional regular local ring, and 
Xl , . . . , Xi elements of m. Then the following conditions are equivalent: 

(1) Xl,... ,Xi is a subset of a regular system of parameters of R; 
(2) the images in m/m* of x 
(3) R/(x,,... 

r , . . . , xi are linearly independent over R/m; 
,xJ is an (n - i)-dimensional regular local ring. 

~00f.(1)~(2)1fx,,...,Xi,Xi+1,... , x, is a regular system of parameters then 
their images generate m/m* over k = R/m, and since rank,m/m* = n they 
must be linearly independent over k. 

(I)*(3) We know that dim R/(x l,...,xi)=n-ii, and the images of 
x1+1, . . . , x, generate the maximal ideal of R/(x,, . . . , xi). 

(3)=>(l) If the maximal ideal m/(x1,. . . , xi) of R/(x,, . . . , xi) is generated 
bY the images of y I,..., y,-iEm then m is generated by x1,. ..,xi, 
:Y1, ...,yn-i. 
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Remark. The hypothesis that R is regular is not needed for (3)*(l). 
(2) +(l) Using rank,m/m2 = n, if we choose xi + i, . . . , x,~nt such that 

the images of xi,. . , x, in m/m2 form a basis then xi,. . . , x, generate m 
and so forms a regular system of parameters. w  

Theorem 14.3. A regular local ring is an integral domain. 
Proof. Let (R,m) be an n-dimensional regular local ring; we proceed by 
induction on n. If n = 0 then m is an ideal generated by 0 elements, so 
that m = (0). This in turn means that R is a field. Thus a zero-dimensional 
regular local ring is just a field by another name. 

When n = 1, the maximal ideal m = xR is principal and ht m = 1, so that 
there exists a prime ideal p # m with m 3 p. If yen we can write y = xa with 
aER, and since x$p we have aEp; hence p = xp, and by NAK, p = (0). This 
proves that R is an integral domain. (There is a slightly different proof in the 
course of the proof of Theorem 11.2; as proved there, a one-dimensional 
regular local ring is just a DVR by another name.) 

When n> 1, let pi,... ,pI be the minimal prime ideals of R; then since 
m $ m2 and m + pi for all i, there exists an element xEm not contained in 
anyofm2,p,,. . . , p,. (see Ex. 1.6). Then the image of x in m/m’ is non-zero, 
so that by the previous theorem R/xR is an (n - 1)-dimensional regular 
local ring. By the induction hypothesis, R/xR is an integral domain, in 
other words, xR is a prime ideal of R. If pi is one of the minimal prime ideals 
contained in xR then since x$pi, the same argument as in the n = 1 case 
shows that p1 = xp,, and hence p1 = (0). n 

Theorem 14.4. Let (A, m, k) be a d-dimensional regular local ring; then 

gr,,V) 2: kCX,, . . . ,XJ, 
and if x(n) is the Samuel function of A then 

n+d 
x(n)= d 

( > 
for all n 3 0. 

Proof. Since m is generated by d elements, gr,(A) is of the form 
4X i , . . . , X,1/1, where I is a homogeneous ideal. Now if I # (0) let SEI be a 
non-zero homogeneous element of degree r; then for n > r the homogeneous 

piece of k[X]/Z of degree n has length at most 

which is a polynomial of degree d - 2 in n. This 

implies that the Samuel function of A is of degree at most d - 1, and 
contradicts dim A = d. Hence I = (0); the second assertion follows from 
the first. n 

Let (A, m) be a Noetherian local ring. Elements yl,. . . , y,Em are said to be 
analytically independent if they have the following property; for every 
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homogeneous form F( Y,, . . . , Y,) with coefficients in A, 

F(Y i , . . . , y,) = 0 *the coefficients of F are in m. 

If )Il,...’ yI are analytically independent and A contains a field k, then 
F(~) f 0 for any non-zero homogeneous form F( Y)Ek[ Y, . . . , Y,]. 

Theorem 14.5. Let (A,m) be a d-dimensional Noetherian local ring and 
xr,.i.,x,, a system of parameters of A; then x1,. . .,xd are analytically 
independent. 
proof. Set q = xxiA. Since q is an ideal of definition of A, by 
Theorem 13.4, xi(n) = l(A/q”) is a polynomial of degree d in n for n >> 0. Set 
,@t = k; we say that a homogeneous form f (X)Ek[X1,. . . ,X,] of degree n 
is a null-form of q if F(x,....x,)~q”m for any homogeneous form 
F(X)EACXl, . . ., X,] which reduces to f(X) modulo m. Write n for the ideal 
of&X,,..., X,] generated by the null-forms of q. Then 

k[xlln = 0 q”/q”m, 
and writing cp for the Hilbert polynomial of k[X]/n, we have q(n) 
= I(q”/q”m) for n >> 0. The right-hand side is just the number ofelements in a 
minimal basis of q”, so that cp(n).l(A/q) >, l(q”/q”+‘). Now 

4q”lq”“) = x34 - x?dn - 1) 

is a polynomial in n of degree d - 1, so that deg q > d - 1, but if n # (0) this 
is impossible. Thus n = (0), and the statement in the theorem follows at 
once. n 

lirurtiplicity 

&et (A, m) be a d-dimensional Noetherian local ring, M a finite A-module, 
and q an ideal of definition of A (that is, an m-primary ideal). As we saw 
ti $13, the Samuel function ,!(M/q”+’ M) = x$(n) can be expressed for 

:. 5~0 as a polynomial in n with rational coefficients, and degree equal to 
dim M, and therefore at most d. In addition, this polynomial can only take 
tnteger values for n >> 0, so it is easy to see by induction on d (using the fact 
that x(n + 1) - x(n) has the same property) that 

Xg,(n) = grid + (terms of lower order), 

b.%th eeZ. This integer will be written e(q, M). By definition we have the 
'3dlOwing property. 
:>A.= 

C’ Fom~la 14.1. e(q, M) = lim cl(M/q”M), and in particular, if d = 0 then .::. 
$jyk M) = Z(M). 

n+m n* 

rom this we see easily the following: 
rmula 14.2. e(q, M) > 0 if dim M = d, and e(q, M) = 0 if dim M < d; 
rmula 14.3. e(q’, M) = e(q, M)rd; 
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Formula 14.4. If q and q’ are both m-primary ideals and q 3 q’ then 

eh M) d 44, Ml. 
We set e(q, A) = e(q), and define this to be the multiplicity of q. In addition, 

we will refer to the multiplicity e(m) of the maximal ideal as the multiplicity 
of the local ring A, and sometimes write e(A) for it. For example, if A is a 
regular local ring then by Theorem 4, we can see that e(A) = 1. 

Theorem 14.6. Let O+ M’ -M - M”+O be an exact sequence of 
finite A-modules. Then 

e(q, Ml = e(q, M’) + e(cr, M”). 

Proof. We view M’ as a submodule of M. Then 

/(M/q” M) = I(M”/q” M”) + I(M’/M’ n q” M), 

and obviously q”M’ c M’nq”M. On the other hand by ArtinRees, there 
exists c > 0 such that 

M’nq”Mcq n-CM’ for all y1> C. 
Hence 

/(Ml/q”-‘M’) < l(M’/M’n q”M) < l(M’/q”M’). 

From this and Formula 14.1 it follows easily that 

e(q, M) - e(q, M”) = lim f$(M’/M’n q”M) = e(q, M’). 
n-sn 

Theorem 14.7. Let (pl,. . . ,p,} be all the minimal prime ideals of A such 
that dim A/p = d; then 

where si denotes the image of q in A/p, and 1(M,) stands for the length of M, as 
A,-module. 
Proqf (taken from Nagata [Nl]). We write CJ = &l(M,) and proceed by 
induction on o. If CJ = 0 then dim M < d, so that the left-hand side is 0, and 
the right-hand side is obviously 0; now suppose c > 0. Now there is some 
p~{pi,. . ,p,} for which M, #O; then p is a minimal element of 
Supp(M). Hence p~Ass(M), that is M contains a submodule N isomorphic 
to A/p. Then 

e(q, W = 4% N) + e(s, MIN. 
On the other hand, N, N Ap/pA, and N,: = 0 for pi # p, so that 1(N,) = 1, 
and the value of g for M/N has decreased by one, so that the theorem holds 
for M/N. However, from the definition 

4% N) = e(q, A/p) = e(9, A/p), where 9 = (q + P)/P. 

Putting this together, we see that the theorem also holds for M. l 

Theorem 7 allows us to reduce the study of e(q, M) to the case that A is an 
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integral domam and M = A. In particular, if A is an integral domain then 

l(Md J is ‘ust the rank of M, SO that we obtain the following theorem. 

Theorem 14.8. Let A be a Noetherian local integral domain, q an ideal of 
&finitiOn of A and M a finite A-module; then 

e(q, M) = e(q).% where s = rank M. 

T&orem 14.9. Let (A, m) be a Noetherian local ring, q an ideal of definition 

ofA,andx,,..., xd a system of parameters of A contained in q. Suppose that 
xiEqv* for 1 < i 6 d. Then for a finite A-module M and s = 1,. . . ,d we have 

e(q/h ,..., x,),M/(xl ,..., x,)M)3v,v,...v,e(q,M). 

In particular if s = d, we have 

I(M/(x,, . ,qJM) 3 v1 v2.. . vde(q, M). 

proof. It is enough to prove the case s = 1. We set A’ = A/x, A,q’ = q/x, A, 
&f=M/x,M and v=vl. By Theorem 1, we have dimA’=d- 1. On the 
other hand, 

l(M’/q’“M’) = l(M/x, M + q”M) 
= l(M/q”M) - 1(x, M + q”M/q”M). 

In addition, in view of (x1 M + q”M)/q”M 2: x1 M/x, Mnq”M N Ml 
(q”M:x,) and q”-“M c qnM:xl, we have 

.’ - 1(x, M + q”M/q”M) 3 - l(M/q”-‘M), 

‘I and therefore I 
&Vf'/q'"M') > l(M/q”M) - l(M/q”-“M). 

i;, When n >> 0 the right-hand side is of the form 
-7-t ‘/ eh Ml 
d< ;p.” T[nd - (n - v)~] + (polynomial of degree d - 2 in n) 

= pv.nd-l + (polynomial of degree d - 2 in n), 

that the assertion is clear. n 

A case of the above theorem which is particularly simple, but important, 

eorem 14.10. Let (A, m) be a d-dimensional Noetherian local ring, let 
xd be a system of parameters of A, and set q = (x1,. . . ,x,); then 

d if in addition xiEm” for all i then l(A/q) 2 v”e(m). 

orem 14.11. Let A, m, xi and q be as above. Let M be a finite A-module, 
set A’ = A/x, A, M’ = M/x, M and q’ = q/x1 A = c$xiA’. Then ifx, is a 
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non-zero-divisor of M, we have the following equality 

4-r, M) = 44, W. 
Proof. Since l(M’/q’“+ 1 M’) = l(M/x, M + q”+ 1 M) we have 

1( M/q” + r M) - l(M’/q’n+ r M’)=I(x,M+q”+‘M/q”+‘M) 
= l(x,M/x,Mnq”+‘M) = l(M/(q”+‘M:x,)) 
= l(M/q”M) - l((q”+‘M:x,)/q”M). 

On the other hand, setting a = x$xiA we have q = x,A + a and q”+’ = 
xlqn+a”+l, and therefore 

q ntl M:x, = q”M + (a”+‘M:x,). 

Moreover, by Artin-Rees, there is a c > 0 such that for n > c we have 
a”+lMnx,M=a”-c(ac+’ Mnx,M), and therefore a”+rM:xl c an-CM. 
Thus 

(q”+‘M:x,)/q”M = (q”M +(a”+‘M:x,))/q”M 
c (q”M + a”-‘M)/q”M 
~a”-‘M/a”-‘Mnq”M. 

NOW an-‘M/a”-“M n q”M is a module over A/q’, and since a is generated 

by d - I elements, an-c is generated by 
n-c+d-2 

d-2 > 
elements. Thus 

for n > c we have 

where m is the number of generators of M. The right-hand side is a 
polynomial of degree d - 2 in II, so that 

eh’, M ‘) = (d - l)! lim l(M’/qln+ ’ M’)/n”- ’ 
n-cc 

= (d - l)! lim [l(M/q”+‘M) - l(M/q”M)]/nd-’ 
n-30 

= e(q, M). H 

Theorem 14.12 Lech’s lemma). Let A be a d-dimensional Noetherian ( 
local ring, and x r , . . , ,xd a system of parameters of A; set q = (x1,. . . ,xd), and 
suppose that M is a finite A-module. Then 

e(q, M) = lim 
l(M/(x;‘, . , x,y”) M) 

min(vi)+m VI...Vd 

Proof. If d = 0 then both sides are equal to l(M). Ifd = 1 then the right-hand 
side is exactly Formula 14.1 which defines e(q, M). For d > 1 we use 
induction on d. 

Setting Nj= {meMlxjm=O) we have N, c N, c . . . so that there is a 
c > 0 such that N, = N,, 1 = .*.. If we set M’ = xt M then x, is a non-zero- 
divisor for M’, and there is an exact sequence 0 + N, -M -M’ 40. 
Since N, is a module over A/x’, A we have dim N, < d, and therefore 
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e,q, &I) = e(q, M’). On the other hand, 

l(M/(x;‘, . . . ,xdYd)M) - l(M’/(x;‘,. . . ,xF)M’) 
= l(N, + (xy, . . ,xp)M/(x;‘, . ,xi”)M) 
= l(N,/N, n (x;’ , . . , x;“)M) 
d l(N,/(x;‘, . . . ,x;“)N,). 

If v1 7 c then x;l N, = 0, and N, is a module over the (d - 1)-dimensional 
Local ring A/x;A, so that by induction there is a constant C such that as 
min (vi) + CC we have 

l(N,l(x;‘, . > x2) NJ = l(N,/(x”,Z, . . . , x;“) N,) < CT,. . . vd. 

Therefore, 
lim [l(M/(xT’, . . . , xi”)M) - l(M’/(xr’, . . . , x~“)h’f’)]/v,. . . vd = 0. 

This means that we can replace M by M’ in the theorem, and so we can 
assume that x1 is a non-zero-divisor in M. Then by the previous theorem we 
have e(q, M) = e(q, J@), with q = q/x, A and ~ = M/x, M. If we furthermore 

set 
E=(xT,..., xF)M and F = M/E 

then by Theorem 9, we have 

e(q, M).v, . ..vd < l(M/(x”,‘, . ,xi”)M) = l(F/x;‘F) 

= i$ 1(x;- l F/x’,F) ~v,~(F/x,F)=v,~(M/x,M+E) 

= VI l(~/(X~) . . ,xJy)Al). 

Then by induction on d we have 

lim l(M/(x;l,. . . , x;“)M)/v,. . . vd = lim l(R/(x;‘, . . . , xdyd)fl)/vz.. . vd 
= e(q, M). n 

Although we will not use it in this book, we state here without proof a 
remarkable result of Serre which shows that multiplicity can be expressed 
as the Euler characteristic of the homology groups of the Koszul complex 
(discussed in 5 16). 

Theorem. Let A be a d-dimensional Noetherian local ring, and x1,. . . , xd a 
system of parameters of A; set q = (x1,. .,x,) and let M be a finite A- 

_ module. Then 
I* eh, M) = I( - l)i l(Hi(X, M) ). 
1: For a proof, see for example Auslander and Buchsbaum [2]. 

As we have seen in several of the above theorems, the multiplicity of -:: 
i: ideals generated by systems ofparameters enjoy various nice properties. We 
i:.J are now going to see that in a certain sense the general case can be reduced 
‘! to this one. We follow the method of Northcott and Rees Cl]. 
$,, Q ‘t g Ul e enerally, let A be a ring and a an ideal. We say that an ideal b is a 
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reduction of a if it satisfies the following condition: 

b c a, and for some r > 0 we have a’+’ = bar. 

If b is a reduction of a and a’+ 1 = ba’ then for any n > 0 we have ar+” = briar. 

Theorem 14.13. Let (A, m) be a Noetherian local ring, q an m-primary ideal 
and b a reduction of q; then b is also m-primary, and for any finite A-module 
M we have 

e(q, W = 46 Ml. 

Proof. If q’+l = bq’ then q’+’ c b c q, hence b is also m-primary. 
Moreover, 

l(M/b”+‘M) 3 I(M/q”+‘M) = l(M/b”q’) 3 f(M/b”M), 

so that e(q, M) = e(b, M) follows easily. 

Theorem 14.14. Let (A, m) be a d-dimensional Noetherian local ring, and 
suppose that A/m is an infinite field; let q = (u,, . . . , u,) be an nt-primary 

ideal. Then if yi = xaijuj for 1 < i < d are d ‘sufficiently general’ linear 
combinations of u Ir.. . , us, the ideal b = (y 1,. . . , yd) is a reduction of q and 
{yl,. . , yd} is a system of parameters of A. 
Proof. If d = 0 then q’ = (0) for some Y > 0, hence (0) is a reduction of q 
so that the result holds. We suppose below that d > 0. 

Step 1. Set A/m = k and consider the polynomial ring k[X,, . . . , X,] (or 
k[X] for short). For a homogeneous form q(X) = I&X,, . . . ,X,)EA[X] of 
degree n, we write @(X)Ek[X] for the polynomial obtained by reducing 
the coefficients of q modulo m. As in the proof of Theorem 5 we say that 
@(X)Ek[X] is a null-form of q if cp(u 1,. . . ,u,)Eq”m; this notion depends 
not just on q, but also on ul,. .., u,. However, for fixed @ it does not 
depend on the choice of cp. We write Q for the ideal of k[X] generated by 
all the null-forms of q, and call Q the ideal of null-firms of q. One sees 
easily that all the homogeneous elements of Q are null-forms of q, and 
that the graded ring k[X]/Q has graded component of degree n isomorphic ) 
to qn/qnm, so that we have 

KXIIQ = @q"/q"m = gr,(40A,,k. 
n,O 

Write q(n) for the Hilbert function of k[X]/Q; then 

44 = 4q”lq”m) f h”/q”+ ‘1 G cpW Wd 
(see the proof of Theorem 5). We know that for n >> 0, the function l(q”/q”“) 
is a polynomial in n of degree d - 1 (where d = dim& Thus from the 
above inequality, cp is also a polynomial of degree d - 1, so that by 
Theorem 13.8, (ii), we have dimk[X]/Q = d. 

Now set I/ = ct kX,, and let P,, . . . , p, be the minimal prime divisors Of 
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Q. By the assumption that d > 0, we have Pi $ I/, so that Pin I/ is a 
proper vector subspace of I/. Since k is an infinite field, 

t 
Y# lj (vnPJ. 

i=l 

Hence we can take a linear form 1,(X)~l/ not belonging to any Pi. If 
d 71 then similarly we can take ~,(X)EV such that 12(X) is not contained 
m any minimal prime divisor of (Q, II(X)), and, proceeding in the same 
way, we get II(X), . . .,&(X)E V such that (Q, 1,, . . . ,1,) is a primary ideal 
belonging to (XI, . . . ,X,). 

Step 2. We let b be the ideal of A generated by t  linear combinations 
L,(U) = C Uijuj (for 1 < i < t )  of u I , . . , u, with coefficients in A. Then if we 
f@t li(X)=ti(Xj =CaijXj3 a necessary and sufficient condition for b to 

. ,X,)- be a- reduction of qis -that the ideal (Q, 1,). . . ,1,) of k[X] is (X,, . . 
primary. 
Proof of necessity. Suppose that bqr = q’+l. Then if M = M(X 
monomial of degree r + 1 in X,, . . . ,X,, we can write 

) is a 

where the F,(X) are homogeneous forms of degrees r with coefficients in 
A. Thus 

ii?(X) - c li(X)Fi(X)gQ. 

Hence 

(X l,...,Xs)rfl~(Q,ll,...,lt). 
Proof of sufficiency. We go through the same argument in reverse: if 
~~--~I,F,EQ then 

M(U)- CL~(U)F~(U)E~‘+~ITI, 

so that qr+l c bqr + q’+‘nt; thus by NAK, q*+’ = bq’. 
Step 3. Putting together Steps 1 and 2 we see that q has a reduction 

b=Cyl,... ,y,J generated by d elements. Both q and its reduction b are 
m-primary ideals, so that y,, . . . ,y, is a system of parameters of A. We 
are going to prove that there exists a finite number of polynomials D,(Zij) 
for 1< c( 6 v in sd indeterminates Z, (for 1 < i d d and 1 <j < s) such that 
d linear combinations yi = C aijuj (for 1 < i < d) generate a reduction ideal 
of 9 if and only if at least one of D,(aij) # 0. (The expression ‘d sufficiently 
general linear combinations’ in the statement of the theorem is quite vague, 
hut in the present case it has a precise interpretation as above,) 

Let G,(X) , . . . ,G,(X) be a set of generators of Q, with Gj homogeneous 
of degree e> For any sd elements aij of k (for 1 < i f d and 1 <j < s), set 
hw) = c aijxi. w  e write I, for the homogeneous component of degree n 
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of a homogeneous ideal I c k[X,, . . . ,X,1, and in particular we write 

(X 1,. . . ,X,), = V,, so that 

w  1 I..., XJc(Q,4 ,..., Id)0Vn=(Q,11,...,Id)n. 
Set c, = dim, V,. We have 

(Q 1 , l,...,Z~,={CliFi+ CGjHjlFiEV,-, and HjEV/,-,j}. 

Let K1,..., K, be the elements obtained as xliFi + c GjHj as the Fi run 
through a basis of V,-, and the Hj run independently through a basis 
of Vnpe,; it is clear that they span (Q, I,, . . . ,I& Each of K,, . . . ,K, is a 
linear combination of the c, monomials of degree n in the Xi, with linear 
functions in the rxij as coefficients; we write out these coefficients in a 
c, x w  matrix. If qp,,,(aij) for 1 d v < p, are the c, x c, minors of this matrix 
then the necessary and sufficient condition for (X,, . . . , X,)n c (Q, I,, . . . , lJ to 
hold is that at least one of the 4pn(aij) is non-zero. Therefore the ideal 
(Q,h,..., Id) will fail to be (X,, . . . , X,)-primary if and only if the 
quantities uij satisfy (~“,,(a~~) = 0 for all n and all v. However, the ring k[Zij] 
is Noetherian, so that the ideal of k[Zij] generated by all of the cp,,(Zij) is 
generated by finitely many elements D,(Zij) for 1 f CI d u. These D, clearly 
meet our requirements. n 

Remark. The polynomials D,(Zij) obtained above are in fact the necessary 
and sufficient conditions on the coefficients uij for the system of homo- 
geneous equations I,(X) = ... = l,(X)=G,(X)=...=G,(X)=Otohavea 
non-trivial solution, and as such they are known as a system of resultants. 
Here we have avoided appealing to the classical theory of resultants by 
following a method given in Shafarevich [Sh]. 

If k = A/m is a finite field then Theorem 14 cannot to be used as it 
stands, but we can use the following trick. Let x be an indeterminate over 
A, and set S = A[x] - m[x]; then S consists of polynomials having a unit 
of A among their coefficients, and so the composite of the canonical maps 
A -A[x] -A[x], is injective. (In fact S does not contain any zero- 
divisors of A[x], so that A c A[x] c A[x&; for this see [AM], Chap. 1, 
Ex. 2.) Following Nagata [Nl] we write ,4(x) for A[x&. This is a 
Noetherian local ring containing A, with maximal ideal mA(x), and the 
residue class field A(x)/mA(x) is the lield of fractions of A[x]/m[x] = k[x], 
that is, the field k(x) of rational functions over k; this is an infinite field. 
If q is an m-primary ideal of A then qA(x) is a primary ideal belonging 
to mA(x). Moreover, since ,4(x) is flat over A, we see that quite generally 
if I 1 I’ are ideals of A such that III’ -N k, then 

ZA(x)/l’A(x) N (Z/Z’) OA A(x) N k @ A(x) = A(x)/mA(x). 
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This gives 1,(A/q”) = I,,,,(A(x)/q”A(x)), so that 

dim A = dim A(x) and e(q) = e(qA(x)). 

Thus there are many instances when we can discuss properties of 
e(q) in terms of A(x), to which Theorem 14 applies. 

Exercises to $14. Prove the following propositions. 

14.1. Let (A, m) be a Noetherian local ring and set G = gr,(A). 
(i) If G is an integral domain then so is A (hence Theorem 3 also follows 

from Theorem 4). 
(ii) Let k be a field, and A = k(LX, Ylj/(Y’ - X3); then A is an integral 

domain, but G has nilpotents. 

14.2. Let (A,m) and G be as above. For aEA, suppose that aEmi but a#mi+l, 
and write a* for the image of a in m’/m’+‘, viewed as an element of G; 
define a* to be the leading term of a. Set 0* = 0. Then 

(i) if a*h* # 0 then (ah)* = a*b*; 
(ii) if a* and b* have the same degree and a* + b* # 0 then (a + b)* = 

a* + b*; 
(iii) let I c m be an ideal of A. Write I* for the ideal of G generated by all 

the leading terms of elements of I; then setting B = A/Z and n = m/l, we 
have gr,(B) = G/Z*. 

14.3. In the above notation, if G is an integral domain and Z = aA then 
Z*=a*G. If Z=(a,,..., a,) with r > 1 then it can happen that 
I* # (a:, . . ,a:). Construct an example. 

14.4. Let (A,m) be a regular local ring, and K its field of fractions. 
(i) For 0 # aeA, set u(a) = i if aEmi but a$m’+‘; then u extends to an 

additive valuation of K. 
(ii) Let R be the valuation ring of u; then R is a DVR of K dominating A. 

Let x1,. . ,xd be a regular system of parameters of A, and set 
B= A[x2/x1,...,xd/x1] and P=x,B; then P is a prime ideal of Z? and 
R=B,. 

14.5. In the above notation, if 0 # fern then u(f) is equal to the multiplicity of 
A/U 1. 

14.6. (Associativity formula for multiplicities.) Let A be a d-dimensional Noeth- 
erian local ring, x1,. . . ,xd a system of parameters of A, q = (x1,. ,x,), and 
for s < d let a = (x1,. . ,x,). Write I- for the set of all prime divisors of a 
satisfying htp = s, coht p = d - s. Let A4 be a finite A-module. Use Lech’s 
lemma to prove the following formula: 

4% M) = 1 49 + PlPbW,> Mph 
d- 

(in particular, it follows that l’- # 0). 

Remark. The name of the formula comes from its connection with the associativity 
of intersection product in algebraic geometry. For details, see [S3], pp. 84-5. 
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14.7. Let (A,m) be an n-dimensional Noetherian local integral domain, with 
n > 1. If 0 # Sent then A, is a Jacobson ring (see p. 34). 

15 The dimension of extension rings 

1. Fibres 

Let cp:A -I? be a ring homomorphism, and for p~Spec A, write x(p) = 
A,/pA,; then Spec(BOrc(p)) is called the fibre of rp over p. As we 
saw in $7, it can be identified with the inverse image in Spec A of p under the 
map “p: Spec B -+ Spec A induces by cp. The ring B @ lc(p) will be called the 
fibre ring over p. When (A, m) is a local ring, m is the unique closed point of 
Spec A, and so the spectrum of B 0 rc(m) = B/mB is called the closed fibre of 
cp. If A is an integral domain and K its field of fractions then the spectrum of 
BOA K = BOA k-(O) is called the generic fibre of 9. 

Theorem 15.1. Let cp:A -B be a homomorphism of Noetherian rings, 
and P a prime ideal of B; then setting p = Pn A, we have 

(i) ht P d ht p + dim B&B,; 
(ii) if q is flat, or more generally if the going-down theorem holds between 

A and B, then equality holds in (i). 
Proof. We can replace A and B by A, and B,, and assume that (A, m) and 
(B, n) are local rings, with mB c n. Rewriting (i) in the form 

dim B < dim A + dim B/mB 

makes clear the geometrical content. To prove this, take a system of 
parameters x1,. . . , x, of A, and choose yr,. . . , y,eB such that their images 
in B/mB form a system of parameters of B/mB. Then for v, p large enough 
we have ny c mB + z y,B and rn@ c xxjA, giving ny” c x y,B + C XjB. 

Hence dim B 6 r + s. 
(ii) Let dim B/mB = s, and let n = P, 3 P, I ... 3 P, be a strictly decreas- 

ing chain of prime ideals of B between n and mB. Obviously we have 
P,nA=mforO~i~s.NowsetdimA=randletm=p,~p,~~~~~p, 
be a strictly decreasing chain of prime ideals of A; by the going-down 
theorem, we can construct a strictly decreasing chain of prime ideals of B 

Ps3Ps+lx’-,3Ps+r such that P,, i n A = pi. 

Thus dim B 2 r + s, and putting this together with (i) gives equality. n 

Theorem 15.2. Let q:A -+ B be a homomorphism of Noetherian rings? 
and suppose that the going-up theorem holds between A and B. Then if 
p and q are prime ideals of A such that p 3 q, we have 

dim B @ K(P) 2 dim B 0 K(q). 

Proof. Set r = dimB@Ic(q) and s = ht(p/q). We choose a strictly 
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increasing chain Q. c Q1 c ... c Q, of prime ideals of B lying over q and 
a strictly increasing chain q = p. c p1 c ... c p, = p of prime ideals of A. 
BY the going-up theorem there exists a chain Q, c Q,+ 1 c ... c Q,+s of 
prime ideals of B such that Q,+inA = pi. We set P = Q,+,; then 

ht(P/qB)ar+s and PnA=p. 

Thus applying the previous theorem to the homomorphism A/q -+ B/qB 
induced by ~0 we get r + s < ht(P/qB) < s + dim B,/pB,, and therefore 

r < dim Bp/pBp d dim B 0 x(p). n 

Theorem 15.3. Let cp:A+B be a homomorphism of Noetherian rings, and 
suppose that the going-down theorem holds between A and B. If p and q 
are prime ideals of A with p 1 q then 

dim B@c(p) <dim B@K(q). 

Proof: We may assume that ht(p/q)= 1, and it is enough to prove that, 
given a chain P, cP, c . . . c P, of prime ideals of B lying over p such that 
ht(P,/P, _ r) = 1 we can construct a chain of prime ideals Q. c Q 1 c . . . c Q, 
of B lying over ~7 such that 

QicPi (Odidr) and ht(Qi/Qi-l)=l (O<i<r). 

We can find Q. by going down. If r > 1 then take x~p -q and let ?‘, , . . . ,T, 
be the minimal prime divisors of Q,+xB. Then ht(TJQ,)= 1, while 
ht(PJQ,) > 2, hence we can choose 

Let Qr be a minimal prime divisor of Qo+ yB contained in P,. Then 
‘ht(Qr/Q,J = 1, and Q1 # q for all i, hence c$x)#Q,. 

Therefore Q,nA#p, and since ht(p/q)= 1 we must have QlnA=q. By 
the same method we can successively construct Q1 , Qz, . . . , Q,. q 

2. polynomial and formal power series rings 

Theorem 15.4. Let A be a Noetherian ring, and X,, . . . , X, indeterminates 
over A. Then 

dimA[X,,... ,X,]=dimA[X, ,..., X,j=dimA+n. 
+ %of. It is enough to consider the case n = 1. For any p&pecA, the 

:I’. hjt A[x] &K(P) = K(p)[x] 
2‘: 

is a principal ideal ring, and therefore one- 



118 Dimension theory 

dimensional; also A[X] is a free A-module, hence faithfully flat, so by 
Theorem 1, (ii), dim A[X] = dim A + 1. 

For ,4[XJ it is not true in general that A[Xa@,rc(p) and tc(p)[X] 
coincide; however, if m is a maximal ideal of A we have 

AUxljOlc(m)=ABx40(A/m)=(A/m)[Cxn, 
and this fibre ring is one-dimensional. Also, as we saw on p. 4, every 
maximal ideal ‘%I of A[XJ is of the form W = (m,X), where m = sJJln~ 

is a maximal ideal of A. Thus for a maximal ideal 9.R of ,4%X] we have 

ht’9JI = ht(mnnA) + 1; 
conversely, if m is a maximal ideal of A then ht(m, X) = ht m + 1, and 
putting these together gives dim A [Xl = dim A + 1. m 

Remark 2. It is not necessarily true that a maximal ideal of A[X] lies 
over a maximal ideal of A. For example, if A is a DVR and t a 
uniformising element then A[t-‘1 = K is the field of fractions of A, so 
that A[X]/(tX - 1) 2: K, and (tX - 1) is a maximal ideal of A[X]; however, 
(tX- l)nA=(O). 

Remark 2. It is quite common for fibre rings of A -+A[X,,. . .,X,1 
to have dimension strictly greater than n. For example, let k be a field and 
set A = k[Y,Z]. It is well-known that the field of fractions of k[Xj has 
infinite transcendence degree over k(X) (see [ZS], vol. II, p. 220). Let u(X), 
u(X)~k[Xj be two elements algebraically independent over k(X), and 
define a k-homomorphism (continuous for the X-adic topology) 

bycp(X!=X,cp(Y)=u(X),cp(Z)=u(X).IfwesetKercp=PthenPnA=(O), 
and A[XJ/P z k[XJ is one-dimensional. Now every maximal ideal of 
A[Xj has height 3, and, as we will see later, A[Xj is catenary, so that 
ht P=2. Thus we see that the generic libre of A-+A[Xj is two- 
dimensional. 

3. The dimension inequality 

We say that a ring A is universally catenary if A is Noetherian and every 
finitely generated A-algebra is catenary. Since any A-algebra generated 
by n elements is a quotient of A[X,, . , . , X.1, and since a quotient of a 
catenary ring is again catenary, a necessary and sufficient condition for a 
Noetherian ring A to be universally catenary is that A[X,, . . . ,X,] is 
catenary for every n 2 0. (In fact it is known that it is sufficient for A[XI] 
to be catenary, compare Theorem 31.7.) 

Theorem 15.5 (I. S. Cohen [3]). Let A be a Noetherian integral domain, and 
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B an extension ring of A which is an integral domain. Let PESpec B and 
p s pn A; then we have 

(*) htP + tr.deg,(,, K(P) d htp + tr.deg, B, 

where tr.deg,B is the transcendence degree of the field of quotients of B 
over that of A. 
proof We may assume that B is finitely generated over A. For if the right 
hand side is finite and m and t are non-negative integers such that m < htP 

and t < tr.deg,(,+(P), then there is a prime ideal chain 

p=po3 P, X3”‘X P, in B. Take ai~Pi-Pi+l, 06i<m, and let 
C1,...,~,~B be such that their images modulo P are algebraically 
independent over A/p. Set C = A[{a,}, (cjj]. If the theorem holds for C, 
then we have m + t < htp + tr.deg, C < htp + tr.deg, B. Letting m and t vary 
we see the validity of (*). 

We may furthermore assume, by induction, that B is generated over A by 
a single element: B = A[x]. We can replace A by A, and B by B, = AJx], 
and hence assume that A is local and p its maximal ideal. Set k = A/p and 
w&e B = A[X]/Q. If Q = (0) then B = A[X] and by Theorem 1 we have 
htP = htp + ht(P/pB), and since B/pB = k[X] we have either P = pB or 
ht(P/pB) = 1. In both cases the equality holds in (*). 

If Q # (0) then tr.deg, B = 0. Since A is a subring of B we have 
&A=(O), so that writing K for the field of fractions of A we have 
htQ = htQK[X] = I. Let P* be the inverse image of P in A[X]. Then 
P=P*/Q,K(P)=K(P*), and htP<htP*-htQ=htP*-l=htp+l- 
tr.deg,&P*) - 1= htp -tr.deg,(,,lc(P). n 

Definition. Suppose that A and B satisfy the conditions of the previous 

theorem. We refer to (*) as the dimension inequality, and if the equality in (*) 
holds for every PESpec B, we say that the dimension formula holds between 
A and B. The above proof shows that dimension formula holds between A 
and A[x,,...,x,]. 

Theorcm 15.6 (Ratliff). A Noetherian ring A is universally catenary if and 
Only if the dimension formula holds between A/p and B for every prime 
idea1 P of A and every finitely generated extension ring B of A/p which 
ia an integral domain. 

&O”f of ‘On/Y v’. If A is universally catenary then so is A/p, so that we 
: need only consider the case that A is an integral domain, and B is a finitely 

generated extension ring which is an integral domain. If 
B=A[Xi,. . . ,X&Q and P = P*/Q, then since A[X,, . . . ,X,] is catenary 

’ we have htP = htP* - htQ, and an easy calculation proves our assertion. 
i Aoof of ‘if’. We suppose that A is not universally catenary, so that there 

.;, -$x7 
9~ 
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exists a finitely generated A-algebra B which is not catenary; without loss 
of generality we can assume that B is an integral domain. Write p for the 
kernel of the homomorphism A -B. There exist prime ideals P and Q 
of B such that 

PcQ, ht(Q/P)=d but htQ>htP+d. 

We write h = ht P, choose a,,. . . ,a,EP such that ht(a,,. . . ,a,,) = h, and 
set I = (a,, . . , a,,), so that P is a minimal prime divisor of I. Let 

I=q,n...nq, 

be a shortest primary decomposition of I, with P the minimal prime 
divisor of qr. Then for bEQq2...qr- P we have 

I:b”B = q, for v= 1,2,.... 

We set yi = a,/b for 1 d i d h, 

c = NY,,.. ~,Yhl, J=(y,,...,y,)C and M=J+QC=J+Q. 

Every element of C can be written in the form u/bk for suitable k, with 
u+ + bB)k, so that if zEJnB then zbYEI holds for sufficiently large 
v. Hence z~Z: b” = ql. The converse inclusion q1 c Jn B is obvious, hence 
JnB=q,. Thus 

MnB=(JfQ)nB=(JnB)+Q=Q, 

C/J ‘v B/q, and CJM 21 B/Q. 

Therefore, C,/JC, = B,/q,B, is a d-dimensional local ring, and J is 
generated by h elements, so that 

htM=dimC,<h+ddhtQ. 

Now C and B have the same field of fractions, and K(M) = K(Q), so that 
this inequality implies that the dimension formula does not hold between 
B and C. This is a contradiction, since we are assuming that the dimension 
formula holds between A/p and B and between A/p and C, and one sees 
easily that it must then hold between B and C. n 

4. The Rees ring and gr,(A) 

Let A be a ring, I an ideal of A and t an indeterminate over A. Consider 
A[t] as a graded ring in the usual way. We obtain a graded ring R + c A[tl 
by setting 

R, = R+(A,Z)= {&t”(c,d”} = @WC A[t]. 
n 

IfI=(a,,... , a,) then R + can be written R + = A[a, t, . . . , a&], so that R+ is 
Noetherian if A is. 

R, is related to the graded ring gr,(A) associated with A and I by the fact 
that 

gr,(A) = @In/I”+’ ‘v R+/IR+. 
n 
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Now let u = t-i, and consider Act, u] = Act, t- ‘1 as a Z-graded ring in 
the obvious way. The Rees ring R(A,Z) is the graded subring 

R=W,O=R+[ul= Q,t” c EA for n<O cA[t,tC’]. i I 
c,EZ” for n>O 

II ..I 

Since 
c,EI”+l for n>O 
c,EA for n < - 1 

we have gr,(A) = R/uR. 
Set S=(l,u,u’,... }. Then R, = R[u-‘1 = R[t] = Act-‘, t], and 

R,/(l - u)R, = A[t-‘, t]/(l -t) = A. But R,/(l - u)R, = (R/(1 - u)R)~, 
where s is the image of S in R/(I - u)R, and since s= 1, we see that 
Rs/(l - u)Rs = R/(1 - u)R. Thus we have 

R/(1 - u)R = A and R/uR = gr,(A), 

so that the graded ring gr,(A) is a ‘deformation’ of the original ring A, 
with R as ‘total space of the deformation’, in the sense that R contains a 
parameter u such that the values u = 1 and 0 correspond to A and gr,(A), 
respectively. 

We also have 
zfRnA=Z” for all n30 

and this property is often used to reduce problems about powers of I to 
the corresponding problems for powers of the principal ideal uR. 

We conclude this section by applying the dimension inequality to the 
study of the dimension of the Rees ring and gr,(A). 

Let A be a Noetherian ring, Z = 1; a,A a proper ideal of A, and t an 
indeterminate over A. We set 

u = t-l, R = R(A, I) = A[u, a, t, . . . , a,t] and G = gr,(A). 

We have R c Act, u] and R/uR N G. For any ideal a of A, set 
a’ = aA[t, u] n R. 

_ That a’nA=aA[t,u]nA=a, so that for a,#a, we have a;#a;. 
” //- Moreover, if p is a prime ideal of A then p’ is prime in R, and the same 
r .>‘,, thing goes for primary ideals. If (0) = q1 n ... n q, is a primary decomposi- 
$l tion of (0) in A then (0) = q; n ... n q; is a primary decomposition of (0) 
$” in R. Hence if poi (for 1~ i < m) are all the minimal prime ideals of A then 
& {p&}l,i<m . 
$. 

is the set of all minimal prime ideals of R. Let p be a prime 
ideal of A with ht p = h, and let p = p,, 1 pl 1 ... 1 ph be a strictly decreasing 

‘- 
chain of prime ideals of A; then p’ 3 p; =I ... 1 p; is a strictly descending 
chain of prime ideals of R, so that 

htp<htp’. 

Conversely, suppose that PESpec R and Pn A = p. Let p& be a minimal 
Prime of R contained in P and such that ht P = ht (P/p&); then R/p& 2 
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A/p,,, so that by the dimension inequality 

ht P = ht (P/phi) d ht (p/p,,) + 1 - tr.deg,,,K(P) 
<htp+l. 

Hence dim R < dim A + 1. On the other hand A[u, t] = R[u-‘1 is a 
localisation of R so that dim R > dim A[u, t] = dim A + 1, so that finally 

dim R = dim A + 1. 

Moreover, for any p6Spec A we set Cli = aimed p, SO that R/p’ = 

(A/p)[u, cI1 t, . . , a$], and hence tr.degK,p, ti(p’) = 1; carrying out the above 
calculation using the dimension inequality with p’ in place of P we get 

ht p’ 6 ht p, and so 

htp=htp’. 

We now choose a maximal ideal m of A containing I; then since 
R/m’ = (A/m)[u] we see that Y.R = (m’, U) is a maximal ideal of R and 
‘9JI # m’, so that ht ‘3.X > ht m’. However, by the dimension inequality, we 
haveht93)32htm+l=htm’+l.Thus 

ht9J3=htm’+l=htm+l. 

The element u is a non-zero-divisor of R so that considering a system of 
parameters gives ht (!JX/uR) = ht YJI - 1 = htm. Thus providing that there 
exists a maximal ideal such that ht m = dim A containing I, (in particular 
if A is local), then we have 

dim G = dim (R/uR) = dim A. 
We summarise the above in the following theorem. 

Theorem 15.7. Let A be a Noetherian ring and I a proper ideal; then 
setting R = R(A, I) and G = gr,(A) we have 

dimR=dimA+ 1, dimG<dimA. 

If in addition A is local, then 

dim G = dim A. 

Exercises to 515. Let k be a field. 

15.1. Let A = k[X, Y] c B = k[X, Y,X/Y], and P = (Y,X/Y)B,p =(X, Y)A; 
then check that P n A = p, ht P = htp = 2, and dim B,/pB, = 1, and hence 
that 

htP < htp + dimB,/pB,. 

Show also by a concrete example that the going-down theorem does not 
hold between A and B. 

15.2. Does the going-up theorem hold between A and B, where A = kCx1 c 
B = k[x, Y]? 

15.3. In Theorem 15.7, construct an example where dim G < dim A. 



Regular sequences 

1n the 1950s homological algebra was introduced into commutative ring 
theory, opening up new avenues of study. In this chapter we run through 
some fundamental topics in this direction. 
., In $16 we define regular sequences, depth and the Koszul complex. The 
notion of depth is not very geometric, and rather hard to grasp, but is 
an extremely important invariant. It can be treated either in terms of 
<Ext’s, or by means of the Koszul complex, and we give both versions. We 
&cuss the relation between regular and quasi-regular sequences in a 

ansparent treatment due to Rees. 5 17 contains the definition and principal 
perties of Cohen-Macaulay (CM) rings. The theorem that quotients 

rings are always catenary is of great significance in dimension 
y. In $18 we treat a distinguished subclass of CM rings having even 

icer properties, the Gorenstein rings. In the famous paper of H. Bass [ 11, 
enstein rings are discussed using Matlis’ theory of injective modules. 
here we give an elementary treatment of Gorenstein rings following 

CO before going through Mat12 theory. 

16 Regular sequences and the Koszul complex 

Let A be a ring and M an A-module. An element a~.4 is said 
be M-regular if ax # 0 for all 0 # XEM. A sequence a,, . . . , a, of elements 
A is an M-sequence (or an M-regular sequence) if the following two 

(1) a, is M-regular, a2 is (M/u,M)-regular,. . . , a, is (M/C;-‘UiM)- 

ote that, after permutation, the elements of an M-sequence may no longer 
rm an M-sequence. 

orem 16.2. If a, ,..., a, is an M-sequence then so is uY,l,. . . , U: for 
sitive integers v I , . . . , v,. 
It is sufficient to prove that if a,, . . . , a, is an M-sequence then so 

a,,. Indeed, assuming this, we have in turn that a;‘, a,, . . , a, 
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is an M-sequence, then setting M, = M/a;‘M that a2, a3,. . . ,a, 
and hence also a?, a3,. . . , a,, is an MI-sequence, and so on. Also, the 
second condition M # ES ali M is obvious. 

Let us now prove by induction on n that if b, , . . . , b, is an M-sequence, 
and if b,<, + . ..+b.{,=O with tieM then 5i~b,M+..‘+b,M for all 
i. First of all from the condition that b, is not a zero-divisor modulo 
b l,...,b,-l we can write 

t, = T biqi, with v~EM. 

Therefore ~~-‘bi(~i + b,?i) = 0, SO that by induction we have 

4i + b”qiEb, M + . ..+b.-,M for 1 <i<n-1, 

giving tieb, M + . . . + b,M for 1 < i d n - 1. The condition for 5, is already 
known 

Now assuming v > 1 we prove by induction on v that a;, a2,. . . , a,, is 
an M-sequence. Since a, is M-regular, so is a;. For i > 1, suppose that 
for some oe:M we have 

aio=ai51 +a,52+...+ai-,&-1 with tj~M. 

Then since a;-‘, a2,. . . ,ai is an M-sequence, we can write 

o=ar-‘VI +“‘+ai-l~i-l with vlj~M. 

Hence we get 

O=a;-‘(a,~~-ai~~)+a~(~~-ai4~)+“‘+ai-1(~i-1-ai~i-,). 

The above assertion gives aIt - air1 Ea;-‘M + a,M + ‘.. + a,- 1 M, 
and hence aiql Ea,M + a,M + . ..+ai-lM. Therefore VIlEaIM+...+ 
ai-rM,ands~asrequiredwehaveo~a~M+a,M+.*.+a~-,M. n 

LetAbearing,X,,..., X, indeterminates over A, and M an A-module. 
We can view elements of M OaA [Xl,. . . , X,] as polynomials in the Xi 
with coefftcients in M, 

F(X) = F(X,, . . .,X,) = c tC,,XT1.. . Xz, with C&EM. 

For this reason we write M[X,,...,X,] for M@,A[X,,...,X,]; we can 
consider this either as an A-module or as an A[X,, . . , XJ-module. For 
a, ,..., a,EA and FEM[X, ,..., X,], we can substitute the a, for Xi to 
get F(a,, . . , a&M. 

Definition. Let a,, . . . , a,EA, set I = 11 a& and let M be an A-module 
withIM#M.Wesaythata,,..,, a,, is an M-quasi-regular sequence if the 
following condition holds for each v: 

(*I F(X,, . . . , X,&M[X,, . . . , X,] is homogeneous of degree v and 
F(a)EZ “+‘M implies that all the coefticients of F are in IM. 

This notion is obviously independent of the order of a,, . . . , a,. 
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.A, Tn the above definition it would not make any difference if we replaced 
:’ ,the condition that F(a)EI “+lM by the condition F(a) = 0. Indeed, if F is 

homogeneous of degree v and F(a)EZ “+ rM then there exist a homogeneous 

: element G(X)eMCX,, . . . , X,] of degree v + 1 such that F(a) = G(a). Then 
,’ write G(X) = 1: X,G,(X) with each Gi homogeneous of degree v, and set 

-, ‘F*(X) = f’(X) - 1 aiGi(W, so that F* is homogeneous of degree v and 
~*(a) = 0. Moreover, if F* has coefficients in ZM then so does F. 

..j, We can define a map ~P:(M/IM)[X,,. ,X,1 -+gr,M = @vao 

!'MP v+lM as follows: taking a homogeneous element F(X)EM[X] of 
:: degree v into the class of F(a) in I’M/Z “+lM provides a homomorphism (of 
f additive groups) from M[X] into gr,M which preserves degrees. Since 

-, lM[X] is in the kernel, this induces a homomorphism 

~:M[XI/IMCXI =(M/IM)CX] -gr,M, 
which is obviously surjective. Then a,, . . . , a, is a quasi-regular sequence 
precisely when cp is injective, and hence an isomorphism. 

Theorem 16.2. Let A be a ring, M an A-module, and a, ,..., a,,EA; set 
Z=(a,,..., a&l. Then we have the following: 

(i) if a,,..., a, is an M-sequence then it is M-quasi-regular; 
.a’ (ii) if a,,..., a,, is an M-quasi-regular sequence, and if XEA satisfies 
--,: IM:x = ZM then I’M:x = I’M for any v > 0. 

Proof(taken from Rees [S]). First of all we prove (ii) by induction on v. ); 
The case v = 1 is just the assumption; suppose that v > 1. For <EM, if 

i x~EZ’M then also x<EI’-~M, so that by the inductive hypothesis 
: <EZ’-~M, and hence we can write 5 = F(a) with P = F(X)EM[X,, . . . , 
” X,1 homogeneous of degree v - 1. Now x{ = xF(a)EZ”M, so that by _. 
” definition of quasi-regular sequence each coefficient of xF(X) belongs to 

IM. Using ZM:x = IM once more we find that the coefficients of F(X) 
I- also belong to IM, and therefore < = F(a)EZ”M. 

NOW we prove (i) by induction on n. The case n = 1 can easily be 
checked. Suppose that n > 1, and that the statement holds up to n - 1, so 
that in particular a,,. . . ,a,-, is M-quasi-regular. Now let F(X)E 
MC&.. ,X,1 be homogeneous of degree v, such that F(a) = 0. We prove 
by induction on v that the coefficients of F belong to IM. We separate 
out F(X) into terms containing X, and not containing X,, writing 

F(X) = G(X l,...,X,-,)+X,H(Xl,..., X,). 

Here G is homogeneous of degree v and H of degree v - 1. Then, as we 
Proved in (ii), 

H(a)E(a, ,..., a,~,)‘M:a,=(a, ,..., a,-,)‘McI’M, 
.L ..? 
5 
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and hence, by induction on v, the coefficients of H(X) belong to ZM. 
Moreover, by the above formula there is a homogeneous polynomial 

4X 1,. . .,X,-J of degree v with coefficients in M such that H(a) = 

Ma I,...,a,-,), and so setting 

W l,...,X,-l)+a,h(Xl,...,X,-l)=g(X), 
since a 1,. . . , a,- 1 is M-quasi-regular, we get that the coeffkients of g 
belong to (a,,..., a,-,)M; therefore the coeffkients of G belong to 

(a l,...,an)M. n 

This theorem holds for any A and M, but as we will see in the next 
theorem, under some conditions we can say that conversely, quasi-regular 
implies regular. Then the notions of regular and quasi-regular sequences 
for M coincide, and so reordering an M-sequence gives again an M- 
sequence. 

Theorem 16.3. Let A be a Noetherian ring, M # 0 an A-module, and 
a,, . . . ,a,EA; set I = (a,, . . . , a&l. Under the condition 

(*) each of M, M/a, M, . . . , M/(a 1,. . . , a,- JM is I-adically separated, 
if a 1,. . . , a, is M-quasi-regular it is an M-sequence. 

Remark. The hypothesis (*) holds in either of the following cases: 
(B) M is finite and I c rad (A); 
(1) A is an N-graded ring, M an N-graded module, and each a, is 

homogeneous of positive degree. 
However, for a non-Noetherian ring A there are examples where the 

theorem fails (Dieudonnk [I]) even if A is local, M = A and I c rad (A). 
Proof. We prove first that a, is M-regular. If REM with aIt = 0 then 
by hypothesis <EZM. Then setting 5 = c aiqi we get 0 = 1 alaiyli, so that 
?i~ZM. Proceeding in the same way we get ~E~Z’M = (0). 

Now set MI = M/a,M; if we prove that a2,. . , , a, is an Ml-quasi-regular 
sequence then the theorem follows by induction on n. (If M is I-adically 
separated and M # 0 then M # ZM.) So let f(X,, . . . , X,) be a homogeneous 
polynomial of degree v with coefficients in M, such that f(a,, . . , a,) = 0. 
IfF(X,,..., X,) is a homogeneous polynomial of degree v with coefficients 
in M which reduces to f modulo a,M, then F(a,,. . . ,a,)~a~M. Set 

F(a,, . . . , a,) = a,o; suppose that ~EZ’M, so that we can write w  = G,(a) 
with Gi(X)~M[X,,..., X,] homogeneous of degree i. Then 

W 2,...,a,)=alGi(al,...,a,), 
and if i < v - 1 it follows that the coefficients of Gi belong to ZM, so that 
WEZI+ ‘M; repeating this argument we see that OEZ”- ‘M. Setting i = v - 1 

in the above formula, then since X, does not appear in F, we can 
apply the definition of quasi-regular sequence to F(X,, . . . ,X,) - 
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X,6,- ,(X1,. . . , X,) to deduce that the coefficients of F belong to IM. 
Hence, the coefficients of f belong to IM 1. W 

Corollary. Let A be a Noetherian ring, M and A-module and a,, . . . , a,, 
an M-sequence. If conditions (a) or (p) of the above remark hold then any 
permutation of a,,..., a, is again an M-sequence. 

Here is an example where a permutation of an M-sequence fails to be 
an M-sequence: let k be a field, A = k[X, Y, Z] and set a, = X(Y - I), 
o2 = Y, a3 = Z(Y - 1). Then (a,, aI, a,)A = (X, Y, Z)A # A, and a,, a2, a3 

.f ’ is an A-sequence, whereas a,, as, a, is not. 
,. 
_“11. 
& The Koszul complex 
I.,, j ,.,_ 
:: Given a ring A and x1,..., x,,EA, we define a complex K. as follows: 
;. ,: set K,,=A, and K,=O if p is not in the range O<p<n. For 1 <p<n, 

‘$: .&t K, = @Aei,,,,iP be the free A-module of rank F 
0 

with basis 
.A$! 1 
gIJ {eil,,,i,I 1 6 i, < ... < i, 6 n}. The differential d: K, -+ K,_ I is defined 
‘:l’ by setting 
:$! . : + . . . r *i *s’ d(ei ,... i,) = f (- l)‘- ’ xi,.e,l,..lr. ipi ;pp r=1 

: [for p = 1, set d(ei) = xi). One checks easily that dd = 0. This complex is 
‘called the Koszul complex, and written K.(x,, . . .,x,) (alternatively, 
:.K.(x) or K.,,l,,.,). For an A-module M we set K.(x, M) = K.(S) OAM. 
‘Moreover, for a complex C. of A-modules we set C.(x) = C. @ K.(g). In 
.:particular, for n = I the complex K.(x) is just 

.vO+O+A~A-+O, 

‘hd it is easy to check that K.(x,,. . ,x,) = K.(x,)@...@ K.&J. Since the 
tensor product of complexes satisfies L. @ M. z M. 0 L., the Koszul com- 
plex is invariant (up to isomorphism) under permutation of x1,. . . ,x,. The 
'~sZU~ complex K-(x, M) has homology groups H,(K.(x_, M)), which we 
r‘abbreviate to H&x, M). Quite generally we have 

4,(x_, M) = M&f, 
here &M stands for xxiM, and 

H,(sM)~.{SEMIX~~=...=X,~=O}. 

eorem 16.4. Let C. be a complex of A-modules and XE A. Then we obtain 
exact sequence of complexes 

o+c.-C.(x)-c: ‘0, 
here C: is the complex obtained by shifting the degrees in Cm up by 1 (that 

+ I = C, and the differential of C: is that of C.). The homology long 
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exact sequence obtained from this is 
(-l)p-‘x 

... -H,(C.) -H,(C.(x)) -HP-~(C)-, 

H,- 1 (C.) -“‘; 

we have x.H,(C.(x)) = 0 for all p. 
Proof. From the fact that K,(x) = Ae, and K,(x) = A and the definition 
of tensor product of complexes, we can identify C,(x) with C, 0 C,- 1, and 
for <EC’~, VEC~-~ we have 

45, v) = Cd< + (- 1Y- ‘xv, dr). 
The first assertion is clear from this. Moreover, H,(C:) = H,- ,(C.) is also 
clear, and if ~ECI, = C,- r satisfies dg = 0 then in C.(x) we have d(0, ye) = 
(( - l)P-lxq,O), so that the long exact sequence has the form indicated 
in the theorem. Finally, if d(& q) = 0 then dv] = 0 and d5 = ( - l)pxq, so 
that x.(t,v) = W,(- lY’tWC,+ 1( x and therefore x*H,(C.(x)) = 0. 1, l 

Applying this theorem to K.(~,M) and using the commutativity of 
tensor product of complexes, we see that the ideal (5) = (x1,. . , xn) 
generated by 5 annihilates the homology groups H&, M): 

(&).H&, M) = 0 for all p. 

Theorem 16.5. 

(i) Let A be a ring, M an A-module, and x1,. . . , x, an M-sequence; then 

H&M) =0 for p>O and H&M)= M/x_M. 

(ii) Suppose that one of the following two conditions (a) or (p) holds: 
(a) (A, m) is a local ring, x1,. . . , x,Em and M is a finite A-module; 
(p) A is an N-graded ring, M is an N-graded A-module, and x1,. . . , x, are 

homogeneous elements of degree > 0. 
Then the converse of(i) holds in the following strong form: if H,(x, M) = 0 

and M #O then x I ,.,., x, is an M-sequence. 
Proof. We use induction on n. 

(i) When n= 1 we have H,(.w,M) = (t~Mjx[ =O} =O, so that 
the assertion holds. When n > 1, for p > 1 the previous theorem provides 
an exact sequence 

O=H,(x, ,..., x,-,,M)-H,(xl ,..., x,,M) 
-H,-,(x1 ,..., x,pl,M)=O. 

so that Hp(xl,..., x,, M) = 0. For p = 1, setting Mi = M/(X,, . . . , xi)M we 
have an exact sequence 

O+H,(~,M)-H,(x, ,..., x,-~,M)=M,-~ 

and since x, is M,- ,-regular we have HI@, M) = 0. 
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z:,:;@) A ssuming either (CY) or (fl), M # 0 implies that Mi # 0 for 1 6 i ,< n. By 

+lpo thesis and by the previous theorem, 
:. 
:: ,’ *x. 
,!s 1 H1(X1,‘..,X,-,,M)-H~(X1,...,X,-1,M)-Hl(X,M)=o; _: ,.. I : ‘@,,2. I’. 

:;{( .,but quite generally H&, M) is a finite A-module in case (a), or a N-graded 
(/?), so that by NAK, H,(x,, . . .,x,-r, M) = 0. Thus by 

x, _ I is an M-sequence. Now by the same exact sequence 
1 of (i), we see that x, is M,-,-regular, and therefore 

x, is an M-sequence. n 

A be a ring, M an A-module and 1 an ideal of A. If a,, . . , a, are 
&ments of I, we say that they form a maximal M-sequence in I if a,, . . , a, 
% an M-sequence, and a r,. . . , a,, b is not an M-sequence for any bEI. If 

a, is an M-sequence then a, M, (a,, a,)M,. . , (a,, . . , a,)M is strictly 
&creasing, SO that the chain of ideals (al) c (a,, a*) c . . . is also strict- 
‘& increasing. If A is Noetherian this cannot continue indefinitely, 
‘XI that any M-sequence can be extended until we arrive at a maximal 

orems 668 below, the hypothesis that M is a finite 
module can be weakened to the statement that M is a finite B-module 

homomorphism A - B of Noetherian rings, as one sees on inspecting 
proof. The reason for this is that, if we set Ass,(M) = {P,, . . . ,P,} 
Pin A = pi, then any ideal of A consisting entirely of zero-divisors of 

contained in up,, and therefore contained in one of the pi. Note 
according to [M], (9.A), we have Ass,(M) = (PI,. . . ,p,>. 

heorem 16.6. Let A be a Noetherian ring, M a finite A-module and I 
eal of A; suppose that IM # M. For a given integer n > 0 the following 
itions are equivalent; 

) ExtL(N, M) = 0 for all i < n and for any finite A-module N with 

) = 0 for all i < n; 
) = 0 for all i < n and for some finite A-module N with 

there exists an M-sequence of length n contained in I. 
(l)*(2)*(2) . b IS o vious. For (2’)+(3), if I consists only of zero- 

visors of M then there exists an associated prime P of M containing I 
s is where we need the finiteness of M). Hence there is an injective 

aPA/P- M. Localising at P, we see that Horn& MP) # 0, where 
(A/P)p = A,/PA,. Now PE V(I) = Supp (N), so that N, # 0, and hence 
NAK, N,/PN, = N @*k # 0. Thus N @ k is a non-zero vector space 
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over k, and Hom,(N@ k, k) #O. Putting together what we have said, 
we can follow the composite N, --+ N @ k -+k -+ M, to show that 
HomAdNp, MP) # 0. The left-hand side is equal to (Hom,(N, M))p, so that 
Hom,(N, M) #O. But this contradicts (2’). Hence I contains an 
M-regular element f. By assumption, M/IM # 0, and if la = 1 then we are 
done. If n > 1 we set M, = M/fM; then from the exact sequence 

/ 
O+M-+M+M,+~ 

we get Exti(N, M) = 0 for i < n - 1, so that by induction I contains an 
M ,-sequence f2,. . . , ,f,,. 

For the proof of (3)*(l) we do not need to assume that A is Noethcrian 
or M finite. Let f1 , . , f,~l be an M-sequence; we have the exact sequence 

O+M%M-M,+O, 

and if n > 1 the inductive hypothesis Exti(N, M,) = 0 for i < n - 1, so that 

0 -P Ext;(N, M) 2 Ext;(N, M) 

is exact for i < II. But ExtL(N, M) is annihilated by elements of arm(N). 
Since Supp(N) = V(ann(N)) c I/(I), we have I c J(ann(N)), and a 
sufficiently large power of f1 annihilates ExtL(N, M). Therefore, 
Ext>(N, M) = 0 for i <n. n 

Let M and I be as in the above theorem, and a,, . . . , a,, an M-sequence 
in I. For 1 f i < n, set Mi = M/(al,. . , a,)M; then it is easy to see 
that Hom,(A/Z, M,) 1 Exti(A/Z, M,- i) r ... 2 Ext;(A/I, M). Therefore, 
if Exti(A/Z, M) = 0 we can find another element a,, ~EI such that 
al,...,a,+, is an M-sequence. Hence if a,, . . . , a, is a maximal M-sequence 
in I we must have Ext>(A/Z, M) # 0. We thus obtain the following theorem. 

Theorem 16.7. Let A be a Noetherian ring, I an ideal of A and M a finite 
A-module such that M # IM; then the length of a maximal M-sequence 
in I is a well-determined integer n, and n is determined by 

Exti(A/Z, M) = 0 for i < n and ExtIfi(A/I, M) #O. 

We write n = depth(Z, M), and call n the I-depth of M. (If M = IM, the 
I-depth is by convention co.) Theorem 7 takes the form 

depth(1, M) =inf{ilExt>(A/Z, M) #O}. 
In particular for a Noetherian local ring (A, m, k), we call depth(m, M) 
simply the depth of M, and write depth M or depth,M: 

depth M = inf { i 1 ExtL(k, M) # O}. 

From Theorem 6 we see that if V(I) = V(1’) then depth(I,M) = 
depth (I’, M); this also follows easily from Theorem 1. 

If ann (M) = a and we set A/a = A then M is also an A-module. Writing 
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g: ??a, 6 or rfor the image of an element a or an ideal I of A under the natural 
p.;, homomorphism A -+A we clearly have that a,, . . . , a, is an M-sequence 
;‘, ifand only if&,..., 5, is. Thus depth (I, M) = depth (r, M), and if we set 
” I+ a = J, n “. the since r= 9 we also have depth (I, M) = depth (J, M). 
$:,. We can also prove that the length of a maximal M-sequence is 
ha well-determined by means of the Koszul complex. 
9 
$ Theorem 16.8. Let A be a Noetherian ring, I = (yi,. . . , y,) an ideal of A, 
@ and M a finite A-module such that M # ZM. If we set 
*,. if;< i.7’ q = SUP (ilHi(y, Ml Z O}, 
$;.,.then any maximal M-sequence in I has length n - q. 

/$proof. IAx,,..., x, be a maximal M-sequence in I; we argue by induction 
k on s. Ifs = 0 then every element of I is a zero-divisor of M, so that there 
k.‘exists PEAss(M) containing 1. By definition of Ass, there exists 0 # {EM 
e; such that P = arm(t), and hence It = 0. Thus ~EH,(;, M) so that q = n, 

bjand the assertion holds in this case. 
FT. 
g Ifs > 0 we set M, = M/x, M; then from the exact sequence 

f: 
i: O+M:M-Ml+0 

$:.and from the fact that IH,(y, M) = 0 (by Theorem 4), it follows that 
yti 
tr;*. OjHi(y,M)-Hi(Z1,M,)-Hi-,(Y,M)~O 

IS exact for every i. Thus H,, 1 y, ( M,)#Oand-Hi(y,M,)=Ofori>q+ 1; 
but x2,. . . ,x, is a maximal M ,-sequence in I, so that by induction we 
have q + 1 = n - (s - l), and therefore q = n - s. n 

In other words, depth(1, M) is the number of successive zero terms from 
ithe left in the sequence 

H,(y,M),H,-,(y,M),...,H,(y,M)= MIIM #O. 

This fact is sometimes referred to as the ‘depth sensitivity’ of the Koszul 
Complex. 

corollary. In the situation of the theorem, yl,. , y,, is an M-sequence if 
,and only if depth (I, M) = n. 

proof. depth(l, M) = noH,(y, M) = 0 for all i > Ooy is an M-sequence. 

Grade 

A little before Auslander and Buchsbaum [2], Rees [S] introduced and 
developed the theory of another notion related to regular sequences, that of 
grade. Let A be a Noetherian ring and M # 0 a finite A-module. Then Rees 
made the definition 

grade M = inf { iI Exti(M, A) # 0). 
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For a proper ideal J of A we also call grade (A/J) the grade of the ideal 
J, and write grade J. If we set a = arm(M) then since Supp(M) = V(n), 
Theorem 6 gives grade M = depth(a, A). Moreover, if g = grade M then 
Ext;(M, A) # 0, so that 

grade M d proj dim M. 

If I is an ideal then gradel(= grade(A/l)) = depth(l,A) is the length 
of a maximal A-sequence in I, but in general if a,, . . . , a, is an A-sequence 
then one sees easily from Theorem 13.5 that ht(a,, . . . , a,) = Y. Thus if 
a,, . . , a, is a maximal A-sequence in I, we have r = ht(a,, . . . , a,) d htl. 
Hence for an ideal I we have grade I B htl. 

Theorem 16.9. Let A be a Noetherian ring, and M, N finite A-modules; 
suppose M # 0, grade M = k and proj dim N = 1~ k. Then 

Ext>(M, N) = 0 for i <k - 1. 

Proof. We use induction on 1. If 1= 0 then N is a direct summand of some 
free module A”, so that we need only say what happens for N = A, but 
then the assertion is just the definition of grade. If 1> 0 we choose an 
exact sequence 

O-N, -L,-N+O 

with L,, a finite free module; then proj dim N, = 1- 1, so that by induction 

ExtL(M,L,) = 0 for i < k and 
Exty’(M,N,)=O for i<k-1; 

the assertion follows from this. n 

Exercises to $16. Prove the following propositions. 

16.1. Let (A,m) be a Noetherian local ring, M # 0 a finite A-module, and 
a,, . ., a,Ent an M-sequence, Set M’ = M/(a,,. . ., a,)M. Then 

dim M’ = dim M - r. 

16.2. Let A be a Noetherian ring, a and b ideals of A; then if grade 0 
> projdim A/b we have b:a = 6. 

16.3. Let A be a Noetherian ring. A proper ideal Z of A is called a perfect ideal if 
grade Z = proj dim A/Z. If I is a perfect ideal of grade k then all the prime 
divisors of Z have grade k. 

Remark. Quite generally, we have gradeZ( = grade (A/Z)) < proj dim A/Z. If  A is a 
regular local ring and PESpec A then as we will see in Theorems 19.1 and 19.2, P is 
perfect- A/P is Cohen-Macaulay. 

16.4. Let f‘: A +Z? be a flat ring homomorphism, M an A-module, and 
a ,,..., a,EA an M-sequence; if (M/(a ,,..., a,)M)@B#O then 
,f’(al),. ,f(a,) is an M @ B-sequence. 

16.5. Let A be a Noetherian local ring, M a finite A-module, and P a prime idea1 
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of A; show that depth(P, M) d depth+M,, and construct an example 
where the inequality is strict. 

16.6. Let A be a ring and a r,. . ,a,EA an A-quasi-regular sequence. If  A 
contains a field k then a,, ,a, are algebraically independent over k. 

16.7. Let (A, m) and (B, n) be Noetherian local rings, and suppose that A c B, 
n n A = m and that mB is an n-primary ideal. Then for a finite B-module 
M we have 

depth, M = depth, M. 

16.8. Let A be a ring, P,, , P, prime ideals, 1 an ideal, and x an element of A. I f  
,YA+I~P,u~~~uP, then there is a y~l such that x+y~P,u~~~uP, 
(E. Davis). 

‘,, 16.9. Use the previous question to show the following: let A be a Noetherian 
ring, and suppose that I #A is an ideal generated by n elements; then 

. grade I < n, and if grade I = n then I can be generated by an A-sequence 
1” ([K], Th. 125). 

16.10. Let A be a Noetherian ring, and suppose that P is a height r > 0 prime ,“ i 
:.,- ideal generated by r elements a,, , a,. 

(i) Suppose either that A is local, or that A is N-graded and the a, are 
k> Ji( homogeneous of positive degree. Then A is an integral domain, and for 
..b .̂ 

1 < i 6 r the ideal (a,, . , ai) is prime; hence a,, , a, is an A-sequence. L.; 
g (ii) In general a,, , LI, does not have to be an A-sequence, but P can in 
i:- 
g any case be generated by an A-sequence (E. Davis). 

17 Cohen-Macaulay rings 

Theorem 17.1 (Ischebeck). Let (A, m) be a Noetherian local ring, M and N 
non-zero finite A-modules, and suppose that depth M = k, dim N = Y. Then 

Exta(N, M) = 0 for i < k - r. 

Proof. By induction on r; if r = 0 then Supp(N) = {nr} and the assertion 
holds by Theorem 16.6. Suppose r > 0. By Theorem 6.4, there exists a 
chain 

N=N()xN, 3 ... 13 N, = (0) with Nj/Nj+ 1 N AIPj 

of submodules Nj, where PjESpec A. It is easy to see that if Ext: 
(Nj/Nj+ 1, M) = 0 f or each j then Ext>(N, M) = 0, and since dim Nj/Nj+ I d 
dimN = Y it is enough to prove that Exti(N, M) = 0 for i < k - Y in the 
case N = A/P with PESpec A and dim N = r. Since r > 0 we can take 

an element XE~ - P and get the exact sequence 

O-NAN-N’+O, 

where N’ = A/(P,x); then dim N’ < r so that by induction we have 
Ext:(N’, M) = 0 f or i<k-r+l. Thus for i<k-r we have an exact 
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sequence 

O+Exta(N,M) 2 Ext@‘,M)- Ext~‘(N’,M)=O. 

We have XEITI so that by NAK, ExtL(N,M) = 0. n 

Theorem 17.2. Let A be a Noetherian local ring, M a finite A-module, 
and assume that PeAss(M); then dim(A/P) b depthM. 
Proof. If PEAss(M) then Hom,(A/P, M) # 0, so that by the previous 
theorem we cannot have dim A/P < depth M. n 

Definition. Let (A,m, k) be a Noetherian local ring, and M a finite 
A-module. We say that M is a Cohen-Macaulay module (abbreviated to 
CM module) if M # 0 and depth M = dim M, or if M = 0. If A itself is a 
CM module we say that A is a CM ring or a Macaulay ring. 

Theorem 17.3. Let A be a Noetherian local ring and M a finite A-module. 
(i) If M is a CM module then for any PEAss(M) we have 

dim(A/P) = dim M = depth M. Hence M has no embedded associated 
primes. 

(ii)Ifa,,..., a,Em is an M-sequence and we set M’ = M/(al,. . . ,a,) then 

M is a CM module o M’ is a CM module 

(iii) If M is a CM module then M, is a CM module over A, for 
every PESpec A, and if M, # 0 then 

depth (P, M) = depthAp Mp. 
Proof. (i) Quite generally, we have 

dim M =sup {dim A/PIPEAss M} 
3 inf { dim A/PI PEASS M) 3 depth M, 

so that this is clear. 
(ii) By definition depth M’ = depth M - r, and by Ex. 16.1, dim M’ = 

dim M - r, so that this is clear. 
(iii) It is enough to consider the case M, # 0, when P 2 arm(M). Then 

quite generally we have dim M, > depth M, >, depth(P, M), so that we need 
only show that 

dim M, = depth (P, M). 

We prove this by induction on depth(P, M). If depth(P, M) = 0 then P is 
contained in an associated prime of M, but in view of P =, arm(M) and 
the fact that by (i) all the associated primes of M are minimal, it follows 
that P is itself an associated prime of M; therefore dim MP =O. If 
depth(P,M) > 0 then we can take an M-regular element aeP, and set 
M’ = M/aM. Then 

depth (P, M’) = depth (P, M) - 1, 
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M’ is a CM module with Mb #O, so that by induction dimMI, = 
a is M,-regular as an element of A,, and 

so that using Ex. 16.1 once more, we have dim Mb = 
M,, - 1. Putting these together gives depth (P, M) = dim M,. n 

~orem 17.4. Let (A, m) be a CM local ring. 
: (j) For a proper ideal I of A we have 

ht I = depth (I, A) = grade I, and ht I + dim A/I = dim A. 

a,Em the following four conditions are 

a,, . . . , a, is an A-sequence; 
ai) = i for 1 < i < r; 

(3)ht(a,,...,a,.)=r; 
a,, . . . ,a, is part of a system of parameters of A. 

(iii) The implication (l)=(2) follows from Theorem 13.5, together 
fact that from the definition of A-sequence we have 0 < ht(a,) < 

f dim A = r this is obvious; if dim A > r then m is not a minimal 
at we can choose a,, I urn not contained 

1 prime divisor of (a,, . ,a,), and then ht(a,, . . . ,a,+ J = r + 1. 
in the same way we arrive at a system of parameters of A. 

now we have not used the CM assumption.) 
(1) It is enough to show that any system of parameters xi,. . . ,x, 

n = dim A) is an A-sequence. If PEAss(A) then by Theorem 3, (i), 
/P = n, so that xr$P. Thus x1 is A-regular. Therefore if we set 

A/x,A we have by the previous theorem that A’ is an (n - l)- 
nsional CM ring, and the images of x2,. . ,x, form a system of 

rs of A’. Thus by induction on n we see that x1,. . . ,x, is an 

)Ifht~=rthenwecantakea,,...,n,EIsuchthatht(a,,...,a,)=ifor 
i G r. Thus by (iii), a,, . . . , a, is an A-sequence. Thus r < gradeI. 

A-sequence then ht(bi , . . . , b,) = s 6 ht I, 
ence r 2 grade I, so that equality must hold. For the second equality, 

S be the set of minimal prime divisors of 1, we have 

htl= inf{htPIPES} 
and dim(A/Z) = sup {dim A/PIPES}, 

SO it is enough to show that ht P = dim A - dim A/P for every PES. 
htP = dim A, = r and dim A = n. By Theorem 3, (iii), A, is a CM ring 

nd r = depth(P, A). Now if we take an A-sequence a,,. . .,~,EP then 
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by Theorem 3, (ii), A/(a,, . . . , a,) is an (n - r)-dimensional CM ring, and from 
the fact that ht (a,,..., a,) = r = ht P we see that P is a minimal prime 
divisor of (al , . . ,a,); thus by Theorem 3, (i), dim A/P = dim A/(a,, . . . ,a,) = 
n - r. 

(ii) Let P I Q be prime ideals of A. Then since A, is a CM ring, (i) 
above gives dim A, = ht QA, + dim A,/QA,; in other words ht P - ht Q = 

W/Q). w 
If one system of parameters of a Noetherian local ring A is an A-sequence 

then depth A = dim A, so that A is a CM ring, and therefore, by the above 
theorem, every system of parameters of A is an A-sequence. 

Theorem 17.5. Let A be a Noetherian local ring and A its completion; 
then 

(i) depth A = depth A; 
(ii) A is CM-2 is CM. 

Proof. (i) This comes for example from the fact that Exta(A/m, A) 0 A^ = 
Ext~(A^/m,&A) for all i. (ii) follows from (i) and the fact that 
dim A = dim A. 

Definition. A proper ideal I in a Noetherian ring A is said to be unmixed 
if the heights of its prime divisors are all equal. We say that the unmixedness 
theorem holds for A if for every r > 0, every height r ideal I of A generated 
by r elements is unmixed. This includes as the case r = 0 the statement 
that (0) is unmixed. By Theorem 13.5, if I is an ideal satisfying the 
hypotheses of this proposition, then all the minimal prime divisors of I 
have height r, so that to say that I is unmixed is to say that I does not 
have embedded prime divisors. 

A Noetherian ring A is said to be a CM ring if A,,, is a CM local 
ring for every maximal ideal m of A. By Theorem 3, (iii), a localisation 
S- 1 A of a CM ring A is again CM. 

Theorem 17.6. A necessary and sufficient condition for a Noetherian ring 
A to be a CM ring is that the unmixedness theorem holds for A. 
Proof. First suppose that A is a CM ring and that I = (a,,. . . ,a,) is an 
ideal of A with htA = r. We assume that P is an embedded prime divisor 
of I and derive a contradiction. Localising at P we can assume that A is 
a CM local ring; then by Theorem 4, (iii), a,, . . . ,a, is an A-sequence, and 
hence A/Z is also a CM local ring. But then I does not have embedded 
prime divisors, and this is a contradiction. Next we suppose that the 
unmixedness theorem holds for A. If PESpec A with htP = r then we can 
choose a,, . . . , a,EP such that 

ht(a I,...,ai)=i for 1 <i<r. 
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Then by the unmixedness theorem, all the prime divisors of (a,,. . . ,a,) 
have height i, and therefore do not contain ai+l. Hence ai+l is an 

Al@ l,. . . , a,)-regular element; in other words, a,, . . . ,a, is an A-sequence. 
Therefore depth A, = Y = dim A,, so that A, is a CM local ring; P was 
any element of Spec A, so that A is a CM ring. n 

The unmixedness theorem for polynomial rings over a field was a 
brilliant early result of Macaulay in 1916; for regular local rings, the 
nnmixedness theorem was proved by I. S. Cohen [l] in 1946. This explains 
the term Cohen-Macaulay. Having come this far, we are now in a position 
to give easy proofs of these two theorems. 

Theorem 17.7. If A is a CM ring then so is A[X,, .,X,1. 
proof. We need only consider the case n = 1. Set B = A[X] and let P be 
a maximal ideal of B. Set Pn A = m; then BP is also a localisation of 
A,[X], so that replacing A by A, we have a local CM ring 
A with maximal ideal m, and we need only prove that B, is CM. Setting 
‘A/m = k we get 

B/mB = k[X], 

so that P/mB is a principal ideal of k[X] generated by an irreducible 
manic polynomial v(X). If we let f(X)gA[X] be a manic polynomial of 
A[X] which reduces to q(X) modulo mB then P = (m, f). We choose a 
system of parameters a, ,. . . ,a, for A, so that a,, . . . ,a,,, f is a system of 
barameters of B,. Since B is flat over A the A-sequence a,, . . ,a, is also 
a B-sequence. We set A/(a,, . . . , a,) = A’; then the image of f in A’[X] is 
a manic polynomial, and therefore A’[X]-regular, so that a,, . . ,a,,, f is 

, a B-sequence, and 

depth B, 3 depth (P, B) 3 n + 1 = dim B,. 

Therefore B, is a CM ring. n 

y Remark. If A is a CM local ring, then a similar (if anything, rather easier) 
:: method can be used to prove that A[Xj is also CM. The statement also 
? holds for a non-local CM ring, but the proof is a little more complicated, 
$ and we leave it to $23. 

$ Th eorem 17.8 A regular local ring is a CM ring. 
; Proof. Let (A, m) be an n-dimensional regular local ring, and x, , . . . ,x, a 
F: regular system of parameters. By Theorems 14.2 and 14.3, (x,), (x1,x,), . . . , 
i (Xl,... ,x,) is a strictly increasing chain of prime ideals; therefore x1,. . . ,x, 
2: is an A-sequence. n 
% 
g. 

p Theorem 17.9. Any quotient of a CM ring is universally catenary. 
9 proOf. Clear from Theorems 7 and 4. w  
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Theorem 17.10 A necessary and sufficient condition for a Noetherian local 
ring (A, m, k) to be a regular ring is that gr,,(A) is isomorphic as a graded k- 
algebra to a polynomial ring over k. 
Proof. If A is regular, let x, , . . . , x, be a regular system of parameters, that 
is a minimal basis of m; then x i,...,xI is an A-sequence, so that by 
Theorem 16.2 (see also Theorem 14.4 for another proof) gr,(A) 2 

4X,,..., X,]. Conversely, if gr,(A) ‘v k[X,, . . . , X,], then comparing 
the homogeneous components of degree 1, we see that m/m” ‘v kX, 

+ ... + kX,. On the other hand, the homogeneous component of degree n 

of k[X,,..., X,] is a vector space over k of dimension 

so that the Samuel function is 

x,(n) = U/m ~++f,(i~‘r’>=(n~r), 
and dim A = r. Therefore A is regular. n 

We can also characterise CM local rings in terms of properties of 
multiplicities. Let A be a Noetherian local ring. An ideal of A is said to 
be a parameter ideal if it can be generated by a system of parameters. By 
Theorem 14.10, if q is a parameter ideal then &4/q) > e(q). As we are about 
to see, equality here is characteristic of CM rings. 

Theorem 17.1 I. The following three conditions on a Noetherian local ring 
(A, m) are equivalent: 

(1) A is a CM ring; 
(2) l(A/q) = e(q) for any parameter ideal q of A; 
(3) 1(A/q) = e(q) for some parameter ideal q of A. 

Proof. (l)*(2). If x1 ,..., xd is a system of parameters of A and q = 

(x i,. . . ,x,) then by Theorem 16.2, gr,(A) N (A/q)[X,, . . . ,Xd], so that 

as in the proof of the previous theorem, xi(n) = 1(,4/q). 
n+d 

( 1 
d so that 

4s) = 4W-d. 
(2)=+-(3) is obvious. 
(3)+(l) Suppose that q =(x1,..., xd) is a parameter ideal satisfying 

e(q) = @l/q). We set B = (A/q)[X 1,. . ,X,1; then there is a homogeneous 
ideal b of B such that gr,(A) N B/b. We write cpB(n) and q,(n) for the Hilbert 
polynomials of B and b (see 9 13); then 

and for n >> 0 we have l(q”/q”+l) = cps(n) - q,,(n). The left-hand side is a 
polynomial in n of degree d - 1, and the coefficient of ndel is e(q)/(d - l)!. By 
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) /  

T;: hypothesis e(q) = 4Alq), so that cpb(n) must be a polynomial in n of degree at 
5:: 830st d - 2. However, if b # (0) then we can take a non-zero homogeneous 
:;:’ element f(X)Eb. If m’ c q and we set m/q = i?t then in B we have 
i<, ar = (0), and therefore replacing f by the product of f with a suitable 
1’:; &ment of ti, we can assume that f # 0 but 5f = 0. Then 
p. 
tr’ I *> b = fB = (Alm)CX,, . . . ,XJ, 

f = p then q,(n) 3 (n-;‘;-l), the length of the 

eous component of degree n-p in (A/m)[X,,. .,X,1. This 
adicts deg (Pi < d - 1. Hence b = (0), and 

gr,(A) = B = Wq)CX,, . . . ,XJ, 
hat by Theorem 16.3, {x1,. . . , xd} is an A-sequence. Therefore A is a CM 

Exercises to $17. Prove the following propositions. 

mensional Noetherian ring is a CM ring. 
(b) A one-dimensional ring is CM provided that it is reduced ( = no 
nilpotent elements); also, construct an example of a one-dimensional ring 
which is not CM. 

17.2. Let k be a field, x, y indeterminates over k, and set A = k[x3, x2y, xy2, y3] 
c k[x, y] and P =(x3, x*y, xy’, y3)A. Is R = A, a CM ring? How about 
k[x4 x3y xy3, y4]? > 1 

17.3. A two-dimensional normal ring is CM. 

17.4. Let A be a CM ring, a r , . ,a, an A-sequence, and set J = (a,, . ,a,). Then 
for every integer v the ring A/J” is CM, and therefore J” is unmixed. 

17.5. Let A be a Noetherian local ring and PESpec A. Then 
(i) depth A < depth (P, A) + dim A/P; 
(ii) call dim A -depth A the codepth of A. Then codepthA > 

17.6. Let A be a Noetherian ring, PESpecA and set G = gr,(A). If G is an 
integral domain then P” = PC”) for all n > 0. (This observation is due to 
Robbiano. One sees from it that if P is a prime ideal generated by an A- 
sequence then P” = PC”).) 

18 Gorenstein rings 

ma I. Let A be a ring, M an A-module, and n > 0 a given integer, 

inj dim M < noExtI+r(A/Z, M) = 0 for all ideals 1. 
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If A is Noetherian, then we can replace ‘for all ideals’ by ‘for all prime 
ideals’ in the right-hand condition. 
Proof. (a) This is clear on calculating the Ext by an injective resolution 
of M. 

(G) If n = 0 then from the exact sequence 0 -+ I --+ A + A/Z + 0 and 
from the fact that Ext:(A/I, M) = 0 we get that Hom(A, M)--+ 
Hom(1, M) -+O is exact. Since this holds for every I, Theorem B3 of 
Appendix B implies that M is injective. Suppose then that n > 0. 

There exists an exact sequence 

O-tM-Q”-Q’---t~~~-Q”-‘-C-,O, 

with each Q’ injective. (We can obtain this by taking an injective resolution 
of M up to Q”-’ and setting C for the cokernel of Qnm2 -Q”-‘.) One 
sees easily that Ext;+‘(A/I,M) _N Exti(A/I, C), so that by the argument 
used in the n = 0 case, C is injective, and so inj dim M < n. 

If A is Noetherian then by Theorem 6.4, any finite A-module N has a 
chainN=N,~NN,~~.~~N,+, = 0 of submodules such that Nj/Nj+ 1 z 
A/P, with PjESpecA. Using this, if Ext>(A/P, M) = 0 for all prime ideals 
P then we also have Exta(N, M) = 0 for all finite A-modules N. Now we 
just have to apply this with i = n + 1 and N = A/I. n 

Lemma 2. Let A be a ring, M and N two A-modules, and XEA; suppose 
that x is both A-regular and M-regular, and that xN = 0. Set B = A/xA and 
I%? = M/xM. Then 

(i) Horn,@‘, M) = 0, and Ext;+‘(N, M) _N Ext;(N,M) for all n 3 0; 
(ii) Exti(M, N) N Ext;(fi, N) for all n 3 0; 

(iii) Tor;f(M, N) N Torf(M, N) for all n 3 0. 
Proof. (i) The first formula is obvious. For the second, set T”(N)= 
Ext;+ ‘(N, M), an d view T” as a contravariant functor from the category 
of B-modules to that of Abelian groups. Then first of all, the exact sequence 

O-tM:M--+ii?+O 

gives To(N) = Hom,(N, M) = Hom,(N, M). Moreover, since x is 
A-regular we have proj dim,B = 1, and therefore T”(B) = 0 for n > 0, 
so that T”(L) = 0 for n > 0 and every projective B-module L. Finally, for 
any short exact sequence 0-t N’ -N -+ N”+O of B-modules, there is 
a long exact sequence 

0 -+ T’(N”) - To(N) - T’(N’) 
-T’(N”)-T’(N)-T’(N’)+.... 

This proves that T’ is the derived functor of Hom,( - , M), and therefore 
coincides with Extb( - , M). 

(ii) We first prove Tor;;‘(M,B) = 0 for n > 0. For n > 1 this follows 
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from proj dim,B = 1. For n = 1, consider the long exact sequence 

o+Torf(M, B) --+ M 2 M - M + 0 associated with the short 

*“. exact sequence 0 + A : A -B-+0. Since x is M-regular we have 

: To&M, B) = 0. 
r. Now let L. -M +O be a free resolution of the A-module M. Then 
.f; -tar&B -+ M gAB -+O is exact by what we have just proved, so that 
;‘. L. @ B is a free resolution of the B-module M @ B = ri;r. Then Ext”,(M, N) 
>,: _ ,= H”(Hom,(L., N)) = H”(Hom,(L. OaB, N)) = Ext;(fl, N) by Formula 9 
_: -I of Appendix A. 
8 4, (iii) Using the same notation as above, we have Torf(M,N) = 

2; .&(L,. OAN) = H,((L. OaB) C&N) = Torfl(R, N). H 

$~~:~rna 3. Let (A, M, k) be a Noetherian local ring, M a finite A-module, and 
4 &Spec A; suppose that ht (m/P) = 1. Then 
,A :;q rk ‘ &-, I: Exty ‘(k, M) = 0 =s Ext;(A/P, M) = 0. 
& 
~;fkxf. Choose x~nt - P; then O-+A/PAA/P--+A/(P+ Ax)+0 is 
&.,F exact sequence, and P + Ax is an m-primary ideal, so that if we let 

N = AMP + Ax), there exists a chain of submodules of N 

N=NoxN1r> . ..IN.=O suchthat Ni/Ni+, 2:k. 

.Hence from Exty ‘(k, M) = 0 we get Exty ‘(A/(P + Ax), M) = 0, and 

Ext;(A/P, M) 5 Ext;(A/P, M) -0. 

& exact, so that by NAK ExtL(A/P, M) = 0. n 

'&emma 4. Let (A, m, k) be a Noetherian local ring, M a finite A-module, and 
PESpec A; suppose that ht (m/P) = d. Then 

Exty’(k, M) = O+ Ext;,(rc(P), MP) = 0. 

. Let m=P,IPP,x. .. 2 P, = P, with P,ESpec A and ht (Pi/Pi+ 1) 

Exty’-‘(A/P,, M) = 0, 

.md localising at P, we get 

Ext5;-’ (ic(P,), Mp,) = 0. 

oeeding in the same way gives the result. n 

wem 18.1. Let (A, m, k) be an n-dimensional Noetherian local ring. 
the following conditions are equivalent: 

(2) Exti(k, A) = 0 for i # n and N k for i = n; 
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(3) ExtL(k, A) = 0 for some i > n; 
(4) Ext$(k, A) = 0 for i < n and z k for i = n; 
(4’) A is a CM ring and Ext;(k, A) ‘v k; 
(5) A is a CM ring, and every parameter ideal of A is irreducible; 
(5’) A is a CM ring and there exists an irreducible parameter ideal. 

Recall that an ideal I is irreducible if I = JnJ’ implies either I = J or 
I = J’ (see $6). 

Definition. A Noetherian local ring for which the above equivalent 
conditions hold is said to be Gorenstein. 
Proof oj( l)=>(l’). Set inj dim A = r. If P is a minimal prime ideal of A 
such that ht(m/P) = dim A = n then PA,EAss(A~), SO that 
Hom(lc(P),A,,) # 0; hence, by Lemma 4, Ext”,(k,A) #O, therefore r 2 Q. 
If r = 0 this means that n = 0, and we are done. If r > 0, set Ext>( - , A) = 
T; then this is a right-exact contravariant functor, and by Lemma 1, 
there is a prime ideal P such that T(A/P) # 0. Now if P # m and we take 
xEm - P, the exact sequence 

O+A/PAA/P 

leads to an exact sequence 

T(A/P) 5 T(A/P) -+ 0; 

but then by NAK, T(A/P) = 0, which is a contradiction. Thus P = m, and 
so T(k) # 0. We have m # Ass (A), since otherwise there would exist an 
exact sequence 0 + k - A, and hence an exact sequence 

T(A) = Ext’,(A, A) = 0 - T(k) + 0, 

which is a contradiction. Hence m contains an A-regular element x. If we set 
B = A/xA then by Lemma 2, ExtB(N,B) = Exty’(N, A) for every B- 
module N, so that inj dim B = r - 1. By induction on r we have Y - 1 = 
dimB=n- 1, and hence r=n. 
Proof of (l’)*(2). When n = 0 we have mEAss(A), so there exists an exact 
sequence 0 -+ k --+ A, and since inj dim A = 0, 

A=Hom(A,A)--+Hom(k,A)+O 

is exact. Therefore Hom(k, A) is generated by one element. But 
Horn (k, A) # 0, so that we must have Horn (k, A) N k. By assumption, A is 
an injective module, so that ExtL(k, A) = 0 for i > 0; thus we are done in the 
case n = 0. If n > 0 then, as we have seen above, m contains an A-regular 
element x, and if we set B = A/xA then dim B = inj dim B = n - 1, SO that by 
Lemma 2 and induction on n we have 

Ext;(k, A) = Extb- ‘(k, B) = 
0 if O<i#n 

and 
k if i = n 

9 
Hom,(k, A) = 0. 
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oj (3)=>(l). We use induction on n. Assume that for some i > n we 
xt:(k, A) = 0. If n = 0 then m is the unique prime ideal of A, so that by 
a 1, injdimA < i < co. If n > 0 let P be a prime ideal distinct 

and set d = ht (m/P) and B = A,; then by Lemma 4 we have 
(P), B) = 0. Moreover, dim B 6 n - d < i - d, so that by induction 
< co. Thus for any finite A-module M we have 

Ext;(M, A))p = Ext;(M,, B) = 0 

i > n > dim B = inj dim B). Therefore, setting T(M) = ExtL(M, A) 
et Supp(T(M)) = {m>, and since T(M) is a finite A-module, 

sing this, we now prove that T(A/P) = 0 for every prime 
) # 0 for some P, choose a maximal P with this property. By 

k) = 0, so that P # m, so that we can take xEm - P and form 

O+A/PAA/P-A/(P+Ax)+O. 

write AMP + AX) = MO I> Ml 3 ... 2 M, = 0 with MI/MI+ 1 N A/Pi; 
Pi is strictly bigger than P, so that T(A/(P + Ax)) = 0. Therefore 

so that multiplication by x in T(A/P) is injective; but since 
< co, injective implies surjective. Hence by NAK, T(A/P) = 0, 

is contradiction. Therefore T(A/P) = 0 for every PESpec A, so that 

we have proved that (l), (l’), (2) and (3) are equivalent. Now we 
the equivalence of (2) (4) (4’), (5) and (5’). 

) is obvious. (4)0(4’) comes at once from the fact that A is CM if 
y if ExtL(k, A) = 0 for all i < n (the implication (2)0(3) of 

(4’) -(5). A system of parameters x1,. . . , x, in a CM ring A is an 
ce, so that setting B = A/x;xi A, we have 

Hom,(k, B) N Ext;(k, A) N k. 

w B is an Artinian ring, and any minimal non-zero ideal of B is 
ic to k, so that the above formula says that B has just one such 

ideal, say I,. If I, and I, are any non-zero ideals of B then both of 
st contain IO, so that I, n I, # (0). Lifting this up to A, this means 
. . . , x,) is an irreducible ideal. 

(5’) a(2). If A is CM we already have Exti(k, A) = 0 for i < IZ. If q is 
cible parameter ideal and we set B = A/q then, in the same way as 

Ext;+‘(k, A) N Ext;(k, B), 



144 Regular sequences 

so that it is enough to prove that in an Artinian ring B, (0) is irreducible 
implies that 

Hom,(k,B) N k and Extg(k,B) = 0 for i > 0. 

The statement for Horn is easy: first of all, B is Artinian, so that 
Hom,(k, B) # 0; for non-zero f, geHom,(k, B) we must have f(k) = g(k), 
since otherwise f(k) n g(k) = (0), which contradicts the irreducibility of (0). 
Hence f(1) = g(a) for some crEk, and f = ag, so that Hom,(k, B) = k. 

Now consider the Extb(k, B). Choose a chain of ideals (0) = N, c 
N, c”’ c N, = B such that N,/N,- 1 Y k, and consider the exact sequences 

O-+N, -N,-k+O 
O+N,-N,-k-0 

O+N,-, -B-k-to. 

From the long exact sequence 

0 -+ Hom,(k, B) - HomB(Ni+ r, B) - Hom,(Ni, B) 2 
Ext;(k, B) -.‘. 

and an easy induction (using N, ‘v k and Hom,(k, B) _N k), we get that 
1(Hom,(Ni, B)) < i, with equality holding if and only if 6,). . . , dim 1 are all 
zero. However, 

/(Hom,(N,, B)) = /(Hom,(B, B)) = I(B) = r, 

so that we must have 6, = .‘. = a,- 1 = 0. Then from 
O-N,-, -B-k+0 

we get the exact sequence 

0 --f Ext;(k, B) - Ext;(B, B) = 0, 

and therefore Extk(k, B) = 0. Now from Lemma 1, B is an injective B- 
module, so that ExtB(k, B) = 0 for all i > 0. n 

Lemma 5. Let A be a Noetherian ring, S c A a multiplicative set, and I an 
injective A-module; then I, is an injective As-module. 
Proof. Every ideal of A, is the localisation a, of an ideal a of A. From 
O+a -A we get the exact sequence Hom,(A, I) - Hom,(a,I)-+O, 
and, since a is finitely generated 

HomA,&, 1,) - Hom,,(a,, I,) ---f 0 

is exact. This proves that I, is an injective As-module. 

Theorem 18.2. If A is a Gorenstein local ring and PESpecA then A, is alSo 
Gorenstein. 
Proof. If 0-A ---tIO-I1+...-I”+O is an injective rest- 
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lution of A,, so that inj dim A, < a. w 

ijefinition. A Noetherian ring A is Gorenstein if its localisation at every 
maximal ideal is a Gorenstein local ring. (By the previous theorem, it then 
jfOllows that A, is Gorenstein for every PESpec A.) 

heorem 18.3. Let A be a Noetherian local ring and A^ its completion. 
n A is Gorenstein OA is Gorenstein. 

We have dim A = dim 2, and since A^ is faithfully flat over A, 
, A)@,A= Exti(k, A^), so that we only need to use condition (3) 

Closely related to the theory of Gorenstein rings is Maths’ theory 
injective modules over Noetherian rings. We now discuss the main 
ults of Matlis [l]. 
Let A be a Noetherian ring, and E an injective A-module. If E is a 
bmodule of an A-module M then since we can extend the identity map 
3 E to a linear map f:M - E, we have M = E 0 F (with F = Kerf). 

an A-module N is indecomposable if N cannot be written as a 
m of two submodules. We write E,(N) or E(N) for the injective 

of an A-module E (see Appendix B). 

heorem 18.4. Let A be a Noetherian ring and P, QESpec A. 
(i) E(A/P) is indecomposable. 
(ii) Any indecomposable injective A-module is of the form E(A/P) for 

multiplication by x induces an automorphism of E(A/P). 

(iv) p z Q 3 -W/P) + W/Q). 
(v) For any <EE(A/P) there exists a positive integer v (depending on 4) 

(vi) If Q c P then E(A/Q) is an A,-module, and is an injective hull of 
/Qh = Ap/QAp, that is 

E,WQ) = &,(AP/QAP). 
(i) If I, and I, are non-zero ideals of A/P then 0 # I, I, c I, n I,. 

WA/P) is an essential extension of A/P (see Appendix B), so that for 
tW0 non-zero submodules N,, N, of E(A/P) we have Nin(A/P) # 0, so 

N,nN2~(N,nA/P)n(N2nA/P)#0. 

ii) Let N # 0 be an indecomposable injective A-module and choose 
h(N). Then A/P can be embedded into N, and so E(A/P) can also; but 
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an injective submodule is always a direct summand, and since N is 
indecomposable, N = E(A/P). 

(iii) Write cp for multiplication by x in E(A/P); then Ker(cp)n(A/P)= 0, so 
that Ker(cp) = 0, and Im q is isomorphic to E(A/P). Hence Im cp is injective, 
and is therefore a direct summand of E(A/P), so that by (i), Im q = E(A/P). 

(iv) If P $ Q and XEP - Q then multiplication by x is injective in 
E(A/Q) but not in E(A/P). 

(v) By the proof of (ii) together with (iv), Ass (E(A/P)) = (P}, so that the 
submodule At N A/ann(<) also has Ass(A5) = {P}. Hence arm(t) is a 
P-primary ideal. 

(vi) By (iii), we can view E(A/Q) as an A,-module; hence it contains 
(A/Q)p. Since E(A/Q) is an essential extension of A/Q and A/Q c (A/Q)p c 
E(A/Q), it is also an essential extension of(A/Q),. For A,-modules M and N, 
any A-linear map M -+ N is also A,-linear, and of course conversely, 
SO that for an A,-module, being injective as an A,-module is the same as 
being injective as an A-module. Thus E(A/Q) is an injective hull of the 
A,-module (A/Q),,. n 

Example 1. If A is an integral domain and K its field of fractions, K = E(A) 
(prove this !). 

Example 2. If A is a DVR with uniformising element x and field of fractions 
K, and k = A/xA, then E(k) = K/A. Indeed, if I is a non-zero ideal of A 
we can write I = xrA, and if f:l -+ K/A is a given map, let f(x’) = CI 
mod A for some CIE K; then f can be extended to a map f: A --+ K/A 
by setting f(1) = (oc/xl)mod A. Therefore K/A is injective. We have 
(x- ‘A)/A N A/xA = k, and it is easy to see that K/A is an essential extension 
of x-‘A/A. Thus K/A can be thought of as E(k). 

Theorem 18.5. We consider modules over a Noetherian ring A. 
(i) A direct sum of any number of injective modules is injective. 
(ii) Every injective module is a direct sum of indecomposable injective 

modules. 
(iii) The direct sum decomposition in (ii) is unique, in the sense that if 

M = @ Mi (with indecomposable Mi) 

then for any PESpec A, the sum M(P) of all the Mi isomorphic to E(A/P) 
depends only on M and P, and not on the decomposition M = @ Mi. 
Moreover, the number of Mi isomorphic to E(A/P) is equal to 

dim,cp,Hom,,(rc(P), MJ, (where K(P) = AdPA,), 
so that this also is independent of the decomposition. 
Proof. (i) Let M1 for 1~11 be injective modules. It is enough to prove that 
for an ideal I of A, any linear map q : I -+ @MI can be extended to a linear 
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e I is finitely generated, q(Z) is contained 
roftheM,.Ifcp(l)cM,@...@M,and 
t of p(a) in Mi, then Cpi:I -+ Mi extends 

-@J% by t41)=11/,(1)+.~.+$,(1) 

b. (ii) Say that a family .F = {E,} of indecomposable injective submodules 
& of M is fvee if the sum in M of the E, is direct, that is if, for any finite 
$ number EA,,. . , E,,, of them, 
$; ./ I E,, n(E,, + ... + E,“) = 0. 

&tit %JI be the set of all free families 8, ordered by inclusion. Then by 
2: Zorn’s lemma !JJI has a maximal element, say FO. Write N = CEEFO E; then 
g by (i), N is injective, hence a direct summand of M, and M = N 0 N’. If 
g, NV f 0 then since it is a direct summand of M it must be injective, and 
wa. for PEAss(N’), the proof of Theorem 4, (ii), shows that N’ contains a 

direct summand E’ isomorphic to E(A/P). Thus F0 u {E’} is a free family, 
contradicting the maximality of FO. Hence N’ = 0 and M = N. 

(iii) If we can show that M(P) has the property that every submodule 
& of M isomorphic to E(A/P) is contained in M(P), then M(P) is the 
submodule of M generated by all such E, and therefore is determined by 

‘M and P only. To prove this, take any <EE; we can write t = 4, + ... + 
4, with ~iEM(Pi), where PI,. . . , P, are distinct prime ideals and P = P,. 
Setting~,-5=vl,and5i=rifor2~idrwehaver],+...+vl,=O,with 
)1IcM(P,) + E and qieM(Pi) for i >, 2. We need only prove that in this case 
each Y/i = 0. Suppose that P, is minimal among P,, . . , P,; then for any m 
we have (PI . . .Prml)“‘@Pl, so that taking ag(P,...P,-,)“-P, and m 
large enough, we get ar], = ... = ar],- 1 = 0. Then also q, = 0, but 
multiplication by a is an automorphism of M(P,), so that ql = 0. By 

L ‘mdnction on r we get vi = 0 for all i. 
f We now prove that if M(P) = M, @... @ M, with Mi N E(A/P) then 
$ 
I; 

s = dim,(,,) Hom,,(rc(P), Mp). 

$ (we are writing this as ifs were finite, but, as one can see from the proof 
k; below, the same works for any cardinal number.) By Theorem 4, (vi), both 

aides of M(P) = M, @...@ M, are &modules, and Mi = E(rc(P)). 
Moreover, by Theorem 4, (v), E(LI/Q)~ = 0 if Q $ P, so that 

MP = @ M(Q)p = @ M(Q). 
QcP QcP 

Hence we can replace A by A p, and assume that A is a local ring with P 
its maximal ideal; set k = K(P). If Q # P then any XEP - Q gives an 
automorphism of M(Q), but x.k = 0, so that Hom,(k, M(Q)) = 0. Hence 
Hom,(k, M) = Hom,(k, M(P)), so that there is no loss of generality in 
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assuming that M = M(P). For any A-module N, we can identify, 
Hom,(k,N) with the submodule {<ENJP~ =O}, but since E(k) is an 
essential extension of k we must have dim, Hom,(k, E(k)) = 1, so that if 
M = M, @...@ M, with Mi N E(k) then s = dim, Hom,(k, M). H 

Theorem 18.6. Let (A, m, k) be a Noetherian local ring, and E = E,(k) the 
injective hull of k. For each A-module M set M’ = Hom,(M, E). 

(i) If M is an A-module and 0 # XEM, then there exists cp~M’ such that 
q(x) # 0. In other words the canonical map 8: M --+ M” defined by Q)(,) 
= q(x) for XEM and cp~M’ is injective. 

(ii) If M is an A-module of finite length, then l(M) = 1(M’) and the 
canonical map M -M” is an isomorphism. 

(iii) Let A^ be the completion of A; then E is also an A-module, and 
is an injective hull of k as A-module. 

(iv) Hom,(E, E) = Hom,(E, E) = A^. In other words, each endomer- 
phism of the A-module E is multiplication by a unique element of 2. 

(v) E is Artinian as an A-module and also as an A-module. Assume 
now that A is complete, and write N(resp. ~2) for the category of 
Noetherian (respectively Artinian) A-modules. Then if ME&” we have 
M’E~ and MN M”; if ME& we have M’EJ+‘” and MN M”. 
Proof. (i) Let f:Ax -E be the composite of the canonical maps 
Ax N A/ann(x), A/ann(x) - A/m = k and k - E. Then f(x) # 0. Since Eis 
injective we can extend f to cp:M -E. 

(ii) If l(M) = n < cc then M has a submodule M, of length n - 1, and 
O-+M,-M-k-,Oisexact,sothatO-+k’--+M’--rM~+Oisexact. 
However 

k’ = Horn (k, E) = Horn (k, k) ru k, 

so that by induction on II we get l(M) = n = [(M’). The canonical map 
M -M” is injective by (i), and I(M) = QM’) = l(M”), hence it must be an 
isomorphism. 

(iii) Each element of E is annihilated by some power of m, so that the 
canonical map E -E @AA is surjective. However, since A^ is faithfully 
flat over A it is also injective, so that E N E aAA, and we can view E as 
an A-module. Let F be the injective hull of E as an A-module. Then F 
is also the A-injective hull of k, so that every element of F is annihilated 
by some power of rn2. As an A-module F splits into a direct sum Of E 
and an A-module C. If xgC, and if mrAx = 0, then for each a*Ea we 
can find aeA such that a* -a mod m’A and hence a*x =ax EC. 

Therefore C is an A-module. But F is indecomposable as an A-module’ 
Hence C = 0 and E = F. 

(iv) For v > 0 set E, = (xEE)m”x = O}. Then we have (A/m’yS 
Horn, (A/m”, E) rr E,, and Horn, (E,, E,) = Hom,(E,, E) = E:. = (Ah’)” = 
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A/m. Now El = E, = . . . and E = UYEY by Theorem 4, (v), hence E = 
limE,. Therefore 
GA/m’ = A^. 

Hom,(E, E) = Horn,@ E,, E) = @ HomA(E,, E) = 

7”) Ifan A-module M is Artinian and XEM, then Ax in A/ann(x) is also 
Artinian and consequently my c arm(x) for some v. Therefore M can be 
viewed as an A-module, and its A-submodules are precisely its A- 
submodules. It is also clear that if an a-module M is Artinian then we have 
the same conclusion. Therefore to prove (v) we may assume that A is 
complete. 

JfM is a submodule of E set ML = (UEA jaM = O}. If Z is an ideal of A set 
Zl= {x~EjZx =O}. Then clearly ML’ 3 M. If XEE - M there exist 
&E/M’) satisfying cp(xmod M) # 0 by (i), and if we identify E’ = 
Hom,(E, E) with A then (E/M)’ is identified with Ml. Thus cp(x mod M) = 
ax for some aeM’, and .x$M”. Therefore Ml’ = M. Similarly, if 
acgA -I then there exists cpe(A/I)’ such that cp(umodZ) #O, and 
(A/Z)’ is identified with the submodule I1 of E = A’. Thus, setting x = 
cp(1 modZ) we have xel’ and ux = cp(u mod I) # 0. This proves a$Z”, so 
that I = Z1l. Thus M w ML is an order-reversing bijection from the set of 
submodules of E onto the set of ideals of A. Since A is Noetherian, it follows 
that E is Artinian. By Theorem 3.1 finite direct sums E” of E are also 
Artinian for all n > 0. 

If MEN then there is a surjection A” + M for some n, and so there 
is an injection M’ -(A”)’ = E”. Hence M’ is Artinian. On the other 
hand, if ME& there is an injection M -En for some n. This can be 
seen as follows: consider all linear maps M + E”, where n is not fixed, 
and take one cp: M -En whose kernel is minimal among the kernels of 
those maps. Then, using (i) we can easily see that Ker(cp) = 0. Now, from 
0 + M - E” we have (E”)’ = A” - M’ + 0 exact, hence M’eJlr. Now the 
assertion M z M” for M EJY or d can easily be checked using (iv) if M = A 
or E, and the general case follows from this and from (i). n 

Zhnma 6. Let A be a Noetherian ring, S c A a multiplicative set, M an A- 
module and N c M a submodule. Assume that M is an essential extension 
of N; then MS is an essential extension of N,. 
proof. For (EM we write ts = l/l EMU; then any element of MS can be 
written u*cs (with u a unit of A, and REM), so that it is enough to show that 
for any non-zero & we have N,n A,.<, # 0. Suppose that ann (tot) is a 
maximal element of the set of ideals {ann( tES}; then ifwe set V= to 4, we 
have ts = to 1 qs, and hence v ~0. Now let b = {~EAI~?EN}; by 
assumption, 

bv=AqnN#O. 

Suppose that b = (b ‘,...,b,); if b,q,=... = b,qs =0 then there is a tcS 
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such that tb,r = 0 for all i. Then tbv] = 0, but by choice of q we have 
ann (q) = ann (tq), so that bq = 0, which is a contradiction. Thus biqs # 0 
for some i, and 

biYls~As~V,nNs = As~s~Ns, 
as required. n 

By Lemmas 5 and 6, if M is an injective hull of N then the As-module 
M, is an injective hull of N,. Hence if O+ M - I0 -+I’ - ... is 
a minimal injective resolution of an A-module M, then 0 + M, --+ I,0 -+ 

G -... is a minimal injective resolution of the As-module M,. The 
I’ are determined uniquely up to isomorphism by M. We can therefore 
define pi(P, M) to be the number of summands isomorphic to E(A/P) 
appearing in a decomposition of I’ as a direct sum of indecomposable 
modules. We can write symbolically 

I’= @ pi(P, M)E(A/P). 
Pdpec A 

From what we have just proved, for a multiplicative set S c A, 

Ili(P, M) = ~i(PA,, MJ if P n S = a. 

Theorem 18.7. Let A be a Noetherian ring, M an A-module, and 
PESpec A. Then 

Pi(P, W = dimKcp, Ext&(lc(P), MP) = dim,&Ext>(A/P, M))p. 

In particular, if M is a finite A-module then ~i(P, M) < co. 
Proof. Replacing A and M by A, and M, we can assume that (A, P, k) is 

a local ring. Let O+M -+ZO-f+ll--%... be a minimal injective 
resolution of M, so that Exti(k, M) is obtained as the homology of the 
complex 

. ..-+Hom.(k,I’-‘)-Hom,(k,Z’)-Hom,(k,I’+’) 
+... 

We can identify Hom,(k,I’) with the submodule T’= {x~Z’/Px =0} c 
I’. By construction of the minimal injective resolution, I’ is an essential 
extension of d(l’- ‘), so that for XGT’ the submodule AX 1: k intersects 
d(l’-‘), and xEd(Z’-‘). Therefore, T’ c d(I’-‘), and dT’-’ = dT’= 0, so 
that Ext$(k, A) = T’. Also, 

dim, T’ = dim, Hom,(k, I’), 

and by Theorem 4, (iii), this is equal to pi(P, M). w 

Theorem 18.8. A necessary and sufficient condition for a ring A to be 
Gorenstein is that a minimal injective resolution O+ A -+ 1’ -+ 
I’ --+ .. . of A satisfies 

I’ = @ E(A/P), 
htP=i 
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or, in other words, /li(P, A) = Si,htP (the Kronecker 6) for every PESpec A. 

Proof. By Theorem 7 and condition (2) of Theorem 1 we have 

A, is Gorenstein e pi(P, A) = 8i,htP. 

Theorem 18.9. Let (A,m) be a Noetherian local ring, and M a finite 
A-module. Then 

inj dim M < r3 +inj dim M = depth A. 

proof. Suppose that inj dim M = r < cc. If P is a prime ideal distinct from 
m, choose xEm - P. Then 

ii 0 + A/P 2 A/P, 

together with the right-exactness of Ext>( - , M) gives an exact sequence 

Ext’,(A/P,M)AExt:,(A/P,M)+O, 

).. (i. so that by NAK Ext>(A/P, M) = 0. Putting this together with Lemma 1, 
:.- : we get Ext>(k,M)#O. Set t=depthA, and let xr,,..,x,Em be a 
$ 
$ 

maximal A-sequence; then setting A/(x,, . ,x,) = N we have mEAss (N). 
Hence there exists an exact sequence O-+ k - N, and we must have 

!- Ext>(N, M) # 0. The Koszul complex K(x r, . . . ,x,) is a projective resolution ‘1 
2: ~:- of N = A/(x,, . . . , x,), so computing Ext by means of it we see that 

;.,,. Ext;(N, M) N M/(x,, . . ,x,)M, 

$, and by NAK this is non-zero. Thus proj dim N = t, and from Ext\(N, M) # 
“’ 
8 

0 we get t d r, whereas from Ext>(N, M) # 0 we get t 2 r. Hence t = r. H 
Remark (the Bass conjecture and the intersection theorem). Let (A, m, k) be 

i, 
; a Noetherian local ring of dimension d. H. Bass [l] conjectured the 
1. following: 

[ (B) if there exists a finite A-module M (#Q of finite injective 

8:‘ dimension, then A is a CM ring. 

F According to Theorem 9 this is equivalent to asking that inj dim M = d. 
i The converse of the Bass conjecture is true. Indeed, if A is CM, taking a 
$’ d maximal A-sequence x1,. . , x,, and setting B = A/(x,, . . . , xd) and E = E(k) 
!+ 
in 

we have l,(B) < co. By Theorem 6, M = Horn,@, E) is also of finite length, 
hence is finitely generated. We prove inj dim,M < d; the Koszul complex 

? O--bA-+Ad 
! 

-+~~~-+Ad--tA+BL+O with respect to x1,. . . , x, provides an A- 
free resolution of B. Now applying the exact functor Hom,(-,E) to this 
gives the exact sequence O--+M-+E+Ed-+..~+Ed--+E+O. This proves 
injdim,M d d. 

i. 
L (B) is a special case of the following theorem. 

1 (C) If I’: 0-10 -+‘..-+Zd+O is a complex of injective modules such 
c that #(I’) is finitely generated for all i and I’ is not exact, then 

Id # 0. 
c 4 
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Using the theory of dualizing complexes (see [Rob]) one can prove that (C) 
is equivalent to the following 

Intersection Theorem. If F.: O+F,-+~~~-+F,-+O is a complex of finitely 
generated free modules such that H,(F) has finite length for all i and F. is 

not exact, then F, # 0. 
(B) was proved by Peskine and Szpiro [l] in some important cases, and 

by Hochster [H] in the equal characteristic case (i.e. when A contains a 
field) as a corollary of his existence theorem for the ‘big CM module’, i.e. a 
(not necessarily finite) A-module with depth = dim A, see [H] p.10 and 
p.70. The intersection theorem was conjectured by Peskine-Szpiro [3] and 
by P. Roberts independently. They pointed out that it was also a 
consequence of Hochster’s theorem. Finally, P. Roberts [3] settled the 
remaining unequal characteristic case of the intersection theorem by using 
the advanced technique of algebraic geometry developed by W. Fulton 
([Full). Therefore (B), which was known as Bass’s conjecture for 24 years, 
is now a theorem. Some other conjectures listed in [H] are still open. 

Exercises to 6 18. Prove the following propositions. 

18.1. Let (A, m) be a Noetherian local ring, x 1,. , x, an A-sequence, and set 
B = A/(X,, . . , x,); then A is GorensteinoB is Gorenstein. 

18.2. Use the result of Ex. 18.1 to give another proof of Theorem 3. 

18.3. If A is Gorenstein then so is the polynomial ring A[X]. 

18.4. IS the ring R of Ex. 17.2 Gorenstein? 

18.5. Let (A, m, k) be a local ring; then E = E,(k) is a faithful A-module (that is 
O#UEA~UE#O). 

18.6. Let (A, m, k) be a complete Noetherian local ring and M an A-module. IfM 
is a faithful A-module and is an essential extension of k then M 2 E,(k). 

18.7. Let k be a field, S= k[X, ,..., X,] and P=(X, ,..., X,); set A =Spr 
A^=k[X,,..., X,1 and E = k[X;‘,..., X;‘]. We make E into an 
A-module by the following multiplication: if X” = Xb;‘. .X2 and X-O 
= X;fll.. . Xisn, the product X”X -B is defined to be X”-@ if & ,< Bi for all i 

and 0 otherwise. Then E = E,(S/P) = EA(k). (Use the preceding question; 
see also Northcott [S] for further results. The elements of this A-module 
E are called inverse polynomials; they were defined and used by Macaulay 
[Mac] as early as 1916.) 

18.8. Let k be a field and t an indeterminate. Consider the subring A= 
k[t3, t5, t’] of k[t] and show that A is a one-dimensional CM ring which 

is not Gorenstein. How about k[t3, t4, t53 and k[t4, t’, t6]? 
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‘Regular local rings have already been mentioned several times, and in 
;this chapter we are going to carry out a study of them using homological 
‘algebra. Serre’s Theorem 19.2, characterising regular local rings as Noetherian 
Local rings of finite global dimension, is the really essential result, and 
‘from this one can deduce at once, for example, that a localisation of a 
regular local ring is again regular (Theorem 19.3); this is a result which 

; ideal theory on its own was only able to prove with difficulty in special 
cases. $20 on UFDs is centred around the theorem that a regular local 

\ ring is a UFD, another important achievement of homological methods; 
we only cover the basic topics. This section was written referring to the early 
parts of Professor M. Narita’s lectures at Tokyo Metropolitan University. 
In $21 we give a simple discussion of the most elementary results on 

:ction rings. This is an area where the homology theory of 
an essential role, but we are only able to mention this in 

19 Regular rings 

Minimal free resolutions. Let (A,m, k) be a local ring, M and N finite 
h-modules. An A-linear map cp : M --t N induces a k-linear map 
M 0 k -N 0 k, which we denote Cp; then one sees easily that 

(p is an isomorphism o cp is surjective and Ker cp = mM. 

In particular for free modules M and N, if (p is an isomorphism then rank 
M = rank N, and writing cp as a matrix we have det(p$m, so that 

(p is an isomorphism o cp is an isomorphism. 

Let M be a finite A-module. An exact sequence 

(*) 
d.- 

. . . -Lid’.i-l ti... -+Ll %&,&j&O, 

(or the complex L.) is called a minimal (.free) resolution of M if it satisfies the 
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three conditions (1) each Li is a finite free A-modules, (2) di = 0, or in other 
words diLi c mLi- i for all i, and (3) E: L, 0 k -M 0 k is an isomorph- 
ism. Breaking up (*) into short exact sequences 0 + K 1 - L, - M --f 0, 
O-+K,-L,-K,+O,..., we have L,@k%M@k, L,@kZ 
K,@k,.... Any two minimal resolutions of M are isomorphic as com- 
plexes (prove this!). 

Example. Let x1,. ..,x,Em be an A-sequence, and let K. = R-(X, ,..., x,) 
be the Koszul complex 

O-K,--+K,-, -...--+Ko-A/(xl,...,xn)+O; 

then K. is a minimal resolution of A/(x,, . . . , x,,) over A. 
Let (A,m, k) be a Noetherian local ring; then a finite A-module M 

always has a minimal resolution. Construction: let {oi,. . . ,wP} be a 
minimal basis of M, let L, = Ae, + ... + Ae, be a free module, and define 
e:LO -M by s(ei) = oi; taking K, to be the kernel of E we get 
O+K,--+L,-+M+O with L,@k-M@k. Now K, is again a 
finite A-module, so that we need only proceed as before. 

Lemma 1. Let (A, m, k) be a local ring, and M a finite A-module. Suppose 
that L. is a minimal resolution of M; then 

(i) dim, Tort(M, k) = rank Li for all i, 
(ii) proj dim M = sup {i 1 Tor”(M, k) # 0} f proj dim, k, 
(iii) if M # 0 and proj dim M = r < co then for any finite A-module N # 0 

we have Ext>(M, N) # 0. 
Proof. (i) We have Tort(M, k) = Hi(L.@ k), but from the definition of 
minimal resolution, di = 0, and hence H,(L. 0 k) = L, @ k, and the dimen- 
sion of this as a k-vector space is equal to rankAL,. 

(ii) follows from (i). 
(iii) Since L,, 1 = 0 and L, # 0, Ext*,(M, N) is the cokernel of d,*: 

Hom(L,, N) - Hom(L,- i, N), but since Li is free, Hom(L,, N) is just 
a direct sum of a number of copies of N; we can write d,: L, -L,- 1 as a 
matrix with entries in m, and then d,* is given by the same matrix, so that 
Im(d)) c m Hom(L,, N), and by NAK Ext’,(M, N) # 0. n 

Remark. One sees from the above lemma that Tor,(M, k) = 0 implies that 
Li = 0, and therefore proj dim M < i, so that Torj(M,k) = 0 for j > i. It is 
conjectured that this holds in more generality, or more precisely: 
Rigidity conjecture. Let R be a Noetherian ring, M and N finite R-modules; 
suppose that projdim M < co. Then Tor”(M, N) = 0 implies that 
Tory(M, N) = 0 for all j > i. 

This has been proved by Lichtenbaum [l] if R is a regular ring, but 
is unsolved in general. 
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@ B? . The following theorem is not an application of Lemma 1, but is proved 
‘* by a similar technique. 

Theorem 19.1 (Auslander and Buchsbaum). Let A be a Noetherian local 
ring and M # 0 a finite A-module. Suppose that proj dim M < co; then 

proj dimM + depth M = depth A. 

.eoof. Set proj dim M = h; we work by induction on h. If h = 0 then M 
:is a free A-module, so that the assertion is trivial. If h = 1, let 

(P) O-rA”‘~A”~M+O 

be a minimal resolution of M. We can write cp as an m x n matrix with 
entries in m. From (t) we obtain the long exact sequence 

. ..-+Ext.(k,A”)%Ext>(k,A”)-f;Ext;(k,M)-..., 

A”‘) = Exta(k, A)” and Ext>(k, A”) = ExtL(k, A)“, 
same matrix as cp. However, the entries of cp are 

elements of m, and therefore annihilate Exti(k, A), so that (p* = 0, and we 
‘have an exact sequence 

O+Ext;(k,A)“-Ext;(k, M)--+Ext~,+‘(k,A)“+O 

,‘for every i. Since depth M = inf { iI Ext>(k, M) # 0} we have depth M = 
epth A - 1 and the theorem holds if h = 1. If h > 1 then taking any exact 

O-M’-A”-+M+O, 

we have proj dim M’ = h - 1, so that an easy induction completes the 

hnma 2. Let A be a ring and n > 0 a given integer. Then the following 
nditions are equivalent. 
(I) proj dim M 6 n for every A-module M; 
(2) proj dim M < n for every finite A-module M; 

* (3) inj dim N d n for every A-module N; 
: (4) Exti+ ‘(M, N) = 0 for all A-modules M and N. 

I, the A-module A/I is finite, so that Ext;+‘(A/I, 
emma 1, inj dim N < n. 

(4) is trivial, and (4)+(l) is well-known (see p. 280). n 

We define the global dimension of a ring A by 

gl dim A = sup {proj dim M 1 M is an A-module). 

rding to Lemma 2 above, this is also equal to the maximum projective 
SiOn of all finite A-modules. If (A, m, k) is a Noetherian local ring then 

Lemma 1, gl dim A = proj dim,k. 
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We have defined regular local rings (see Q 14) as Noetherian local rings 
for which dim A = emb dim A, and we have seen that they are integral 
domains (Theorem 14.3) and CM rings (Theorem 17.8). A regular local 
ring is Gorenstein (Theorem 18.1, (5’)). A necessary and suffjcient condition 
for a Noetherian local ring (A, m, k) to be regular is that gr,,(A) is a poly- 
nomial ring over k (Theorem 17.10). The following theorem gives another 
important necessary and sufficient condition. 

Theorem 19.2 (Serre). Let A be a Noetherian local ring. Then 

A is regularogldimA =dimAogldimA< co. 

Proof. (I) Suppose that (A,m, k) is an n-dimensional regular local ring. 
Let x i,. . . ,x, be a regular system of parameters; then since this is an 
A-sequence, the Koszul complex K.(x,, . . . , x,) is a minimal free resolution 
ofA/(x,,..., x,)=k,andK,#O,K,+, = 0, so that as we have already seen, 
gl dim A = proj dim k = n. 

(II) Conversely, suppose that gl dim A = r < co and emb dim A = s. We 
prove that A is regular by induction on s; we can assume that s > 0, that 
is m # 0. Then m$Ass(A): for if 0 # aEA is such that ma = 0, consider 
a minimal resolution 

O-+L,-+L,-, -+...-+L,-k+O 

of k (with r > 0); then L, c mL,- i, but then aL, = 0, which contradicts the 
assumption that L, is a free module. Thus we can choose xEm not 
contained in m2 or in any associated prime of A. Then x is A-regular, 
hence also m-regular, so that if we set B = A/xA then according to Lemma2 
of $18, Exta(m, N) = Extg(m/xm,N) for all B-modules N, and hence 
we obtain proj dim,m/xm < r. 

Now we prove that the natural map m/xm --+m/xA splits, so that 
m/xA is isomorphic to a direct summand of m/xm. Since x$m2, we can take 
a minimal basis xi =x, x2,..., x, of m starting with x (here s = emb 
dim A). We set b = (x2,. . . , x,), so that by the minimal basis condition, 
bnxA c xm, and therefore there exists a chain 

m/xA = (b + xA)/xA N b/(b n xA) - m/xm - m/xA 
of natural maps, whose composite is the identity. This proves the above 
claim. Now clearly, 

proj dim,m/xA < proj dim,m/xm < r. 

Taking a minimal B-projective resolution of m/xA and patching it together 
with the exact sequence O+m/xA -+B -+ k +O gives a projective 
resolution of k of length < r + 1, and hence gldim B = proj dim,k < r + 1, 
so that by induction, B is a regular local ring. Since x is not contained 
in any associated prime of A we have dim B = dim A - 1, and therefore 
A is regular. n 
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rem 19.3 (Serre). Let A be a regular local ring and P a prime ideal; 

Since proj dim, A/P d gl dim A < co, as an A-module A/P has a 
ctive resolution L. of finite length. Then L.0, A, is a projective 

on of (A/P)O,A, = A,/PA,., = K(P) as an A,-module, so that K(P) 
ojective resolution of finite length as an A,-module, which means 
has finite global dimension; thus by the previous theorem, A, is 

on. A regular ring is a Noetherian ring such that the localisation 
y prime is a regular local ring. By the previous theorem, it is 

ent for the localisation at every maximal ideal to be regular. 

em 19.4. A regular ring is normal. 
The definition of normal is local, so that it is enough to show that 

lar local ring is normal. We show that the conditions of the corollary 
eorem 11.5 are satisfied. (a) The localisation at a height 1 prime ideal 

DVR by the previous theorem and Theorem 11.2. (b) All the prime 
sors of a non-zero principal ideal have height 1 by Theorem 17.8 (the 

ation regular * CM). I 

em 19.5. If A is regular then so are A[X] and A[XJ. 
For A[X], let P be a maximal ideal of A[X] and set Pn A = m. 

p is a localisation of A,[X], so that replacing A by A,,, we can assume 
is a regular local ring. Then setting A/m = k we have A[X]/m[X] = 
so that there is a manic polynomial f(X) with coefficients in A such 
= (m,f(X)), and such that f reduces to an irreducible polynomial 

[X] modulo m. Then by Theorem 15.1, we clearly have 

dimA[X],=htP=l+htm=l+dimA; 

the other hand m is generated by dim A elements, so that P = (m, f) 
generated by dimA + 1 elements, and therefore AIXlp is regular. 
For A[Xj, set B z A[Xj and let M be a maximal ideal of B; then XEM 

‘:by Theorem 8.2, (i). Therefore Mn A = m is a maximal ideal of A. Now 
,*8lthough we cannot say that B, contains A,[Xj, the two have the same 
ieOmpletion, (B,)^ = (A,r [Xl. A Noetherian local ring is regular if and 
?onfy if its completion is regular (since both the dimension and embedding 
dimension remain the same on taking the completion). Thus if we replace 
~4 by (A,j, the maximal ideal of B = A[Xj is M = (m,X), and ht M = 
htm + 1, so that B is also regular. n 

! Next we discuss the properties of modules which have finite free 
1, resolutions; (the definition is given below). 
;,, 
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Lemma 3 (Schanuel). Let A be a ring and M an A-module. Suppose that 

O-+K-P-M-r0 and O-+K’-P’-M-+0 

are exact sequences with P and P’ projective. Then K@ P’ N K’ OP. 
Proof. From the fact that P and P’ are projective, there exist ;l:P -P’ 
and R’:P’ - P, giving the diagram: 

O+K-+PAM+O 

A’ 1 
il 

II with ~$2 = CI and ~2 = CI’. 

O+K’-P’AM -+O 

We add in harmless summands P’ and P to the two exact rows, and line 
up the middle terms: 

O+K@P’-P@P”a,O!M+O 

O+P@K’-P@P”zM+O. 

Here cp: P CiJ P’ - P @ P’ is defined by 

and satisfies 

and similarly $ is defined by (‘1:’ T) and satisfies (!x,O)$=(O,r’). 

Moreover, by matrix computation we see that cp$ = 1 and I+!I(P = 1, so that cp 
is an isomorphism and $ = 9-l. Therefore cp induces an isomorphism 
K@P’1; P@K’. n 

Lemma 4 (generalised Schanuel lemma). Let A, M be as above, and suppose 
that O+P, -+‘.. -PI-P,-M-+OandO+Q,-~~~-Q1--+ 
Q, -M -+O are exact sequences with Pi and Qi projective for 
O<i<n-1. Then 

Proof. Write K for the kernel of P, - M and K’ for the kernel of 
Q. -M; then, by the previous lemma, K @ Q. N PO@ K’. Now add 
in harmless summands Q,, and P, to 0-r P, -+“’ -PI - 
K -+O and Q-Q, --)‘.’ - Q1 - K’ + 0 respectively, to obtain 
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o-+p, -“’ -I’-P1@Qo-K@Qo+O 

D 
-Q, -P,OQ, -P,OK’-tO. 

(P~OQ~)OQ~OP~O...I:(P~+Q~)~PZOQ~~.... n 

te free resolution (or FFR for short) of an A-module M is 
--+...+Fi --+F,-M-t0 (of finite 
finite free module. If M has an FFR we set 

i rank Fi, and call X(M) the Euler number of M. By Lemma 4, 
ent of the choice of FFR. Moreover, since for any prime 

g ” O-+(F,), --..-(F1)P-(FO)P-MP-*O 

is an FFR of the A,-module MP we have x(M) = x(M,). If M is itself 
free then one sees easily from Lemma 4 that x(M) = rank M. 

Theorem 19.6. Let (A, m) be a local ring, and suppose that for any finite 
subset E c m there exists 0 # YEA such that yE = 0; then the only 
A-modules having an FFR are the free modules. 

@mark. If A is Noetherian then the assumption on m is equivalent to 
mEAss(A), or depth A = 0. In this case the theorem is a special case of 

Proof. Suppose that 0 -+F,-Fnpl -...+F,-M-t0 is an FFR 
of M, and set N = coker(F, --+ F,- i); if we prove that N is free then 
Fe can decrease n by 1, so that we only need consider the case 0-t 
F,--+F,-+M+O. Now let O-tL, --+L,-M-t0 be a minimal 
‘$:ee resolution of M; then since L, and F, are finitely generated, by 
ghanuel’s lemma(or by Theorem 2.6), L, is also finite. Considering bases of 
,& and L,, we can write down a set of generators of L, as a submodule of 
n% using only a finite number of elements of m. Then by assumption, there 

0 #YE A such that’ y L, = 0. Since L, is a free module, we must 
Li = 0, so that M N L,,, and is free. n 

em 19.7. Let A be any ring; if M is an A-module having an FFR then 

Choose a minimal prime ideal P of A; since x(M) = x(MP), we can 
e A by A,, and then A is a local ring with maximal ideal m equal 
(A). Then the assumption of the previous theorem is satisfied: for 

, . . . , x,Em, we can assume by induction on r that there is a z # 0 
h that zxl =...zzxr-l; but x, is nilpotent, so that there is an i 3 0 
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such that Z$ # 0 but zxi+ l = 0, and we can take y = zx:. Therefore by .’ 
the previous theorem M is a free module, and x(M) = rank M 3 0. m ; 

Theorem 19.8 (Auslander and Buchsbaum [2]). Let A be a Noetherian 
ring and M an A-module, and suppose that M has an FFR. Then the 
following three conditions are equivalent: 

(1) am(M) # 0; 
(2) X(M) = 0, 
(3) arm(M) contains an A-regular element. 

Proof. (l)*(2) Suppose that x(M)>O; then for any PEAss(A) we have 
x(Mp) > 0, and hence M, # 0. By Theorem 6, M, is a free A,-module, so 
that setting I = ann (M) we have I, = ann (Mp) = 0. If we set J = arm(I) 
then this is equivalent to J $ P. Since this holds for every PG.&~(A) 
we see that J contains an A-regular element, but then J.1 = 0 implies that 
I =o. 

(2)=>(3) If x(M)=0 then by Theorem 6, M,=O for every PEAss(A). 
This means that arm(M) $ P, so that arm(M) contains an A-regular 
element. 

(3)*(l) is obvious. n 

Theorem 19.9 (Vasconcelos Cl]). Let A be a Noetherian local ring, and 
I a proper ideal of A; assume that proj dim I < a. Then 

I is generated by an A-sequence o I/I2 is a free module over A/I. 
Proof. (3) is already known (Theorem 16.2). Tn fact, Iv/Iv+’ is a free 
A/I-module for v = 1,2,. . . 

(-=) We can assume that I # 0. Since I has finite projective dimension 
over A so has A/I, and since A is local, A/I has an FFR. Now ann (A/I) = 1, 
so that by the previous theorem I is not contained in any associated prime 
of A, and therefore we can choose an element XEI such that x is not 
contained in ml or in any associated prime of A. Then x is A-regular, 
and X = x mod1’ is a member of a basis of I/I2 over A/I; let XT 

yz,..., y,,gI be such that their images form a basis of I/I’. Then if we 
set B = A/xA, we see by the same argument as in (II) of the proof of 
Theorem 2 that proj dim,l/xl < co, and that I/xA is isomorphic to a direct 
summand of I/xl. We now set I* = I/xA, so that projdim,I* < CXJ. Rut 
on the other hand on sees easily that 1*/1*2 is a free module over R/l*, 
and an induction on the number of generators of I completes the Proof. 

Remark. In Lech [l], a set x1,. . . , x, of elements of A is defined to be 
independent if 

~Q,“~=O for ai~Aaai~(xl,..,x,) for all i. 

If we set I = (x1,. . . , x,,) then this condition is equivalent to saying that 

i 
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the images of x1,. . . ,x, in I/I2 form a basis of I/I2 over A/I. Then if A 

and I satisfy the hypotheses of the previous theorem, the theorem tells us 
that I = (y,, . . ,y,) with y,, . . , y, an A-sequence. Setting xi = Caijyj we 
see that the matrix (aij) is invertible when considered in A/I; this means that 
the determinant of (aij) is not in the maximal ideal of A, and so (aij) itself 
is invertible. Thus x 1,. . . ,x, is an A-quasi-regular sequence, hence an 
A-sequence. In particular, we get the following corollary. 

Corollary. Let (A,m) be a regular local ring. Then if x1,. . . ,x,~m are 
independent in the sense of Lech, they form an A-sequence. 

However, if we try to prove this corollary as it stands, the induction 
does not go through. The key to success with Vasconcelos’ theorem is to 
strengthen the statement so that induction can be used effectively. Now 
as Kaplansky has also pointed out, the main part of Theorem 2 (the 
implication gl dim A < co* regular) follows at once from Theorem 9, 
because if m is generated by an A-sequence then emb dim A < depth A d 

dim A. 

Exercises to $19. 

19.1. Let k be a field and R = R, + R, + R, +... a Noetherian graded ring 
with R, = k; set nt = R, + R, + .... Show that if R, is an n-dimensional 
regular local ring then R is a polynomial ring R = k[y,, . , y,] with yi 
homogeneous of positive degree. 

19.2. Let A be a ring and M an A-module. Say that M is stablyfree if there exist 
finite free modules F and F’ such that M @ F = F’. Obviously a stably free 
A-module M is a finite projective A-module, and has an FFR O+ 
F -F’ - A4 40. Prove that, conversely, a finite projective module 
having an FFR is stably free. 

19.3. Prove that if every finite projective module over a Noetherian ring A is 

stably free then every finite A-module of finite projective dimension has an 
FFR. 

19.4. Prove that if every finite module over a Noetherian ring A has an FFR 
then A is regular. 

20 UFDs 
This section treats UFDs, which we have already touched on in 

9 1; note that the Bourbaki terminology for UFD is ‘factorial ring’. First of 
all, we have the following criterion for Noetherian rings. 

Theorem 20.1. A Noetherian integral domain A is a UFD if and only if 
every height 1 prime ideal is principal. 
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Proof of ‘only g’. Suppose that A is a UFD and that P is a height 1 
prime ideal. Take any non-zero aeP, and express a as a product of prime 
elements, a = nq. Then at least one of the ni belongs to P; if 7liEP then 
(xi) c P, but (rq) is a non-zero prime ideal and ht P = 1, hence P = (xi). 
Proof of ‘iLf’. Since A is Noetherian, every element aEA which is neither 
0 nor a unit can be written as a product of finitely many irreducibles. 
Hence it will be enough to prove that an irreducible element a is a prime 
element. Let P be a minimal prime divisor of (a); then by the principal 
ideal theorem (Theorem 13.9, ht P= 1, so that by assumption we can 
write P =(b). Thus a = bc, and since a is irreducible, c is a unit, so that 
(a) = (b) = P, and a is a prime element. H 

Theorem 20.2. Let A be a Noetherian integral domain, r a set of prime 
elements of A, and let S be the multiplicative set generated by f. If A, is 
a UFD then so is A. 
Proof. Let P be a height 1 prime ideal of A. If PnS # 0 then P contains 
an element nil-, and since nA is a non-zero prime ideal we have P = nA. 
If PnS = 0 then PA, is a height 1 prime ideal of A,, so that PA, = aA, 
for some aEP. Among all such a choose one such that aA is maximal; 
then a is not divisible by any nil-. Now if XEP we have S.X =ay for 
some SES and YEA. Let s = or... I x with n,gT; then a$z,A, so that 
y~qA, and an induction on r shows that y~sA, so that xEaA. Hence 
P=aA. n 

Lemma 1. Let A be an integral domain, and a an ideal of A such that 
a@A”2:Anf1; then a is principal. 
Proof. Fix the basis e,, . , e, of A”“, and viewing a @ A” c A @A”, fix 
fO,. . . , f, such that ,fO is a basis of A and fi,. . , f,, a basis of A”. Then 
the isomorphism q:A”+ ’ -a@ A” can be given in the form q(ei) = 

C;=o~iJj Write di for the (i,O)th cofactor of the matrix (aij), and d 

for the determinant, so that, since cp is injective, rl # 0, and 1 Uiodi = d, 
C~ijdi =O if j # 0. H ence if we set eb = C;d,e, we have cp(eb) = dfo. 

Moreover, since the image of cp includes Jr,.. .,fn, there exist e;,...’ 
e;EA ‘+’ such that cp(e>) =fj. Now define a matrix (c,) by e; = x;=ocjkek 

for j = 0,. . . , n (so c,,~ = C&J. Then we have 

/d 0 . . . O\ 

(Cjk)(aij) = (f ’ . . O 

i .i 0 0 1 ’ 

SO that by comparing the determinants of both sides we get det tcjk) = I’ 
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Therefore eb,. . , e; is another basis of A”+l, and afo = cp(Aeb) = dAf,, 
so that a = dA. n 

Let K be the field of fractions of the integral domain A; for a finite 
A-module M, the dimension of M aA K as a vector space over K is called 
the rank of M. A torsion-free finite A-module of rank 1 is isomorphic to 
an ideal of A. Lemma 1 can be formulated as saying that for an integral 
domain A, a stably free rank 1 module is free (see Ex. 19.2). The elementary 
proof given above is taken from a lecture by M. Narita in 1971. 

Theorem 20.3 (Auslander and Buchsbaum [3]). A regular local ring is a 
UFD. 
proof. Let (A,m) be a regular local ring: the proof works by induction 
on dim A. If dim A = 0 then A is a field and therefore (trivially) a UFD. 
If dim A = 1 then A is a DVR, and therefore a UFD. We suppose that 
dim A > 1 and choose xEm - m2; then since xA is a prime ideal, applying 
Theorem 2 to I- = {x}, we need only show that A, is a UFD (where 
A, = A[x- ‘1 is as on p. 22). Let P be a height 1 prime ideal of A, and 
set p = Pn A; we have P = pA,. Since A is a regular local ring, the 
A-module p has an FFR, so that the AX-module P has an FFR. For any 
prime ideal Q of A,, the ring (A,), = A,,, is a regular local ring of 
dimension less than that of A, so by induction is a UFD. Thus P, is free 
as an (A&-module, so that by Theorem 7.12, the AX-module P is projective; 

, hence by Ex. 19.2, P is stably free, and therefore by the previous lemma, 
P is a principal ideal of A,. n 

The above proof is due to Kaplansky. Instead of our Lemma 1, he used 
the following more general proposition, which he had previously proved: 
if A is an integral domain, and Zi,Ji are ideals of A for 1 d i d r such that 
a=, Ii N @= 1 Ji, then I,. . I, N J,. . . J,. This is an interesting property 
of ideals, and we have given a proof in Appendix C. 

Theorem 20.4. Let A be a Noetherian integral domain. Then if any finite 
A-module has an FFR, A is a UFD. 
Proof. By Ex. 19.4, A is a regular ring. Let P be a height 1 prime ideal 
of A. Then A,,, is a regular local ring for any mESpec A, so by the previous 
theorem, the ideal P,,, is principal, and is therefore a free A,,,-module. Hence 
by Theorem 7.12, P is projective. Therefore by Ex. 19.2, P is stably free, 
and so by Lemma 1 is principal. n 

Let A be an integral domain; for any two non-zero elements a, bEA, 
the notion of greatest common divisor (g.c.d.) and least common multiple 
(1.c.m.) are defined as in the ring of integers. That is, d is a g.c.d. of a and 
b if d divides both a and b, and any element x dividing both a and b 
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divides d; and e is an 1.c.m. of a and b if e is divisible by both a and b, 
and any y divisible by a and b is divisible by e; this condition is equivalent 
to (e) = (a) n(b). 

Lemma 2. If an 1.c.m. of a and b exists then so does a g.c.d. 
Proof. If (a)n(b) = (e) then there exists d such that ab = ed. From ee(a) 
we get bQd) and similarly a@d), so that (a, b) c (d). Now if x is a common 
divisor of a and b then a = xt and b = xs, so that xst is a common multiple 
of a, b, and is hence divisible by e. Then from ed = ab = x.xst we get that 
d is divisible by x. Therefore, d is a g.c.d. of a and b. n 

Remark 1. If A is a Noetherian integral domain which is not a UFD then 
A has an irreducible element a which is not prime. If xyE(a) but x$(a), 
y+(a) then the only common divisors of a and x are units, so that 1 is a 
g.c.d. of a and x. However, xye(a)n(x), but xy$(ax), so that (a)n 

(x) # (ax), and there does not exist any 1.c.m. of a and x. Thus the converse 
of Lemma2 does not hold in general. 

Remark 2. If A is a UFD then an intersection of an arbitrary collection 
of principal ideals is again principal (we include (0)). Indeed, if n ill aiA # 0, 

then factorise each a, as a product of primes: 

with ui units, and p, prime elements such that pJ # p,A for x # 8. 
Then r) a,A = dA, where d = ~~~~~~~~~~~~~~~~~~ (We could even allow the a, to 
be elements of the field of fractions of A.) 

Theorem 20.5. An integral domain A is a UFD if and only if the ascending 
chain condition holds for principal ideals, and any two elements of A have 
an 1.c.m. 
ProoJ: The ‘only if’ is already known, and we prove the ‘if’. From the first 
condition it follows that every element which is neither 0 nor a unit can 
be written as a product of a finite number of irreducible elements, so that 
we need only prove that an irreducible element is prime. Let a be an 
irreducible element, and let xyE(a) and x$(a). By assumption we can 
write (a)n(x) = (2); now 1 is a g.c.d. of a and x, so that one sees from the 
proof of Lemma 2 that (z) = (ax), and then xyE(a)n(x) = (ax) implies 
that YE(a). Therefore (a) is prime. n 

Theorem 20.6. Let A be a regular ring and u, UEA. Then uAnuA is a 
projective ideal. 
Proof. A,,, is a UFD for every maximal ideal m, so that (uAnuA)A,, = 
uA,nvA, is a principal ideal, and hence a free module. n 
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k, Theorem 20.7. If A is a UFD then a projective ideal is principal. 
i Proof. By Theorem 11.3, it is equivalent to say that a non-zero ideal a is 
k projective or invertible. Hence if we set K for the field of fractions of A, 
$ then there exist uieK such that uia c A and aiea such that cuiai = 1. 
[,’ We have a c 0 Ui- ‘A, and conversely if xEn &‘A then x = 
b C(XU,)LI~E~, and hence a = n u; ‘A; now since A is a UFD, the intersection 
1 of principal fractional ideals is again principal. n 
b; 

Theorem 20.8. If A is a regular UFD then so is A[X]. 
‘Proof. Set B = A[X]. By Theorem 5, it is enough to prove that uBnvB 
is principal for u, VEB; set a = uBn vB. Then by Theorem 6 and 
Theorem 19.5, a is projective, so that 

a&A = aO,(B/XB) = a/Xa 

is projective as an A-module. Suppose that a = X’b with b $ XB; then 
, a/Xa 1: b/Xb, so that b is isomorphic to a, hence projective, and therefore 
,locally principal. B is a regular ring, so that the prime divisors of b all 
have height 1. Since XB is also a height 1 prime ideal and b $ XB we 
have b:XB = b, hence b n XB = Xb. Therefore since we can view b/Xb 

i as b/Xb = b/bnXB c B/XB = A, by Theorem 7 it is principal, hence 
;.b = yB + Xb for some YEb; then by NAK, b = yB, so that a = X’yB, w 

“Remark. There are examples where A is a UFD but A[X] is not. 
i It is easy to see that a UFD is a Krull ring. For any Krull ring A we 
: can define the divisor class group of A, which should be thought of as a 
?Ineasure of the extent to which A fails to be a UFD. We can give the 
,fdeIinition in simple terms as follows: let 9 be the set of height 1 prime 
ideals of the Krull ring A, and D(A) the free Abelian group on 9. That 

“is, D(A) consists of formal sums 1 ptBnp’p (with n,EZ and all but finitely 
‘many n, = 0), with addition defined by 

(Cn;p)+(Cnb.P)=C(n,+n6)p. 
K be the field of fractions of A, and K* the multiplicative group of 

o elements of K, and for EK* set div(a) = CPE,~uP(u).p, where up 
ormalised additive valuation of K corresponding to p. Then 

= div(a) + div (b), so that div is a homomorphism from K* to D(A). 
write F(A) for the image of K*; this is a subgroup of D(A), so that 
can define C(A) = D(A)/F(A) to be the divisor class group of A. 

US~Y, if A is a UFD then each PEP is principal, and if p = aA then 
element of D(A) we have p = div(a), so that C(A) = 0. Conversely, 
) = 0 then each PEP is a principal ideal, and putting this together 
he corollary of Theorem 12.3, one sees easily that A is a UFD. Hence 

A is a UFD~C(A) = 0. 
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Now let A be any ring, and M a finite projective A-module. For each 
PtsSpecA, the localisation M, is a free module over A,, and we write 
n(P) for its rank. Then n is a function on Spec A, and is constant on every 
connected component (since n(P) = n(Q) if P 2 Q). This function n is called 
the rank of M. If the rank is a constant r over the whole of SpecA then 
we say that M is a projective module of rank r. We write Pit(A) for the 
set of isomorphism classes of finite projective A-modules of rank 1; cl(M) 
denotes the isomorphism class of M. If M and N are finite projective rank 
1 module then so is MOAN; this is clear on taking localisations. Thus 
we can define a sum in Pit(A) by setting 

cl(M)+cl(N)=cl(M@N). 
We set M” = Hom,(M, A), and define cp:M 0 M* -A by 

44x mi 0 fi) = C h(F); 

then cp is an isomorphism (taking localisations and using the corollary to 
Theorem 7.11 reduces to the case M = A, which is clear). Hence cl(M*) = 
-cl(M), and Pit(A) becomes an Abelian group, called the Picard group 
of A. If A is local then Pit(A) = 0. 

If A is an integral domain with field of fractions K, then MC,, = M 0 K, 
so that the rank we have just defined coincides with the earlier definition 
(after Lemma 1). If M is a finite projective rank 1 module, then since M 
is torsion-free we have M c MC,, N K, so that M is isomorphic as an 
A-module to a fractional ideal; for fractional ideals, by Theorem 11.3, 
projective and invertible are equivalent conditions, so that for an integral 
domain A, we can consider Pit(A) as a quotient of the group of invertible 
fractional ideals under multiplication. A fractional ideal I is isomorphic 
to A as an A-module precisely when I is principal, so that 

Suppose in addition that A is a Krull ring. Then we can view Pit(A) 
as a subgroup of C(A). To prove this, for p~;/p and I a fractional ideal. 
set 

v,(Z) = min {v,(x)Ix~l}; 

this is zero for all but finitely many PEP (check this!), so that we can set 

div (I) = 1 v,,(l).p~D(A). 
PEP 

For a principal ideal I = zA we have div(I) = div(cx). One sees easily that 
div(Z1’) = div(1) + div(I’), and that div(A) = 0, so that if I is invertible, 
div (I) = - div (I - ‘). 
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For invertible I we have (I-‘))’ = I: indeed, I c(Z-‘)-I from the 
definition, and I = Z.A 2 Z(Z-‘(I-‘)-‘) 1 (I-‘)-‘. If Z is invertible and 
~v(Z)=Othendiv(Z-‘)=O,sothatZcA,Z-’cA;henceAc(Z-‘)-1=Z, 
and Z = A. It follows that if I, I’ are invertible, div(Z) = div(Z’) implies Z = I’. 
Thus we can view the group of invertible fractional ideals as a subgroup of 
D(A), and Pit(A) as a subgroup of C(A). 

If A is a regular ring then as we have seen, p~9’ is a locally free module, 
and so is invertible. Clearly from the definition, div(p) = p. Hence, in the 

~ case of a regular ring, D(A) is identified with the group of invertible 
1, fractional ideals, and C(A) coincides,with Pit(A). 

The notions of D(A) and Pit(A) originally arise in algebraic geometry. 
,: Let V be an algebraic variety, supposed to be irreducible and normal. We 
1, write 9 for the set of irreducible codimension 1 subvarieties of V, and 
S define the group of divisors D(V) of I/ to be the free Abelian group on 9”; 
; a divisor (or Weil divisor) is an element of D(V). Corresponding to a 

onal function f on I/ and an element WEP, let z+(f) denote the 
er of zero off along W, or minus the order of the pole if f has a pole 
ng W. Write div (f) = ~,,9uw(f). Wfor the divisor of f on I’ (or just 

For WEP, the local ring CO, of W on I/ is a DVR of the function 
of V, and ow is the corresponding valuation. We say that two divisors 

D(V) are linearly equivalent if their difference M - N is the divisor 
ction, and write M - N. The quotient group of D(V) by - , that 

quotient by the subgroup of divisors of functions, is the divisor class 
of I/ (up to linear equivalence), and we write C(V) for this. (In 

ion to linear equivalence one also considers other equivalence 
ations with certain geometric significance (algebraic equivalence, 
merical equivalence,. . . ), and d ivisor class groups, quotients of D(V) by 

rresponding subgroups.) 
ivisor M on I/ is said to be a Cartier divisor if it is the divisor of 

ction in a neighbourhood of every point of I/. From a Cartier divisor 
onstructs a line bundle over V, and two Cartier divisors give rise to 

morphic line bundles if and only if they are linearly equivalent. Cartier 
ors form a subgroup of D(V), and their class group up to linear 
alence is written Pit(V); this can also be considered as the group of 

morphism classes of line bundles over V (with group law defined by 
sor product). If T/ is smooth then (by Theorem 3) there is no distinction 

tween Cartier and Weil divisors, and C(V) = Pit (V). 
e reader familiar with algebraic geometry will know that the divisor 

ss group and Picard group of a Krull ring are an exact translation of 
corresponding notions in algebraic geometry. If I/ is an affine variety, 

th coordinate ring k[ I’] = A then C( I’) = C(A) and Pit (I’) = Pit (A). In 
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this case, to say that A is a UFD expresses the fact that every codimension 
1 subvariety of I/ can be defined as the intersection of I/ with a hypersurface. 
If I/ c P” is a projective algebraic variety, defined by a prime ideal 
Zck[X,,..., X,], and we set A = k[X]/I = k[to,. . . , t,,] (with ti the 
class of Xi) then A is the so-called homogeneous coordinate ring of I/. If 
A is integrally closed we say that V is projectively normal (also 
arithmetically normal). This condition is stronger than saying that V is 
normal (the local ring of any point of I/ is normal). If A is a UFD then 
every codimension 1 subvariety of Vcan be given as the intersection in 
P” of V with a hypersurface. Let m = (Co,. . . ,&,) be the homogeneous 
maximal ideal of A, and write R = A,,, for the localisation. The above 
statement holds if we just assume that R is a UFD; see Ex. 20.6. All the 
information about V is contained in the local ring R. 

Thus C(A), Pit(A) and the UFD condition are notions with important 
geometrical meaning, and methods of algebraic geometry can also be used 
in their study. For example, in this way Grothendieck [G5] was able to 
prove the following theorem conjectured by Samuel: let R be a regular 
local ring, P a prime ideal generated by an R-sequence, and set A = R/P; 
if A, is a UFD for every p~Spec A with ht p < 3 then A is a UFD. 

We do not have the space to discuss C(A) and Pit(A) in detail, and we 
just mention the following two theorems as examples: 

(1) If A is a Krull ring then C(A) 2: C(A[X]). 
This generalises the well-known theorem (see Ex. 20.2) that if A is a UFD 

then so is A[X]. 
(2) If A is a regular ring then C(A) N C(A[XJ). 
This generalises Theorem 8. 
Finally we give an example. Let k be a field of characteristic 0, and set 

A = k[X, Y, Z]/(Zn - X Y) = k[x, y, z] for some n > 1. Then A/(z, x) N 
k[X, Y, 21/(X, Z) N k[ Y], so that p = (x, z) is a height 1 prime ideal of A. 
In D(A) we have np = div(x), and it can be proved that C(A) z Z/d (see 
[S2], p. 58). The relation xy = z” shows that A is not a UFD. 

For those wishing to know more about UFDs, consult [K], [S21 and 

IFI. 

Exercises to $20. Prove the following propositions. 

20.1. (Gauss’ lemma) Let A be a UFD, and f(X)= a0 + a,X + ‘.‘f GX” 
cA[X]; say that f is primitive if the g.c.d. of the coefficients a,,. ,a” 
is 1. Then if f(X) and g(X) are primitive, so is f(X)g(X). 

20.2. If A is a UFD so is A[X] (use the previous question). 

20.3. If A is a UFD and ql,. . , q, are height 1 primary ideals then q, n ... n 9, is a 
principal ideal. 
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” 20.4. Let A be a Zariski ring (see $8) and 2 the completion of A. Then if A is a 
UFD so is A (there are counter-examples to the converse). 

20.5. Let A be an integral domain. We say that A is locally UFD if A,, is a UFD 
for every maximal ideal m. If A is a semilocal integral domain and A is 
locally UFD, then A is a UFD. 

20.6. Let R = en,, R be a graded ring, and suppose that R, is a field. Set n 
m = @,,,ORn. If I is’a homogeneous ideal of R such that IR,is principal 
then there is a homogeneous element f E I such that I = f R. 

21 Complete intersection rings 

Let (A,m, k) be a Noetherian local ring; we choose a minimal 
x, of M, where n = emb dim A is the embedding dimension 

e 914). Set E. = K,,l,,,, for the Koszul complex. The complex E. is 
ned by A up to isomorphism. Indeed, if xi,. . . ,xL is another 

imal basis of m then by Theorem 2.3, there is an invertible n x n 
trix (aij) over A such that xi = xaijxj. It is proved in Appendix C that 

..,” can be thought of as the exterior algebra A (Ae, + ... + Ae,) with 
rential defined by d(ei) = xi. Similarly, 

... + Ae:) with d(ei) = XL. 

w  f(ej) = Caijej defines an isomorphism from the free A-module 
,+...+AeL to Ae,+ ... + Ae,, which extends to an isomorphism f 
the exterior algebra; f commutes with the differential d, since for a 

ator e; of A (Ae; + ..* + Aeh) we have df(ei) = CUijXj = xi = fd(e:). 
efore f:Kt,l...n~Kx,l...n is an isomorphism of complexes. 
ce mH,(E) = 0 by Theorem 16.4, H,(E.) is a vector space over 

cp = dim, H,(E.) for p = 0, 1,2,. . . ; 

n these are invariants of the local ring A. In view of H,(E,) = A/(x) = 
= k, we have Q, = 1. In this section we are concerned with Ed. If A is 

1,...,x,, is an A-sequence, so that E~ =...=&,=O, and 
onversely by Theorem 16.5, E~ = 0 implies that A is regular. 

t us consider the case when A can be expressed as a quotient of a 
ar local ring R; let A = R/a, and write n for the maximal ideal of R. 

n2, we can take XE~ - n2; then R’ = R/xR is again a regular 
ing, and A = R’/a’, so that we can write A as a quotient of a ring 
dimension smaller than R. In this way we see that there exist an 
sion A = R/a of A as a quotient of a regular local ring (R, n) with 
. Then we have m = n/a and m/m2 = n/(a + n2) = n/n’, so that 
= n = emb dim A. Conversely, equality here implies that a c n2. 
(R, n) be a regular local ring and A = R/a with a c n2; choose a 
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regular system of parameters (that is a minimal basis of n) tr,. . ., 5,. 
Then the images xi of ti in A form a minimal basis xi,. ,x, of m. Let 

K~,xl,.,n:O-fLn-L,~l -+...-+L, -L,+O 

be the Koszul complex of R and <. By Theorem 16.5, we know that this 
becomes exact on adding . . + L, - k + 0 to the right-hand end, so that 
K <,I...” is a projective resolution of k as an R-module. Taking the tensor 
product with A = R/a, we get the complex E. = K,,l,,,, of A-modules. 
Thus we have 

H&E.) = Hp(KS,l,..nORA) = Tor,R(k, A) for all p 3 0. 

However, from the exact sequence of R-modules 0 + a -+ R - A + 0 we 
get the long exact sequence 

O=TorT(k,R)-TorT(kl,A)ak&a-k&R 

-k&A-O; 

at the right-hand end we have k @ R N, k @ A = k, so that 

TorT(k, A) ‘v k&a = a/na. 

Quite generally, we write p(M) for the minimum number of generators of 
an R-module M. Then we see that 

p(a) = dim,H, (E.) = e1 (A). 

Theorem 21.1. Let (A,m, k) be a Noetherian local ring, and A its 
completion. 

(i) E&A) = ~~(2) for all p 3 0. 
(ii) el(A) 3 em bdimA-dimA. 
(iii) If R is a regular local ring, a an ideal of R and A N R/a, then 

p(a) = dim R - emb dim A + cl(A). 

Proof. (i) is clear from the fact that a minimal basis of m is a minimal 
basis of mA^, so that applying OaA^ to the complex E, made from A 
gives that made from A. Then since A is A-flat, H,(E.) @ A^ = H,(E. 0 A^), 
and mH,(E.) = 0 gives H,(E.) @ A^ = H,(E.). 

(ii) If A is a quotient of a regular local ring, then as we have seen above, 
there exists a regular ring (R, n) such that A = R/a with a c n2, so that 
el(A) = p(a) > ht a = dim R - dim A = emb dim A - dim A, where the 

equality for ht a comes from Theorem 17.4, (i). Now A itself is not necessarily 
a quotient of a regular local ring, but we will prove later (see 429) that A 
always is, and we admit this in the section. Having said this, the two sides 
of (ii) are unaltered on replacing A by A, and the inequality holds for A. 

(iii) Set n = rad(R). If a c n2 then, as we have seen above, p(a) = &i(A), 
and dim R = embdim A, so that we are done. If a$ n2, take xEa - nZ; 
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we pass to R/xR and a/xR, each of dim R and p(a) decreases by 1, SO 

nduction completes the proof. n 

ition. A Noetherian local ring A is a complete intersection ring 
eviated to c.i. ring) if cl(A) = emb dim A - dim A. 

heorem 21.2. Let A be a Noetherian local ring. 

(ii) Let A be a c.i. ring and R a regular local ring such that A = R/a; 
hen a is generated by an R-sequence. Conversely, if a is an ideal generated 

an R-sequence then R/a is a c.i. ring. 
iii) A necessary and sufficient condition for A to be a c.i. ring is that 
completion A^ should be a quotient of a complete regular local ring 

n ideal generated by an R-sequence. 

By Theorem 1, (iii), p(a) = dim R -embdim A+ cl(A), and by 
rem 17.4, (i), ht a = dim R - dim A, so that A is a c.i. ring is equivalent 

Theorem 17.4, (iii), this is equivalent to a being 

e sufficiency is clear from (i) and (ii). Necessity follows from the 
hat A^ is a quotient of a complete regular local ring (see §29), together 

eorem 21.3. A c.i. ring is Gorenstein. 
oaf. If A is c.i. then so is A, and if A^ is Gorenstein then so is A, so that we 

assume that A is complete. Then we can write A = R/a, where R is 
gular local ring and a is an ideal generated by a regular sequence. Since 

1s Gorenstein, A is also by Ex. 18.1. w  
g chain of implications for Noetherian local 

regular * c.i. + Gorenstein s CM. 

A be a c.i. ring, and p a prime ideal of A. If A is of the form 
xI), where R is regular and .x1,. . . , x, is an R-sequence, then 

can be written A, = R,/(x,, . . . , x,), where R, is regular and 
is an R,-sequence, it follows that A, is again a c.i. ring. The 
f deciding whether A, is still a c.i, ring even if A is not a quotient 

ar local ring remained unsolved for some time, but was answered 
ely by Avramov [l], making use of AndrC’s homology theory 

1. This theory defines homology and cohomology groups 
) and H”(A, B, M)for n 3 0 associated with a ring A, an A-algebra 
module M. The definition is complicated, but in any case these 

B-modules having various nice functorial properties. If A is a 
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Noetherian local ring with residue lield k then 

A is regular-H& k, k) = 0, 

and 

A is c.i.-H,(A, k, k) = 0; 

for n 2 3 the statements H,(A, k, k) = 0 and H,(A, k, k) = 0 are equivalent. 
Thus Andrk homology is particularly relevant to the study of regular and 
c.i. rings. 

Exercises to $21. Prove the following propositions. 

21.1. Let R be a regular ring, I an ideal of R, and let A = R/I; then the subset 
{pESpec A( A, is c.i.} is open is Spec A (use Theorem 19.9). 

21.2. Let A be a Noetherian local ring with emb dim A = dim A + 1; if A is CM 
then it is c.i. 

21.3. Let k be a field, and set A = k([X, Y, Z]/(X’ - Y2, Y2 - Z2, X Y, YZ, ZX); 

then A is Gorenstein but not c.i. 



Flatness revisited 

The main theme of this chapter is flatness over Noetherian rings. In 
we prove a number of theorems known as the ‘local flatness criterion’ 
main result is Theorem 22.3). Together with Theorem 23.1 in the 

Rowing section, this is extremely useful in applications. 
In $23 we consider a flat morphism A + B of Noetherian local rings, 

investigate the remarkable relationships holding between A, B 
the libre ring F = B/m,B. Roughly speaking, good properties of B 

usually inherited by A, and sometimes by F. Conversely, in order for 
to inherit good properties of A one also requires F to be good. 
In 424 we discuss the so-called generic freeness theorem in the 

ved form due to Hochster and Roberts (Theorem 24.1), and 
gate, following the ideas of Nagata, the openness of loci of points at 
various properties hold, arising out of Theorem 24.3, which states 

at the set of points of flatness is open. 

22 The local flatness criterion 

iTheorem 22.1. Let A be a ring, B a Noetherian A-algebra, M a finite B- 
tiodule, and J an ideal of B contained in rad (B); set M, = M/J”+l M for 

b Z 0. If M, is flat over A for every n > 0, then M is also flat over A. 
:ef. According to Theorem 7.7, we need only show that for a finitely 
Werated ideal I of A, the standard map u:Z BAM -M is injective. Set 
F@M = M’; then M’ is also a finite B-module, and hence is separated for 
the J-adic topology. Let xeKer(u); we prove that xEn J”M’ = 0. For 

M’jJ”‘lM’=(IOAM)OeB/J”‘l = IOAM,, and the 
-M, is injective, by the assumption that M, is flat. 

Then we deduce that XEJ”+I M from the commutative diagram 

ML-M,,. w 

Theorem 22.2. Let A be a ring, B a Noetherian A-algebra, and M 

171 
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a finite B-module; suppose that b is an M-regular element of rad (B). 
Then if MIbM is flat over A, so is M. 
Proof. For each i > 0 the sequence 0 -+ M/b’M A M/b’+ 1 M -+ 
M/bM + 0 is exact, so that by Theorem 7.9 and an induction on i, every 
M/b’M is flat over A. Thus we can just apply the previous theorem. n 

Definition. Let A be a ring and I an ideal of A; an A-module M is said 

to be I-adically ideal-separated if a@ M is separated for the Z-a& 
topology for every finitely generated ideal a of A. 

For example, if B is a Noetherian A-algebra and IB c rad(B) then a 
finite B-module M is I-adically ideal-separated as an A-module. 

Let A be a ring, I an ideal of A and M an A-module. Set A, = A/l”+‘, 
M, = M/I ‘+‘M for n>,O and gr(A) = @,,>_O1n/ln+l, gr(M) = 
@naoI”M/I”+‘M. There exist standard maps 

yn:(Z”/I”+l)~AoMo-I”M/I”+lM for n>O, 

and we can put together the Y,, into a morphism of gr(A)-modules 

y : grC4 OAo MO - gr(M). 

Theorem 22.3. In the above notation, suppose that one of the following 
two conditions is satisfied: 

(a) I is a nilpotent ideal; 
or (p) A is a Noetherian ring and M is I-adically ideal-separated. Then 
the following conditions are equivalent. 

(1) M is flat over A; 
(2) Tort(N, M) = 0 for every A,-module N; 
(3) M, is flat over A, and ZO,M = ZM; 
(3’) M, is flat over A, and Torf(A,, M) = 0; 
(4) M, is flat over A,, and Y,, is an isomorphism for every n 3 0; 
(4’) M, is flat over A, and y is an isomorphism; 
(5) M, is flat over A,, for every n > 0. 
In fact, the implications (1) 3 (2)0(3)0(3’) e(4)+(5) hold without any 

assumption on M. 
Proof. First of all, let M be arbitrary. 

(l)*(2) is trivial. 
(2)=>(3) If N is an A,-module then we have 

N&M = (NO,,A,)O,M = NO,,M,, 

and hence for an exact sequence O+ N, --+ N, -+N, -+O of Ao- 
modules we get an exact sequence 

0 = Torf(N,, M) - N, OaoMo --+Nz OA,,MO -+ 

N, O,&-fo -+ 0; 
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*herefore M, is flat over A,. Also, from the exact sequence 0-t I -+ 
A - A0 --* 0 we get an exact sequence 

O=Tor:(A,,M)--tZ@M-+M+M,-+O, 

“so that 10 M = IM. 

an A,-module, we can choose an exact sequence of 
AO-modules 04 R +FO -N +O with F, a free A,-module. From this 

i we get the exact sequence 

Tor:(F,, M) = 0 - Torf(N, M) - R @,,M, - F0 OAoMO, 

is flat over A,, the final arrow is injective, so that 

we have Tor<(I/I’, M) = 0, so that from O+ 1’ + 
O~12~M-I~M-(1/1*)~M-t0 

i is exact. From IBM = IM we get 1* @ M =1*&f and (Z/1’)@ M ‘v 
\ IM/Z2M. Proceeding similarly, from 0 + I”+ ’ + I” - Y/l”+ 1 + 0 we get 

by induction 1”’ ’ @ M = I”+ ‘M and (,“/I’+ ‘) @ M N I”M/I”+‘M. (4’) is 

just a restatement of (4). 
(4)+(5) We fix an n > 0 and prove that M, is flat over A,. For i d n we 

:I have a commutative diagram 

(I’+‘/~“+‘)@M + (I’+‘/I”)OM-(I’/I’+‘)OM~O 

ai I Yij 
~-,~‘+‘JM,~~‘+‘M~~“+‘M-~‘~M,~~‘~~”+’M - l’MII’+‘M+O 

with exact rows. By assumption yi is an isomorphism, and since a, + 1 is an 
downwards induction on i we see that E,,, 

a,,-,, . . . ,CI~ are isomorphisms. In particular, 

~l:(l/I”+‘)@,M = IA,&M,=IM,, 

So that the conditions in (3) are satisfied by A,,, M, and I/I”+l. Therefore 
by (z)-(3), we have To$(N, M,) = 0 for every A,-module N. Now if 
N is an A,-module then IN and N/IN are both A,_,-modules, and 

-+ 0 is exact, so that by induction on i we get finally 
that Tor:“(N, M,) = 0 for all An-modules N. Therefore M, is a flat A,,- 

Next, assuming either (a) or (p) we prove (5)+(l). In case (a) we have 
A = A, and M = M, for large enough IZ, so that this is clear. In case (p), 

rove that the standard map J: a @ M - M 
y hypothesis we have n,,Z”(a 0 M) = 0, so 

that we need only prove that Ker (i) c Y(a @ M) for all n > 0. For a fixed n, 
by the Artin-Rees lemma, 1k n a c Z”a for suffkiently large k > n. We now 
consider the natural map 
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n~M~(njlknn)~M4-,(a/I”a)~M=(a~M)/l”(a~M). 

Since M,- 1 is flat over A, _ I = AIlk, the map 

(a/lkna)O,M=(a/lkna)O,,_,Mk-, -+M,-, 

is injective, so that from the commutative diagram 

a@ M L(a/lkna)@ M 

I I I 
M- M,-, 

we get Ker (j) c Ker(f) c Ker(gf) = Z”(a@ M). This is what we needed to 
prove. H 

This theorem is particularly effective when A is a Noetherian local ring 
and I is the maximal ideal, since if A, is a field, M, is automatically flat 
over A, in (3)-(4’). Also, in this case, requiring M, to be flat over A,, in 
(5) is the same as requiring it to be a free AR-module, by Theorem 7.10. 

We now discuss some applications of the above theorem. 

Theorem 22.4. Let (A, m) and (B, n) be Noetherian local rings, A and fi 
their respective completions, and A -+ B a local homomorphism. 

(i) For M a finite B-module, set I%? = M ORB; then 
M is flat over A-&? is flat over AoQ is a flat over A. 

(ii) Writing M* for the (mB)-adic completion of M we have 

M is flat over AoM* is flat over A-M* is flat over A. 

Proof. (i) The first equivalence comes from the transitivity law for flatness, 
together with the fact that fi is faithfully flat over B; the second, from 
the fact that both sides are equivalent to fi/m”fi being flat over A/m” 
for all n > 0. 

(ii) All three conditions are equivalent to M/m”M being flat over A/m” 
for all n. 

Theorem 22.5. Let (A,m, k) and (B,n, k’) be Noetherian local rings, 
A --+ B a local homomorphism, and U: M -+ N a morphism of finite 
B-modules. Then if N is flat over A, the following two conditions are 
equivalent: 

(1) u is injective and N/u(M) is flat over A; 
(2) U: M @A k - N @A k is injective. 

Proof. (1) * (2) is easy, so we only give the proof of (2) + (1). Suppose that 
EM is such that u(x) = 0; then U(X) = 0, so that X = 0, in other words, 
xEmM. Now assuming xEm”M, we will deduce xEm”+rM. Let 

{a 1,. . . ,a,} be a minimal basis of the A-module m”, and write x = 1 &Yi 
with y+M; then 0 = C aiu(y,). Since N is flat over A, by Theorem 7.6 there 
exist cij~A and zj~N such that 

1 aicij = 0 for all j, and u(y,) = c cijzj for all i. 
i 
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By choice of a,,...,a,, all the cijEm, and hence u(y,)EmN and 
U(yi) =O, SO that yi =O, and y,EmM. Therefore xEnt”+‘M. We have 
proved that x~n,m”M = 0, and hence u is injective. Now from 
O+ M --+ N - N/u(M)+0 we get Torf(k, N/u(M)) = 0, so that by 
Theorem 3, N/u(M) is flat over A. n 

Corollary. Let A, B and A -B be as above, and M a finite B-module; 
set B = BOA k = B/nrB, and for x,, . . . , x,,En write Xi for the images in 
B of xi. Then the following conditions are equivalent: 

(1) x1,. x, is an M-sequence and M, = M/x: xiM is flat over A; 

(4 if 1,. . . ,X, is an M @ k-sequence and M is flat over A. 
Proof. (2)+(l) follows at once from the theorem. For (l)=(2) we must 
provethatM,=M/(x,M+...+x,M)isflatfori=l,...,n;butifM,isflat 
over A then by Theorem 2, so is Mi- 1. w 

Theorem 22.6. Let A be a Noetherian ring, B a Noetherian A-algebra, M 
a finite B-module, and DEB a given element. Suppose that M is flat over 
A and that b is M/(P n A)-regular for every maximal ideal P of B; then b is 
M-regular and M/bM is flat over A. 

Proof. Write K for the kernel of M 2 M; then K = 00 K, = 0 for all P. 

Hence b is M-regular if and only if b is M,-regular for all P. Moreover, 
according to Theorem 7.1, A-flatness is also a local property in both A 
and B, so that we can replace B by B, (for a maximal ideal P of B), A by 
A (Pna) and M by M,, and this case reduces to Theorem 5. n 

Corollary. Let A be a Noetherian ring, B = A[X, , . . . , X,] the polynomial 
ring over A, and let ME B. If the ideal of A generated by the coefficients of 
f contains 1 then f is a non-zero-divisor of B, and B/f B is flat over A. The 
same thing holds for the formal power series ring B = A[X,, . . . , X,1. 
Proof. The polynomial ring is a free A-module, and therefore flat; the formal 
power series ring is flat by Ex. 7.4. Furthermore, for p&$ec A, if B = 

ACX 1 ,..., X,] then B/pB = (A/p)[X, ,..., X,], and in the formal power 
series case we also have B/pB = (A/p)[X,, . . . , X,1 since p is finitely 
generated. In either case B/pB is an integral domain, so that the assertion 
follows directly from the theorem. n 

Remark (Flatness of a graded module). Let G be an Abelian group, 
R = BgEG R, a G-graded ring and M = BgEG M, a graded R-module, not 
necessarily finitely generated. 
(1) The following three conditions are equivalent: 

(a) M is R-flat; 
(b) If 9: ... -+N--+N’---tN”+... is an exact sequence of 

graded R-modules and R-linear maps preserving degrees, then 9’0 M is 
exact: 
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(c) Tory(M, R/H) = 0 for every finitely generated homogeneous ideal 
H of R. The proof is left to the reader as an exercise, or can be found in 
Herrmann and Orbanz [3]. Using this criterion one can adapt the proof 
of Theorem 3 to prove the following graded version. 
(2) Let I be a (not necessarily homogeneous) ideal of R. Suppose that 

(i) for every finitely generated homogeneous ideal H of R, the R-module 
H 0, M is I-adically separated; 

(ii) M, = M/IM is R/I-flat; 
(iii) Torf(M, R/I) = 0. 

j 

Then M is R-flat. 
As an application one can prove the following: 

(3) Let A = &+L and B = @,,a,, B, be graded Noetherian rings. Assume 
that A,, B, are local rings with maximal ideals m, n and set M = m + 
A,+A,+..., N=n+B,+B,+...; let f:A-B be a ring homo- 
morphism of degree 0 such that f(m) c tt. Then the following are 
equivalent: 

(a) B is A-flat; 
(b) B, is A-flat; 
(c) B, is AM-flat. 

Exercises to $22. Prove the following propositions. 

22.1. (The Nagata flatness theorem, see [Nl], p. 65). Let (A, m, k) and (B, n, k’) be 
Noetherian local rings, and suppose that A c B and that mB is an n- 
primary ideal. We say that the transition theorem holds between A and Bif 
I,(A/q).1,(B/mB) = I,(B/qB) for every m-primary ideal q of A. This holds if 
and only if B is flat over A. 

22.2. Let (A, m) be a Noetherian local ring, and k c A a subfield. Ifx,, . ,x,E~ 
is an A-sequence then x1,. . .,x, are algebraically independent over k, and 
A is flat over C = k[x,, . . ,x,1 (Hartshorne [2]). 

22.3. Let (A, m, k) be a Noetherian local ring, B a Noetherian A-algebra, and M 
a finite B-module. Suppose that mB c rad(B). If xErn is both A-regular 
and M-regular, and if M/xM is flat over A/xA then M is flat over A. 

22.4. Let A be a Noetherian ring and B a flat Noetherian A-algebra; if I and J 
are ideals of A and B such that IB c J then the J-adic completion of B is 
flat over the I-adic completion of A. 

23 Flatness and fibres 

Let (A, m) and (B,n) be Noetherian local rings, and 40: A -B a local 
homomorphism. We set F = B @A k(m) = B/mB for the fibre ring of q over 
m. If B is flat over A then according to Theorem 15.1, we have 

(*) dim B = dim A + dim F. 
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the following shows, under certain conditions the converse holds. 

eorem 23.1. Let A, B and F be as above. If A is a regular local ring, B 
ohen-Macaulay, and dim B = dim A + dim F then B is flat over A. 

By induction on dim A. If dim A = 0 then A is a field, and we are 
. If dim A > 0, take XEM - m2 and set A’ = A/x,4 and B’ = B/xB. 

dimB’<dimA’+dimF=dimA- l+dimF=dimB- 1, 
d using a system of parameters of B’ one sees that dim B’ > dim B - 1, 

dimB’=dimA’+dimF=dimB-1. 
e sees easily from this that x is B-regular and B’ is a CM ring. Hence 
induction B’ is flat over A’. Thus Tor<‘(A/m, B’) = 0; moreover, x is 

A-regular and B-regular, so that Tor:‘(A/m, B’) = Torf(A/m, B). 
fore by Theorem 22.3, B is flat over A. H 
give a translation of the above theorem into algebraic geometry for 

e of application. (The language is that of modern algebraic geometry, 
for example [Ha], Ch. 2.) 

llary. Let k be a field, X and Y irreducible algebraic k-schemes, and 
Y + X be a morphism. Set dim X = n, dim Y = m, and suppose that 
llowing conditions hold: (1) X is regular; (2) Y is Cohen-Macaulay; 
takes closed points of Y into closed points of X (this holds for 

ple if f is proper); (4) for every closed point XEX the libre f-‘(x) 
n)-dimensional (or empty). Then f is flat. 
Let YE Y be a closed point, and set x = f(y), A = O,., and 
. We have dim A = n, dim B = m, and since by Theorem 15.1 

B/&B am - n, we get dim B/m,B = m - n from (4). Therefore by 
he above theorem B is flat over A, and this is what was required to 

i prove. n 

’ .‘Theorem 23.2. Let cp: A +B be a homomorphism of Noetherian rings, 
and let E be an A-module and G a B-module. Suppose that G is flat over A; 
then we have the following: 

(i) if p&pec A and G/pG # 0 then 

“cp(AdGhG)) = Ass,(GW) = {P}; 

(ii) Ass,(EO, G) = UpsAssAc,Ass,(G/~G). 

Proof. (i) G/pG = G OA(A/p) is flat over A/p, and A/p is an integral 
domain, so that any non-zero element of A/p is G/PC-regular (see Ex. 7.5.). 
In other words, the elements of A -p are G/pG-regular. This gives 
Ass,(G/pG) = {p}. Also, if PeAss,(G/pG) then there exists tcG/pG such 
that arm,(t) = P, and then Pn A = ann,(t)EAss,(G/pG) = {p}. 

(ii) If p~Ass~(E) then there is an exact sequence of the form 
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0 + A/p -E, and since G is flat the sequence 0 + G/pG --+ EQG 
is also exact; thus 

Ass,(G/pG) c Ass,(E 0 G). 

Conversely, if PE Ass (E @ G) then there is an GEE @ G such that 
arm,(q) = P. We write q = cy xi Oyi with x,eE and yi~G, and set 
E’ = 11 Ax,; then by flatness of G, we can view E’ @ G as a submodule 
E’@G c E@G. Since ~EE’QG we have PeAss,(E’@G). Now E’ is a 
finite A-module, so that we can choose a shortest primary decomposition 
of 0 in E’, say 0 = Q1 n ... n Q,. Since E’ can be embedded in @(E/Q,), 

if we set EI = E’/Qi then 

Ass,(E’ 0 G) c u Ass,(Ef 0 G), 
I 

and therefore PEAss,(E~@ G) for some i. This E: is a finite A-module 
having just one associated prime, say p. We have p~Ass,(E’) c ASS,(E). 
For large enough v we get p”Ei = 0, so that p”(E:@ G) = 0, and thus 
p c Pn A. Moreover, an element of A - p is Ei-regular, and hence also 
E:@ G-regular, so that finally p = Pn A. Now choose a chain of sub- 
modules of Ei, 

E;=E03El=,...~EE,=0 

such that EJEj,l 21 A/pi with pjESpecA. Then also 

E;QGx El@G~...~E,.@G=O, 

with 

(Ej 0 G)/(Ej + 10 G) N (A/Pj) 0 G = G/PjG, 
so that Ass,(E:@G) c Uj~ss,(~/pj~). Therefore PEAssB(G/pjG) for 
some j, but by (i), PnA = pi, so that pj = p and PEAss,(G/~G). n 

Theorem 23.3. Let (A,m, k) and (B,n, k’) be Noetherian local rings, and 
cp:A -B a local homomorphism. Let M be a finite A-module, N a finite 
B-module, and assume that N is flat over A. Then 

depth,(M OA N) = depth, M + depth,(N/mN). 

Proof Let x1,. . , x,Em be a maximal M-sequence, and yr, . . . , ysEn a 
maximal N/mN-sequence. Writing xi for the images of xi in B, let US 
prove that xi,. . . , XL, y,,. . . ,y, is a maximal M @N-sequence. Now 
Xi,..., XL is an M Q N-sequence, and if we set M, = M/zXiM then 

mEAssA(M,), and (M $9 N)/ i xxM @ N) = M, 0 N. 
i=l 

Moreover, by the corollary of Theorem 22.5, y, is N-regular, and 
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N1 = N/ylN is flat over A, so that from the exact sequence O+ 
NLN-+N,+O we get the exact sequence O-+M,@N-M,@N 
-M, @ N, 40. Proceeding in the same way we see that y,, . , y, is an 
M,@ N-sequence. After this we need only prove that the B-module. 

(MON)/‘(C-$(MO N) + CYj(MO N)) = M,O N, 

F has depth 0, that is tt~Ass~(M,@ NJ; however, m~Ass,,(M,) and 
: n~Ass,(N,/mN,), so that this follows at once from the previous theorem. 
i: 
:, Corollary. Let A --+B be a local homomorphism of Noetherian rings as 

in the theorem, and set F = B/mB. Assume that B is flat over A. Then 
a’ (i) depth B = depth A + depth F; 

(ii) B is CMoA and F are both CM. 
I, Proof. (i) is the case M = A, N = B of the theorem. From (i) and (*) we have 
,‘, 

dim B - depth B = (dim A - depth A) + (dim F - depth F) 

n ,, and in view of dim A > depth A and dim F 3 depth F, (ii) is clear. 
,+ 

r, Theorem 23.4. Let A +B be a local homomorphism of Noetherian 
i’ local rings, set m = rad(A) and F = B/mB. We assume that B is flat over A; 
.’ then 

B is GorensteinoA and F are both Gorenstein. 

Proof (K. Watanabe Cl]). By the corollary just proved, we can assume 
j that A, B and F are CM. Set dim A = r and dim F = s, and let {xi,. . .,x,} 

be a system of parameters of A, and {yl,. . . , y,} a subset of B which 
reduces to a system of parameters of F modulo mB. Then as we have seen 
in the proof of Theorem 3, (x1,. . . ,x,, y,,. . ., y,} is a B-sequence, and 

: therefore a system of parameters of B, and B= B/(x, y)B is flat over 
A= A/(x)A. Thus replacing A and B by A and B, we-can reduce to 

: the case-dim A = dim B = 0. Now in general, a zero-dimensional local ring 
_ (R, M) is Gorenstein if and only if Hom,(R/M, R) = (0: M)R is isomorphic 

to R/M. Now set 

rad(B) = n, rad(F) = n/mB = ii and (O:m), = I. 

Then I is of the form I N_ (A/m)’ for some t, and (O:mB), = ZB N (A/m)* 0 
B = F’. Furthermore, we have (O:n), = (O:n),, N ((O:fi),)‘, and hence if we 

: set(O:n), N (F/ii)” = (B/n)” then (O:n), N (B/n)‘“. Therefore 

B is Gorensteino tu = 1 o t = u = 1 o A are F are Gorenstein. n 

Theorem 23.5. If A is Gorenstein then so are A[X] and A[Xl. 
Proof. We write B for either of A[X] or A[X& so that B is flat over A. 
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For any maximal ideal M of B we set MnA = p and AJp,4, = qP). In 
case B = A[X], the local ring B, is a localisation of BaAA, = 4,[~], 
and the libre ring of A, --+BM is a localisation of !c(p)[X], hence 
regular. In case B = A[XJ then XEM, and p a maximal ideal of 4, so 
that K(P) = A/p and 

B @A 4~) = (Ah)[Xl = +‘)BXI/. 

This is a regular local ring, and is the libre ring of A, --+ B,. Thus in 
either case B, is Gorenstein by the previous theorem. H 

Theorem 23.6. Let A be a Gorenstein ring containing a field k; then for 
any finitely generated field extension K of k, the ring A &K is Gorenstein. 

Proof. We need only consider the case that K is generated over k by one 
element x. If x is transcendental over k then A QK is isomorphic to a 
localisation of A &k[X] = A[X], and since A[X] is Gorenstein, so is 
A@ K. If x is algebraic over k then since K CT k[X]/(f(X)) with f(x)Ek[X] 
a manic polynomial, we have 

A 0 K = A[xl/U-(9); 
now A[X] is Gorenstein and f(X) is a non-zero-divisor of A[X], so that 
we see that A @ K is also Gorenstein. w  

Remark. Theorems 5 and 6 also hold on replacing Gorenstein by 
Cohen-Macaulay; the proofs are exactly the same. For complete inter- 
section rings the counterpart of Theorem 4 also holds, so that the analogs 
of Theorems 5 and 6 follow; the proof involves Andre homology 
(Avramov Cl]). As we see in the next theorem, a slightly weaker form of 
the same result holds for regular rings. 

Theorem 23.7. Let (A, m, k) and (B, n, k’) be Noetherian local rings, and 
A -B a local homomorphism; set F = B/mB. We assume that B is flat 
over A. 

(i) If B is regular then so is A. 
(ii) If A and F are regular then so is B. 

Proof. (i) We have Torf(k, k) @A B = Torf(B@ k, B@ k), and the right- 
hand side is zero for i > dim B. Since B is faithfully flat over A, we have 
TorA(k, k) = 0 for i >> 0, so that by 5 19, Lemma 1, (i), proj dim, k < Q and 
since proj dim k = gl dim A, by Theorem 19.2, A is regular. 

(ii) Set r = dim A and s = dim F. Let {x1,. . . , xl} be a regular system 
of parameters of A, and (yr,. . . , y,} a subset of n which maps to a 
regular system of parameters of F. Since A --+ B is injective, We can “lew 

A as a subring A c B. Then {x1,. . . , xv, y1 , . . . , ys) generates nj but 

dim B = r + s, so that B is regular. n 
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Remark. In Theorem 7, even if B is regular, F need not be. For example, 
let k be a field, x an indeterminate over k, and B = k[xJXj, A = 
k[X’](+ c B; then F = B/x*B = k[x]/(x*) has a nilpotent element. By 
Theorem 1, or directly, we see that B is flat over A. (From a geometrical 
point of view, this example corresponds to the projection of the plane 
curve y = x2 onto the y-axis, and, not surprisingly, the fibre over the origin 
is singular.) 

Consider the following conditions (Ri) and (Si) for i = 0, 1, 2,. . . on a 
Noetherian ring A: 

(Ri) A, is regular for all PESpec A with ht P < i; 
(Si) depth A, 3 min (ht P, i) for all PESpec A. 
(S,) always holds. (S,) says that all the associated primes of A are 

minimal, that is A does not have embedded associated primes. (R,) + (S,) 
is the necessary and sufficient condition for A to be reduced. (Si) for all 
i > 0 is just the definition of a CM ring. 

For an integral domain A, (S,) is equivalent to the condition that every 
prime divisor of a non-zero principal ideal has height 1. The characterisa- 
tion of normal integral domain given in the corollary to Theorem 11.5 
can be somewhat generalised as follows. 

Theorem 23.8 (Serre). (R,) + (S,) are necessary and sufficient conditions 
for a Noetherian ring A to be normal. 
Proof. We defined a normal ring (see 99), by the condition that the 
localisation at every prime is an integrally closed domain. The conditions 
(Ri) and (Si) are also conditions on localisations, so that we can assume 
that A is local. 
Necessity. This follows from Theorems 11.2 and 11.5. 
Suficiency. Since A satisfies (R,) and (S,) it is reduced, and the shortest 
primary decomposition of (0) is (0) = P, n ... n P,, where Pi are the minimal 
primes of A. Thus if we set K for the total ring of fractions of A, we have 

K=K, x . . x K,, with Ki the field of fractions of A/P,. 

First of all we show that A is integrally closed in K. Suppose that we 
have a relation in K of the form 

(a/b)“+c,(a/b)“-‘+...+c,=O, 

with a, b, cl ,..., C,EA and b an A-regular element. This is equivalent to 
a relation 

a”+fc,a”-‘b’=O 
1 

in A. Let PESpecA be such that ht P = 1; then by (R,), A, is regular, 
and therefore normal, so that a,gb,A,, where we write ap, b, for the 
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images in A, of a, b. Now b is A-regular, so that by (S,), all the prime 
divisors of the principal ideal bA have height 1; thus if bA = q1 n...nq, 

is a shortest primary decomposition and we set pi for the prime divisor 
of qi, then aebApcnA = qi for all i, and hence agbA, so that a/be-A. 
Therefore A is integrally closed in K; in particular, the idempotents e, of 
K, which satisfy ef - ei = 0, must belong to A, so that from 1 = zei and 
eiej = 0 for i fj we get 

A = Ae, x ... x Ae,. 

Now since A is supposed to be local, we must have Y = 1, so that A is an 
integrally closed domain. n 

Theorem 23.9. Let (A, m) and (B, n) be Noetherian local rings and A -+B 
a local homomorphism. Suppose that B is flat over A, and that i 3 0 is a 
given integer. Then 

(i) if B satisfies (Pi), so does A; 
(ii) if both A and the libre ring B@,k(p) over every prime ideal p of 

A satisfy (Ri), so does B. 
(iii) The above two statements also hold with (Si) in place of (Ri). 

Proof. (i) For pESpec A, since B is faithfully flat over A, there is a prime 
ideal of B lying over p; if we let P be a minimal element among these 
then ht(P/pB) = 0, so that ht P = ht p. Hence ht p < i*B, is regular, so 
that by Theorem 7, A, is regular. Also, by the corollary to Theorem 3, 
depth B, = depth A,, so that one sees easily that (Si) for B implies (Si) for A. 

(ii) Let PESpec B and set P n A = p. If ht P d i then we have ht p < i 
and ht (P/pB) ,< i, hence A, and B&B, are both regular, so by Theorem 
7, (ii), B, is regular. Hence B satisfies (Ri). Moreover, for (Si) we have 

depth B, = depth A, + depth B&B, 
3 min(ht p, i) + min(ht P/pB, i) 
3 min (ht p + ht P/pB, i) = min (ht P, i). w  

Corollary. Under the same assumptions as Theorem 9, we have 
(i) if B is normal (or reduced) then so is A; 
(ii) if both A and the fibre rings of A -+ B are normal (or reduced) then 

so is B. 

Remark. If A and the closed libre ring F = B/mB only are normal, then 
B does not have to be; for instance, there are known examples of normal 
Noetherian rings for which the completion is not normal. 

Finally, we would like to draw the reader’s attention to the following 
obvious, but useful, fact concerning the fibre ring. Let #:A’ -+B’ be a 
ring homomorphism and I an ideal of A’; we set A = A//I, B = B’/IB’, 
and write q:A --+B for the map induced by y?‘. If p’6pecA’ is such that 
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I c p’, we set p = $11; then the tibre of cp’ over p’ coincides with the tibre 
of 40 over p. To see this, 

B’&K(p’) = B’O,.(A’/p’),, = BO,(A/P), = BO,dP). 

It follows from this that if all the fibre rings of cp’ have a good property, 
the same is true of cp. For an example of this, see Ex. 23.2. 

Exercises to tj23. Prove the following propositions. 

23.1. If  A is a Gorenstein local ring then all the fibre rings of A - A are again 
Gorenstein; the same thing holds for Cohen-Macaulay. 

23.2. If  A is a quotient of a CM local ring, and satisfies (S,), then the completion 
A  ̂also satisfies (Si). In particular, if A does not have embedded associated 
primes then neither does A. 

23.3. Give another proof of Theorem 4 along the following lines: 
(1) Using Ext;(Ajtn, A)aaB = Ext;(F, B), show that B Gorenstein 

implies A Gorenstein. (2) Assuming that A is Gorenstein, prove that F is 
Gorenstein if and only if B is. Firstly reduce to the case dim A = 0. Then 
prove that Exts(F, B) = 0 for i > 0 and 21 F for i = 0, and deduce that if 
O+ B --t I’ is an injective resolution of B as a B-module then 0 -+ 
F + Hom,(F, I’) is an injective resolution of F as an F-module, so that, 
writing k for the residue field of B, we have ExtB(k, B) = Extk(k, F) for all i. 

24 Generic freeness and open loci results 

Let A be a Noetherian integral domain, and M a finite A-module. 
Then there exists 0 # agA such that M, is a free &-module. This follows 
from Theorem 4.10, or can be proved as follows: choose a filtration 

M=MoxM1x.~.~MM,=O 

such that M,-,/M, N A/p,, with piESpecA; then if we take a # 0 
contained in every non-zero pi we see that every (M,- ,/Mi), is either zero 

Or isomorphic to A,, so that M, is a free &-module. 
For applications, we require a more general version of this, which does 

not assume M to be finite. We give below a theorem due to Hochster and 
Roberts [l]. First we give the following lemma. 

Lemma. Let B be a Noetherian ring, and C a B-algebra generated over B 
by a single element x; let E be a finite C-module, and F c E a finite 
B-module such that CF = E. Then D = E/F has a filtration 00 

O=Go~G,c...cGicGi+,c...cD with D= U Gi 
i=O 

such that the successive quotients G,+,/G, are isomorphic to a finite 
number of finite B-modules. 
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Proof. Set 

G;=F+xF+.~~+x’FcE, Gi=G;/F, 
and 

F; = {.f~Flx’+‘f‘~G~) c F. 

ThenOcG,c...cG,cG,+,c... is a filtration of D, and Gi+ r/G, 2 F/F,; 
on the other hand, F, c F, c ... c Fi c ... is an increasing chain ef 
B-submodules of F, so must terminate. n 

Theorem 24.2. Let A be a Noetherian integral domain, R a finitely 
generated A-algebra, and S a finitely generated R-algebra; we let E be a 
finite S-module, M c E an R-submodule which is finite over R, and N C R 
an A-submodule which is finite over A, and set D = E/(M + N). Then there 
exists 0 # a6A such that D, is a free A,-module. 
Proof. Write A’ for the image of A in R, and suppose that R = 
A’[u,,..., uJ; similarly, write R’ for the image of R in S, and suppose 
that S = R’[v,, . . , vJ. We work by induction on h + k; if h = k = 0 then 
D is a finite A-module, and we have already dealt with this case, 

Write Rj = A’[u,, . . . , Uj] for O<j<h, and Sj=R’[v,,...,vj] for 
O<j<k. 

Suppose first that k > 0; set M + N = M’ c E. We have a filtration 

S,M’ c S,M’ c . ..c&M’=SM’cE. 

the successive quotients of which are S,M’, S,M’/S,M’, . . , S,- ,M’/ 
S,- zM’, S,M’& r M’, EISM’. We can apply the induction hypothesis 
to each of these except the last two. By virtue of the lemma, S,M’/S,-, M’ 
has a filtration with (up to isomorphism) just a finite number of finite 
S,- ,-modules appearing as quotients, and so we can apply the induction 
hypothesis again. For the final term, write E’ = E/SM’, and let e,, , , , e, 
be a set of generators of E’ over S; write E,-, = S,-,e, + ... + Sk-len. 
Then SE,- r = E’, so that the lemma again gives a filtration of E’ with 
essentially finitely many finite s,- ,-modules appearing as quotients, and 
we can apply the induction hypothesis to this term also. 

If k = 0 then E is a finite R-module, and replacing E by E/M we can 
assume that M = 0. The preceding proof then applies almost verbatim to 
this case, with Rj instead of Si. n 

Theorem 24.2 (topological Nagata criterion). Let A be a Noetherian ring, 
and U c Spec A a subset. Then the following two conditions are necessary 
and sufficient for U c Spec A to be open. 

(1) for P, QESpecA, PEU and Px Q=>QEU; 
(2) if PEU then U contains a non-empty open subset of V(P). 

Proof. Necessity is obvious, and we prove sufficiency. Let VI,. . . 3 v, be 
the irreducible components of the closure of UC = Spec A - U, and let pi 
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be their generic points. If Pie U then by (2) there is a proper closed subset 
w  of Vi such that UC n Vi c W, and so UC c Wu(uj, 1 Vj), which contra- 
dicts the definition of Vi. Thus P,$U, so that by (l), Vi c u’ for all i and 
therefore UC is closed. H 

Theorem 24.3. Let A be a Noetherian ring, B a finitely generated A-algebra, 
and M a finite B-module. Set U = {PESpecBIM, is flat over A); 
then U is open in Spec B. 
Proof. We verify the conditions (1) and (2) of Theorem 2. 

(1) If P XJ Q are prime ideals of B then for an A-module N we have 
NgAMQ = (N OaMP)OBpBQ, so that if M, is flat over A then so is M,. 

(2) Let PEU and p = Pn A; set A = A/p. Now if QEV(P), we have 
gB, c: rad(BJ, and hence by Theorem 22.3, M, is flat over A if and only 
if M&M, is flat over A and Tor:(Mo, A) = 0. Now Tor:(M,, A) = 0, 
;and the left-hand side is equal to Tor$(M, A)@Bp. By computing the 
‘Tar by means of a finite free resolution of A over A, we see that 
,Torf(M, A) is a finite B-module, so that there is a neighbourhood W 
pf P in Spec B such that Torf(M,,A) = 0 for QE W. Moreover, by 
~$%eorem 1, there exists aEA - p such that M,/pM, is a free &-module, 
so that if Q$V(aB), then M&M, is flat over A. Thus the open set 
{Wn V(P)) - V(aB) of V(P) is contained in U. n 

‘pemark. If A is Noetherian and B is a finitely generated A-algebra which 
Ijs flat over A then it is also known that the map Spec B - Spec A is open; 
,,pe [M], p. 48 or [G2], (2.4.6). 

Let A be a ring, and P a property of local rings; we define a subset 
:kA) t SpecA by P(A) = {p&pec AIP holds for Ap}. For example, if 
$’ = regular, complete intersection, Gorenstein or CM we write Reg (A), 
%I (A), Gor (A) or CM (A) for these loci. The question as to whether P(A) 

open is an interesting and important question. For Reg(A) this is a 
assical question, but for the other properties the systematic study was 
tiated by Grothendieck. 
The following proposition is called the (ring-theoretic) Nagata criterion 
r the property P, and we abbreviate this to (NC). 
(NC): Let A be a Noetherian ring. If P(A/p) contains a non-empty open 

ubset of Spec (A/p) for every pe Spec A, then P(A) is open in Spec A. 
- The truth or otherwise of this proposition depends on P; in the 

mainder of this section we discuss some P for which (NC) holds. In 
24.2 and Ex. 24.3 we illustrate how (NC) can be applied to prove 
ness results. 

Orem 24.4 (Nagata). (NC) holds for P = regular. 
OOf. Let U = Reg (A). A localisation of a regular local ring is again 
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regular, so that U satisfies condition (1) of Theorem 2. We now check 
condition (2). If PE U then A, is regular, so that we can take x1,. . . , X,EP 
to form a regular system of parameters of A, (where n = ht P). Then there 
exists a neighbourhood W of P in Spec A such that 

PA, = (x,, . . , x,)Ao 

for all QE W. (In fact, if aeA is an element not contained in P, but 
contained in every other prime divisor of (x,, . . ,x,) then PA, = 

(x 1,. , x,)A,.) Moreover, by the hypothesis in (NC) there exists a 
neighbourhood W’ of P in V(P) such that A,/PA, is regular for QEW'. 
Then A, is regular for QE W’n W, SO that W’n W c u. n 

Theorem 24.5. (NC) also holds for P = CM. 
Proof. As with the previous proof, we reduce to checking condition (2) 
of Theorem 2. Let PECM(A). If we take UEA -P and replace A by A, 
then we are considering a neighbourhood of P in Spec A, so that we will 
refer to this procedure as ‘passing to a smaller neighbourhood of P. Since 
A, is CM, if ht P = n we can choose an A,-sequence y,, . . , y,,~p. One 
sees easily that after passing to a smaller neighbourhood of P, we can 
assume that 

(a) y, , . . , y, is an A-sequence; and 
(b) I = (y, , . . , y,)A is a P-primary ideal. 

Then for QEV(P), it is equivalent to say that A, is CM or that AJIA, 
is CM. Thus replacing A by A/I we can assume that 0 is a P-primary ideal. 
Then P’ = 0 for some r > 0. Now consider the filtration 0 c Pr- ’ c ... c 
P c A of A. Each Pi/Piil IS a finite A/P-module, but A/P is an integral 
domain, so that passing to a smaller neighbourhood of P we can assume 
that Pi/P i+l is a free A/P-module for 0 < i < r. It is then easy to see that 
if x1,..., X,EA is an A/P-sequence, it is also an A-sequence. However, 
according to the hypothesis in (NC), passing to a smaller neighbourhood 
of P, we can assume that A/P is a CM ring. Then for QE V(P) the ring 
A,/PA, is CM, so that from what we have said above, 

depth A, 3 depth A,/PA, = dim A,/PA, = dim A,, 

and A, is CM. n 

Let A be a Noetherian ring and I an ideal of A; we set B = A/I and 
write Y for the closed subset V(I) c Spec A. Let hil be a finite A-module. 
We say that M is normally -flat along Y if the B-module gr,(M) = 
@ff& I’MJI’+‘M 1s fl at over B. If B is a local ring, this is the same as 

saying that each I’M/I’+ ‘M is a free B-module. Normal flatness is an 
important notion introduced by Hironaka, and it plays a leading role in 
the problem of resolution of singularities; we have used it in the above 
proof in the statement that if P is nilpotent and A is normally flat along 
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then an A/P-sequence is an A-sequence. However, in this book we 
ot have space to discuss the theory of normal flatness any further, 

e refer to Hironaka [l] and [G2], (6.10). 

Theorem 24.6. (NC) holds for P = Gorenstein. 
Once more we reduce to verifying condition (2) of Theorem 2. 

se that PEGor (A); if ht P = n then since A, is CM, we can take 
. ..,x,EP forming an A,-sequence. Passing to a smaller neighbour- 

of P, we can assume that x1,. . . , x, is an A-sequence. Moreover, ’ 

ing A by A/(x,, . . , x,J we can assume that ht P = 0. In addition, we 
assume that P is the unique minimal prime ideal of A. Since A, is a 
-dimensional Gorenstein ring, we have 

Ext;(A/P, A)BAAP = Ext:JK(P), AP) = 0 

Hom,(A/P, A)OA A, = Hom,,(ti(P), AP) = K(P). 

Thus passing to a smaller neighbourhood, we can assume that Exti(A/P, 
A)=0 and Hom,(A/P, A) N A/P. In addition, as in the proof of the 
previous theorem, we can assume that Pi/Pi+ ’ is a free A/P-module for 

Y - 1, where P’ = 0. Then using 

o+P’/P’+‘+P/P’+‘+P/P’+.o, 

we get by induction that Exti(P, A) = 0; from this it follows that 
Exti(A/P, A) = 0, and in turn by induction that Exti(P, A) = 0, so that 
Ext;(A/P, A) = 0. Proceeding in the same way we see that ExtL(A/P, A) = 
0 for every i > 0. If we take an injective resolution 0 -+ A -I’ of A as an 

$ A-module, and consider the complex obtained by applying Hom,(A/P, -) 
2 to it, from what we have just said we obtain an exact sequence 
1 O+ A/P + Hom,(A/P, I’), and this is an injective resolution of A/P as 
E; an A/P-module. The same thing holds on replacing A by A, for QE V(P), 

* and then setting k = IC(Q), we get Extiaipa,(k, A,/PA,) = Extip(k, Aa). 
; Thus it is equivalent to say that A, is Gorenstein or that A,/PA, is 

Gorenstein. Therefore from the hypothesis in (NC) we have that 
Gor(A)n V(P) contains a neighbourhood of P in V(P). w 

The above proof is due to Greco and Marinari [l]. Their paper also 
proves that (NC) also holds for P = complete intersection. 

Exercises to $24. Prove the following propositions. 

24.1. Let A be a Noetherian ring, and I an ideal of A; assume that I’ = 0, and 
that Ii/Ii+’ 1s a free A/I-module for 1 ,< i < r. Then for x1,. , X,E A, it is 
equivalent for (x1,. . ., x,) to be an A-sequence or an A/I-sequence. 

24.2. If A is a quotient of a CM ring R then CM(A) is open in Spec A. 

24.3. If A is a quotient of a Gorenstein ring then Gor(A) is open in Spec A. 
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Derivations 

This chapter can be read independently of the preceding ones; the main 
themes are derivations of rings and modules of differentials. The results 
of this chapter will be applied in the proof of the structure theorem for 
complete local rings in the next chapter, but in addition derivations and 
modules of differentials have an important influence on properties of rings, 
for example via the connection with regularity. 

In $25 we discuss the general theory of modules of differentials, and 
also prove the Hochschild formula for derivations of rings in characteristic 
p. $26 is pure field theory; Theorem 26.8, which states that a p-basis 
of a separable extension is algebraically independent, is taken from 
Matsumura [3]. The terminology 0-etale is due to Andre, and corresponds 
to ‘formally etale for the discrete topology’ in EGA. In $27 we treat the 
higher derivations of Hasse and F. K. Schmidt, concentrating on the 
extension problem which they did not treat, in a version due to author. 

25 Derivations and differentials 

Let A be a ring and M an A-module. A derivation from A to M 
is a map D: A - M satisfying D(a + b) = Da + Dh and D(&) = hDa + aDb; 
the set of all these is written Der(A, M). It becomes an A-module in a 
natural way, with D + D’ and aD defined by (D + D’)a = Da + D’a and 
(aD)b = a(Db). 

If A is a k-algebra via a ring homomorphism f :k --+ A, we say that D is 
a k-derivation, or a derivation over k, if Do f = 0; the set of all k-derivations 
of A into M is written Der,(A, M). It is an A-submodule of Der (A, M). Since 
l.l=l,foranyD~Der(A,M)wehaveD(l)=D(l)+D(l),sothatD(1)=0, 
and so viewing A as Z-algebra we have Der(A, M) = Der,(A, M). 

In the particular case M = A, we write Der,(A) for Der,(A, A). If D, 
DIED,(A), we can compose D and D’ as maps A -A, and it is easy to see 
that the bracket [D, D’] = DD’ - D’D is again an element of Der,(A), and 
that Der,(A) becomes a Lie algebra with this bracket. 

Quite generally, for DEDer(A, M) and aEA one sees at once that 
D(a”) = na ‘-IDa. Hence if A is a ring of characteristic p we have D(a”) = 0. 

190 
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Also, in general we have a Leibnitz formula for powers of D, 

D”(ab) = i ‘1” 
0 

D’a-D’-‘b; 
i=CJ 1 

if A has characteristic p then this reduces to DP(ab) = D”a.b + a’DPb, so 
that also Dp E Der (A). 

Let k be a ring, B a k-algebra, and N an ideal of B with N2 = 0; set 
A = B/N. The B-module N can in fact be viewed as an A-module. In this 
situation, we say that B is an extension of the k-algebra A by the A-module 
N; (note that B does not contain A, so that this is a different usage of 
extension). We write this extension as usual in the form of an exact sequence 

O-tNLBAA-rO. 

We say that this extension is split, or is the trivial extension, if there exists 
a k-algebra homomorphism 9: A +B such that focp = 1, (the 
identity map of A). Then we can identify A and q(A), and we have 
B = A @N as a k-module. Conversely, starting from any k-algebra A and 
an A-module N, we can make the direct sum A @ N of k-modules into a 
trivial extension of A by N, by defining the product 

(a,x)(a’,x’)=(aa’,ax’+a’x) for a,a’EA and x,x’~N. 

In this book, we will write A*N for this algebra. 
In general, given a commutative diagram in the category of k-algebras 

BLA 

\T 
h B 

C 

where we think off as being fixed, we say that h is a lifting of g to B. 
1 Write N for the ideal Kerf of B. If h’:C ---+B is another lifting of g, then 
‘k-h’ is a map from C to N. If N2 = 0 then N is an f  (@-module, and 
moreover, by means of g: C + f  (B) c A, we can consider N as a C-module. 
Then it is easy to see that h - h’:C -N is a k-derivation of C to the C- 

-module N. Conversely, if DEDer,(C, N) then h + D is another lifting of g 
to B. 

Let k be a ring and A a k-algebra, and write dA for the category of 
A-modules. We have a covariant functor MwDer,(A, M) from A, to itself, 
which turns out to be a representable functor. In other words, there exists 
an A-module M, and a derivation dEDer,(A,M,) with the following 
UniVerSal property: for any A-module M and any DEDer,(A,M), there 

f  od. We are now exists a unique A-linear map f: M, - M such that D = 
going to prove this. Firstly, define ,u: A OkA -+ k by 

/4x 0 Y) = XYi 
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then p is a homomorphism of k-algebras. Set 

I = Ker p, QZAlk = l/l2 and B = (A akA)/P; 

then p induces $: B + A, and 

o+%,k ’ -BLA+O 

is an extension of the k-algebra A by OZAik; this extension splits, and in 
fact delining &:A -B for i= 1,2 by 

n,(a) = a@ 1 modI and &(a) = 1 @amod12, 

we get two liftings of 1,:A + A. Hence d = 1, -Ai is a derivation of 
A to CJAik. Now we prove that the pair (QZAlk, d) satisfies the conditions 
for the above (M,, d). If DEDer,(A, M) and we define q:A Ok A -+ A *M 
by ~(x@Y) = (xy, XDY) then cp is a homomorphism of k-algebras, 
and 

~(~X~~Y~)~~X~Y~~O~=>CP(CX~OY~)~(O~~X~DY~)~ 
hence cp maps I into M. Now M2 = 0, so that we finally get .f :1/12 = 
sz A,k -M. For UEA we have 

f(da) = f(l0 a - a 0 1 mod 12) = ~(10 a) - q(a 0 1) 
=Da-a.D(l)=Da, 

SO that D = fad. Moreover, QAlk has the A-module structure induced by 
multiplication by a@ 1 in A @ A (or multiplication by 1 @a; since 
a@l-l@CEl, they both come to the same thing); thus if 
l=Cxi@yi mod12&A,k then a< = cuxi @ yi mod I’, and f(a5) = 
CUXiDYi = uS(O, so that f is A-linear. We have 

a@a’=(a@l)(l@a’-a’@l)+aa’@l, 

so that if w  = xxi @ yieZ then CO mod Z2 = xxi dy,. Hence QAjk is generated 
as an A-module by {daluEAS, so that the uniqueness of a linear map 

f: %,k -M satisfying D = ,fod is obvious. 
The A-module Qz,,, which we have just obtained is called the module of 

di&erentiuls of A over k, or the module of Kahler differentials, and for 
UGA the element da&,,, is called the differential of a. We can write d,+ 
for d to be more specific. From the definition, we see that 

Der,(A, M) - Hom, (n&k, M). 

Example. If A is generated as a k-algebra by a subset U c A then QAik is 
generated as an A-module by (daJuEU}. Indeed, if UEA then there 
exist a,EU and a polynomial f(X)~k[x,, . . . , X,] such that a= 
f(a,, . . . , a,,), and then from the definition of derivation we have 

da = ~fi(U 1,. . . , a,)dai, where ,fi = af/aXi. 

In particular if A = k[X 1, . . , X,] then Sz,,, = AdX, + ... + AdX”, and 
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dXi, . . . , dX, are linearly independent over A; this follows at once from 
the fact that there are D,EDer,(A) such that DiXj = dij 

We say that a k-algebra A is O-smooth (over k) if it has the 
following property: for any k-algebra C, any ideal N of C satisfying 

-N2 = 0, and any k = algebra homomorphism u:A --+ C/N, there exists a 
lifting u:A -+ C of u to C, as a k-algebra homomorphism. In terms of 
diagrams, given an commutative diagram 

A L C/N 

T T 
k - c, 

there exists v such that 

A L C/N 

T\;T 
k k C, 

1s commutative. Moreover, we say that A is 0-unramified over k (or O-neat) 
‘if there exists at most one such v. When A is both O-smooth and O- 
unramified, that is when for given u there exists a unique v, we say that A is 
0-etale. The condition for A to be 0-unramilied over k is that QAjk = 0: 
sufficiency is obvious, and if we recall that in the construction of RAjk we had 
d = & - i,, necessity is clear. 

If A is a ring and S c A is a multiplicative set then the localisation A, 
is 0-etale over A. This follows from the fact (Ex. 1.1) that if XEC is a unit 
modulo a nilpotent ideal, then it is itself a unit. We leave the details to 
the reader. 

Theorem 25.1 (First fundamental exact sequence). A composite k L 

A --%B of ring homomorphisms leads to an exact sequence of B- 
;modules 

(1) Q,&B-~-‘~&RB,A+O. 

where the maps are given by cr(d,,,a 0 b) = bd,,,g(a) and B(d,,,b)= d,,,b 
for aeA and &B. If moreover B is O-smooth over A then the sequence 

(2) 0 -+ R,,, 0 B - R,,, - QBiA -+ 0, 

obtained from (1) by adding 0 +at the left, is a split exact sequence. 

Proof. In order for a sequence N’ AN -%N” of B-modules to be 
‘exact, it is sufficient that for every B-module T, the induced sequence 

Hom,(N’, T) L Hom,(N, T) z Hom,(N”, T) 
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is exact. Indeed, taking T = N”, we get a*B*(l T) = 0, and therefore /XX = 0; 
and taking T = N/Imcr, we see easily that Ker p = Ima. From this, to 
prove that (1) above is exact, it is enough to show that for any B-module 

T, 

(3) Der,(A, T)- Der,(B, T)+-Der,(B, T)+O 

is exact, but this is obvious. 
Now suppose that B is O-smooth over A. Choose DEDer,(A, T) and 

consider the commutative diagram 

gt T with q(a) = (ga, Da). 

AABeT 

Then by assumption, there exists k:B -B*T which can be added to 
the diagram, leaving it commutative. If we write k(b) = (6, D’h) then 
D’: B - T is a derivation of B such that D = D’oy, and D’ corresponds 
to a B-linear map a’:Q,,, - T. Now take T to be fiZAik@ B, and define 
D by D(a) = dAik(a)@ 1, so that D = D’og implies that CL’C( = 1 T. Thus (2) 
is split. n 

Now consider the case k A A 5 B when y is surjective; set 
Ker g = m, so B = A/m. Then in (1) of the previous theorem we of course 
have RsiA = 0, and we want to determine Kercc. 

Theorem 25.2 (Second fundamental exact sequence). In the above 
notation, we have an exact sequence 

(4) m/m2 LQ ,wChB AQ,,d 

where 6, is the B-linear map defined by 6(xmodm2) = dAlkx@ 1. If B is 
O-smooth over k then 

(5) O+m/m2-QZ,,,@B-Cl,,,-+0 
is a split exact sequence. 
Proof. We once more take an arbitrary B-module T and consider 

(6) Hom,(m/nt2, T), ” Der,(A, T)4: il* Der,(B, T). 

For DEDerdA, T), to say that 6*(D) = 0 is just to say that D(m) = 0, SO 

that D can be considered as a derivation from B = A/m; hence (6) is exact. 
If B is O-smooth over k then the extension 

of the k-algebra B by m/m2 splits, that is there exists a homomorphism 
of k-algebras s:B -+ A/m2 such that gs = 1,. Now sg: A/m2 --P A/m2 is a 
homomorphism vanishing on m/m2, and g(1 - sg) = 0, SO that if we set 
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D = 1 - sg then D:A/m’ -m/m ’ is a derivation. If $EHom,(m/m2, T) 
then the composite D’ of 

A --+ A/m2 5 m/m” 5 T 

is an element of Der,(A, T) satisfying S*(D’) = $. Indeed, for xEm, if we 
let x = x mod m2 then 

D’(x) = t,b(D(X)) = Ii/(X - sg(X)) = I+@). 

Therefore 6* is surjective. If we set T = m/m2 then we see that (5) is a 
split exact sequence. n 

Example. Suppose that B = k[X,, . , X,]/(.fl,. , f,) = k[x,, . . .,x,1; 
then setting A = k[X,, . . . , X,] and using the above theorem, we have 

QB/, = (QA/k 0 B)IC Bd.fi = FIR 
where F is the free B-module with basis dX,,. . . , dX,, and R is the 
submodule of F generated by dfi =xj(8fi/L?Xj)dXj for 1 <i <m. For 
example, if k is a field of characteristic # 2 and 

B = k[X, Y]/(X2 + Y2) = k[x, y], 

then Rejk = Bdx + Bdy, where the only relation between dx and dy is 
xdx + ydy = 0. If k has characteristic 2 then flZejk is the free B-module of 
rank 2 with basis dx, dy. 

: Theorem 25.3. Suppose that a field L is a separable algebraic extension 
of a subfield K; then L is 0-etale over K. Moreover, for any subfield k c K 
we have QLik = R,,, G&L. 

’ Proof. Suppose that 0 + N - C -C/N -+O is an extension of K- 
algebras with N2 = 0, and that u:L --+ C/N is a given K-algebra homo- 
morphism. If L: is an intermediate field K c L! c L with L’ finite over K, 
then, as is well-known in field theory, we can write Z = K(a); let f(X) be 
the minimal polynomial of a over K so that L: ‘v K[X]/cf), and f’(a) # 0. 
Thus to lift uIL’: L’ + C/N to C, we need only find an element yeC 
Satisfying f(y) = 0 and ymod N = U(Z). Now choose some inverse image 
YEC of u(a); then f(y)mod N = u(f(cc)) = 0, so that fin. Moreover, 

( N2 =O, so that for HEN we get 

f(Y + d = f(Y) + f’(Yh; 
but f’(a) is a unit of L, so that u(f’(a)) = f’(y)mod N is a unit of C/N, 
and hence f’(y) is a unit of C by Ex. 1.1. Thus if we set ye = - f(y)/f’(y) 
We have HEN and f(y + v]) = 0. The K-algebra homomorphism u:L’ -C 
obtained by taking tl to v(a) = y + q is a lifting of u,~, and one can see by the 
construction that v is unique. Thus for every EEL there is a uniquely 
determined lifting v,:K(a) + C of u,~,), and we can define v:L - C 
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by U(X) = v,(a). In fact, for CX, /JEL there exists ;‘EL such that K(y) contains 
both a and fi, and then by uniqueness we have 

uYIK(z) = va and v,~,(~) = op. 
The second half comes from QLjrc = 0 and Theorem 1. n 

We turn now to derivations. As we have seen, if A is a ring of 
characteristic p then for DEDer (A) we have DPEDer (A). What can we say if 
i < p? 

Theorem 25.4. Let K be a field of characteristic p, and let 0 # DEDer (K). 
(i) 1,D,D2 ,..., Dpm ’ are linearly independent over K; 
(ii) the only way in which c0 + c, D + ... + cp-, Dp- ’ with c+K can be 

a derivation is if co = cz = ... = cpm 1 = 0. 
Pro~$ For UEK, write aL for the operation of multiplying by a; then 
the property D(nx) = D(u).x +a.Dx of a derivation means that DC-a,= 
D(u), + CID. We can write the Leibnitz formula as 

D’oa, = aD’+ i.D(a)D’-’ + 

our proof exploits this formula. 
(i) For some i < p suppose that 1, D,. . . , D’- ’ are linearly independent 

over K, but that l,D ,..., D’ are not. Then we can write D’ = ci- I Dim ’ + 
... + co, with c,EK. If we choose some UEK such that D(a) # 0, then in 
view of DiouL = ciPl Die’ou, + ..., we get 

aDi + i.D(a)D’-’ + ... = ci- ,aD’-’ + ..., 

where . indicates a linear combination of 1, D, . . . , Dim 2. Subtracting a 
times our original relation from this gives a relation of the form 

i.D(a)D’-’ = . . . , 

and this contradicts the assumption that 1, D, . . . , Die’ are linearly 
independent. 

(ii) Suppose that E = ciD’ + ... + c1 D + c0 is a derivation of K, with i C/J 
and ci # 0. Then E(1) = co, so that c0 = 0. Now if i > 1 then take UEK 
such that D(u) # 0, and substitute both sides of Eoa, = ciLhclL + ..’ in the 
Leibnitz formula: we get 

aE + E(a)L = aciDi + [i,q.D(a) + ac,_,]D’-’ + ..‘, 

but then in view of the linear independence of 1, D, . . . , Dp- ‘, the coefficients 
of D’-’ on both sides must be equal; therefore i.ci.D(u) = 0, which is a 
contradiction. H 

Remarks. (i) The theorem also holds if char K = 0. 
(ii) If K is not a field, this result does not necessarily hold. For example, 

let k be a field of characteristic p, and set A = k[X]/(Xp) = k[xl, with 
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$ = 0; then every derivation of k[X] will take the ideal (Xp) into itself, 
and therefore induces a derivation of A. In particular, the derivation 
Xp-l.a/dX of k[X] induces DEDer,(A) such that D(x)=x~-~, but 

i) = i.xi-lxP-l = 0 if i > 1, and therefore for p > 2 we have 0’ = 0. 

Theorem 25.5 (the Hochschild formula). Let A be a ring of characteristic 
p; then for aEA and DED~~(A) we have 

(aD)” = apDP + (aD)“-‘(a).D. 

Proof. Set E = aD. Then E2 = E~a,~D = (aE + E(a))D = a2 D2 + E(u)D, 
and proceeding by induction, we get a relation of the form 

k-l 

Ek=ukDk+ c bk,iDi+Ek-l(u)D, 
i=2 

where bk,i are elements of A given by a pUrdy fOrma computation, so 

bk,i = fk,i(a, D(U), D2(a), . . .) D”-‘(a)), 

where the fk,i are polynomials with coefficients in Z/(p) not depending on 
A, on a or on D. Now to prove our theorem we need only show that ,j”,,i = 0 
for 1 < i < p. Let k be a field of characteristic p, and let x1, x2,. . . be a 
countable number of indeterminates over k; set K = k(x,, x2,. .). Define 
a k-derivation D of K by Dxi = xi+ r. (Since C12,,, is the free K-module with 
basis dx,, dx,,. .., given any ,fieK there exists a unique DEDer,(K) 
such that Dxi = fi.) For this D, we set E = x,D; then since EP - xpDp = 
bp,p-lDP-l + ... + b,,2D2 + EP-l(u).D is a derivation, by the previous 
theorem we must have b,,i = 0 for 1 < i < p. Therefore 

bp,i=fg,i(X1,X2,...,Xp~i+1)=0, 

and this proves that f,,i = 0. w 
This formula is known as the Hochschild formula, although it is also 

reported to have been first proved by Serre. Be that as it may, it is an 
important fact that (uD)” is a linear combination of Dp and D. 

Exercises to $25. Prove the following propositions. 

25.1. Let A be a ring, a, h6-A and D, D’EDcr(A); then 

CUD, bD’] = ab[D, D’] + aD(b)D’ - hD’(a)D. 

Hence in order for an A-submodule g c Der(A) to be closed under 

[ , 1, it is enough to have g = xiE,ADi with [Di, Dj]tzg for all i,,j~l. 

25.2. Let A be a ring containing the rational field Q. Suppose that XEA and 
DEDer(A) are such that Dx = 1 and n;=,x”A = (0); then x is a non- 
zero-divisor of A. 

25.3. Let A be a ring, and I an ideal of A; set A  ̂for the I-adic completion of A. 

Then for DEDer(A) we have D(P) c I”-’ for all n > 0, so that D is I- 
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adically continuous, and hence induces a derivation of A .̂ Also for a 
multiplicative set S c A, a derivation D induces a derivation of A, by 

means of D(a/s) = (D(a).s - a.D(s))/?. 

25.4. Let k be a ring, k’ and A two k-algebras, and set A’ = k’ OkA; let 
S c A be a multiplicative set. Then Q,,,kS = Q,,k C&k = Qaik @,A’, 

and RaSik = R,,k Oa& 

25.5. Let A be a ring of characteristic p, and XE A, DEDer (A) elements such that 
Dp = 0 and Dx = 1; set A, = {SEA /Da = O}. Then A, is a subring of A, and 

A=A,[x] = A,+ Aox+...+ A,xP-‘, with 1, x,. , xp- 1 linearly inde- 
pendent over A,. 

26 Separability 

Let k be a field and A a k-algebra. We say that A is separable 
over k if for every extension field k’ of k, the ring A’ = A Bkk’ is reduced, 

that is does not contain nilpotents. From the definition, one sees at once 

the following: 
(1) a subalgebra of a separable k-algebra is separable; 
(2) A is separable over k if and only if every finitely generated k- 

subalgebra of A is separable over k; 

(3) for A to be separable over k it is sufficient that AOkk’ is reduced 
for every finitely generated extension field k’ of k; 

(4) if A is separable over k and k’ is an extension field of k then A Bkk 
is separable over k’. 

Remark. When A is a finite k-algebra, the separability condition can be 
checked using the discriminant. The trace of an element a of A, denoted 
by trAik(u), is defined to be the trace of the k-linear mapping A -+ A induced 
by multiplication by c(. Let ol,. . . , o, be a linear basis of A over k. Then d 
= det(tr,,Jqmj)) is called a discriminant of A over k. If we use another 
basis w’ i ,. . . , o;, and if oi = 1 cijoj, then the discriminant with respect to 
this basis is det(cij)‘.d. Thus d = 0 or d # 0 is a property of A independent of 
the choice of basis. Now we claim that A is separable if and only if d # 0. 
Proof If k’ is an extension field of k and A’ = A akk’, then w1 , . . . , w, is 
also a linear basis of A’ over k’, and so d is also a discriminant of A’ over 
k’. If A’ is not reduced, let N = nil (A’). Take a basis IX;, . . . , o: of A’ 
such that a;,..., o; span N. Then O$J> is nilpotent for i Gr, hence its 
trace is zero. It follows that det (tr(ofw;)) = 0, and so d = 0. Conversely, 
if A is separable over k, take an algebraic closure K of k. Then AO,K is 
reduced. Therefore we need only prove that if k is algebraically closed 
and A is reduced then d # 0. Now A is an Artinian reduced ring, hence is 
a finite product of fields, each of which (as a finite extension of k) is 
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isomorphic to k. Thus A = ke, + ... + ke, with eiej = 0 for i fj and ef = e,. 
Hence tr(e,) = 1 and d # 0. n 

In what follows we consider mainly the case when A is a field. If K is 
an algebraic extension field of k, and is separable in the usual sense (that 

is a root of a polynomial with coefficients in k having 
no multiple roots), then K is separable over k in our sense. To see this, 
by (2) above we can assume that K is finitely generated over k, and then 
according to the well-known primitive element theorem of field theory, 
KZ k[X]/(f(X)), where fEk[X] is irreducible and with no multiple 
$roots. Then if k’ is an extension field of k we have 

KO,)’ = k’Cxl/(f(W), 
and when we factorise f into primes in k’[X] we get f = fi . . . f, with 
(fi, fj) = 1 for i #j, so that by Theorem 1.4, 

k’Cxl/u-) = k’Cxll(fJ x ... x k’CJwf,); 
since this is a direct product of fields, it is reduced. n 

We say that an extension held K of k is separably generated over k if 
transcendence basis over k, that is a transcendence 
is a separable algebraic extension of k(T). 

arably generated extension field is separable. 
‘Proof. Let k be a field and K a separably generated extension of k, with I 
:8 separating transcendence basis of K. If k’ is any extension field of k then 
k(l?)Okk’ is a ring of fractions of k[T] Okk’ = k’[r], so that it is an 
)integral domain with field of fractions k’(T). Thus K@,k’=KOkcrj 
{k(T) @ kk’) is a subring of K 0 ,&‘(I). Now K is a separable algebraic 
$xtension of k(T), so that as we have seen above K Okcnk’(I’) is 

be a field of characteristic p, and K a finitely generated 
extension field of k; then the following conditions are equivalent: 

(1) K is separable over k; 
(2) K Okkl’P is reduced; 

ial and (3)*(l) has just been proved. 
(2)=(3) Let K = k(xl,..., x,); we can assume that xi,. , . ,x, is a 

transcendence basis for K over k. Assume furthermore that x,, i,. . . ,x, are 
separable algebraic over k(x, , . . . , xJ, and that xq+ i is not; set y = xq+ I 
.and let f(YP) be the minimal polynomial of y over k(x,, . . .,x,). The 
Coefficients of f( YP) are rational functions of xi,. . . , x,, so that clearing 
denominators we get an irreducible polynomial F(X,, . . .X,, YP)G 

i,. . .,X,, Y], with F(x,yP) =O. Now if 8F/aXi =0 for 1 <i <r then 
er of a polynomial G(X, Y) with coefficients in kllp, 



200 Derivations 

but then we would have 

kCx,,...,x,,ylO,k 1/P = (k[X, Y]/(F(X, Y))Okk”P 

= k”P[X, Y]/(G(X, Y)p); 

this is a subring of K@,k’iP Containing nilpotent elements, and this 
contradicts (2). Hence we can assume that BF/aX, # 0. Then xl is separable 
algebraic over k(xz, . . . , x,, y), and hence so are x,+ l,. . . , xq. Therefore 
exchanging xl and y = xq+ 1, we find that x,+ 1,. . . , x,, 1 are separably 
algebraic over k(x, , . . . , xI), so that by induction on q, we have (3). . 

Remark. As we have seen in the proof, if K = k(x,, . . . ,x,) is separable 
over k then we can choose a separating transcendence basis from among 
Xl,...,X,. 

Theorem 26.3. If k is a perfect field then every extension field K of k is 
separable over k, and a k-algebra A is separable if and only if it is reduced. 
Proof. Recall that a field k is perfect if every algebraic extension of k is 
separable. Ifk has characteristic 0 then every extension field K is separably 
generated, and therefore separable. In characteristic p, perfect implies 
k = kl’p, so that by the previous theorem, all sublields of K finitely 
generated over k are separable, so that K itself is separable over k. (Caution: 
K may fail to be separably generated over k; for a counter-example, let x 
be an indeterminate over k, and K = k(x, xp-l, xp-‘, . .).) Now we show 
that if A is a reduced k-algebra then A is separable. We can assume that 
A is finitely generated over k. Then A is a Noetherian ring, and the total 
ring of fractions K of A is of the form K = K, x ... x K, by Ex. 6.5. Each 
Ki is separable over k, so that K is also separable, and hence so is its 
subring A. n 

In general two subfields K, K’ of a given field L are said to be linearly 
disjoint over a common subfield k if the following three equivalent 
conditions are satisfied: 

(a)ifa,,..., CI,EK are linearly independent over k they are also linearly 
independent over K’; 

(b) the same with K and K’ interchanged; 
(c) if we write K [K’] for the subring of L generated by K and K’j the 

natural map K OkK’ -+ K[K’] is an isomorphism. 
Proofofequivalence. (a)*(c) Let 4 = Cyxi o yi be an element of the kernel 
of K OkK’ - K[K’]. Suppose that x1,. . , x, are linearly independent 
over k, and that the remainder x,, l,. . . , x, arc linear combinations of them7 
and rewrite 4 = C; xi myi. The image in K[K’] of 5 is CxiY:, but if this is ’ 
then by (a) we have y; = 0 for all i, so that 4 = 0. This proves (C). 

(c)+(a) is also easy; finally, since (c) is symmetric in K and K 2 1 we Of 

course also get (a+(b). 
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Let k be a field of characteristic p, and K an extension field of k. Inside 
of K, consider the subfields kPen= {CiEIf/EP”Ek} 
hese are purely inseparable extension fields of k, 

is the smallest perfect field containing k. 

eorem 26.4 (S. MacLane). Let k and K be as above. We have 
i) if K is separable over k then K and kP-” are linearly disjoint over k; 

if K and kpm’ are linearly disjoint over k for some II > 0 then K is 

~,,EK are linearly independent over k. If 
we set k, = k(cl,. . . , {,), so that k, is a finite 

xtension of k; for some sufficiently large n we have kp” c k, and if we set 
= Kgkk,, then A is a reduced ring. However, A is finite as a K-module, 
is a zero-dimensional ring, but the p”th power of any element of A is in K, 
that we see that A has only one prime ideal. Hence A is a field, and 

N K[k,]. From this we get x&i 0 ci = 0, that is ti = 0 for all i. 
(ii) If K and kP‘” are linearly disjoint, then kPm’ c kPm”, and hence K and kP-’ 

are also linearly disjoint over k, so that K QkkPm’ is a field. If K’ is a subfield 
of K which is finitely generated over k then by Theorem 2, K’ is separable 
over k. Hence K is also separable over k. w 

Let K be an extension field of a field k; then QKjk is a vector space over 
K, and is generated by {dx(xeK}, so that there exists a subset B c K 
such that {dxl xEB} forms a basis of the vector space Q,,,. A subset 
Bc K with this property is called a differential basis of K over k. The 
following condition (*) is necessary and sufficient for a subset {x~}~~~ c K 
to form a differential basis for K over k. 

(*) if ~,EK are specified for every LEA in an arbitrary way, then there 
exists a unique DEDer,(K) such that D(x,) = y, for all i. 

For x~,...,x,EK, let us study the condition for dxl,...,dx,ERKik to be 
linearly independent over k. If k has characteristic 0 then this is equivalent 

x, being algebraically independent over k. Indeed, if there exists 
1,. . . ,X,] such that J-(x,, . . . ,x,) = 0, then choose such a 

relation of smallest degree; suppose for instance that X, actually appears in 
f, SO that f1 = af/a X, is non-zero, but of smaller degree than f, and hence 
f 1 (x) # 0. Then f(x) = 0 gives 

0 = df = 1 fi(x)dxi, 

,dx, are linearly dependent. Conversely, if x1,. . . ,x, are 
algebraically independent over k then there exists a transcendence basis 
B of K/k containing these, so that there exists k-derivations Di of the Purely 
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transcendental extension k(B) satisfying 

Di(Xi) = 1 and Of(v) = 0 for Xi #DEB, 

(namely, a/ax,). Moreover, K is a separable algebraic extension of k(D), 
and so by Theorem 25.3 is 0-etale, so that the derivations Di extend to 
derivations from K to K. Then since Di(xj) = 6ij, the differentials 
dx 1, . . . , dw%,k are clearly linearly independent. Thus in this case a 
differential basis is the same thing as a transcendence basis. 

Now consider a field k of characteristic p. We say that elements 
X1,...,- Y,EK of an extension field K are p-independent over k if 
CKW, xl,. , x,):KP(k)] = p”, and a subset B c K is p-independent if any 
finite subset of B is p-independent. This condition means precisely that the 
set 

x1,. . . ,x, are distinct 
elements of B and 0 6 Cli < p 

is linearly independent over F’(k); the elements of rB are called the 
p-monomials of B. If B is not p-independent, we say it is p-dependent. 
The condition of p-independence is not just a property of B and k, but 
also depends on K. If B c K is p-independent over k and K = KP(k,B), 
we say that B is a p-basis of K/k. If C c K is p-independent over k then 
one can easily show by Zorn’s lemma that there exists a p-basis of K/k 
containing C. 

One sees easily that B is a p-basis of K/k is equivalent to IB being a 
basis of K over K”(k) in the sense of linear algebra. If this holds then any 
map D: B-K has a unique extension to an element DEDer,(K). Indeed, 
for a p-monomial of B we set 

D(x”,‘. . . x~~) = Cr= 1 OriX9’. . . X~I- ‘. . . x~“D(x~), 

and extend D to K as a KP(k)-linear map; then D is a k-derivation. Thus 
a p-basis B is a differential basis of K/k. Conversely, if B’ is a differential 
basis of K/k then B’ is p-independent over k; for if xi,. ., x,EB’ are 
p-dependent, we can assume that xl~KP(k, x2,. ., x,), so that we can 
write x1 = S(x,, . . . , x,), where f is a polynomial with coeflicients in KP(k). 
Then in QKjk we get dx, = CZ(af/axi)d i, x which contradicts the linear 
independence of dx, , . . , dx,. Now if we take a p-basis B of KJk containing 
B’, then since both B and B’ are differential bases, we have B = B’. We 
summarise the above as follows: 

Theorem 26.5. The notion ofdifferential basis coincides with transcendence 
basis in characteristic 0, and with p-basis in characteristic p. 

Now we look at the relation between separability and differential bases. 
Letting II c k denote the prime subfield of k, we write Qk for !&,. 

Theorem 24.6. For a tield extension K/k, the following conditions are 
P~lliW2lPtlf. 
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(1) K/k is separable; 
(2) for any subfield k ’ c k the standard map R,,,, OkK --+R,,,. is 

(2’) for any subfield k’ c k and any differential basis B of k/k’, there exists a 
fferential basis of K/k’ containing B; 
(3) 0, Ok K -+ flK is injective; 
(4) any derivation of k to an arbitrary K-module M extends to a 
. tion from K to M. 

(2) and (2’) are clearly equivalent, and (2)*(3)0(4) are trivial. In 
teristic 0, both (1) and (2’) hold, so that we need only consider the case 

)*(2’) Since K and klip are linearly disjoint over k, we can apply the 
omorphism x+-+xP to all three of these to get KP and k linearly disjoint 

kP. Hence KP(kP, k’) = KP(k’) and k are linearly disjoint over kP(k’) 
Ex. 26.1 below). If we choose a p-basis B of k over k’ then the set IB 

-monomials of B is linearly independent over kP(k’), hence also linearly 
pendent over KP(k’), and B as a subset of K is also p-independent 

r k’. Therefore B can be extended to a p-basis of K/k’. 
+( 1) If we take a p-basis B of k over II then the set IB of p-monomials 
is a basis of k over kP. (dxlxeB} is a basis of Q over k, and by 
ption is linearly independent in Qk over K, so that Is is also linearly 

ependent over KP. Therefore 

k@Jk,Kp N k(Kp), 

and KP are linearly disjoint over kP, so that by Theorem 4, K/k is 

be a field of characteristic p, and II c k the prime subfield; a p-basis 
is called an absolute p-basis of k. If k, c k is any perfect field 

ined in k then kP(k,) = kP = kP(II), so that an absolute p-basis of k is 

orem 26.7. Let k be a field of characteristic p, and K an extension field of 
an absolute p-basis of k is also an absolute p-basis of K, then K is 0-etale 
r k, and conversely. 

Consider a commutative diagram of ring homomorphisms 

e C = C/N, with N an ideal of C satisfying N2 = 0, and g the natural 
For cr~K, if we choose aEC such that u(a) =g(a), then ap is 

ependent of the choice of a. For if g(a) = g(a’) then we can write 
a + x with XEN, and since C is a k-algebra via i. it is a rine of 
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characteristic p, so that 
a’p = ap + xp = (Jp. 

Now we define a map v,:KP -C by v,(cxp) = ap for acsK, where aft 
is such that u(a) = g(a); one checks easily that v0 is a homomorphism, and 
coincides with j on kp. So far we have not used the assumption on K/k. 
Now since by assumption K is separable over k, and K = KP[k], we can 
think of K as 

K = KPBknk, 

and thus we can define v: K + C by letting u be equal to v0 on KP, and 
equal to j on k; this is a lifting of u to C. Uniqueness of the lifting is clear 
from the fact that KP(k) = K, so that RKjk = 0. 

Conversely, if we assume that K/k is 0-etale, then first of all, from 
0-unramified we have Qz,,, = 0, so that by O-smoothness and Theorem 25.1 
we have R, = Q2, ok K. Thus an absolute p-basis of k is also an absolute 
p-basis of K. w 

Theorem 26.8. Let K/k be a separable extension of fields of characteristic 
p, and let B be a p-basis of K/k. Then B is algebraically independent over 
k, and K is 0-etale over k(B). 
Proof. Suppose by contradiction that b,, . . . , ~,EB are algebraically 
dependent over k. Suppose that 0 # fEk[X,, . . . ,X,1 is a polynomial of 
minimal degree among all those with f(b) = 0, and set deg f = d. Then write 

f(xl~~~~~Xn)=o~i~i ipgil..,i,(XE,...rX~)X;I...X~ 

.  ,r..rn 

Then since b,, . . . , b, are p-independent over k and f(b) = 0, we have 
gi ,,., i,(bP) = 0 for all values of i,, . . , i,. However, since 

d 3 deggi,...i,(XP) + il + .‘. + i,, 

by choice of f we must have f(X) = g,,,e(XJ’). Hence we can write f in 
the form f(X) = h(X)P, with hEkl’p[Xl,. . ,XJ. However, since K and 
klip are linearly disjoint over k, the monomials of degree < d in bl , . . . , bn, 
being linearly independent over k, must also be linearly independent over 
kllp. Thus h(b) # 0, but this contradicts h(b)P = f(b) = 0. For the second 
half, see the proof of the following theorem. n 

Remark. Although k(B) is purely transcendental over k, it does not 
follow that K is algebraic over k(B); for a counter-example, let K = 
k(x, xp-‘, xp-‘, . . .), with x an indeterminate over k. In this case B = 0. 

Theorem 26.9. If K is a separable field extension of a field k, then K is 
O-smooth, and conversely. 
Proof. Let B be a differential basis of K/k. If K/k is separable then by 
Theorem 5 and Theorem 8, k(B) is purely transcendental Over k. Then’ 
as one sees at once from the definition, k(B) is O-smooth over k. Moreover7 
KIlJR\ is O-etale. In characteristic 0 this follows from Theorem 25.3; in 
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characteristic p, by Theorem 6 we have an exact sequence O-tR,O K 
-aK -+fiZKlk+O, so that putting together an absolute p-basis of k 

; with B we have an absolute p-basis of K, and this is clearly also an absolute 
p-basis of k(B). Hence K/k(B) is 0-etale by Theorem 7. Therefore K/k is 

; O-smooth. 
Conversely, if K/k is O-smooth then by Theorem 25.1, QR, @ K -0, 

is injective, so that by Theorem 6, K/k is separable. n 
5 

$ Imperfection modules and the Cartier equality 

FQtg ui e enerally, if k --+ A + B are ring homomorphisms, we write rsiAik 
i for the kernel of nAikO,,,B -fiZejk, and call it the imperfection module 
1; of the A-algebra B over k. If k = Z or k = Z/p (the prime field of 
1 characteristic p) we omit k, and write IBIA. 
1 
1: Lemma 1. Let k + K -L --+ L’ be field homomorphisms. Then there 
1, exists a natural exact sequence 
.* 

0 + rLiKlk 0, c - rLsIKIk - hk 
- QLjrc &Ii -t&f,, - QL’,L + 0. 

Proof We have a commutative diagram with exact rows. 

04-L,K,kc3Lfi -qlkcw -~L,k~L~ -Q,,,cW+o 

II 1 II 12 I f3 1 
O-+ r L’/K/k -%,k @ L’ - %‘,k - clL.,I; -+o. 

We abbreviate this as 

0+X-A-B-P-,0 

i II I 1 
O+Y-A-C-Q+O. 

and from it construct 

o’Ai”-ia+o 

O-A/Y -C-Q-to; 

applying the snake lemma gives the exact sequence 

O-+Y/X+Kerf,+Kerf,+O, 
from which we easily get 

0+X--+ Y-Kerf, +P+Q-+Cokerf,+O. 

This is just what we wanted to prove. n 

Theorem 26.10 (the Cartier equality). Let k be a perfect field, K an 
extension of k and I. a finitely generated extension field of K; then 

(*I rb.QL,K = tr.deg,L + rkLrLIKIk, 
(where rk, denotes the dimension of a vector space over L). 
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Proof. Suppose that k c K c L c L’, with L finitely generated over K and 
L’ finitely generated over L. If the theorem holds for k c L c L’ and for 
kc K c L then both rEILlk and r,,K, 0 L are finite-dimensional over L, 
so that by the lemma, f-L,,K,L is also finite-dimensional, and 

rkL,QLs,K - rkL,,K,k 

= (rk,,&,,, - rk,G~,L,k) + (rk,%,, - rWLiKik) 
= tr.deg,L’+ tr.deg,L= tr.deg,L’; 

thus the theorem also holds for k c K c L’. Now every finitely generated 
field extension can be obtained by a succession of the following three 
kinds of simple extensions: 

(1) L = K(a) where c1 is transcendental over K; 
(2) L = K(E) where c1 is separable algebraic over K; 
(3) L = K(cc) where char K = p, and G?’ = aeK, but cr$K. 

Hence we need only prove (*) in each of these special cases. (1) and (2) 
are easy. For (3), if we write L = K[X]/(Xr - a) we see that 

fhlk = (QKLXIIk 0 WLda 
= (R&K da) 63 L 0 Lda, 

and dcc # 0. Furthermore, since k is a perfect field, we have a$ Kr = kKP, 
so that in QZKlk( = 0,) we have da # 0, rk R,,, = 1 and rk rLIKIL = 1, so that 
(*) also holds in this case. n 

Remark (Harper’s theorem), An ideal I of a ring R is called a d#erential 
ideal ifit maps into itself under every derivation of R to R. A ring R is said to 
be dijerentiably simple if it has no non-trivial differential ideals, The 
following beautiful theorem is due to L. Harper, Jr.: 

Theorem. A Noetherian ring R of characteristic p is differentiably simple if 
and only if it has the form R = k[T,, . . . , T,,]/(T:, . . . , T:), where k is a 
field of characteristic p. 

The ‘if’ part is easy. The proof of the ‘only if’ part is not so easy and we refer 
the reader to Harper [l] and Yuan [ 1). Recently this theorem was used by 
Kimura-Niitsuma [l] to prove the following theorem which had been 
known as Kunz’ Conjecture: 

Theorem. Let R be a regular local ring of characteristic p. and let S be a 
local subring of R containing RP. Assume that R is a jinite S-module. Then 
R has a p-basis over S if and only if S is regular. 

Exercises to $26. Prove the following propositions. 

26.1. Let L be a field and k, k’, K, K’ sublields of L; assume that k c k’ c K 
and kc K’, and that K and K’ are linearly disjoint over k. Then we 
have (i) K n K’ = k, and (ii) K and k’(K’) are linearly disjoint over k’, 
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$27 Higher derivations 

1. 
fj: 26.2. Let L be a separable extension of a field K; then L( (T,, . . , 7’“)) is separable 
.) 
hlC. 

over K( (T, , . , T,)). Here L( (T, , , TJ) denotes the field of fractions of 

?“r : ,* L[T,,...,T”J. 

t;, 
i. 
iri. 27 Higher derivations 
;> “3 
p$ Let k --% A --%B be ring homomorphisms. Let t be an 
&determinate over B, and set B, = B[t]/(t”’ ‘) for m = 0, 1,. . . , and B, = 

$#[t]. w e can view B, as a k-algebra in a natural way (for m d co). 
$> For m < cc we define a higher derivation (over k) of length m from A 
tb B to be a sequence Q = (D,,D,, . . . , D,) of k-linear maps Di: 
FA 3 B, satisfying the conditions 
t. 
9. (*I DO = g and Di(xY) = .+;= i W-W,(Y) 

ar 1 < i < m and x, YEA. These conditions are equivalent to saying that the 
,( nap E,: A -B, defined by 
‘ia- 

E,(x) = f Di(x)t’ 
i=O 

a k-algebra homomorphism with E,(x) = g(x) mod t. 

When A = B and g = 1 (the identity map of A) then we speak simply 
higher k-derivation of A. In what follows we consider mainly this 

D=(Do,Dl,Dz,...) . 1s a higher derivation then D,ED~~,(A, B). 
urthermore, Di is 0 on f(k) for i > 0. In general we say that p is trivial 
n UGA if D,(a) = 0 for i > 0; this means precisely that a goes over 

p’o a constant under the homomorphism E, corresponding to D. 
,The theory of higher derivations was initiated by Hasse and F. K. 
:hmidt [l]. In view of this, in this book we write HS,(A,m) for the set 
fall higher k-derivations of length m of A, and we also write HS,(A) for 
/&(A, 00). When we are not concerned with k, we simplify this to HS(A, m) 
pd HS(A). These sets do not have a module structure like that of Der,(A), 
@ they do have a group structure (generally non-Abelian), which we 
bow explain. The homomorphism &:A + A, corresponding to 
&HS,(A,m) can be extended to an endomorphism of A,,, by setting 

low E, is injective, since if 5 = a,t’ + a,, 1 t*+’ + . ..EA.,, with a, # 0 then 
t(t) 5 a, t’ mod t’+ I; also, by setting 

5--E,(a,t’)=b,+,t’+‘+~~~, 

{- E~(a,t’+h,+,t’~‘)=c,+,t’~2 + ... 
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and proceeding in the same way, we see easily that E, is surjective. In 
other words, E, is an automorphism of A,. Conversely, an automorphisnr 
E of the k-algebra A,,, satisfying E(a) = a mod t corresponds to a higher 
derivation. Thus if we identify HS,(A,m) with a subgroup of the auto. 
morphism group Aut,(A,) of A,, it acquires the group structures 
which we are looking for. Let us start computing this structure. For 

g =(D,,D, ,... ), r>‘=(D&D; ,... ), set 
D. D’ = (Dg, D;,. . .), and r>-’ = (D,*, DT,. . .); 

then 
E,(E;(a)) = E,(a + D;(a)t + D;(a)? + ...) 

=(a+D,(a)t+D,(a)t2+...) 
-~(D’i(a)+D,(D’1(a))tfD2(D’i(a))t2+~~~)t 
+ (D;(a) + D1(D;(a)t + ...)t2 + ... 

so that 
=a+(D,+D;)(a)t+(D,+D,D; +D;)(a)t2+..., 

Dy = c D,,Db for all i; 
p+q=i 

and the DT are obtained by solving I,+,= iDpD,* = 0 for i > 0, that is 

D;=D,= 1, D:= -D,, D:=D;-D,, 

DT=-D:+D,D2+~2~1-~3,.... 

If S c A and T c B are multiplicative sets such that g(S) c T, then the 
given homomorphism g:A --+B induces a homomorphism A, -+B,. 
NOW we show that in a similar way, a higher derivation has a unique 
extension to the localisations. To see this, let D = (Do, D,, . . . , D,) be a 
higher derivation of length m from A to B; if we compose the homo- 
morphism E,: A + B, corresponding to D with the localisation 

6, - (BA then an element XGS maps tog(x), + Dl(x),t + . . . . and 
this is a unit of (BT)m, since the constant term g(.x)r is a unit of B,. This 
E, induces a homomorphism A, +(BT),,,, which provides a higher 
derivation A, ---+ B,. 

Let I> = (D,, D,, . . . , D,) be a higher k-derivation of length m < co from 
A to B. Consider the problem of extending this to a higher derivation of 
length m + 1. If Et,,,: A + B, is the homomorphism corresponding to I?? 
the problem of extending D is equivalent to that lifting E,., to a 
homomorphism A --+ B,, 1. The following theorem is then clear from this. 

Theorem 27.1. If the ring A is O-smooth over a ring k, then a higher 
derivation of length m < cc over k from A to an A-algebra B can be 
extended to a derivation of length GO. 

This theorem can be applied for example to the case of a field k and a 
separable extension field A of k. 
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If A is a ring of characteristic p then an ordinary derivation of A is 
zero on the subring AP, but higher derivations need not vanish on AP. If 
Q = (Do, D,, D,, . .) is a higher derivation of length m > p then from 
E,(d) = E,(a)P = up + D1(a)P.tP + ..., we get 

Dp(aP) = D, MP, and in general D,,(&) = D, (u)p’. 

For example, it follows from this that if k is a field of characteristic p, and 
K= k(a) with aPEk but a$k, then although there exists DEDerk(K) 
such that D(a) = 1, this D cannot be extended to a higher k-derivation of 
length B p. Since K is separable over the prime sublield, D can be extended 
to a higher derivation of length GO (over the prime subfield), but this 
extension cannot be trivial on k. 

We say that a higher derivation g = (Do, D,, . . .)EHS,(A) is iterative if 
it satisfies the following conditions: 

Di+ j for all i,j. 

This condition is equivalent to asking that the following diagram is 
commutative: 

where E,(u) = C t”D,( ) a and E,(x tYuv) = C t”E,(u,), and the right-hand 
: vertical arrow is the inclusion map. Indeed, 

U-W)) = E,(~~“D&)) = 1 t’x u”D,D,W> 
” B 

: and 

E,+,(u) = T(t + u)“D,(u) = 1 t’x u’ D,+,(u). 
v fl 

;. If A contains the rational field Q, then one sees by induction on n that 
an iterative higher derivation satisfies D, = D:/n!, and is hence 
determined by D, only. Conversely, for DEDerk(A), we see that 
(1, D, D2/2!, D3/3!, . . .) is an iterative higher derivation. If A has charac- 

i teristic p then for an iterative D = (D,, D,, . . .) we have Di = Di/i! for 
; i <P, and DI = 0. Thus one cannot hope to extend any derivation to an 
1 iterative higher derivation, even if A is a field. 

i Th eorem 27.2. Let k LA 2 B be ring homomorphisms, and suppose 
’ that B is 0-etale over A. Then given D = (D,,D,, . . .)EH&(A, B), 

there exists a unique D’ = (Db,D;, . .)EH?~(B) such that Di(g(a)) = 
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D,(a) for all i. Moreover, if D* = (D;F,DT,. ..)eHS,(A) is such that 
Di = goD* for all i, and if D* is iterative, then D’ is also iterative. 

Proof. There is no problem about De = 1,. Now assume that (Db,. ..,D&)E 
HS,(B, m) has been constructed so that Diog = Di for i < m; then if we define 

m+l 

h:A -B,+ 1 = B[t]/(t”“) by h(a) = c t”DJa), 

andu:B--+B,byu(b)= C~t”D~,(b), we obtain the left-hand commutative 
diagram. 

A h--‘&+1 
h 

A - B,+, 

Hence by the 0-etale assumption, there exists a unique o:B -+ B,, , which 
makes the right-hand diagram commutative. Repeating this we see that 
D exists and is unique. If r>* is iterative, and we consider the homo- 
morphisms E,: A -+ A[r] and E;:B - B[t] corresponding respectively 
to Q* and D’, then we know E,o E, = E,,,, and we need only prove that 
E;oE; = Ej,,. By induction on m, assume that 

EL(E;(b)) = E:+,,(b)mod(t,u)“+’ for all bEB; 

then from the commutativity of 

C.” B - But, uj/(t, u)“+ ’ 

I I , 
A -f% A[t,uj 

I 
--+B[t,u]/k4m+2, 

from E,,, = E,oE, and from the assumption that B is 0-etale over A, we get 

EI(E;(b)) = E;+,(b) mod (t, u)~+~ for all beB. 

This proves that EuoE; = E;,,. m 

Remark. The above D’ will be called an extension of D (or of D*) to 6 - 
(even if A is not a subring of B). 

Theorem 27.3. (i) Let A be a ring of characteristic p, and suppose 
that XEA, DEDer(A) satisfy Dx= 1 and Dp=O; set A, = {~EAI 
Da = 0). Then A is a free module over A,, with basis 1, x,. . , xp- ‘. 

(ii) Let k be a field of characteristic p, and K a separable extension of k; 
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let DEDer,(K) be such that DfO, DP=O. Set K,={a~KlDa=o). 
Then there exists an XE K such that Dx = 1, and a subset B, c K, such 
that B = {x} uB, is a p-basis for K over k. 
Proof. (i) Suppose that a0 + zlx + ... + xixi = 0 for some i < p and ccje,4,. 
Then applying D’ we get i!a, = 0, hence ri = 0. Hence by downward 
induction on i we see that 1, x, . . . , xp- ’ are linearly independent over A,. 
Now in view of Dp = 0, for every aeA we have D’+ ‘a = 0 for some 
0 < i <p. If i = 0 we have LIEA,,. If i > 0 then D’(a - x’D’a/i!) = 0, so that we 
see by induction that 

D”‘u = O=aEA, + A,x + ... + A,x’; 

‘Setting i = p - 1 in this gives A = A, + A,x + ... + A,xP-‘. 
(ii) Since D # 0 we can find ZCSK such that Dz # 0. Now in view of 

DPz = 0, there is an i such that D’z # 0 but D’+‘z = 0. If we set y = D’z 
and x = (D’- ‘z)/y then Dx = 1, so that by (i) we have K = K,(x) and 
[K:K,J =p. Now if we had xPgKP,k, then x~K,k”~, and we could 
write x=x;wiai with q,..., w,EK~ linearly independent over k, and 
aEk’lP. Now kc K, and x#K,, so that x,ol ,..., o, are linearly 
independent over k, and hence by the assumption that K is separable over 
k, they are also linearly independent over kllp, which contradicts x = 1 qq. 
Thus xP$Kgk. Hence we can choose a p-basis C of K, over k such that 
x~EC; set B0 = C - {xp). Then if y,, . . . ,y, are distinct elements of B,, 
we have [KP,k(xp,y,,...,y,):K$k] = p”+l, and together with K = K,(x) 
this gives [KP k(y , , . . . , y,):KPk] =p”. Thus B, as a subset of K is 
p-independent over k. Since also K, = KP,k(xP, B,), we have K = 
K,(x) = KPk(x, II,), so that setting B = B, u {x} we get a p-basis of K 
over k. n 

Theorem 27.4. Let K be a field of characteristic p, and k c K a subfield 
such that K is separable over k. Then a necessary and sufficient condition 
for DEDer,(K) to extend to an iterative element of H&(K) is that Dp = 0. 
Proof. We have already seen necessity, and we prove sufficiency. We can 
assume that D #O; if DP = 0 then we can choose K,,x and B, as in 
Theorem 3, (ii). We set K’ = k(B,); then D is a K’-derivation, K is 0-etale 
over K’(x), and K’(x) is a purely transcendental extension of K’. We define 
a homomorphism @K’(X) -K’(x)[t] by setting E,(a) = a for CCEK’ and 
J%(X) = x + t; then 

E”(E,(X)) = x + 24 + t = E,+,(x), 

so that E,oEt= Et+u holds over the whole of K’(x). Thus E, defines a 
iterative higher derivation D of K’(x) over K’. Since K is O-&ale over K’(x), 
bY Theorem 2 there is an extension of D to an iterative higher derivation of 
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K over K’; the term of degree 1 in D is D, so that Q is an extension of D (or 
more precisely, of (1, D)). n 

Exercises to 527. 

27.1. Let k be a ring, A a k-algebra and DEDer,(A). Say that D is integrable 
over k if there exists an extension D EHS,(A) with D = (Do, Di ,. .) and 
D = D, (then p is an integral of D); set Ider,(A) = {D6Der,(A)ID 
is integrable over k}. Then prove that Ider,(A)= Der,M is an A- 
submodule. 

27.2. In the notation of this section, consider the construction of &:A - 
Aft] corresponding to D; then if t’~A[t] is any power series with 
no constant term, we have AIt’] c A[tj, so that &.:A --, AIt’] can be 
composed to a homomorphism &:A --A[tj, to give a different 
higher derivation. Thus for D = (De, D,, . . .), the homomorphism E,, 
corresponds to the higher derivation D’ = (D,, 0, D,, 0, D,, . . .); taking the 
product D.D’ we get an integral of D, different from D. Thus for given 
DEIder,(A) there will in general exist many integrals of D; verify that if 
Dp = 0 and we impose the condition that the integral should be iterative, it 
is still not uniquely determined. 



10 
I-smoothness 

I-smoothness is a notion which Grothendieck obtained by reformulating 
the theory of simple (non-singular) points in algebraic geometry in terms of 
an algebraic ‘infinitesimal analysis’, which makes effective use of nilpotent 
elements. The definition looks complicated at first sight, but it has various 

y alternative formulations, and is a natural and useful notion. In 928, along 
with the general theory of Z-smoothness following [Gl] we prove the 

i existence of a coefficient field for a complete local ring of equal character- 
: istic, relating this to the author’s idea of quasi-coefficient field 
! (Theorem 28.3), and discuss Faltings’ very simple proof of the equivalence 
:-of m-smoothness and geometric regularity for local rings. In 929 we deduce 
the existence of a coefficient ring for a complete local ring of unequal 

1 characteristic from Theorem 28.10, and prove some classical theorems of 
: Cohen on complete local rings; these results are of decisive significance for 
‘! the usefulness of taking completions. $30 is something of a jumble of various 
theories, but is for the most part occupied with the so-called Jacobian 
criterion for regularity. On this subject, we treat the simple and powerful 
method obtained by the author’s 1972 seminar in the case of a ring containing 
a field of characteristic 0; in the most difficult case of power series rings in 

, characteristic p, the only method currently available is that of Nagata, and 
’ we explain this as simply as possible. 

28 I-smoothness 
Let A be a ring, B an A-algebra, and I an ideal of B; we consider 

B with the I-adic topology. We say that B is Z-smooth over A if given an 
A-algebra C, an ideal N of C satisfying N2 = 0, and an A-algebra 
homomorphism u:B -C/N which is continuous for the discrete topo- 
logy of C/N (that is, such that u(P)= 0 for some v), then there exists 
a lifting v:B--+C of u to C. 

B u CJN 

213 
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If I = (0) that is if no continuity condition is imposed on U, then this is the 
definition of O-smooth given in $25. Write f’: C - C/N for the natural 
map; then from f‘u(I’) = ~(1’) = 0 we have ~(1’) c N, hence ~(1~‘) c N2 = 0, 
so that u:B - C (assuming it exist) is continuous for the discrete topology 
of C. From this, one sees that if B is I-smooth over A, and instead of the 
condition N2 = 0 we assume that C is an N-adically complete ring, then 
a continuous homomorphism u:B - C/N has a lifting v:B - C, and v 
is continuous with respect to the N-adic topology of C; this is because 
we can lift u successively to B --t C/N’ of i = 1,2,. . . , and then v is given 
by B- @ C/N’=C. 

We now return to the original assumption N2 = 0; we say that B is 
I-unramified (or I-neat) over A if given C, N and a continuous homo- 
morphism u:B + C/N, there exists at most one lifting of u to C. If B is 
both I-smooth and I-unramilied over A, we say that B is I-etale. These 
conditions become weaker if we replace I by a larger ideal. 

Theorem 28.1 (Transitivity). Let A 5 B LB’ be ring homomor- 
phisms, and suppose that g’ is continuous for the I-adic topology of B 
and the I’-adic topology of B’; if B is I-smooth over A, and B’ is I’-smooth 
over B then B’ is I’ smooth over A. The same thing holds with I-unramified 
in place of I-smooth. 
Proof. Suppose that u is given in the diagram; 

then since ug’:B -C/N is continuous, by the I-smoothness of B, there 
exists a lifting w:B - C. Next by the It-smoothness of B’ over B, we can 
lift u to v:B’ --+ C. Also if B is I-unramihed over A, and the map v in the 
diagram exists, then w  = ug’ is unique, and if in addition B’ is I’-unramified 
over B then v is unique. n 

Theorem 28.2 (Base-change). Let A be a ring, B and A’ two A-algebras, 
and set B’ = B@, A’. If B is Z-smooth over A then B’ is IB’-smooth over 
A’. The same thing holds for I-unramified. 
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Proof. We have the diagram 

B p B’ -L C/N 

T 4J 
A -A’ - C, 

where p, q are the natural homomorphisms. Then if u satisfies u(Z”B’) = 0, 
there is a lifting v: B --+ C of up. Then if we define v’: B’ = B @A A’ - C, 
by U’ = v @A, this is a lifting of u to C. For unramilied, this is clear from 
the fact that v’ is uniquely determined by v. n 

Example 1. Let k be a ring, (A, m) a local ring, (A,&) its completion, 
and k -A a homomorphism. Then 

(i) a is rir-etale over A; 
(ii) A is m-smooth (or m-unramified) over koA is lit-smooth (or 

tit-unramified) over k. 
We get a proof at once from the fact that A/m” N A/m” for all V. 

Example 2. Let A be any ring, and set B = A[X,, . . , X,1 and I = 1; XiB; 
we give B the I-adic topology. Then B is I-smooth over A. 

7 
$ 

Remark. The gap between l-smoothness and O-smoothness has been 
+ 
ii studied by Tanimoto [l], [2]. For instance, if k is a field, then 
F k[X i,. . . , X,l] is O-smooth over k only when char k = p and [k:kP] < co. 
!: 
it. 

Let (A,m, K) be a local ring. If A is of characteristic p, then also 

$I 
char K = p; moreover, if char K = 0, then char A = 0, and A contains the 

E 
g 

rational number field Q. In either of these cases A is said to be 
:. equicharacteristic, or a local ring of equal characteristic; this is equivalent 
8 to saying that A contains a field. If A is not of equal characteristic, then 
1 either 

: or 
char A = 0 and char K = p, 

char A = p” for some n > 1 and char K = p. 

In this case we say that A is a local ring of unequal characteristic. 
Let A be an equicharacteristic local ring and let K’ be a subfield of A. 

’ We say that K’ is a coefjcient field of A if K’ maps isomorphically to K 
under the natural mapA -A/m = K, or equivalently, if A = K’ + 
m. Moreover, we say that K’ is a quasi-coefficient jield of A if K is 0-etale 
Over K’ (or rather, over the image of K’ in K). 

Theorem 28.3. Let (A, m, K) be an equicharacteristic local ring. Then 
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(i) A has a quasi-coefficient field; 
(ii) if A is complete, it has a coefficient field; 
(iii) if the residue field K of A is separable over a subfield k c A then 

A has a quasi-coefficient field K’ containing k; 
(iv) if K’ is a quasi-coefficient field of A, then there exists a unique 

coefficient field K” of the completion A containing K’. 
Proof. (iii) Suppose that B = (r1,t2,. . .} is a differential basis of K/k, 
and for each ti, choose an inverse image x+A. Then by Theorem 26.8, 

t135 2,. . . are algebraically independent over k, so that the subring 
4X1,x2,... ] of A meets m in (O}, and hence A contains the field 
K’ = k(x,, x2,. . .). We identify K’ with its image k(B) in K, so that K is 
clearly 0-etale over K’, and K’ is a quasi-coefficient field, as required. 

(i) By assumption A contains a field, so that it contains a perfect field 
(for example, the prime subfield). We need only apply (iii) to this. 

K = ;i/ti 

t t, 
K’- A 

(iv) In the diagram above, there exists a unique lifting of the identity 
map K - A/lit to K - 2, and its image is the required coefficient field. 

(ii) follows from (i) and (iv). n 

The next lemma will be made more precise in Theorem 28.7. 

Lemma I. Suppose that (A, m, K) is a Noetherian local ring containing a 
field k. If A is m-smooth over k then A is regular. The converse holds if 
the residue field K is separable over k. 
Proof. Take a perfect subfield k, c k; then k is O-smooth over k,, so that 
by transitivity, A is also m-smooth over k,, so that we can assume that 
k is a perfect field. Also, replacing A by A, we can assume that A is 
complete. Then A has a coefficient field containing k; for ease of notation 
we write K for this, and identify it with the residue field. If {x1,. . . ,x,) 
is a minimal basis of m then as K-algebras we have 

A/m2 N K[X,, . . . ,X,]/(X,, . . . ,X,J2. 

The composite 

A - A/m2 ZK[X,, . . . ,X,]/(X)’ Z K[X,,. . ., X,j/(X)2 

lifts to A-KIX1,..., X,1, and by Theorem 8.4, this is surjective. Thus 
dimA3dimK[X,,...,X,J= n, and together with embdim A = n this 
gives the regularity of A. 

Conversely, if A is regular and K is separable over k, then A has a 
coeficient tield K containing k. Let {x1,. . . ,x,) be a regular system 
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of parameters of A, and define a homomorphism of K-algebras 
-+ A^ by It/(X,) = xi; then once more by Theorem 8.4, 

Ic/ is surjective, and comparing dimensions, we see that 

K[X,,...,X,]=AI. 

Therefore A^ is ti-smooth over K, and since K is O-smooth over k, we 
see that A^ is ti-smooth over k, and therefore A is m-smooth over k. n 

Let k -A -B be ring homomorphisms, and let I be an ideal of B; 
we consider B in the I-adic topology. We say that B is I-smooth over A 
relative to k if the following condition holds: for any A-algebra C, and an 

ch that N2 = 0, given an A-algebra homomorphism 
fying u(Z”) = 0 for sufficiently large v, if u has lifting 

v’:B - C as a k-algebra homomorphism, it also has a lifting v’:B - C 

Theorem 28.4 Let k L A 5 B and I c B be as above; then the following 

(1) B is l-smooth over A relative to k; 
is a B-module such that Z”N = 0 for sufficiently large v, then 

Der,(B, N) - Der,(A, N) is surjective; 
(3) for every v > 0, the mapR,/, OA(B/ZY) -!&,,@,(B/I”) has a left 

inverse (that is, it maps injectively onto a direct summand). 
Proof. (1)~(2)IfI”N=0,setC=(B/Z”)*N,andletu:B-B/I’=C/Nbe 
the natural map. Given DEDer,(A, N), define ).:A -C by j”(a) = 
(us(a), D(a)). If we consider C as an A-algebra via & then be(u(h),O)eC 
is a k-algebra homomorphism from B to C lifting U, so that by assumption 
there exists a lifting u’: B -+ C of u as an A-algebra homomorphism; then 
writing v’ in the form 

v’(b) = (u(b), D’(b)), with D’EDer,(B, N), 

we have v’g = ;C, so that D’g = D. 
(2)*(l) Suppose given a commutative diagram 

B u C/N 
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with j the natural map, and ~(1”) = 0; if u:B -+C is a k-algebra 
homomorphism satisfying jo = u and ugf = 1J, then setting D = 1* - ug, we 
can view D as an element of Der,(A, N). By assumption there exists 
D’EDer,(B, N) such that D = D’g. Using this, we set u’ = u + D’; then 

u’g = cg + D’g = 1- D + D = R, and jv’ = u. 
(2)0(3) comes from observing the general fact that for a ring R, a 

map cp:M +M’ of R-modules has a left inverse if and only if for every 
R-module N the induced map 

Horn&W, N) --+ Hom,(M, N) 

is surjective. n 

Theorem 285. Let A be a ring, B an A-algebra, and I an ideal of B; set 
B = B/I, and assume that B is I-smooth over A. Then n,,,@,B is 
projective as a B-module. 

Proof. It is enough to show that for an exact sequence L LM 40 of 

B-modules, the sequence 

Homg(Qr,, @B, L) -+ Horn&J,,, @ 8, M) -+ 0 
is exact, that is that 

Der,(B, L) - Der,(B, M) + 0 
is exact. Set C = B* L and N = Ker cp. If we view both L and N as ideals of 
C, we have L2 = N2 = 0 and C/N N B*M. Now for any DtzDer,(B, M) 

we have an A-algebra homomorphism B-C/N given by 

b t-+(6, D(b))eB* M, 

and lifting this to B -+ C is equivalent to lifting D to an element of 
Der,(B, L). n 

Lemma 2. Let B be a ring and I an ideal of B, and let u: L - M be a 
map of B-modules; assume that M is projective. Suppose also that one 
of the following two conditions hold: 

(a) I is nilpotent; 
or (p) L is a finite B-module and I c rad(B). 
Then 

u has a left inverseoti:L/IL- M/IM has a left inverse. 
Proof. (-) is trivial. To prove (G), suppose that V: M/lM -L/IL is a 

left inverse of U. Since M is projective, there is a map u: M -+ L such 

that the diagram 

” 
M--+ L 

I 1 
M/IM -L L/IL 
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commutes. Set w = uu. Then w induces the identity on L/IL, so that 
L = w(L) + IL, so that by NAK, L = w(L). Hence if L is a finite B-module, 
then by Theorem 2.4, w is also injective. Furthermore, if I” = 0 we do the 
following: if xEKer w then 0 = w(x) = xmod IL, so that XEZL, and we 
can write x = Caiyi with a,~Z and y,~L. Then 

0 = W(X) = C Ui W(yi) E Jf aiyi = X mod Z’L, 

so that XEZ~L, and proceeding in the same way we arrive at XEI”L = 0. 
Hence also in this case w is an automorphism of L, and w-lo is the 
required left inverse of U. n 

Theorem 28.6. Let k -+ A -B be ring homomorphisms, I an ideal of B, 
and suppose that B is Z-smooth over k. Set B, = B/Z. Then the following 
conditions are equivalent: 

(1) B is Z-smooth over A; 

(2) fi.4,kOABl -Q B,k @Bl has a B,-linear left inverse. 
Proof. (l)*(2) is contained in Theorem 4. Conversely, suppose that (2) 
holds. For any v > 0, set B, = B/Z”; then since Z-smoothness and Iv-smooth- 
ness are the same, by Theorem 5, Qsik @ B, is a projective B,-module. Now 
set I, = Z/Z”; then BJZ, = B,, and (I,,)’ = 0, so that applying Lemma 2, we 
see that R,,,OAB, -QRIk &BY has a left inverse. By Theorem 4, B is 
Z-smooth over A relative to k, but since it is also Z-smooth over k, it is also 
Z-smooth over A. w 

Corollary. Let (A,m,K) be a regular local ring containing a field k; then 

A is m-smooth over koR,O, K -0, aA K is injective. 
Proof. Let k, c k be the prime subfield. Then by Lemma 1, A is m-smooth 
over k,, so that we need only apply the theorem to k, -k -A. n 

Let A be a Noetherian local ring, and k c A a subfield. We say that A 
is geometrically regular over k if A Ok k’ is a regular ring for every finite 
extension field k’ of k. 

Theorem 28.7. Let (A,m, K) be a Noetherian local ring, and kc A a 
subfield; then 

A is m-smooth over ko A is geometrically regular over k. 

Proof. (a) Let k’ be a finite extension field of k. Then A Okk’ = A’ is 
mA’-smooth over k’ by base-change. Let n be any maximal ideal of A’; 
then A’ is a finite A-module, hence integral over A, so that n 3 mA’. Thus 
if we set A” = AL and m” = nA” then A’ --+ A” is continuous for the mA’- 
adic topology of A’ and the m”-adic topology of A”, but as a localisation A” 
is O-etale over A’, so that by Theorem 1, A” is m”-smooth over k’, and hence 
by Lemma 1, A” = A; is a regular local ring. This is what was required to 
prove. 
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(c’) According to Lemma 1, there is only a problem if k is of characteristic 
p. The proof we now give was discovered in 1977 by G. Faltings Cl] while 
he was still a student. 

By the corollary of the previous theorem, we need only prove 
that i&&K -R, oaK is injective. For this, we let x1,. . , , x,Ek be 
p-independent elements, and prove that dx, , . . . , dx,EQA @ K are linearly 
independent over K. Write ai for pth roots of the xi, and set k’ = k(cc, , . . . ,a,). 
Then 

B = A&k’ = ACT,, . . . , T,]/(T; -x1,. . . , T; - x,) 

is a Noetherian local ring; write n for its maximal ideal, and L for the residue 
field L = B/n. By Theorem 25.2 the sequence 

is exact. Similarly, 

O-m/m2 -Q,OaK -R,-+O 

is exact. Now consider the commutative diagram: 
0 + n/n2 - R,@,L - Q,+O 

VI 
I 

v2/ ml 

O-r(m/m2)OKL-RAOAL-SZKOKL-,0 

where cpl, (p2 and (p3 are the natural maps. Then by the snake lemma, we 
get a long exact sequence of L-modules 

O-+Kerqp --+Kerq2 -Kerq3 
- Coker cp 1 - Coker ‘p2 - Coker (p3 -+ 0. 

By assumption A and B are regular local rings of the same dimension, so 
that rank m/m” = dim A = rank n/n2, so rank Kerql and rank CokerqI 
are finite and equal; moreover, since L is a finite extension field of K, both 
rank Ker (p3 and rank Coker (p3 are finite and equal (the Cartier equality). 
Therefore by the above exact sequence, we get 

rank Ker (p2 = rank Coker cp2. 
However, Coker (p2 = QBiA C&L, and by Theorem 25.2, 

R ,,,=BdT,+...+BdT,-B’, 

so that both of Ker ‘p2 and Coker cp2 have rank equal to r. Now if we set 
J=(T:-x,,..., T; - x,) we have an exact sequence 

J/J2 ~QA[T,,...,T,I OB=SZ,OBOCBdTi---*S1,-*0, 

and since this remains exact after performing CC&L, we see that Ker CPZ 
is generated by dx, , . . . , dx,. Therefore dx, , . . . , dx,EQA 0 L are linearly 
independent over L, so that they must also be linearly independent over 
K as elements of Q, @ K. This is what we had to prove. n 
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Let B be an A-algebra, I an ideal of B, and consider B with the I-adic 
topology. Let N be a B-module such that I”N = 0 for some v > 0; in what 
follows we will say that a B-module with this property is discrete. An 
A-bilinear map f:B x B -+ N will be called a continuous symmetric 
2-cocycle if it satisfies the three conditions. 

(4 xf(y, 4 - f(xy, 4 + ./Xx, YZ) - ./TX, Y)Z = 0 for all x, y, =B, 
(B) .!I-% Y) = f(Y, 42 
(y) there exists p > v such that f(x, y) = 0 if either x~l” or y~l’. 

If this holds, we set f(1, 1) = r; then substituting y = z = 1 in (a) gives 
xz = f(x, 1). 

Deline a product on the A-module C = (B/I”)@ N by 

:’ 6, MY, 4 = GE - .0x, Y) + xv + YO 

1’ for x, DEB; then C is a commutative ring with unit (1, z), and N is an 
: ideal of C satisfying N2 = 0. If we define a map A -C by a~(G,az) 
,’ then this is a ring homomorphism, and the diagram 

i B LB/I” = C/N 

T T 
A-C 

is commutative; then a necessary and sufficient condition for u to have a 
lifting to B --+ C is that there should exist an A-linear map g:B -N 
such that 

(d) f(x, Y) = xgb) - gW + &)y for all x9 YEB. 
For if g exists, then defining v:B + C by v(x) = &g(x)) we find that v 
is a lifting of U, and conversely, if there is a lifting v of u one checks easily 
that one can find a g as above. 

We say that the 2-cocycle f splits if there exists g satisfying (cr’). For 
any A-linear mapg:B ---+ N, we write 6g for the bilinear map B x B 
-N given by the right-hand side of (N’); this satisfies (a) and (/I), and 
if g is continuous (that is, 3~ such that g(1*) = 0), then it also satisfies (y). 

Theorem 28.8. Let A be a ring and B an A-algebra with an I-adic topology. 
(i) If B is Z-smooth over A then every continuous symmetric 2-cocycle 

f:B x B -N with values in a discrete B-module N splits. 
(ii) If B/I” is projective as an A-module for infinitely many n, and if 

every continuous symmetric 2-cocycle with values in a discrete B-module 
splits, then B is Z-smooth over A. 
Proof. (i) is what we have just said. 

(ii) Suppose that we are given a commutative diagram 

B:CIN 

T T A-C 
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with N2 = 0 and u(P) = 0; then in view of N2 = 0, the C-module N can 
be viewed as a C/N -module, and by means of u as a B-module; but then 
1”N = 0, SO that N is a discrete B-module. Take an integer n > v such that 
B/Z” is projective as an A-module. Then u can be lifted as a map of 
A-modules to i:B -+ C such that ,%(I”) = 0. For x, yeB we set 

fk Y) = ~XY) - WW, 
and since ,I is a ring homomorphism modulo N, we have f(x, y)~ N. Now 
for (EN and XEB, by definition we have n(x).< = x.< (both sides are 
products evaluated in C), and using this one computes the left-hand side 
of (a) to be zero. The symmetry (p) is obvious. Also n(P) = 0, so that we 
also get (y) . Thus f is a continuous symmetric 2-cocycle, and hence by 
assumption there is an A-linear map g:B - N satisfying 

S(X> Y) = XdY) - dXY) + S(X)Y. 
Now if we set v = i + g, we have 

4XY) = GY) + &Y) 
= 4XMY) + Sk Y) + dXY) 
= &MY) + WdY) + &V(Y) 
= 4+(Y)~ 

so that u is an A-algebra homomorphism, and is a lifting of U. n 

Theorem 28.9 ([Gl 1, 19.7.1). Let (A, m, k) and (B, n, k’) be Noetherian 
local rings, and cp: A --+ B a local homomorphism; set B, = B @A k = B/mB 
and n, = n/mB. Then the following conditions are equivalent: 

(1) B is n-smooth over A, 
(2) B is flat over A and B, is n,-smooth over k. 

This is an extremely important theorem, but the proof is long and 
difficult, and we refer to [Gl] for it. We content ourselves with proving 
the following analogous theorem, which is all that we will need in what 
follows. 

Theorem 28.10. Let (A, m, k) be a local ring, and B a flat A-algebra; suppose 
that B, = B@,k is O-smooth over k. Then B is mB-smooth over A. 
Proof As one sees from the definition of mB-smoothness, it is enough to 
prove that B/m”B is O-smooth over A/m” for every v > 0. Since B/m”B is 
flat over A/m’, we can assume that m is nilpotent. Then a flat A-module 
is free (by Theorem 7.10), so that B is a projective A-module, and hence 
by Theorem 8, we need only show that every symmetric 2-cocycle 
f:B x B --f N with values in a B-module N splits. First of all, in the case 
that N satisfies mN = 0, then since f is A-bilinear f is essentially a 2- 
cocycle over B,, that is there is a map fo:B, x B, -N such that 

f(x, Y) = m-c Y). 
Now B, is O-smooth over k, so that by Theorem 8, So splits, that is 
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there is a map qo:B, -N such that ,f, = 6g,. Thus setting g(x) = g,,(.X) 
we get 

.t” = &l. 
In the general case, write cp for the natural map N ---+ N/mN, and consider 
cp0.L then this splits, that is there exists @:B - N/mN such that 

Now since B is projective over A, we can lift S to an A-linear map g:B -+ N, 
and then f - 6y is a 2-cocycle with values in mN. Doing the same thing 
once more, we find h:B - mN such that f - S(g + h) is a 2-cocycle with 
values in nt2 N. Proceeding in the same way, since m is nilpotent we finally 
see that ,f splits. n 

Exercises to $28. Prove the following propositions, 

28.1. Theorem 28.10 also holds on replacing smooth by unramified or etale. 

28.2. Let k be a non-perfect field of characteristic p, and ask - kP; set 
A = k[X],x,_o,, Then the residue field k(a’*“) of A is inseparable 
over k. This ring A does not have a coeffkient field containing k, 
but is O-smooth over k. 

i’ 29 The structure theorems for complete local rings 

By Theorem 28.3, a complete local ring of equal characteristic A 
[ has a coefficient field. If K is a coefficient field of A, and x1,. . . , x, are generators 
i of the maximal ideal, then any element of A can be expanded as a power 
! series in x 1,. ,x, with coefficients in K, and therefore A is a quotient of 
1 
: 

the regular local ring K[X,, . ,X,1. We now want to extend all of this 

; 
;. 

to the case of unequal characteristic. 
We say that a DVR of characteristic 0 is a p-ring if its maximal ideal 

J, is generated by the prime number p. If K is a given field of characteristic 
1 
P 

p, then there exists a p-ring having K as its residue field. This follows by 
;” applying the next theorem to A = L,,. 
1. 

Theorem 29.1. Let (A, tA, k) be a DVR and K an extension field of k; then 
there exists a DVR (B, tB, K) containing A. 
Proof. Let {x~}~~~ be a transcendence basis of K over k, and set k, = 
k({x,}). We take indeterminates {XL},,, over A in bijection with the 
{XL}, and set A[ {XA }̂] = A’ and A, = (A’)tAf. Now A’ is a free A-module, and 
hence separated for the t-adic topology; therefore, so is A,, and A, is a DVR 
with A,/tA, N k,. Hence, replacing A and k by A, and k,, we can assume 
that K is algebraic over k. Let L be an algebraic closure of the field of 
fractions of A, and let 9 be the set of all pairs (B, cp), where B is an 
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intermediate ring A c B c L and cp:B --+ K is an A-algebra homomorph- 
ism, satisfying the conditions 

(*) B is a DVR and Ker cp = rad (B) is generated by t. 
We introduce an order on 9 by defining (B, cp) < (C, $) if B c C and 
$1, = cp. Let us show that F has a maximal element. Suppose that 

is a totally ordered subset of 8, and set 

then one sees easily that Be is a local ring with maximal ideal tB,. If 
0 # XEB,, then XEB~ for some i, and since Bi is a DVR we can write 
x = t”u with u an unit of Bi and some n. From this we get x#t”+lBo, so 
that B, is t-adically separated. Hence B, is a DVR, and if pPo:B, + K is 
defined to be equal to 4oi on Bi then (B,, (p&9. Hence by Zorn’s lemma 
P’ has a maximal element; suppose that (B, q) is one. Then if p(B) # K, take 
~EK - q(B), let f(X) be the minimal polynomial of a over q(B), and take 
a manic f(X)sB[X] which is an inverse image of f(X). Then f(X) is 
irreducible in B[X], and hence (by Ex. 9.6) also irreducible over the field 
of fractions of B. Let tl be a root of f(X) in L, and set B’ = Bra]; then 
B’ = B[X]/(f). Therefore 

B’lt B’ = BCxl/(t, f) = cp(B) CXIATI = dW4 
is a field; since B’ is integral over B, every maximal ideal of B’ contains 
tB’, so that B’ is a local integral domain with maximal ideal tB’, and is 
Noetherian because it is finite over B, therefore a DVR. This contradicts 
the maximality of B, so that we must have p(B) = K. 

Remark. Since B is an integral domain containing A, it is flat over A by 
Ex. 10.2. In EGA O,,,, (10.3.1), the following more general fact is proved: 
let (A, m, k) be a Noetherian local ring, and K an extension field of k, then 
there exists a Noetherian ring B containing A satisfying the three 
conditions (1) rad (B) = mB, (2) B/mB is isomorphic over k to K, and (3) B is 
flat over A. 

Theorem 29.2. Let (A, m, K) be a complete local ring, (R,pR, k) a p-ring, 
and qo:k -K a field homomorphism; then there exists a local homo- 
morphism p:R --+A which induces q,, on the residue fields. 
Proof. Set S = ZPz, and let kO c k be the prime subfield. Since cp,(k,) c K. 
the prime number p, viewed as an element of A, belongs to m. Hence the 
standard homomorphism Z -+A extends to a local homomorphism 
S --+ A. Now R &k, = R/pR = k is a separable extension of k,, and 
hence O-smooth over k,; also R is a torsion-free S-module, hence flat over 
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at by Theorem 28.10, R is pR-smooth over S. 

j fqi:“‘i 

s -LA@+ 1 

re, as we discussed at the beginning of $28, we can lift 
/m = K successively to R --+ A/d, and using the fact that A = 
i, we get cp:R --+ A making the left-hand diagram commute. n 

te p-ring is uniquely determined up to isomorphism by 

Suppose that R and R’ are both complete p-rings with residue 
; then by the theorem there exists a local homomorphism 

cp:R -R’ which induces the identity map on the residue field. We have 
R’ = q(R) + pR’, and of course cp(p) = p, so that by the completeness of R we 
see that 50 is surjective, and is also injective, since p”R is not contained in 
Ker cp for any IZ. Therefore R N R’. w  

Let (A, m, k) be a complete local ring of unequal characteristic, and let 
p = char k. We say that a subring A, c A is a coefficient ring of A if A, 
is a complete Noetherian local ring with maximal ideal pA, and 

A = A, + m, that is, k = A/m N A,/pA,. 

By Theorem 1 applied to the residue field k of A, there exists a p-ring S 
such that S/pS = k; write R for the completion of S, so that R is a complete 
p-ring with residue field k. By Theorem 2, there exists a local homo- 
morphism cp:R -+ A inducing an isomorphism on the residue fields. If 
we set q(R) = A, then this is clearly a coefficient ring of A. If A has char- 
acteristic 0 then cp is injective and A, N_ R. If A has characteristic p” then 
A, N R/p”R. We summarise the above discussion in the following theorem. 

f (A, m, k) is a complete local ring and p = char k then A 
has a coefficient ring A,. If A has characteristic 0 then A, is a complete 

I In what follows, in order to include the case of equal characteristic in 
i our discussion, we also consider coefficient fields as being coefficient rings. 
[’ From the previous theorem and Theorem 28.3, we get the following 
i important result. 

Theorem 29.4. (i) If (A, m) is a complete local ring and m is finitely 
generated, then A is Noetherian. 

(ii) A Noetherian complete local ring is a quotient of a regular local 
ring; in particular it is universally catenary. 

(iii) If A is a Noetherian complete local ring (and in the case of unequal 
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characteristic, A is an integral domain), then there exists a subring A’ c A 
with the following properties: A’ is a complete regular local ring with the 
same residue field as A, and A is finitely generated as an A’-module. 
Proof. We choose a coefficient ring A, of A. If m = (x1,. . ,x,) then every 
element of A can be expanded as a power series in x1,. . . , x, with coefficients 
in A,, so that A is a quotient of A,I[X,,. . .,X,,J and hence Noetherian. 
Now A, is a quotient of a p-ring R, so that A is a quotient of R[X, , . . . , XJ, 
which is a regular local ring, hence a CM ring, and therefore according 
to Theorem 17.9, A is universally catenary. To prove (iii), set dim A = II, 
and in the case of equal characteristic let (y,, . . . , y,} be any system of 
parameters of A; if A is an integral domain of characteristic 0 and 
char k = p, we can choose a system of parameters {y, = p, y2,. . . , y,) of 
A starting with p. In either case R = A,, so that we set A’ = R[y]. Then 
A’ is the image of (p:R[Y] -A, where R[Y] is the regular local ring 

R[Yj = R[IY, ,..., Y,], or R[Y2 ,..., Y,,] if y, =p, 

and cp is the R-algebra homomorphism defined by cp(Yi) = yi. Set m’ = 
c; y,A’. Since A/m = A’J m’, every A-module of finite length has the same 
length when viewed as an A’-module. In particular A/m’A is a finite module 
over A’/,’ and A is m’-adically separated, so that by Theorem 8.4 A is a finite 
A’-module. Therefore, we have 

dim A’ = dim A = n. 

R[Y] is an n-dimensional integral domain, and if Ker cp # 0 we would have 
dim A’ < n, which is a contradiction. Therefore cp is injective and 
A’ _N R[Y]. 

Remark. In the case of unequal characteristic when A is not an integral 
domain, (iii) can fail to hold. If A is of characteristic pm with m > 1, then 
every subring of A has the same characteristic pm, so cannot be regular. 
Even if A has characteristic 0, the following is a counter-example: let R 
be a complete p-ring and A = R[Xj/(pX); then A is a complete one- 
dimensional Noetherian local ring, but if a subring A’ as in (iii) were to 
exist, A’ would be a one-dimensional regular local ring, hence a DVR, 
and since A’ has characteristic 0 and its residue field characteristic P, 
A’/pA’ would be an Artinian ring, and hence also A/pA would be Artinian. 
But A/pA P k[X] . 1s one-dimensional, and this is a contradiction. 

The proof of Theorem 4 shows that it is sufficient to assume that p is 
not in any minimal prime ideal of A. 

Corresponding to the definition of quasi-coefficient field of an equi- 
characteristic local ring, let us define quasi-coefficient rings in the case of 
unequal characteristic. Let (A, m, K) be a possibly non-complete local ring, 
and suppose char K = p. A subring S c A is said to be a quasi-coefficient 



227 §29 The structure theorems for complete local rings 

ring if it satisfies the following two conditions: 
(1) S is a Noetherian local ring with maximal ideal pS; 
(2) K = A/m is 0-etale over S/pS. 

In view of (1) if A has characteristic 0 then S is a DVR, and if A has 
characteristic p” then S is an Artinian ring. 

Theorem 29.5. Let (A, m, K) be a local ring, and suppose char K = p. Let 
Cc A be a subring, and assume that C is a Noetherian local ring with 

; maximal ideal PC, and that K = A/m is separable over C/PC. Then there 
i exists a quasi-coefficient ring S of A containing C; moreover, if A is flat 
1 over C, then it is also flat over S. 
i Proof. Let {Bn}ncl\ be a p-basis of K over C/PC, and choose an inverse 
e image blgA for each PA. Setting C[{b,}] = c’, by Theorem 26.8 we see 
i’ that C’/(mnC’) = (C/pC)[{/?,>] is a polynomial ring over C/PC. Hence 
; iff(...X,...)’ is a non-zero polynomial with coefficients in C which satisfies 
!; f(b,)Em, then setting p’ for the highest common factor of the coefficients 
p off, we have 
;< t k 
i: 

f(X) = ~‘.fdW and Jb&) Z 0. 
& Thus f,(b,)$m, and we must have r > 0, so that we have shown that 
t mnC’=pc’. Setting S=(C),. we have ScA, mnS=pS and SIPS= 

rice c’ is p-adically separated, so is S, and hence all the 
the form (0) or (p”). Thus S is Noetherian, and it satisfies 

all the conditions for a quasi-coefficient ring of A. If A is flat over C, then 

p”C BcA N p”A. 

and hence the composite 

p”C@A = (p”C@,S)@,A -p”S@A -p”A 

is injective; but the first arrow is surjective, so that the second arrow 
p”SO A -p”A is injective. By Theorem 7.7, this proves that A is flat 

All the assumptions of this theorem are satisfied by taking C to be the 
image of Z,,, + A, so that this proves that every local ring has a 
Quasi-coefficient ring (including the quasi-coefficient field of a local ring 
in the equal characteristic case). 

Theorem 29.6. Let (A, m, K) be a local ring, and A^ its completion, and 

a”PPose char K = p. Let S be a quasi-coefficient ring of A, and write S 
for its image in A^; then there exists a unique coefficient ring A, of A^ 

lnce s’ is a quasi-coefficient ring of A, we can assume that A is 
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a complete local ring. If A has characteristic 0 then S is a DVR, and by 
Theorem 1 there exists a complete p-ring R containing S and with residue 
field K. Now K is 0-etale over S/p& and R is flat over S, so that R is 
pR-etale over S (by Ex. 28.1). Hence there exists a unique S-algebra homo- 
morphism R -A which induces the identity map on the residue 
fields; we write A,, for the image of R. Then R 2: A, and A, is a coefficient 
ring of A. If A had another coefficient ring B containing S then B would 
also be a complete p-ring, and for the same reason as above, there exist 
unique S-algebra homomorphisms B --+ A, and B -A, so that we must 
have B = A,. 

If A has characteristic p” then S is an Artinian ring, and therefore 
complete, so that applying Theorem 3 to S itself, we can write S = R&J”) 
with R, a complete p-ring. Let R be a complete p-ring containing R, and 
with residue field K; then by Ex. 28.1, R is pR-etale over R,, so that there 
exists a unique R,-algebra homomorphism R -A inducing the identity 
map on the residue field K. The image is a coefficient ring of A 
containing S; the uniqueness is proved as in the case of characteristic 0. n 

Next we study the structure of complete regular local rings. Let (A, m, K) 
be a local ring of unequal characteristic, and suppose that char K = p; 
then A is said to be ram$ed if przm2 and unramified if p$m’. We will 
also say that A is unramitied in the case of equal characteristic. 

Theorem 29.7. An unramified complete regular local ring is a formal power 
series ring over a field or over a complete p-ring. 
Proof. Let R be a coefficient ring of A. In the case of equal characteristic, 
R is a field, and if x1,. . . ,x, is a regular system of parameters of A then 
A=R[.x, ,..., x,j-RIXI ,..., X,] (see the proof of Theorem 4). In the 
case of unequal characteristic, R is a complete p-ring, and since pern - m2, 
we can choose a regular system of parameters {p,x2,. . .,x,) of A 
containing p. Then A = R[xz, . . . , x,l] ‘v R[X2,. . . , X,]. n 

In the ramified case, it is not necessarily the case that A can be expressed 
as a formal power series ring over a DVR. To give the structure theorem 
in this case we need the notion of an Eisenstein extension. 

Lemma 1 (Eisenstein’s irreducibility criterion). Let A be a ring, and 
f(X) = X” + a,X”-’ + .*. + a,, with u,EA. If there exists a prime ideal P 
of A such that a,,..., a,,~p but a,$p2 then f is irreducible in A[X]. If 
in addition A is an integrally closed domain then the principal ideal (f) 
is a prime ideal of A[X]. 
Proof. If f is reducible, we can write f =(X’+ b,X’-’ + ... + 6,) 
(X’ -t clXs-’ + ... + c,) with 0 < r < n, s = n - r and b,, cjeA. Reducing 
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the coefficients on either side modulo p we have 

x”=(x’+6,x~-‘+~~~+&,)(x~+clx”-‘+~~~+c,) 

in (A/p)[X], so that we must have bi, cj~p for all i,j, but then a,, = b,c,q?, 
which contradicts the assumption. If A is an integrally closed domain and 
K is the field of fractions of A, then by Ex. 9.6, f remains irreducible in 
K[X]. Also, f is manic, so that we have f.A[X] = f.K[X] nA[X], and 
this is a prime ideal of A[X]. n 

Let (A,m) be a normal local ring; then an extension ring 

B = 4x1/m = ax1 
defined by an Eisenstein polynomial 

f=X”+a,X”-‘+...+a, with a+nt for all i, and an$m2 

is called an Eisenstein extension of A. By the lemma, B is an integral 
domain, and is integral over A. We have B/mB = (A/m)[X]/(X”), so that 
B has just one maximal ideal n = mB + xB. Hence B is a local ring, and 
its residue field coincides with that of A. 

Theorem 29.8. (i) If (A, m) is a regular local ring, then an Eisenstein 
extension of A is again a regular local ring. 

(ii) If A is a ramified complete regular local ring and R is a coefficient 
ring of A then there is a subring A, c A with the following properties: 

(1) A, is an unramified complete regular local ring containing R, and 
hence can be expressed as a formal power series ring over R; 

(2) A is an Eisenstein extension of A,. 
Proof. (i) Let B = A[x], and x” + alxn-’ + ... + a,, = 0, with aiEm and 

: a&m’. Then there exists a regular system of parameters {y,, . . . , y, = a,} 
, of A with a, as an element. As we have seen above, the maximal ideal of 

B is mB + xB, but a,ExB, so that {y,,...,y,-,,x} is a regular system 
of parameters of B. 

(ii) Since htpA = 1, by a skilful choice of a regular system of parameters 
{x1 ,..., xd) of A, we can arrange that (p,xz,. ..,x,} is a system of 
Parameters of A. If we set A, = R[x,, . . . , XJ then A, is a complete 
unramified regular local ring, and A is a finite module over A, (see the 
proof of Theorem 4). We set m, for the maximal ideal of A,. Now 
A = m,A+ AJx,], so that by Theorem 8.4 (or by NAK), A = A,,[x,]. 
Let 

f(X) = X” + a,X”-’ + ... + a,, with a,EA, 

be the minimal polynomial of x1 over A,. Then a,ExlA cm, so that 
a&m,,. Therefore by Hensel’s lemma (Theorem 8.3), all the aiEm,. We 

I are left to prove that a,,$mi. Write p = ct bixi with bigA, and express 
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the bi in the form b, = qi(xl), with qi(X)~A,[X]; then xi is a root of 

F(X) = (PICxlx + Cd2 ‘Pilxlxi - P3 

so that F(X) is divisible by f(X). Hence the constant term F(0) of F is 
divisible by a,. However, F(0) = ci qi(0)xi - p, and p, x2,. . . , xd is a regular 
system of parameters, so that F(O)@t$, hence also a,,$nti. n 

Exercises to $29. Prove the following propositions. 
29.1. Let A be a complete p-ring, y  an indeterminate over A, and B = Aby]; let c 

= S[x] be the Eisenstein extension of B given by x2 + yx + p = 0. Then c 
is a two-dimensional complete regular local ring, but is not a formal power 
series ring over a DVR of characteristic 0. 

29.2. In Theorem 29.2, if k is a perfect field then cp is uniquely determined by (pO. 

30 Connections with derivations 

Theorem 30.1 (Nagata-Zariski-Lipman). Let (A, m) be a complete Noether- 
ian local ring with QccA. Suppose that xi,...,x,Em and D1,...,DIe 
Der(A) are elements satisfying det(Dixj)$m. Then 

(i) There is a subring C c A such that 

A = qx,, . . .) xr] N qx,, . .,X,] 

Therefore x i , . . ,x, are analytically independent over C, and A is Z-smooth 
over C, where I = 1; Axi, and therefore also m-smooth over C. 

(ii) If g = C; ADi . is a Lie algebra, (that is if [Oi, Dj]~g for all i,j) then we 
can take C to be {a~AjD,a = ... = D,a = O}. 
Proof. Letting (cij) be the inverse matrix of (Dixj), and setting 0: = CCijDj, 

we have D;xj = 6,,, so that we can assume that Dixj = 6ij. Quite generally, 
for an element tEm and a derivation DEDer (A), we define a map 
E(D, t): A + A by 

w4 t) = f. p; 

by our assumptions, E(D, t)(u) = ~(t”/n!)D”(u) is meaningful, and one sees 
easily that E(D, t) is a ring homomorphism. Now set 

E, = EP,, -xi) and C, = Im(E,); 

then C, is a subring of A, and by computation we see that 

4($(y)&) 

+w-lD” 
1 (n- l)! ’ 

so that C, c {UEA (D,u = 0). 

+f(-Xl)nD"+l=O 

0 n! 1 ’ 

Conversely, if D,u = 0 then E,(u)=a, 
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I. 
$0 that C, = {aeAID,a =O}. Also, since for any arzA we have 
:gi(a) z amod x1 A, we see that elements of A can be expanded in 
pwer series in x1 with coefficients in C1, so that A = C,[xl]. Now 
S’&1(x1) = x1 - x1 = 0, so that x1 A c Ker E,, and conversely, if E,(a) = a - 
ii,Da + . . . =0 then aex,A, and therefore Ker E, = x,A. Also, 

p1 oD,c = OoE,(c) = c, so that C, nx,A = 0. Now we prove that x1 
Pts analytically independent over C,; by contradiction, suppose that 

c,x: +c,+~x;+~+...=O with c,EC, and c, # 0. 

;Then by Ex. 25.2, since x1 is not a zero-divisor in A, we have c,Ex~A, 
;*which is a contradiction. Thus if 0 # cp(X)~Ci [X] then cp(xi) # 0, as 
Fequired. 
’ Ifr > 1, then write 0: for the restriction to C, of E,o Di; then D;eDer(C,), 
and xjeC1 with D;xj = dij for 2 < i, j d Y, so that by induction we have 

Cl =C[xz,..., x,] “C[X,,...,X,]. 

(i) follows from this. 
If g is a Lie algebra, then we first arrange as before that DiXj = 6ij, and 

@en set [Di, Dj] = CvaijvDv with aijvEA; then [Di, Dj]X, = Di(Sj,) - 
:‘Dj(Si,)=O, SO that aijv =O, hence [Di, Dj] =O, and Dl(Di(Cl)) = 
“Di(D,(C,)) = Di(0) = 0. Therefore Di(Ci) c C, for i > 1, and then in 
‘jthe above notation 0: = Di for i > 1. Thus by induction we have C 
:,=(aeAID,a=...=D,a=O}. q 

bollary. Let (A, m) be a reduced n-dimensional local ring containing Q, 
&nd suppose that the completion A^ of A is also reduced. If there exist 
Ielements D r ,..., D,EDer(A) and x1 ,..., a’ x,Em such that det(Dixj)$m 
ithen A is a regular local ring and x 1,. . . , x, is a regular system of parameters 
‘Of A. Suppose in addition that g = x;ADi is a Lie algebra; then 
‘k= (aeAID,a=... = D,a = O> is a coefficient field of A^. 
Proof. Consider 2, with each of the Di extended to A. If [Di, Dj] = 
Fxaij,D, holds in A then it also holds in 2, so that if g is a Lie algebra, 
so is CAD,,. By the theorem, A^ = C[x,,. .., x& and C is isomorphic to 4 
‘/xxiAI, SO is a zero-dimensional local ring. Now by assumption C is 
also reduced, so that C must be a field. Therefore A^ is a formal power 
,$?eries ring over a field, and hence is regular, so that A is also regular. The 
rother assertion is also clear. w  

Remark. If we view this corollary as a criterion for regularity, then the 
condition that A^ should be reduced is rather a nuisance; however, as we 
will see later, for a very wide variety of local rings, we have A is reducedo 
2 is reduced. This is the case (corollary of Theorem 32.6) if A is a 
*ocalisation of a ring B which is finitely generated over a field (such an 
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A is said to be essentially offinite type over K). Note also that if we start 
off with a regular local ring A, then the corollary gives a concrete method 
of constructing a coefficient field of A^. 

Next we consider rings which are finitely generated over a field, which 
are important in algebraic geometry. 

Theorem 30.2. Let k be a field, and A = k[x l,. . . , x,] a finitely generated 
ring over k. If A, is O-smooth over k for every pgm-SpecA, then A is o- 
smooth over k. 
Proof. Write k[X] for k[X,, . . , X,1, and let I= {f(-V~kCXIIf(x)=o}, 
so that A = k[X]/Z. Suppose that I = (fi , . . . .f,). Consider a commutative 
diagram 

A 2 C/N 

T TV 
k--+ C, 

where C is a ring, and N c C is an ideal satisfying N2 = 0. TO lift $ to 
A -C, we first of all choose U,EC such that I = Cp(Ui). If f~1 then 

f(u i,. . . , u,)EN. Now if we can choose ~,GN for 1 d i d n such that 
fj(u + y) = 0 for all j, th e h omomorphism A --+ C defined by Xi++rli + Yi 
is a lifting of $. We have fj(u + y) = A(U) + x1= r (afj/dXi)(U).yi, SO that we 
are looking for solutions in N of the system of linear equations in y,, . . , yn: 

(*) fj(u) + i$l 2 (u).y, = 0 for j = l,...,s. 
( .> 

For each maximal ideal p, the local ring A, is O-smooth over k, so that if we 
set S= $(A - p) and S = cp-‘(S) then in the diagram 

A, A WV, = GIN, 

T T 
k - cs 

there exists a YP:A, + Cs lifting $,. From this we see that (*), as a system 
of equations in N,, has a solution in N,. If we view N as a C/N-module then 
Ns = N,. Thus the theorem reduces to the following lemma. 

Lemma I. Let A and B be rings, $ :A --+ B a ring homomorphism, and N 
a B-module; suppose that b,+B and &EN. If the system of linear equations 

fl bij Yj = pi (for i = 1,. . . , s) 

. 
has a solution m N,, + for every pEm-Spec A, then it has a solution in N. 
Proof. The assumption that there is a solution in NIL(A-p) means 
that there exist qjp~:N for 1 <j < n, and t,EA - p such that 

C bijrl,, - $(t,)B; = 0 for 1 < i < S. 

j 



§30 Connections with derivations 233 

Now since ‘&tPA = A, there is a finite set {pr , . . . , p,} c m-Spec A and a,EA 
such that 

i a& = 1. 
V=l 

Hence if we set 

we get Cjbijqj = pi for 1 3 i 2 s. n 

Theorem 30.3. Let k be a field, S = k[X,, . . . ,X,], and I, P ideals of S such 
that I c PESpecS. Set 

S, = R, rad(R) = PR = M, and R/IR = A, rad(A) = m, 
R/M=A/m= K, 

and suppose that ht ZR = r and I = (jr(X), . . . , f,(X)). Then the following 
conditions are equivalent. 

(1) rank @(fl,. . . , (2) A is O-smooth LYf(kxl ). . . y XJmod P) = r; 
2 

(3) A is m-smooth over k; 
(4) RAjk is a free A-module of rank II - r; 
(5) A is an integral domain, its field of fractions is separable over k, and 

a,,, is a free A-module. 
Proof. Note that R is a regular local ring. (1) a(2) By assumption, for a 
suitable choice of I elements D,, . . . ,D, from a/8X,, . ..,a/aX,, and of r 
elements gl,. . . , gr from jr,. . . , f,, we have det (Digj)$ M. We observe 
that taking REM into (Or fmod M, . . . , D,f mod M)EK’ induces a linear 
map M/M2 --+ K’, so that the images of gr, . . . , g1 in M/M2 are linearly 
independent. Therefore x;giR is a height r prime ideal contained in IR, 
and hence c; giR = IR. Given a commutative diagram 

k-C 
with N2 =O, write X,EA for the image of Xi, and choose U,EC 
such that cp(u,) = $(x~)EC/N. Then there is a homomorphism R +C 
defined by Xi I-+z+, and this induces a lifting of $ to C if and only if gi(u) = 0 

for 1 6 i < r. Therefore, as in the proof of the previous theorem, we need 
only solve the system of equations in unknowns y,, . . . , y,,gN: 

(*) gi(U) + j$l g 
( > 

(“)‘Yj=o for l<i<r. 
.I 

However, we view N as a C/N-module, then via $ as an A-module, so 
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that we can replace the coefficients (ag,/aX,)(u) of this system by 
(&J~/c?x~)(x)EA. Now by assumption, one Y x Y minor of this r x n matrix 
of coefficients is a unit of A, so that (*) can always be solved. 

(2)=>(3) is trivial. 
(3)*(l) By $28, Lemma 1, A is regular, so that IR is generated by ,. 

elements forming a subset of a regular system of parameters of R, and 
the image of the natural map IR --f M - M/M2 is an r-dimensional 
K-vector space. Let k, c k be the prime subfield; then by Theorem 26.9 
K = R/M is O-smooth over k,, so that by Theorem 25.2, the sequence 

O-+M/M’--tC&@K-Cl,+0 

is exact. We can write 0, = (a, @ S)@ F, where F is the free S-module with 
basis dX, , . . , dX, (for example, by Theorem 25. l), and localising we get 

hence Q2, @ K = (Q, &K) @ (F @ K ). However, from 

we get the exact sequence (I/I’)@,K -R,&K -Q,@,K-+O, 
and if A is m-smooth over k then by the corollary to Theorem 28.6, 
Qk@ K -R,@ K is injective, so that V = Im((l/l’)@K -Q2,@K} 
maps isomorphically to its projection W c F @ K in the second factor 
of the decomposition Q, 0 K = (Q, 0 K) @ (F 0 K). Now factor I/1’ 0 K 
-OR 0 K as the composite I/I20 K - M/M2 -Cl,@ K; as we 
have seen above, the first arrow has rank r, and the second is injective, SO 

that rankV=r. Now F@K=KdX,+...+KdX,, and if we write 
(afi/aXj) modP =clij then W is spanned by ~~ai,dXj for 1 6 i < t. 
Therefore rank(aij) = T, and this proves (1). 

(2)*(j) By Theorem 25.2, 

O+IR/12R -+QRikOA - fiAik-+O 

is a split exact sequence, and since QRlk 0 x A is a free A-module with basis 
dX 1,. . . , dX,, the A-module RAjk is projective; but A is a local ring, SO that 
QAjk is free. Also A is a regular local ring, therefore an integral domain, 
and if L is its field of fractions then L is O-smooth over A, hence also 
O-smooth over k, so that L is separable over k. 

(j)*(4) By Theorem 26.2, the field of fractions L of A is separably 
generated over k, so that a separating transcendence basis of L over k is 
a differential basis, and ranka,,, = tr.deg,l = n - r; but C& = Qa,k @A~* 
and hence rank.Q,,, = rank,&,, = n - r. 

(4)+(l) In the exact sequence 

IR/12R -R,,,@ A -QAlk+O, 
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set E = Im{IR/l*R -C&,k 0 A). Then R,,k @A N E @A”-‘, so that 
E N A’, and therefore E 0 K N K’. This gives (1). H 

Remark 1. In the above proof, the equivalence of (l), (2), (4) and (5) 
was comparatively easy. The proof of (3)+(l) used the corollary to 
Theorem 28.6, and so is not very elementary. 

Remark 2. If k is a perfect field, or more generally if the residue field K 
is separable over k, then m-smoothness is equivalent to A being a regular 
local ring, so that Theorem 3 gives a criterion for regularity. In the case 
of an imperfect field k, if A is O-smooth over k then so is the field of 
fractions L of A, but the residue field K is not necessarily separable over 
k; for example, A = k[X](,,_., with aEk - kp. For the case of an imperfect 
field k, we give a regularity criterion for A in Theorem 5. 

Quite generally, let A be a ring and P a prime ideal of A, and let 
D 1 ,..., D,EDer(A)andf, ,... &A;thenwewriteJ(f, ,..., ft;D, ,..., D,)(P) 
= (D&mod P). This is an s x t matrix with entries in the integral domain 
A/P. 

Theorem 30.4. Let R be a regular ring, PESpec R, and let I c P be an 
ideal of R; suppose that ht IR, = r. 

(i) for any D1,..., D,EDer(R) and fi,. . .~,EI we have 

rank J(fl,. . . , ft; D,, . . . , D,)(P) d r; 
(ii) if D 1 ,..., D,EDer(R) and fi ,... f$Z are such that det(Difj)$P 

then IR, = (fl,. . . , f,)Rp and R,/ZR, is regular. 
Proof. (i) If Q is a prime ideal of R with I c Q c P and ht Q = r then 

rankJ(f,, . . . ; D,, . . .)(P) < rankJ(f,, . . .; D,, . . .)(Q), 

and if we set QRe = nr then R, is an r-dimensional regular local ring, so 
that m is generated by r elements, m = (gl,. . . , g?). Working in R,, we can 
Write 

f j = 2 g,,a,j with cc,j~R, 
1 

SO that 

Difi~ i (Digy).Clyj modQ, 
v=1 

and therefore 

<rankJ(g, ,..., gl;D, ,..., D,)(Q)<r. 

(ii) Set M = PR,; then if det(Difj)$M one sees easily that the images 
inM/M*off,,...,f I are linearly independent over R,/M = K(M), SO tha’t 
c;f iR, is a prime ideal of height r, and therefore coincides with IR,. 
Also, RJIR, is regular. n 
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Theorem 30.5 (Zariski). Let k be a field of characteristic p, S = k[X,, , . . ,X,1, 
and I and P ideals of S with I c PESpec S. Set Sp = R and RJIR = A, and 
suppose that ht IR = r and I = (fr,. . . ,f,). Then the following three 
conditions are equivalent. 

(1) A is a regular local ring. 
(2) For any p-basis (u,},,,- of k, define D,EDer(S) by D,(u,.) = 6,,. (the 

Kronecker 6) and II, = 0; then there are a finite number of elements 

a, P, * *. 7 YET such that 

rank .J(fi, . . . , ft; D,, D,, . . . , D,, 8/8X,, . . . ,8/8X,)(P) = r. 

(3) There exists a subfield k’ c k with the following properties: I@’ C k, 
[k: k’] < co, and QA,k, is a free A-module, with 

rank OA,k. = n - r + rank a,,,. . 

Proof. (2)+(l) comes from Theorem 4, (ii). 
(1) a(2), (3) If A is regular then IR is generated by r elements, and these 

form an R-sequence, so that IR/Z’R is a free A-module of rank r. Set 
M = PR, m = M/IR and K = R/M = A/m; then the image of IR --+ M/M2 
is an r-dimensional K-vector space, so that the natural map 
(IR/I’R)@, K -M/M’ is injective. From the exact sequence 

IR/l’R-R,Q,A-Cl,+0 

we get the exact sequence 

(*) (IR/I’R)O,K -S&&K -C&,@AK+O. 

Now by Theorem 25.2, 

O+MfM2-42,@,K-Cl,+0 

is an exact sequence. The first arrow in (*) is the composite (ZR/I’R) --+ 
M/M2 -QR OK, and so is injective. Thus 

(**) O+(ZR/12R)@K -f&&K -R,&K-,O 

is exact. Let {du,l yEI-} be a basis of f& over k; then 0, is the free 
S-module with basis {du,JyEr} u {dX,, . . . , dX,}, and Sz, = C&&R, 
C&@&K =0,&K. Now reorder fI ,..., f, so that fI ,..., fi are gen- 
erators of IR; then df,, . . . , df,Ef&&K can be expressed using 
dX,,. . . ,dX, together with finitely many elements du,, . . .,duy, and this 
gives (2). Now if we let k’ be the field obtained by adjoining to kP all the 
elements u, for CTET other than the du,, . . . , du, just used, then from (**) 
we see that 

0 + (IR/I’R) @ K - it,,,, @ K - R,,,, Q K --+ 0 

is also exact. In the exact sequence 

(t) IR/12R -i&k,@ A -%,,,-*O, 

the middle term is the free A-module with basis du,, . . , du,, dXr,. . . ,dXn; 
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now the generators .f‘i,. . . ,,f, of IR map to df,, . . . ,df,.&,,,. Q A, and 
since these are linearly independent over K, they base a direct summand 
of R R,k, 0 A. Thus RAIk, is also a free A-module, and rank SZAIkP + r = 
rank QZRlk, = rank !& + n. 

(3)*(l) In the exact sequence (T) the two terms SZRlk, 0 A and R,,,. are 
both free modules, and the difference between their ranks is r, so that 
IR/I’R maps onto a direct summand of GRjk. @ A, which is a free module of 
rank Y. Thus we can choose fi,. . . ,f,eIR such that df, 0 1,. . . , df,@ 1 
base this direct summand, and then by NAK we see that Rdf, + . .. + 
Rdf, is a direct summand of !Z&,. Hence there exist D,, . . , D,EDerk.(R) 
such that det(Difj)$M. Therefore, by Theorem 4, A is regular. n 

Corollary. Let k be a field and S = k[X,, . . . ,X,1; let I be an ideal of S, 
and set B = S/Z. Define U = {peSpec B 1 B, is O-smooth over k} and 
Reg(B) = {peSpecBI B, is regular}. Then both U and Reg(B) are open 
subsets of Spec B. 
Proof. Set I’= Spec B, and let Vi,. . . , V,, be the irreducible components of 
I/. To say that PE V,n Vj for i #j means just that B, has at least two 
minimal prime ideals, and such points cannot belong to Reg(B), (nor a 
fortiori to U). Thus first of all we can throw out the closed subset 
W = uiFj( Vi n Vj), and therefore we need only prove that V,n U and 
Vin Reg(B) are open in Vi for each i; we fix i, and set dim Vi = n - r. Then 
by Theorems 3 and 4, if we let Ai,. . . , Ai, denote the images in B of the 
r x r minors of the Jacobian matrix (afi/8Xj), where I = (fi, . ,f,), then 
Vi - U is the intersection of Vi with the closed subset of V’ defined by the 
ideal (Ai,. . . , A,)B of B, and is thus closed in Vi. Using Theorem 5, we 
can argue similarly for Reg(B); the only difference is that, instead of one 
Jacobian matrix, we have to consider the closed subsets of V defined by 
the ideal of B generated by all the r x r minors of the infinitely many 
Jacobian matrices J(ft,. . . , fr; D,, D,, . , D,, a/8X,, . . . ,8/8X,,), where 

{D a,. . . , D?} runs through all finite subsets of the set of derivations {D,},,,- 
appearing in Theorem 5, (2). n 

Theorems 3 and 5 contain the result known as the Jacobian criterion for 
regularity in polynomial rings. There is some purpose in trying to extend 
this to more general rings. In cases when the module of differentials is not 
finitely generated, then the above method cannot be used as it stands, so we 
approach the problem using modules of derivations. 

Quite generally, let A be an integral domain with field of fractions L; then 
for an A-module M, we write rank,M for the dimension over L of the vector 
space M OA L. 

Theorem 30.6 (M. Nomura). Let (R, m) be an equicharacteristic n-dimen- 
sional regular local ring, and R* the completion of R; suppose that k is a 
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quasi-coefficient field of R and K a coefficient field of R* containing k. 
Let x 1,. . .,x, be a regular system of parameters of R. 

(i) R*=K[xl,..., x,J, and if we write a/ax, for the partial derivatives 
in this representation, then Der,(R*) = Der,(R*) is the free R*-module 
with basis i3/dxi for 1 d i d n. 

(ii) The following conditions are equivalent: 
(1) a/ax, maps R into R for 1 ,< i d n, so that they can be considered 

as elements of Der,(R); 
(2) there exist D,,...,D,EDer,(R) and a,,...,a,~R such that 

Diaj = S,,; 
(3) there exist D, ,..., D,ED~~,(R) and a, ,..., a,,eR such that 

det (Diaj)$m; 
(4) Der,(R) is a free R-module of rank n; 
(5) rank Der,(R) = n. 

Proof. (i) Since K is 0-etale over k, any derivation of R* which vanishes 
on k also vanishes on K. If DEDer,(R*), set Dx, = yi; then for any 
PER*= K[x~,...,x,JJ we have D(f) = EYE l(af/axi).yi, and hence 
D = xy,d/dx,. Conversely, for any given yi we can construct a derivation 
by this formula, SO that Der,(R*) is the free R*-module with basis 
alax l,...,a/ax,. 

(ii) (l)=>(2)*(3) and (4)*(5) are trivial. If (3) holds then D,, . . , D, are 
linearly independent over R and over R*, so that by (i), any DEDer,(R) 
can be written as a combination D = CciDi of the Di with coefficients in 
the field of fractions of R*, but since Daj = cciDi(aj) for j = 1,. . . , n, we 
have c,ER; therefore D,, . . . , D, form a basis of Der,(R), which proves (4). 

(5)*(l) If D1,..., D, are linearly independent over R then there exist 

a,,..., a,ER such that det(Diaj) # 0. Therefore D,, . . . , D, are also linearly 
independent over R*. Thus writing L! for the field of fractions of R* we 
can write a/ax, = ccijDj, with cijeL!. From this we get 6i, = CCijDjXh, 
so that the matrix (cij) is the inverse of(Djx,), and cij~L, where L is the field 
of fractions of R; therefore (a/ax,)(R) c Ln R* = R. n 

Lemma 2. Let R be a regular ring and PESpec R with ht P = r; then the 
following two conditions are equivalent: 

(1) there exist D1,..., D,EDer(R) and fl,. .,fpP such that 

det(Di.fj)$P; 
(2) for all QESpec R with htQ = s d r such that Q c P and Rp/QRp is 

regular, there exist D, ,..., D,eDer(R) and g1 ,..., g,EQ such that 
det(Digj)$P. 
Proof. (2) contains (1) as the special case P = Q; conversely, suppose that 
(1) holds. By Theorem 4 we see that fl,. . . ,f, is a regular system of 
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parameters of R,. If Rp/QRp is regular then we can take gl,. . .,gseQ 
forming a minimal basis of QRp, and then take gs+ i, . . . , g,EP such that 
gl,. . . , g1 is a regular system of parameters of R,. Then from det(Difj)#P 
we deduce that det(Digj)$P, or in other words rank J(g,,. . . , gl; 
D i,. . . , D,)(P) = r. Therefore 

rankJ(g, ,..., gs;D, ,..., D,)(P)=s. n 

If the above condition (1) holds, we say that the weak Jacobian condition 
(WJ) holds at P. If (WJ) holds at every PESpec R then we say that (WJ) 
holds in R. If this holds, then for any P, QESpec R with Q c P, setting 
htQ = s we have 

Rp/QRp is regular- 
there exist D,, . . . , D,EDer(R) and 

f 1,. . . , f,EQ such that det(Di fj)$P, 

(the implication (=z=) is given by Theorem 4). This statement is the Jacobian 
criterion for regularity. We can use Der,(R) in place of Der(R), and we 
then write (WJ),. 

Theorem 30.7. Let (A, m) be an n-dimensional Noetherian local integral 
domain containing CC.& and let k c A be a subfield such that tr.deg,(A/nt) = 
r < co. Then Der,(A) is isomorphic to a submodule of A”+‘, and is therefore 
a finite A-module, with 

rank Der,(A) < dim A + tr. deg,(A/m). 

Proof. We write A* for the completion of A; choose a quasi-coefficient 
field k’ of A containing k, and let K be a coefficient field of A* containing 
k’. Let ui,... , u, be a transcendence basis of k’ over k, and xi,. . . , x, a 
system of parameters of A. We define q:Der,(A) - A”+’ by q(D) = 

(Du 1 ,..., Du,,Dxl ,..., Dx,); then cp is A-linear, so that we need only prove 
that it is injective. Suppose then that DUi = Dxi = 0 for all i and j; then D 
has a continuous extension to A*, and this vanishes on 
B=K[x,,... ,x,1. Now we do not know whether A* is an integral domain, 
but it is finite as a B-module, so that any UEA is integral over B, and if 
f(X)eB[X] has a as a root, and has minimal degree, then f(u) = 0, 
f’(a) #O. Then 0 = D(f(u)) = f’(u)*Du, and DaEA, so that, since a 
non-zero element of A cannot be a zero-divisor in A*, we must have 
Da=O. Hence D=O. n 

Remark. If k is an imperfect field then there are counter-examples even 
if k = A/m: suppose char k = p and uEk - kP, and set A = k[X, Y]Cx,yj/ 
(Xp + aYP); then dim A = 1 but rank Der,(A) = 2. 

Theorem 30.8. Let (R, m) be a regular local ring containing U& and k a 
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quasi-coefficient field of R. Then the following three conditions are 
equivalent: 

(1) (WJ), holds at m; 
(2) rank Der,(R) = dim R; 
(3) (WJ), holds at every PESpec R. 

Furthermore, if these conditions hold, then for any PESpecR, every 
element of Der,(R/P) is induced by an element of Der,(R) and 

rank Der,(R/P) = dim R/P. 

Proof. (l+(2) is known from Theorem 6, and (1) is contained in (3). 
(l)+(3) Write R* for the completion of R, and let K be the coefficient 

field of R* containing k; then by Theorem 6, if x1,. . . , x, is a regular system 
of parameters of R then the derivations 8/8x, of R* = K [x1,. . . , xn] belong 
to Der,(R) for 1 < i < n, and form a basis of it. Now let PESpec R, and write 
qp:R -R/P for the natural homomorphism; to say that D’EDer,(R/P) 
is induced by DEDer,(R) means that there is a commutative diagram 

Suppose then that D’ is given; then D’ocpEDer,(R, R/P), and this has 
a unique extension to an element of Der,(R*, R*/PR*), so that 
it is uniquely determined by its values on x1,. . . , x,. Therefore if we choose 
b r,. . . , b,ER such that D’(cp(x,)) = cp(b,), and set D = xb,a/ax,, then D’ is 
induced by D. 

Now Der,(R, R/P) is a free R/P-module with basis cp 0 8/axi for 1 < i < II, 
and Der,(R/P) can be identified with the submodule 

N = {sEDer,(R,R/P)(S(f) = 0 for all f~Pj. 

Therefore, if P = (fI, . , . ,ft) and htP = Y then 

rank Der,(R/P) = n - rank J(fr,. . . , ,f,;a/ax,, . . . , dpx,)(P); 

according to Theorem 4, the right-hand side is 3 n - Y, and by Theorem 7 
the left-hand side is <dim R/P = n - r, so we see that 

rank J(f, , . . ,ft; a/&,, . . . , iT@x,)(P) = r, 
rank Der,(R/P) = dim R/P. w 

This theorem has many applications. For example, in the ring R of 
convergent power series in n variables over k = Iw or @ (R is denoted by 
k((X, ,..., X,> in [Nl], and elsewhere by k{X, ,..., X,}) we have 
aXi/aXj = 6,,, so that the Jacobian criterion for regularity holds in R. In 
characteristic 0, the assumptions of the theorem are satisfied by the formal 
power series ring over any field, or more generally by the formal power 
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series ring R [ Y, , . . . , Y, 1 over a regular local ring R which satisfies the 
assumptions of the theorem. Even if R is not local, but is a regular ring 
containing a field k of characteristic 0, and such that the residue field at 
every maximal ideal is algebraic over k, then if (WJ), holds at every 
maximal ideal of R, it in fact holds at every prime ideal of R, so that the 
Jacobian criterion for regularity holds for example in rings such as 

k[X,,...,X,ljlY,,..., Y,]. A further extension of this theorem can be 
found in Matsumura [2]. 

Now we are going to prove the results analogous to Theorem 5 for formal 
power series rings over a field of characteristic p. This is a difficult theorem 
obtained by Nagata [6]. First of all we have to do some preparatory work. 

Let k be a field and k’ c k a subfield; we say that k’ is cofinite in k if 
[k:k’] < 00. We say that a family 9 = {k,},,r of subfields of k is a 
directed family if for any LX, /Jo I there exists y ~1 such that k, c k, n k,. 

Let K be a field of characteristic p, and k c K a subfield. Then there 
exists a directed family 9 = {ka}as, of intermediate fields k c k, c K 
cotinite in K such that n k, = k(KP). To construct this, we let B be a fixed 
p-basis of K over k, and let I be the set of all finite subsets of B; then we 
only need take k, = k(KP, B - a) for CCEI. 

Lemma 3. Let K be a field, (k,},Er a directed family of subfields of K, and 
set k = f7 k,. Then if V is a vector space over K, and vr,. . . , V,E I/ are 
linearly independent over k, there exists cr~l such that vl,. . . , v, are also 
linearly independent over k,. 
Proof. For each CZIZZ, write q(a) for the number of linearly independent 
elements over k, among vr, . . , v,; let a be such that q(a) is maximal, and 
set q = q(x). Now if q < n, and we assume that ur,. . , u, are linearly 
independent over k,, we have v, = c; civi with c+k,. Since the vi are 
linearly independent over k, at least one of the ci does not belong to k, 
SO that we can assume c1 $k. Hence there exists /?EZ such that cr $k,, and 
also 7~1 such that k, c k, n k,, so that vr,. . . , vq and IJ, are linearly inde- 
pendent over k,; this contradicts the maximality of q, so that q = n. H 

Lemma 4. Let k c K be fields of characteristic p, and let 9 = {k,},,r be 
a directed family of intermediate fields k c k, c K; then the following 
conditions are equivalent: 

(1) n,k,(K’) = k(KP); 
(2) the natural map QZKlk + @r flKjk, is injective; 
(3) if a finite subset {ur , . . . , un} c K is p-independent over k, then it is 

also p-independent over k, for some a; 
(4) there exists a p-basis B of K over k such that every finite subset of 

B is p-independent over k, for some CI. 
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Proqf:(1)=>(3)If{u,,..., u,,) is p-independent over k then the p” monomials 
u;l...u;” for 0 d vi < p are linearly independent over k(KP), so that by the 
previous lemma they are also linearly independent over k,(KP) for some c(. 

(3)+(4) is trivial; any p-basis will do. 

(4)*(2)IfO # WEQ,,k and B is a p-basis then there is a unique expression 
o = xcidKlkbi, with {h,, . . , b,} c B a finite set and C+ K. If we take CI such 
that b,, . . . , h, are p-independent over k, then dKikmbifor 1 d i d n are linearly 
independent as elements of QKik,, so that o has non-zero image in G,!, . 

(2)*(l) Let ~EK be such that a$k(KP); then d,,,a # 0, so that dKlk,u #b 
for some k,, in other words a$k,(K”). n 

Lemma 5. Let k c K and 9 = {k,},,, be as in the previous lemma, and 
assume that nn k,(KP) = k(Kp). Then if L is an extension field of K which 
is either separable over K or finitely generated over K, we again have 
na k,(LP) = k(Lp). 
Proqf. (i) If L/K is separable, choose a p-basis B of K/k and a p-basis C 
of L/K; then in view of the exact sequence (Theorem 25.1) 

BuC is a p-basis of L/k. If b,,...,b,EB and ci,...,c,~C are finitely 
many distinct elements, then by the previous lemma, b,, . . . , b, are 
p-independent over some k,, and from this (replacing k by k, in the above 
exact sequence) we see that b,, . . . , b,, cl,. . . , c, are p-independent over k,. 

(ii) If L/K is finitely generated, then since any finitely generated extension 
can be obtained as a succession of elementary extensions of type 

(a) L = K(x) with x separable over K, 
or 

(b) L = K(x) with xp = ~EK, 
we need only consider case (b). We further divide this into two subcases: 
in the first, d,,,a = 0, and then from Theorem 25.2 and the fact that 
L N K[X]/(Xp - a) we get RLjk = (a,,, @ L) @ Ldx; from this one sees easily 
that QLjk - lim RLjk ~ is injective. In the second subcase, d,,ka # 0 and 
now we have fiL+ - - w ((a,,, 0 L)/L.d,,,a) @ Ldx. Hence if we take a p-basis 
of K/k of the form {u} u B’ with a$B’, then {x> uB’ is a p-basis of L/k. NOW 
L/k satisfies condition (4) of the previous lemma, since for b,, . . , b,EB’, if 
we choose c( such that {a, b,, . . . , b,,,} c K is p-independent over k,, then 
{x,bl,...,b,} CL is p-independent over k,. w 

Lemma 6. Let K be a field of characteristic p, and let {K,j be a directed 
family of colinite subfields K, c K such that n,K, = KP. Then if L is a 
finite field extension of K, there exists SI such that 

rdnk,Q,,,. = rank&,,,, 

for all subfields K’c K, with [K:K’] < ~0. 
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Proof. Let K = K, c K, c ... c K, = L be a chain of intermediate fields 
such that Ki = Ki_,(x,), with xi either separable algebraic over KimI or 
xfEKi- 1’ Then by the previous lemma we have &K,(Kf) = Kf, so 
that we need only prove the lemma for t = 1; hence suppose that L = K(x). 
If L is separable over K then in view of !&,,. = R,,,. OK L, the assertion is 
clear (any cx will do). Thus suppose that xp = aEK, but a$KP; then there 
exists LY such that a$K,. If K’ c K, then computing by means of 
L = K[X]/(Xp - a) we see that 

R LIP’ = (%j~s OKLO L dx)/L.dxiKTa, 

and if rank!&,. < co then rank&,,. = rank!&,,,. w  

,; Theorem 30.9 (Nagata). Let k be a field of characteristic p, S = 
;: k[Y1,..., Y,] and PESpec S; suppose that 9 = {k,},,, is a directed 
;,, family of colinite subfields of k such that /-jak. = kP. Then there exists 
! a~1 such that for every intermediate field kP c k’ c k, with [k:k’] -=z co 
i the following formula holds: 
:: 
:, rank Der,(S/P) = dim (S/P) + rank Der,.(k). $< 

Proof. Set A = S/P, let L be the field of fractions of A, and dim A = n. 
!, Choose a system of parameters x1,. . . ,x, of A, set B = k[x,, . . . , x,I], let K 
1: be the field of fractions of B and mB its maximal ideal. Then A is a finite 
! B-module, and hence [L:K] < co. If k’ is an intermediate field kP c k’ c k 
9 with [k:k’] = p’< co, and if ur,. . . , U, is a p-basis of k over k’, then 
t {lJ l,...,Ur,Xl,..., x,} is a p-basis of B over C’= k’[xf,...,xE], in the 
;- sense that B is the free C’-module with basis the set of p-monomials in 
i/ 24 1,. . . ,u,, xi,. . . , x,. A derivation from B to B is continuous in the m,-adic 
j, topology, and any element of Der,.(B) is 0 on C’. Therefore Der,.(B) = 
,; Der,.(B) = Hom#&, B), and Qe,c, is the free B-module of rank n + I 
i with basis du,, . . . , du,, dx,, . . . , dx,. Therefore Der,.(B) is also a free 

B-module of rank n + r, and the theorem holds in case A = B. 
We write F’ for the field of fractions of C’, and for k,E9 we set 

: C.=k,[x; ,..., x;]l and write K, for the field of fractions of C,. As 
,: above we have 

Der,.(A) = Der,(A) = Hom,(R,,c,, A), 

” and since A is a finite C’-module, Q,,, is a finite A-module. Hence 

Der,.(A)@ L = Hom,(Q,,,. 0 L, L) = Hom,(!F&,, L), 

so that rank, Del-,.(A) = rank,R,,,.. Moreover, 

n + rank Der,(k) = rank R,,,. = rank RKIF,, 
so that the conclusion of the theorem can be rewritten 

rank RLIF, = rank aZKIF,. 

Any element of K, can be written with its denominator in 
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kP[xf,...,x[jj= BP. 

However, B is faithfully flat over C,, so that K, n B = C,. From this one 
deduces easily that n .K, = KP. Thus the theorem follows from the previous 
lemma. 

Theorem 30.10 (Nagata’s Jacobian criterion). Let k be a field of charac- 
teristic p, S = k[X,,. .,X,,j, and let 1, P be ideals of S such that 
I c PESpecS; set S,= R, R/IR = A, and suppose that htfR = r and 
I = (fi,. . . ,f,). Choose a p-basis (uy}yer of k, and define D,EDer(k) by 

D&f) = 6,,,. We make any element DEDer(k) act on the coefficients of 
power series, thus extending D to an element of Der(S). 

Then the following conditions are equivalent: 
(1) A is a regular local ring; 
(2) there exists a finite number of elements tx, p,. . . , y~r such that 

rank J(fI, . . . , f,; D,, . . . , D,, 8/8X,, . . . , B/8X,)(P) = Y. 

Proof. (2) a(l) follows from Theorem 4. 
(1) * (2) As we see from the proof of Lemma 2, we need only prove (2) 

in the case I = P. We let B be the family of subfields of k obtained by 
adjoining all but a finite number of {uy}ysr to kP; then the conditions 
of Theorem 9 are satisfied, and there exists /z’eF such that 

rank Der,.(S/P) = n - ht P + rank Der,.(k). 
If we set [k:k’] = ps then by construction there exist yr,. . .,ys~r such 
that k = k’(u y,, . . . , Us,); now set C = k’[X;, . . . , Xi], so that Q,,, is the free S- 
module with basis duy,, . . . , duy,, dX,, . . . , dX,, and arguing as in the proof 
of Theorem 8, we see that the derivations of S/P over k’ are all induced by 
derivations of S over k’, and that if gl,. . . , gm are generators of P, we have 

rank J(g,, . . . ,gm; D.fI,. . . , Dps, @3X,, . . . ,3/8X,)(P) = ht P. n 

Remark. Conditions (1) and (2) in Theorem 10 are of the same form as 
the corresponding conditions in Theorem 5. Condition (3) of Theorem 5 
is not applicable as it stands to the present situation, since Sz,,,, is in 
general not a finite A-module. However, in general for a module A4 over 
a local ring (R, m), if we write (in temporary notation) il;r = M/fi,m”M 
for the associated separated module, then for any R-module N which is 
separated (N = fl) we have Horn,@!, N) = Horn,&?, N). Therefore in 
the situation of the above theorem we have Der,.(S) = Horn,@&,, S) and 
Der,.(A)= Hom,(Q,,k,, A), and moreover as,,. is a free S-module Of 
rank la + rank Qlk,. From this, using the same argument as in the Proof Of 
Theorem 5, we see that replacing a,,,. by fiiAlk, in (3) of Theorem 5y this 
condition is equivalent to (1) and (2) of Theorem 10. Verifying this is a 
suitable exercise for the reader. 
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Corollary. Let A be a complete Noetherian local ring; then Reg(A) is an 
open subset of Spec A. 
Proof. If A is equicharacteristic, and k is a coefficient field of A, then A 
is of the form A = S/l with S = k[X,, .,X,1, so that by Theorems 8 and 
10, we see as in the corollary of Theorem 5 that Reg (A) is open. 

If A is of unequal characteristic, then by Theorem 24.4, it is enough to 
prove, under the assumption that A is an integral domain, that Reg(A) 
contains a non-empty open subset of Spec A. Now by Theorem 29.4, A 
contains a regular local ring B, and is a finite module over B, so that if 
we let L and K be the fields of fractions of A and B, then L is a finite 
extension of K, and is separable since char K = 0. Replacing A by A,, and 
B by B, for some suitable 0 # DEB we can assume that A is a free B-module 
(although A and B are no longer local rings, B remains regular). Suppose 
thatw,,..., w, are a basis of A as a B-module, and consider the discriminant 

d = det (trLIK(aiaj)). 

Let us prove that if PESpecA is such that d$P then PEReg(A). Set 
p = Pn B; then A, is flat over B, and B, is regular, so that we need only 
prove that the fibre APOB~(p) is regular. Now A = xBoi, so that 

A 0 K(P) = C K(P)Gi, and in ~c(p) we have det (tr (Witij)) = d# 0; hence 
A 0 ri(p) is reduced, and is therefore a direct product of fields. Therefore 
A,@K(~) is a field; this proves that Reg(A) contains a non-empty open 
subset of Spec A. n 

Exercises to 430. 

30.1. Let (A,m) be a complete Noetherian local ring, and p = 
(D,, D, , . .)EHS (A). Suppose that XE~ satisfies D, x = 1 and D,x = 0 for 
i > 0, that is E,(x) = x + t, and define cp = E-, by cp(a) = c;i (- x)“D,u. 
Then cp is an endomorphism of A to A, with Ker cp = xA; and if we set 
C=Imcp then A=C[x]zC[X], 

30.2. If the conditions of Theorem 5 hold, is it true that A is O-smooth over 
the k’ appearing in (3)? 

30.3. Are conditions (1) and (3) of Theorem 3 still equivalent if S = 
k[X,,...,X,i]? 

30.4. Let R be a regular ring containing a field of characteristic 0; if (WJ) holds 
in R then it also holds in the polynomial ring R [X,, ,X,] 
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Applications of complete local rings 

It has become clear in the previous chapter that the completion of a local 
ring has a number of good properties. In this chapter we give some 
applications of this. 531 centres on the work of Ratliff, giving charac- 
terisations of catenary and universally catenary rings; Ratliff is 
practically the only current practitioner of the Krull and Nagata tradition, 
obtaining deep results by a fluent command of the methods of classical 
ideal theory, and there is something about his proofs which is to be 
savoured. In $32 we discuss Grothendieck’s theory of the formal libre; 
this book is already long enough, and we have only covered a part of the 
theory of G-rings, referring to [G2] and [M] for more details. In 533 we 
discuss some further important applications, again sending the reader to 
appropriate references for the details. 

31 Chains of prime ideals 

Theorem 31.1. Let A be a Noetherian ring and P&pec(A). Then there are 
at most finitely many prime ideals P’ of A satisfying P c P’, ht(P’/P) = 1 
and ht P’ > ht P + 1. (Ratliff [3] in the semi-local case, and McAdam [3] in 
the general case.) 
ProoJ: Let htP = n and take a,, . . . , U,EP such that ht(a,, . . . , a,) = n. Set 
I=@,,..., a,) and let P, = P, P,, . . . , P,. be the minimal prime divisors of 
1. In general, if {Qd}l is an infinite set of prime ideals such that QA 1 P and 

ht(Q,/P) = 1, then Q QA = P. This is because 0 Q1 is equal to its own 

radical, hence is a finite intersection of prime ideals containing P, hence 
either 

or 

nQi = QA, n.. . nQkt; 

but the second case cannot occur since Q1 $ QA, n. . .nQA, forJ$[1,, . . . , A,}. 
Therefore if there were an infinite number of prime ideals Qi such that 
QA 1 P, ht(Q,/P) = 1 and ht Qn # n + 1, then 0 Q1 = P. Hence there would 

exist a QI, say Qo, which does not contain P,, . . . , P,. Then P would be the 
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only prime ideal lying between Q. and I. Let ~EQ,, - P. Then Q. would be 
a minimal prime divisor of I + bA = (a,, . . . , a,, b), so that ht Q,, 6 n + 1, a 
contradiction. H 

Theorem 32.2 (Ratliff’s weak existence theorem). Let A be a Noetherian 
ring, and p, P&pec A be such that p c P, ht p = h and ht (P/p) = d > 1; 
then there exist infinitely many p’&pecA with the properties 

pcp’czP, htp’=h+ 1 and ht(P/p’)=d-1. 

Proof. We first observe that if PI p1 I p2 I .‘. 2 pd = p is a strictly 
decreasing chain of prime ideals, and if pd- z I p’ I p with ht p’ = h + 1 
then ht (P/p’) = d - 1. Now there exist infinitely many p’ESpec A such 

that pd-2 I p’ 2 p and ht (p’/p) = 1: for if pi,. . . , pk are a finite set of 
these, let aep,-, - u pi, and let pk+r be a minimal prime divisor of 
p + aA contained in pde2; then ht(&+ r/p) = 1. By the previous theorem, 
all but finitely many of these satisfy ht p’ = ht p + 1. w  

Lemma I. Let A be a Noetherian ring, and PESpecA with ht P = h > 1; 
suppose that UEP is such that ht (uA) = 1. Then there exist infinitely many 
prime ideals Q c P such that 

u#Q and htQ=h- 1. 

Proof. Suppose that pr,. . . , pt are the minimal prime ideals of A, and let 
P,, . . . , P, be finitely many given height 1 prime ideals not containing U. 
Let Qr,..., Q, be the minimal prime divisors of uA, so that these are also 
height 1 prime ideals of A. Since h > 1, there exists UEP not contained 
in any pi, Pj or Qk. Then 

ht (u, u) = 2 and ht (0) = 1. 

Now let P,+l ,..., P,,, be the minimal prime divisors of (0); continuing 
in the same way we can find infinitely many height 1 prime ideals not 
containing u, so that ,if h = 2 we are done. If h > 2 we set A = A/(u) and 
P= P/(u), so that ht 8= h - 1, and since the image U of u in A satisfies 
ht (ri) = 1, by induction on h we can find infinitely many prime ideals ijz 
of A satisfying 

ii&ls,cP and htp==h-2. 

The inverse image P, of r’, in A, does not contain u, and from 
P,J(u) = Fa we have ht P;= h - 1. n 

Theorem 31.3 (RatlifT’s strong existence theorem). Let A be a Noetherian 
integral domain, p, PESpec A, and suppose that ht p = h > 0 and 
ht (P/p) = d. Then for each i with 0 < i < d the set 

{p’ESpecAIp’cP,ht(P/p’) =d - iandhtp’= h + i} 

is infinite. 
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Proof. For i > 0 this follows at once from the weak existence theorem, so 
that we consider the case i = 0. 

Step I. Replacing A by A, we can assume that (A, P) is a local integral 
domain. Choose a, ,..., a,q such that ht(a, ,..., aj) =j for j= l,..., h, 
and set 

a=(a,,..., a,,) and b=(a,,...,a,-,). 

Then p is a minimal prime divisor of a. Let 
a = a, n’..na, and b = 6, n...nb,s 

be shortest primary decompositions of a and b, and let pi, pi be the prime 
divisors of ai and bj, respectively; we can assume that p = pr. Suppose 
that b t+ 1,. . , b, are all the bj not contained in p. Then since 

a2n...na,nb,+,n...nb,~p, 

we can choose an element YEP contained in the left-hand side and not 
contained in p. Now p) c p for 1 d j < t, so that y$pl, and hence 

a:yA = a, and b:yA = b, n...nb,. 

Now set 
B = A[x, , . . . ,x,], where Xi = ai/y, 

Z=(x,,..., x,,)B and Q =PB+ 1. 

Step 2. We prove that 

B/I-A/a,, QESpecB and htQ=h+d. 

A general element of B can be written in the form 

sly’, with a@a + yA)“, for some v 3 0. 

Now B = A + I, so that B/I N A/(Z n A). Now if cr~l n A, then there exists 
v>O such that y’aEa(a+yA)“-‘. Since a:yy = a, we have C(EQ~. 
Conversely, ya, c a, giving a, c In A, and hence In A = a,. Therefore 

BJI ‘y A/a,. 

Under this isomorphism, the prime ideals p/a, and P/a, of A/a, correspond 
to (pB + I)/1 and (PB + 1)/I respectively in B/I; hence, setting 

q=pB+Z=p+I and Q=PB+Z=P+I, 

we have q, QESpec B, with B/q = A/p and B/Q = A/P, and Q is a maximal 
ideal of B. Also, B/I = A/a, and since I is generated by h elements and al 
is a p-primary ideal, we get 

htQ=dimB,gh+ht(P/a,)=h+ht(P/p)=h+d. 

On the other hand, from y$p we get q = pA[y-‘]nB: indeed, if 
a~pA[y-‘1 n B, then we can write a = c/y’ with c~pn(a + yA)“; since 
a c p and y$p, we have 

pn(a+yA)“=a(a+yA)“-‘+y’p, 
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and therefore cr~l+ p = q. Also, A[y-‘I] = B[y-‘I, so that 

htq = htqA[y-‘1 = htpA[y-‘1 = htp = h. 

However, Q/q = P/p, so that 

WQ/q) = W-‘/p) = 4 
and therefore htQ 3 d + h. Putting this together with the previous 
inequality, we see that ht Q = d + h. 

Step 3. For v = 1,2,. . ., set 

Jv=(X1,...,Xh-l,X*-y”)B, 
let Q” be a minimal prime divisor of J” satisfying 

Q, = Q and WQ/QJ = WQIJJ, 
and set Y” = Q”nA. We will complete the proof by showing that 
P;, P;, . . . are all distinct, and that 

htP” = h, ht(P/P”) = d for all v. 

Now B = A + J,, so that B/Q, N AJP: and Q/Q” N P/P:, hence ht(P/P”) = 
ht(Q/Q”) = ht(Q/J”); moreover, ht Q = d + h, and since J, is generated by 
h elements, 

ht(P/P:)>d+h-h=d. 

Therefore we have 

d d ht(P/P:) = ht (Q/Q”) < ht Q - ht Q” = d + h - ht Q”, 

and so if we can prove that 

(*) ht Q” = ht P: > h 

then this will show simultaneously that ht(P/P”) = d and htP” = h. 
We have already seen that q = pA[y-‘1 n B, so that qn A = p, and 

hence y$q. Also, a, is a p-primary ideal with B/I N Ala,, so that I is a 
q-primary ideal, and from htq = h we get 

ht(Z+yB)=ht(x,,...,x,,y)B=h+ 1. 

In addition, we have I + yB = J, + yB, and since Q” is a minimal prime 
divisor of the ideal J,, which is generated by h elements, ht Q” < h, and 
hence y$Q”, and 

Q,=Q,A[y-‘]nB and P:=Q,A[y-‘]nA, 

so that, by p.2Q, Example 1, 

ht Q” = ht P:. 

Furthermore 

(b:yA)B c (xl.. . .,x~-~)B, 
(b:yA)+(a,-y”+‘)AcJ,nAcQ,nA=P:, 

and since all prime divisors of (b:yA) are also prime divisors of 6, we 
have ht(b:yA) = h - 1. Now a,q and y$p, so that ah - y”+l$p, and 
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since all minimal prime divisors of (b : yA) are contained in p they do not 
contain ah - y” + I. Therefore htPV 2 h. This completes the proof of (*). 

Step 4. If v < /.L then (Q + Qp)Ba contains y” = (y” - y@)/(l - yyeLc), and 
therefore contains (J, + y”B)B, = (I + y”B)B,, so that 

ht(Q, + Q,)& > h + 1, but htQY < h, 

and therefore Q, # Q,. From Q,A[y-‘1 =P:A[y-‘1 we see that 
p;,p;,... must also all be distinct. n 

Theorem 31.4. A Noetherian local integral domain (A, m) is catenary if and 
only if 

ht p + coht p = dim A for all p&pec A. 

Proof. ‘Only if’ is trivial, and we prove ‘if’. Let dim A = n; if A is not 
catenary, then there exist p, PESpec A such that 

p c P, ht (P/p) = 1 but ht P > htp + 1. 
Set ht(m/P) = d. Applying the strong existence theorem to A/p we see that 
there exist infinitely many P,&pec A such that 

p c P,, ht(P,/p) = 1 and ht(m/P,) = d. 

However, by assumption, ht(m/PJ + htP, = n, so that 
htP,=n-d=htP>htp+l. 

But according to Theorem 1, there are only finitely many such P,, and 
we have a contradiction. n 

If A is a ring of finite Krull dimension, we say that A is equidimensional 
if dim A/p = dim A for every minimal prime p of A. 

Lemma 2. If an equidimensional local ring (A,m) is catenary then 

htp, = htp, + ht(p,/p,) for all pI,p2 ESpec A with p1 c p2. 

Proof. If we choose a minimal prime ideal p c p1 then ht(p,/p)= 
ht(m/p) - ht(m/p,) = dim A - ht(m/p,), and this is independent of the 
choice of p, so that htp, = ht(p,/p). Similarly, htp, = ht(p,/p), so that 

ht pz = ht(p,/p,) + W,. n 

Theorem 31.5. Let A, B be Noetherian local rings, and A -B a local 
homomorphism. If B is equidimensional and catenary and is flat over A 
then A is also equidimensional and catenary, and B/pB is equidimensional 
for every p E Spec A. 
Proof. Write m and llJz for the maximal ideals of A and B. For any minimal 
prime ideal p. of A there exists a minimal prime ideal P, of B lying over 
po; then dim B/P, = dim B, so that dimB/p,B = dim B, and then by 
Theorem 15.1 we have 

ht(m/p,) = ht(fm/p,B) - ht(%R/mB) = dim B - ht(YJVm@. 



§31 Chains of prime ideals 251 

This is independent of the choice of p,,, so that A is equidimensional. If 
pESpecA and P is a minimal prime divisor of pB then from the 
going-down theorem (Theorem 9.5) we see that PnA = p, so that by 
Theorem 15.1, htP = ht p, and therefore ht(!J.R/P) = ht!lJ - htP = htYJI - 
htp is determined by p only. That is, B/pB is equidimensional. Also, if 
p’&pec A is such that p’ c p and ht(p/p’) = 1, we let P’ be a minimal 
prime divisor of p’B contained in P; then B/p’B is also equidimensional 
and flat over A/p’, so that ht(P/P’) = ht(P/p’B) = ht(p/p’) = 1. However, 
B is equidimensional and catenary, so that ht(P/P’) = htP - ht P’ = 
htp - htp’, and therefore htp = htp’ + 1, and so A is catenary. n 

Corollary. Let A be a quotient of a regular local ring R. If A is 
equidimensional then so is its completion A*. 
Proof. Let P, be a minimal prime ideal of A* and pO = PO n A; then 
writing p c R for the inverse image of pO, we have R*fpR* = A*/pOA*. 
R* is an integral domain, and therefore equidimensional, so we can apply 
the theorem to R --+R* and see that R*/pR* is equidimensional. Hence 

dim A*/P,, = dim A*/pOA* = dim A/p, = dim A. n 

Definition. We say that a Noetherian local ring A is formally equidimen- 
sional (or quasi-unmixed) if its completion A* is equidimensional. 

Theorem 31.6. Let (A, m) be a formally equidimensional Noetherian local 
ring. 

(i) A, is formally equidimensional for every p&pec A. 
(ii) If I is an ideal of A, then 

A/Z is equidimensional o A/I is formally equidimensional. 

(iii) If B is a local ring which is essentially of finite type over A (see 
p. 232) and if B is equidimensional then it is also formally equidimensional. 

(iv) A is universally catenary. 
Proof. (i) Let PESpec(A*) be such that PnA= p, and set B =(A*)p 
Since B is flat over A,, by Theorem 22.4, B* is flat over (A,)*. Now B is a 
quotient of a regular local ring, and is equidimensional, so that by the above 
corollary, B* is also equidimensional. Hence by Theorem 5, (A,)* is also 
equidimensional. 

(ii) follows easily from Theorem 5. 
(iii) B is a localisation of a quotient of A[X,, . . . ,X,1 for some n, so 

that by (ii) we need only show that a localisation B of A[X,, . . . ,X,1 is 
formally equidimensional. Now A*[X,, . . . ,X,1 is faithfully flat over 

ACX i, . . ,X,1, so that there is a local ring C which is a localisation of 
A*[X,, . . ,X,], and a local homomorphism B + C such that C is flat over 
B, and hence C* is flat over B*. By the remark after Theorem 15.5, C is 
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equidimensional, and is a quotient of a regular local ring, so that by the 
corollary of Theorem 5, C* is also equidimensional; hence by Theorem 5, 
B* is also equidimensional. 

(iv) Any local integral domain essentially of finite type over A is formally 
equidimensional, and hence catenary, so that any integral domain which 
is finitely generated over A is catenary. H 

We say that a Noetherian local ring A is formaZly catenary ([G2], 

(7.1.9)) if A/p is formally equidimensional for every pcSpecA. One sees 
easily from the above theorem that formally catenary implies universally 
catenary. The converse of this was proved by Ratliff [2]. Universally 
catenary is a property of finitely generated A-algebras, and we have to 
deduce from this a property of the completion, so that the proof is difficult. 
Before giving Ratliff’s proof we make the following observation. 

Let (R, m) be a Noetherian local integral domain, K the field of fractions 
of R, and R’ the integral closure of R in K; let S be an intermediate ring 
R c S c R’ such that S is a finite R-module. S is a semilocal ring, and its 
completion S* (with respect to the m-adic topology, which coincides with 
the rad(S)-adic topology) can be identified with R* &S. Now R* is flat 
over R, so that R c S c R’ c K gives R* c S* c R* C& R’ c R* QR K. The 
ring R* 6&K is the localisation of R* with respect to R - (O}, so that 
writing T for the total ring of fractions of R*, we can consider R* 6&K 
c T, and hence R* c S* c T. This leads to the possibility that properties of 
R* will be reflected in some S. 

Theorem 31.7. For a Noetherian local ring A, the following conditions are 
equivalent: 

(1) A is formally catenary, 
(2) A is universally catenary. 
(3) A[X] is catenary. 

Proof. (l)*(2) was proved in Theorem 6 and (2)*(3) is trivial. We prove 
(3) + (1). Suppose then that A[X] is catenary; we will prove that A* is 
equidimensional by assuming the contrary and deriving a contradiction. 
The proof breaks up into several lemmas. 

Lemma 3. Let (R, m) be a catenary Noetherian local integral domain, and 
let R* be its completion. Let dim R = n, and suppose that there exists a 
minimal prime Q of R* such that 

1 < dim (R*/Q) = d c n. 

For i = 1,2 ,... ., d - 1, write Oi for the set of p~Spec R satisfying the 
conditions 

(1) htp = i, 
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and (2) there exists a minimal prime divisor P of pR* such that Q c P and 
dim (R*/P) = d - i. 

Then mi is non-empty for each i. 
Proof. We work by induction on i. If 0 # u~m then any minimal prime 
divisor P of aR* + Q satisfies ht(P/Q) = 1, P n R # 0 and contains a. Hence 
if we set M = {P&pec(R*)IQ cP, ht(P/Q)= 1 and PnR ZO}, then 
m = UpE,(PnR). Now ht(mR*/Q) = d > 1, so that nrR*$M, and hence 
m itself is not of the form PnR for PEM; therefore both M 
and {P~RIPEM) are infinite sets. By Theorem 1, M’= {PE 
MI ht P = 1) is also infinite; choose any PEM’, and set p = PnR. Then 
0 < htp = ht pR* < htP = 1, so that htp = 1, and P is a minimal prime 
divisor of pR*. Since R* is catenary, dim (R*/P) = dim (R*/Q) - ht(P/Q) = 
d - 1; hence ~4~ and the assertion is true for i = 1. 

If i > 1, take p as above, and set R = Rfp and p = P/pR*; then since 
R is catenary, dim R = n - 1, and P is a minimal prime divisor of 
R* = R*/pR*, with dim (R*/F) = dim (R*/P) = d - 1 < n - 1. Hence by 
induction there exists a prime ideal pi = pi/p of R of height i - 1, and 
a minimal prime divisor Pi of $,R* such that P c Pi and dim(R*/ 
pii, = (d - 1) -(i - 1) = d - i. If pi = PJpR* then Pi is a minimal prime 
divisor of piR* containing P, and hence Q, and R*/Pi = ITS/pi is 
(d - i)-dimensional, so that from the fact that R is catenary we get 
ht pi = ht iji + ht p = i, and pi~~i. n 

Lemma 4. Let (R,m) be a Noetherian local integral domain, R* its 
completion, and let 0 = q1 n . . . n q, be a shortest primary decomposition 
of 0 in R*, with Pi = ,/qi for 1 6 i < r. Suppose that P, satisfies 

htP, =O, cohtP, = 1 <dimR. 

Then there exist b, cam and 6E(qZn...nq,) -PI with the following 
properties: 

(1) b - 6Eq,, 
(2) (b, 6)R* = (b, c)R*, 

and (3) c/b#R but is integral over R. 
Proof 

Step 1. P, is a minimal prime ideal and Y > 1, so that q2.. . q, + P, , 
and we can choose G’E(q,n..*nq,) - P,. Since coht P, = 1, it follows 
that q1 + 6’R* is (mR*)-primary, and hence if we set 

a = (ql + 6’R*)n R, 

then this is an m-primary ideal. Now if 0 # bEa is any element, then in 
R* we can write 

b=i+/?6’ with [Eq, and /IER*. 
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Since b is not a zero-divisor in R* we have pS’$P,, so that setting 6 = /?S’, 
we get (1). 

Step 2. We prove that &$bR*. By contradiction, suppose that 6 = b5 
with PER*; then b-6 = b(l- &ql, and since b$P, we have 
1 - 5Eq1 c mR*, so that < is a unit of R*, and b&R* c q2. This 
contradicts the fact that b is not a zero-divisor of R*. 

Step 3. If b is a non-zero ideal of R such that m is not a prime divisor 
of b then &bR*. Indeed, b:m = b, so that bR*:mR* = (b:m)R* = bR*, 
and so mR* is not a prime divisor of bR*; if P is any prime divisor of 
bR*, then P # mR* and P # P, (in view of P, n R = 0), so that coht P, = 1 
implies P + P,, hence P $ ql, and there exists aeq, -P. If we write 
Q for the P-primary component of bR* then cr6 = OEQ, so that SEQ. 
Thus finally kbR*. 

Step 4. By the previous two steps m is a prime divisor of bR. Hence 
we can write 

bR = I n J with I an m-primary ideal and J:m = J, 
and then bR* = IR*nJR* with ~EJR* and 6q!IR*. Moreover, 
(ZR* + JR*)/IR* N (I + J)/Z, so we can choose CEJ such that 6 - ceIR*. 
Then 

6 - CEIR* n JR” = bR*, 

so that (b,c)R* = (b, 6)R*, and (2) is proved. If cebR we would have 
(b, 6)R* = bR*, contradicting Step2, so that c/b$R. On the other hand, 
we have b-6Eq, so that 6(b -6)=0, that is b6 =d2, and c-d~bR*. 
Set c = 6 + by; then c2 = d2 + 2b6y + b2y2Eb(d, b)R* = b(c, b)R*, so that 

c’~(bc, b2)R* n R = (bc, b2)R. 

From this, we get c2 = bcu + b2v with u, VER, which proves that c/b is 
integral over R. Thus we have proved (3). n 

Lemma 5. In the notation and assumptions of Lemma 4, set S = R[c/b]; 
then S has a maximal ideal of height 1. 
Proof. Write T for the total ring of fractions of R*; then we can view S* 
as an intermediate ring R* c S* = R*[c/b] c T, and T is the total ring of 
fractions of S*. In Lemma 4 we had Ass(R*) = {PI,. . .,P,}, so that 
setting Qi = P,Tn S*, we get 

Ass(S*)={Q,,...,Q,} with htQi=htPi. 

Moreover, S* is integral over R*, so that S*/Q, is integral over R*/Pi, 
and hence also coht Qi = coht Pi. Let P* be any maximal ideal of S* 
containing Qr. Then from (b,c)R* = (b, 6)R* we get S* = R*[c/b] = 
R*[G/b], and since deq,n...nq, and 6 - bcq, we have 

d/bEQ,n...nQ, and 6/b- ~EQ,, 
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so that Qi + Qi = S* for all i > 1. Therefore Q1 is the only minimal prime 
ideal contained in P*. However, coht Q1 = 1 and P* n R* = mR*, so that 
ht P* = 1. Setting P = P* n S, we have ht P = ht P* = 1, and P is a maximal 
ideal of S, since P* is a maximal ideal of S*. n 

Now we return to the proof of Theorem 7. Let A be a Noetherian local 
integral domain, and suppose that A* is not equidimensional; 
then by Lemma 3, there exists a prime ideal p of A such that (A/p)* = 
A*/pA* has dimension > 1, and has a minimal prime ideal of coheight 
1. Set R = A/p; then by Lemma 4 and Lemma 5 applied to R, there exists 
a subring S of the integral closure R’ of R generated by one element, and 
having a maximal ideal P with ht P = 1 < dim R. Let f: R[X] -S be a 
surjective homomorphism of R-algebras and let q be its kernel. Set 
Q=f-‘(P). Then P=Q/q and QnR=m. Since RcS we have qnR= 
(0), hence ht Q = ht m + 1 and ht q = 1 by the remark after Theorem 15.5. 
Thus htQ - htq = htm = dim A/p > 1 = ht(Q/q), so that R[X] (and hence 
also A[X]) is not catenary. l 

Corollary 1. A Noetherian ring A is universally catenary if and only if 
A[X] is catenary. 
Proof. Suppose A[X] is catenary and set B = A[X,, . . . ,X,]. In order to 
prove that B is catenary it suffices to prove that BP is catenary for every 
PESpec B. Let p = P n A. Then B, is a localisation of A,[X1,. . . , X,]. Since 
A,[X,] is catenary, A,[X, , . . . , X,] is catenary by the theorem. l 

Corollary 2. A Noetherian ring of dimension d is catenary if d d 2 and is 
universally catenary if d d 1. 
Proof. The first assertion is obvious from the definitions and the second 
assertion follows from the first because dim A[X] = d + 1. n 

32 The formal fibre 

Let (A, m) be a Noetherian local ring and A* its completion. The 
libre ring of the natural homomorphism A --+ A* over any p&pecA is 
called a formal jibre of A (although strictly speaking we should distinguish 
between the libre and the libre ring, we will not do so in what follows). 
If I is an ideal of A then (A/I)* = A*/ZA*, so that a formal fibre of A/I is 
also a formal libre of A. 

Let A be a Noetherian ring and k c A a subfield. We say that A is 
geometrically regular over k if A gkk’ is a regular ring for every finite 
extension k’ of k (see $28). This is equivalent to saying that A, is 
geometrically regular over k for every maximal ideal p of A. 

We say that a homomorphism cp:A -+B of Noetherian rings is 
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regular if cp is flat, and for every peSpec A, the libre B OArc(p) of q over p 
is geometrically regular over the field K(P). 

A Noetherian ring A is said to be a G-ring (here G stands for 
Grothendieck) if A, -(A,)* is regular for every prime ideal p of A; this 
means that all the formal libres of all the local rings of A are geometrically 
regular. 

Theorem 32.1. Let A 5 B 2 C be homomorphisms of Noetherian 
rings; then 

(i) if cp and $ are regular then so is (1/q; 
(ii) if $cp is regular and $ is faithfully flat then cp is also regular. 

Proof. (i) Clearly $cp is flat. For pESpec A, write K = K(P), and let L be a 
finite extension field of K. Set BBaL = B,> and C oAL = C,; then the 
homomorphism tiL:B, --+ C, induced by $ is also regular. Indeed, if P is 
a prime ideal of B, then C&B, = COB(BOA L) = CO,,!, = C,, and 
hence if F is a finite extension of ti(P) then C,OB,.F = C@,F; setting 
PnB = Q, since B, is a finite B-module we have [rc(P):ic(Q)] < co, 
and hence [P:K(Q)] < a, so that C&F is a regular ring. Now cp is 
regular, so that B, is a regular ring, and hence by Theorem 23.7, (ii), C, is a 
regular ring. 

(ii) The flatness of cp is obvious. If we let p, K and L be as above, then 
C, is a regular ring and is flat over B,, so that by Theorem 23.7, (i), B, 
is also regular. n 

Theorem 32.2. Let q:A -B be a homomorphism of Noetherian rings, 
and assume that 9 is faithfully flat and regular. 

(i) A is regular (or normal, reduced, CM, or Gorenstein) if and only if 
B has the same property. 

(ii) If B is a G-ring then so is A (the converse is not true). 
Proof, (i) follows from Theorem 23.7, the corollaries to Theorems 23.9 and 
23.3, and Theorem 23.4. 

(ii) Let pESpec A, choose PESpec B lying over p, and consider the 
commutative diagram 

(A,)* “, (BP)* 

Here f is the map induced by q, and f * is the map induced by j; and 
the vertical arrows are the natural maps. Now f and p are both regular, 
and f* is faithfully flat, so that according to the previous theorem, CI is 
also regular. 
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To construct an example where A is a G-ring and B is not, we let A = k 
be a perfect field, and B a regular local ring containing k. Then k -B is 
certainly faithfully flat and regular, and k is a field, and so trivially a G-ring. 
However, there are known examples in which B is not a G-ring. (See the 
appendix to [Nl]; a counter-example is provided by the ring R in (E3.1) if 
char k = p, and by R in Example 7 if char k = 0. In (E3.1) the field k is not 
perfect, but R is geometrically regular over k.) 

Theorem 32.3. A complete Noetherian local ring is a G-ring. 
Proof. Let A be a complete Noetherian local ring and pESpec A; set 
B = A,,, and let B* be the completion of B. We prove that B --+B* is 
a regular homomorphism; that is, for any prime ideal p’ of B, we need to 
show that B* @ ti(p’) is geometrically regular over I. However, A/p’ n A 
is also a complete local ring, so that we can replace A by A/p/n A and 
reduce to the case p’ = (0). Thus assume that A is an integral domain, and 
let L be the common field of fractions of A and B; we must show that 
B*&L is geometrically regular over L. 

The problem can be further reduced to the case when A is a regular 
local ring. In fact, by Theorem 29.4, A contains a complete regular local 
ring R and is a finite module over R. Set p nR = q, R, = S and 

B’ = A,, = A 0,s; then B’ is a semilocal ring, and B is a localisation of B’ at a 
maximal ideal, so that B* is one direct factor of B’* = B’@,S*. Write K for 
the common field of fractions of R and S. 

B’* = B’@.S* ----tB* 

T T 
A- B’ = A&S -B=A,-L 

T ? T 
R-S =R, +K 

Now B* C&L can be written as B* @es L, and it is hence a direct factor of 
B’* OS, L = S* QL = (S* &K)&L, so that we need only show that 
S* OS K is geometrically regular over K. 

Now R, S and S* are regular local rings, and S* OS K is a localisation 
of S*, so is a regular ring. Hence if char K = 0, there is nothing to prove. 
We assume that char K = p in what follows. Then R has a coefficient 
field k, and can be written R = k/TX,, . .,X,1. Choose a directed family 
{k,] of cofinite subfields k, c k such that n,ka = kP, and set R, = 
k,[[X:, . . . , X,Pj; write K, for the field of fractions of R,. Then one sees 
easily (compare the proof of Theorem 30.9) that n,K, = KP. 

We set qa = qnR,; then since R, 3 RP, we see that q is the unique 
prime ideal of R lying over q,. Hence if we let S, = (R,),% then S = 
R, = R &,Sclr and S is a finite module over S,. Hence S* = S @,Sz; let us 
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prove that S* is O-smooth over S relative to S, (see $28). Suppose we are 
given a commutative diagram of the form 

I’-rTrN 

s,-s - c 
where C is a ring and N is an ideal of C with N2 = 0. If there is a lifting 
u’:S* -+ C of u as a homomorphism of S,-algebras, set w  = u’,~*, and 
let v” = u@ w:S* = S@s12Sz -C; then one sees easily that v” is a*lifting 
of v over S. Hence S* is O-smooth over S relative to S,. Now for 
QESpec(S*), let QnS = (0); then (S*), is a local ring of S* @K, and 
conversely, every local ring of S* &K is of this form. From the diagram 

S -K ---+C 

I I 
S, - Km, 

one sees that (S*), is O-smooth over K relative to K,. Set E = (S*). and 
m = rad(E); then E is m-smooth over K relative to K,, so that according 
to Theorem 28.4, 

QKIK, @dElm) --+QEjK 1 @EWm) 

is injective for every CI. Moreover, since n,K, = KP, by $30, Lemma 4, 

QK - lim RKIK, t 
is injective, and hence 

% 0 (Elm) - l@ (QKIK, 0 (Elm)) 
is also injective. Therefore, from the commutative diagram 

QK O&V4 - QE 0 (E/m) 
1 1 

I@ (Q,,,x@(E/m)) - l@ (Q,,,,@Wm)), 
we finally see that &@(E/m) -fin,@(E/m) is injective. Hence it 
follows from the corollary to Theorem 28.6 that E is m-smooth over K, and 
thus is geometrically regular. Since E is an arbitrary local ring of S* &K, 
we see that S*@K is geometrically regular over K. n 

Theorem 32.4. Let A be a Noetherian ring; if A,,, --+(A,,,)* is regular for 
every maximal ideal m of A, then A is a G-ring. 
Proof. Since (A,,)* is a G-ring, by Theorem 2, A,, is also a G-ring. For 
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any peSpec A, if we let m be a maximal ideal of A containing p then A, 
is a localisation of the G-ring A,,,, and hence A,, -(A,,)* is regular. n 

Theorem 4 makes it much easier to distinguish G-rings. For example, 
the next theorem is based on Theorem 4. 

Theorem 32.5. Let A be a Noetherian semilocal ring; then a sufficient 
condition for A to be a G-ring is that if C is a finite A-algebra which is 
an integral domain, m is a maximal ideal of C and we write B = C,, then 
(B*)o is a regular local ring for every QESpec(B*) such that Q nB = (0). 

Remark. It is easy to see that the condition is also necessary. 
Proof. By the previous theorem, we need only show that under the given 
condition, A -A* is regular. Let pg Spec A, and let L be a finite 
extension of k(p); we prove that A* OAL is regular. Suppose that L = 
ti(p)(ti,...,t,,); then multiplying each ti by an element of A/p we can 
assume that ti is integral over A/p, so that if we set C = (A/p)[t,, . . . , t,], 
then C is a finite A-module, and the field of fractions of C is L. Now 
C*=A*@,C,andifwewritenr,,..., m, for the maximal ideals of C and 
set Bi = C,,, then C* = B: x . .. x B,*. We can identify any local 
ring of A* Oa L = C* OcL with the localisation (BT)Q of one of the factors 
BT at some prime ideal Q of BT with Q n Bi = (0), and by assumption this is 
regular. Hence A* OaL is a regular ring. n 

Theorem 32.6 (H. Mizutani). Let R be a regular ring. If the weak Jacobian 
condition (WJ) of$30 holds for R[X,, . . . ,X,1 for every n 3 0, then R is a G- 
ring. 
Proof. Since (WJ) is inherited by any localisation we can assume that R is 
local. We prove that the condition of Theorem 5 holds. Set R,= 
R(X,,... ,X,1. Any integral domain C which is finite as an R-module can be 
expressed as C= R,/Q with Q&pec(R,) for some n. Let m be a maximal 
ideal of C, M the maximal ideal of R, corresponding to m, and S=(R,),; 
then it is enough to show that (S*),/Q(S*), is regular for every P&pec(S*) 
with PnS=QS. If htQ =r then htQ(S*),= r, and by assumption 
there exist D,, . . . ,D,EDer(R,) and fi,. . . ,fi~Q such that det(D&#Q. 
Now Di has a natural extension to S, and then to S*, and since PnR,=Q, 
we have det(Difj)#P, so that by Theorem 30.4, (S*),/Q(S*), is regular. n 
Corollary. A ring which is finitely generated over a field, or a localisation 
of such a ring, is a G-ring. 
Proof. It follows from the definition that a quotient or localisation of a 
G-ring is again a G-ring, so that we need only show that for a field k, the 
ring k[X i, . . . ,X,] is a G-ring; but by Theorems 30.3 and 30.5, (WJ) holds 
in k[X,,. . .,X”+,,,], so that k[X,,. . . , X,] is a G-ring by the theorem. n 

Remark 1. The local rings which appear in algebraic geometry are essen- 
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tially of finite type over a field, and therefore G-rings. Hence for these 
rings, properties such as reduced and normal pass to the completion. 

Remark 2. If R is a regular ring containing a field of characteristic 0, and 
(WJ) holds in R, then by Ex. 30.4, it also holds in R[X,,. ..,X,]. Hence 
Rand R[X,,... , X,] are G-rings. In particular by Theorem 30.8, rings of 
convergent power series over Iw and C are G-rings. 

A theorem proved by Grothendieck asserts that if A is a G-ring, then 
so is A[X]; the proof is very hard, and we omit it, referring only to [M], 
Theorem 77. The analogous statement for A[Xl remained unsolved for 
a long time, but was recently proved for a semilocal ring A by C. Rotthaus 
[3]. In the non-semilocal case she proved in [4] that, if A is a finite-dimen- 
sional excellent ring containing the rational numbers, then A[Xl is excel- 
lent. On the other hand, Nishimura [3] showed that there exists a G-ring 
A such that A[Xl is not a G-ring. 

Nagata [8] studied the condition that Reg(A) is open in Spec A; putting 
together Nagata’s work with his own theory of G-rings, Grothendieck 
gave the definition of excellent ring in [G2]. 

Definition. A Noetherian ring A is excellent if it satisfies the following 
three conditions: 

(1) A is universally catenary; 
(2) A is a G-ring; 
(3) Reg(B) c SpecB is open for every finitely generated A-algebra B. 

A Noetherian ring satisfying (2) and (3) is said to be quasi-excellent. 
One can prove that the classes of rings satisfying each of(l), (2) and (3) 

are closed under localisation, finitely generated extensions and passing 
to quotients. It can also be proved that (2) implies (3) for semilocal 
Noetherian rings. A complete Noetherian local ring is excellent, as are 
practically all Noetherian rings in applications. For more information on 
excellent rings, see [M], Ch. 13, or [G2]. 

R.Y. Sharp [S] defined the notion of an acceptable ring, replacing 
condition (2) by the condition that all formal fibres of all localisations of 
A are Gorenstein, and replacing Reg (B) by Gor (B) in (3), and showed 
that the resulting theory is analogous to the theory of excellent rings (see 
also GrecooMarinari [l], Sharp [6]). 

Using his cohomology theory, M. Andre [l] proved the following 
theorem. Let A, B be Noetherian local rings, and cp: A ---tB a local 

homomorphism; suppose that A is quasi-excellent and B is m,-smooth over 
A, where mB = rad (B); then cp is regular. This is an extremely strong 
theorem; the result of Rotthaus mentioned above also makes use of this. 
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33 Some other applications 

Dimension of intersection 

Let k be a field and 1/arid W irreducible algebraic varieties in affme 
n-space over k. (Here one may either assume that k is algebraically 
closed and identify the varieties with the corresponding subsets of k”, or 
take the scheme-theoretic viewpoint.) Then it is well known that every 
irreducible component of I/n W has dimension > dim 1/ + dim W- n. 
Algebraically, this is equivalent to the following theorem. 

Let P and P’ be two prime ideals in the polynomial ring R = 
k[X, , . . ,X,1 over a field k, and let Q be a minimal prime divisor of P + P’. 
Then 

dim R/Q 3 dim(R/P) + dim(R/P’) - n, 

or equivalently, 

(*) htQ<htP+htP’. 

The idea of the proof consists of transforming the intersection I/n W in 
k” into the intersection An(V x W) in k’“, where A is the diagonal, and 
availing oneself of the fact that A is defined by n equations xi - yi = 0, for 
i= 1 , . . . , n (see [M], p. 93). 

Now in algebraic geometry, the theorem remains true if one replaces 
afline n-space by a non-singular (smooth) variety; namely, if I/ and W are 
irreducible subvarieties of a non-singular variety U, then every irreducible 
component of Vn W has dimension 3 dim I/ + dim W - dim U. Algebrai- 
cally, the inequality (*) still holds if R is an arbitrary regular local ring 
containing a field. One can easily reduce to the case where R is complete, 
and then by I.S. Cohen’s structure theorem R is isomorphic to 
k[X,, . . . , X,1, and so one can apply the same diagonal trick. Thus it is clear 
that (*) holds in an arbitrary regular local ring of equal characteristic. How 
about the unequal characteristic case? If R is unramilied, then its 
completion R* is a formal power series ring over a DVR by Theorem 29.7, 
and a slight modification of the argument used in the case of k[X,, . . . , X,] 
suffices. When R is ramified, by Theorem 29.8, R* is of the form 

D[X,, . , X,JV(fh w h ere D is a complete DVR and f is an Eisenstein 
polynomial. Using this, and applying his deep results on intersection 
multiplicity, J.-P. Serre proved the inequality (*) for general regular local 
rings R in Chapter V of his book [Se]. We recommend this excellent book 
to the reader. 

Integral closure of a Noetherian integral domain 

Let A be a Noetherian integral domain with field of fractions K, and let 
A’ denote the integral closure of A in K (the so-called derived normal 



262 Applications of complete local rings 

ring of A). Is A’ a finite module over A? This is a difficult question, and 
the answer is no in general. When A is finitely generated over a field k (the 
case encountered in algebraic geometry) it is easy to prove finiteness. 
We need the following two lemmas. 

Lemma 1. Let A be a Noetherian normal integral domain with field of 
fractions K; suppose that L is a finite separable extension of K, and let A’ be 
the integral closure of A in L. Then A’ is a finite A-module. 

Proof: By enlarging L if necessary we can assume that L is a Galois 
extension of K. Write G = {oil 1 < i < n} for the Galois group of L/K, where 
n=[L:K],andlety,,..., yn be elements of A’ which form a basis of L over 
K. If zEA’ and z = c; cj Yj with cj~K, then ciz = zjcjaiyj for i = 1,. . . , n, 
and hence cj = C,lD, where D = det(aiyj) and C.,EA’. Putting d = D2 we see 
deK. In fact it is easy to see that d = (trLIK(yiyj)) is the discriminant of the 
separable K-algebra L (see p. 198). It follows that d # 0 and dcjE A’n K = A 
for allj. Therefore A’ is contained in the finite A-module c jAd- ’ yj, so that 
A’ itself is finite over A. 

Lemma 2 (Normalisation theorem of E. Noether). Let A = k[x,,.. .,x,1 
be a finitely generated algebra over a field k; then there exist y,, . . . , y,~ A 
which are algebraically independent over k such that A is integral over 

kCY l,...,Y*l. 
Proof. Here we assume that k is an infinite field, referring the reader to [M], 
(14.G) or [Nl], (14.4) for the general case. Suppose xi,. . . , x, are 
algebraically dependent over k, and let f(xi, . . . , x,) = 0 be a relation, where 

.f(X i, . . . , X,) is a non-zero polynomial with coefficients in k. Write d for the 
degree off and let fd(X 1,. . . , X,) be the homogeneous part off of degree d. 
Take ci,..., c,_l~ksuchthatf,(c,,...,c,-,,1)#0,andsetyi=xi-cix, 
for i = 1,. . . , n - 1. Then 

O=f(xl,..., Xn)=f(Yl +clx”,~~~~Y,-l +c,-lx,,4 
=f&1,..., c,-,,l)x~+g,x~-l+.,.+g,, 

with giEk[y,, . . . , y,- i], so that x, is integral over k[y,, . . . , y,- i]. Then 
Xi = yi + CiX,, for i * 1,. . . , n - 1, are also integral over k[y,, . . _ ,yn- 1], 
hence A is integral over k[y,, . . . , y,- 1]. Thus the assertion is proved by 
induction on n. n 

Now let A be a finitely generated integral domain over k, with field of 
fractions K and derived normal ring A’. Take y,, . . . , y,~ A as in Lemma 2, 
so that A’ is also the integral closure of k[y,,. . . , y,] in K. Set K’ 

=k(yl,..., y,). Then K is a finite algebraic extension of K’. If this extension 
is separable then A’ is finite over k[y,, . . . , y,] by Lemma 1, hence is also 
finite over A. If K is inseparable over K’, let p = char K. Then there is a 
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purely inseparable finite extension K” of K’ such that K(K”) is separable 
over K”. Therefore it suffices to prove that the integral closure of 

& 1,. . . , y,] in K” is finite over it. But K” is contained in a field L which is 
obtained by adjoining to K’ the qth roots of a finite number of elements 
a,,..., a, of k and also the qth roots of y,, . . . , y,, where q is a suffkiently 
high power of p. Then the integral closure of k[y,, . . , y,] in L is 
k’[y;‘q,..., yi’q], where k’ = k(a:lq,. . . ,a,‘lq), and it is clear that 
k’[yi’q,... , yflq] is finite over k[y,, . , y,]. This completes the proof of 
finiteness of A’ over A. 

When A is a complete Noetherian local domain one can prove the 
finiteness of A’ along the same line as above. Using Theorem 29.4, (iii), 
instead of Lemma 2, one reduces to proving the finiteness of the integral 
closure of a complete regular local ring A in a finite extension L of the field 
of fractions K of A. If char K = 0 this is proved by Lemma 1, so that we can 
assume char K = p > 0. Then A = k[X,, . . . , X,1 is a formal power series 
ring over a field k. We can also assume, as in the above proof, that L is 
purely inseparable over K, so that there is a power q = pm of p such that 
L c K ‘lq. But there is one problem. Since a formal power series has infinitely 
many coefficients, it may not be possible to find a finite extension k, of k 
such that L c k,((_Y)), where r= (Y,, . . . , Y,), Yi = X!lq and k,((_Y)) denotes 
the field of fractions of k,@j. 0 ne can overcome this difficulty either by an 
argument of Nagata in [Nl, p. 1131, or (following J. Tate) by induction on n 

as follows : 
We may assume that x = Xi’jq~ L (1 < i < n). Since A is normal we have 

A’ = {feLlfq~A}. Set P= X,A, Q = Y,A’; then Q = (~EL~~~EP}, so that 
Q is the only prime ideal lying over P. Now A, and Ah are DVRs by 
Theorem 11.2 (3), and their fields of fractions are L and K respectively. Let 
K’ and K be their residue fields; then [K’:K] 6 [L:K] by Ex.10.8. Since A’/Q 
is contained in the integral closure of A/P = k[X,, . . . ,X,1 in K’, by the 
induction hypothesis, A’/Q is finite over A/P. Since 

Qi/Qi+l =yliA!/yli+l A’ N A’/Q and Qq = PA’ 

we see that Al/PA’ is finite over A/P. Moreover, A’ is separated in the P-adic 
topology (which is the same as the Y,-adic topology), because 
A’ c kllq[Yl,. . . , ml. Since A is P-adically complete, A’ is finite over A by 
‘Theorem 8.4. n 

From this result it is easy to derive the following theorem: Zf A is a 
Noetherian local ring whose completion A* is reduced, then the integral 
closure A’ of A in its total ring of j-actions is finite ouer A. See [M] p. 237. 

On the other hand, if A is not reduced and if the maximal ideal m contains 
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a regular element (that is, a non-zero-divisor), then A’ is not finite over A 
(Krull [2]). In fact, if x # 0 is nilpotent, take a regular element s such that 
x$sA; (it is possible to find such an s since 0 mi = (0)). Then the elements 
x/sj (forj = 1,2,3,. . . ) belong to A’. If A’ is finite over A then there must be 
some integer n such that s”(x/sj)~- A for all j. But then XE n,., Os’A = (0), a 
contradiction. n 

Suppose (A, m) is a one-dimensional Noetherian local integral domain. 
Then A* is reduced if and only if A’ is finite over A (Krull[2]). In fact, if A’ is 
finite over A then it is a semilocal ring, and for each maximal ideal P of A’ 
the local ring(A’), is a DVR. The rad(A’)-adic topology of A’ coincides with 
the m-adic topology, and the completion A’* of A’ with respect to this 
topology is a direct product of complete DVRs by Theorem 8.15, hence is 
reduced. On the other hand it coincides with A* BAA’ by Theorem 8.7. 
Since O+A-+A’ is exact, O--+A* --+ A* @ A’ is also exact. Therefore 
A* is reduced. The converse holds, as already mentioned, without the 
restriction on dimension. n 

Rees [9] proved that a reduced Noetherian local ring A has reduced 
completion A* if and only if for every finite subset T of the total ring of 
fractions K of A, the integral closure of A[lJ in K is finite over A[r]. 

Akizuki Cl] constructed the first example of a one-dimensional Noeth- 
erian local integral domain with non-reduced completion (see also Larfeldt- 
Lech [ 11). To avoid such pathology, Nagata [Nl] defined and studied the 
class of pseudo-geometric rings, which were called ‘anneaux universelle- 
ment japonais’ by Grothendieck ([Gl], [G2]). These are now known as 
‘Nagata rings’ ([Ml, [B9]). A Noetherian ring A is called a Nagata ring if 
for every prime ideal P of A and for every finite extension field L of the field 
of fractions rc(P) of A/P, the integral closure of A/P in L is finite over A/P. 
For the basic properties of Nagata rings, see [M], $31. An alternative 
definition is the following: a Noetherian ring A is a Nagata ring if (1) for 
every maximal ideal m the formal tibres of A, are geometrically reduced, 
and (2) for every finite A-algebra B which is an integral domain, the set 
Nor(B) = {PESpecBIB, is normal) is open in SpecB. The equivalence of 
these two definitions can easily be proved from [G2], (7.6.4) and (7.7.2). 

Although the integral closure A’ of a Noetherian integral domain A may 
fail to be finite over A, it is a Krull ring by the theorem of MoriCNagata 
mentioned in 5 12. Because of its importance we quote here the theorem in 
full. 

Mori-Nagata integral closure theorem. Let A be a Noetherian integral 
domain and let A’ be its derived normal ring. Then (1) A’ is a Krull ring, and 
(2) for every prime ideal P of A there are only finitely many prime ideals P’ of 
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A’ lying over P, and for each such P’ the field of fractions rc(P’) of A//P’ is 
finite over K(P). 

For a proof, see [Nl], (33.10). This proof depends on I.S. Cohen’s structure 
theorem. There are also more recent proofs which do not use the structure 
theorem (Nishimura [2], Querrt [l], Kiyek Cl]). 

Note that A’ is Noetherian if dim A d 2. This follows easily from the 
above theorem, Theorem 11.7 (KrullLAkizuki) and Theorem 12.7 (Mori- 
Nishimura). When dim A = 3, Nagata constructed a counter-example 

( [Nil, P. 207). 

Theorem 28.9, which is due to Grothendieck and is not proved in this book, 
was given a new proof by Radu [5]. This interesting proof depends heavily 
on I.S. Cohen’s structure theorem. The same remark applies also to Andre’s 
proof [l] of the theorem mentioned at the end of 532. 

I.S. Cohen’s structure theorem is also at the basis of the theories of 
canonical modules ([HK]) and of dualising complexes (Sharp [3], [5]). 
Here, the fact that a complete Noetherian local ring is a quotient of a 
Gorenstein ring is important. 



Appendix A 
Tensor products, direct and inverse limits 

Tensor products 

Let A be a ring, L, M and N three A-modules. We say that a map 
cp:M x N --+ L is bilinear if fixing either of the entries it is A-linear in the 
other, that is if 

cp(x f x’, Y) = d-T Y) + dx’, Y), da-% Y) = adx, Y), 
cpk Y + Y’) = sok Y) + dxt Y’h dx, QY) = ad% Y). 

Write Y(M, N; L) or Ti”,(M, N; L) for the set of all bilinear maps from 
M x N to L; as with Hom(M, L), this has an A-module structure (since 
we are assuming that A is commutative). 

If g:L-L’ is an A-linear map and ~IEY(M,N;L) then 
goqEY(M, N;L!). Bearing this in mind, for given M and N, consider a 
bilinear map 0 : M x N -LO having the following property, where we 
write x 0 y instead of 0(x, y): for any A-module L and any q~2’(M, N; L) 
there exists a unique A-linear map g: L, -L satisfying 

dXOY) = d%Y). 
If this holds we say that L, is the tensor product of M and N over A, and 
write L, = M @A N; we sometimes omit A and write M 0 N. As usual with 
this kind of definition, M aA N, assuming it exists, is uniquely determined 
up to isomorphism. To prove existence, write F for the free A-module 
with basis the set M x N, and let R c F be the submodule generated by 
all elements of the form 

(x + x’, Y) - k Y) - w, Y), (ax, Y) - 4% Y) 
(x, Y + Y’) - (x, Y) - (x, Y’), (x, UY) - 4x, Y). 

Then set L, = F/R and write x @ y for the image in L, of (x, ~)EF. It is 
now easy to check that L, and @ satisfy the above condition. 

Note that the general element of M OA N is a sum of the form xxi 0 yi, 
and cannot necessarily be written x @ y. 

For A-modules M, N and L the definition of tensor product gives: 
Formula 1. Hom,(M @A N, L) z Y(M, N; L). 

The canonical isomorphism is obtained by taking an element cp of the 
right-hand side to the element g of the left-hand side satisfying g(x @3 y) = 

cpk Y). 

266 
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We can define multilinear maps from an r-fold product of A-modules 
M r, . . . , M, to an A-module L just as in the bilinear case, and get modules 
=WM,,..., M,;L) and MIOA... @*M,; the following ‘associative law’ 
then holds: 
Formula 2. (M OA M’) CQJA M” = M OA M’ @*M” = M @*(M’ OAM”). 
For example, for the first equality it is enough to check that the trilinear 
map M x M’ x M” -(M GM’)@ M” given by (x,y,z)~(x@y)Oz 
has the universal property for trilinear maps, and this is easy. The following 
Formulas 3, 4 and 5 are also easy: 
Formula 3. M@,N N N@,M (by x@ytty@x). 
Formula 4. M OA A = M. 
Formula 5. (GA M,) OA N = eL(M, OA N). 

If f : M -+ M’ and g : N --+ N’ are both A-linear then (x, y)r-, 
f(x)@g(y) is a bilinear map from M x N to M’OA N’, and so it defines a 
linear map MOAN -M’ 0, N’, which we denote f 0 g. From the 
definition we have: 

Formula 6: (fQg)(CixiQyJ = Cif(xi)Qg(yJ. 
In particular, if bothfand g are surjective then we see from this thatfog is 
surjective; its kernel is generated by {x 0 y If(x) = 0 or g(y) = O}. Indeed, let 
Tc M @ N be the submodule generated by this set; then Tc ker(f@g) so 
that f @ g induces a linear map a:(M @ N)/T --+ M’ @ N’; furthermore, 
we can define a bilinear map M’ x N’ ---+ (M @ N)/T by 

(x’, y’)++(x Q y mod T), where f(x) = x’, g(y) = y’, 

since a different choice of inverse images x and y leads to a difference 
belonging to T. This defines a linear mapfi: M’ @ N’ -(M 0 N)/T, 
which is obviously an inverse of CI. We summarise the above (writing 1 for 
the identity maps): 
Formula 7. Suppose given exact sequences 

I f 
O+K-M-M’+0 and O+LANLN’-+O, 

then M’@ N’ 2: (M @ N)/T, where 

T=(i@l)(KON)+(lOj)(MOL). 
Formula 8 (right-exactness of the tensor product). If 

M,LM,LM,+O 

is an exact sequence then so is 

M,QNf2M,@N%M,@N+0. 

In general, even if f: M +M’isinjective, f@l:M@N-M’@Nneed 
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not be. (Counter-example: let A = h and N = Z/n?? for some n > 1. Let 

f:Z--+Zbemultiplicationbyn;thenZ@,N~N#0,butf@1:N~N 
is the zero map, and so is not injective.) However, if Imf is a direct 

summand of M’ (in which case we say that the exact sequence 0 + M A 
M’+M’/M +O splits), then there is a map g:M’+M such that 
gf =l. 

(gOl)(fO1)=gfO1= 101 

is the identity map of M @ N, and hence S @ 1 is injective, and the sequence 
0 -+ M @ N -M’@ N - (M’/M)@ N + 0 is split. In particular if A 
is a field then any submodule is a direct summand, so that the operation 
ON takes exact sequences into exact sequences; in other word, 6~ N is 
an exact functor. For an arbitrary ring A, an A-module N is said to be 
flat if 0 N is an exact functor. For more on this see $7. 

Change of coe#icient ving 

Let A and B be rings, and P a two-sided A-B-module; that is, for UEA, 
bEB and XEP the products ax and xb are defined, and in addition to 
the usual conditions for A-modules and B-modules we assume that 

(ax)b = a(xb). 

Then multiplication by an element bEB induces an A-linear map of P 
to itself, which we continue to denote by b. This determines a map 
10 b:M @*P --+ MgA P for any A-module M, and by definition we 
take this to be scalar multiplication by b in M aAP; that is, we set 
(CyiOxJb= Cyi@xib for Yi~M and x~EP. 

If N is a B-module, then for qeHom,(P, N) we define the product cpa 
of cp and aEA by 

(vu)(x) = cp(ax) for XEP; 

we have cpaEHomg(P, N), and this makes Hom,(P, N) into an A-module 
Formula 9. Hom,(M, Hom,(P, N)) N Hom,(M aA P, N). 
Formula 10. (M@,P)@,N N M@,(P@,N). 

Both of these are easy to prove, and we leave them to the reader. 
Formula 10 generalises Formula 2. 

Given a ring homomorphism 1:A -+ B, we can think of B as a two- 
sided A-B-module by setting ab = /2(a)b; then for any A-module M, M OAB 
is a B-module, called the extension of scalars in M from A to B, 
and written MC,,. For A-modules M and M’ the following formula holds, so 
that tensor product commutes with change of scalars. 
Formula II. (MO,B)@,(M’@aB)=(M@AM’)@AB. 
Indeed, using Formulas 10, 4 and 2, the left-hand side is equal to 
M@,,(B@,(M’@,B))=M@,(M’@,B)=(M@,M’)@,B. 
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Tensor product of A-algebras 

Given a ring homomorphism 1: A --+ B we say that B is an A-algebra. Let 
B’ be another A-algebra defined by i’:A -B’. We say that a map 
f:B - B’ is a homomorphism of A-algebras if it is a ring homomorphism 
satisfying 2’ = p/l. If B and C are A-algebras, then we can take the tensor 
product B @A C of B and C as A-modules and this is again an A-algebra. 
That is, we define the product by 

(Tbi@Ci)(Fh;Oc;) =$bib;@CiC;y 

and the ring homomorphism A -B @ C by a-a@ l( = 1 @a). The 
fact that the above product is well-defined can easily be seen using the 
bilinearity of bb’ @cc’ with respect to both (b, c) and (b’, c’). The algebra 
B @ C contains B @ 1 (short for the subset {b @ 11 beB} c B @ C) and 10 C 
as subalgebras, and is generated by these. Note that B 0 1 is not necessarily 
isomorphic to B. 

Example 1. If a is an ideal of A and C = A/a, then B@,C = B@,(A/a) = 
B/LIB, and the above B@ 1 is also equal to B/aB. 

Example 2. If B is an A-algebra and ACX] is the polynomial ring over A 
then BgAA[X] can be identified with B[X]. Indeed, A[X] is a free A- 
module with basis {Xv/v = 0, 1,2,. . .>, so that B@,A[X] is also the free 
B-module with basis {Xv>, and is isomorphic to B[X] both as an A-module 
and as a ring. Similarly for the polynomial ring in several variables. 

Direct limits 

A directed set is a partially ordered set A such that for any &PEA there 
exists VGA with 1< v and p < v. For example, a totally ordered set is directed; 
the set of finite subsets of a set S, ordered by inclusion, is a directed set 
which is not totally ordered. 

Suppose that for each element 1” of a directed set A we are given a set 
M,, and whenever ;1. < ,u we are given a map f,,n:M, -M, satisfying 
the conditions 

frll=l, and fvpOfall=fvl for /z<~Uvv; 

we express all this data as (ML;fpn}, and refer to it as a direct system 

over A (or indexed by A). If each Mn is an A-module, and each fbl A-linear 
we speak of a direct system of A-modules; if each M, is a ring, and each 
f Pl a ring homomorphism, a direct system of rings. More generally, we 
can define direct systems in any category. 

Given two direct systems 9 = {M,; fan} and $F'= {M',; fpl} 
indexed by the same set, a morphism cp: 9 + 9 is a system of maps 
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{qn: MA ---+ M;} such that 

f ;io~i = ~~~~~~ for 2 < P. 
By a map from 9 to a set X we mean a system {cpA} of maps 
cpl:M1 -X satisfying qA = ~,,of,,~ for /z < p. Now if a map 
$:9 - M, from P to a set M, has the universal property for maps 
from 9 to sets, that is, if for any map cp:8 -X there exists a unique 
map h:M, -X such that q1 = hot,bn for all IDEA, then M, is called the 
direct limit of 5, or simply the limit of 9, and we write M, = 14 M,, or 
M, = lim M,. As one sees easily from the definition, a map (p:Y --+P’ 
induces a map lim M, -1im M;, which in this book we write qrn or 
lim cp, 

The limit of a direct system 9 = {M,;f,J always exists. In order to 
construct it we do the following: take the disjoint union LI,M, of the M,, 
and define a relation E by 

XEYO 
EM,, REM,, and there exists a v 
with 1 d v, p d v and fVn(x) = f,,(y). 

Then it is easy to see that = is an equivalence relation. We write M, for 
the quotient set (LI, M,)/ 3, that is the set of equivalence classes under = ; 
then one sees easily that M, satisfies the conditions for a direct limit. We 
write lim XEM, for the equivalence class of XEM,. If B is a direct system 
of modules then M, can be given a natural structure of A-module, and 
xwlimx is an A-linear map from M, to M,. Similarly for direct systems or 
rings. 

The above is general theory. In this book the following two theorems are 
of particular importance. 

Theorem Al. Let A be a ring, N an A-module, and let 9 = {M,;f,,} 
be a direct system of A-modules. Then 

1% (M, O.,, N) = (lim M,) OA N. 
- 

(In other words, tensor product commutes with direct limits.) 
Proof. Set lim M, = M, and lim(M,@ N) = L,. We write qn:MA --+M, 
for the A-linear map given by xHlimx, so that {qn@ l} is a map 
from the direct system (M, 0 N; fPA @ I} to the A-module M, ON; this 
determines a unique A-linear map h: L, -M, 0 N. For XEM, and YEN 
we have h (lim(x @ y)) = (lim x)0 y. On the other hand, fixing YEN we 
can define gl,Y: MA -+ L, by gl,Jx) = lim (x @ y), and in the limit we get 

g,:M, --+L,. 

If x,EM, we can write x, = lim x for some A and some XEM,. Then 
g,(x,) = gn,Jx) = lim (x 0~). From this we can see that g,(x,) is bilinear in 
x, and in y, and so defines an A-linear map g: M, @N -+ L, such that 



Tensor products, direct and inverse limits 271 

g(x, By) = g,(x,). Now it is easy to see that g and h are inverse maps, so 
that M,@N E L,. n 

Theorem A2. Suppose that we have three direct systems of A-modules 
indexed by the same set A, 9’ = {M;; fh,}, 9 = (M,; f,,n} and 
9”={M;;fik), and maps {‘p1):Y-9 and {$J:9-9” such 
that for every L, 

M’,LM,- IL’ M’; 

is an exact sequence; then the sequence obtained in the limit 

1% M; -%l%M, LlhllJMI; 

is also exact. (ln other words, direct limit is an exact functor.) 
Proof. Write M, for the limit of F, and let y,eM, be such that 
Il/,(y,) = 0. For some II and REM, we can write ym = lim y, and then 
0 = $,(lim y) = lim tin(y), so that for some ,U > 2 we have &(tia(y)) = 0; 
the left-hand side here is equal to Il/,(&(y)), so that by assumption 
there is XE Mb such that fPn(y) = p,,(x). Thus y, = lim f,,(y) = lim q,(x) 
= q,(limx)~Im(qo,). Also, tjmo~m = 0 is obvious. n 

Given an A module M, write {MJLG, for the collection of all finitely 
generated submodules of M. We define a partial order on A by letting IL d p 
if M, c M,; this makes A into a directed set, and we write f,,n:ML - 
M, for the natural inclusion. Then { M,;f,,) is a direct system of A- 
modules, the limit of which is the original M, that is M = 12 ML. Hence 
any A-module can be expressed as a direct limit of finitely generated A- 
modules. 

In a similar way, given any ring A and a subring A,, c A, we can express 
A as the direct limit of subrings which are finitely generated over A, as 
rings. If we take A, to be the minimal subring of A (that is, the image in 
A of Z), then a ring which is finitely generated over A, is Noetherian, and 
hence every ring is a direct limit of Noetherian rings. 

Inverse limits 

Inverse systems and inverse limits are defined as the dual notions to direct 
systems and direct limits, that is by reversing all the arrows in the 
definitions. That is, we take a directed set A as indexing set; an inverse 
system of sets is the data of a set M, for each LEA, and of a map 
fnp:M, -ML whenever L < ,u, such that 

fll=l, and flp~fpv=flv for 16~Lvv; 
we write this as (MA; f+}. A morphism between two inverse systems 
with the same indexing set, and a map from a set N to an inverse system 
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9 = {Mi;,fnP} are defined dually to the case of direct systems. We say 
that A4 r is an inwrsr lirnit, or projective limit of.;, and write M, = 12 M,, 
if there is a map cp = {cpl): M, -9 which has the property that 
for any set X, and any map I,$ = ($,}:X -9, there exists a unique 
map h:X + M, such that til = cpich for all i. To prove the existence of 
l@ M, we only have to let M r be the following subset of the direct product 

Il,M,: 

M, = {(xi.)ne,JJ d P=X~ = ‘P&J}. 
If each M, is a module and each qnp is a linear map then this M, is a 
submodule of the direct product module, and is the inverse limit of modules. 
In a similar way, the inverse limit of an inverse system of rings is again 
a ring. 

Example. Let A = { 1,2,3,. . .> and let p be a prime number. Consider 
the inverse system of rings 

Z/(P) - VP’) - WP”) - ...? 

where each arrow is the natural homomorphism. The inverse limit 
@ Z/(p”) is known as the ring of p-adic integers. Its elements are of the form 

(a,,a,,a,,...), with a,~Z/(pi) and ai=ai-imodp’-‘; 

addition and multiplication is carried out term-by-term: 

(a,,+ ,... )+(b,,b, ,... )=(u,+b,,a,+b, ,...) 

(~,,~,,...).(~,,b,,...)=(a,b,,a,b, ,... ). 

More generally, if A is any ring and I an ideal of A, the inverse limit 
lim A/Z” of the inverse system ofrings A/I - A/I2 - ... is called the I-adic 
completion of A (see $8). 

Taking the inverse limit of an inverse system of modules is a left-exact 
functor, but is not an exact functor, so that the analog of Theorem A2 
for inverse systems does not hold. 

Example. Consider the diagram 

o-z~z -Z/(n)+0 
lp lp lp 

o+zLz -+H/(n)-+O 
1p 1p 1p 

0-Z -227 -+Z/(n)-+O; 

here p and n are coprime integers, and the arrows marked A are 
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multiplication by n. The rows are exact sequences, and each column defines 
an inverse system. The left-hand and middle columns have 0 as their 
inverse limits, but since every arrow in the right-hand column is an 
isomorphism, the inverse limit is isomorphic to Z/n. Thus going to the 
inverse limit, we find that 0 -0 --+2!/(n) is exact, but the second arrow 
is not surjective. 

Exercises to Appendix A. Prove the following propositions. 

A.l. Let M and N be A-modules. If  the natural map M’ Ba N - M Q N is 
injective for every finitely generated submodule M’ c M then the same thing 
holds for every submodule M’ c M. 

A.2. Let A be a ring, and 8, C, D (commutative) A-algebras. Then to give a 
homomorphism of A-algebras from B@,C to D is the same thing as to 
give a pair of homomorphisms of A-algebras B d D and C -+ D; in 
other words, B @A C is the category-theoretical direct product of B and C 

in the category of A-algebras. 



Appendix B 
Some homological algebra 

Let A be a ring; by a map from an A-module into another we mean an 
A-linear map. 

Complexes 

By a complex we mean a sequence 

dn 
. . . -+K,dK,-ld_ZI:K,-2-~.’ 

of A-modules and A-linear maps such that d,- 1 ad,, = 0 for every n. 
This complex is written K.. Since Im(d,+,) c Ker(d,) we can define 
H,(K.) = Ker(d,)/Im(d,+ J to be the homology of K. in dimension n. To 
say that H,(K.) = 0 for all n is to say that K. is exact. We also consider 
complexes in which the indices go the other way, ... + K” -k 
K”+’ -“‘, and for these we write K’ for the complex, and H”(K’) = 
Ker(d,)/Im(d,- 1) for the cohomology of K’ in dimension n. From now on 
we often omit the indices, writing d for d,. We call d the differential of the 
complex K.. 

A morphism f: K. -K: of complexes is a family S = (fJntL of A- 
linear maps f,: K, - KL satisfying d’ofn = f,- I od, or in other words 
a commutative diagram 

. . . -K,-K,-l -+K,ez-... 
J-n/ J--11 s”-2j 

. . . -K:,-K;-l-K:,-2-... 

In an obvious way, f induces a linear map H,(K.) --+H,(K:) between 
the homology modules in each dimension; this is often written f,,, or 
simply f if there is no fear of confusion. If f,g:K. -K: are two mor- 
phisms we say that f and g are homotopic (denoted f N g) if for each n 
there is a linear map h,: K, - Kb, I such that 

f,-g,=d’h,+ h,-id. 

If this happens then f and g induce the same map H,(K.) -HH,(K’) on 
homology. Two complexes K. and K: are said to be homotopy equivalent 
if there exist morphisms f: K. -K: and g:Kl -K. such that gf - 1, 
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and LCI - I,,, where 1, denotes the identity map K. --+ K.. Homotopy 
equivalent complexes have the same homology. 

A sequence of complexes 

O+K: LK.LK;+O 

is said to be exact if 

is exact for every n. In this case, a connecting homomorphism 
6,:H,(K:‘)-H,-,(K:) is defined as follows: for tcH,(K:‘), choose 
xEKer d:: representing I& and take ~EK, such that g(y) =x; then since 
g(dy) = 0 there is a well-determined ZEKL- r for which f,,- 1(z) = dy, and 
dz = 0. The class {EH,- r(K) represented by z can easily be seen to depend 
only on c, and 6, is defined by S,(g) = c. The following sequence is then 
exact: 

.” -2 H,(K:) 5 H,(K.) ~H,(K$+H,&K:) -.... 

The proof does not require anything new, and is well-known, so that we 
omit it; this should be thought of as a fundamental theorem of homology 
theory. The above sequence is called the homology long exact sequence 
of the short exact sequence 0 + K: + K. --, K: -+ 0. 

Double complexes 

A double complex of A-modules is a doubly indexed family K.. = 

K&7) P,‘lEZ of A-modules, with two sets of A-linear maps 

4GP.4 +K,-l,, and d;4:KP,4 ---f K,,,- r for which d’d’ = 0, d”d” = 0 
and d’d” = d”d’. Given a double complex K.., if we set 

and define d, :K, ---+K, _ 1 by 

dx = d’x + ( - l)Pd”x if XEK,,,, 

then since dd = 0, the {K,} form an ordinary complex with differential d. 
The homology of this complex is called the homology of K.., and written 

H,(K..), or simply H,,W). 
To treat homology and cohomology in a unified manner, we fix the 

following convention on raising and lowering indices: K,,, = K-“, = KPmq 
= K-p~Pq. For example, given a double complex (Kpq) with d’:KPq 

-K,-1 q and d”:KPq + KPqil, we think of KPq as K,,-,, and set 

K, = @ KPq. 
p-q=n 
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The basic technique for studying the homology of double complexes is 
spectral sequences, but we leave this to specialist texts, and only consider 
here the extreme cases which we will use later. 

We can fix the first index p in K.. getting a complex K,.. 

d” d” 
. . . -K,,+l -K,,-K,,,-1 ----f”’ 

Similarly, for fixed q, d’ defines a complex K.,. 
Now suppose that K.. satislies the condition K,, = 0 if p or 4 < 0 (a 

first quadrant double complex). We set H,(K,.) = Kp,O/d”Kp,l = X,; then 
d’ induces a map X, - X, - i, making the X, into a complex X.. Similarly, 
d” makes the H,(K.,) = Y, into a complex Y In this notation we have the 
following theorem. 

Theorem BI. Suppose that the double complex K.. satisfies the conditions 

K,, = 0 for p or q < 0, 
and 

H4(KP.) = 0 for q > 0 and all p. 

Then in the above notation we have 

H,(K) E H,(X.) for all n. 

If in addition we have Hp(K.J = 0 for p > 0 and all q then 

H,,(X.) = H,(K) = H,(Y.). 

Sketch proof Write aij to denote an element of Kij. We define a map 
@: K, -X, by taking a = ~~=OunPi,i~Kn into cp(a,,,)~X,, where 

c~:Kn,o --+X, denotes the canonical map. Then 0 is a morphism of 
complexes, and we prove that it induces an isomorphism on homology. 

Let XEX, with d’x = 0. We can take a,,, such that x = ~(a,,,), and 
then since cp(d’a,,,) = d’x = 0 there exists a,- 1,1 such that d’u,,O = 
d”u, _ r, r. In turn, since d”(d’u, _ i, i) = d’(d”u, _ i, J = d’d’u,,, = 0 and since 
H1(Kn-2,.) = 0 there exists un-2,2 such that da,- 1,1 = d”un-2,2; then 
proceeding as before, we can choose a, -i,i for 0 < i d n such that d’a, - i,i = 

d”un-i-l,i+l for 0 <i < n. Then for a suitable choice of &signs, u= 
1; f un-+K,, satisfies da = 0 and Q(u) = x, and this proves that Q induces 
a surjection H,(K) --+ H,(X.). The proof that this is also injective is similar. 
The second part follows by symmetry from the first. n 

Dually, we have the following theorem for cohomology. 

Theorem B2. Suppose that the double complex K” satisfies 

KP4=0 for p or q-c0 

and 
Hq(KP’) = 0 for q > 0 and all p. 
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Then making Xp = Ker(d”:KP,’ -+ KP7’) into a complex X’ by means 
of d’, we have 

H”(K) z H”(X’), 

If in addition HP(fCg) = 0 for p > 0 and all CJ then 

H”( Y’) N H”(K) N H”(X’), 

where Y’ is the complex made from Yg = Ker(d’:Kosg --+K’,g). 
We leave the proof as a suitable exercise for the reader. 

Projective and injective modules 

An A-module P is said to be projective if it satisfies the following condition: 
for any surjection f: M - N and any map g: P - N, there exists a lifting 
h: P -M such that g = fh. A free module is projective, and we can 
characterise projective modules as direct summands of free modules. 
Indeed, if we express a projective module P as a quotient P = F/G of a 
free module F then the identity map P --+P has a lifting such that 
P -+ F --+ P is the identity map, and then F N P @ G. Reversing the arrows 
and replacing surjection by injection in the definition of projective module, 
we get the definition of injective module. There is no dual notion to that 
of a free module, so that injective modules do not have any very simple 
characterisation, but we can easily prove the following theorem using 
Zorn’s lemma. 

Theorem B3. A necessary and sufficient condition for an A-module 
I to be injective is that for any ideal a of A, and any mapcp:a -Z, it is 
possible to extend rp to a map from the whole of A to 1. 

Any A-module can be written as a quotient of a projective module (take 
for example a free module). Dually to this, any module can be embedded 
into an injective module; the proof of this is a little tricky, and we leave 
it to more specialist textbooks. Given a module M, consider a surjection 

P, AM from a projective module PO to M; letting K, be the 
kernel, we get an exact sequence 0 -+ K, -+ P, --+ M --f 0. In the same 
way, we construct for K, an exact sequence 0 + K, -PI -K, -+O 
with P, projective, and proceeding as before we get exact sequences 
O-K,-Pi-+Ki-,-+Ofor i= 1,2,... with Pi projective. The resulting 
complex 

P.I..’ +Pn-+P,-l -“‘-PI -+P,-*O 

is called a projective resolution of M. Since by construction this becomes 
an exact sequence on replacing the final PO + 0 by PO 4 M -+ 0, we have 
H,(P.) = 0 for n > 0 and H,(P.) = M. In the case that A is Noetherian and M 
is finite, we can take PO to be a free module of finite rank, and then K. is 
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again finitely generated. Proceeding in the same way, we see that M has a 
projective resolution in which each P, is a finite free module. 

Dually, for any A-module M there exists an exact sequence of the form 
O-M---,Q”-Q’ --)‘.. with each Q” an injective module. The 
complex Q’: 0 -+ Q” - Q1 -. . is called an injectiue resolution of M; 
it satisfies H”(Q’) = M and H”(Q’) = 0 for n > 0. 

If ,f: M --f N is a map of A-modules and P., Pi are projective 
resolutions of M and N then there exists a morphism of complexes 
cp:P. -Pi for which ,f‘l: = &‘qO, that is, a commutative diagram 

E 
. ..-P.-P,-,----t~~~-P,- M+O 

.'.-P:,-P:,-, __)..' --do~N+O. 

The existence of qo, cpl,... can easily be proved successively, using the 
fact that the P, are projective and the exactness of the lower sequence. Up 
to homotopy, this q is unique, that is if cp and $ both have the given 
property then cp - $. We leave the proof of this to the reader. From this 
it follows that any two projective resolutions of M are homotopy equi- 
valent. Exactly the same thing holds for injective resolutions. 

The Tor functovs 

Let M and N be A-modules and P., Q. projective resolutions of M 
and N, respectively. We write P.0 N for the complex obtained by 
tensoring P. through with N: 

P.ON:...-P,ON-P,_,ON-...---tP,ON-t 0. 

The complex M @ Q. is constructed similarly. Moreover, we can define a 
double complex K,, by K,,, = P,OAQq, with the obvious definitions of 
d’, d”. Each P, is a direct summand of a free module, and is therefore flat 
(that is performing @P,, takes exact sequences into exact sequences). Thus 
H,(K,J = H,(P, @ Q.) = 0 for n > 0, and H,(K,J = H,(P, @ Q.) = P, 0 N. 
In exactly the same way, H,(K.,) = 0 for n > 0 and H,(K.,) = M 0 Qqr and 
therefore by Theorem Bl H,(P. @ N) N H,(K..) 2: H,(M 0 Q.). This module 
(defined uniquely up to isomorphism) is written Tort(M, N); it is 
independent of the choice of the projective resolutions of M and N chosen, 
since if P. and P: are two projective resolutions, we have P. - Pl, 
and therefore P. 0 N - P: @ N. 

The Tor functors have the following properties, (all of which can be 
proved directly from the definition): 

(1) Tor;f(M, N) = MOAN; 
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(2) if M is flat then Torf(M, N) = 0 for any N and n > 0; 
(3) To&M, N) N To&N, M); 
(4) Torf(M, N) is a covariant functor in both of its entries, and each short 

exact sequence 0 + M’ - M -Ml’ + 0 leads to a long exact sequence 

... - Tori(M’, N) - Tort(M, N) - Tort(M”, N) 

- Tori- 1 (M’, N) --+..’ - Tor:(M”, N) 
-M’@N-+M@N-M”@N+O. 

(5) If (Nn,fpA-> is a direct system of A-modules then 

Tor;;‘(M, lin-- NJ = %Tor;f(M, N,). 

The Ext finctors 

Let M and N be A-modules. The functor Hom,(M, - ) is left-exact, that is it 
takes an exact sequence 0 -+ N’- N- N” -0 into an exact sequence 
O-+Hom,(M, N’) - Hom,(M, N) --+HomA(M, N”); and M is projective 
if and only if Hom,(M, -) is exact. In addition, Hom,( - , N) is left-exact, in 
the sense that it takes an exact sequence 0 + M’ -M -M” -+ 0 into an 
exact sequence 0 + Hom,(M”, N) - Hom,(M, N) - Hom,(M’, N), and 
N is injective if and only if Hom,( - , N) is exact. 

Choose a projective resolution P. of M and an injective resolution 
Q. of N; we define a double complex K” by Kp3q = Hom,(P,, Qq), and 
construct the two complexes 

and 
Hom,(M, Q’): O-+Hom,(M, Q”) -Hom,(M, Qi) -.” 

Hom,(P., N): O--,HomA(PO, N)---+Hom,(P,, N)----+.... 

Then by Theorem B2 we get 

H”(Hom,(M, Q’)) N_ H”(K”) N H”(Hom,(P., N)). 

Identifying these three, we write Ext”,(M, N). As with Tor, this does not 
depend on the choice of P. and Q’. 

The main properties of the Ext functors are as follows: 

(1) Exti(M, N) = Hom,(M, N), 
(2) If M is projective, or if N is injective, then Ext:(M, N) = 0 for IZ > 0; 
(3) Exti(M, N) is a contravariant functor in M and a covariant functor 

in N. A short exact sequence 0 -M-M-M”-+0 gives rise to 
a long exact sequence 

0 - Hom,(M”, N) -+ Hom,(M, N) - Hom,(M’, N) 
- Exti(M”, N) - Extf,(M, N) - Ext;(M’, N) 
-Ext;(M”, N) --+..‘, 

and a short exact sequence O-+ N’ -N -+ N” -0 gives rise to a 
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long exact sequence 

0 + Hom,(M, N’) --+ Hom,(M, N) - Hom,(M, N”) -+ 

- Ext;(M, N’) - Ext;(M, N) -----f Ext;(M, N”) - 

-Ext;(M, N’) --+‘..; 

(4) M is projectiveoExti(M, N) = 0 for all N, 
and 

N is injectiveoExti(M, N) = 0 for all M. 

Projective and injective dimensions 

If M is an A-module for which there exists a projective resolution P. 
with P, = 0 for n > d, but such that P, # 0 for any choice of projective 
resolution P., then we say that M has projective dimension d, and write 
proj dim M = d. If there is no such d then we write proj dim M = a. The 
injective dimension inj dim M is defined in the same way using injective 
resolutions. Clearly proj dim M = 0 if and only if M is projective, and 
inj dim M = 0 if and only if M is injective. 

For a projective resolution P. of M and some i > 0, let Ki denote 
theimageofPi-Pi-,;then...-P,-P,-,-~..-Pi-tOisapro- 
jective resolution of Ki, SO that for n > i we have Ext”,(M,N) = 
Ext;-‘(Ki, N). Now if Exti+‘(M,N) = 0 for all N, we have 
Exti(K,, N) = 0 for all N, and hence K, is projective, so that 0 + K, - 

Pd-1 - ... -P, -+O is also a projective resolution of P,, and 
proj dim M < d. Conversely, ifproj dim M d d then obviously Exti(M, N) = 
0 for n > d. 

Similarly, inj dim N < doExtd,+ ’ (M, N) = 0 for all M. 

Derived functovs 

As we have just seen, the definition of functors like Tor and Ext can be given 
using a resolution of just one entry. For instance, write T for the functor 
Hom,( - , N), and let P. be a projective resolution of a given module 
M; construct the complex T(P.): ... - T(P,) - T(P,- J +-- ... + 
T(P,)- 0, and take the cohomology H”(T(P.)). Setting R”T(M) = 
H”(T(P,)) defines a functor R”T in M, which we call the right derived 
functor of the left exact functor i? In the present case we have R”T = 
Ext;( - , N), but we can in general define the right derived functor of a 
left exact contravariant functor in the same way. 

The right derived functor is uniquely determined by the following three 
properties: (1) ROT = T, (2) if M is projective then R”T(M) = 0 for all 
n > 0, and (3) a short exact sequence 0 -+ M’ --+ M -M” +O gives rise 
to a ‘natural’ long exact sequence 
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0 -+ T(M”) - T(M) - T(M’) 

- R’ T(M”) -----, R’ T(M) - R’ T(M’) 

---+R2T(M”)--.. 

(For the meaning of ‘natural’ see a textbook on homological algebra.) For 
a left exact covariant functor, we have to replace ‘projective’ by ‘injective’ 
in the above. For right exact functors we can define a left derived functor 
by taking a projective resolution in the covariant case and an injective 
resolution in the contravariant case. 

Injective hull 

Let L be an A-module and M c L a submodule; we say that L is an 
essential extension of M if N n M # 0 for every non-zero submodule N c J’+ 
or equivalently if 

0 # xGL+ there exists aEA such that 0 # axEM. 

Theorem B4. An A-module A4 is injective if and only if it has no essential 
extensions except M itself. 

We leave the proof to the reader. Now suppose that M is a given 
A-module, and choose an injective module I with M c I. If we let E be 
a maximal element among all essential extensions of M in I then by the 
above theorem E is injective. An injective module E such that M c E is 
an essential extension is called an injective hull of M, and written E(M) 
or E,(M); this notion plays an important role in $18. If E and E’ are 
injective hulls of M then it is easy to see that there is an isomorphism 
cp:E GE’ which fixes the elements of M, although cp itself is not 
necessarily unique. 

Let M be an A-module. Take an injective hull I0 of M, and set K’ = 
IO/M. Take an injective hull I’ of K’, and set K2 = Z1/K’. Proceeding in 
the same way we obtain an injective resolution 0 -+I0 -+I’ - 
Z2 3.. of M, which is called a minimal injective resolution of M. 

The following two propositions are both famous and useful; the proofs 
are easy. 

The jive lemma. Let 

A-B-C-D-E 

A’-B’-C’-D’-E’ 

be a commutative diagram of modules with exact rows. Then 

(l)fl surjective, and f2 and f4 injective=>f, is injective; 
(2)f, injective, and f2 and f4 surjectiveaf, is surjective. 
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The snake lemma. Let 

A-B-C-0 

4 01 71 

O-A’-B’-C 

be a commutative diagram of modules with exact rows. Then there exists an 
exact sequence of the form 

Ker(cc) - Ker(/?) ---+ Ker(y) > 

Coker(a) - Coker(& - Coker(y). 

Tensor product of complexes 

Given two complexes of A-modules K, and L. the tensor product K Qa L is 
defined as follows: firstly, set 

WQL), = Qp+q=nKpQALq, 
and define the differential d by setting 

d(x@y)=dxOy+(-l)Px@dy 

for XEK, and YEL,. In other words, K 0 L is the (single) complex obtained 
from the double complex W.., where W,,, = K,@ L,. 

There is an isomorphism of complexes K @L= LO K obtained by 
sending x @ y into ( - l)pqy 0 x for x 0 ye K, 0 L,. For a third complex of 
A-modules M, the associative law holds: 

(K@L)OM= K@(LOM). 

Hence the tensor product K(l) 0.. . 0 K(‘) of a finite number of complexes 
can be defined by induction. This is used in 916. 

The information on homological algebra given above should be 
adequate for the purpose of reading this book. However, a student 
intending to become a specialist in algebra or geometry will require rather 
more detailed knowledge, including the theory of spectral sequences. We 
mention here just three representative references, two books by the 
originators of homological algebra and category theory: 

H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956, 
S. Maclane, Homology, Springer, 1963, 

together with A. Grothendieck’s paper 
Sur quelques points d’algebre homologique, Tohoku Math. .I. 9 (1957), 

119-221. 
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The exterior algebra 

(1) Let M and N be modules over a ring A. An r-multilinear map cp:M’ = 
M x ... x M --+ N from the direct product of r copies of M is said to 
be alternating if cp(x,, . . , x,) = 0 whenever any of the elements xi,. . . ,x, 
appears more than once. If cp is alternating then for any xi,. . . , X,EM we 
have 

dx,,..., xi-l,xi+xj,xi+l )...) xj-l,xi+xj,xj+l )... )=O, 

and expanding out the left-hand side gives 

(p(X1,...,Xi,...,Xj,...)+(p(X1,...,Xj,...,Xi,...)=O. 

In other words, on interchanging two of its entries, q changes sign. 
The rth exterior product of M is defined as the module N, having a 

universal alternating r-fold multilinear map Jo: M’ -N,, that is a map 
satisfying the property that every alternating r-fold multilinear map 
f:M’ -N factorises as f = h of0 for a unique A-linear map h: N, - N. 
We write N, = A’M, and use x1 A ... A x, to denote fO(x,, . ., x,). 
To prove the existence of the exterior product, let N, be the quotient of 
the r-fold tensor product M @ ... @ M by the submodule generated by 
elements of the form x1 0. . . @ x 0.. .@ x 0.. . @ x,. Then N, satisfies the 
above condition. The fact that the exterior product is uniquely determined 
up to isomorphism is obvious from the definition. 

(2) If M is a free A-module of rank II, with basis e,, . . . ,e, then A ‘M 

is zero if r > n, and if Y d n is the free A-module of rank 
n 

0 
with basis 

r 
(e,, A .” A eirj 1 < i, < ... < i, < a}. (If r > II this is easy; if r < n then the 

n 

0 
elements given above obviously generate A ‘M, and the fact that they 

r 
are linearly independent can also be proved by reducing to the theory of 
determinants.) 

(3) However, if I c A is an ideal, then A ‘A = 0, but nevertheless A *I 
is not necessarily 0. For example, let k be a field, x and y indeterminates, 
and A = k[x, y]; if I = xA + yA then A 21 # 0. Indeed, we can define 
cp:IxI-+k=A/Iby 
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and it is then easy to check that cp is alternating and bilinear, with 
q(x, y) = 1, so that cp # 0, and we must have A ‘1 # 0. 

(4) The operation of taking the exterior product commutes with exten- 
sions of scalars. That is, let B be an A-algebra and M an A-module, and 
set M OAB = M,. Then ( A’M)@,B = A’M,, where of course A’ on the 
right-hand side refers to the exterior product of B-modules. For the proof, 
according to Appendix A, Formula 11, we have MB&... @MB = 
(M @A.‘. QAM)OA B, so that if we let f0 be the composite 

(MJ- ;< M,= bM o,B-(AM&B, 
[Q ( 1 i=l 

then ,fO is an alternating r-fold B-multilinear map. Write v: M -M, 
for the natural map x+-+x@ 1. Let N be a B-module and cp:(M,)‘- N 
be an alternating r-fold B-multilinear map. Then q induces an alternating 
r-fold A-multilinear map cp: M’ -N, and therefore an A-linear map 
l\‘M -+ N, and finally a B-linear map (A’M)@,B -+ N which we 
denote h. Then on v(M’) the two maps cp and hof, coincide; but M, is 
generated over B by v(M), so that cp = hof,. Thus f0 has the universal 
property, and we can think of ( A’M)O,B as A’M,. 

Theorem Cl. Let A be an integral domain with field of fractions K, and 
let I i,. . . , I’ be ideals of A. Set M = I, @ ... 0 I’, and let T be the torsion 
submodule of A ‘M; then ( A’M)/T= I,. . .I’. Therefore if J,,. . . ,J’ are 
idealsofAsuchthatZ,O...OI’-J,O...OJ’wehaveI,...I’-J,...J’. 
Proof. We have M, N K 0.. . @ K (the direct sum of Y copies of K), so 
that ( A ‘M)@ K = A’M, N K. The kernel of the natural map 
A’M V( A’M)@ K ‘v K is obviously T (since tensoring with K is the 
same thing as the localisation with respect to the zero ideal of A, see 54). In 
addition, the image is I,. . .I’. Indeed, viewing each li as a submodule of K, 
we can assume that the map is 

and since for ti = c;= I aijej~~Kej we have <, A . .. A 5’ = det (aij) 
‘e, A ... A e,, it is clear that the above map has image 
Z,...Z,e, A ... A e,. n 

If A is a Dedekind ring then it is known that I, 0.. .@ I’ N A’- ’ 0 
Z r.. .I’ (see for example [B7], 94, Prop. 24). 

Theorem C2. Let A be a ring and M, N A-modules. Then 

i(M@N)= @ [(iM)@,(iN)]. 
s+,=r 

Proof. @= l(M @ N) can be written as a direct sum of all possible r-fold 
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tensor products of copies of M and N (with 2’ summands). Write L,,, for the 
submodule which is the direct sum of all tensor products involving s copies 
of M and t copies of N (with s + t = Y). Thus 

For example, when r = 2 we have L,,, = M @ M, L,,, = (M 0 N)@ 
(NOM) and LO,,= N @ N. Now let Q be the submodule of Ql(M ON) 
generated by all elements of the form ... @x@...@x@...; we have 
Q = @[Q n L,,,]. We see at once that Q A L,,, is the submodule generated 
by all elements of the forms ...@y@...@yO... (with either HEM or 
YEN), and aOyOfiOz@y+a@z@fi@y@y (with REM and ZEN). 
Thus one sees easily that 

bW)= &f@N) /Q= @ &,,IQnLs,,), 
( 1 ) S+t=T 

and 

L,,,/L,,,nQ -(i M)O( L W. n 
(5) Let A be a commutative ring. We say that a (possibly non-commuta- 

tive) A-algebra E is a skew-commutative graded algebra if it has a direct 
sum decomposition E = @,>_oE, as an A-module, such that 

0) E;E, = EP+4; 
(ii) xy = ( - 1)P4yx for XEE, and WISE,; 

(iii) x2=0 for XEE~~+~. 
For such an algebra E, a skew-derivation is an A-linear map d:E -E 
such that 

(4 d(E,) = En - I ; 
(/?) d(xy) = (dx)y + (- l)Px(dy) for XGE,, yeE,. 
(6) Let A be a ring and M an A-module. We show how to define an 

A-bilinearmapY:(APM)~(A4M)-ApP+4M.Ifwedefinecp:MP~Mq 
---+AP+4M by (p(xl ,..., x,,y, ,..., y,)=x,~...r\x,ny,r\.~.Ay, 
then for fixed yl,. . , y, this is an alternating p-multilinear map from 
MP to A P+qM, so that there is a map@:( A PM) x Mq - A P+qM such 
that W,Y~,..., yq) is linear in 5 and satisfies @({, y,, . . . , y,) = 
x, A ... A xp A y, A ... A y, if 5 =x1 A ... A xp. Now for fixed 5, @ is 
alternating and multilinear in y,, . . . , y,, defining a bilinear map yI:( A PM) 
x(AqM)- A P+qM such that Y(&yl A ... A y,) = a(<, yl,. . . , y,). For 
~EApMandv]EAqMwewrite~r\~forY(~,~);if~=~,x:”’A...r\x~‘and 
Yj = &y\P’ A ‘.. A y;” then 5 A r] = xa,PX(la) A ... A Xb”’ A y\” A ... A yf? (It 

might be tempting to make the definition directly in terms of this formula, 
but the expression of 5 and q in the above form is non-unique, so that this 
requires an awkward proof,) The multiplication A satisfies the associative 
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law r A (q A [) = (5 A ‘I) A [, so that we can use it to define a product on 
@zzO A” M(we set A0 M = A), which becomes an A-algebra, and it is easy 
to see that this satisfies the conditions for a skew-commutative algebra. We 
write A M for this algebra, and call it the exterior algebra of M. 

Given any linear map a: M - A, there exists a unique skew-derivation 
d of A M such that d coincides with CI on A 1 M = M. The uniqueness is 
clear from the fact that A M is generated as an A-algebra by M: we 
must have d(x, A . . . A X,)=C~=l(-l)r-la(X,)X, A”‘A$A’..A Xp. 

Conversely, the existence follows easily from the fact that the right-hand 
side defines an alternating p-fold multilinear map of x1,. . . ,x,,. 

In particular, let M be a free A-module of rank II with basis e,, . . . , e,, 
so that M = Ae, 0.. . @ Ae,. Then taking arbitrary elements ci, . . . , C,E A, 
we can define a: M --+ A by a(e,) = ci, and the skew-derivation of A M 
takes the form 

d(ei, A . . . ,y qp)= ,il( - 1)1-‘c,e,, A ... A &iv A “’ A f?ip. 

This can be identified with the differential operator of the Koszul complex 
K -c,l...n discussed in $16. Thus the Koszul complex can be thought of 
as the exterior algebra A (Ae, @ ... 0 Ae,) with the skew-derivation defined 
by d(e,) = ci. 

Exercise to Appendix C 

C.l. Let (A,m,k) be a local ring and M be a finitely generated A-module. Prove 
that min{rll\‘M#O} is equal to the minimal number of generators of M. 



Solutions and hints for the exercises 

1.1. 

1.2. 

1.3. 

1.5. 
1.6. 

Ifab=l-xwithx”=Othenab(l+x...+x”-’)=l. 
Set e,=(O ,..., l,..., O)EA, x.” x A, (with 1 in the ith place); then since 
eiej = 0 for i #j, any prime ideal p of A 1 x . . . x A,, must contain all but one 
of the ei. 
(a) Use the fact that rad(A)= {x~A[l +ax is a unit of A, VEA}. 
Counter-example: A = Z, B = Z/(4); then rad(A) = (0), rad(B) = 2B. 
(b) Let m, , , m, be the maximal ideals of A and I = Kerf. Suppose 
I c tq for 1 ,< i < s and I Q mi for s < i < r; then the maximal ideals of B 
are f(mi) for 1 < i < s, and f(mi) = B for i > s. Now rad (A) = m, . .m,., 
hence f(rad(A)) =f(m,). .f(m,) =f(m,). f(m,) = rad(B). 
The first half is easy; for the second, use Zorn’s lemma. 
We can assume that there are no inclusions among P,, . , P,. When r = 2, 
take x61 -P,, y~l - P,; then one of x, y, x + y  is not in P, or P,. When 
r > 2, we can take XE I - (P, u.. . u P,- J by induction. Also, since P, is 
prime,P,~IP,...P,-,,sotakey~ZP,...P,-,-PP,;theneitherxorx+y 
satisfies the condition. 

§2. 
2.1. By NAK there is an eEI such that (1 - e)1= 0. One sees easily that then 

I=le=Aeande’=e. 
2.2, 

2.3. 
2.4. 

If  xeann (M/IM) then xM c ZM, so that by Theorem 1 there exists y~l 
such that (x” + y)M = 0. 
(M + N)/N N M/(M n N) shows that M is finite, and similarly for N. 
(a) If  M N A” and P is a maximal ideal of A with k = A/P then M/PM = k”; 
for a field the result is well-known. 

(b) The first part is easy by the theory of determinants; the second half 
comes from the fact that A” has n linearly independent elements, but any 
n + 1 elements are linearly dependent. 
(c) Use Theorem 3, (iii). 

2.5. (a) If  F and F’ are free modules and a:F - L, p: F‘ d N are surjections 

(Please be sure to try each exercise on your own before looking at 
the solution) 

§I. 

287 
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3.1. 
3.2. 
3.4. 

3.5. 

3.6. 
3.7. 

4.5. 

4.6. 

4.10. 

4.11 

5.1. 

then there is a mapy making 

oy4 ;i-’ yo 

O+F+F@F’+F’+O 

commute. The assertion follows from this and the snake lemma 
(Appendix B). 

(h) can be proved similarly. 

§3. 

Use the fact that A is isomorphic to a submodule of (A/I,) @ . @(A/1,). 
Use the previous question. 
If  II-’ = A then there exist X,EI and yi~I ~’ such that c;x,yi = 1; then it 
follows easily that I = Cx,A. 
If  J is a fractional ideal generated by al/b,,. ,a,,/h,, with a, and bi 
coprime, then J ’ is the principal fractional ideal generated by u/u, where 

IA = l.c.m.(h,, , b,) and u = h.c.f.(a,,. ,a,). 
Ker((o”) = I, for n = 1, 2,. is an ascending chain of ideals of A. 
Choose an ideal 1 of A which is not finitely generated, and set M = A/I; 
then by Theorem 2.6, M cannot be of finite presentation. 

§4. 
Write I’([,) for the complement of U,, where I, is an ideal of A. Then 

nJw = V(CI,) = 0, so 1~cI,, and therefore a finite sum of Ii also 
contains 1. 

If  Spec A = V(l,)u Y(1,) with I’(1,)n V(I,) = 0 then I, + I, = A and 
I,I, c nil(A). So 1 = e, + e, with eisli for i = 1,2 and (eie,)” = 0. So 1 = 
(e, + eJ*” = e;xr + e;xz with x+A. So e = e;xi satisfies e(1 -e) = 0. 
For p&pec A, if V(p) = V(a)u V(b) then PE V(p) gives p 3 a or p 3 b, and 
hence either V(p) = V(a) or L’(p) = V(b). C onversely, if P’(1) is irreducible, 

then for x, ycA with xy~,/?, from V= V(I + Ax)u V(I + Ay) we have, 

say, V= V(I + Ax), and XE$, this proves J?ESpec A. 
If  there is a closed subset which cannot be so expressed, let V be a minimal 
one. Then V must be reducible, but if V= VI u V, with Vi # V then, by 
minimality, each of V, and I’, is a union of a finite number of irreducible 
closed set, hence also V, a contradiction. 

§5. 

Set k[X,, . . , X,]/p = k[x,, . ,xJ; then by Theorem 6, coht p = 
tr.deg,k(x). Suppose this is r, and that xi,. . ,x, is a transcendence basis 
of k(x) over k, and set K = k(X,,. .,X,); then k[X,,. ..,X& is the 
localisation of K[X,+ , , . , X,] at a prime ideal P, with ht p = ht P. This 

reduces us to proving that if r = 0 then ht p = n. In this case xi,. , x, are 
algebraic over k, and letting pi be the kernel of k[X, ,. ,X,] - 

kCx,,...,xi> Xi+,>..., X,] we get a strictly increasing chain 0 c p1 c p2 
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c ... cp,=p, giving htp an, but by the corollary to Theorem 6, 
htp<n. 

5.2. If  A is a zero-dimensional Noetherian ring then all prime ideals are 
minimal, and by Ex. 4.12, there are only finitely many of these. Let these be 

P ,,...,p,;thensincep,...p,=nil(A)thereisannsuchthat(p,...p,)”=O. 
For any ideal I and any i, the module I/lpi is a finite-dimensional vector 
space over A/p,, so that l(I/Ip,) < co. It follows easily that l(A) < ‘53, so that 
A is Artinian. 

W. 

6.1. Ass M = {(0), (3)}. ( 3 is obvious, c from Theorem 3.) 
6.2. No. Let M be as in the previous question, M, = {(a.cl)Ja~Lj and 

M, = {(a,O)la~H}; then M = M, + M,, but each Mi = Z. 

6.3. Since xAjx”A N A/x”- ‘A, there is an exact sequence 
O+ A/x”-‘A - A/x”A - A/xA -+ 0. 

6.4. Use a primary decomposition of I. 

§7. 
7.2. For bcB write b = y/x with x, YEA. Then y= bxExBnA =xA (by 

Theorem 7.5, (ii)), so be A. 
7.3. Write N c M for the A-submodule generated by {mA}; then B@ 

(M/N) = 0, so M/N = 0. 
7.4. Set M = HAM,. It is enough to show that I@ M -+ IM is injective 

for an ideal I = x’ja,A of (Theorem 6). Define f: A” -+ A by 

f(X1,“~,Xn)=Caixi, and set K=Kerf. Then O-*K-+A”AA is 

exact, hence also O-+K@M,-+(Ml)n-+M1, and if 

c;ui 0 &EI @M satisfies ‘&& = 0 then writing til for the /2th coordinate 
of &EM we have ‘&&, = 0 for all 1, and hence ((ii,. . , &&K @ M,. 
Now since A is Noetherian we can write K = A/c?, +. . + A/?, with IIj 
= (blj,. , bnj)EK c A” for 1 <j < r. Thus we can write lil = zjbij qji 

with qjieM,. Since Ciaibij = 0, setting nj = (v~~)~EM, we get ci = Cr= r bij 
qj, and xiai@ti =~i~jaibijOqj=O. 

7.5. Tensor the exact sequence 0 + A -% A with N to get the exact sequence 
O-NAN. 

7.8. Tensor product does not commute with infinite direct products. If  {pi) as 

an infinite set of prime numbers then nipiZ = (0), but ni(piZ @ Q) 
q-p=62 

7.9. If  I is an ideal of A then IB n A = I, so that given a chain I, c I, c . , . of 
ideals of A, I ,B c I,B c . eventually terminates, hence so does the given 
chain. 

8.1. (I+5)2”~I”+Jn,~~thatgivenx,,x,,...suchthatx,+,-~,~(I+J)2n 
we can write x,+ r - x, =u,+v” with u,EI” and v,EJ”. Thus {x”} 
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8.2. 

8.3. 

8.4. 
8.7. 

8.8. 

8.9. 

8.10. 

9.1. 

9.2. 

9.3. 

9.4. 

9.6. 

9.8. 
9.10. 

converges to x1 +c’pui +C~L+. Also, I, J c rad(A), so that 
I + J c rad(A), and therefore n,,(l + J)” = (0). 
I f  {x”} satisfies x,+ r - x”EJ” then there is a limit x for the I-adic topology. 
For any i, taking m large enough we get x, - x~l’, so that x, - x = x, - 

x, + x, - XEJ” + I’, and since by Theorem 10, (i) we have ni(J” + I’) = J”, 
we get x, - XEJ”, so that x is also a J-adic limit. 
Let aA  ̂= aA  ̂ and c( = xui& with aiEa and &A. Let I be an ideal of 
definition of A. Take xieA such that xi - &IA and set a = caixi. Then 
aEa and aA c at? + la& so that by NAK, aA = aA ,̂ so a = aA  ̂n A = aA. 

e = (e - X)(e + eX + eX2 + . .). 
A/m” is Artinian, so that there exists t(n) such that a,(,, + m” = aj + m” for 
j > t(n). We can assume that t(n) < t(n + 1) < .. . . Supposing that a,(,, # 
mr for some r, then we take arEat -m’, then a,, r Ea,,,+ ,) such that 

a,+1 - a,m’, and proceed in the same way taking aiEa,Ci, such 
that a, - ai_ r ETTI- ’ for i >, r. Then lim a, belongs to nVa,, but not to m’, 
which is a contradiction. 
This can be done by following the proof of Theorem 5, and replacing the 
use of homogeneous polynomials by multihomogeneous polynomials. 
We can assume that A is a Noetherian local ring with maxima1 ideal P. 
There is an x # 0 such that XP = 0, and then since nnP” = (0) there exists c 
such that x$P’. Then if I c PC, 1:x = P. 
Let m =(X, Y) c k[X, Y] and set A = k[X, Y],,,; let q(X) = 
C;cqX’ck[Xj be t ranscendental over k(X) and set a, =(XV+‘, 
Y - 1; a,X’). 

§9- 
B, is integral over A,, so that any maximal ideal of B, lies over pA, and 
therefore coincides with PB,. Hence I?, is a local ring, and the elements of 
B - P are units of B,. 
< from the going-up theorem, and > from Theorem 3, (ii). 

Replacing A and B by A, and B, we can assume p is maximal; then set 
k = Alp, so that B/pB is a finite k-module, hence an Artinian ring. 

If  ax”EA for all n then A[x] is a submodule of the finite A-module a- ‘A; if 
A is Noetherian then A[x] is also a finite A-module. 
Suppose f= gh with g, JIEK[X] manic. Roots of g are roots off, hence 
integral over A, and expressing the coefficients of g in terms ofthe roots, we 
have that the coefficients of g are integral over A; since A is integrally 
closed, gEA[X], and similarly for h. 
By Theorem 3, (ii). 
L[X] is a free module over K[X], hence flat; and if L is algebraic over K 
then L[X] is integral over K[X]. The first part follows from the previous 

two questions, together with Theorem 5. If f ,  g have a common factor cc(X) 
in L[X] then set P = (a(X)), so that ht P = 1 (it can easily be seen that a 
non-zero principal prime ideal in a Noetherian integral domain has height 
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10.2. 

10.3. 
10.4. 

10.5. 

10.8. 

10.9. 

11.1. 

11.2. 

11.5. 
11.6. 

11.7. 

1). Hence ht p < 1. But f,  gEp, so that ht p = 1. There is an irreducible 
divisor h of f  in p, and p = (h), so hlg. 

Use the previous question and Theorem 7.7. 
In the proof of Theorem 4 we can choose p to contain (nr,,y)A[y]. 
Let 0 c p1 c p2 be a strictly increasing chain of prime ideals of R and let 
0 # b~p,, asp, - pi; thus ba-“ER for all n > 0. TakeS= cFuiXi to be a 
root of fz + af+ X =O. Then u1 = -a-‘, and for all i we have 

u,Ea-*‘+‘R, so that bf(X)cR[Xj but f(X)$R[Xj. 
The first part comes from Theorem 1. For the second part, by $9, Lemma 1 
the integral closure of R in K is not the whole of K, and therefore coincides 

with R, so R is integrally closed; on the other hand, for XEK - R we have 
R[x] = K, hence x -‘ER[x], so that x - ’ is integral over R and hence in R. 
Thus R is a valuation ring. If  dim R > 1 then there is a prime idea1 p of R 
distinct from (0) and from the maximal ideal, and thus R, is intermediate 
between R and K. 
Let c:L* --f G be the additive valuation corresponding to S, and choose 
x1,. . , X,EL such that u(x,), . . , u(x,) represent the different cosets of G’ in 
G, and y,, . , yf~S such that their images in k are linearly independent 
over k’. It follows easily from the previous question that the efelements 
xiyj are linearly independent over K. 
If  S c S, then the residue field k, of S, contains a valuation ring A # k, 
such that S is the composite of S, and A. We have k c A c k,, but by the 
previous question k, is an algebraic extension field of k, hence integral 
over A. But A is integrally closed, therefore A = k,, a contradiction. 

$11. 

Let B be a valuation ring of R dominating A, and G its value group. Then 
for tl~rn~ we have Joz~nt,, so that G has no minima1 element. Also it is 
easy to see that some multiple of u(u) belongs to u(K*), so that G is 
Archimedean. 
If  B is a valuation ring of L dominating A and G its value group, set 
H = u(K*) and e = [G:H]. Then XEG q exe H. Hence G is isomorphic to a 
subgroup of H, and G N Z. 
Just use Forster’s theorem (5.7). 
By Ex. 9.7, A = Z[JlO] = k [Xl/(X’ - 10). Then A/3A = Z[X]/(3, 

X2 - 1) = (Z/3H)[X]/(X - 1)(X + l), so that P = (3,,,/ 10 - 1) is a prime 
ideal of A. This is not principal, since if P = (z) with c( = a + b J 10, then 
one and sees easily that the norm N(a) = a2 - IOh* would have to be + 3, 
but this is impossible since the congruence a2 = k 3mod 5 has no solution. 

Let P,, . , P, be the maximal ideals of A; choose an element LYEP, such 
that a$Pf u P, u ... u P,. Then ctA = P,, and similarly each of the prime 

ideals is principal. Thus by Theorem 6 any ideal is principal. (Of course 
this also follows from Theorem 5.8.) 
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$12. 

12.1. Suppose that L is normal over K, and let G = Aut,(L). Let S, and S be 
valuation rings of L dominating R, and let S,, S,, . . , S, be the conjugates 
of S, by elements of G, and A = S, n.. . n S, n S. If  S # Si for any i then by 
Ex. 10.9, there are no inclusions among S,,. . . ,S,, S, and we can apply 
Theorem 2. Letting n, ni be the maximal ideals of S, Si, and setting 
nnA=p, ninA=pi we have pl...p,Qp, so that we can choose 

x~p, n...np, with X&J. Thenx@t, but sincexE(n,)“-’ for all aeG, all the 
conjugates of x over K belong to n,, and the coefficients of the minimal 
polynomial of x over K belong to n, n K = rad (R). Thus it follows easily 
that xfn, a contradiction. 

12.2. By Ex. 10.3, l? is the intersection of all valuation rings of L dominating R. 
Ex. 10.9 can easily be extended to the infinite case, so that the second part 
follows from the first. For the first part, reduce to the finite case and use the 
previous question and Theorem 2. 

12.4. Let B be the set of height 1 prime ideals of A, and for p&Y set Ip = apAp. 
Then xei*xl-’ c AD for all p~Boxy,A for all p&7’. Hence I” is the 
intersection of Ip n A taken over the finitely many p ~5’ such that Ip # Ap. 

$13. 

13.3. LetPfAss(A)besuchthathtP~1,andletpl,...,p,betheprimedivisors 
of(a). I f  P + pi for all i, then there exists XCP such that (a):~ = (a). This is a 
contradiction, since x is a zero-divisor, but if xy = 0 then YE r)#A. 
Hence P + (a) c pi for some i, and then htp, ,< 2. 

13.4. (i) is easy. (ii) The homogeneous elements of P are nilpotent mod Q*, 
hence so are all elements of P. Now we show that iff$P, g#Q* then 

fg$Q*. Let S=f; +...+f?,g=g, +“.+gs with Jiand yj homogeneous, 

and deg f1 < degf, < .“,degg, < degg, < ‘..; we work by induction on 
r + s. I f  r = s = 1 there is nothing to prove. Also, since we can assume that 
gl+Q* we have gl$Q. If  fl$P then flgl#Q*. Next, supposef,EP. If  
flg~Q*thenfg~Q*,since(f,+...+.f,)gEQ*.If,l’,g~Q*thenf:g~Q* 
andfy lg~Q* for some t > 1 (sincef;EQ* for n>>O). Replacing g by 
f:g reduces to the casef,gEQ*, so that ff:g$Q*. 

13.6. First half: let S be the multiplicative set made up of homogeneous elements 
of R not in P; then RJP* R, can be viewed as the localisation of R/P* with 
respect to all non-zero homogeneous elements, and by the previous 
question this is N K[X,X- ‘1, which is a one-dimensional ring. Second 
halfi proof by induction on ht P = n; take a prime ideal Q c P with ht Q = 
n - 1. I f  Q # P* then Q is inhomogeneous, Q* c P* and ht(P/Q*) > 2, so 
by the first half, P* # Q*, hence ht P* > ht Q* + 1 = n - 1. 

$14. 

14.7. Let p&pec A,f,gan - p, and I = dim A/p. Ifr = 1 then pA, is a maximal 
ideal. Suppose that I > 1. We can choose x2,. . .,x,~m such that 
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15.1. 

15.2. 

16.1. 
16.2. 
16.3. 

16.5. 

16.7. 

16.10. 

ht(p,f,x,,...> X,)/P =ht(Ptg,x~,..., x,)/p = i for 2 < i ,< r. Then any mini- 
mal prime divisor P of (p, x1,. ,x,) satisfies dim A/P = l,f$P and g$P, 

so g$PAfEm-Spec(Af). 

$15. 

Set 2=X/Y so that X=YZ, B=~[Y,Z]IA=~[YZ,YI, and pB= 

YB. So B/pB * k[Z] and dim B,/pB, = 1. Now let p’ =(X - ccY)A for 
0 # a& then any height 1 prime ideal of B containing X - ctY = 
Y(Z - a) must be YB or (Z - a)B, but since YB n A # p’ and (Z - cr)B + P 
there does not exist any prime ideal of B contained in P and lying over p’. 
No. Setf= XY- 1. ThenfB is aprimeideal of B, andfBnA =(O). Since 
fB + XB= B there does not exist any prime ideal of B containing 
,fB and lying over XA. Note that the fibres of A -B are all one- 

dimensional. 

$16. 

< is easy; for > consider a system of parameters of M’. 
Hom,(A/a, A/b) = 0 by Theorem 9. 
For PEAss(A/I), grade P > k is clear from P I> I. Ifgrade P > k then by Ex. 
16.2, I:P = I, which is a contradiction. 
Suppose that (A,m) is local; then if mEAss(A) we have depth A = 0, but if 
htP > 0 and P$Ass(A) then depth A, > 0, so that M = A gives a counter- 
example. For example, A = k[X, Y, Zlcx,r,z,/(X, Y,Z)’ n(Z) and P = 
(x, z)A satisfy these conditions. 

Let 5 =(x,,. . .,x,) be a maxima1 M-sequence in m, and set M’ = 
M/xx,M, then there exists 0 # [EM’ such that ml = 0. Thus tnB5 = 0, 
but tt” c mB so n”< = 0 and n~Ass,(M’), therefore 5 is also a maximal M- 
sequence in n. 
(i) For r = 1 the proofis similar to Theorem 14.3. If  r > 1, applying the case 
r= 1 gives that (a,,..., a,_ i) is prime, and we can then use induction. (ii) 
For any QeAss(A) we have QA~EAss(A& if we had P c Q then by(i), A, 
is an integral domain, a contradiction. Hence P Q Q. Therefore using 
Ex. 16.8, we see that P can be generated by an A-sequence. For a counter- 
example let A = k[x, y, z] = k[X, Y, Z]/(X( 1 - YZ)); P = (x, y, z) = 
(y,z) = (y - y’z,z) is a prime ideal of height 2, but y  - y’z is a zero-divisor 

in A. 

$17. 

17.1. (b) Let k be a field; then A = k[X, Y]/(XY, Y*) is a one-dimensional ring 
which is not CM. 

17.2. x3,y3 is an A-sequence, hence also an R-sequence, so that R is CM. The 
ring k[x4,x3y,xy3, y4] is not CM. 

17.3. By localisation we need only consider the case of an integral domain, and 
it then follows from Theorem 11.5, (i). 
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17.4. 

17.5. 

18.1. 

18.3. 

18.4. 

18.5. 

18.6. 

19.3. 

19.4 

We can assume that A is a local ring. Since A/J is CM we have dim A/ 
J = depth A/J = r, and if we set k for the residue class field of A then 
ExtA(k, A/J) = 0 for i < r. Using the exact sequence O+ 
J’/J”+’ ----t A/J’+’ -A/J” +O and the fact that J”/J’+’ is isomorphic 

to a direct sum of a number of copies of A/J we get by induction that 
Exti(k, A/J’) = 0 for i < r. 
(i) Let x r , . , x, be a maximal A-sequence in P, and extend to a maximal A- 
sequence in m, xi,. . . , x,, yr,. . . ,y,. There exists QeAssA(A/(xl,. . . ,x,)) 

containing P, so that by Theorem 2, dim A/P > dim A/Q > depth 
A/(x,,...,x,)=s. 

(ii) dim A - ht P > dim (A/P) > depth A - depth (P, A) > depth A - 
depth A,. 

$18. 

Using Ex. 16.1, we see that A is CMoB is CM. Assuming CM, we need 
only use condition (5’) of Theorem 1 as a criterion. 
Given a prime ideal P of A[X], by localising A at Pn A and factoring out 
by a system of parameters we reduce to proving that if (A, m, k) is a zero- 
dimensional Gorenstein local ring, and P a prime ideal of A[X] such that 
Pn A = m then B = A[X& is Gorenstein. Then P is generated by m 
together with a manic polynomial f(X), and the image off in k[X] is 
irreducible. Sincefis B-regular, ifwe set C = B/(f) then the maximal ideal 
of C is mC, and C z A[X]/(f); this is a free A-module of finite rank, so that 

Hom,(C/mC, C) = Hom,(k, A) @,, C (by Ex. 7.7) N C/mC. So C is Goren- 
stein, therefore B also. 
R/(x3,y3) = k[x3,y3,x2y,xy2]/(x3,y3) N k[U, V]/(U’, V2, UV). In this 
ring (0) is not irreducible, so that R is not Gorenstein. 
For 0 f  GA, the ideal aA is N A/I with I # A, so there exists a non-zero 
mapcp:aA --+ k; viewed as a mapaA --+ E, this extends to A + E, so that 
O#ImcpcaE. 

We can consider M as a submodule of E = E,(k). By faithfulness, 
A c Hom,(M, M) c Hom,(M, E). But 0 + Hom,(E/M, E) + 
Hom,(E, E) = A --f Hom,(M, E) -+O is exact, hence E/M = 0. 

$19. 

IfO+P,--+...+P, - M + 0 is an exact sequence and each Pi is finite 

and projective, and if P, 0 A” = A”, then ... + P, * PI 0 A” --+ P. 
@A” --+ M + 0 is again exact, with P, @A” free. Proceeding in the same 
way, adding a free module to Pi at each stage, we get an FFR O-+L,+ I 
-+L,--+~~~-+L,--+M-+O. 
For every maximal ideal m of A, since the A-module A/m has an FFR, also 

the A,,,-module A,/mA,,, has an FFR, so that the projective dimension over 
A,,, is finite. Thus Am is a regular local ring. 
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20.4. 

20.5. 

21.1. 

21.2. 

21.3. 

22.2. 

22.3. 

24.1. 

24.2. 

24.3. 

$20. 

Use Theorem 5 and Ex. 8.3. 
This follows from Theorem 1. If  an ideal I is locally principal it is finitely 
generated, and principal by Theorem 5.8. 

$21. 

For PESpec R with P 2 I set P/I = p; then AP is c.i.sI, is generated by an 
R,-sequenceo(l/l’), is free over A,. Now l/l2 is a finite A-module, so that 

by Theorem 4.10, {pcSpec A /(I/I”), is free} is an open subset of Spec A. 
We can assume that A is complete. Then A = R/I with R regular and 
dim R = dim A + 1. Now ht I = 1 and A is a CM ring, so that all the prime 
divisors of I have height 1. Since R is a UFD, I is principal. 
A=k[x,y,z]=k+kx+ky+kz+kx2,withx2=y2=z2andxy=yz= 

zx = 0. Therefore 0:m = kx2, and A is a zero-dimensional Gorenstein 

ring. Set I = (X2 - Y2, Y2 - Z2, X Y, YZ, ZX) and M = (X, Y, Z); then 
Z/Ml ---+ M2/M3 has five-dimensional image, so that at least five elements 

are needed to generate I. 

$22. 

Algebraic independence comes from Theorem 16.2, (i). To prove flatness, 
setting I = cx,C and using Theorem 3, we reduce to proving that 
TorF(k, A) = 0. Since x is a C-sequence, the Koszul complex L. = K.(x, C) 
constructed from C and x is a free resolution of the C-module k = C/I, and 
Tory(k, A) = H, (L. Bc A). However, L. acA is just the Koszul complex 
constructed from A and 5, and since x is an A-sequence, H, (L. @ A) = 0. 
We need only show that Tor<(k, M) =O. By Lemma 2 of $18, 
Torf(k, M) = Tor flXA(k M/xM), but by assumption the right-hand side , 
is 0. 

$24. 
Use O+I’lI’+’ +AII”’ -A/I’+0 to deduce that Ass(A/I’)= 
Ass(A/I) for all i. 
By Theorem 5, it is enough to show that for a prime ideal p of A, CM(A/p) 
contains a non-empty open. Let P be the inverse image of p in R, so that 
A/p = R/P. Ifx, , , X,EP are chosen to form a system of parameters of R, 
then since R, is CM, they form an R,-sequence. Thus passing to a smaller 
neighbourhood of P, we can assume (i) P is the unique minimal prime 

divisorof(x)=(x,,..., xJR, and (ii) 5 is an R-sequence. Now replacing R 
by R/(x), we can assume that P is nilpotent; moreover, we can take Pi/Pi+l 
to be free R/P-modules. Now using the previous question it follows easily 
that R is CM implies R/P is CM. 
After a preliminary reduction as in the previous question, use the proof of 
Theorem 6. 
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25.2. 

25.4. 

25.5. 

26.1. 

26.2. 

28.1. 

28.2. 

29.1. 

29.2. 

If .xy = 0 we prove that y~nx”A; suppose that y~x”A, and set y = x”z; 
then 0 = D(x"" z) = (n + 1)x”z + x”+l Dz, and yex”‘r A. 
O+IdA@,A--,A-tO is a split exact sequence, so that O-+l@,k’ 
~AO,AOk~=A’Qk’A’-A’~O is also exact, and hence R,.,, 
=(I@k’)/(I@k’)Z = (I/IZ)@kk’ = fiaikBkk’. For A,, use the fact that A, 
is 0-etale over A and Theorem 1. 
See Theorem 27.3. 

$26. 

(i) Let atzK n K’; then 1, UEK are linearly dependent over K’, hence also 
over k, so crEk. (ii) Assume that tlr,. . , U,EK are linearly independent over 
k’, and that cuiti =0 with &k’(K’); we show that ti = 0. Clearing 
denominators, we can assume that ~,&‘[K’]. Choosing a basis {oj} of K’ 
over k we can write li = ccijwj with cijek’. Then since ci,jcijsliwj = 0 we 
get cicijai = 0, therefore cij = 0 for all i,j. 
It is enough to show that K((T)) and LP((TP)) are linearly disjoint over 
KP(( TP)). Assume that o1 (T), . . . , wr( T)E K( (T)) are linearly independent 
over KP((TP)), and that cpiwi = 0 with rpi~LP((TP)); we show that vi = 0 
for all i. Clearing denominators, we can assume that w+K[7’J and 
‘pi~LP[TP]. Letting {tl} be a basis of L over K we can in a unique way 
write cpi = ~<~~ii(Tp) with qil(TP)~KPITP~. Here xlf;qin is in general 
an infinite sum, but only a finite number ofterms appear in the sum for the 
coefficient of some monomial in the T’s, so that the sum is meaningful. 
Then CI&‘(ciqii(TP)oi(T)) = 0, so that xicpin(TP)wi = 0 for all 2, so 
cpii = 0 for all i, 1. 

$28. 

Let N be a B-module satisfying m”N = 0, and D: B -+ N a derivation over 
A; then D induces a derivation 6: B, = B/mB - N/mN. If B, is O- 
unramilied over k then D = 0, so that D(B) c mN. Proceeding as before 
gives D(B) c m’N,. . . so that D = 0. The statement about etale is just 
putting together those for smooth and unramilied. 
Since some DEDer(k) with Da # 0 can be extended to a derivation of A, 
a#AP. If k’ were a coefftcient field containing k then we would have to have 
ask’p c A’. Also, A is O-smooth over k because k[X] is. 

$29. 

Suppose that C = Rut] with R a DVR; if we let u be a uniformising element 
of R then pR is a power of uR, so that pC has the single prime divisor UC. 
However, in fact, in our case C/pC = (B/pB)[X]/(X(X + y)), so that pC 

has the two prime divisors (p,x) and (p,x + y). 
R is pR-etale over Z,* (see Ex. 28.1). 
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930. 

30.1. cp is the composite of E,:A+A[tj and of the mapA[tjdA 
obtained by substituting - x for t. Since q(x) = 0 we have xA c Ker cp. For 
any LEA we can write q(a) = a + xb, so that rp(cp(a)) = q(a), and therefore 
C n xA = (0) and A = C + x,4, therefore A = C[xJ Now E,(x) = x + t, and 
it is easy to see that this is a non-zero-divisor of Aft], so that x is a non- 
zero-divisor of A. Tfc,x’ + c,, rxril + ... = 0 with C,EC then dividing by x’ 
we get C,EC nxA = (0), so that x is analytically independent over C. 

30.2. No. If  A is O-smooth over k’ then so is the field of fractions Lof A, so L/k’ is 
separable, hence also k/k’, and this is not the case. 

30.3. (1) =>(3) is easy using Theorem 28.7. If  [k:kP] = 00 then there are counter- 
examples to (3)+(l) (see [Cl], (22.7.7). 
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independent in the sense of Lech, 160 
injective dimension, 139, 155, 2sO 
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integral, 64 
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integrally closed domain, 64, 73 
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Krull dimension, 30 
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Lech’s lemma, 110 
lenath, 12. 84. 94 
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linear topology, 55, 93 
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local ring, 3 
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Matlis theory, 144 
maximal condition see ascending chain 
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maximal spectrum m-Spec A, 24 
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injective, 144, 277 
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primary decomposition, ix, 37, 41 
primary ideal, 21 
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projective dimension, 155, 182, 280 
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quasi-unmixed see formally 
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rank (of a module), 84, 154, 159, 163, 166 
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smooth, 193 
(0-) smooth, 193, 204, 233 
(J-) smooth, 213, 217, 233 
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spectrum of a ring Spec A, 20, 24, 35, 48 
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split extension, 191 
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structure theorem for complete local rings, 
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reduction (of an ideal), I12 
Rees ring, 120 

symbolic power (of a prime ideal), 29, 88 
system of parameters, 104 

regular, 105 

(M-) regular element, 38, 123 
regular homomorphism, 256 
regular local ring, x, 105, 138, 153, 156, 

163, 187, 236 
regular ring, 157 
regular ring, geometrically, 219, 255 
regular sequence, x, 123, 188 

tensor product, 26, 45, 53, 266 
of complexes, 127, 281 

topology, 55 
Tar, 26, 50, 53, 140, 154, 170, 182, 187, 278 
total ring of fractions, 21 
transcendence degree tr. deg, A, 32, 118 

quasi-, 124 
regular system of parameters, 105 
residue field, 3, 23 
resolution of singularities, x, 12, 74, 92, 188 
rigidity conjecture, 154 
ring of fractions, 20, 48 

unequal characteristic, 215 
uniformising element (of DVR), 79 
unique factorisation domain (UFD), 5, 65, 

161 

Samuel function, 12, 92, 97, 101, 138 
Samuel function of a regular local ring, 
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saturated (chain of prime ideals), 3 1 
saturation (of a multiplicative set), 23 
secondary module, 42 
secondary representation, 43 
semigroup, 92 
semilocal ring, 3, 16, 62, 97, 169 
separable field extension, 195, 198 
separable algebra, 198 
separably generated, 199 
separated module, 55 
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separating transcendence basis, 199 
(M-) sequence, 123 
Serre’s criterion for normality, 183 
simple module, 12 
skew-commutative graded algebra, 285 
skew derivation, 285 

unique factorisation into primes in a 
Dedekind ring, 82 

unit. 1 
universally catenary ring, 118, 139, 251 
unmixed, 136, 139 
unmixedness theorem, 136 
(0-) unramitied, 193 
(I-) unramitied, 214 
unramified local ring, 228 

valuation, 75 
additive, 75 
discrete, 78 

valuation ring, x, 71 
composite of, 72 

value group of a valuation, 75 

weak Jacobian condition (WJ), 239, 259 
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zero-divisor, 38 
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