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Abstract. We give an elementary proof of the nested Artin approximation theorem for
linear equations with algebraic power series coefficients. Moreover, for any Noetherian
local subring of the ring of formal power series, we clarify the relationship between this
theorem and the problem of the commutation of two operations for ideals: the operation of
replacing an ideal by its completion and the operation of replacing an ideal by one of its
elimination ideals. In particular we prove that a Grothendieck conjecture about morphisms
of analytic/formal algebras and Artin’s question about linear nested approximation problem
are equivalent.

1. Introduction

The aim of the paper is to investigate the nested Artin approximation problem for
linear equations. Namely the nested Artin approximation problem is the following:
if

F(x, y) = 0

is a system of algebraic or analytic equations which are linear in y, with x =
(x1, . . . , xn) and y = (y1, . . . , ym), and if y(x) is a formal power series solution

F(x, y(x)) = 0
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with the property that

yi (x) depends only on the variables x1, . . . , xσi (1.1)

for some integers σi , is it possible to find algebraic or analytic solutions satisfying
(1.1)?

Popescu [21] proved the nested Artin approximation theorem for any vector
F(x, y) of algebraic power series (not necessarily linear in y). In this paper we
give an elementary proof of this theorem when F(x, y) is linear in y. Moreover
we provide a characterization for a certain class of germs of functions F(x, y),
linear in y, to satisfy the nested Artin approximation property. From an example of
Gabrielov [12] we know that the answer to the nested Artin approximation problem
is negative for the ring of convergent power series.

In order to explain the situation let us consider the following theorem (proven
by M. Artin in characteristic zero and by M. André in positive characteristic):

Theorem 1.1. [2,3] Let k be a complete valued field and let F(x, y) be a vector of
convergent power series in two sets of variables x and y. Assume given a formal
power series solution ŷ(x) vanishing at 0,

F(x, ŷ(x)) = 0.

Then, for any c ∈ N, there exists a convergent power series solution ỹ(x),

F(x, ỹ(x)) = 0

which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

Then M. Artin (see [5, p. 7]) asked, whether or not, given a formal solution
ŷ(x) = (ŷ1(x), . . . , ŷm(x)) satisfying

ŷ j (x) ∈ k�x1, . . . , xσ j � ∀ j

for some integers σ j ∈ {1, . . . , n}, there exists a convergent solution ỹ(x) as in
Theorem 1.1 such that

ỹ j (x) ∈ k{x1, . . . , xσ j } ∀ j.

Shortly after, Gabrielov [12] gave an example showing that the answer to Artin’s
question is negative in general.

On the other hand since Theorem 1.1 remains valid if we replace convergent
power series by algebraic power series (cf. [4]) the question of M. Artin is also
relevant in this context and in this case this question has a positive answer. Let us
recall that a formal power series f (x) ∈ k�x1, . . . , xn� is called algebraic if it is
algebraic over the ring of polynomials k[x1, . . . , xn]. The ring of algebraic power
series is denoted byk〈x1, . . . , xn〉. Indeed after A. Gabrielov gave a negative answer
to Artin’s question, D. Popescu showed that it has a positive answer in the case the
ring of convergent power series is replaced by the ring of algebraic power series:
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Theorem 1.2. [21] Let k be a field and F(x, y) be a vector of algebraic power
series in two sets of variables x and y. Assume given a formal power series solution
ŷ(x) = (ŷ1(x), . . . , ŷm(x)) vanishing at 0,

F(x, ŷ(x)) = 0.

Moreover let us assume that ŷ j (x) ∈ k�x1, . . . , xσ j �, 1 ≤ j ≤ m, for some integers
σ j , 1 ≤ σ j ≤ n.

Then for any c ∈ N there exists an algebraic power series solution ỹ(x) such
that for all j , ỹ j (x) ∈ k〈x1, . . . , xσ j 〉 and ỹ(x) − ŷ(x) ∈ (x)c.

Let us remark that if F(x, y) is a vector of polynomials in y with coefficients
in k〈x〉 we may drop the condition that ŷ(x) vanishes at 0 by replacing F(x, y)
(resp. ŷ(x)) by F(x, y + ŷ(0)) (resp. ŷ(x) − ŷ(0)). This result has a large range
of applications (see [11,18] or [25] for some recent examples). Its proof relies on
an idea of Kurke from 1972 and the Artin approximation property of rings of type
k�x�〈z〉 based on the General Néron Desingularization Theorem which is quite
involved (see [21] or [26]).

The first goal of this paper is to provide a new and elementary proof of Theorem
1.2 for equations F(x, y) = 0 which are linear in y (see Theorem 2.1). This shows
that Theorem 1.2 is really easier in the case F(x, y) is linear in y. Let us mention
that in the case where there is only one nest (i.e. when there is a given k ≤ n such
that σi = k or n for every i) this has been already proven by E. Bierstone and P.
Milman (see [7, Theorem 12.6]). In fact our proof is based on a reduction to this
case.

In the second part of this paper we investigate the relationship between Artin’s
question and the following conjecture of A. Grothendieck (see [14, p. 13-08]):

If ϕ : C{x}/I −→ C{y}/J is an injective morphism of analytic algebras then
the correspondingmorphism ϕ̂ : C�x�/IC�x� −→ C�y�/JC�y� is again injective.

In fact the counterexample of A. Gabrielov to Artin’s question is built from
a counterexample to the conjecture of A. Grothendieck he gave in [12]. Even if
it is obvious that the counterexample of Gabrielov to Grothendieck’s conjecture
provides a negative answer to the question of M. Artin, the relationship between
these two problems is not clear in general.

The second goal of this paper is to clarify the relationship between Grothendieck’s
conjecture and Artin’s question. We show in a general framework (i.e. not only for
the rings of convergent power series or algebraic power series but for more general
families of rings—cf. Definition 3.1) that Grothendieck’s conjecture is equivalent
to the question of M. Artin in the case where F(x, y) is linear in y (see Theorem
3.9). Let us mention that it is well known that Grothendieck’s conjecture is equiva-
lent to Artin’s question for some very particular F(x, y) which are linear in y (see
[6,22]) but, to the best of our knowledge, it was not known that they are equivalent
for all F(x, y) linear in y.

We also prove (see Theorem 3.9) that these two problems are equivalent to the
problem of the commutation of two operations: the operation of replacing an ideal
by its completion and the operation of replacing an ideal by one of its elimination
ideals (see 3.2).
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Finally we mention that the question of Grothendieck has been widely studied
in the case of convergent power series rings and it has been shown that the answer
is positive for some particular cases (see for instance [1,10,13,15,17] or [28]). One
of them, similar to our situation, is the case of a morphism ϕ : k{x}/I −→ k{y}/J
where the images of the xi are algebraic power series and the ideals I and J are
prime and generated by algebraic power series. For such morphisms it is shown
that ϕ is injective if and only if ϕ̂ is injective (it has been proven in several steps in
[6,17,23,27]).

2. Linear nested Artin approximation for algebraic series

We will prove the following linear version of Theorem 1.2:

Theorem 2.1. (Linear Nested Artin Approximation Theorem) Let m, n, p be pos-
itive integers, T be a p × m matrix with entries in k〈x〉 := k〈x1, . . . , xn〉,
b = (b1, . . . , bp) ∈ k〈x〉p and σ : {1, . . . ,m} −→ {1, . . . , n} be a map. Let
y = (y1, . . . , ym) be a vector of new variables. Then for any solution ŷ(x) in

k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(m)�

of the following system of linear equations

T y = b (2.1)

and for any integer c there exists a solution y(x) in

k〈x1, . . . , xσ(1)〉 × · · · × k〈x1, . . . , xσ(m)〉
such that y(x) − ŷ(x) ∈ (x)ck�x�m.

We begin by giving some intermediate results:

Lemma 2.2. Let (A,m) be a complete normal local domain, x = (x1, . . . , xn) and
y = (y1, . . . , ym). Let B = A�x�〈y〉 be the algebraic closure of A�x�[y] in A�x, y�
and f ∈ B. Then there exist g in the algebraic closure A〈y, z〉 of A[y, z] in A�y, z�,
with z = (z1, . . . , zs) for some s ∈ N, and ẑ ∈ A�x�s such that f = g(y, ẑ).

Proof. By replacing f by f − f (0, y) we may assume that f ∈ (x)B. Note that B
is the Henselization of C = A�x�[y](m,x,y) by [19, 44.1] and so there exists some
étale neighborhood of C containing f . Using for example [26, Theorem 2.5] there
exists a monic polynomial F in u over A�x�[y] and h ∈ (m, x, y)A�x�〈y〉 such
that F(h) = 0, (∂F/∂u)(h) /∈ (m, x, y) and f ∈ A�x�[y, h](m,x,y)∩A�x�[y,h], let
us say f = P(y, h)/Q(y, h) for some P(y, u), Q(y, u) ∈ A�x�[y, u], Q(y, h) /∈
(m, x, y) ∩ A�x�[y, h].

Let us write

Q(y, h) =
∑

α,i

(qαi + ŵαi )y
αhi
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where qαi ∈ A and ŵαi ∈ (m + (x))A�x� for every α, i . We set

Q̃ =
∑

α,i

(qαi + wαi )y
αui

for new indeterminates wαi . Since Q(y, h) /∈ (m, x, y), ŵαi ∈ (m + (x))A�x�
and h ∈ (m, x, y)A�x�〈y〉, we have that q00 is a unit of A. So Q̃ is invertible in
A〈y, u, wα,i 〉. Moreover

Q̃−1(y, h, ŵαi ) = Q(y, h)−1

by uniqueness of the inverse.
Thus by adding the new wαi and the coefficients of P from A�x� as new ŵ,

we see that our lemma works for f as soon as it works for h. So we can replace f
by h and assume f ∈ (m, x, y)A�x�〈y〉, F( f ) = 0 and F ′( f ) := (∂F/∂u)( f ) /∈
(m, x, y). Let us write F = ∑

α, j Fα j yαu j for some Fα j ∈ A�x�.
Set ẑαi = Fαi − Fαi (0) ∈ (x)A�x�, ẑ = (̂zαi ) and G := G(y, u, z) =

∑

αi (Fαi (0)+zαi )yαui for some new variables z = (zαi ). We haveG(y, u, ẑ) = F .
Set G ′ = ∂G/∂u. As

G(y, f, 0) ≡ G(y, f, ẑ) ≡ F( f ) ≡ 0 modulo (m, x, y, u),

G ′(y, f, 0) ≡ G ′(y, f, ẑ) ≡ F ′( f ) �≡ 0 modulo (m, x, y, u)

we get G(y, 0, z) ≡ 0, G ′(y, 0, z) �≡ 0 modulo (m, y, z)A〈y, z〉. By the Implicit
Function Theorem there exists g ∈ (m, y, z)A〈y, z〉 such that G(y, g, z) = 0. It
follows that G(y, g(y, ẑ), z) = 0. But F = G(y, u, ẑ) = 0 has just one solution
u = f in (m, x, y)B by the Implicit Function Theorem and so f = g(y, ẑ). �


The following result can be rephrased as a particular case of Theorem 12.6 [7],
and the proof we give here, for the sake of completeness, follows essentially the
same principle as the proof given in [7].

Proposition 2.3. We set x = (x1, . . . , xn) and y = (y1, . . . , ym) and let M be a
submodule of k〈x, y〉p. Then

k�x�(M ∩ k〈x〉p) = ̂M ∩ k�x�p

where ̂M = k�x, y�M denotes the (x, y)-adic completion of M.Moreover, if c ∈ N

and û = ∑r
i=1 v̂iωi ∈ ̂M ∩ k�x�p for some ωi ∈ M, v̂i ∈ k�x, y� then there exist

vic ∈ k〈x, y〉 such that vic ≡ v̂i modulo (x, y)ck�x, y�, uc = ∑r
i=1 vicωi ∈

M ∩ k〈x〉p and û is the limit of (uc)c in the (x)-adic topology.

Proof. Of course we always have k�x�(M ∩ k〈x〉p) ⊂ ̂M ∩ k�x�p. So we only
have to prove the opposite inclusion.

Let ω1, . . . , ωr be generators of M and û(x) be an element of ̂M ∩k�x�p. Such
an element û(x) has the form

û(x) =
r

∑

�=1

v̂�(x, y)ω� (2.2)
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for some formal power series v̂�(x, y). The components of Eq. (2.2) provide a
system of p linear equations as follows:

T v̂(x, y) = û(x) (2.3)

where T is a p×r matrix with entries in k〈x, y〉 and v̂(x, y) is the vector of entries
v̂�(x, y).

The morphism k�x�〈y〉 −→ k�x, y� being faithfully flat, for any integer c there
exists a solution ṽ(x, y) ∈ k�x�〈y〉r of (2.3) such that

ṽ(x, y) − v̂(x, y) ∈ (x, y)ck�x, y�r .

Indeed, choose v′(x, y) ∈ k�x�〈y〉r such that v′(x, y) − v̂(x, y) ∈ (x, y)ck�x, y�.
By faithfully flatness the linear system

û(x) =
r

∑

�=1

v�ω�, v′(x, y) − v =
∑

|α|+|β|=c

xα yβwα,β

has a solution ṽ(x, y), w̃(x, y) in k�x�〈y〉 since it has one in k�x, y�.
Thus from now on we may assume that v̂(x, y) ∈ k�x�〈y〉r . By Lemma 2.2

there exist a new set of variables z = (z1, . . . , zs), algebraic power series g�(y, z) ∈
k〈y, z〉 for 1 ≤ � ≤ r and formal power series ẑ1(x), . . . , ẑs(x) ∈ (x)k�x� such
that

v̂�(x, y) = g�(y, ẑ1(x), . . . , ẑs(x)).

Then, by replacing v� by g�(y, z) for � = 1, . . . , r in the linear system of
equations T · v = û(x) we obtain a new system of (non linear) equations

f (x, y, û(x), ẑ(x)) = 0

where f (x, y, u, z) is a vector of algebraic power series.
Let I denote the ideal of k〈x, u, z〉 generated by all the coefficients of the mono-

mials in y in the expansion of the components of f as power series in (y1, . . . , ym).
Let h1, . . . , ht be a system of generators of I. By assumption (̂u(x), ẑ(x)) is a
formal power series solution of the system

h1(x, u, z) = · · · = ht (x, u, z) = 0. (2.4)

Thus by Artin approximation theorem for algebraic power series [4], for any
integer c ≥ 0 there exists (̃u(x), z̃(x)) ∈ k〈x〉p+s solution of the system (2.4) with

ũκ(x) − ûκ(x) ∈ (x)ck�x�, z̃k(x) − ẑk(x) ∈ (x)ck�x� ∀κ, k.

Thus (̃u(x), ṽ(x, y)) is a solution of the system (2.3) where

ṽ�(x, y) = g�(y, z̃1(x), . . . , z̃s(x)) ∀�.

In particular ũ(x) ∈ M ∩ k〈x〉p and M ∩ k〈x〉p is dense in ̂M ∩ k〈x〉.
Moreover by Taylor’s formula we have that

ṽ�(x, y) − v̂�(x, y) ∈ (x, y)ck�x, y� for 1 ≤ � ≤ r.

�
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The next theorem is a key result to reduce the proof of Theorem 2.1 to the case
of only one nest (i.e. when there is k ≤ n such that σi = k or n for every i). This
one nest case is Proposition 2.3. As we have previously said, the linear one nest
case was proven by E. Bierstone and P. Milman (see [7, Theorem 12.6]).

Theorem 2.4. Let M ⊂ k〈x〉p be a finitely generated k〈x〉-submodule and σ :
{1, . . . , p} −→ {1, . . . , n} be a weakly increasing function. Then

N = M ∩ (k〈x1, . . . , xσ(1)〉 × · · · × k〈x1, . . . , xσ(p)〉)
is dense in

N ′ = (k�x�M) ∩ (k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(p)�).

Moreover, if c ∈ N and û = ∑t
i=1 v̂iωi ∈ N ′ for some ωi ∈ M, v̂i ∈ k�x� then

there exist vic ∈ k〈x〉 such that vic ≡ v̂i modulo (x)ck�x�, uc = ∑t
i=1 vicωi ∈ N

and û is the limit of (uc)c in the (x)-adic topology.

Proof. Apply induction on p, the case p = 1 being done in Proposition 2.3. Assume
that p > 1. We may reduce to the case when σ(p) = n replacing M by M ∩
k〈x1, . . . , xσ(p)〉p if σ(p) < n. Let

q : k�x�p → k�x�p−1

be the projection on the first p − 1 components and

q ′ : k�x�p → k�x�

be the projection on the last component. Let û = (̂u1, . . . , û p) ∈ N ′, and M1 =
q(M). Assume that û = ∑t

i=1 v̂iωi for some v̂i ∈ k�x�, ωi ∈ M . By the induction
hypothesis applied to M1 and q (̂u), for every c ∈ N there exists vic ∈ k〈x〉 with
vic ≡ v̂i modulo (x)ck�x� such that

u′
c =

t
∑

i=1

vicq(ωi ) ∈ q(N )

= M1 ∩ (k〈x1, . . . , xσ(1)〉 × · · · × k〈x1, . . . , xσ(p−1)〉)
and q (̂u) is the limit of (u′

c)c in the (x)-adic topology.
Now, let u′′

c = ∑t
i=1 vicq ′(ωi ) ∈ k〈x1, . . . , xn〉. We have u′′

c ≡ q ′(̂u) modulo
(x)ck�x�. Then uc = (u′

c, u
′′
c ) = ∑t

i=1 vicωi ∈ N since σ(p) = n, uc ≡ û
modulo (x)ck�x�p and û is the limit of (uc)c in the (x)-adic topology. �

Proof of Theorem 2.1. First of all we may assume that σ is weakly increasing after
permuting the yi .

If b = 0 then it is enough to apply Theorem 2.4 for the module M of the
solutions of T y = 0 in A = k〈x〉. Suppose that b �= 0. Replace the system T y = b
by the homogeneous system of linear polynomials

T ′y′ := T y − by0 = 0
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from A[y0, y]p where y′ = (y0, y). A nested formal solution ŷ of T y = b in k�x�m

with ŷi ∈ k�x1, . . . , xσ(i)�, 1 ≤ i ≤ m induces a nested formal solution (ŷ0, ŷ),
ŷ0 = 1 of T ′y′ = 0 with σ(0) = σ(1). As above, for all c ∈ N we get a nested
algebraic solution (y0(x), y(x)) of T ′y′ = 0 with yi (x) ∈ k〈x1, . . . , xσ(i)〉 and
yi (x) ≡ ŷi modulo (x)ck�x� for all 0 ≤ i ≤ m. In particular y0(0) = 1 �= 0 and
y0(x) is a unit. Thus

(

y0(x)
−1y1(x), . . . , y0(x)

−1ym(x)
)

is an algebraic nested solution of T y − b = 0. Moreover, for all j ≥ 1, we have:

y0(x)
−1y j (x) − ŷ j (x) =

(

y0(x)
−1 − 1

)

y j (x) + (y j (x) − ŷ j (x)) ∈ (x)c.

�


3. Linear nested approximation property

In the second part of this paper we generalize the method used to prove Theorem
2.1 in order to show that the question of A. Grothendieck, for local subrings of
the ring of formal power series, is equivalent to the nested Artin approximation
property for linear equations. We begin by giving several definitions.

Definition 3.1. Let k be a field. An admissible family of rings is an increasing
sequence of rings F = (Rn)n∈N satisfying the following properties:

(1) For every integer n ≥ 0 the ring Rn is a k-subalgebra of k�x1, . . . , xn� (in
particular R0 = k).

(2) For every integer n ≥ 0, k[x1, . . . , xn] ⊂ Rn .
(3) For every integer n > 0 the ring Rn is a Noetherian local ring whose maximal

ideal is generated by x1,…, xn .
(4) For every integer n the completion of Rn is k�x1, . . . , xn�.
(5) For every integers m, n with 0 ≤ m ≤ n we have

Rn ∩ k�x1, . . . , xm� = Rm .

When an admissible family of rings is given, any element of a member of this
family is called an admissible power series.

Sometimes we will emphasize the dependency of Rn on the variables
(x1, . . . , xn) by writing Rn = k〈〈x1, . . . , xn〉〉 for n ∈ N.

Example 3.2. The following families of rings are admissible:

• The rings of convergent power series over a valued field k.
• The rings of algebraic power series over a field k.
• The rings of formal power series.
• The rings of germs of rational functions at 0 ∈ k

n , k[x1, . . . , xn](x1,...,xn).
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3.1. Krull topology

Let (A,m) be a Noetherian local ring. The Krull topology of A is the topology in
which the ideals mc constitute a basis of neighborhoods of the zero of A. For a
A-module M the Krull topology of M is the one in which the submodules mcM
constitute a basis of neighborhoods of the zero of M . The completion of A (resp.
M) for the Krull topology is denoted by ̂A (resp. ̂M). We have the following lemma
asserting that the topological closure of a finite module and its completion coincide:

Lemma 3.3. ([29, Corollary 2, p. 257]) If N is a A-submodule of a finite A-module
M then the closure of N in ̂M is ̂N = ̂AN.

Definition 3.4. If M is a A-module where (A,m) is a Noetherian local ring and E
is a subset of M , we say that an element f ∈ M may be approximated by elements
of E if f is in the closure (for the Krull topology) of E in M , i.e. if for every integer
c there exists fc ∈ E such that f − fc ∈ mcM .

3.2. Strong elimination property

One says that an admissible family of rings F = (k〈〈x1, . . . , xn〉〉)n has the strong
elimination property for ideals if for every two sets of variables x and y and every
ideal I of k〈〈x, y〉〉 we have

(I ∩ k〈〈x〉〉)k�x� = ̂I ∩ k�x� (3.1)

where ̂I denotes the ideal of k�x, y� generated by I .
One says that the admissible family F has the strong elimination property for

modules if for every two sets of variables x and y, every positive integer p and
every k〈〈x, y〉〉-submodule M of k〈〈x, y〉〉p we have

k�x�(M ∩ k〈〈x〉〉p) = ̂M ∩ k�x�p (3.2)

where ̂M denotes the k�x, y�-submodule of k�x, y�p generated by M .

Remark 3.5. Since I ∩k〈〈x〉〉 ⊂ ̂I ∩k�x� (resp. M ∩k〈〈x〉〉p ⊂ ̂M ∩k�x�p , Lemma
3.3 shows that (3.1) (resp. (3.2)) is equivalent to say that the elements of ̂I ∩ k�x�
(resp. ̂M∩k�x�p) may be approximated by elements of I∩k〈〈x〉〉 (resp. M∩k〈〈x〉〉p).

3.3. Linear nested approximation property

We say that an admissible family of rings F = (k〈〈x1, . . . , xn〉〉)n has the linear
nested approximation property if the following property holds:

For every positive integers m, n, p, every p × m matrix T with entries in
k〈〈x〉〉 := k〈〈x1, . . . , xn〉〉, every b = (b1, . . . , bp) ∈ k〈〈x〉〉p and every map
σ : {1, . . . ,m} −→ {1, . . . , n} we have the following: let y = (y1, . . . , ym) be a
vector of new variables. Then the set of solutions y(x) in

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉
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of the following system of linear equations

T y = b (3.3)

is dense in the set of formal solutions in

k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(m)�.

3.4. Strongly injective morphisms

Definition 3.6. Let ϕ : A −→ B be a morphism of local rings. We denote by ϕ̂ the
induced morphism ̂A −→ ̂B. One says that ϕ is strongly injective if ϕ̂ is injective.

Definition 3.7. We say that an admissible family of rings F = (k〈〈x1, . . . , xn〉〉)n
has the strong injectivity property if for every integers n and m and every ideals I
of k〈〈x1, . . . , xn〉〉 and J of k〈〈y1, . . . , ym〉〉, every injective morphism of local rings

k〈〈x〉〉
I

−→ k〈〈y〉〉
J

is strongly injective.

Remark 3.8. Definition 3.6 is not the classical one. In [1] a morphism ϕ : A −→ B
is called strongly injective if ϕ̂(̂A)∩B = ϕ(A). This definition, which is the classical
one, is stronger than the one we use in this paper. Nevertheless we will prove that if
an admissible family of rings (k〈〈x1, . . . , xn〉〉)n has the strong injectivity property

then for any morphism of local rings ϕ : A = k〈〈x〉〉
I

−→ B = k〈〈y〉〉
J

we have

ϕ̂(̂A) ∩ B = ϕ(A) (see Corollary 3.10).

The main result of this part is the following:

Theorem 3.9. For an admissible family of ringsF = (k〈〈x1, . . . , xn〉〉)n the follow-
ing properties are equivalent:

(i) F has the strong elimination property for ideals.
(ii) F has the strong elimination property for modules.

(iii) F has the linear nested approximation property.
(iv) F has the strong injectivity property.

Corollary 3.10. Let F = (k〈〈x1, . . . , xn〉〉)n be an admissible family having the
strong injectivity property. Then for any morphism of local rings

ϕ : A = k〈〈x〉〉
I

−→ B = k〈〈y〉〉
J

we have

ϕ̂(̂A) ∩ B = ϕ(A).

In particular if ϕ̂ is surjective then ϕ is surjective too.
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Proof. Clearly ϕ(A) ⊂ ϕ̂(̂A) ∩ B. Let us prove the reverse inclusion.

We can replace ϕ by ϕ ◦ π where π : k〈〈x〉〉 −→ k〈〈x〉〉
I

is the natural quotient

morphism. This allows us to assume that I = 0 and A = k〈〈x〉〉. Let ̂f ∈ k�x� such
that ϕ̂( ̂f ) = b ∈ B. Let us denote by ϕi (y) an admissible power series of k〈〈y〉〉
which is the image of xi by ϕ modulo J , for i = 1, . . . , n. Let q1(y), . . . , qs(y)
be generators of J . Thus, by assumption, there exist formal power series ̂l j ,̂ki , for
1 ≤ j ≤ s and 1 ≤ i ≤ n, such that

̂f (x) = b(y) +
s

∑

j=1

q j (y)̂l j (x, y) +
n

∑

i=1

(xi − ϕi (y))̂ki (x, y).

By the previous theorem the family of rings F has the linear nested approximation
property, thus there exist admissible power series

f (x), l j (x, y), ki (x, y)

such that

f (x) = b(y) +
s

∑

j=1

q j (y)l j (x, y) +
n

∑

i=1

(xi − ϕi (y))ki (x, y).

In particular, by replacing xi by ϕi (y) for all i we see that ϕ( f ) = b. Thus b ∈
ϕ(k〈〈x〉〉). �

Remark 3.11. Let F = (Rn)n be an admissible family. Let f ∈ Rn such that

f (0) = 0 and
∂ f

∂xn
(0) �= 0. By the Implicit Function Theorem for formal power

series there exists a unique formal power series h(x ′) with x ′ = (x1, . . . , xn−1)

such that

f (x ′, h(x ′)) = 0 and h(0) = 0.

Thus, by Taylor’s formula, there exists a formal power series g(x) such that

f (x) + (xn − h(x ′))g(x) = 0.

Since
∂ f

∂xn
(0) �= 0 and h(0) = 0 we have g(0) �= 0, i.e. g(x) is a unit. Hence we

have, where u(x) denotes the inverse of g(x):

f (x)u(x) + xn − h(x ′) = 0.

Moreover, since h(x ′) is unique, u(x) is also unique and the linear equation

f (x)y2 + xn − y1 = 0

has a unique nested formal solution (h(x ′), u(x)) whose first component vanishes
at 0. Thus if the family F satisfies the equivalent properties of Theorem 3.9 then
this family has to satisfy the Implicit Function Theorem (which is equivalent to say
that the rings Rn are Henselian local rings).
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In particular the family of germs of rational functions at the origin of kn does
not satisfy the properties of Theorem 3.9.

Since the ring of algebraic power series in n variables is the Henselization of
the ring of germs of rational functions at the origin of kn , this also shows that the
family of algebraic power series is the smallest admissible family containing the
family of germs of rational functions at the origin of kn and satisfying the properties
of Theorem 3.9 (by Theorem 2.1).

Remark 3.12. LetF = (Rn)n be an admissible family and f , g two elements of Rn .
Let us assume that f is xn-regular of order d, i.e. f (0, xn) = xdn u(xn) for some unit
u(xn). By the Weierstrass division Theorem for formal power series there exists a
unique vector

(q(x), a0(x
′), . . . , ad−1(x

′)) ∈ k�x� × k�x ′�d

with x ′ = (x1, . . . , xn−1) such that

g(x) = f (x)q(x) +
d−1
∑

κ=0

aκ(x ′)xκ
n .

By the uniqueness of (q(x), a0(x ′), . . . , ad−1(x ′)) if the family F has the linear
nested approximation property then

(q(x), a0(x
′), . . . , ad−1(x

′)) ∈ Rn × Rd
n−1.

Thus F satisfies the Weierstrass division Theorem if it satisfies the equivalent
properties of Theorem 3.9.

Let us mention that an admissible family of rings that satisfies the Weierstrass
division Theorem is necessarily a family of Henselian local rings (see for instance
[9]). But it is still unknown if an admissible family of Henselian local rings satisfies
the Weierstrass division Theorem (see for instance [24, Remark 5.20]). See also
[16] for a partial result in this direction.

Remark 3.13. The example of Gabrielov [12] shows that the family of convergent
power series over a characteristic zero valued field does not satisfy the properties
of Theorem 3.9 (but this family satisfies the implicit function Theorem, it even
satisfies the Weierstrass division Theorem). This example is the following one:

Let

ϕ : C{x1, x2, x3} −→ C{y1, y2}
be the morphism of analytic C-algebras defined by

ϕ(x1) = y1, ϕ(x2) = y1y2, ϕ(x3) = y1e
y2 .

It is not very difficult to show that ϕ and ϕ̂ are both injective (see [20]). Then A.
Gabrielov remarked that there exists a formal but not convergent power series ĝ(x)
whose image h(y) by ϕ̂ is convergent (see [12]). This shows that Corollary 3.10 is
not satisfied for convergent power series rings. Thus the properties of Theorem 3.9
are not satisfied in the case of convergent power series rings.
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4. Proof of Theorem 3.9

We will prove the following implications:

(i) �⇒ (ii) �⇒ (iii) �⇒ (iv) �⇒ (i)

4.1. Proof of (i) �⇒ (ii)

In fact we will prove a stronger result that we will also use in the proof of (ii) �⇒
(iii). The proof of (i) �⇒ (ii) follows from the following lemma with p = 0:

Lemma 4.1. Let (k〈〈x1, . . . , xn〉〉)n be an admissible family satisfying the strong
elimination property for ideals and let M be a k〈〈x, y〉〉-submodule of k〈〈x, y〉〉p+t .
Then M ∩ ({0}p × k〈〈x〉〉t ) is dense in ̂M ∩ ({0}p × k�x�t ).

Proof. Let S be the ring k〈〈x, y, z, w〉〉/(z, w)2 where z = (z1, . . . , z p) and w =
(w1, . . . , wt ) are new variables. Then the morphism of k〈〈x, y〉〉-modules

ϕ : k〈〈x, y〉〉 × k〈〈x, y〉〉p+t −→ S

(a, b1, . . . , bp, c1, . . . , ct ) �−→ a +
p

∑

i=1

bi zi +
t

∑

j=1

c jw j

is a k〈〈x, y〉〉-isomorphism. We denote by ϕ̂ the isomorphism from k�x, y�p+t+1 to
̂S = k�x,y,z,w�

(z,w)2 defined in the same way:

ϕ̂(a, b1, . . . , bp, c1, . . . , ct ) = a +
p

∑

i=1

bi zi +
t

∑

j=1

c jw j .

The image of {0} × M under ϕ is an ideal of S denoted by I and the image of
{0} × ̂M under ϕ̂ is ̂I . This is the idealization principle of Nagata.

Moreover the image of {0} × (M ∩ ({0}p × k〈〈x〉〉t )) under ϕ is the ideal I ∩
k〈〈x, w〉〉

(w)2 and the image of {0} × ( ̂M ∩ ({0}p × k�x�t )) is the ideal ̂I ∩ k�x, w�

(w)2 .

By the strong elimination property for ideals I∩k〈〈x, w〉〉
(w)2 is dense in ̂I∩k�x, w�

(w)2

hence M ∩ ({0}p × k〈〈x〉〉t ) is dense in ̂M ∩ ({0}p × k�x�t ). �


4.2. Proof of (ii) �⇒ (iii)

We assume that F has the strong elimination property for modules and we fix a
system of linear equations as (3.3). After a permutation of the yi we may assume
that σ is weakling increasing.
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We call an admissible nested solution (resp. formal nested solution) of such a
system (3.3) a solution in

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉
(resp. k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(m)�).

We will show that the set of admissible nested solutions is dense, for the m-adic
topology, in the set of formal nested solutions.

• First we claim that we can assume that b = 0, i.e. the system (3.3) of linear
equations is homogeneous. Indeed let us assume that the set of admissible
nested solutions of any linear homogeneous system is dense in the set of formal
nested solutions and let us fix a linear (non-homogenous) system as (3.3). Let
y(x) ∈ k�x�m be a formal nested solution of the system (3.3): T y = b.

Let us write ai, j the entries of the p × m matrix T and denote by T ′ the matrix

T ′ = [−b | T ]

and set y′ = (y0, y1, . . . , ym).
Let us extend the previous function σ to {0, . . . ,m} by σ(0) = σ(1). Since y(x)

is a formal nested solution of (3.3), y′(x) = (1, y(x)) is a formal nested solution
of the following linear homogeneous system:

T ′y′ = 0 (4.1)

By assumption, for any given integer c ≥ 1, there exists an admissible nested
solution y′

c(x) = (y0,c(x), y1,c(x), . . . , ym,c(x)) of (4.1) such that

y0,c(x) − 1 ∈ (x)c and y j,c(x) − y j (x) ∈ (x)c ∀ j ≥ 1.

In particular y0,c(0) = 1 �= 0 and y0,c(x) is a unit. Thus
(

y0,c(x)
−1y1,c(x), . . . , y0,c(x)

−1ym,c(x)
)

is an admissible nested solution of (3.3). Moreover, for all j ≥ 1, we have:

y0,c(x)
−1y j,c(x) − y j (x) =

(

y0,c(x)
−1 − 1

)

y j,c(x) + (y j,c(x) − y j (x)) ∈ (x)c.

Thus the set of admissible nested solutions of (3.3) is dense in the set of formal
nested solutions of (3.3) and the claim is proven.

• Let us consider a homogeneous linear system (3.3) where b = 0. The set of
(non-nested) admissible solutions of such a system is a k〈〈x〉〉-submodule of
k〈〈x〉〉m denoted by M . By Noetherianity this module is finitely generated. The
set of (non-nested) formal solutions is the completion of M denoted by ̂M (by
flatness of k〈〈x〉〉 −→ k�x� since k〈〈x〉〉 is a Noetherian local ring). Thus the
following lemma shows that the nested admissible solutions are dense in the set
of nested formal solutions and F has the linear nested approximation property:
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Lemma 4.2. Let us assume thatF has the strong elimination property for modules
and M be a finite submodule of k〈〈x〉〉m. Then

M ∩ (

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉
)

is dense in

̂M ∩ (

k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(m)�
)

.

To prove this lemma we proceed in a similar way as for Theorem 2.4. But
before we need to state a preliminary result since the strong elimination property
is apparently weaker than the condition used in Proposition 2.3. This statement is
the following lemma which is an analogue of Chevalley’s Lemma for summands
of modules (classical Chevalley’s Lemma concerns decreasing sequences of ideals
in complete local rings—see [8, Lemma 7]):

Lemma 4.3. (Chevalley’s Lemma) Let M be a k�x, y�-submodule of k�x, y�p+t .
Then there exists a function β : N −→ N such that

M ∩ ((x)β(c)
k�x�p × k�x�t )) ⊂ M ∩ ({0}p × k�x�t ) + (x)ck�x�p+t ∀c ∈ N.

Proof. For simplicity let us set N := M ∩ ({0}p ×k�x�t ). Let us assume that there
is an integer c0 ∈ N such that

M ∩ ((x)βk�x�p × k�x�t )) �⊂ N + (x)c0k�x�p+t ∀β ∈ N.

So we have that

M ∩ ((x)βk�x�p × k�x�t ) �⊂ N + (x)ck�x�p+t ∀β ∈ N, ∀c ≥ c0.

By replacing M by M∩k�x�p+t we may assume that M is a submodule of k�x�p+t .
The module M/(M ∩ (x)ck�x�p+t ) is an Artinian module thus there is an integer
a(c) such that for all β ≥ a(c):

M ∩ ((x)a(c)
k�x�p × k�x�t ) + M ∩ (x)ck�x�p+t

= M ∩ ((x)βk�x�p × k�x�t )) + M ∩ (x)ck�x�p+t .

We may assume that a(c) < a(c + 1) for every c. Since

M ∩ ((x)a(c)
k�x�p × k�x�t ) ⊂ M ∩ ((x)a(c)

k�x�p × k�x�t ) + M ∩ (x)ck�x�p+t

= M ∩ ((x)a(c+1)
k�x�p × k�x�t ) + M ∩ (x)ck�x�p+t

for a given uc ∈ M ∩ ((x)a(c)
k�x�p × k�x�t ) there exists an element

uc+1 ∈ M ∩ ((x)a(c+1)
k�x�p × k�x�t )

such that

uc − uc+1 ∈ M ∩ (x)ck�x�p+t .

Thus by choosing uc0 ∈ M ∩ ((x)a(c0)k�x�p × k�x�t )\ (N + M ∩ (x)c0) we may
construct a sequence (uc)c as above. Hence this sequence is a Cauchy sequence and
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has a limit u ∈ M since M is a complete module. But uc′ ∈ M ∩ ((x)a(c)
k�x�p ×

k�x�t ) for every c′ ≥ c and M ∩ ((x)a(c)
k�x�p ×k�x�t ) is a complete module thus

u ∈
⋂

c≥c0

M ∩ ((x)a(c)
k�x�p × k�x�t ) = M ∩ ({0}p × k�x�t ) = N

by Nakayama’s Lemma.
On the other hand we have

u − uc0 ∈ M ∩ (x)c0k�x�p+t

so uc0 ∈ N + M ∩ (x)c0k�x�p+t which contradicts the assumption on uc0 . �


Proof of Lemma 4.2. We prove the lemma by induction onm, the casem = 1 being
equivalent to the strong elimination property for modules. Assume that m > 1.
By the strong elimination property for modules we may reduce to the case when
σ(m) = n by replacing M by M ∩ k〈〈x1, . . . , xσ(m)〉〉m if σ(m) < n. Let

q : k�x�m → k�x�m−1

be the projection on the first m − 1 components. Let

û ∈ ̂M ∩ (

k�x1, . . . , xσ(1)� × · · · × k�x1, . . . , xσ(m)�
)

and set M1 = q(M). By induction hypothesis applied to M1 and q (̂u), for every
c ∈ N there exists u′

c ∈ M ∩ (

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉
)

such
that q (̂u) − q(u′

c) ∈ (x)c.
Now û−u′

c ∈ (

(x)ck�x�m−1 × k�x�
)∩ ̂M . Thus by Lemmas 4.3 and 4.1 there

exists a function β such that

û − u′
β(c) ∈ (x)ck�x�m ∩ ̂M + ({0}m−1 × k〈〈x〉〉) ∩ M

where ({0}m−1 × k〈〈x〉〉) ∩ M denotes the closure of ({0}m−1 × k〈〈x〉〉) ∩ M . Thus
there exists u′′

c ∈ ({0}m−1 × k〈〈x〉〉) ∩ M such that

û −
(

u′
β(c) + u′′

c

)

∈ (x)ck�x�m

and

u′
β(c) + u′′

c ∈ M ∩ (

k〈〈x1, . . . , xσ(1)〉〉 × · · · × k〈〈x1, . . . , xσ(m)〉〉
)

since σ(m) = n. �
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4.3. Proof of (iii) �⇒ (iv)

Let

ϕ : k〈〈x〉〉
I

−→ k〈〈y〉〉
J

be an injective morphism of local rings and let ̂f ∈ Ker(ϕ̂). The morphism ϕ is
defined by admissible power series ϕ1(y), . . . , ϕn(y) such that

g(ϕ1(y), . . . , ϕn(y)) ∈ J ∀g ∈ I

and, for any power series g, the image of g modulo I is equal to

g(ϕ1(y), . . . , ϕn(y)) modulo J.

We still denote by ̂f a lifting of ̂f in k�x�. Thus

̂f (ϕ1(y), . . . , ϕn(y)) ∈ ̂J ,

i.e. there exist formal power series ̂h1(y), . . . ,̂hs(y) such that

̂f (ϕ1(y), . . . , ϕn(y)) =
s

∑

j=1

q j (y)̂h j (y)

where the q j (y) are generators of the ideal J . By Taylor’s formula there exist formal
power series ̂ki (x, y) such that

̂f (x) −
s

∑

j=1

q j (y)̂h j (y) =
n

∑

i=1

(xi − ϕi (y))̂ki (x, y). (4.2)

By the linear nested approximation property, for any integer c, there exists a
vector of admissible power series

( fc(x), h1,c(x, y), . . . , hs,c(x, y), k1,c(x, y), . . . , kn,c(x, y))

such that

fc(x) −
s

∑

j=1

q j (y)h j,c(x, y) =
n

∑

i=1

(xi − ϕi (y))ki,c(x, y)

and

fc(x)− ̂f (x) ∈ (x)c, h j,c(x, y)−̂h j (y) ∈ (x, y)c, ki,c(x, y)−̂ki (x, y) ∈ (x, y)c

for all j and i . By replacing xi by ϕi (y) for i = 1, . . . , n, we see that ϕ( fc(x)) = 0,
thus fc(x) = 0 since ϕ is injective. Thus ̂f (x) ∈ (x)c for all c ≥ 0 thus ̂f (x) = 0
by Nakayama’s Lemma. This shows that ϕ is strongly injective.
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4.4. Proof of (iv) �⇒ (i)

Let I be an ideal of k〈〈x, y〉〉. Let ϕ be the following injective morphism induced
by the inclusion k〈〈x〉〉 −→ k〈〈x, y〉〉:

k〈〈x〉〉
I ∩ k〈〈x〉〉 −→ k〈〈x, y〉〉

I
.

Then (I ∩ k〈〈x〉〉)k�x� = ̂I ∩ k�x� if and only if ϕ is strongly injective since

Ker(ϕ̂) = ̂I ∩ k�x�

(I ∩ k〈〈x〉〉)k�x�
.
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