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Local zero estimates and effective division
in rings of algebraic power series

By Guillaume Rond at Marseille

Abstract. We give a necessary condition for algebraicity of finite modules over the
ring of formal power series. This condition is given in terms of local zero estimates. In fact,
we show that this condition is also sufficient when the module is a ring with some additional
properties. To prove this result we show an effective Weierstrass Division Theorem and an
effective solution to the Ideal Membership Problem in rings of algebraic power series. Finally,
we apply these results to prove a gap theorem for power series which are remainders of the
Grauert–Hironaka–Galligo Division Theorem.

Contents

1. Introduction
2. Notations
3. Height and degree of algebraic power series
4. Effective Weierstrass Division Theorem
5. Ideal membership problem in localizations of polynomial rings
6. Ideal membership in rings of algebraic power series
7. Proof of Theorem 1.1
8. Proof of Theorem 1.3
9. An example
10. Grauert–Hironaka–Galligo division of power series
11. Generic Kashiwara–Gabber example
12. Gap theorem for remainders of division of algebraic power series
References

The author was partially supported by ANR projects STAAVF (ANR-2011 BS01 009) and SUSI (ANR-12-
JS01-0002-01).

Authenticated | guillaume.rond@univ-amu.fr author's copy
Download Date | 8/15/15 9:14 AM



2 Rond, Effective division of algebraic power series

1. Introduction

The goal of this paper is to give a necessary condition in term of local zero estimates for
a finite module defined over the ring of formal power series to be the completion of a module
defined over the ring of algebraic power series. Finding conditions for the algebraicity of such
modules is a long-standing problem (see [28] or [3] for instance). Let us recall that an algebraic
power series over a field k in the variables x1; : : : ; xn is a formal power series f .x/ 2 kJxK
(from now on we denote the tuple .x1; : : : ; xn/ by x) such that

P.x; f .x// D 0

for a non-zero polynomial P.x; T / 2 kŒx; T ç. The set of algebraic power series is a subring
of kJxK denoted by khxi.

For an algebraic power series f , we define the height of f , H.f /, to be the maximum
of the degrees of the coefficients of the minimal polynomial of f (see Definition 3.2). If f is
a polynomial, its height is equal to its degree as a polynomial.

Let M be a kJxK-module. The order function ordM is defined as follows:

ordM .m/ WD supπc 2 N W m 2 .x/cM º for all m 2 M n π0º:

Let p 2 kŒxçs (resp. khxis). The degree (resp. height) of p is the maximum of the degrees
(resp. heights) of its components. Then our main result is the following:

Theorem 1.1. Let k be any field and let M be a finite kJxK-module,

M D kJxKs=N

for some integer s and some kJxK-submodule N of kJxKs . Let us assume that the submodule
N is generated by a khxi-submodule of khxis . Then there exists a function

C W N ! R>0

such that

(1.1) ordM .f /  C.Deg.f // � H.f / for all f 2 khxis n N:

Here Deg.f / denotes the degree of the field extension k.x/ ! k.x; f /. Moreover, when we
have char.k/ D 0, then C depends polynomially on Deg.f /.

Corollary 1.2. With the notations of Theorem 1.1, let us assume that N is generated by
a khxi-submodule of khxis . Then there exists a constant C 0 > 0 such that

(1.2) ordM .p/  C 0 � deg.p/ for all p 2 kŒxçs n N:

Proof. Indeed, for a vector of polynomials p 2 kŒxçs we have

Deg.p/ D 1 and H.p/ D deg.p/;

so the inequality is satisfied with C 0 D C.1/ where C is the function of Theorem 1.1.
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Rond, Effective division of algebraic power series 3

We also prove a partial converse of Corollary 1.2:

Theorem 1.3. Let R be a ring of the form kJxK=I for some ideal I such that

I D P n1

1 \ � � � \ P nl

l

where the Pi are prime ideals with ht.Pi / D ht.Pj / for all i and j , and the ni are positive
integers. If there exists a constant C > 0 such that

ordR.p/  C � deg.p/ for all p 2 kŒxç n I;

then I is generated by algebraic power series.

Remark 1.4. We remark that the hypothesis of Theorem 1.3 are satisfied for a principal
ideal I . In particular, Theorems 1.1 and 1.3 provide a criterion for a principal ideal to be
generated by an algebraic power series.

Remark 1.5. We will see in Section 9 that Theorem 1.3 is not true in general.

These two results are generalizations of previous results of S. Izumi (see [15–17] where
he proved Corollary 1.2 when char.k/ D 0, s D 1 and N is a prime ideal of kJxK) and Theo-
rem 1.3 when I is prime and char.k/ D 0.

The proof of Theorem 1.3 uses Hilbert–Samuel functions and is inspired by the proof
given in [15]. The proof of Theorem 1.1 is more difficult and is the main subject of this paper.
In fact, the first difficulty occurs already when s D 1 and N is an ideal of kJxK which is not
prime. Corollary 1.2 in the case of a prime ideal has been proven by S. Izumi in [16] in the
complex analytic case using resolution of singularities of Moishezon spaces and then for any
field of characteristic zero using basic field theory in [17]. But when N is not prime, his proof
does not adapt at all and the general case cannot be reduced to the case proven by S. Izumi.

The proof of Theorem 1.1 that we give here is done by induction on s and n. The induction
steps require two effective division results in the rings of algebraic power series which may be
of general interest. These are the following ones:

(i) In the case of the Weierstrass division of an algebraic power series f by another algebraic
power series it is proven by J.-P. Lafon that the remainder and the quotient of the division
are algebraic power series [20]. The problem solved here is to bound the complexity of
the division, i.e. bound the complexity of the quotient and the remainder of the division
in function of the complexity of the input data. This is Theorem 4.5 and is the main tool
to solve the next division problem. Let us mention that this problem is partially solved
in [4, Section 4, see Theorem 4.6].

(ii) Bounding the complexity of the Ideal Membership Problem in the ring of algebraic power
series, i.e. if an algebraic power series f is in the ideal generated by algebraic power
series g1; : : : ; gp, bound the complexity of algebraic power series a1; : : : ; ap such that

f D a1g1 C � � � C apgp:

This is Theorem 6.1.

The complexity invariants associated to an algebraic power series f are its degree and its
height. The first one is the degree of the field extension k.x/ ! k.x; f / and the second one
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4 Rond, Effective division of algebraic power series

has been defined above. In particular, we will prove that the previous complexity problems
admit a solution which is linear with respect to the height of f (but it is not linear which
respect to the other data). This is exactly what we need to prove Theorem 1.1.

Finally, we apply our main theorem to give a partial answer to a question of H. Hironaka.
When f , g1; : : : ; gs are formal power series, we can write

f D a1g1 C � � � C asgs C r

where the non-zero monomials in the expansion of r are not divisible by the initial terms
of the gi (see Section 10 for precise definitions). When the power series f and the gi are
convergent, then r is also convergent. This result has been proven by H. Grauert in order to
study versal deformations of isolated singularities of analytic hypersurfaces [9] and then by
H. Hironaka to study resolution of singularities [12]. But when f and the gi are algebraic power
series, then r is not an algebraic power series in general and H. Hironaka raised the problem of
characterizing such power series r (see [13]). In this case we prove that such power series r are
not too transcendental (see Theorem 12.1). More precisely, if we write r as r D P1

kD0 rn.k/

where rn.k/ is a non-zero homogeneous polynomial of degree n.k/ and the sequence .n.k//k

is strictly increasing, we show that

lim sup
k!1

n.k C 1/

n.k/
< 1:

Let us mention that this division problem appears also in combinatorics: the generating series
of walks confined in the first quadrant are solutions of such a division but are neither algebraic
nor D-finite in general (see [10] or [19]).

Let us mention that the kind of estimates given in Corollary 1.2, i.e. estimates of the form

ordM p  �.deg.p//

where � W N ! N is an increasing function, s D 1 and N is an ideal of analytic functions are
called zero estimates in the literature. Finding such estimates for particular classes of functions
is an important subject of research in transcendence theory, in particular when the ideal N is
generated by analytic functions of the form

xk � fk.x1; : : : ; xk�1/; : : : ; xn � fn.x1; : : : ; xk�1/

for some k < n and fk; : : : ; fn solutions of differential equations (see [6, 23, 31] for instance)
or functional equations (q-difference equations or Mahler functions – see [24] for instance).

We should also mention that the complexity of the Weierstrass division for restricted
power series defined over the ring of p-adic integers which are algebraic over QŒxç has been
solved in [4]. The complexity of the Ideal Membership Problem is also solved in this situation.
In this case the definition of the height of an algebraic power series is more complicated.

The paper is organized as follows: after giving the list of notations used in the paper in
Section 2, we define the height of an algebraic power series in Section 3 and give the first
properties of it. In Section 4 we prove an effective Weierstrass Division Theorem (see The-
orem 4.5). In Section 5 we give some results about the Ideal Membership Problem in rings
which are localizations of rings of polynomials (see Theorem 5.2 and Proposition 5.3) and in
Section 6 we give an effective Ideal Membership theorem for algebraic power series rings (see
Theorem 6.1). Then Section 7 is devoted to the proof of Theorem 1.1 and Section 8 to the proof
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of Theorem 1.3. In Section 9 is given an example showing that the hypothesis of Theorem 1.3
cannot being relaxed. The next three sections concern the Grauert–Hironaka–Galligo Division
Theorem: in Section 10 we state this theorem and give the example of Gabber–Kashiwara
showing that the remainder of such division of an algebraic power series by another one is not
algebraic in general. We show in Section 11 that the example of Gabber–Kashiwara is generic
in some sense, i.e. in general the division of an algebraic power series by another one does not
have an algebraic remainder (see Proposition 11.3). Finally, we prove in Section 12 our gap
theorem for remainders of such a division (see Theorem 12.1).

Remark 1.6. We show in Example 10.4 that the bound in Corollary 1.2 is sharp. For
Theorem 1.1 it is not clear if such bound is sharp. Indeed, let f be an algebraic power series
and M D kJxK=I where I is an ideal generated by algebraic power series. Let

ad .x/T d C ad�1.x/T d�1 C � � � C a0.x/

be the minimal polynomial of f . Then we have

.ad f d�1 C ad�1f d�2 C � � � C a1/f D �a0:

We set g WD ad f d�1 C ad�1f d�2 C � � � C a1. If a0 … I , then

ordM .f /  ordM .gf / D ordM .a0/  C H.f /

where C is the constant of Corollary 1.2 since a0.x/ is a polynomial of degree  H.f /. This
shows that in general the function C of Theorem 1.1 can be chosen to be independent of
Deg.f / except maybe when a0.x/ ⌘ 0 in M .

Acknowledgement. The author would like to thank Paco Castro-Jiménez and Herwig
Hauser for the discussions they had about the Weierstrass Division Theorem in the algebraic
case. He would like also thank Matthias Aschenbrenner for communicating the reference [4].

The author is really grateful to the referee for their helpful suggestions for improving the
readability of the article.

2. Notations

In the whole paper k denotes a field of any characteristic. Let n be a non-negative integer
and set

x WD .x1; : : : ; xn/ and x0 WD .x1; : : : ; xn�1/:

The ring of polynomials in n variables over k will be denoted by kŒxç and its field of fractions
by k.x/. The ring of formal power series in n variables over k is denoted by kJxK and its field
of fractions by k..x//. An algebraic power series is a power series f .x/ 2 kJxK such that

P.x; f .x// D 0

for some non-zero polynomial P.x; T / 2 kŒx; T ç where T is a single indeterminate. The set
of algebraic power series is a local subring of kJxK denoted by khxi.
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6 Rond, Effective division of algebraic power series

When k is a valued field, we denote by kπxº the ring of convergent power series in n

variables over k. We have
kŒxç ⇢ khxi ⇢ kπxº ⇢ kJxK:

We will denote by Kn�1 an algebraic closure of k..x0// D k..x1; : : : ; xn�1//.
For a polynomial p 2 kŒxç we denote by deg.p/ its total degree with respect to the

variables x1; : : : ; xn. If y WD .y1; : : : ; ym/ is a new set of indeterminates and p 2 kŒx; yç, we
denote by

deg.y1;:::;ym/.p/

the degree of p seen as a polynomial in KŒyç where K WD k.x/. When p 2 kŒxçs for some s,
we denote by deg.p/ the maximum of the degrees of the components of p.

For an algebraic power series f 2 khxi, the height of f is the maximum of the degrees
of the coefficients of the minimal polynomial of f (see Definition 3.2). The height of a vector
of algebraic power series is the maximum of the heights of its components.

When .A; m/ is a local ring, we set

ordA.x/ WD sup
®
k 2 N W x 2 mk

¯
2 N [ π1º for all x 2 A:

If M is a finite A-module, we set

ordM .m/ WD sup
®
k 2 N W m 2 mkM

¯
for all m 2 M:

When A D kJxK, we write ord instead of ordkJxK. For an ideal of kJxK generated by g1; : : : ; gp

we define

ordg1;:::;gp .f / WD sup
®
k 2 N W f 2 .g1; : : : ; gp/k

¯
2 N [ π1º:

3. Height and degree of algebraic power series

Definition 3.1. Let ˛ be an element of an algebraic closure of k.x/ (for example an
algebraic power series). The morphism ' W kŒx; T ç ! k.x; ˛/ defined by sending every poly-
nomial P.x; T / onto P.x; ˛/ is not injective and its kernel is a prime ideal p of kŒx; T ç.
If ht.p/ � 2, then p \ kŒxç ¤ .0/ and there would exist a non-zero polynomial P.x/ 2 kŒxç

whose image by ' is zero which is not possible. Thus ht.p/ D 1 and p is a principal ideal.
If P.x; T / is a generator of p, then any other generator of this ideal is equal to P.x; T / times
a non-zero element of k. Such a generator is called a minimal polynomial of ˛. By abuse of
language we will often refer to such an element by the minimal polynomial of ˛.

Definition 3.2 ([1]). Let P.x; T / 2 kŒx; T ç. The height of P is the maximum of the
degrees of the coefficients of P.x; T / seen as a polynomial in T .

Let ˛ be an algebraic element over k.x/. The height of ˛ is the height of its minimal
polynomial and is denoted by H.˛/. Its degree is the degree of its minimal polynomial or,
equivalently, the degree of the field extension k.x/ ! k.x; ˛/ and is denoted by Deg.˛/.

When ˛ D .˛1; : : : ; ˛m/ is a vector of algebraic elements over k.x/, the height of ˛,
H.˛/, is the maximum of the heights of the components of ˛ and the degree of ˛, Deg.˛/, is
the degree of the field extension k.x/ ! k.x; ˛1; : : : ; ˛m/.
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Rond, Effective division of algebraic power series 7

Remark 3.3. If P.x; T / 2 kŒx; T ç is the minimal polynomial of an algebraic element ˛,
then we have H.˛/ D degx.P / and Deg.˛/ D degT .P /. In particular, for Q.x; T / 2 kŒx; T ç

with Q.˛/ D 0, P divides Q hence we have H.˛/  degx.Q/ and Deg.˛/  degT .Q/.

Example 3.4. Let f be a polynomial in kŒxç. Then H.f / D deg.f / and Deg.f / D 1

since the minimal polynomial of f is T � f .
Let f =g be a rational function in k.x/. Then we have H.f =g/ D maxπdeg.f /; deg.g/º

and Deg.f =g/ D 1 since the minimal polynomial of f =g is gT � f .
If ˛ is algebraic over k.x/, then 1=˛ also and H.1=˛/ D H.˛/ and Deg.1=˛/ D Deg.˛/.

If f .x/ is an algebraic power series and M 2 Gln.k/, then f .Mx/ is also algebraic and we
have H.f .Mx// D H.f .x// and Deg.f .Mx// D Deg.f .x//:

Remark 3.5. There exists another measure of the complexity of an algebraic element ˛

over k.x/ (and so, in particular, of an algebraic power series). This one is defined to be the total
degree of the minimal polynomial of ˛ and denoted by co.˛/ (cf. [27] or [2]). Thus we have

H.˛/ C Deg.˛/

2
 maxπH.˛/; Deg.˛/º  co.˛/  H.˛/ C Deg.˛/:

This shows that co.˛/ is equivalent to H.˛/ C Deg.˛/. Moreover, these bounds are sharp.
Indeed, let Pn.T / WD .1 C xn/T n � 1 (where x is a single variable and n 2 N is not a multiple
of the characteristic of k). Then Pn.T / is irreducible and has a root fn in khxi. Thus

H.fn/ D Deg.fn/ D n and co.fn/ D 2n:

On the other hand the polynomial Qn.T / WD T n � .1 C xn/ is irreducible and has a root gn

in khxi. Thus H.gn/ D Deg.gn/ D co.gn/ D n.
For an algebraic power series f we choose to use H.f / instead of co.f / since the

complexity of the Weierstrass Division Theorem is linear in H.f / but not in co.f / (it is not
linear in Deg.f / – see Theorem 4.5). Indeed, we need to prove the existence of a bound in
Theorem 1.1 which is linear in H.f /.

Lemma 3.6 ([1, Lemma 4.1]). Let ˛1; : : : ; p̨ be algebraic elements over k.x/ and let
a1; : : : ; ap 2 k.x/. Then we have:

(i) Deg.a1˛1 C � � � C ap p̨/  Deg.˛1/ � � � Deg. p̨/,

(ii) H.a1˛1 � � � C ap p̨/  p � Deg.˛1/ � � � Deg. p̨/.maxiπH.˛i /º C maxj πH.aj /º/,
(iii) H.a1 C ˛1/  H.˛1/ C Deg.˛1/ � H.a1/,

(iv) H.a1˛1/  H.˛1/ C Deg.˛1/ � H.a1/,

(v) Deg.˛1 � � � p̨/  Deg.˛1/ � � � Deg. p̨/,

(vi) H.˛1 � � � p̨/  p � Deg.˛1/ � � � Deg. p̨/ maxiπH.˛i /º.

Proof. All these inequalities are proven in [1] except the third and the fourth ones that
we prove here. Let us begin with the third one. Let P.x; T / be the minimal polynomial of ˛1

and let us write a1.x/ D b.x/=c.x/ for some polynomials b.x/ and c.x/. Then

Q.x; T / WD c.x/degT .P /P.x; T � a1/

Authenticated | guillaume.rond@univ-amu.fr author's copy
Download Date | 8/15/15 9:14 AM



8 Rond, Effective division of algebraic power series

is a polynomial vanishing at ˛1 C a1. Thus

H.˛1 C a1/  degx.Q.x; T //  H.˛1/ C Deg.˛1/ H.a1/

since Deg.˛1/ D degT .P / and H.a1/ � maxπdeg.b.x//; deg.c.x//º.
To prove inequality (iv), let P.x; T /, b, c as above. Then bdegT .P /P.x; c=bT / is a poly-

nomial vanishing at a1˛1. So

H.a1˛1/  Deg.˛1/ � H.a1/ C H.˛1/:

Lemma 3.7. For an algebraic power series f we have

ord.f /  H.f /:

Moreover, for any integer 1  i  n we have

H.f .0; : : : ; 0; xi ; : : : ; xn//  H.f /

and
ordxi ;:::;xn.f .0; : : : ; 0; xi ; : : : ; xn//  H.f /:

Proof. Let P.T / D ad T d C � � � C a1T C a0 be the minimal polynomial of f . Since
P.f / D 0, there are two integers 0  i < j  d such that ord.aif

i / D ord.aj f j /. Thus

ord.f / D ord.ai / � ord.aj /

j � i
 ord.ai /  deg.ai /:

This proves the first inequality. The second inequality is proven by noticing that if we have
P.x1; : : : ; xn; f .x1; : : : ; xn// D 0, then P.0; x2; : : : ; xn; f .0; x2; : : : ; xn// D 0. Since P is
the minimal polynomial of f , it follows that P is not divisible by x1, thus

P.0; x2; : : : ; xn; T / ¤ 0:

This proves that f .0; x2; : : : ; xn/ is an algebraic power series and its minimal polynomial
divides P.0; x2; : : : ; xn; T /, hence

H.f .0; x2; : : : ; xn//  H.f /:

The first inequality implies

ordx2;:::;xn.f .0; x2; : : : ; xn//  H.f /:

Hence the last two inequalities are proven by induction on i .

Remark 3.8. A formal power series f is said to be xn-regular if f .0; : : : ; 0; xn/ ¤ 0.
In this case we say that f is xn-regular of order d if f .0; : : : ; 0; xn/ is a power series of kJxnK
of order d .

By the previous lemma, if an algebraic power series f is xn-regular of order d , then we
have d  H.f /.

Remark–Definition 3.9. Let Kn�1 be an algebraic closure of the field k..x0// where
x0 WD .x1; : : : ; xn�1/. The .x0/-valuation ordx0 defined on k..x0// extends uniquely to Kn�1

and is still denoted by ordx0 . The completion of Kn�1 for the valuation ordx0 is denoted
by bKn�1. Let ˛ 2 bKn�1 such that ordx0.˛/ > 0 and f be a formal power series. Then f .x0; ˛/

is well defined in bKn�1. If f .x0; ˛/ D 0, we call ˛ a root of f .
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Rond, Effective division of algebraic power series 9

If f is an algebraic power series, P.x; T / is the minimal polynomial of f and ˛ is a root
of f , then P.x0; ˛; 0/ D 0 thus ˛ is algebraic over k.x0/.

Let f be a formal power series which is xn-regular of order d . Then, by the Weierstrass
Preparation Theorem, there exist a unit v and a Weierstrass polynomial

P D xd
n C a1.x0/xd�1

n C � � � C ad .x0/

such that f D vP . The polynomial P is called the Weierstrass polynomial of f . Let ˛ 2 Kn�1

be a root of P . Since ordx0.ai .x
0// > 0 for any i , we have ordx0.˛/ > 0. Thus f .x0; ˛/ and

v.x0; ˛/ are well defined in bKn�1 and f .x0; ˛/ D 0. On the other hand if ˛ 2 bKn�1 is a root
of f , then since ordx0.˛/ > 0 we have v.x0; ˛/ ¤ 0 in bKn�1, thus P.x0; ˛/ D 0. In particular,
˛ is a root of the polynomial P in the usual sense thus ˛ 2 Kn�1.

This proves that the roots of f are exactly the roots (in the usual sense) of P seen as
a polynomial in xn and are elements of Kn�1.

Lemma 3.10. Let ˛ 2 Kn�1 be a root of an xn-regular algebraic power series f . Then
˛ is algebraic over k.x/ and

H.˛/  H.f / and Deg.˛/  H.f /:

Moreover, if ˛1; : : : ; ˛d are distinct roots of f , then

Œk.x0; ˛1; : : : ; ˛d / W k.x0/ç  H.f /ä:

Proof. Let P.x; T / be the minimal polynomial of f . Since f .x0; ˛/ D 0, we have

P.x0; ˛; 0/ D 0:

Thus P.x0; T; 0/ is a non-zero polynomial vanishing at ˛, proving that ˛ is algebraic, and

H.˛/  degx0.P.x0; T; 0//  deg.x0;xn/.P.x0; xn; T // D H.f /

and
Deg.˛/  degT .P.x0; T; 0//  degxn

.P.x0; xn; T //  H.f /:

Moreover, P.x0; T; 0/ is a polynomial having ˛1; : : : ; ˛d as roots. Thus a splitting field of
P.x0; T; 0/ over k.x0/ contains these roots, thus

Œk.x0; ˛1; : : : ; ˛d / W k.x0/ç  degT .P.x0; T; 0//ä:

Lemma 3.11. Let ˛ be algebraic over k.x/ with ordx.˛/ > 0. Let g.x; y/ be an alge-
braic power series where y is a single variable. Then g.x; ˛/ is algebraic over k.x/ and

H.g.x; ˛//  H.g/ � .H.˛/ C Deg.˛// and Deg.g.x; ˛//  Deg.˛/ � Deg.g/:

Proof. Let P.x; y; T / 2 kŒx; y; T ç be the minimal polynomial of the algebraic power
series g and let Q.x; T / 2 kŒx; T ç be the minimal polynomial of ˛. Then

P.x; ˛; g.x; ˛// D 0

and P.x; ˛; T / ¤ 0 otherwise P.x; y; T / is divisible by Q.x; y/ which is impossible since P

is assumed to be irreducible. Thus g.x; ˛/ is algebraic over k.x; ˛/, hence over k.x/. If we
denote by R.x; T / the resultant of P.x; y; T / and Q.x; y/ seen as polynomials in y, i.e.

R.x; T / WD Resy.P.x; y; T /; Q.x; y// ¤ 0;
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10 Rond, Effective division of algebraic power series

then R.x; T / is a polynomial of kŒxçŒT ç vanishing at g.x; ˛/. Let us write

P.x; y; T / D a0.x; T / C a1.x; T /y C � � � C ah.x; T /yh with ah ¤ 0:

Moreover, since P.x; y; T / is the minimal polynomial of g (as a polynomial in T ), for all i we
have

degx.ai / C i  H.g/;

deg.ai /  H.g/ C Deg.g/ � i  H.g/ C Deg.g/;

degT .ai /  Deg.g/:

In particular, h  H.g/ and degx.ai /  H.g/ for all i . We write

Q.x; y/ D b0.x/ C b1.x/y C � � � C be.x/ye

with e D Deg.˛/ and deg.bi /  H.˛/ for all i . Since R.x; T / is homogeneous of degree h

in b0; : : : ; be and homogeneous of degree e in a0; : : : ; ah, we see that

degT .R.x; T //  e � Deg.g/ D Deg.˛/ � Deg.g/

and
H.R.x; T //  h � H.˛/ C e � H.g/:

This proves the lemma.

Corollary 3.12. Let f be an xn-regular algebraic power series and let ˛1; : : : ; ˛d be
distinct roots of f in Kn�1. Let g 2 khxi be any algebraic power series. Then

⇥
k.x0; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d // W k.x0/

⇤
 H.f /ä Deg.g/d :

Proof. By Lemmas 3.10 and 3.11 the degree of this field extension is finite. By the proof
of Lemma 3.11 we have, for any i ,

⇥
k.x0; ˛1; : : : ; ˛d ; g.x0; ˛i / W k.x0; ˛1; : : : ; ˛d /

⇤
 Deg.g/:

Thus
⇥
k.x0; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d // W k.x0; ˛1; : : : ; ˛d /

⇤
 Deg.g/d :

Hence the result follows by Lemma 3.10.

Remark 3.13. Let g.x; y/ be an algebraic power series where y D .y1; : : : ; ym/ is
a tuple of indeterminates and let a1.x/; : : : ; am.x/ be algebraic power series vanishing at 0.
If P.x; y; T / is the minimal polynomial of g, then

P.x; a.x/; g.x; a.x// D 0

but it may happen that
P.x; a.x/; T / D 0:

Hence the previous proof does not extend directly to this case. For example let

P1.x; y1/ WD y2
1 � .1 C x/;

P2.x; y2/ WD y2
2 � .1 C x/
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Rond, Effective division of algebraic power series 11

where x is a single variable and k is a field of characteristic ¤ 2 in which �7 is a square. Then
P1 and P2 have a common root in khxi, say a.x/. Let

P.x; y; T / WD .P1 C P2/T 2 C P1T C P2:

The discriminant of P is equal to

Å WD P 2
1 � 4P2.P1 C P2/

D y4
1 � 2.1 C x/y2

1 C .1 C x/2 C 4.y2
2 � .1 C x//.2.1 C x/ � y2

1 � y2
2/

D y4
1 C 2.1 C x � 2y2

2/y2
1 C 12.1 C x/y2

2 � 4y4
2 � 7.1 C x/2

and is not a square in kŒx; y1; y2ç, thus P is irreducible in kŒx; y; T ç. But Å is unit in khx; yi
since Å.0; 0; 0/ D �7, and P1 C P2 is also a unit. So Å has a root square in khx; yi since
char.k/ ¤ 2 and �7 is a square in k. Thus in this case P.x; y; T / has two distinct roots
in khx; yi. But here

P.x; a.x/; a.x/; T / D 0:

Nevertheless, we can extend Lemma 3.11 as follows:

Lemma 3.14. Let g.x; y/ be an algebraic power series where y D .y1; : : : ; ym/ is
a tuple of indeterminates and let a1.x/; : : : ; am.x/ be algebraic power series vanishing at 0.
Then

H.g.x; a.x/// 
 

mY

iD1

.H.ai / C Deg.ai //

!
� H.g/;

Deg.g.x; a.x/// 
 

mY

iD1

Deg.ai /

!
� Deg.g/:

Proof. Let us set

g0.x; y1; : : : ; ym/ WD g.x; y/;

g1.x; y2; : : : ; ym/ WD g0.x; a1.x/; y2; : : : ; ym/;

g2.x; y3; : : : ; ym/ WD g1.x; a2.x/; y3; : : : ; ym/;
:::

gm.x/ WD gm�1.x; am.x// D g.x; a.x//:

Then by Lemma 3.11, we have

Deg.gi /  Deg.ai / � Deg.gi�1/ and H.gi /  H.gi�1/.H.ai / C Deg.ai //:

This proves the lemma.

Lemma 3.15. Let f be an algebraic power series. Then �f�xn
is an algebraic power

series and
H
✓ �f�xn

◆
 4 Deg.f /2 Deg.f /C4 H.f /;

Deg
✓ �f�xn

◆
 Deg.f /:

Authenticated | guillaume.rond@univ-amu.fr author's copy
Download Date | 8/15/15 9:14 AM



12 Rond, Effective division of algebraic power series

Proof. Let P.x; T / be the minimal polynomial of f . Since P.x; f / D 0, we have�P�xn
.x; f .x// C �f�xn

.x/
�P�T .x; f .x// D 0:

Since f is separable over k.x/ (indeed khxi is the Henselization of kŒxç.x/ and the morphism
from a local ring to its Henselization is always a separable morphism – see [26, p. 180]), we
have �P�T ¤ 0. Moreover, P is the minimal polynomial of f so �P�T .x; f .x// ¤ 0. Thus �f�xn

.x/

is an algebraic power series and�f�xn
.x/ D �

�P�xn
.x; f .x//�P�T .x; f .x//

2 k.x; f /:

So we obtain
Deg

✓ �f�xn
.x/

◆
 Deg.f /

and, by Lemma 3.6 (vi),

(3.1) H
✓ �f�xn

.x/

◆
 2 Deg.f /2 max

≤
H
✓ �P�xn

.x; f .x//

◆
; H
✓�P�T .x; f .x//

◆≥
:

We have �P�T .x; f .x// D
Deg.f /�1X

iD0

ai .x/f .x/i

for some polynomials ai .x/ with deg.ai /  H.f /. Thus, by Lemma 3.6 (ii),

H
✓�P�T .x; f .x//

◆
 Deg.f / � Deg.f 0/ � � � Deg.f Deg.f /�1/

⇣
max

j
πH.f j / C H.aj /º

⌘

 Deg.f /Deg.f /..Deg.f / � 1/ Deg.f /Deg.f /�1 H.f / C H.f //

 Deg.f /2 Deg.f / H.f /

since f 0 D 1, f i 2 k.x; f / for all i and

H.ai / D deg.ai /  H.f /; H.f i /  i Deg.f /i H.f / for all i

by Lemma 3.6 (vi).
We also have �P�xn

.x; f .x// D
Deg.f /X

iD0

bi .x/f .x/i

for some polynomials bi .x/ with deg.bi /  H.f /. Thus in the same way

H
✓ �P�xn

.x; f .x//

◆
 Deg.f / � Deg.f 0/ � � � Deg.f Deg.f //

⇣
maxπH.f i / C H.f /º

⌘

 Deg.f /Deg.f /C1.Deg.f / Deg.f /Deg.f / H.f / C H.f //

 2 Deg.f /2 Deg.f /C2 H.f /:

Replacing these inequalities in inequality (3.1) we are done.
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Rond, Effective division of algebraic power series 13

Lemma 3.16. Let f .x; y/ be an algebraic power series where x D .x1; : : : ; xn/ and
y is a single variable. Let q be a positive integer. Then f .x; yq/ is an algebraic power series
with the same degree as f .x; y/ and

H.f .x; y//  H.f .x; yq//  q H.f .x; y//:

Proof. If P.x; y; T / is the minimal polynomial of f .x; y/, then P.x; yq; T / is a poly-
nomial having f .x; yq/ as a root. Thus f .x; yq/ is an algebraic power series. Since kŒx; y; T ç

is a free kŒx; yq; T ç-module with basis 1, y; : : : ; yq�1, if Q.x; y; T / is the minimal polynomial
of f .x; yq/, we can write in a unique way

Q.x; y; T / D Q0.x; yq; T / C Q1.x; yq; T /y C � � � C Qq�1.x; yq; T /yq�1

where the Qi .x; yq; T / are polynomials. Since Q.x; y; f .x; yq// D 0, we see that

Qi .x; yq; f .x; yq// D 0 for all i .

Since Q is the minimal polynomial of f .x; yq/, the polynomial Q divides all the Qi .x; yq; T /,
hence Q D Q0 and Qi D 0 for all i > 0. This shows that the minimal polynomial of f .x; yq/

has coefficients in kŒx; yqç.
Now if Q.x; yq; T / is the minimal polynomial of f .x; yq/, then Q.x; y; f .x; y// D 0.

This proves that P.x; y; T / is the minimal polynomial of f .x; y/ if and only if P.x; yq; T / is
the minimal polynomial of f .x; yq/. Since

degT .P.x; y; T // D degT .P.x; yq; T //;

we see that f .x; y/ and f .x; yq/ have the same degree. Moreover,

deg.x;y/.P.x; y; T //  deg.x;y/.P.x; yq; T //  q � deg.x;y/.P.x; y; T //:

This shows the inequalities concerning the heights.

Lemma 3.17. Let f .x; y/ be an algebraic power series where y is a single variable and
let q be a positive integer. Let us write q D rpe where p D char.k/, e 2 N and gcd.r; p/ D 1

(we set e D 0 when char.k/ D 0 and by convention q D r). Let us write

f .x; y/ D f0.x; yq/ C f1.x; yq/y C � � � C fq�1.x; yq/yq�1:

Then the power series fi .x; yq/ are algebraic and for any 0  i  q � 1 we have

H.fi .x; yq// 
´

q2p
e.eC1/

2 4q Deg.f /2q Deg.f /C5q
�
H.f / C q.q�1/

2

�
if e > 0;

q Deg.f /q.q H.f / C q � 1/ if e D 0;

Deg.fi .x; yq//  Deg.f /r :

Proof. We need to consider several cases.

Case (1). First we assume that e D 0 i.e. gcd.q; p/ D 1. By taking a finite extension
of k we may assume that k contains a primitive q-th root of unity. Let ⇠ be such a primitive
root of unity. Then

f .x; ⇠ly/ D
q�1X

kD0

fk.x; yq/⇠lkyk for all k; l:
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14 Rond, Effective division of algebraic power series

Thus we have
Åf D V.⇠/F

where Åf is the vector with entries f .x; ⇠ly/, 1  l  q, F is the vector with entries f0.x; yq/,
yf1.x; yq/; : : : ; yq�1fq�1.x; yq/ and V.⇠/ is the Vandermonde matrix

2

66666664

1 ⇠ ⇠2 � � � ⇠q�1

1 ⇠2 ⇠4 � � � ⇠2.q�1/

1 ⇠3 ⇠6 � � � ⇠3.q�1/

:::
:::

::: : : : � � �
1 ⇠q ⇠2q � � � ⇠.q�1/q

3

77777775

:

Thus
F D V.⇠/�1 Åf :

Since the entries of V.⇠/�1 are in k and H.f .x; ⇠ly// D H.f .x; y//, by Lemma 3.6 (ii) and (i)
we have

H.F /  q Deg.f /q H.f / and Deg.F /  Deg.f /q:

Thus by Lemma 3.6 (iv),

H.fi .x; yq//  q Deg.f /q H.f / C Deg.f /q.q � 1/ D Deg.f /q.q H.f / C q � 1/

and
Deg.fi .x; yq//  Deg.f /q for all i:

Case (2). If q D p > 0, then we have�f�y D f1 C 2f2y C � � � C .p � 1/fp�1yp�2;

:::�p�1f�yp�1
D .p � 1/äfp�1:

Thus we have
Åf D M Åf

where Åf is the vector of entries �kf�yk , 0  k  p � 1, Åf is the vector with entries fl.x; yp/,
0  l  p�1, and M is a upper triangular matrix with entries in kŒyç and whose determinant is
in k. We can check that the .p�1/⇥.p�1/ minors of M are polynomials of degree  p.p�1/

2 .
Thus the height of the coefficients of M �1 is less than p.p�1/

2 . Since

Åf D M �1Åf;

by Lemma 3.6 (ii) we obtain

H.fk.x; yp//  p Deg.f /

p�1Y

j D1

Deg
✓�j f�yj

◆✓
max

0ip�1

≤
H
✓�if�yi

◆≥
C p.p � 1/

2

◆
:
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Rond, Effective division of algebraic power series 15

Thus by Lemma 3.15 we have

H.fk.x; yp//  p Deg.f /p

✓
max

0ip�1

≤
H
✓�if�yi

◆≥
C p.p � 1/

2

◆
:

By applying Lemma 3.15 p � 1 times we obtain

H
✓�p�1f�yp�1

◆
 4p�1 Deg.f /.2 Deg.f /C4/.p�1/ H.f /:

Thus we have

H.fk.x; yp//  p4p�1 Deg.f /2.p�1/ Deg.f /C5p�4

✓
H.f / C p.p � 1/

2

◆
:

Moreover, still by Lemma 3.15 we have

Deg.fk.x; yp//  Deg.f / for all k:

Case (3). If q D rpe where gcd.r; p/ D 1 and e > 0, we write

f D Åf0.x; yp/ C Åf1.x; yp/y C � � � C Åfp�1.x; yp/yp�1;

Åfi .x; yp/ D Åfi;0.x; yp2

/ C Åfi;1.x; yp2

/yp C � � � C Åfi;p�1.x; yp2

/yp.p�1/;

Åfi;j .x; yp2

/ D Åfi;j;0.x; yp3

/ C Åfi;j;1.x; yp3

/yp2 C � � � C Åfi;j;p�1.x; yp3

/yp2.p�1/;
:::

Åfi1;:::;ie�1.x; ype�1

/ D Åfi1;:::;ie�1;0.x; ype

/ C � � � C Åfi1;:::;ie�1;p�1.x; ype

/ype�1.p�1/;

Åfi1;:::;ie .x; ype

/ D Åfi1;:::;ie;0.x; yq/ C � � � C Åfi1;:::;ie;r�1.x; yq/ype.r�1/:

Then by (2) we obtain, for k  e,

Deg. Åfi1;:::;ik
.x; yp//  Deg. Åfi1;:::;ik�1

.x; y//

and

H. Åfi1;:::;ik
.x; yp//  p4p�1 Deg. Åfi1;:::;ik�1

.x; y//2.p�1/ Deg. Åfi1;:::;ik�1
.x;y//C5p�4

⇥
✓

H. Åfi1;:::;ik�1
.x; y// C p.p � 1/

2

◆
:

Thus by Lemma 3.16 we have

1

pk�1
H. Åfi1;:::;ik

.x; ypk

//

 p4p�1 Deg. Åfi1;:::;ik�1
.x; ypk�1

//2.p�1/ Deg. Åfi1;:::;ik�1
.x;ypk�1

//C5p�4

⇥
✓

H. Åfi1;:::;ik�1
.x; ypk�1

// C p.p � 1/

2

◆
:

By (1) we obtain

Deg. Åfi1;:::;ieC1
.x; yr//  Deg. Åfi1;:::;ie .x; y//r ;

H. Åfi1;:::;ieC1
.x; yr//  Deg. Åfi1;:::;ie .x; y//r.r H. Åfi1;:::;ie .x; y// C r � 1/
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16 Rond, Effective division of algebraic power series

and, by Lemma 3.16,

1

pe
H. Åfi1;:::;ieC1

.x; yq//  Deg. Åfi1;:::;ie .x; ype

//r.r H. Åfi1;:::;ie .x; ype

// C r � 1/:

Since the power series fi .x; yq/ of the statement of the lemma are expressed by the power
series

Åfi1;:::;ieC1
.x; yq/;

by induction and Lemma 3.16 we deduce

Deg.fi .x; yq//  Deg.f /r

and

H.fi .x; yq//  p
e.eC1/

2 q4pe�1 Deg.f /rC2.p�1/e Deg.f /C.5p�4/e

✓
r H.f /C.eC1/

r.r�1/

2

◆

 q2p
e.eC1/

2 4q Deg.f /2q Deg.f /C5q

✓
H.f / C q.q � 1/

2

◆
:

4. Effective Weierstrass Division Theorem

In this section we prove an effective Weierstrass Division Theorem for algebraic power
series. The proof (thus the complexity) is more complicated in the positive characteristic case
since the Weierstrass polynomial associated to the divisor f may have irreducible factors that
are not separable. The proof we give here is essentially the same as the one given in [20].

Lemma 4.1 (Weierstrass Preparation Theorem). Let k be any field, and let f be an
algebraic power series which is xn-regular of order d . Then there exist a unit u 2 khxi and
a Weierstrass polynomial P 2 khx0iŒxnç such that

f D u � P

and
Deg.P /  H.f /ä; H.P /  2d H.f /dC1:

Proof. The existence of u and P comes from the Weierstrass Preparation Theorem for
formal power series.

Let ˛1; : : : ; ˛d 2 Kn�1 be the roots of P.xn/ counted with multiplicities. Then we have
P D Qd

iD1.xn�˛i /. By Remark 3.9 the roots of P.xn/ are the roots of f thus, by Lemma 3.10,
P is an algebraic power series. Hence u is also an algebraic power series.

By Lemma 3.6 (iii)
H.xn � ˛i /  H.˛i / C Deg.˛i /

and
Deg.xn � ˛i / D Deg.˛i /  H.f /

for all i by Lemma 3.10. Thus, by Lemma 3.6 (vi),

H.P /  d � Deg.˛1/ � � � Deg.˛d / � max
i

πH.˛i / C Deg.˛i /º

 d H.f /d .H.f / C H.f //:

Authenticated | guillaume.rond@univ-amu.fr author's copy
Download Date | 8/15/15 9:14 AM



Rond, Effective division of algebraic power series 17

Moreover, P 2 k.x; ˛1; : : : ; ˛d /. But

Œk.x; ˛1; : : : ; ˛d / W k.x/ç  H.f /ä

by Lemma 3.10 hence
Deg.P /  H.f /ä:

Lemma 4.2. Let f be an algebraic power series which is xn-regular of order d and let
us assume that f has d distinct roots in Kn�1. Let g be any algebraic power series. Then there
exist unique algebraic power series q and r such that r 2 khx0iŒxnç is of degree < d in xn and

g D f q C r:

Moreover, if r D r0 C r1xn C � � � C rd�1xd�1
n , we have

H.ri /  4d.H.f /ä/dC1 H.f /2 Deg.g/ max
≤

d ä
d.d � 1/

2
H.f /

d.d�1/
2 .H.f /ä/d äC2; H.g/

≥

 4 H.f /H.f /O.d/

Deg.g/.H.g/ C 1/ for all i;

where O.d/ denotes a function of d bounded by a linear function in d ,

H.r/  d
�
H.f /ä Deg.g/d

�d⇣max
i

πH.ri /º C d � 1
⌘

and
Deg.ri /; Deg.r/  H.f /ä Deg.g/d for all i:

Proof. The Weierstrass Division Theorem for algebraic power series is well known (see
[20]), the only improvement is the inequalities on the heights and degrees. The Weierstrass
Division Theorem for formal power series gives the existence and unicity of q and r . Thus we
have to show that q and r are algebraic and to prove the bounds on the heights and degrees. Let
˛1; : : : ; ˛d 2 Kn�1 be the roots of f . Then we have

g.x0; ˛i / D r.x0; ˛i / for all i:

By writing r D r0 C r1xn C � � � C rd�1xd�1
n with rj 2 kJx0K for all j , we obtain

V.˛/er Deg.˛/

where V.˛/ is the d ⇥ d Vandermonde matrix of the ˛i :
2

666664

1 ˛1 ˛2
1 � � � ˛d�1

1

1 ˛2 ˛2
2 � � � ˛d�1

2
:::

:::
:::

:::
:::

1 ˛d ˛2
d

� � � ˛d�1
d

3

777775
;

er is the d ⇥ 1 column vector with entries rk , andeg.˛/ is the d ⇥ 1 column vector with entries
g.x0; j̨ /. Since the ˛i are distinct, it follows that V.˛/ is invertible and we obtain

(4.1) er D V.˛/�1eg.˛/:
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18 Rond, Effective division of algebraic power series

By Lemmas 3.10 and 3.11 we see the g.x0; j̨ / are algebraic. Then equality (4.1) shows that
the ri and r are algebraic power series, thus q is also an algebraic power series. Again by
Lemmas 3.10 and 3.11 we have, for all i ,

H.g.x0; ˛i //  2 H.g/ � H.f /; Deg.g.x0; ˛i //  H.f / � Deg.g/:

The determinant of V.˛/ is the sum of d ä elements of the form

˛0
�.0/˛

1
�.1/˛

2
�.2/ � � � ˛d�1

�.d�1/

where � is a permutation of π0; : : : ; d �1º. Each of these elements belongs to k.x0; ˛1; : : : ; ˛d /

so their degree is bounded H.f /ä by Lemma 3.10. Again by Lemma 3.10, H.˛i /  H.f / and
Deg.˛i /  H.f / for any i , thus by Lemma 3.6 (vi) we see that for any permutation � we have

H.˛0
�.0/˛

1
�.1/˛

2
�.2/ � � � ˛d�1

�.d�1//  d.d � 1/

2
H.f /

d.d�1/
2 C1:

Thus by Lemma 3.6 (ii) we have

H.det.V .˛///  d ä
d.d � 1/

2
H.f /

d.d�1/
2 C1.H.f /ä/d ä:

The entries of V.˛/�1 are .d � 1/ ⇥ .d � 1/ minors of V.˛i / divided by det.V .˛//.
Exactly as above the height of such an .d � 1/ ⇥ .d � 1/ minor is bounded by

.d � 1/ä
.d � 1/.d � 2/

2
H.f /

.d�1/.d�2/
2 C1.H.f /ä/.d�1/ä

and its degree is bounded by H.f /ä since it is an element of k.x0; ˛1; : : : ; ˛d / (see Lem-
ma 3.10). Hence by Lemma 3.6 (vi) the height of the entries of V.˛/�1 is bounded by

HV WD 2d ä.H.f /ä/2.H.f /ä/d ä d.d � 1/

2
H.f /

d.d�1/
2 C1

D 2d ä
d.d � 1/

2
H.f /

d.d�1/
2 C1.H.f /ä/d äC2:

Moreover, their degree is bounded by H.f /ä since they belong to k.x; ˛1; : : : ; ˛d /.
If v is an entry of V.˛/�1, Lemma 3.6 (vi) shows

H.vg.x0; ˛i //  2 H.f /ä Deg.g.x0; ˛i // maxπHV ; H.g.x0; ˛i //º for all i:

Since rj is of the form v1g.x0; ˛1/C � � �Cvd g.x0; ˛d / where v1; : : : ; vd are entries of V.˛/�1

(by equation (4.1)), we obtain from Lemma 3.6 (ii) that

H.rj /  d.H.f /ä/d max
i

®
2 H.f /ä Deg.g.x0; ˛i // maxπHV ; H.g.x0; ˛i //º

¯
:

Hence Lemmas 3.10 and 3.11 show

H.rj /  4d.H.f /ä/dC1 H.f / Deg.g/

⇥ max
≤

d ä
d.d � 1/

2
H.f /

d.d�1/
2 C1.H.f /ä/d äC2; H.f / H.g/

≥

D 4d.H.f /ä/dC1 H.f /2 Deg.g/ max
≤

d ä
d.d � 1/

2
H.f /

d.d�1/
2 .H.f /ä/d äC2; H.g/

≥
:
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Rond, Effective division of algebraic power series 19

Moreover, rj and r belong to k.x0; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d //, hence we have (by
Corollary 3.12):

Deg.rj /  H.f /ä Deg.g/d ; Deg.r/  H.f /ä Deg.g/d :

Since
r D r0 C xnrn C � � � C xd�1

n rd�1;

we have
H.r/  d

�
H.f /ä Deg.g/d

�d⇣max
i

πH.ri /º C d � 1
⌘

by Lemma 3.6 (ii).

Lemma 4.3. Let assume that k is a field of characteristic p > 0. Let f be an irreducible
algebraic power series which is xn-regular of order d and let us assume that its Weierstrass
polynomial is not separable. Let g be any algebraic power series. Then there exist unique
algebraic power series q and r such that r 2 khx0iŒxnç is of degree < d in xn and

g D f q C r:

Moreover, if r D r0 C r1xn C � � � C rd�1xd�1
n , we have

H.ri /  .2 H.f //.2 H.f //O.d/

Deg.g/2d.Deg.g/C2/.H.g/ C 1/ for all i;

H.r/  .2 H.f //.2 H.f //O.d/

Deg.g/O.d Deg.g//.H.g/ C 1/

and
Deg.ri /; Deg.r/  H.f /ä Deg.g/d for all i:

Proof. Let P denote the Weierstrass polynomial of f . Since f is an irreducible power
series, it follows that P is an irreducible monic polynomial of kJx0KŒxnç hence P is an irre-
ducible polynomial of k..x0//Œxnç. Then we can write

P D
DY

kD1

.xn � ˛i /
pe

where ˛1; : : : ; ˛D are the distinct roots of P.xn/ in Kn�1 and e is a positive integer. Thus
P 2 khx0iŒxpe

n ç by Lemma 4.1 and d D Dpe. By the Weierstrass Division Theorem for formal
power series we have

g D P q C r

where
r D r0 C r1xn C � � � C rd�1xd�1

n

and ri 2 kJx0K. Let us write

g D g0.x0; xpe

n / C g1.x0; xpe

n /xn C � � � C gpe�1.x0; xpe

n /xpe�1
n

where gi WD gi .x
0; x

pe

n / 2 khx0; x
pe

n i for all i by Lemma 3.17 .
We define eP by

eP .x0; xpe

n / D P.x0; xn/:
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20 Rond, Effective division of algebraic power series

Then eP .x0; xn/ is a Weierstrass polynomial in xn of degree D with algebraic power series
coefficients and H.eP .x0; xn//  H.P.x0; xn// by Lemma 3.16. Let us perform the Weierstrass
division of gi .x

0; xn/ by eP :

gi .x
0; xn/ D eP qi C

D�1X

j D0

ri;j .x0/xj
n :

By Lemma 4.2 the ri;j .x0/ are algebraic power series and

H.ri;j /  4D.H.P /ä/DC1 H.P /2 Deg.gi .x
0; xn//(4.2)

⇥ max
≤

Dä
D.D � 1/

2
H.P /

D.D�1/
2 .H.P /ä/DäC2; H.gi .x

0; xn//

≥
:

By Lemma 3.16 we have

Deg.gi .x
0; xn//  Deg.g.x0; xpe

n // for every i

thus, by Lemma 3.17, we have

Deg.gi .x
0; xn//  Deg.g/:

Again by Lemma 3.16 we have

H.gi .x
0; xn//  H.g.x0; xpe

n //:

Moreover, by Lemma 4.1, H.P /  2d H.f /dC1. Thus we obtain (by using Lemma 3.17 and
since D  d , pe  d and d  H.f / by Lemma 3.7)

H.ri;j /  4d..2d H.f /dC1/ä/dC1.2d H.f /dC1/2 Deg.g/(4.3)

⇥ max
≤

d ä
d.d � 1/

2
.2d H.f /dC1//

d.d�1/
2 ..2d H.f /dC1/ä/d äC2;

p2epe.eC1/=24pe

Deg.g/2pe Deg.g/C5pe

✓
H.g/ C pe.pe � 1/

2

◆≥

 .2 H.f //.2 H.f //O.d/

Deg.g/2d.Deg.g/C2/.H.g/ C 1/:

Finally, since

gi .x
0; xpe

n / D P qi .x
0; xpe

n / C
D�1X

j D0

ri;j .x0/xjpe

n ;

we have

r D
pe�1X

iD0

D�1X

j D0

ri;j .x0/xjpeCi
n

by unicity of the remainder in the Weierstrass division. Thus Lemma 3.6 (ii) shows

H.r/  peD � Deg.ri;j .x0//peD max
i;j

®
H.ri;j .x0// C jpe

¯
:

Moreover,
Deg.ri;j /; Deg.r/  H.f /ä Deg.gi /

D for all i; j

since ri;j and r belong to k.x0; ˛1; : : : ; ˛D; gi .x
0; ˛1/; : : : ; gi .x

0; ˛D// (as shown in the proof
of Lemma 4.2). Hence

H.r/  .2 H.f //.2 H.f //O.d/

Deg.g/O.d Deg.g//.H.g/ C 1/:
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Rond, Effective division of algebraic power series 21

We will use at several places the following basic lemma:

Lemma 4.4. For any " > 0, a > 0 and d 2 N we have

.2d/.2d/ad  22O.d1C"/

:

Proof. Let a > 0 and " > 0. There exists a constant C > 0 such that for any d large
enough we have

ad ln.2d/ C ln.ln.2d//  C ln.2/d1C" C ln.ln.2//:

Thus
.2d/ad ln.2d/  ln.2/2Cd1C"

and
.2d/.2d/ad  22Cd1C"

:

Theorem 4.5 (Weierstrass Division Theorem). Let k be a field. Let f be an algebraic
power series which is xn-regular of order d . Let g be an algebraic power series. Then there
exist unique algebraic power series q and r such that r 2 khx0iŒxnç is of degree < d in xn:

r D r0 C r1xn C � � � rd�1xd�1
n ; ri 2 khx0i for all i

and
g D f q C r:

Moreover, we have the following bounds (for any " > 0):

(i) if char.k/ D 0,

H.r/  22O.H.f /1C"/

Deg.g/d4Cd3C6d2�5dC3.H.g/ C 1/;

H.ri /  22O.H.f /1C"/

Deg.g/O.d4/.H.g/ C 1/ for all i;

H.q/  22O.H.f /1C"/

Deg.g/d4Cd3C6d2�3dC5 Deg.f /.H.g/ C 1/:

(ii) if char.k/ > 0,

H.r/  22O.H.f /1C"/

Deg.g/O.d4 Deg.g/4/.H.g/ C 1/;

H.ri /  22O.H.f /1C"/

Deg.g/O.d4 Deg.g/4/.H.g/ C 1/ for all i;

H.q/  22O.H.f /1C"/

Deg.g/O.d4 Deg.g/4/ Deg.f /.H.g/ C 1/:

In both cases we have
Deg.r/  H.f /ä Deg.g/d ;

Deg.ri /  H.f /ä Deg.g/d for all i;

Deg.q/  H.f /ä Deg.g/dC1 Deg.f /:

Proof. Let us write f D u:P where u is a unit and P a Weierstrass polynomial in xn.
Let us decompose P into the product of irreducible Weierstrass polynomials

P D P1 � � � Ps:
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22 Rond, Effective division of algebraic power series

Let us consider the following Weierstrass divisions:

g D P1Q1 C R1;

Q1 D P2Q2 C R2;
:::

Qs�1 D PsQs C Rs:

Then
g D P1 � � � PsQs C R1 C P1R2 C P1P2R3 C � � � C P1 � � � Ps�1Rs:

Thus, by unicity of the Weierstrass division, we have

u � q D Qs

and
r WD R1 C P1R2 C P1P2R3 C � � � C P1 � � � Ps�1Rs

are the quotient and the remainder of the division of g by P . Here s  d since P is monic of
degree d in xn. Let di be the degree in xn of the polynomial Pi for 1  i  s. Let us choose
1  i  s and let us denote by ˛1; : : : ; ˛di

2 Kn�1 the roots of Pi .
First let us prove the lemma when char.k/ D 0. In this case these roots are distinct. Then

Pi D
diY

iD1

.xn � ˛i /:

We have
H.xn � ˛i /  H.˛i / C Deg.˛i /  2 H.f /

(by Lemma 3.6 (iii)) and

Deg.xn � ˛i / D Deg.˛i /  H.f /:

Then, by Lemma 3.6 (vi) and since di  d  H.f / (by Lemma 3.7), we have

H.Pi /  di H.f /di � 2 H.f /  2 H.f /H.f /C2:

Moreover,
Deg.Pi /  H.f /ä

since Pi is in the extension of k.x/ generated by the roots of f .
Exactly as in the proof of Lemma 4.2 we have

Ri 2 k.x; ˛1; : : : ; ˛d ; Qi�1.x0; ˛1/; : : : ; Qi�1.x0; ˛d //:

Since Qi�1 D Qi�2�Ri�1

Pi�1
, we obtain, by induction,

Qi�1.x0; ˛k/ 2 k.x0; ˛1; : : : ; ˛d ; Qi�2.x0; ˛1/; : : : ; Qi�2.x0; ˛d //

thus

(4.4) Ri ; Qi ; Pi 2 k.x; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d // for all i

and
Deg.Ri /; Deg.Qi /; Deg.r/;  H.f /ä Deg.g/d for all i

by Corollary 3.12. Since q D g�r
f

, we have

q 2 k.x; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d /; g; f /
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and
deg.q/  H.f /ä Deg.g/dC1 Deg.f /:

Thus the inequalities on the degrees are proven.
Let " be a positive real number. By Lemma 4.2 the height of R1 is bounded by

d1.H.P1/ä Deg.g/d1/d1.4 H.P1/H.P1/O.d1/

Deg.g/.H.g/ C 1/ C d1 � 1/

and so we obtain

(4.5) H.R1/  22O.H.f /1C"/ � Deg.g/d2C1.H.g/ C 1/

by Lemma 4.4 since H.P1/  2 H.f /H.f /C2 and d1  d  H.f /.
By Lemma 3.6 (ii) and (vi) we have

H.Q1/ D H
✓

g � R1

P1

◆

 2 Deg.P1/ Deg.g � R1/ max
®
H.P1/; 2 Deg.g/ Deg.R1/ maxπH.g/; H.R1/º

¯

 4 H.f /ä Deg.g/2 Deg.R1/2 max
®
H.P1/; H.g/; H.R1/

¯

since Deg.P1/  H.f /ä and d  H.f /. Hence by Lemma 4.4 and the bound (4.5) on H.R1/

we obtain

(4.6) H.Q1/  22O.H.f /1C"/

Deg.g/d2C2dC3.H.g/ C 1/:

Still by Lemma 4.2, and as we have shown for H.R1/, we have

(4.7) H.Ri /  22O.H.f /1C"/

Deg.Qi�1/d2C1.H.Qi�1/ C 1/;

and by Lemma 3.6 (ii) and (vi), and as we have done for H.Q1/, we have

H.Qi /  2 Deg.Pi / Deg.Qi�1 � Ri /

⇥ max
®
H.Pi /; 2 Deg.Ri / Deg.Qi�1/ maxπH.Ri /; H.Qi�1/º

¯

 4 H.f /ä Deg.Qi�1/2 Deg.Ri /
2 max

®
H.Pi /; H.Qi�1/; H.Ri /

¯

 4.H.f /ä/5 Deg.g/4d max
®
H.Pi /; H.Qi�1/; H.Ri /

¯
:

The previous bound (4.7) on H.Ri / gives

H.Qi /  22O.H.f /1C"/

Deg.g/4d Deg.Qi�1/d2C1.H.Qi�1/ C 1/:

Since d  H.f /, Deg.Qi /  H.f /ä Deg.g/d for i , and by using the bound (4.6) on H.Q1/,
we obtain by induction on i ,

H.Qi /  22O.H.f /1C"/

Deg.g/.d3Cd2C4d/.i�1/Cd2C2dC3.H.g/ C 1/ for all i � 1:

Thus the bound (4.7) gives

(4.8) H.Ri /  22O.H.f /1C"/

Deg.g/.d3Cd2C4d/iCd2�6dC3.H.g/ C 1/ for all i � 2:
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24 Rond, Effective division of algebraic power series

By Lemma 3.6 (vi), for all i � 2,

H.P1 � � � Pi�1Ri /  i Deg.P1/ � � � Deg.Pi�1/ Deg.Ri / max
®
H.P1/; : : : ; H.Pi�1/; H.Ri /

¯

 i.H.f /ä/i Deg.g/d max
®
H.P1/; : : : ; H.Pi�1/; H.Ri /

¯

 22O.H.f /1C"/

Deg.g/.d3Cd2C4d/iCd2�5dC3.H.g/ C 1/

by (4.8). We have Pi ; Ri 2 k.x; ˛1; : : : ; ˛d ; g.x.; ˛1/; : : : ; g.x0; ˛d // for all i , then

Deg.P1 � � � Pi�1Ri /  H.f /ä Deg.g/d for all i:

Thus by Lemma 3.6 (ii) we obtain

H.r/  s.H.f /ä Deg.g/d /s � 22O.H.f /1C"/

Deg.g/.d3Cd2C4d/sCd2�5dC3.H.g/ C 1/

 22O.H.f /1C"/

Deg.g/d4Cd3C6d2�5dC3.H.g/ C 1/

since s  d and d  H.f /. Thus by Lemma 3.6 (ii) and (vi),

H.q/ D H
✓

g � r

f

◆

 2 Deg.g � r/ Deg.f / max
®
H.f /; 2 Deg.g/ Deg.r/ maxπH.g/; H.r/º

¯

 4 Deg.g/2 Deg.r/2 Deg.f / � 22O.H.f /1C"/

Deg.g/d4Cd3C6d2�5dC3.H.g/ C 1/

 22O.H.f /1C"/

Deg.g/d4Cd3C6d2�3dC5 Deg.f /.H.g/ C 1/:

If we write r.x/ D r0.x0/ C r1.x0/xn C � � � C rd�1.x0/xd�1
n , we have

r0.x0/ D r.x0; 0/

and

(4.9) riC1.x0/ D
✓

r � .r0 C r1xn C � � � C rix
i
n/

xi
n

◆
.x0; 0/ for all i � 0:

In particular, from (4.4), we have

ri 2 k.x0; ˛1; : : : ; ˛d ; g.x0; ˛1/; : : : ; g.x0; ˛d // for all i

hence Deg.ri /  H.f /ä Deg.g/d for all i by Corollary 3.12.
From (4.9), Lemma 3.7 and Lemma 3.6 (ii) we obtain

H.riC1/  H
✓

r � .r0 C r1xn C � � � C rix
i
n/

xi
n

◆

D H
✓

r

xi
n

� r0

xi
n

� � � � � ri�1

xn
� ri

◆

 .i C 2/ Deg.r/ Deg.r0/ � � � Deg.ri /

⇥ max
®
H.r/ C i; H.r0/ C i; : : : ; H.ri�1/ C 1; H.ri /

¯

 .d C 1/.H.f /ä Deg.g/d /dC1
�
max

®
H.r/; H.r0/; : : : ; H.ri�1/; H.ri /

¯
C d

�
:

Thus, by induction on i and using the bound on H.r/ proven above, we see that

H.ri /  22O.H.f /1C"/

Deg.g/O.d4/.H.g/ C 1/ for all i:
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In the case char.k/ D p > 0 the proof is completely similar using Lemma 4.3 instead of
Lemma 4.2 so we skip the details.

Remark 4.6. We could prove directly the Weierstrass Division Theorem from the
Weierstrass Preparation Theorem as done in [7]. But this would give a bound on the height
of the remainder which is not linear in H.g/. This linear bound in H.g/ is exactly what we
need to prove Theorem 1.1.

5. Ideal membership problem in localizations of polynomial rings

Before bounding the complexity of the Ideal Membership Problem in the ring of alge-
braic power series we review this problem in the ring of polynomials and give extensions to
localizations of the ring of polynomials that may be of independent interest.

Let k be a field and x WD .x1; : : : ; xn/. The following theorem is well known (such
a result has first been proven by G. Hermann [11] but a modern and correct proof is given
in the appendix of [22]):

Theorem 5.1 ([11,22]). Let k be a infinite field and M a submodule of kŒxçq generated
by vectors f1; : : : ; fp whose components are polynomials of degrees less than d . Let f 2 kŒxçq .
Then f 2 M if and only if there exist a1; : : : ; ap 2 kŒxç of degrees  deg.f / C .pd/2n

such
that

f D a1f1 C � � � C apfp:

If we work over the local ring kŒxç.x/, the situation is a bit different. Saying that f 2 kŒxçq

is in kŒxç.x/M is equivalent to saying that there exist polynomials a1; : : : ; ap and u, u … .x/,
such that

(5.1) uf D a1f1 C � � � C apfp:

There exists an analogue of Buchberger algorithm to compute Gröbner basis in local rings
introduced by T. Mora [25] but it does not give effective bounds on the degrees of the ai . We
can also do the following: Saying that (5.1) is satisfied is equivalent to saying that there exist
polynomials a1; : : : ; ap, b1; : : : ; bn such that

f D a1f1 C � � � C apfp C b1x1f C � � � C bnxnf:

In this case u D 1 �P
i xibi .

Thus by applying Theorem 5.1, we see that f 2 kŒxç.x/M if and only if (5.1) is satisfied
for polynomials u, a1; : : : ; ap of degrees  deg.f / C ..p C n/ maxπd; deg.f / C 1º/2n . But
this bound is not linear in deg.f / any more, which may be interesting if f1; : : : ; fp are fixed
and f varies.

Nevertheless, we can prove the following result:

Theorem 5.2. For any n, q and d 2 N there exists an integer �.n; q; d/ such that

�.n; q; d/ D .2d/2O.nCq/

and satisfying the following: Let k be an infinite field, let M be a submodule of kŒx1; : : : ; xnçq
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26 Rond, Effective division of algebraic power series

generated by vectors f1; : : : ; fp of degree  d and let f 2 kŒxçq . Let P be a prime ideal
of kŒxç. Then f 2 kŒxçP M if and only if there exist polynomials a1; : : : ; ap of degrees at most
deg.f / C �.n; q; d/ and u, u … P , of degree at most �.n; q; d/ such that

uf D a1f1 C � � � C apfp:

Proof. Let R be the ring defined as follows (this is the idealization of M – see [26]):
the set R is equal to kŒxç ⇥ kŒxçq and we define the sum and the product as follows:

.p; f / C .p0; f 0/ WD .p C p0; f C f 0/

and
.p; f /:.p0; f 0/ WD .pp0; pf 0 C p0f /

for all .p; f /; .p0; f 0/ 2 kŒxç ⇥ kŒxçq . Let I WD π0º ⇥ M ⇢ R. Then I is an ideal of R and it
is generated by .0; f1/; : : : ; .0; fq/. Moreover, R is isomorphic to the ring

R0 WD kŒx1; : : : ; xn; y1; : : : ; yqç=.y1; : : : ; yq/2

and the isomorphism � W R ! R0 is defined as follows: If .p; f / 2 R, f WD .f .1/; : : : ; f .q//,
then �.p; f / is the image of p C f .1/y1 C � � � C f .q/yq in R0.

The image I by � is an ideal of R0 and we denote by I 0 an ideal of kŒx; yç whose image
in R0 is equal to �.I /. Thus, by identifying R and R0, we have the following equivalences:

f 2 M ” .0; f / 2 I ” f .1/.x/y1 C � � � C f .q/.x/yq 2 I 0 C .y/2:

Let us assume that the theorem is proven when q D 1. We will apply it when

M D I 0 C .y/2

is an ideal of kŒx; yç. If we write fi D .fi;1; : : : ; fi;q/ for 1  i  p, then I 0 C .y/2 is gener-
ated by

Åf1.x; y/ WD
qX

j D1

f1;j yj ; : : : ; Åfp.x; y/ WD
qX

j D1

fp;j yj

and the yiyj for 1  i  j  q, whose degrees are less than d C 2. Thus, by assumption,
there exist u.x; y/, a1.x; y/; : : : ; ap.x; y/, ai;j .x; y/ for 1  i  j  with u.0; 0/ ¤ 0 and
such that

(5.2) u
�
f .1/.x/y1 C � � � C f .q/.x/yq

�
D

pX

iD1

ai
Åfi C

X

1ij q

ai;j yiyj

and
deg.ak/; deg.ai;j /  deg.f / C �.n C q; 1; d C 2/

where �.n C q; 1; d C 2/  .2d/2O.nCq/ . By identifying the coefficients of y1; : : : ; yq of both
sides of equality (5.2), we obtain

u.x; 0/f .x/ D
pX

iD1

ai .x; 0/fi .x/

and this proves the theorem. Thus we only need to prove the theorem when M D I is an ideal
of kŒxç (i.e. for q D 1).
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Let I D Q1 \ � � � \ Qs be an irredundant primary decomposition of I in kŒxç. Let us
assume that Q1; : : : ; Qr ⇢ P and Qi 6⇢ P for i > r . Then

IkŒxçP D Q1kŒxçP \ � � � \ QrkŒxçP

is an irredundant primary decomposition of IkŒxçP in kŒxçP (see [33, Chapter 4, Theorem 17]).
Let J be the ideal of kŒxç defined by J D Q1 \ � � � \ Qr . Obviously, IkŒxçP D J kŒxçP and
moreover for any f 2 kŒxç, f 2 J kŒxçP if and only if f 2 J .

If r D s, then I D J and for every f 2 kŒxç, f 2 IkŒxçP if and only if f 2 I . So this
case is exactly Theorem 5.1.

In the general case r < s the problem can also be reduced to Theorem 5.1 as follows.
Each ideal Qi may be generated by polynomials of degree  .2d/2O.n/ and this bound depends
only on n and d (see [30, Statements 63, 64 and 65]). By [30, Statement 56], the ideal J is
generated by polynomials of degrees  .2d/2O.n/ and once more this bound depends only on n

and d . Let g1; : : : ; gt be such generators of J . Since deg.gi /  .2d/2O.n/ for any i , it follows
that t will be bounded by the number of monomials in x1; : : : ; xn of degree  .2d/2O.n/ , thus

t 
 

.2d/2O.n/ C n

n

!
 .2d/2O.n/

also.
If f 2 IkŒxçP , then f 2 J and by Theorem 5.1, there exist polynomials c1; : : : ; ct such

that
f D c1g1 C � � � C ctgt

where
deg.ci /  deg.f / C .td/2n  deg.f / C .2d/2O.n/

for every i .

Let J 0 be the ideal of kŒxç equal to QrC1 \ � � � \ Qs . Then as for J , J 0 is generated
by polynomials of degrees  .2d/2O.n/ . Since J 0 6⇢ P , one of these generators is not in P .
Let u be such a polynomial. Then we have ugi 2 J \ J 0 D I for every i . Thus there exist
polynomials bi;j , for 1  i  t and 1  j  p, such that

ugi D
X

j

bi;j fj :

Still by Theorem 5.1, we may choose the bi;j such that deg.bi;j /  .2d/2O.n/ . Hence

uf D
X

j

✓X

i

cibi;j

◆
fj :

Then the result follows since deg.u/  .2d/2O.n/ and

deg
✓X

i

cibi;j

◆
 deg.f / C .2d/2O.n/

:

Let S be a multiplicative closed subset of kŒxç. The proof of Theorem 5.2 gives also the
following result.
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Proposition 5.3. Let k be an infinite field. Let M be a submodule of kŒx1; : : : ; xnçq

generated by the vectors f1; : : : ; fp and let S be a multiplicative closed subset of kŒxç. Then
there exists a constant C > 0 (depending only on M ) such that the following holds: For any
f 2 kŒxçq , f 2 S�1M if and only if there exist polynomials a1; : : : ; ap of degrees at most
deg.f / C C and u, u 2 S , of degree at most C such that

uf D a1f1 C � � � C apfp:

Proof. We can adapt the proof of Theorem 5.2 as follows (we keep the same nota-
tions): the reduction to the case where M D I is an ideal of kŒxç remains the same. Then if
I D Q1 \ � � � \ Qs is an irredundant primary decomposition of I in kŒxç, we may assume that
Q1; : : : ; Qr ⇢ kŒxç n S and Qi \ S ¤ ; for i > r . Then as before

I � S�1kŒxç D Q1 � S�1kŒxç \ � � � \ Qr � S�1kŒxç

is an irredundant primary decomposition of I � S�1kŒxç. If J denotes the ideal Q1 \ � � � \ Qr

of kŒxç, then for any f 2 kŒxç, we also have

f 2 I � S�1kŒxç D J � S�1kŒxç ” f 2 J :

Then we follow the proof of Theorem 5.2: if f 2 kŒxç and f 2 I � S�1kŒxç, then f 2 J

and there exist polynomials c1; : : : ; ct such that

f D c1g1 C � � � C ctgt

where
deg.ci /  deg.f / C .td/2n  deg.f / C .2d/2O.n/

for any i

and g1; : : : ; gt are generators of J . Moreover, the degrees of the gi and the integer t are
bounded by .2d/2O.n/ .

Now the only difference with the proof of Theorem 5.2 is that kŒxç n S is not an ideal
of kŒxç. So let us choose a non-zero polynomial u 2 QrC1 \ � � � \ Qs \ S (such a polynomial
exists since S is a multiplicative system and Qi \ S ¤ ; for all i > r) and let us denote by D

its degree: D D deg.u/. Then ugi 2 I for every i .
Still by following the proof of Theorem 5.2 we see by Theorem 5.1 that there exist poly-

nomials bi;j , for 1  i  t and 1  j  p, such that

ugi D
X

j

bi;j fj

with deg.bi;j /  D C .2d/2O.n/ for every i and j . Then

uf D
X

j

✓X

i

cibi;j

◆
fj

and
deg

✓X

i

cibi;j

◆
 deg.f / C D C .2d/2O.n/

:

So the proposition is proven with C D D C .2d/2O.n/ .
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6. Ideal membership in rings of algebraic power series

Theorem 6.1. Let k be any infinite field. Then there exists two computable functions
C1.n; q; p; H1; D1; D2/ and C2.n; q; p; H1; D1; D2/ such that the following holds: Let n, q,
p, H1, H2, D1 and D2 be integers, and let

f D .f1; : : : ; fq/; g1 D .g1;1; : : : ; g1;q/; : : : ; gp D .gp;1; : : : ; gp;q/

be vectors of khx1; : : : ; xniq satisfying

H.gi /  H1 for all i , H.f /  H2;
⇥
k.x; gi;j /1ip; 1j q W k.x/

⇤
 D1;

⇥
k.x; fj /1j q W k.x/

⇤
 D2:

Let us assume that f is in the khxi-module generated by the vectors gi . Then there exist
algebraic power series ai for 1  i  p such that

(6.1) fj D
pX

iD1

aigi;j ; 1  j  q;

and
H.ai /  C1.n; q; p; H1; D1; D2/ � .H2 C 1/ for all i;

Deg.ai /  C2.n; q; p; H1; D1; D2/ for all i:

Proof. The theorem is proven by induction on n. For n D 0 and any q, p, H1, H2, D1,
D2 any solution .ai / of (6.1) will have height equal to 0 and degree equal to 1. Let us assume
that the theorem is proven for an integer n � 1 � 0 and any integers q, p, H1, H2, D1, D2 and
let us prove it for n.

We set
Hg WD max

i;j
H.gi;j /; Dg WD max

i;j
Deg.gi;j /;

Hf WD max
j

H.fj /; Df WD max
j

Deg.fj /:

Let G be the p ⇥ q matrix whose entries are the gi;j . We assume that the rank of G is q  p

(otherwise some equations may be removed) and that the first q columns are linearly inde-
pendent. Let Å be the determinant of these first q columns. By a linear change of coordinates
we may assume that Å is xn-regular of degree d since k is infinite. By Lemma 3.7, d  H.Å/.
Moreover, Å is a sum of qä elements which are the product of q entries of G. Thus by
Lemma 3.6 (ii) and (vi) we have

H.Å/  qäDqä
g

�
qDq

gHg

�
D qäqDqäCq

g Hg :

Of course, Å 2 k.x; gi;j /1ip; 1j q thus

Deg.Å/  Dg :

By Lemma 4.1 we can write Å D u � P where u is a unit and P a Weierstrass polynomial of
degree d with

H.P /  2d H.Å/dC1  2 H.Å/H.Å/C2  2
�
qäqDqäCq

g Hg

�qäqDqäCq
g HgC2

:
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Set

Fj .x; A/ WD
pX

iD1

gi;j .x/Ai � fj .x/ for all j

where A1; : : : ; Ap are new variables.
Let ai;k.x0/ be algebraic power series of khx0i for 1  i  p and 0  k  d � 1. Then

let us set

a⇤
i WD

d�1X

kD0

ai;k.x0/xk
n for 1  i  p;(6.2)

a⇤ WD .a⇤
1 ; : : : ; a⇤

p/:

Let Ai;k , 1  i  p, 0  k  d � 1, be new variables and let us set

A⇤
i WD

d�1X

kD0

Ai;kxk
n ; 1  i  p;

and
A⇤ WD .A⇤

1; : : : ; A⇤
p/:

Let us consider the Weierstrass division of Fj .x; A⇤/ by Å with respect to the variable xn:

Fj .x; A⇤/ D Å:Qj .x; A⇤/ C Rj

where

Rj D
d�1X

lD0

Rj;l.x
0; A⇤/xl

n:

Let us consider the following Weierstrass divisions:

gi;j .x/xk
n D Å:Qi;j;k.x/ C Rgi;j

where

Rgi;j
D

d�1X

lD0

Ri;j;k;l.x
0/xl

n;

and
fj .x/ D Å:Q0

j .x/ C Rfj

where

Rfj
D

d�1X

lD0

R0
j;l.x

0/xl
n:

By unicity of the remainder and the quotient of the Weierstrass division we obtain

Qj .x; A⇤/ D
pX

iD1

d�1X

kD0

Qi;j;k.x/Ai;k � Q0
j .x/;(6.3)

Rj;l.x
0; A⇤/ D

pX

iD1

d�1X

kD0

Ri;j;k;l.x
0/Ai;k � R0

j;l.x
0/:

Hence Qj .x0; A⇤/ and Rj;l.x
0; A⇤/ are linear with respect to the variables Ai;k .
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If

(6.4) Rj;l.x
0; a⇤/ D 0 for all j and l;

then Fj .x; a⇤/ 2 .Å/ for all j . This means that there exists a vector of khxiq , denoted by b.x/,
such that

(6.5) G.x/:a⇤.x/ � f .x/ D Å.x/:b.x/

where G.x/ is the q ⇥ p matrix with entries gi;j .x/ and f .x/ is the vector with entries fj .x/.
In fact, we can choose b.x/ to be the vector of entries Qj .x; a⇤/.

Let G0.x/ be the adjoint matrix of the q ⇥ q matrix built from G.x/ by taking only the
first q columns. Then

G0.x/:G.x/ D
⇣
Å.x/:1q ?

⌘
:

Thus, by multiplying (6.5) by G0.x/ on the left-hand side, we have
2

666664

Å.x/a⇤
1.x/ C P1.a⇤

qC1.x/; : : : ; a⇤
p.x//

Å.x/a⇤
2.x/ C P2.a⇤

qC1.x/; : : : ; a⇤
p.x/

:::

Å.x/a⇤
q.x/ C Pq.a⇤

qC1.x/; : : : ; a⇤
p.x//

3

777775
� G0.x/:f .x/ D Å.x/:G0.x/:b.x/

for some Pi depending linearly on a⇤
qC1.x/; : : : ; a⇤

p.x/. Then we set

ai .x/ WD a⇤
i .x/ � ci .x/ for 1  i  q;(6.6)

ai .x/ WD a⇤
i .x/ for q < i  p(6.7)

where c.x/ is the vector G0.x/:b.x/. Since G0.x/ has rank q, this shows that

G.x/:a.x/ � f .x/ D 0

i.e. a.x/ is a solution of (6.1).
Now we have to bound the height and the degree of a.x/ in terms of the height and the

degree of a⇤. For simplicity we will bound the height and the degree of a.x/ when char.k/ D 0.
The bounds in positive characteristic are obtained in the same way and they are similar (the only
difference comes from Theorem 4.5 – see also Remark 6.2).

First by Lemma 3.6 (iv) we have

H.gi;j .x/xk
n /  Hg C kDg :

Let us remind that d  H.Å/  qäqD
qäCq
g Hg  qqD

qäCq
g Hg . Thus by Theorem 4.5 we have

(by choosing " D 1 for simplicity and since k < d ):

H.Ri;j;k;l.x
0//  22O.H.Å/2/

DO.d4/
g .Hg C kDg C 1/

 22O.q2qD
2.qäCq/
g H2

g/

;

H.R0
i;l.x

0//  22O.H.Å/2/

D
O.d4/
f

.Hf C 1/

 22O.q2qD
2.qäCq/
g H2

g/

D
O.d4/
f

.Hf C 1/;

H.Qi;j;k.x//  22O.q2qD
2.qäCq/
g H2

g/

Dd4Cd3C6d2�3dC5
g Deg.Å/.Hg C kDg C 1/

 22O.q2qD
2.qäCq/
g H2

g/

;
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H.Q0
j .x//  22O.q2qD

2.qäCq/
g H2

g/

Dd4Cd3C6d2�3dC5
f

Deg.Å/.Hf C 1/

 22O.q2qD
2.qäCq/
g H2

g/

D8d4

f .Hf C 1/;

Deg.Ri;j;k;l.x
0//  H.Å/äDH.Å/

g

 .H.Å/Dg/H.Å/

 .qäqDqäCqC1
g Hg/qäqDqäCq

g Hg

 22O.q2qD
2.qäCq/
g H2

g/

;

Deg.R0
i;l.x

0//  H.Å/äD
H.Å/
f

 .qäqDqäCq
g Df Hg/qäqDqäCq

g Hg

 .2Df /2O.q2qD
2.qäCq/
g H2

g/

;

Deg.Qi;j;k.x//  H.Å/äDH.Å/C1
g Deg.Å/

 .qäqDqäCqC1
g Hg/qäqDqäCq

g HgC2Dg

 22O.q2qD
2.qäCq/
g H2

g/

;

Deg.Q0
j .x//  .qäqDqäCq

g Df Hg/qäqDqäCq
g Hg D

qäqDqäCq
g Hg

f

 .2Df /2O.q2qD
2.qäCq/
g H2

g/

:

We set
Da⇤ WD Deg.a⇤/; Ha⇤ WD H.a⇤/:

By Lemma 3.6 (vi) we have

H.Qi;j;k.x/ai;k.x0//  2 Deg.Qi;j;k.x//Da⇤ maxπH.Qi;j;k.x0//; Ha⇤º

 22O.q2qD
2.qäCq/
g H2

g/

Da⇤Ha⇤ :

Moreover,

Deg.Qi;j;k.x/ai;k.x0//  22O.q2qD
2.qäCq/
g H2

g/

Da⇤ :

Since the components of b.x/ are the Qj .x; a⇤/, we obtain by (6.3) and Lemma 3.6 (ii)

H.b.x//  .pd C 1/
⇣
22O.q2qD

2.qäCq/
g H2

g/

Da⇤
⌘pd

max
j

πDeg.Q0
j .x//º

⇥ max
°
22O.q2qD

2.qäCq/
g H2

g/

Da⇤Ha⇤ ; H.Q0
j .x//

±
:

Since d  H.Å/  qäqD
qäCq
g Hg , we get

(6.8) H.b.x//  .2pC1Df /2O.q2qD
2.qäCq/
g H2

g/

D
pdC1
a⇤ maxπHa⇤ ; .Hf C 1/º:

Moreover, (6.3) gives

(6.9) Deg.b.x//  .2pC1Df /2O.q2qD
2.qäCq/
g H2

g/

Da⇤ :
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We have
H.Å/  q:qäDqäCq

g Hg

and, by Lemma 3.6 (ii) and (vi) the height any .q � 1/ ⇥ .q � 1/ minor of G is bounded by

.q � 1/äD.q�1/ä
g ..q � 1/Dq�1

g Hg/  q:qäDqäCq
g Hg :

Thus, by Lemma 3.6 (vi), the height of the coefficients of G0.x/ is less than

2D2
gq:qäDqäCq

g Hg D 2qäqDqäCqC2
g Hg :

Hence, by Lemma 3.6 (ii) and (vi), using (6.8), (6.9) and since Deg.G0.x//  Dg we obtain

H.G0.x/:b.x//  q.Deg.G0.x// Deg.b.x///q

⇥
�
2 Deg.G0.x// Deg.b.x// maxπH.G0.x//; H.b.x//º

�

 .2pC1Df /2O.q2qD
2.qäCq/
g H2

g/

D
qCpdC1
a⇤ maxπHa⇤ ; .Hf C 1/º:

Hence, by (6.6) and Lemma 3.6 (ii)

H.a.x//  .2Df C 2p/2O.q2qD
2.qäCq/
g H2

g/

D
2HgpC3
a⇤ maxπHa⇤ ; .Hf C 1/º:

Moreover,

Deg.a.x//  Da⇤ Deg.b.x//  .2pC1Df /2O.q2qD
2.qäCq/
g H2

g/

D2
a⇤ :

Let
ˆ WD q2qD2.qäCq/

g H 2
g :

By the inductive assumption we can find a solution a0.x0/ D .ai;k.x0//1ip; 0kd�1 of the
system (6.4) such that

H.a0.x0//  C1

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2Df /2O.ˆ/
⌘

� D
O.ˆ2/
f

22O.ˆ/

.Hf C 1/

and
Deg.a0.x0//  C2

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2Df /2O.ˆ/
⌘
:

Since
Da⇤  Deg.a0.x0//

and
Ha⇤  d � Deg.a0.x0//d .H.a0.x0// C d � 1/

by (6.2) and Lemma 3.6 (ii), the solution a.x/ of (6.1) satisfies

H.a.x//  .2Df C 2p/2O.ˆ/

C2

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2Df /2O.ˆ/
⌘2HgpC3

⇥ C1

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2Df /2O.ˆ/
⌘

� D
O.ˆ2/
f

22O.ˆ/

.Hf C 1/

and

Deg.a.x//  .2pC1Df /2O.ˆ/

C2

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2Df /2O.ˆ/
⌘2

:
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34 Rond, Effective division of algebraic power series

Then with

ˆ D q2qD
2.qäCq/
1 H 2

1 ;

C1.n; q; p; H1; D1; D2/ D .2D2 C 2p/2O.ˆ/

⇥ C2

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2D2/2O.ˆ/
⌘2H1pC3

⇥ C1

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2D2/2O.ˆ/
⌘

⇥ D
O.ˆ2/
2 22O.ˆ/

;

C2.n; q; p; H1; D1; D2/ D .2pC1D2/2O.ˆ/

C2

⇣
n � 1; qd; pd; 22O.ˆ/

; 22O.ˆ/

; .2D2/2O.ˆ/
⌘2

the result is proven.

Remark 6.2. The proof of this result does not give a nice bound on the two func-
tions C1.n; q; p; H1; D1; D2/ or C2.n; q; p; H1; H2; D1; D2/. One can check that the function
C2.n; q; p; H1; H2; D1; D2/ is bounded by a tower of exponentials of length 2n C 1 of the
form

.2pC1D2/22:::O.qD1H1/

:

For C1.n; q; p; H1; D1; D2/ we obtain the same kind of bound.
In positive characteristic, the bounds are more complicated and are not polynomial in D2

since the bounds on the complexity of the Weierstrass division are not polynomial in D2.

7. Proof of Theorem 1.1

In this section we will denote by Rn the ring of algebraic power series in n variables over
a field k and bRn its .x1; : : : ; xn/-adic completion. If k is a finite field, we replace k by k.t/

where t is transcendental over k – this does not change the problem. Thus we may assume that
k is infinite.

For any khxi-module M , we have

ordM .m/ D ord yM .m/ for all m 2 M ,

thus we may assume that M is equal to Rs
n=N for some Rn-submodule N of Rs

n.
We set e WD .e1; : : : ; es/ where the e1; : : : ; es is the canonical basis of Rs

n. Let us assume
that N is generated by L1.e/; : : : ; Ll.e/ where

Li .e/ D
sX

j D1

li;j ej for 1  i  l;

and let H (resp. D) be a bound on the height (resp. the degree) of the li;j .
The proof is done by a double induction on s and n. Let

f D f1e1 C � � � C fses 2 Rs
n n N:

We consider the following cases.
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Case (1). If s D 1 and N D .0/, then M D Rn and in this case

ordM .f / D ordRn
.f /  H.f /

for any algebraic power series f by Lemma 3.7.

Case (2). Assume that s D 1 and N ¤ .0/ is an ideal of Rn. After a linear change of
variables there exists a Weierstrass polynomial g.x/ 2 N with respect to xn, whose coefficients
are in Rn�1, of degree d in xn. Then M is isomorphic to Rd

n�1=N 0 for some submodule N 0

of Rd
n�1. The isomorphism M ' Rd

n�1=N 0 is induced by the morphism Rn ! Rd
n�1 sending

a power series f .x/ 2 Rn onto .r0; : : : ; rd�1/ where

r D r0 C r1xn C � � � C rd�1xd�1
n

is the remainder of the Weierstrass division of f .x/ by g.x/. Then N 0 is the Rn�1-submodule
of Rd

n�1 generated by the vectors of coefficients of the remainders of the Weierstrass division
of the elements of M by g.x/.

If f .x/ 2 Rn, the remainder r of the division of f by g has height less than C1�.H.f /C1/

for some C1 > 0 depending only on g.x/ and Deg.f / (by Theorem 4.5 – moreover C1 is poly-
nomial in Deg.f / when char.k/ D 0). We remark that f and r have the same image in M .
If r D r0 Cr1xn C � � �Crd�1xd�1

n , with ri 2 Rn�1 for all i , then .r0; r1; : : : ; rd�1/ has height
less that C1 � .H.f / C 1/ again by Theorem 4.5. Moreover, ordM .f / D ordM .r/. Since xn is
integral over Rn�1, there exists a constant a > 0 such that xa

n 2 .x0/, with x0 D .x1; : : : ; xn�1/.
Thus .x/ac ⇢ .x0/c for any integer c. So we have

ordRd
n�1=N 0.r/ D sup

®
c 2 N W r 2 .x0/cRd

n�1=N 0¯

� 1

a C 1
ordM .r/:

By the induction hypothesis on n there exists a constant C > 0 such that

ordRd
n�1=N 0.r/  C � H.r/ for all r 2 Rd

n�1:

Thus we have

ordM .f / D ordM .r/

 .a C 1/ ordRd
n�1=N 0.r/

 .a C 1/C H.r/

 .a C 1/CC1 .H.f / C 1/:

If char.k/ D 0 and C is assumed to depend polynomially on Deg.r/ by the induction hypo-
thesis, then .a C 1/CC1 depends polynomially on Deg.f / by Theorem 4.5.

Case (3). Assume that s � 2 and fs is in the ideal of Rn generated by l1;s; : : : ; l;s .
Then we can write

fs D a1l1;s C � � � C al;s

where the ai are algebraic power series with H.ai /  C2 � .H.fs/ C 1/ for all i and C2 > 0

depends only on the li;s and Deg.fs/ (by Theorem 6.1). Moreover, when char.k/ D 0, the
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function C2 depends polynomially on Deg.fs/  Deg.f / by Remark 6.2. Let us set

f 0 WD f �
X

iD1

aiLi .e/:

Set N 0 D N \ .Rs�1
n ⇥π0º/. We denote by M 0 the submodule of M equal to .Rs�1

n ⇥π0º/=N 0.
By the Artin–Rees Lemma there exists a constant c0 > 0 such that

.x/cCc0M \ M 0 ⇢ .x/cM 0 for all c 2 N:

Hence we have
ordM .f / D ordM .f 0/  ordM 0.f 0/ C c0:

By the induction hypothesis on s, there exists a constant C 0 > 0 depending on Deg.f 0/ (thus
on Deg.f / by Theorem 6.1) such that

ordM 0.f 0/  C 0 � H.f 0/:

If char.k/ D 0 and we assumed that C 0 depends polynomially on Deg.f 0/ by the induction
hypothesis, then C 0 depends polynomially on Deg.f / by Remark 6.2. Hence

ordM .f /  ordM 0.f 0/ C c0

 C 0 � H.f 0/ C c0

 .C 0 C c0/ H.f 0/

and C 0 C c0 depends polynomially on Deg.f / in characteristic zero.

Case (4). Assume that s � 2 and fs is not in the ideal of Rn generated by l1;s; : : : ; l;s .
Then by the case s D 1, there exists a constant C > 0 depending only on the li;s and Deg.fs/

such that

ordRn
.fs C a1l1;s C � � � C al;s/  C � H.fs/ for every ai 2 Rn.

Moreover, C depends polynomially on Deg.fs/  Deg.f / when char.k/ D 0. Let us remark
that for every f 2 Rs

n we have

ordM .f / D sup
®
k W f 2 .x/kM

¯

D sup
®
k W f 2 .x/kRs

n modulo N
¯

D sup
®
k W there are a1; : : : ; a 2 Rn; f C a1L1.e/ C � � � C aL.e/ 2 .x/kRs

n

¯

D sup
a1;:::;a2Rn

®
ordRs

n
.f C a1L1.e/ C � � � C aL.e//

¯
:

Thus

ordM .f /  sup
a1;:::;a2Rn

®
ordRn

.fs C a1l1;s C � � � C al;s/
¯

 C � H.fs/  C � H.f /

since
ordRs

n
.g/ D min

iD1;:::;s
πordRn

.gi /º  ordRn
.gs/

for every g D .g1; : : : ; gs/ D g1e1 C � � � C gses 2 Rs
n.
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8. Proof of Theorem 1.3

Let I be an ideal of bRn. We set J WD I \ kŒxç. We have the following lemma.

Lemma 8.1. We have ht.I / � ht.J / and if I is generated by algebraic power series,
then ht.I / D ht.J /. On the other hand, if I is the intersection of a finite number of ideals which
are powers of prime ideals of the same heights, i.e.

I D P n1

1 \ � � � \ P nl

l
for some primes Pi with ht.Pi / D ht.Pj / for all i; j;

then the equality ht.I / D ht.J / implies that I is generated by algebraic power series.

Proof. We have
I D kJxK ” J D kŒxç:

Thus we may assume that I and J are proper ideals. In this case J ⇢ .x/kŒxç so

ht.J / D ht.J kŒxç.x//:

Since the morphism kŒxç.x/ ! kJxK is faithfully flat, we have

ht.J kŒxç.x// D ht.J kJxK/:

Then ht.J /  ht.I / because J kJxK ⇢ I .
Let us assume that I is generated by algebraic power series. By Noetherianity there

exists a finite number of algebraic power series a1; : : : ; ar 2 khxi that generate I . Since khxi
is the Henselization of kŒxç.x/, there exists an étale map kŒxç.x/ ! A where A is a local ring
such that kŒxç.x/ ! khxi factors through kŒxç.x/ ! A and a1; : : : ; ar are images of elements
a0

1; : : : ; a0
r 2 A. By the faithful flatness of A ! khxi we have

ht..a0
1; : : : ; a0

r/ � A/ D ht.I /:

Since the morphism kŒxç.x/=J ! A=.a0
1; : : : ; a0

r/ is a localization of a finite injective mor-
phism, we get

dim.kŒxç.x/=J / D dim.A=.a0
1; : : : ; a0

r/ � A/;

so
ht.J / D ht..a0

1; : : : ; a0
r/ � A/ D ht.I /:

Now we assume that ht.I / D ht.J /. First we consider the case where I is a prime ideal.
Then J is also a prime ideal. If ht.J / D ht.I /, then ht.J kJxK/ D ht.I / and since J kJxK ⇢ I ,
then I is a prime associated to J kJxK. Since the ideal J is radical, it follows that J khxi
is also a radical ideal: indeed, since kŒxç=J is reduced, its completion kJxK=J kJxK is also
reduced (see [14, p. 180, (1)]) so khxi=J khxi is reduced. If J khxi D P 0

1 \ � � � \ P 0
r is a prime

decomposition of J khxi, then the ideals P 0
i kJxK are prime ideals by [18, Lemma 5.1] so

J kJxK D P 0
1kJxK \ � � � \ P 0

rkJxK

is a prime decomposition of J kJxK and I is equal to one of the P 0
i kJxK, let us say P 0

1kJxK D I .
In particular, I is generated by algebraic power series.

Authenticated | guillaume.rond@univ-amu.fr author's copy
Download Date | 8/15/15 9:14 AM



38 Rond, Effective division of algebraic power series

Now let us assume that I D P1 \ � � � \ Pl where the Pi are prime ideals of the same
height. Let Ji WD Pi \ kŒxç. Then J D J1 \ � � � \ Jl . Since

ht.J /  ht.Ji /  ht.Pi / D ht.I / D ht.J / for every i ,

we have ht.Ji / D ht.Pi / for all i , thus Pi is generated by algebraic power series by the previous
case, thus I is also generated by algebraic power series.

Finally, let us assume that I D P n1

1 \ � � � \ P nl

l
where the Pi are prime ideals of the

same height and the ni are positive integers. Let us set Ji D Pi \ kŒxç. Then P ni

i \ kŒxç is an
ideal containing J ni

i whose radical is Ji . So
p

J D J1 \ � � � \ Jl . Since

ht.
p

J / D ht.J / D ht.I / D ht.
p

I /;

it follows that
p

I is generated by algebraic power series by the previous case. Thus the asso-
ciated primes ideals of

p
I , i.e. the Pi , are generated by algebraic power series. Hence the P ni

i

are generated by algebraic power series and I also.

From now on we assume that

I D P n1

1 \ � � � \ P nl

l
for some primes Pi with ht.Pi / D ht.Pj / for all i; j

and R denotes the ring kJxK=I .
Let kŒxçd be the set of polynomials of degree  d and Jd WD J \ kŒxçd for every inte-

ger d . We set for every integer d � 0,

ˆ.d/ WD dimk.kŒxçd =Jd /:

The function d 7! ˆ.d/ coincides with a polynomial function of degree

p WD dim.kŒxç=J / D n � ht.J /

for d large enough. Then we define for every integer d � 0,

‰.d/ WD dimk.R=.x/d /:

The function d 7! ‰.d/ coincides with a polynomial function of degree

q WD dim.R/ D n � ht.I /

for d large enough. So ‰.dp/ and ˆ.dq/ are polynomial functions of same degree (equal
to pq) for d large enough. By choosing a > 0 large enough the leading coefficient of ˆ.adq/

will be strictly greater than the leading coefficient of ‰.dp/. Thus for such a constant a > 0

we have
‰.dp/ < ˆ.adq/ for all d � 0:

This means that the canonical k-linear map

kŒxçadq =Jadq ! R=.x/dp

is not injective for d large enough. For every d large enough let pd be a non-zero element of
the kernel of this map. By assumption there exists a constant C such that

ordR.pd /  C � deg.pd /  Cadq for all d:

Since pd is in the kernel of the previous k-linear map, we have ordR.pd / � dp, thus

Cadq � dp:
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But such an inequality is satisfied (for some constant a > 0) if and only if q � p, i.e. if
dim.R/ � dim.kŒxç=J /. This last inequality is equivalent to ht.I /  ht.J /. Thus, by Lem-
ma 3.10, such an inequality is satisfied if and only if ht.I / D ht.J /, i.e. if and only if I is
generated by algebraic power series. This proves Theorem 1.3.

9. An example

In this section we show through an example that Lemma 8.1 and Theorem 1.3 are not
true in general.

Let k D C and n D 3. For simplicity we denote the variables x1, x2, x3 by x, y, z. We
set

f .z/ WD � log.1 � z/ D
X

k�1

1

k
zk :

Let Q D .x; y/2 D .x2; y2; xy/ and Q0 D Q C .x C f .z/y/ be ideals of CJx; y; zK. Then
p

Q D
p

Q0 D .x; y/:

Claim 1. The ideal Q0 is not generated by algebraic power series but

ht.Q0 \ CŒx; y; zç/ D ht.Q0/ D 2:

We have .x; y/2 D Q ¨ Q0 since x C f .z/y … .x; y/2, but there is no algebraic power
series g.x; y; z/ such that

x C f .z/y D g.x; y; z/ modulo Q:

Indeed, if it were the case, by replacing x2, y2 and xy by zero in the expansion of g, we would
find an algebraic power series h.z/ such that

x C f .z/y D x C h.z/y

which is not possible since f .z/ is transcendental. So Q0 \ CŒx; y; zç D .x; y/2 and Q0 is not
generated by algebraic power series. Since .x; y/2 ⇢ Q0 ⇢ .x; y/, we have

ht.Q0/ D 2 D ht..x; y/2/ D ht.Q0 \ CŒx; y; zç/:

This proves the claim.

Claim 2. The ideal A0 D CJx; y; zK=Q0 satisfies the local zero estimate (1.2) of Corol-
lary 1.2:

(9.1) ordA0.p/  2 deg.p/ for all p 2 CŒx; y; zç n Q0:

Since Q ⇢ Q0 ⇢ .x; y/, we have the canonical quotient morphisms

A WD CJx; y; zK=Q ! A0 WD CJx; y; zK=Q0 ! B WD CJx; y; zK=.x; y/:

We consider two cases.
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Case (a). If p is a polynomial of kŒx; y; zç, p … .x; y/, we have ordA0.p/  ordB.p/.
But we claim that ordB.p/  deg.p/. Indeed, let f 2 CJx; y; zK be equal to p modulo .x; y/.
Since p … .x; y/, it follows that p has a non-zero monomial of the form azk for some a 2 C
and k  deg.p/. Since f � p 2 .x; y/, we obtain that f has also a non-zero monomial azk .
So ordCJx;y;zK.f /  k. Thus we have

(9.2) ordA0.p/  deg.p/ for all p 2 CŒx; y; zç n .x; y/:

Case (b). Now let p be a polynomial with p 2 .x; y/ but p … Q0. In particular, p ¤ 0.
Then there exists a unique polynomial p0 of the form

p0 D a.z/x C b.z/y

where a.z/, b.z/ 2 kŒzç, deg.p0/  deg.p/ and

p0 ⌘ p modulo Q:

Let n be an integer such that n C 1  ordA0.p/ D ordA0.p0/. This means that

p0 2 .x; y; z/nC1 C .x; y/2 C .x C f .z/y/;

thus
p0 D " C ⌘ C c � .x C f .z/y/

for some " 2 .x; y; z/nC1, ⌘ 2 .x; y/2 and c 2 CJx; y; zK, . Since p0 D a.z/x C b.z/y, we
obtain

.a.z/ � c.0; 0; z//x C .b.z/ � c.0; 0; z/f .z//y(9.3)
D ⌘ C .c � c.0; 0; z//.x C f .z/y/ C ":

But ⌘0 WD ⌘ C .c � c.0; 0; z//.x C f .z/y/ 2 .x; y/2. Moreover, " can be written as

" D "0.x; y; z/ C "x.z/x C "y.z/y C "1.z/

where "0.x; y; z/ 2 .x; y/2, "x.z/; "y.z/ 2 .z/nCJzK, "1.z/ 2 .z/nC1CJzK. Thus (9.3) shows
that

a.z/ � c.0; 0; z/ D "x; b.z/ � c.0; 0; z/f .z/ D "y.z/; ⌘0 C "0 D 0; "1.z/ D 0:

This proves that if ordA0.p/ � n C 1, then there exists c.z/ 2 CJzK such that

ordz.a.z/ � c.z// � n and ordz.b.z/ � c.z/f .z// � n:

Let us write
a.z/ D

X

k

akzk; b.z/ D
X

k

bkzk; c.z/ D
X

k

ckzk :

If deg.p/  d for some integer d , then deg.a/; deg.b/  d � 1 thus

ak D bk D 0 for all k � d:

Since ordz.a.z/ � c.z// � n, we obtain

ak D ck for all k < n:
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In particular, if d < n, we have

bd D � � � D bn�1 D cd D � � � D cn�1 D 0:

Since ordz.b.z/ � c.z/f .z// � n, it follows that
2

66666664

0 0 0 0 0

1 0 0 0 0
1
2 1 0 0 0
:::

::: : : : : : :
:::

1
n�1

1
n�2 � � � 1 0

3

77777775

2

66666664

c0

c1

c2

:::

cn�1

3

77777775

D

2

66666664

b0

b1

b2

:::

bn�1

3

77777775

:

There are two cases to be considered: either ordA0.p/  deg.p/ and the local zero estimate (9.1)
is satisfied, or ordA0.p/ > deg.d/. In the latter case we can choose n � d . In particular,

(9.4)

2

666664

1
d

1
d�1

1
d�2

� � � 1
1

dC1
1
d

� � � � � � 1
2

:::
::: : : : : : :

:::
1

n�1
1

n�2 � � � � � � 1
n�d

3

777775

2

666664

c0

c1

:::

cd�1

3

777775
D

2

666664

cbd

bdC1

:::

bn�1

3

777775
D

2

666664

0

0
:::

0

3

777775
:

Let us assume that the local zero estimate (9.1) is not satisfied, i.e. ordA0.p/ > 2 deg.p/. Then
we can choose n D 2d . But for n D 2d the matrix

2

666664

1
d

1
d�1

� � � 1
1

dC1
1
d

� � � 1
2

:::
::: : : :

:::
1

2d�1
1

2d�2
� � � 1

d

3

777775

is a Hilbert matrix and is not singular. This means that equation (9.4) for n D 2d has no non-
trivial solution, hence c0 D � � � D cn�1 D 0. This proves that ak D bk D 0 for every k which
contradicts the assumption that p ¤ 0. This proves that for every polynomial p 2 CŒx; y; zç,
p … Q0, we have

(9.5) ordA0.p/  2 deg.p/:

10. Grauert–Hironaka–Galligo division of power series

Let � be a linear form on Rn with positive coefficients. Let us consider the following
order on Nn: for all ˛, ˇ 2 Nn, we say that ˛  ˇ if

.�.˛/; ˛1; : : : ; ˛n/ lex .�.ˇ/; ˇ1; : : : ; ˇn/

where lex is the lexicographic order. This order induces an order on the set of monomials
x˛1

1 � � � x˛n
n : we set x˛  xˇ if ˛  ˇ. This order is called the monomial order induced by �. If

f WD
X

˛2Nn

f˛x˛ 2 kJxK;
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the initial exponent of f with respect to the previous order is

exp.f / WD minπ˛ 2 Nn W f˛ ¤ 0º D inf Supp.f /

where the support of f is

Supp.f / WD π˛ 2 Nn W f˛ ¤ 0º:

The initial term of f is fexp.f /x
exp.f / and is denoted by in.f /. This is the smallest non-zero

monomial in the expansion of f with respect to the previous order.
Let g1; : : : ; gs be elements of kJxK. Set

Å1 WD exp.g1/ C Nn

and
Åi D .exp.gi / C Nn/ n

[

1j <i

Åj for 2  i  s:

Finally, set

Å0 WD Nn n
s[

iD1

Åi :

We have the following theorem:

Theorem 10.1 ([8, 9, 13]). Set f 2 kJxK. Then there exist some unique power series
q1; : : : ; qs; r 2 kJxK such that

f D g1q1 C � � � C gsqs C r

and
exp.gi / C Supp.qi / ⇢ Åi and Supp.r/ ⇢ Å0:

The power series r is called the remainder of the division of f by g1; : : : ; gs with respect to
the given monomial order. Moreover, if k is a valued field and f , g1; : : : ; gs are convergent
power series, then the qi and r are convergent power series.

The uniqueness of the division comes from the fact the Åi are disjoint subsets of Nn. The
existence of such decomposition in the formal case is proven through the division algorithm:

Division Algorithm. Set ˛ WD exp.g/. Then there exists an integer i1 such that ˛ 2 Åi1 .

✏ If i1 D 0, then set r.1/ WD in.g/ and q
.1/
i WD 0 for any i .

✏ If i1 � 1, then set r.1/ WD 0, q
.1/
i WD 0 for i ¤ i1 and q

.1/
i1

WD in.g/
in.gi1

/
.

Finally, set

g.1/ WD g �
sX

iD1

giq
.1/
i � r.1/:

Thus we have exp.g.1// > exp.g/. Then we replace g by g.1/ and we repeat the preceding
process.
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In this way we construct a sequence .g.k//k of power series such that, for any k 2 N,

exp.g.kC1// > exp.g.k//

and

g.k/ D g �
sX

iD1

giq
.k/
i � r.k/

with
exp.gi / C Supp.q

.k/
i / ⇢ Åi and Supp.r.k// ⇢ Å0:

At the limit k ! 1 we obtain the desired decomposition.
But in general if f and the gi are algebraic power series (or even polynomials), then r

and the qi are not algebraic power series as shown by the following example:

Example 10.2 (Kashiwara–Gabber’s example, [13, p. 75]). Let us perform the division
of xy by

g WD .x � ya/.y � xa/ D xy � xaC1 � yaC1 C xaya

as formal power series in kJx; yK with an integer a > 1 (here we choose a monomial order
induced by the linear form �.˛1; ˛2/ D ˛1 C ˛2). By symmetry the remainder of this division
can be written r.x; y/ WD s.x/ C s.y/ where s.x/ is a formal power series. By substituting y

by xa we get
s.xa/ C s.x/ � xaC1 D 0:

This relation yields the expansion

s.x/ D
1X

iD0

.�1/ix.aC1/ai

:

Thus the remainder of the division has Hadamard gaps and thus is not algebraic if char.k/ D 0.
Hadamard gaps are defined as follows.

Definition 10.3. Let x D .x1; : : : ; xn/. A power series

f D
X

k

fk

where fk is a homogeneous polynomial of degree k for every k has Hadamard gaps if the
indices n1 < n2 < n3 < � � � of all non-zero homogeneous terms of f satisfy the condition
nkC1 > C nk for all k where C > 1.

Over a characteristic zero field, a power series having Hadamard gaps cannot be alge-
braic.

Example 10.4. Let k be a field of any characteristic. Set

fn WD xy �
nX

iD0

.�1/ix.aC1/ai

:

Then by the previous example

fn ⌘
X

i>n

.�1/ix.aC1/ai

modulo .g/:
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Thus
ordkJxK=.g/.fn/ � .a C 1/anC1:

Since fn is a polynomial of degree .a C 1/an, this shows that the bound of Corollary 1.2 is
optimal.

11. Generic Kashiwara–Gabber example

In this section we will investigate a particular case of division. Mainly, we will consider
the problem of dividing an algebraic power series f .x; y/ in two variables by an algebraic
power series g.x; y/ whose initial term is equal to xy with respect to a given monomial
order as defined in the previous section. In this case the remainder of the division is the sum
R.x/ C S.y/ of one power series in x and one power series in y.

Definition 11.1. Let k be a characteristic zero field and x a single variable. A D-finite
power series f is a formal power series in kJxK satisfying a linear differential equation with
polynomial coefficients, i.e. there exist D 2 N and aj .x/ 2 kŒxç for 0  j  D (not all equal
to 0) such that

aDf .D/ C aD�1f .D�1/ C � � � C a0f D 0:

Let us mention that by [32] any algebraic power series is D-finite. In Example 10.2, if
char.k/ D 0, the remainder is not D-finite since D-finite power series have no Hadamard gaps
(see [32] or [21] for instance). We will show that the situation of Example 10.2 is generic in
some sense.

Set
ga.x; y/ D xy �

X

.i;j /2E

ai;j xiyj

where a denotes the vector of entries ai;j 2 k for some field k and E is a finite subset of N2

such that:

(1) .0; 0/, .0; 1/, .1; 0/ and .1; 1/ … E,

(2) π.2; 0/; .0; 2/º 6⇢ E.

If .0; 2/ … E, let us choose the linear form � defined by �.e1; e2/ D 3e1 C 2e2. Then for any
e D .e1; e2/ 2 E we have �.e/ D 3e1 C 2e2 > �.1; 1/ D 5 since only three situations may
occur:

✏ e1 � 2 so �.e/ � 6,

✏ e1 D 1 and e2 � 2 so �.e/ � 7,

✏ e1 D 0 and e2 � 3 so �.e/ � 6.

This means that there exists a monomial order induced by a linear form such that xy is the
initial term of ga.x; y/. By symmetry this is also true if .2; 0/ … E. From now on we fix such
monomial order and we perform the division of xy by ga.x; y/:

xy D ga.x; y/Qa.x; y/ C Ra.x/ C Sa.y/:
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Lemma 11.2. Let k D Q.a/ where a is the set of new undeterminates ai;j , .i; j / 2 E.
Then Ra.x/ (resp. Sa.y/, Qa.x; y/) is a power series with coefficients in QŒaç. In particular,
if k is a characteristic zero field and ˛ 2 kCard.E/ is a vector of elements ˛i;j 2 k for every
.i; j / 2 E, then the coefficients of R˛.x/ (resp. S˛.y/, Q˛.x; y/) are those of Ra.x/ (resp.
Sa.y/, Qa.x; y/) evaluated in ˛.

Proof. Since the coefficient of the leading term xy of xy �P
.i;j /2E ai;j xiyj is equal

to 1, we see directly from the division algorithm given in Section 10 that the coefficients of
Ra.x/, Sa.y/ and Qa.x; y/ are in QŒaç. Then by evaluating the terms of the equality

xy D ga.x; y/Qa.x; y/ C Ra.x/ C Sa.y/

in a we necessarily obtain the equality

xy D g˛.x; y/Q˛.x; y/ C R˛.x/ C S˛.y/

by unicity of the division.

For every k 2 N n π0; 1º we set

Ek D π.0; k C 1/; .k C 1; 0/; .k; k/º:

We have the following result:

Proposition 11.3. Let E be a finite set as before such that Ek ⇢ E for some integer
k > 1. Let .˛i;j / 2 CCard.E/ whose coordinates are algebraically independent over Q. Then
R˛.x/ is not a D-finite power series. In particular, this is not an algebraic power series.

Proof. Let N D Card.E/. The proof is made by induction on N .
If N D 3, we have E D Ek . If ˛0;kC1; ˛kC1;0; ˛k;k 2 C are algebraically independent

over Q and R.x/ WD R˛.x/ is a D-finite power series, then R.x/ satisfies the differential
equation

(11.1) Pd .x/R.d/.x/ C � � � C P1.x/R.x/ C P0.x/ D 0

where P1.x/; : : : ; Pd .x/ 2 CŒxç. If we expand this relation in terms of a Q.˛/-basis of the
Q.˛/-vector space C, we obtain at least one non-trivial relation of the same type where the
Pi .x/ are in Q.˛/Œxç. So we assume that Pi .x/ 2 Q.˛/Œxç for all i and even Pi .x/ 2 QŒ˛çŒxç

for all i by multiplying this relation by a common denominator of the coefficients of the Pi .
Since ˛kC1;0, ˛0;kC1 and ˛k;k are algebraically independent over Q, we are reduced to assume
that Ra;b;c.x/ is D-finite over QŒa; b; cç where a, b, c are new indeterminates and Ra;b;c.x/ is
the x-depending part of the remainder of the division of xy by xy �axkC1 �bykC1 � cxkyk:

xy D
�
xy � axkC1 � bykC1 � cxkyk

�
Qa;b;c.x; y/ C Ra;b;c.x/ C Sa;b;c.y/:

By Lemma 11.2, Ra;b;c.x/ 2 QŒa; b; cçJxK and Sa;b;c.y/ 2 QŒa; b; cçJyK, and for every point
˛ D .˛0;kC1; ˛kC1;0; ˛k;k/ 2 C3, the power series R˛.x/ and S˛.y/ are equal to Ra;b;c.x/

and Sa;b;c.y/ evaluated in ˛. We may assume that the polynomials Pi D P.a; b; c; x/, coeffi-
cients of relation (11.1), are globally coprime, otherwise we factor out their common divisor.
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For 0  i  d , let Vi be the subvariety of C3 which is the zero locus of the coefficients
of Pi .a; b; c; x/ (seen as a polynomial in x). Let V be the intersection of V0; : : : ; Vd . Then
if .˛/ … V , one of the Pi .˛; x/ is non-zero and R˛.x/ is D-finite over CŒxç. Since we have
assumed that the Pi .a; b; c; x/ are globally coprime, V is a finite union of algebraic curves and
points, except if all but one Pi are equal to 0. In this latter case, we have

Pd .a; b; c; x/R
.d/
a;b;c

.x/ D 0

which means that R
.d/
a;b;c

.x/ D 0, thus we may replace Pd by 1 and in this case V D ;.
From now on we replace c by �ab and we have the relation

(11.2) xy D .x � byk/.y � axk/Qa;b;�ab.x; y/ C Ra;b;�ab.x/ C Sa;b;�ab.y/:

By symmetry we have Rb;a;�ab.y/ D Sa;b;�ab.y/. If we replace .x; y/ by .by; ax/ in (11.2),
we get

abxy D ab.y � akxk/.x � bkyk/Qa;b;�ab.by; ax/ C Ra;b;�ab.by/ C Sa;b;�ab.ax/;

thus we obtain

(11.3)
1

ab
Ra;b;�ab.by/ D Sak ;bk ;�.ab/k .y/:

By replacing y by axk in (11.2) we obtain

axkC1 D Ra;b;�ab.x/ C Sa;b;�ab.axk/

so
akxkC1 D Rak ;bk ;�akbk .x/ C Sak ;bk ;�akbk .akxk/

and

(11.4) akxkC1 D Rak ;bk ;�akbk .x/ C 1

ab
Ra;b;�ab.akbxk/

by (11.3). By writing
Ra;b;�ab.x/ D

X

l�1

rl.a; b/xl

and plugging it in (11.4) we obtain

rl.a; b/ D 0 for all l  k and rkC1.ak; bk/ D ak :

Moreover, the coefficient of xkl on both sides of (11.4), for every l � 1, is equal to

0 D rkl.a
k; bk/ C 1

ab
rl.a; b/aklbl

hence
rkl.a

k; bk/ D �rl.a; b/akl�1bl�1:

Thus

rkC1.a; b/ D a; rk.kC1/.a; b/ D �akC1b; rk2.kC1/.a; b/ D ak.kC1/C1bkC1
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and by induction

rki .kC1/.a; b/ D .�1/ia
Pi

j D0 kj

b
Pi�1

j D0 kj D .�1/ia
kiC1�1

k�1 b
ki �1
k�1 for all i � 1

and rl.a; b/ D 0 if l
kC1

is not a power of k. Thus we obtain

Ra;b;�ab.x/ D
1X

iD0

.�1/ia
kiC1�1

k�1 b
ki �1
k�1 x.kC1/ki

:

Exactly as in the example of Kashiwara–Gabber, this shows that R˛;ˇ;�˛ˇ .x/ is not D-finite
if ˛ˇ ¤ 0.

Let S ⇢ C3 be the surface of the equation ab C c D 0. In particular, the surface S is
not included in V since the components of V have dimension at most 1. Then we see that for
any .˛; ˇ; �/ 2 S n πab D 0º, R˛;ˇ;� .x/ is not D-finite. This contradicts the assumption that
Ra;b;c.x/ is D-finite since we have shown that this would imply that R˛;ˇ;� .x/ is D-finite for
every .˛; ˇ; �/ … V . Thus Ra;b;c.x/ is not D-finite.

Let us assume that N > 3 and that the proposition is proven for every set of cardi-
nal N � 1 containing Ek . Let us assume that Ra.x/ is D-finite, i.e. there exist polynomials
Pi 2 C.a/Œxç, for 1  i  d , such that

Pd .a; x/R.d/
a .x/ C � � � C P1.a; x/Ra.x/ C P0.a; x/ D 0:

As we did before, we may assume that Pi 2 QŒa; xç for all i . By dividing the previous relation
by a common divisor of the Pi , we may assume that the Pi are globally coprime. For 0  i  d

let Vi denote the subvariety of CN which is the zero locus of the coefficients of Pi .x/ (seen
as a polynomial with coefficients in QŒaç). Let V be the intersection of V0; : : : ; Vd . As in the
previous case, since the Pi are globally coprime, we have codimCN .V / � 2.

Let .i0; j0/ 2 E n Ek and set E 0 D E n π.i0; j0/º. We set W D πai0;j0 D 0º; we have
codimCN .W / D 1. By the inductive assumption, R˛.x/ is not D-finite for every ˛ 2 W such
that tr:degQQ.˛/ D N � 1. But if ˛ 2 W n V and tr:degQQ.˛/ D N � 1 (we may find such
an ˛ since codimCN .V / is strictly larger than codimCN .W /), we see that R˛.x/ is not D-finite
which is a contradiction since ˛ … V . Thus Ra.x/ is not D-finite and the proposition is proven
for sets E of cardinal N .

Example 11.4. If E does not contain any of the sets Ek for k > 1, then Proposition 11.3
is no valid in general. For instance, let us consider

E ⇢ π.i; i C j / W .i; j / 2 N2; i > 0; j > 0º:
We set F D π.i; j / W .i; i C j / 2 Eº. Let us consider the Weierstrass division

z D

z �

X

.i;j /2F

ai;iCj ziyj

�
Q.z; y/ C R.y/

where Q and R are algebraic power series by Lafon Division Theorem. Then by replacing z

by xy, we obtain the division of xy by ga.x; y/:

xy D

xy �

X

.i;j /2E

ai;j xiyj

�
Q.xy; y/ C R.y/:

Thus Ra.x/ D R.x/ is an algebraic power series.
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Example 11.5. Let h.x; y/ and d.x; y/ be two algebraic power series over C and let us
assume that the initial term of d.x; y/ is xy. The division of h by d yields the relation

h.x; y/ D d.x; y/Q.x; y/ C R.x/ C S.y/:

By the Newton–Puiseux Theorem there exist n 2 N and x.y/ 2 Chyi, y.x/ 2 Chxi such that

d.x.y/; yn/ D d.xn; y.x// D 0:

Thus we obtain
h.x.y

1
n /; y/ D R.x.y

1
n // C S.y/

and
h.xn; y.x// D R.xn/ C S.y.x//:

This yields the relation

R.xn/ � R.x.y.x/
1
n // D h.xn; y.x// � h.x.y.x/

1
n //:

By replacing x by xn we see that there exist two algebraic power series f .x/ and g.x/ such
that

R.xn2

/ � R.g.x// D f .x/:

But this is impossible if R.x/ D ex by Schanuel’s conjecture [5]. This shows that in general
D-finite power series (here ex) which are not algebraic are not remainders of such a Weierstrass
division.

12. Gap theorem for remainders of division of algebraic power series

By a theorem of Schmidt (see [29, Hilfssatz 5]) an algebraic power series has no large
gaps in its expansion. More precisely, his result asserts that if an algebraic power series f is
written as f D P

k fn.k/ where fn.k/ is a non-zero homogeneous polynomial of degree n.k/

and .n.k//k is increasing, then

lim sup
k!1

n.k C 1/

n.k/
< 1:

We prove here the same result for remainders of the Grauert–Hironaka–Galligo division, i.e. it
does not have more than Hadamard gaps.

Theorem 12.1. Let g1; : : : ; gs 2 khxi and let us fix a monomial order induced by
a linear form as in Section 10. Then there exists a function C W N ! R>0 such that the follow-
ing holds: Let f 2 khxi be an algebraic power series and let r be the remainder of the division
of f by g1; : : : ; gs with respect to the given monomial order. Let us write r D P1

kD1 rn.k/

where rh is a homogeneous polynomial of degree h, .n.k//k is an increasing sequence of inte-
gers and rn.k/ ¤ 0 for any k 2 N. Then

n.k C 1/  C.Deg.f // � n.k/ for all k � 0:

In particular,

lim sup
k!1

n.k C 1/

n.k/
< 1:
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Proof. Let I denote the ideal generated by g1; : : : ; gs . Let us set

fk WD f �
kX

iD1

rn.i/ for every k 2 N.

The remainder of the division of f by g1; : : : ; gs is
P1

iDkC1 rn.i/, thus

ordkJxK=I .fk/ D ordkJxK=I

 1X

iDkC1

rn.i/

!
� n.k C 1/:

On the other hand, by Lemma 3.6 (iii)

H.fk/  H.f / C Deg.f / � n.k/

thus H.fk/  2 Deg.f / � n.k/ for k large enough since .n.k//k is increasing. Hence, by
Theorem 1.1, and since Deg.fk/ D Deg.f /, there exists a constant C 0 > 0 depending on
Deg.f / such that

ordkJxK=I .fk/  2C 0 � Deg.f / � n.k/

for k large enough. So the theorem is proven with C D C 0 � Deg.f /.

Remark 12.2. Example 10.4 shows that this result is sharp.
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