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Abstract
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longer valid in positive characteristic.
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1 Introduction

When K is a field and x = (x1, . . . , xn) is a vector of n indeterminates, we denote
by K((x)) the field of formal power series in n indeterminates. The problem we are
studying here concerns the determination of an algebraic closure of K((x)) when K is
an algebraically closed field of any characteristic.

Let us begin with the characteristic zero case. When n = 1, the Newton–Puiseux
Theorem asserts that the elements that are algebraic overK((x)) are the Puiseux series,
i.e. the formal sums of the form

∑∞
k=k0 akx

k/q for some positive integer q (cf. [26]
and [27]).

When n ≥ 2 there is no known description of the algebraic closure of K((x)).
The Abhyankar–Jung Theorem asserts that the roots of a monic polynomial with
coefficients in K[[x]] whose discriminant is a monomial times a unit are Puiseux
series (cf. [1,18,21] or [25]). But, in general, polynomials with coefficients in K[[x]]
may not have Puiseux series as roots, as the polynomial T 2− (x1+ x2). Nevertheless,
a result of MacDonald asserts that we may express the elements algebraic over K((x))
as Laurent Puiseux series [22]. In order to explain this result let us introduce some
terminology.

A (generalized) series ξ (with support in Q
n and coefficients in a field K) is a

formal sum ξ = ∑α∈Qn ξαxα , where xα := xα1
1 . . . xαn

n , and the ξα ∈ K. Its support
is the set

Supp(ξ) := {α ∈ Q
n|ξα �= 0}.

Such a series is called a Laurent series (resp. Laurent Puiseux series) if Supp(ξ) ⊂ Z
n

(resp. Supp(ξ) ⊂ 1
kZ

n for some k ∈ N
∗).

The set of generalized series is a commutative group as we can define the sum
of two power series in the usual way. But in general the product of two such series
is not well defined. To insure the existence of the product of two generalized series,
one has to impose that their support is well-ordered for a total order on Q

n (see [29]
for example). This is the case for example when we consider Laurent series whose
supports are included in the translation of a given common strongly convex cone (for
example see [3] or [6, Lemma 3.8]). Here, a strongly convex cone is a cone that does
not contain non-trivial linear subspaces. In particular, for a series ξ whose support is
included in a strongly convex cone containing R≥0n , and for P(x, T ) ∈ K[[x]][T ],
P(x, ξ) is well defined.

We also recall that a rational cone is a finitely generated submonoid of R
n that is

generated by vectors with integer coordinates. Then, MacDonald’s Theorem (cf [22,
Theorem 3.6]—see also [5]) asserts that the elements that are algebraic over K((x))
can be expressed as Puiseux series with support in the translation of a strongly convex
rational cone σ . Moreover MacDonald showed that, for any given ω ∈ R>0

n whose
coordinates are Q-linearly independent, σ can be chosen in such a way that

∀s ∈ σ \ {0}, s · ω > 0. (1)
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The minimal cone of an algebraic Laurent series

Let us remark that, for q ∈ N
∗, a Laurent series ξ(x1, . . . , xn) is algebraic overK((x)) if

and only if ξ(x1/q1 , . . . , x1/qn ) is algebraic overK((x)). Therefore, in order to determine
an algebraic closure ofK((x)) one only needs to determine which are the Laurent series
ξ whose support is included in the translation of a rational strongly convex cone σ

that are algebraic over K((x)). And by the result of MacDonald, if we fix ω ∈ R>0
n

whose coordinates are Q-linearly independent, we may even assume that σ satisfies
(1).

For such a ω we define the monomial valuation νω in the following way: for f =∑
α∈Nn fαxα , we set νω( f ) := min{α · ω| fα �= 0}. This valuation defines a norm

‖ · ‖ω on K((x)) by

‖ f /g‖ω := e−νω( f )+νω(g).

We denote by L
ω the completion of K((x))with respect to ‖ ·‖ω. Then, we remark that

a Laurent series whose support is included in the translation of a cone σ satisfying (1),
is necessarily in L

ω. Therefore in order to determine an algebraic closure of K((x))
one only needs to determine the algebraic closure of K((x)) in L

ω, its completion for
the norm ‖ · ‖ω. Passing through the completion of a field k in order to understand its
algebraic closure is a classical process that appears at least in two important situations:

(1) When we want to understand the algebraic closure of Q, we equip Q with the
usual absolute value, and study the algebraic elements of R, its completion, over
Q. Indeed the field extension of R into its algebraic closure R −→ C is the most
simple one.

(2) When we want to understand the algebraic closure of C(x1), the field of rational
functions in one variable, we equip C(x1) with the norm ‖ · ‖ defined by

∀p, q ∈ C[x1], ‖p/q‖ := e−ord(p)+ord(q)

and we study the algebraic closure of C(x1) into its completion C((x1)). Indeed,
by the Newton–Puiseux Theorem, the field extension of C((x1)) into its algebraic
closure, the field of Puiseux series, is well described.

It is fascinating that there are similar results between these situations in spite of the
fact that the technics used to prove them are quite different. For instance, there is
an analogue of the Liouville diophantine approximation Theorem for the elements
of L

ω that are algebraic over K((x)) (see [16,17,31]). There is also an analogue of
Eisenstein’s Theorem [13] for the elements of L

ω that are algebraic over K((x)) (see
[32, Theorem 5.12]) and an analogue of Fabry’s Theorem for the elements of L

ω that
are algebraic over K((x)) (see [6, Theorem 6.4]).

In this paper we investigate necessary conditions for a Laurent series with support
in a rational strongly convex cone to be algebraic over K((x)) in any characteristic. We
provide conditions in terms of the support of the series. Indeed in the case of the study
of the algebraic closure of C(x1) into C((x1)), or the algebraic closure of K(x1) into
K((x1)) for a general field K, such conditions have been given, and some questions
remain open (as the Dynamical Mordell-Lang Conjecture—cf. [8] or [7]).

In order to explain this we introduce the following definition:
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Definition 1.1 Let ξ be a series with support in Q
n and coefficients in a field K. We

set

τ(ξ) := {ω ∈ R≥0n|∃k ∈ R, Supp(ξ) ∩ {u ∈ R
n|u · ω ≤ k

} = ∅} .

For example, if Supp(ξ) is equal to a cone σ and every unbounded face of σ contains
infinitely many elements of Supp(ξ), then τ(ξ)∨ = σ (see Definition 2.1 for the dual
of a cone). Let us mention that we restrict to vectors ω ∈ R≥0 since, for a series ξ

algebraic over K((x)), ξ + f (x) is algebraic over K((x)) for any f (x) ∈ K[[x]].
Remark 1.2 It is straightforward to check that τ(ξ) is a (non necessarily polyhedral)
convex cone (see Lemma 3.1).

Our first main result is that τ(ξ) is rational when ξ is algebraic over K((x)):

Theorem 1.3 Let ξ be a Laurent Puiseux series whose support is included in a transla-
tion of a strongly convex cone containingR≥0n andwith coefficients in a characteristic
zero field K. Assume that ξ is algebraic over K((x)). Then the set τ(ξ) is a strongly
convex rational cone.

From the rationality of τ(ξ) we can deduce easily the following result:

Corollary 1.4 Let ξ be a Laurent Puiseux series whose support is included in a transla-
tion of a strongly convex cone containingR≥0n andwith coefficients in a characteristic
zero field K. Assume that ξ is algebraic over K((x)). Then there is γ ∈ Z

n such that

Supp(ξ) ⊂ γ + τ(ξ)∨.

Moreover τ(ξ)∨ is the smallest (non necessarily polyhedral) cone having this property.

Now the question is to determine how far is the support of ξ of being equal to a set
of the form γ + τ(ξ)∨. The following result provides an answer to this question:

Theorem 1.5 Let ξ be a Laurent Puiseux series whose support is included in a transla-
tion of a strongly convex cone containingR≥0n andwith coefficients in a characteristic
zero fieldK. Assume that ξ is algebraic overK((x)). Then there exist a finite setC ⊂ Z

n,
a Laurent polynomial p(x), and a power series f (x) ∈ K[[x]] such that

Supp(ξ + p(x)+ f (x)) ⊂ C + τ(ξ)∨

and for every unbounded facet F of Conv(C + τ(ξ)∨), we have

# {Supp(ξ + p(x)+ f (x)) ∩ F} = +∞.

We will see in Example 5.4 that, in general, the set C cannot be chosen to be one
single point. We will also see in Example 5.3 that there is no minimal, maximal or
canonical C satisfying Theorem 1.5.

We do not know if this statement can be extended to faces of τ(ξ)∨ of smaller
dimension. But we have the following result:
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Theorem 1.6 Let ξ be a Laurent Puiseux series whose support is included in a trans-
lation of a strongly convex cone containing R≥0n and with coefficients in a field K of
characteristic zero. Assume that ξ is algebraic overK((x)). Then, for every u ∈ R

n
>0 in

the boundary of τ(ξ) there exists a Laurent polynomial p(x) such that, if Fu denotes
the face defined by u of the convex hull of Supp(ξ + p(x)), then

# (Fu ∩ Supp(ξ)) = +∞.

Let us mention that the cone τ(ξ) was already considered in [6] where we were
not able to prove its rationality and where we gave a very much weaker version of
Theorem 1.6.

We will begin by the proof of Theorem 1.3. This proof is not very difficult once
we have the right setting, and is essentially based on two tools: the compacity of
the space of orders on R≥0n , and the construction, for every order � on Q

n , of an
algebraically closed field SK� containing K((x)). This result of compacity is due to
Ewald and Ishida [14] (see also [34]) and is a purely topological result. It will allow
us to have a decomposition of R≥0n into a union of finitely many rational strongly
convex cones having the following property: for each order�, the roots of the minimal
polynomial of ξ in SK� have support in the dual of one of these cones.

The construction of the algebraically closed fields SK� has been given in [6] and is
based on systematic constructions of algebraically closed valued fields due to Rayner
[28].

The proofs of Theorems 1.5 and 1.6 are much more involved. First they require the
introduction of intermediate cones that we have to describe and compare with τ(ξ).
Then we need to prove an extension of Dickson’s Lemma for general rational cones
(see Proposition 4.14) that will help us to show the existence of the finite set C of
Theorem 1.6.

Finally we investigate the positive characteristic case. We begin by constructing
algebraically closed fields containing K((x)). Each of these fields depends on an order
� on Q

n , and their definition extends the definition of SK� to the case of a positive
characteristic field K. Then we provide several examples showing that Theorems 1.5
and 1.6 as long as Proposition 3.4, that is the key tool to prove Theorem 1.3, are no
longer true in the positive characteristic case.

The authors are very grateful to the referee, who made a great work helping the
authors to clarify the paper. They also thank Diane MacLagan who brought to their
attention a mistake in a previous version of this work.

2 Orders and algebraically closed fields containing K((x))

In this section we introduce the tools needed for the proof of Theorem 1.3.
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2.1 The space of orders onR≥0
n

Definition 2.1 Let us recall that a cone τ ⊂ R
n is a subset of R

n such that for every
t ∈ τ and λ ≥ 0, λt ∈ τ . A cone τ ⊂ R

n is polyhedral if it has the form

τ = {λ1u1 + · · · + λsus |λ1, . . . , λs ≥ 0}

for some given vectors u1, …, us ∈ R
n . A cone is said to be a rational cone if it is

polyhedral, and the ui can be chosen in Z
n .

A cone is strongly convex if it does not contain any non trivial linear subspace.
In practice, as almost all the cones that we consider in this paper are polyhedral

cones, the term cone will always refer to polyhedral cones (unless stated otherwise).
The dual σ∨ of a cone σ is the cone given by

σ∨ := {v ∈ R
n|v · u ≥ 0, for all u ∈ σ }

where u ·v stands for the dot product (u1, . . . , un) ·(v1, . . . , vn) := u1v1+· · ·+unvn .

Remark 2.2 Let ξ be a series and ω ∈ τ(ξ). Then Supp(ξ) ⊂ γ + 〈ω〉∨ for some
γ ∈ Z

n . Indeed it is enough to chooseγ such that Supp(ξ)∩{u ∈ R
n|u·ω ≤ γ ·ω} = ∅.

Definition 2.3 A preorder on an abelian group G is a binary relation � such that

(i) ∀u, v ∈ G, u � v or v � u,
(ii) ∀u, v, w ∈ G, u � v and v � w implies u � w,
(iii) ∀u, v, w ∈ G, u � v implies u + w � v + w,

The set of preorders on G is denoted by ZR(G). The set of orders on G is a subset of
ZR(G) denoted by Ord(G).

Theorem-Definition 2.4 By [30, Theorem 2.5] for every �∈ ZR(Qn) there exist an
integer s ≥ 0 and orthogonal vectors u1, …, us ∈ R

n such that

∀u, v ∈ Q
n, u � v ⇐⇒ (u · u1, . . . , u · us) ≤lex (v · u1, . . . , v · us).

For such a preorder we set� :=≤(u1,...,us ). Such a preorder extends in an obvious way
to a preorder on R

n and the preorders of this form are called continuous preorders.
We remark that the orthogonality condition is not essential as, if Uj denotes the

linear subspace generated by u1, …, u j−1, and v j is chosen in u j + Uj for every
j ≥ 2, then ≤(u1,...,us )=≤(u1,v2,...,vs ).

Definition 2.5 Let A ⊂ R
n and � be a continuous preorder on R

n . We say that A is
�-positive if

∀a ∈ A, a � 0.

Definition 2.6 Let � be a continuous preorder on R
n and A ⊂ R

n . We say that A is
�-well-ordered if A is well-ordered with respect to �.
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The minimal cone of an algebraic Laurent series

Definition 2.7 The set of continuous orders� such that R≥0n is�-positive is denoted
by Ordn .

Definition 2.8 Given two preorders �1 and �2, one says that �2 refines �1 if

∀u, v ∈ R
n, u �2 v �⇒ u �1 v.

Remark 2.9 Let (u1, . . . , us) be nonzero vectors ofR
n . Using Theorem-Definition 2.4

it is easy to check that for a preorder �, � refines ≤(u1,...,us ) if and only if there exist
vectors us+1, …, us+k such that �=≤(u1,...,us+k ).

Lemma 2.10 Let ω ∈ R
n and σ be a strongly convex cone with ω ∈ Int(σ∨). Then σ

is �-positive for every order � refining ≤ω.

Proof If ω ∈ Int(σ∨), we have that s · ω > 0 for every s ∈ σ \ {0}. By Theorem-
Definition 2.9, every � refining ≤ω is equal to ≤(ω,v1,...,vs ) for some vectors vi . Thus
σ is �-positive. ��

The next easy lemma will be used several times:

Lemma 2.11 [6, Lemma 2.4]. Let σ1 and σ2 be two cones and γ1 and γ2 be vectors of
R
n. Let us assume that σ1 ∩ σ2 is full dimensional. Then there exists a vector γ ∈ Z

n

such that

(γ1 + σ1) ∩ (γ2 + σ2) ⊂ γ + σ1 ∩ σ2.

Finally we give the following result, which will be used in the proof of Theorem 1.6
(this is a generalization of [6, Corollary 3.10]):

Lemma 2.12 Let σ1, …, σN be strongly convex cones and let ω ∈ R
n \ {0}. The

following properties are equivalent:

(i) We have ω ∈ Int
(⋃N

i=1 σ∨i
)
.

(ii) For every order �∈ Ord(Qn) refining ≤ω, there is an index i such that σi is
�-positive.

Proof Let us prove that (i) implies (ii). Let ω ∈ Int
(⋃N

i=1 σ∨i
)
. We are going to

show that for all nonzero vectors v1, …, vn−1 ∈ 〈ω〉⊥, with v j ∈ 〈ω, v1, . . . , v j−1〉⊥
for every j , there is an integer i such that σi is ≤(ω,v1,...,vn−1)-positive. Indeed, by
Remark 2.9 every preorder refining ≤ω is of the form ≤(ω,v1,...,v j ) for 1 ≤ j ≤ n− 1.
Therefore ii) is satisfied. So from now on, we fix such vectors v1, …, vn−1.

By Lemma 2.10, if ω ∈ Int(σ∨i ) for some i , then σi is �-positive for every �-
refining≤ω. In particular it is≤(ω,v1,...,vn−1)-positive. Otherwise, let E1 denote the set
of indices i such that ω ∈ σ∨i . If ω were in the boundary of

⋃
i∈E1

σ∨i , then ω would

belong to some σi for i /∈ E1 because ω ∈ Int
(⋃N

i=1 σ∨i
)
. Thus ω ∈ Int

(⋃
i∈E1

σ∨i
)
.

Since ω ∈ Int
(⋃

i∈E1
σ∨i
)
, there is λ1 > 0 such that ω + λ1v1 ∈ Int

(⋃
i∈E1

σ∨i
)
.

Then two cases may occur:
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(1) Assume ω+λ1v1 ∈ Int(σ∨i ) for some i ∈ E1. Because i ∈ E1, for s ∈ σi \ {0},
eitherω ·s > 0, orω ·s = 0. In this last case we have v1 ·s > 0 since (ω+λ1v1) ·s > 0
and λ1 > 0. Therefore σi is�-positive for every order� refining≤(ω,v1) (In particular
it is ≤(ω,v1,...,vn−1)-positive).

(2) If ω + λ1v1 /∈ Int(σ∨i ) for every i ∈ E1, we denote by E2 the set of i ∈ E1
such that ω+λ1v1 ∈ σ∨i . As before we necessarily have ω+λ1v1 ∈ Int

(⋃
i∈E2

σ∨i
)
.

Therefore there is λ2 > 0 such that ω+λ1v1+λ2v2 ∈ Int
(⋃

i∈E2
σ∨i
)
. Once again, if

ω+λ1v1+λ2v2 ∈ Int(σ∨i ) for some i ∈ E2, σi is�-positive for every order� refining
≤(ω,v1,v2). Otherwisewe repeat the same process until one of the two situations occurs:

(a) there is j < n − 1 such that ω + λ1v1 + · · · + λ jv j ∈ Int(σ∨i ) for some i . Then,
we can prove in the same way as (1) that σi is �-positive for every � refining
≤(ω,v1,...,v j ) (hence it is ≤(ω,v1,...,vn−1)-positive).

(b) there is no such an index j . Thus we end with ω + λ1v1 + · · · + λn−1vn−1 that
belongs to (at least) one σ∨i . Therefore the cone σi is ≤(ω,v1,...,vn−1)-positive,
because ω ∈ σ∨i , ω + λ1v1 ∈ σ∨i , …, ω + λ1v1 + · · · + λn−1vn−1 ∈ σ∨i .

This proves that (i) implies (ii).
Nowwe prove the converse. Assume that for every order�∈ Ord(Qn) refining≤ω,

there is an index i such that σi is �-positive.
Let v be a vector with ‖v‖ = 1. By assumption, there is an index i such that σi is

≤(ω,v)-positive. Let s1, …, sl be generators of σi that we assume to be of norm equal
to 1. Reordering the s j , there is an integer k ≥ 0 such that s j ·ω > 0 for every j ≤ k,
and s j · ω = 0 for every j > k, because σi is ≤(ω,v)-positive. Take λ > 0. When

k > 1 assume moreover that
min
≤k{s
 · ω}

2
≥ λ. Then we claim that ω + λv ∈ σ∨i .

Indeed, if j ≤ k we have

(ω + λv) · s j = ω · s j + λv · s j ≥ ω · s j − λ‖v‖‖s j‖ ≥ min
≤k{s
 · ω}
2

> 0.

If j > k we have

(ω + λv) · s j = λv · s j ≥ 0

since σi is ≤(ω,v)-positive. This implies that ω+ λv ∈ σ∨i . Since this is true for every
v, we have ω ∈ Int

(⋃N
i=1 σ∨i

)
. ��

Corollary 2.13 Let ω ∈ R≥0n\{0} and let σ1, …, σN be strongly convex cones which
are ≤ω-positive. Assume that for every order �∈ Ordn refining ≤ω, there is an index
i such that σi is �-positive. Then there is a neighborhood V of ω such that, for every
ω′ ∈ V and every�′∈ Ordn refining≤ω′ , there is an index i such that σi is�′-positive.
Proof We have ω ∈ Int

(⋃N
i=1 σ∨i

)
by the previous lemma. Therefore, the previous

lemma shows that we can choose V = Int
(⋃N

i=1 σ∨i
)
. ��

The following lemma will be used several times:
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Lemma 2.14 Let ξ be a Laurent series with coefficients in a field K. Assume that
Supp(ξ) ⊂ γ + σ where γ ∈ Z

n and σ is a rational cone. Let ω ∈ σ∨. Then, for
every t ∈ R, the set

{u · ω|u ∈ Supp(ξ)} ∩ ]−∞, t
]

is finite.

Proof We can make a translation and assume that γ = 0. Since σ is a rational cone,
by Gordan’s Lemma, there exist vectors v1, …, vN ∈ σ ∩ Z

n generating σ ∩ Z
n as a

monoid. Since ω ∈ σ∨, we have vi · ω ≥ 0 for every i .

By assumption we have σ =
{∑N

i=1 nivi |ni ∈ N

}
. Therefore the set {u · ω|u ∈

Supp(ξ)} is included in the monoid generated by v1 ·ω, …, vN ·ω. Since this monoid
is finitely generated, the sets {u · ω|u ∈ Supp(ξ)} ∩ ]−∞, t

]
are finite. ��

2.2 The space Ordn as a compact topological space

One important tool for the proof of Theorem 1.3 is the fact that the set of orders Ordn
is a topological compact space for a well chosen topology. This topology has been
introduced by Ewald and Ishida [14] (see also [12] for a generalization of this to the
sets of preorders on a given group).

Definition 2.15 [14,34]. The set ZR(Qn) is endowed with a topology for which the
sets

Uσ :=
{�∈ ZR(Qn) such that σ is � -positive

}

form a basis of open sets where σ runs over the full dimensional strongly convex
rational cones.

Remark 2.16 With this definition we have Ordn = UR≥0n ∩ Ord(Qn).

We have the following result:

Theorem 2.17 [14]. The space ZR(Qn) is compact andOrd(Qn) is closed in ZR(Qn).
Moreover every Uσ is compact. Therefore Ordn is compact.

The following lemma will be useful in the sequel:

Lemma 2.18 Let σ1, …, σN be rational cones such that Ordn ⊂⋃N
k=1 Uσk . Then

R≥0n ⊂
N⋃

k=1
σ∨k .

Proof Let ω ∈ R≥0n . Let �∈ Ordn refining ≤ω. Such a � exists by [6, Lemma 3.18].
Then �∈ Uσk for some k. Since � refines ≤ω, we have that σk is ≤ω-positive. This
means that ω ∈ σ∨k . This proves that R≥0n ⊂⋃N

k=1 σ∨k . ��
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2.3 Algebraically closed fields containingK((x)) in characteristic zero

Definition 2.19 Let n be a positive integer and �∈ Ordn .
For a field K of characteristic zero, we denote by SK� the following set:

{

ξ series|∃k∈N
∗, γ ∈ Z

n, σ � -positive rational cone, Supp(ξ) ⊂ (γ + σ) ∩ 1

k
Z
n
}

.

We have the following theorem:

Theorem 2.20 [6, Theorem 4.5]. When K is an algebraically closed field of charac-
teristic zero, the set SK� is an algebraically closed field.

Definition 2.21 For simplicity we will use the following notation: given a character-
istic zero field K, a strongly convex rational cone σ containing R≥0n and k ∈ N

∗, we
set

SK
σ,k :=

{

ξ series |∃γ ∈ Z
n, such that Supp(ξ) ⊂ (γ + σ) ∩ 1

k
Z
n
}

.

3 Proofs of Theorem 1.3 and Corollary 1.4

We begin by the following remark:

Lemma 3.1 Let ξ be a serieswith support inQ
n. Then τ(ξ) is a convex (non necessarily

polyhedral) cone.

Proof It is straightforward to see that for λ > 0 and ω ∈ τ(ξ), λω ∈ τ(ξ). Thus,
we need to prove that for ω1, ω2 ∈ τ(ξ), ω1 + ω2 ∈ τ(ξ). By Remark 2.2, there
exist γ1, γ2 ∈ Z

n , σ1 ⊂ 〈ω1〉∨, σ2 ⊂ 〈ω2〉∨ containing R≥0n such that Supp(ξ) ⊂
(γ1+σ1)∩ (γ2+σ2). Thus Supp(ξ) ⊂ γ +σ1∩σ2 for some γ ∈ Z

n by Lemma 2.11.
This proves the lemma. ��

In order to prove Theorem 1.3 we need the following intermediate results:

Lemma 3.2 Let K be a characteristic zero field. Let ξ ∈ SK
σ,k where σ is a strongly

convex rational cone containing R≥0n, and k ∈ N
∗ (cf. Definition 2.21). Let P ∈

K[[x]][T ] be a monic polynomial of degree d with P(ξ) = 0. Let us assume that there
exists σ0 ⊃ R≥0n a strongly convex rational cone such that P(T ) splits in SK

σ0,k
.

Then

Int(σ∨0 ) ∩ τ(ξ) �= ∅ �⇒ σ∨0 ⊂ τ(ξ).

Proof Consider a nonzero vectorω ∈ Int(σ∨0 )∩τ(ξ). Since ξ ∈ SK
σ,k , there are k ∈ N,

γ0 ∈ Z
n , and σ a ≤ω-positive rational cone, such that

Supp(ξ) ⊂ (γ0 + σ) ∩ 1

k
Z
n .
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Since σ is ≤ω-positive and strongly convex, there exists an order �∈ Ordn refining
≤ω such that σ is �-positive (see [6, Lemma 3.8]). Thus ξ is a root of P in SK� .

On the other hand, ω is in the interior of σ∨0 , so σ0 is �-positive by Lemma 2.10.
Thus the roots of P in SK

σ0,k
are the roots of P in SK� and ξ is one of them. Hence there

is some γ ∈ Z
n such that

Supp(ξ) ⊂ γ + σ0.

Now let ω′ ∈ σ∨0 . We have σ0 ⊂ 〈ω′〉∨. Hence ω′ ∈ τ(ξ). This proves the lemma. ��
Corollary 3.3 Let K be an algebraically closed field of characteristic zero and let
ξ ∈ SK� where �∈ Ordn. Let P ∈ K[[x]][T ] be a monic polynomial of degree d with
P(ξ) = 0. Let σi , i = 1, . . . , N, be strongly convex rational cones containing R≥0n,
and k ∈ N

∗, satisfying the following properties:

(i)
N⋃

i=1
σ∨i = R≥0n,

(ii) for every i , and every �∈ Uσi , the roots of P(T ) in SK� are in SK�,σi ,k
.

Then, after renumbering the σi , there is an integer l ≤ N such that

τ(ξ) =
l⋃

i=1
σ∨i .

Proof By Lemma 3.2, we can renumber the σi such that σ∨i ⊂ τ(ξ) for i ≤ l and

Int(σ∨i ) ∩ τ(ξ) = ∅ for every i > l. So we have
l⋃

i=1
σ∨i ⊂ τ(ξ).

Now, suppose that this inclusion is strict: there is an element ω ∈ τ(ξ) such that
ω /∈⋃l

i=1 σ∨i .
We claim that

⋃l
i=1 σ∨i is convex. Indeed, assume that it is not. Since the σ∨i are

convex, this implies that there is ωi1 ∈ σ∨i1 , ωi2 ∈ σ∨i2 for some i1, i2 ≤ l, such that

ωi1 + ωi2 /∈ ⋃l
i=1 σ∨i . In this case, the line segment [ωi1 , ωi2 ] intersects

⋃N
i=l+1 σ∨i .

Since σ∨i1 and σ∨i2 are full dimensional, we can replace freely ωi1 and ωi2 by any
elements close to them. Thus we may assume that [ωi1 , ωi2 ] intersects Int(σ∨m ) for
some m > l. But this contradicts the fact that τ(ξ) is convex (see Lemma 3.1).

Therefore, by the Hahn–Banach Theorem there is a hyperplane H separatingω and
the convex closed set

⋃l
i=1 σ∨i in the following sense: one open half space delimited

by H , denoted by O , contains ω and
⋃l

i=1 σ∨i ⊂ R
n\O . Since

⋃l
i=1 σ∨i is full

dimensional, the convex hull C of ω and
⋃l

i=1 σ∨i is full dimensional:

C :=
{

λω + (1− λ)v|v ∈
l⋃

i=1
σ∨i , 1 ≥ λ ≥ 0

}

.

Thus C ∩ O contains an open ball B.
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Since τ(ξ) is convex (see Lemma 3.1), C ⊂ τ(ξ) and B ⊂ τ(ξ). Then B intersects
one σ∨m for m > l because B ⊂ O and we have assumed

⋃N
i=1 σ∨i = R≥0n . But

because B is open, B ∩ Int(σ∨m ) �= ∅, and this is a contradiction because B ⊂ τ(ξ)

and τ(ξ)∩Int(σ∨m ) = ∅ form > l. Therefore the inclusion is not strict and
⋃l

i=1 σ∨i =
τ(ξ). ��
Proposition 3.4 Let K be an algebraically closed field of characteristic zero and
P ∈ K[[x]][T ]. There is an integer N, strongly convex rational cones σ1, . . . , σN

containing R≥0n, and k ∈ N
∗, such that:

(i) Ordn ⊂⋃N
i=1 Uσi and

N⋃

i=1
σ∨i = R≥0n,

(ii) for every �∈ Ordn, there is j ∈ {1, . . . , N }, such that the roots of P(T ) in SK�
belong to SK

σ j ,k
.

Proof By Theorem 2.20 for every order �∈ Ordn there is an element γ� ∈ Z
n , and a

�-positive strongly convex rational cone σ� such that the roots of P can be expanded
as series in SK� with support in γ� + σ�.

In particular we have Ordn ⊂ UR≥0n ⊂
⋃
� Uσ� . Hence, by Theorem 2.17, we

can extract from this family of cones σ�, a finite number of cones, denoted by σ�1 ,
. . . , σ�N , such that Ordn ⊂ ⋃N

i=1 Uσ�i . Therefore, by Lemma 2.18, we have that

R≥0n ⊂ ⋃N
i=1 σ∨�i

. Because the σ�i contain R≥0n , we have R≥0n = ⋃N
i=1 σ∨�i

.

Moreover these cones satisfy the following property:

∀ �∈ Ordn , ∃γ� ∈ Z
n , ∃i ∈ {1, . . . , N }, such that the roots of P(T ) in SK� have

support in γ� + σ�i .

Assume that the same integer i ∈ {1, . . . , N } satisfies the previous property for two
orders �1 and �2∈ Ordn . That is, the roots of P in SK�1

(resp. in SK�2
) have support

in γ�1 + σi (resp. in γ�2 + σi ). Then the roots of P in SK�2
are elements of SK�1

, thus
the roots of P in SK�2

coincide with its roots in SK�1
. Therefore we may assume that

the element γ� does depend only on i . ��
Proof of Theorem 1.3 First, by replacing each of the xi by some power of xi , we may
assume that ξ is a Laurent series. By Proposition 3.4, there exist strongly convex ratio-
nal cones σ1,…, σN satisfying (i) and (ii) of Corollary 3.3. Therefore, byCorollary 3.3,
we have that τ(ξ) is a strongly convex rational cone. This proves Theorem 1.3. ��
Remark 3.5 For a formal power series f ∈ K[[x]] we denote by NP( f ) its Newton
polyhedron. Let p be a vertex of NP( f ). The set of vectors v ∈ R

n such that p+λv ∈
NP( f ) for some λ ∈ R≥0 is a rational strongly convex cone. Such a cone is called
the cone of the Newton polyhedron of f associated with the vertex p. We have the
following generalization of Abhyankar–Jung Theorem that provides in an effective
way some cones satisfying Corollary 3.3:

Theorem 3.6 (Strong form of the Abhyankar–Jung Theorem) [15, Théorème 3] [4,
Theorem 7.1] [25, Theorem 6.2]. Let K be a characteristic zero field. Let P(Z) ∈
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K[[x]][Z ] be a monic polynomial and let � be its discriminant. Let NP(�) denote
the Newton polyhedron of �. Then the set of cones of NP(�) satisfies the properties
of Corollary 3.3.

Therefore, if ξ is integral over K[[x]], that is P(T ) is a monic polynomial in T , we
may replace the use of Corollary 3.3 (thus Proposition 3.4 and thus Theorems 2.17
and 2.20) by Theorem 3.6.

Now we are able to prove Corollary 1.4:

Proof of Corollary 1.4 By replacing K by its algebraic closure, we may assume that K

is algebraically closed. Since τ(ξ) is rational, let ω1, …, ωs ∈ Z
n be generators of

τ(ξ). Thus we have τ(ξ)∨ =⋂s
i=1〈ωi 〉∨. Therefore, we have Supp(ξ) ⊂ γ + τ(ξ)∨

for some γ ∈ Z
n by Remark 2.2 and Lemma 2.11.

On the other hand if σ is a cone (not necessarily finitely generated) such that
Supp(ξ) ⊂ γ + σ for some γ ∈ Z

n , then we have σ∨ ⊂ τ(ξ) by the definition of
τ(ξ), that is, τ(ξ)∨ ⊂ σ . ��

4 Proof of Theorems 1.5 and 1.6

4.1 Preliminary results

Definition 4.1 For a Laurent series ξ we set

τ ′0(ξ) = {ω ∈ R≥0n \ {0}|#
(
Supp(ξ) ∩ {u ∈ R

n|u · ω ≤ k
})

<∞,∀k ∈ R
}
,

τ ′1(ξ) = {ω ∈ R≥0n \ {0}|#
(
Supp(ξ) ∩ {u ∈ R

n|u · ω ≤ k
}) = ∞,∀k ∈ R

}
.

We have the following lemma:

Lemma 4.2 Let ξ be a Laurent series with support in a translation of a strongly convex
cone containing R≥0n. We have τ ′0(ξ) ⊂ τ(ξ) ⊂ τ ′0(ξ).

Proof We have τ ′0(ξ) ⊂ τ(ξ) by definition.
Let ω ∈ τ(ξ). Then by Remark 2.2, Supp(ξ) ⊂ γ + 〈ω〉∨ for some γ ∈ Z

n .
On the other hand, by hypothesis, Supp(ξ) is included in γ ′ + σ where γ ′ ∈ Z

n

and σ is a strongly convex cone such that R≥0n ⊂ σ . Thus, by Lemma 2.11, Supp(ξ)

is included in a translation of the strongly convex cone σ ∩ 〈ω〉∨.
We have ω ∈ 〈ω〉∨∨ ⊂ (σ ∩ 〈ω〉∨)∨ , and

(
σ ∩ 〈ω〉∨)∨ is full dimensional. Thus

there exists a sequence (ωk)k of vectors in Int
((

σ ∩ 〈ω〉∨)∨
)
that converges to ω.

We have to prove that the ωk belong to τ ′0(ξ). For u ∈ (σ ∩ 〈ω〉∨) \ {0}, we have
u ·ωk �= 0 becauseωk ∈ Int

((
σ ∩ 〈ω〉∨)∨

)
. This shows that σ ∩〈ω〉∨∩〈ωk〉⊥ = {0}.

Therefore, because Supp(ξ) is included in a translation of σ ∩〈ω〉∨, for all k we have:

ωk ∈
{
ω′ ∈ R

n|# (Supp(ξ) ∩ {u ∈ R
n|u · ω′ ≤ k

})
<∞,∀k ∈ R

}
.

Moreover, because ω ∈ τ(ξ) ⊂ R≥0n and R≥0n ⊂ σ , we have R≥0n = (R≥0n)∨ ⊂
σ ∩ 〈ω〉∨. Therefore the ωk are in R≥0n , and they are nonzero for k large enough
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because (ωk)k converges to ω which is nonzero. This shows that ωk ∈ τ ′0(ξ) for k

large enough, therefore ω ∈ τ ′0(ξ). ��
Corollary 4.3 Under the hypothesis of Theorem 1.6, we have

τ(ξ) = τ ′0(ξ).

Proof By Lemma 4.2 we have τ ′0(ξ) ⊂ τ(ξ) ⊂ τ ′0(ξ). Since τ(ξ) is closed (it is a

rational cone, thus a polyhedral cone, by Theorem 1.3) we have τ(ξ) = τ ′0(ξ). ��
Definition 4.4 In the rest of this section we consider the following setting: ξ is a
Laurent series with support included in the translation of a strongly convex rational
cone, and ξ is algebraic over K[[x]] where K is a field of characteristic zero. From
now on we enlarge K in order to assume that K is algebraic closed. We denote by
P ∈ K[[x]][T ] the minimal polynomial of ξ and, for any order�∈ Ordn , ξ

�
1 , . . . , ξ

�
d

denote the roots of P(T ) in SK� . We set

τ0(ξ) := {ω ∈ R≥0n\{0}| for all � that refines ≤ω, ∃i such that ξ = ξ
�
i

}
,

τ1(ξ) := {ω ∈ R≥0n\{0}|ξ �= ξ
�
i , for all � that refines ≤ω, ∀i = 1, . . . , d

}
,

Remark 4.5 These sets were introduced in [6], but only for ω ∈ R>0
n . In this case it

was proved that τ0(ξ)∩R>0
n = τ ′0(ξ)∩R>0

n and τ1(ξ)∩R>0
n = τ ′1(ξ)∩R>0

n (see
[6, Lemmas 5.8, 5.11]). Taking into account all the ω ∈ R≥0n changes the situation.
In particular we do not have τ0(ξ) = τ ′0(ξ) in general (see Example 4.12).

Proposition 4.6 We have τ1(ξ) = τ ′1(ξ) and τ ′0(ξ) ⊂ τ0(ξ).

Proof The proof of the equality τ1(ξ) = τ ′1(ξ) is exactly the proof of [6, Lemma 5.11].
Let us prove τ ′0(ξ) ⊂ τ0(ξ). Let ω ∈ τ ′0(ξ), in particular:

#
(
Supp(ξ) ∩ {u ∈ R

n|u · ω ≤ k
})

<∞, ∀k ∈ R, (2)

and let us consider an order � that refines ≤ω.
Let (ul)l be a sequence of elements of Supp(ξ) such that ul � ul+1 for every l ∈ N.

Then ul ≥ω ul+1, that is ul · ω ≥ ul+1 · ω, for every l ∈ N. Therefore by (2), this
sequence contains only finitely many distinct terms. Therefore ul+1 = ul for l large
enough because � is an order. This shows that Supp(ξ) is �-well-ordered. Thus by
[6, Corollary 4.6] ξ is an element of SK� . This shows that ω ∈ τ0(ξ). ��
Proposition 4.7 The sets τ0(ξ) and τ1(ξ) are open subsets of R≥0n.

Proof Let us consider the cones σi given by Proposition 3.4. In particular, for every
ω ∈ R≥0n\{0}, the set of orders �∈ Ordn refining ≤ω is included in

⋃N
i=1 Uσi . The

set Tω = {σ1, . . . , σN } satisfies the following property:

For any order �∈ Ordn refining ≤ω, there is σ ∈ Tω, σ being �-positive, such
that the roots of P in SK� are in SK

σ,k for some k ∈ N
∗.
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Moreover, let us choose Tω to beminimal among the sets of cones having this property.
Then Corollary 2.13 implies that, for every ω′ ∈ R≥0n\{0} close enough to ω, and for
any order �′∈ Ordn refining ≤ω′ , there is σ ∈ Tω such that the roots of P in SK

�′ are
in SK

σ,k for some k ∈ N
∗. Since Tω is minimal with this property, for every ω′ close

enough to ω, for every order �′∈ Ordn refining ≤ω′ and for every i = 1, . . . , d, there
is an order �∈ Ordn refining ≤ω such that ξ�

′
i = ξ

�
ji
for some ji .

If ω ∈ τ0(ξ) then ξ is equal to some ξ
�
i for every order �∈ Ordn refining ≤ω.

Thus, for every ω′ ∈ R≥0n close enough to ω and every order�′∈ Ordn refining ≤ω′ ,

ξ = ξ
�′
j for some j . Thus ω′ ∈ τ0(ξ). This proves that τ0(ξ) is open in R≥0n .

If ω ∈ τ1(ξ) then ξ �= ξ
�
i for every i and for every order �∈ Ordn refining ≤ω.

Thus, for ω′ ∈ R≥0n close enough to ω and every order �′∈ Ordn refining ≤ω′ ,

ξ �= ξ
�′
j for every j . Hence ω′ ∈ τ1(ξ) and τ1(ξ) is open. ��

Corollary 4.8 We have

τ ′0(ξ) ∩ τ ′1(ξ) = ∅.

Proof The sets τ0(ξ) and τ1(ξ) are disjoint and open inR≥0n . Thus τ0(ξ)∩τ1(ξ) = ∅.
This proves the corollary because τ ′0(ξ) ⊂ τ0(ξ) and τ ′1(ξ) = τ1(ξ) by Proposition 4.6.

��
Lemma 4.9 We have

τ ′0(ξ) = τ0(ξ) ∩ R>0
n = τ0(ξ).

Proof The set τ0(ξ) is open. Therefore every w ∈ τ0(ξ) ∩ (R≥0n\R>0
n) can be

approximated by elements of τ0(ξ) ∩ R>0
n . Hence

τ0(ξ) ∩ R>0
n = τ0(ξ).

By [6, Lemma 5.8] τ ′0(ξ) ∩R>0
n = τ0(ξ) ∩R>0

n . We have that τ ′0(ξ) is convex (the
proof is exactly the same as the proof of [6, Lemma 5.9]). Thus we have

τ ′0(ξ) ∩ R>0
n = τ ′0(ξ)

by [9, Prop. 16–Cor. 1; II.2.6]. Hence

τ ′0(ξ) = τ ′0(ξ) ∩ R>0
n = τ0(ξ) ∩ R>0

n = τ0(ξ).

��
Corollary 4.10 For every f ∈ K[[x]]∗ we have

τ0(ξ + f ) = τ0(ξ), τ1(ξ + f ) = τ1(ξ), τ (ξ + f ) = τ(ξ),

τ0( f ξ) ⊃ τ0(ξ), τ1( f ξ) ⊃ τ1(ξ), τ ( f ξ) ⊃ τ(ξ).
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Proof The minimal polynomial of ξ + f is Q(T ) := P(T − f ). Thus, for a given
�∈ Ordn , the roots of Q(T ) in SK� are ξ

�
1 + f , . . . , ξ�d + f . This shows that

τ0(ξ + f ) = τ0(ξ), τ1(ξ + f ) = τ1(ξ).

Lemma 4.9 and Corollary 4.3 imply that τ(ξ + f ) = τ(ξ).

Now, the polynomial R(T ) := f d P(T / f ) vanishes at f ξ . On the other hand, if
R(T ) is a polynomial with R( f ξ) = 0, then R( f T ) is a polynomial vanishing at ξ .
This shows that P(T ) divides R( f T ). Thus, the minimal polynomial of f ξ has degree

d and divides R(T ), thus it is of the form 1
g R(T ) = f d

g P(T / f ) for some g ∈ K[[x]],
g �= 0.

Therefore, for a given �∈ Ordn , the roots in SK� of the minimal polynomial of f ξ
are f ξ�1 , . . . , f ξ�d . This shows that

τ0( f ξ) ⊃ τ0(ξ), τ1( f ξ) ⊃ τ1(ξ), τ ′0( f ξ) ⊃ τ ′0(ξ).

This proves the corollary. ��

Example 4.11 Let ξ = ∑
i≥0
(
x1
x2

)i = x2
x2−x1 . Here τ(ξ) is the cone generated by

(1, 0) and (1, 1). But τ((x2− x1)ξ) = R≥0n . Therefore we do not have τ( f ξ) = τ(ξ)

in general.

Example 4.12 We can see on a basic example that τ ′0(ξ + f ) �= τ ′0(ξ) in general:
let n = 2 and fix ξ = ∑

k∈N xk1 and f = 1 − ξ . Then τ ′0(ξ) = R>0 × R≥0 but
τ ′0(ξ + f ) = R≥02. This also shows that τ0(ξ) �= τ ′0(ξ) in general.

4.2 Proof of Theorem 1.6

First, by replacing each of the xi by some power of xi , we may assume that ξ is a
Laurent series.

Here we denote by σ the face of τ(ξ)∨ defined by u. We set

Hu(t) := {v ∈ R
n|v · u = t}, Hu(t)

+ = {v ∈ R
n|v · u ≥ t}. (3)

The vector u is in the boundary of τ ′0(ξ) because τ(ξ) = τ ′0(ξ) by Corollary 4.3. Hence
by Corollary 4.8 we have u /∈ τ ′1(ξ). Thus, we have u ∈ τ ′0(ξ) or u ∈ R≥0n\(τ ′0(ξ) ∪
τ ′1(ξ)). Assume that u ∈ τ ′0(ξ). By Proposition 4.7, τ ′0(ξ) ∩ R>0

n is open. Thus,
because u is in the boundary of τ ′0(ξ), we have u ∈ R≥0n\R>0

n , which contradicts
the hypothesis. Therefore u /∈ τ ′0(ξ). Thus we use the following lemma whose proof
is given below:

Lemma 4.13 Let u /∈ τ ′0(ξ)∪ τ ′1(ξ). Then there exist a Laurent polynomial pσ (x) and
a real number tσ such that

Supp(ξ + pσ (x)) ⊂ Hu(tσ )+ and # (Supp(ξ + pσ (x)) ∩ Hu(tσ )) = +∞. (4)
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Now we denote by p(x) the sum of distinct monomials that appear in all the pσ (x)
(there is a finite number of faces σ ), and Theorem 1.6 is proved.

Proof of Lemma 4.13 Because u /∈ τ ′0(ξ) ∪ τ ′1(ξ), the following set is non empty and
bounded from above :

Eσ :=
{
t ∈ R|# (Supp(ξ) ∩ {v ∈ R

n|v · u < t
})

<∞} .

Let us set tσ := sup Eσ . By Lemma 2.14, the set {v · u|v ∈ Supp(ξ)}∩] − ∞, t]
is finite for every t (here u belongs to the closure of τ(ξ)). Thus, we may order
the elements of {v · u|v ∈ Supp(ξ)} as t0 < t1 < · · · , and necessarily tσ is one
of these elements. Therefore the set Supp(ξ) ∩ {v ∈ R

n|v · u = tσ } is infinite and
Supp(ξ) ∩ {v ∈ R

n|v · u < tσ } is finite. So we denote by −pσ (x) the sum of the
monomials of ξ whose exponents belong to {v ∈ R

n|v · u < tσ } and (4) is satisfied
(that is, we remove from ξ the monomials that are in {v ∈ R

n|v · u < tσ }). ��

4.3 Proof of Theorem 1.5

We begin by giving a strengthened version of Lemma 2.11 that we will need in the
proof of Theorem 1.5:

Proposition 4.14 (Dickson’s Lemma) Let σ1, . . . , σk be convex rational cones such
that σ := ⋂k

j=1 σ j is a full dimensional convex rational cone. Let γ1, . . . , γk ∈ Z
n.

Then there exists a finite set C ⊂ Z
n such that

k⋂

j=1
(γ j + σ j ) ∩ Z

n = C + σ ∩ Z
n .

Proof Up to a translation wemay assume that γ j ∈ σ ∩Z
n for every j because σ is full

dimensional. Let u1, . . . , us be vectors with integer coordinates generating σ ∩ Z
n .

Then the ring Rσ of polynomials in x1, . . . , xn with support in σ ∩ Z
n is isomorphic

to K[U1, . . . ,Us]/I for some binomial ideal I . This is well known and this can be
described as follows (for instance see [11, Proposition 1.1.9] for details):
for any linear relation L := {∑s

i=1 λi ui = 0} with λi ∈ Z we consider the binomial

BL :=
∏

i |λi≥0
Uλi
i −

∏

i |λi<0

U−λi
i .

Then I is the ideal generated by the BL for L running over the Z-linear relations
between the ui . Moreover, for γ ∈ σ ∩ Z

n , the isomorphism Rσ −→ K[U ]/I sends
xγ onto Uαγ where αγ ∈ Z

s≥0 is defined by γ =∑s
i=1 αγ,i ui .

Because the γ j belong to σ , we have

k⋂

j=1
(γ j + σ j ) ⊂

k⋂

j=1
σ j = σ.
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Therefore the set of monomials xu for u ∈⋂k
j=1(γ j + σ j )∩Z

n , is equal to the set of
monomials of a monomial ideal of Rσ . By Gordan’s Lemma, this ideal is generated by
a finite number of monomials. If C denotes the set of exponents of these generators,
we have

⋂k
j=1(γ j + σ j ) ∩ Z

n = C + σ ∩ Z
n . ��

Proof of Theorem 1.5 As in the proof of Theorem 1.6 we may replace each of the xi
by some power of xi , and assume that ξ is a Laurent series.
By [24, Proposition 1.3], because τ(ξ)∨ is a strongly convex rational cone, for each
nonzero face σ ⊂ τ(ξ)∨, there is a vector uσ in the boundary of τ(ξ) such that

σ = 〈uσ 〉⊥ ∩ τ(ξ)∨.

In fact, as seen in the proof of [24, Proposition 1.3], we can freely choose uσ in the
relative interior of σ⊥ ∩ τ(ξ), where σ⊥ ∩ τ(ξ) is a face of dimension n-dim(σ ) of
τ(ξ). Thus, when σ is a facet of τ(ξ)∨, σ⊥ ∩ τ(ξ) is a half-line that is generated by
one vector with integer coordinates. Therefore, when σ is a facet of τ(ξ)∨, we can
choose uσ ∈ Z

n .
From now on, σ will always denote a facet of τ(ξ)∨. We have

τ(ξ)∨ =
⋂

σ facet of τ(ξ)∨
Huσ (0)+

where the Huσ (t)+ are defined in (3). The vectors uσ are in the boundary of τ ′0(ξ)

because τ(ξ) = τ ′0(ξ) by Corollary 4.3. Hence by Corollary 4.8 we have uσ /∈ τ ′1(ξ)

for any facet σ . Thus for every facet σ of τ(ξ)∨ we have uσ ∈ τ ′0(ξ) or uσ ∈
R≥0n\(τ ′0(ξ) ∪ τ ′1(ξ)). We will reduce to the situation where none of the uσ are in
τ ′0(ξ):

Let σ be a facet of τ(ξ)∨ for which uσ ∈ τ ′0(ξ). By Proposition 4.7, τ ′0(ξ) ∩R>0
n

is open. Thus, because uσ is in the boundary of τ ′0(ξ), we have uσ ∈ R≥0n\R>0
n .

In particular at least one of the coordinates of uσ is zero, hence 〈uσ 〉⊥ contains at
least one line generated by one vector with integer coordinates. Therefore there exists
fσ (x) ∈ K[[x]] with support in 〈uσ 〉⊥ ∩ R≥0n and such that

#
{
Supp(ξ + fσ (x)) ∩ 〈uσ 〉⊥ ∩ R≥0n

}
= +∞.

Moreover we can do this simultaneously for every facet σ of τ(ξ)∨ such that uσ ∈
τ ′0(ξ), hence there exists f (x) ∈ K[[x]] such that for every such facet σ :

#
{
Supp(ξ + f (x)) ∩ 〈uσ 〉⊥ ∩ R≥0n

}
= +∞. (5)

By Corollary 4.10 τ(ξ) = τ(ξ + f (x)). But uσ /∈ τ ′0(ξ + f (x)) by (5). Therefore,
we replace ξ with ξ + f (x). This does not change τ(ξ), but this allows us to assume
that uσ ∈ R≥0n\(τ ′0(ξ) ∪ τ ′1(ξ)). Therefore we may assume that none of the uσ is in
τ ′0(ξ).
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Fig. 1 Example 5.1

x

y

Then we apply Lemma 4.13 to see, as in the proof of Theorem 1.6, that modulo a
finite number of monomials and a formal power series f (x) ∈ K[[x]], the support of ξ
is included in

⋂

σ facet of τ(ξ)∨
Huσ (tσ )+∩Z

n . Moreover each Huσ (tσ ) contains infinitely

many monomials of ξ , i.e there is a Laurent polynomial p(x) such that

Supp(ξ + f (x)+ p(x)) ⊂
⋂

σ facet of τ(ξ)∨
Huσ (tσ )+ ∩ Z

n

and #
(
Supp(ξ + f (x)+ p(x)) ∩ Huσ (tσ )

) = +∞ ∀σ.

For every σ facet of τ(ξ)∨ we have Huσ (tσ )+ = γσ + Huσ (0)+ for any γσ ∈ Hσ (tσ ).
But, since Huσ (tσ ) ∩ Z

n �= ∅, we may fix γσ ∈ Z
n . Since uσ ∈ Z

n , the cone H+uσ
is

rational. Thus, by Corollary 4.14 there is a finite set C ⊂ Z
n such that

⋂

σ facet of τ(ξ)∨
Huσ (tσ )+ ∩ Z

n = C +
⋂

σ facet of τ(ξ)∨
Huσ (0)+ ∩ Z

n = C + τ(ξ)∨ ∩ Z
n .

Because the sum of two convex sets is a convex set, we have

Conv(C + τ(ξ)∨) = Conv(C)+ τ(ξ)∨

is an unbounded convex polytope. Moreover each unbounded facet of Conv(C +
τ(ξ)∨) is the intersection of Conv(C + τ(ξ)∨) with one Huσ for some facet σ of
τ(ξ)∨. Therefore every unbounded facet of Conv(C+τ(ξ)∨) contains infinitely many
elements of Supp(ξ + f (x)+ p(x)). ��

5 Some examples

Example 5.1 Let E := {(x, y) ∈ R≥0 × R|y ≥ −x − √x} and let ξ be a Laurent
series whose support is Z

2 ∩ E as follows (Fig. 1):
Here τ(ξ) is the cone generated by (1, 0) and (1, 1), but Supp(ξ) ⊂ σ where σ

is the cone {(x, y) ∈ R≥0 × R|y > −x}. Since σ � τ(ξ)∨, ξ is not algebraic over
K((x, y)) by Corollary 1.4.
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Fig. 2 Example 5.2

y

x

Moreover τ ′1(ξ) is equal to the rational cone generated by (1, 0) and (1, 1) minus the
origin. So τ ′1(ξ) is not open. In this case R≥0n\{0} = τ ′0(ξ) ∪ τ ′1(ξ).

Example 5.2 We consider the set

E := {(x, y) ∈ R≥0 × R|y ≥ ln(x + 1)}.

We rotate it by an angle of−π/4 and denote this set by 
. We denote a Laurent series
whose support is 
 ∩ Z

2 by ξ (see Fig. 2).
Then τ(ξ)∨ is the cone generated by (1,−1) and (0, 1), so it is rational, but ξ is

not algebraic as Theorem 1.5 is not satisfied.
Moreover τ(ξ) is generated by (1, 0) and (1, 1). Thus the vector (1, 1) is in the

boundary of τ(ξ) but here (1, 1) ∈ τ ′0(ξ). Thus τ ′0(ξ) is closed.

Example 5.3 Let σ be the cone generated by the vectors (1, 0), (0, 1) and (1,−1).
Then the series ξ := ∑∞

k=0(xy−1)k has support in σ and it is straightforward to see
that σ = τ(ξ)∨. Let N ∈ Z

∗ and set pN (x, y) := ∑N−1
k=0 (xy−1)k (when N > 0) or

pN (x, y) =∑0
k=N (xy−1)k (when N < 0). Let CN denote the point (N ,−N ). Then,

we have

CN ∈ Supp(ξ − pN (x, y)) ⊂ CN + σ.

This shows that there is no canonical choice forCN in Theorem 1.5, neither a minimal
or maximal CN .

Example 5.4 Let C be the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and let σ be the cone
generated by the vectors (1,−1, 1), (−1, 1, 1), and (1, 1,−1). We can construct a
Laurent series ξ , algebraic over K[[x, y, z]], with support in Conv(C)+ σ , such that
all the unbounded faces of Conv(C) + σ contain infinitely many monomials of ξ as
follows:

We fix an algebraic series G(T ) not in K(T ). We remark that, for a, b, c ∈ Z, the
series G(xa ybzz) is algebraic over K(x, y, z), and it is a formal sum of monomials of
the form xka ykbzkc with k ∈ N. Thus its support is included in the half line generated
by the vector (a, b, c).

Then we set

ξ = G(x)+ G(y)+ zG(z)+ zG

(
xz

y

)

+ zG
( yz

x

)
+ (x + y)G

(
xy

z

)

.
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Fig. 3 Example 5.4

x
y

z

Then ξ is algebraic overK((x, y, z)), its support is Conv(C)+σ and all the unbounded
faces of Conv(C)+ σ contain infinitely many monomials of ξ (see Fig. 3). Therefore
τ(ξ)∨ = σ . Moreover we can see that there is no γ ∈ R

n such that Supp(ξ) ⊂ γ + σ

and every face of γ +σ contains infinitely many monomials of ξ , even after removing
monomials of ξ belonging to R≥03. Indeed, if it were the case, the four unbounded
edges of Conv(C)+ σ that are not included in R≥03 would intersect at one point and
this is clearly not the case. Thus we cannot assume that the finite set C of Theorem 1.5
is a single point.

6 The positive characteristic case

In positive characteristic, unlike the characteristic zero case, we cannot express roots
of polynomials as Puiseux series with support in rational strongly convex cones. This
already appears in the univariate case, since it has been noticed by Chevalley [10] that
none of the roots of the polynomial T p − x p−1

1 T − x p−1
1 can be expressed as Puiseux

series, when p > 0 denotes the characteristic of the base field. This shows that the
Newton–Puiseux Theorem is nomore valid in positive characteristic. ThenAbhyankar
noticed that for such a polynomial, the roots can be expressed as generalized series
with support in Q with the additional property that their support is well-ordered [2].

Here such a root can be written as
∑

k∈N∗ x
1− 1

pk

1 . The determination of the algebraic
closure of K((x1)) for n = 1, when K is a positive characteristic field, was finally
achieved very recently (see [19,20]).
For n ≥ 2, this problem has recently been investigated by Saavedra [33]. He general-
ized Macdonald’s Theorem to the positive characteristic case as follows:

Theorem 6.1 [33, Theorem 5.3]. Let K be an algebraically closed field of character-
istic p > 0. Let ω ∈ R>0

n be a vector whose coordinates are Q-linearly independent.
The set
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SK
ω =

{

ξ series |∃k ∈ N
∗, γ ∈ Z

n, σ a ≤ω -positive rational cone,

Supp(ξ) ⊂ (γ + σ)∩ 1

k
G(p) and Supp(ξ) is ≤ω -well-ordered

}

,

where

G(p) =
⋃


∈N

1

p

Z
n,

is an algebraically closed field.

We give here a positive characteristic version of SK� :

Definition 6.2 We fix an order�∈ Ordn and a field K of characteristic p > 0. We set

SK� :=
{
ξ series |∃k ∈ N

∗, γ ∈ Z
n, σ a � -positive rational cone containing R≥0n,

such that Supp(ξ) ⊂ (γ + σ) ∩ 1

k
G(p), and Supp(ξ) is � -well-ordered } .

Then the following result, extending Theorem 6.1 is the positive characteristic
analogue of Theorem 2.20:

Theorem 6.3 Let �∈ Ordn and K be an algebraically closed field of positive charac-
teristic. Then the set SK� is an algebraically closed field containing K((x)).

In order to prove this theorem we will use the notion of field-family introduced by
Rayner:

Definition 6.4 [28]. A family F of subsets of an ordered abelian group (G,�) is said
to be a field-family with respect to G if we have the following.

(1) Every element of F is a well-ordered subset of G.
(2) The elements of the members of F generate G as an abelian group.
(3) ∀(A, B) ∈ F2, A ∪ B ∈ F .
(4) ∀A ∈ F and B ⊂ A, B ∈ F .
(5) ∀(A, γ ) ∈ F × G, γ + A ∈ F .
(6) ∀A ∈ F , if A is �-positive, the semigroup generated by A belongs to F .

Theorem 6.5 [28, Theorem 2]. If F is a field-family with respect to G then the set

⎧
⎨

⎩

∑

g∈G
agx

g|{g|ag �= 0} ∈ F

⎫
⎬

⎭

is a Henselian valued field.
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For �∈ Ordn we set

F� :=
{
A ⊂ Q

n|∃k ∈ N
∗, γ ∈ Z

n, σ a � -positive rational cone containing R≥0n,

A ⊂ (γ + σ) ∩ 1

k
G(p), and A is � -well-ordered } .

Proposition 6.6 The set F� is a field-family with respect to (Qn,�).

Proof It is straightforward to verify that F� satisfies the items (1), (2), (4) and (5) of
Definition 6.4. For (3), if A, B ∈ F�, we have

A ⊂ (γA + σA) ∩ 1

kA
G(p), B ⊂ (γB + σB) ∩ 1

kB
G(p)

for some γA, γB ∈ Z
n , σA and σB �-positive rational cones containing R≥0n and kA,

kB ∈ N
∗. We can replace kA and kB by their least common multiple and assume that

kA = kB . We can also replace σA and σB by the cone σ gerenated by σA and σB . Since
σA and σB are �-positive and rational, σ is also �-positive and rational. Finally we
may assume that γA = γB by Lemma 2.11. Moreover A and B are �-well-ordered,
thus A ∪ B is �-well-ordered. This shows that (3) is satisfied.

Therefore we only prove (6) here. The proof is done by induction on n. In fact we
will prove by induction on n, the following claim:

Claim:For A ⊂ (γ+σ),where γ ∈ Z
n , σ is a a strongly convex rational cone, and

A is �-positive and �-well-ordered, there exists a �-positive rational cone σ ′ ⊃ σ

such that A ⊂ σ ′.

This claim, along with the following theorem, proves the proposition:

Theorem 6.7 [23, Theorem 3.4, p. 206]. Let A be a well-ordered subset of an ordered
group (G,�). If A is �-positive, the semigroup generated by A is well-ordered.

Let us consider a set A as in the claim.
If n = 1, there is only two orders on Q. Both cases are symmetric, thus we may

assume that� is the usual order≤ on Q and σ = R≥0. Therefore we may assume that
γ = 0 as A ⊂ Q≥0. In this case Uσ = {≤}. Since A is≤-positive and≤-well-ordered,
〈A〉 ⊂ Q≥0 is also ≤-well-ordered by Theorem 6.7. This settles the case n = 1.

So from now on, assume that n > 1 and that the result is satisfied for n − 1.
We know that there exist nonzero vectors (u1, . . . , us) ∈ (Rn)s and (q1, . . . , qr ) ∈

(Qn)r such that �=≤(u1,...,us ) and σ = 〈q1, . . . , qr 〉.
Assume first that γ � 0. Then A ⊂ σ ′ = 〈γ, q1, . . . , qr 〉 and σ ′ is a �-positive

rational cone. Hence A is included in σ ′ ∩ 1
k G(p), and the claim is proved.

Now assume that γ ≺ 0. By replacing σ by the cone generated by σ and −γ , we
may assume that 0 ∈ γ + σ . We define a := min(A \ {0}) and we set

H := {u ∈ R
n such that u · u1 = a · u1},

H+ := {u ∈ R
n such that u · u1 ≥ a · u1}.

By assumption, a � 0. Hence a · u1 ≥ 0 because �=≤(u1,...,us ).
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Case 1: If a · u1 > 0 we define σ ′ to be the closure of the cone spanned by
H ∩ (γ + σ). A vector u ∈ σ ′ is not in the cone spanned by H ∩ (γ + σ) if and only
if R≥0u is the limit of halflines of the form R≥0vn with vn ∈ H ∩ (γ + σ) and (vn)n
is not bounded. Therefore, we may assume that vn = γ + λnv

′ where λn > 0 and
v′ ∈ σ is orthogonal to u1. Therefore σ ′ is generated by the vertices of H ∩ (γ + σ)

and the generators σ ∩ 〈u1〉⊥, in particular σ ′ is a rational cone.
Moreover σ ′ is a �-positive cone, because u � 0 for every u ∈ H ∩ (γ + σ), and

(γ + σ)∩ H+ ⊂ σ ′. Finally it is clear that σ ′ is strongly convex: if u,−u ∈ σ ′, since
σ ′ is �-positive, u ∈ σ ′ ∩ 〈u1〉⊥ = σ ∩ 〈u1〉⊥; but σ is strongly convex, thus u = 0.

Now, if a′ ∈ A, we have a′ ·u1 ≥ a ·u1, thus there is 1 ≥ λ > 0 such that λa′ ∈ H .
But we have

λa′ = γ + λ(a′ − γ )− γ ∈ γ + σ

because −γ ∈ σ and a′ − γ ∈ σ . Therefore, λa′ ∈ σ ′ and A ⊂ σ ′. Thus the claim is
proved in this case.

Case 2: Assume that a · u1 = 0. We denote the set A ∩ H ∩Q
n by B, and we set

a1 := min(A \ B). Since A ⊂ {δ ∈ Q
n|δ � 0} and a1 /∈ H , we have a1 · u1 > 0. By

Case 1, there exists a strongly convex rational �-positive cone σ1 containing σ such
that A \ B ⊂ σ1.

We have that H ∩ Q
n is a Q-vector space of dimension d < n. We set V :=

(H ∩Q
n)⊗Q R. We set σ2 := σ ∩ V and we denote by �V the restriction of � to V .

Then σ2 is a strongly convex rational �V -positive cone. If σ2 is not full dimensional,
we replace σ2 by a strongly convex rational�V -positive cone that is full dimensional.
Therefore, by Lemma 2.11, we have that B ⊂ γ2 + σ2 for some γ2 ∈ V . Therefore,
by the inductive hypothesis, there is a strongly convex rational cone �V -positive σ3
such that σ2 ⊂ σ3 and B ⊂ σ3.

Now we set σ ′ := σ1 + σ3. This cone is rational and �-positive, thus it is strongly
convex. Moreover it contains A, therefore the claim is proved. ��

Proof of Theorem 6.3 By Proposition 6.6 and Theorem 6.5, the set SK� is a Henselian
valued field.

Assume that SK� is not algebraically closed. Then, by [28, Lemma 4] there exists
a ∈ SK� such that T p − T − a is irreducible in SK� [T ]. Let us write

a = a+ + a−

where Supp(a−) ⊂ {b ∈ Q
n|b ≺ 0} and Supp(a+) ⊂ {b ∈ Q

n|b � 0}. Because the
map b !−→ bp is an additive map, if ξ+ is a root of T p − T − a+ and ξ− is root of
T p−T−a−, then ξ++ξ− is a root of T p−T−a.Wewill prove that T p−T−a+ and
T p− T − a− admit a root in SK� contradicting the fact that T p− T − a is irreducible.

Since SK� is a Henselian valued field,

O :=
{
ξ ∈ SK� |∀b ∈ Supp(ξ), b � 0

}
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is a Henselian local ring with maximal ideal

m :=
{
ξ ∈ SK� |∀b ∈ Supp(ξ), b � 0

}
.

The polynomial T p − T − a+ ∈ O[T ] has a root modulo m since K is algebraically
closed (here O/m = K). Moreover the derivative of this polynomial is -1. Thus this
polynomial satisfies Hensel’s Lemma and admits a root ξ+ in SK� .

In order to prove that T p − T − a− has a root in SK� , we follow the proofs of [28,
Theorem 3], and [33, Theorem 5.3]. We write a− =∑q∈Qn a−q xq and we define

ξ− :=
∑

q∈Qn

( ∞∑

i=1

(
a−
pi q

) 1
pi

)

xq .

We can verify that ξ− is well defined: for a given q ∈ Supp(a−), the sequence (piq)i
is strongly decreasing for the order � since q ≺ 0. Therefore a−

pi q
= 0 for i large

enough because Supp(a−) is �-well-ordered. Hence the sum
∑∞

i=1
(
a−
pi q

) 1
pi is in

fact a finite sum.
Then we remark that

Supp(ξ−) ⊂
⋃

i∈N∗
1

pi
Supp(a−),

thus Supp(ξ−) is �-well-ordered by [33, Lemma 5.2].
Finally we claim that Supp(ξ−) is contained in the translation of a rational �-

positive cone. In order to prove this we assume that Supp(a−) ⊂ γ +σ where γ ∈ Z
n

and σ is a rational�-positive cone, and we denote by γ1, …, γs ∈ Z
n some generators

of σ .
First we assume that γ � 0. Let α ∈ Supp(ξ−), α = 1

pi
α′ with α′ ∈ Supp(a−).

We have

1

pi
α′ + γ = 1

pi
(α′ − γ )+

(
1

pi
+ 1

)

γ ∈ σ1

where σ1 is the cone generated by the γi and γ . Thus α ∈ −γ + σ1, which proves the
claim because σ1 is rational and �-positive.

Now assume that γ ≺ 0 and consider α ∈ Supp(ξ−) written α = 1
pi

α′ as before.
Then 1

pi
(α′ − γ ) ∈ σ because α′ ∈ γ + σ . Thus

1

pi
α′ − γ = 1

pi
(α′ − γ )+

(

1− 1

pi

)

(−γ ) ∈ σ2

where σ2 is the cone generated by the γi and−γ . Thus α ∈ γ + σ2, which proves the
claim because σ2 is rational and �-positive.
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Fig. 4 Example 6.8

x
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Moreover an easy computation shows that ξ− is a root of T p−T −a−. This proves
the theorem. ��

6.1 Examples

We do not know if Theorem 1.3 remains valid for elements of SK� when K is positive
characteristic field, but all the other results proved before in characteristic zero are non
longer true in positive characteristic, as shown by the following examples:

Example 6.8 LetK be a field of characteristic p > 0. Set f =∑∞
k=1 t

1− 1
pk . The series

f is algebraic over K(t) because f p− t p−1 f − t p−1 = 0. Thus g :=∑∞
k=1

(
x
y

)1− 1
pk

is algebraic over K(x, y). We set ξ = ∑∞
k=1(xg)k . Because ξ = xg

1−xg , ξ is rational
over the field extension of K(x, y) by g. Hence ξ is algebraic over K(x, y).
We see that all the monomials of (xg)k are of the form xk−l yl for l ∈ Q≥0. Therefore
the support of ξ is included in the cone σ generated by (2,−1) and (0, 1) (see Fig. 4).
Moreover the support of (xg)k contains a sequence of points converging to (2k,−k).
But (2k,−k) does not belong to the support of ξ since (1,−1) does not belong to the
support of g. Hence τ(ξ) = σ∨ is generated by (1, 0) and (1, 2).

But the conclusions of Theorem 1.5 and 1.6 do not hold in this case: there is no
hyperplane Hλ = {(x, y) ∈ R

2|x + 2y = λ} containing infinitely many elements of
Supp(ξ) such that H−λ := {(x, y) ∈ R

2|x + 2y < λ} contains only finitely many
elements of Supp(ξ).

Here τ ′0(ξ) = ∅. This shows that Lemma 4.2 is not valid in general for generalized
series with exponents in Q

n that are algebraic over K((x)), for a positive characteristic
field K.

Example 6.9 We set a = ∑∞
i=1 xi y−1 ∈ F2((x, y)) and P(T ) = T 2 + T + a. For

i ∈ N
∗ we also denote Pi (T ) = T 2 + T + xi y−1. We consider an order �∈ Ord2.

The roots of Pi in SF2� are

{
ξ

(1)
i and ξ

(1)
i + 1, with ξ

(1)
i =∑∞

k=1 xi2
−k
y−2−k when (−i, 1) � 0

ξ
(2)
i and ξ

(2)
i + 1, with ξ

(2)
i = −∑∞

k=1 xi2
k
y−2k when (i,−1) � 0
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Fig. 5 Example 6.9

Let i0 = sup{i ∈ N
∗|(−i, 1) � 0} ∈ N

∗ ∪ {∞}. Therefore the roots of P in SF2� are
ξ� and ξ� + 1 where

ξ� =
i0∑

i=1
ξ

(1)
i +

∞∑

i0+1
ξ

(2)
i .

We can replace P(T ) by P̃(T ) := T 2 + yT +∑∞
i=1 xi ∈ K[[x]][T ] and remark

that P̃(yT ) = y2P(T ), thus the roots of P1(T ) are obtained from those of P(T ) by
multiplication by y. This proves that Proposition 3.4 is no longer valid in positive
characteristic (Fig. 5).

Example 6.10 Let K = F2 be the field with two elements. The series

a(x, y) = x
∞∑

k=1

(
x

y

)1−2−k

is algebraic over F2(x, y). Thus the roots of T 2 + T + a are algebraic over F2(x, y).
One of these roots is

ξ = −
∞∑

k=1

∞∑


=0

(
x2−2−k

y1−2−k

)2


∈ SF2�

where �∈ Ord2 is such that (1,−1) � 0. The support of ξ is given on Fig. 6 below.
Thus, τ(ξ)∨ is the cone generated by (2,−1) and (0, 1). Here τ0(ξ) is not open since
(1, 1) ∈ τ0(ξ): here τ0(ξ) is equal to the cone generated by (1, 0) and (1, 1) minus the
origin. Thus Proposition 4.7 is no longer valid in positive characteristic. We remark
that τ ′0(ξ) = ∅.
On the following picture, the small circles indicate the terms of the support of a(x, y),
while the bullets indicate the terms of the support of ξ :
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