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ABSTRACT
We give examples showing that the usual Artin approximation theorems
valid for convergent series over a field are no longer true for convergent
series over a commutative Banach algebra. In particular, we construct an
example of a commutative integral Banach algebra R such that the ring of
formal power series over R is not flat over the ring of convergent power
series over R.
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1. Introduction

The classical Artin Approximation Theorem is the following.

Theorem 1.1. [1] Let F(x, y) be a vector of convergent power series over C in two sets of variables
x and y. Assume given a formal power series solution byðxÞ vanishing at 0,

Fðx,byðxÞÞ ¼ 0:

Then, for any c 2 N, there exists a convergent power series solution y(x) vanishing at 0,

Fðx, yðxÞÞ ¼ 0

which coincides with byðxÞ up to degree c,

yðxÞ � byðxÞ modulo ðxÞc:
The main tools for proving this theorem are the implicit function theorem and the

Weierstrass division theorem. But in the case the equations F(x, y) are linear in y, this theorem is
equivalent to the faithful flatness of the morphism Cfxg ! C½½x�� (see [14, Example 1.4] for
instance or [4, I.3 Proposition 13]). In fact the faithful flatness of this morphism comes from the
fact that Cfxg is a Noetherian local ring. And the Noetherianity of Cfxg is usually proved by
using the Weierstrass division theorem.

Another version of this theorem is as follows.

Theorem 1.2. [2, 17] Let F(x, y) be a vector of convergent power series over C in two sets of varia-
bles x and y. Then for any integer c there exists an integer b such that for any given approximate
solution �yðxÞ at order b, �yð0Þ ¼ 0,

Fðx,�yðxÞÞ � 0 modulo ðxÞb,
there exists a formal power series solution y(x) vanishing at 0,
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Fðx, yðxÞÞ ¼ 0

which coincides with �yðxÞ up to degree c,

yðxÞ � �yðxÞ modulo ðxÞc:
In particular this result implies that, if Fðx, yÞ ¼ 0 has approximate solutions at any order,

then it has a formal (even convergent by Theorem 1.1) power series solution.
Let us mention that these results remain valid when we replace C by a complete valued field,

or when we replace the ring of convergent power series over C by the ring of algebraic power
series over a field. In fact these results remain true in the more general setting of excellent
Henselian local rings by [12, 13] (see [14] for a review of all these different results).

The aim of this note is to show that these results are no longer true when we replace C by a
commutative Banach algebra over R or C: In the first part we construct a commutative Banach
algebra R such that Rftg ! R½½t�� is not flat, showing that Artin approximation theorem is not
true for linear equations with coefficients in Rftg:

Let us mention here that R½½t�� is flat over R, for a commutative ring R, if and only if R is
coherent (indeed R½½t�� is a direct product of copies of R - see [5, Theorem 2.1]). And there are
several known examples of Banach algebras which are not coherent (in fact most of the known
Banach algebras are not coherent; see for instance [10] or [7] and the references herein). But the
flatness of Rftg ! R½½t�� is a different property that is not related to the coherence of R.

In the second part we provide an example of one polynomial F(y) with coefficients in R½t�, where
R is the Banach algebra of holomorphic functions over a disc, with the following property: F(y) has
approximate solutions up to any order but has no solution in R½½t��: This shows that Theorem 1.2
does not hold for convergent power series over a Banach algebra. Let us mention that this example
is a slight modification of an example of Spivakovsky related to a similar problem [16].

Nevertheless we mention that in the case where R is a complete valuation ring of rank one (in
particular a non-Archimedean Banach algebra), Schoutens and Moret-Bailly proved several exten-
sions of Theorems 1.1 and 1.2 (see [15] and [11]).

The note has been motivated by questions from Nefton Pali and Wei Xia.

2. A Banach algebra R such that RftgfiR½½t�� is not flat

Let K ¼ R or C: We begin by the following definition of power series in countable many
indeterminates.

Definition 2.1. Let NðNÞ be the submonoid of NN formed by the sequences whose all but finitely
terms are 0. Let ðxiÞi2N be a countable family of indeterminates. Then K½½xi��i2N is the set of seriesP

a2NðNÞ aaxa where xa ¼ xa00 � � � xann � � � : This former product is finite since ai ¼ 0 for i large
enough. This set is a commutative ring since the sum of sequences NðNÞ � NðNÞ ! NðNÞ has finite
fibers (see [3, Chapter III, § 2, 11]). Let us mention that this ring is not the (x)-adic completion
of K½x�, the ring of polynomials in the xi (see [18] for instance).

Let x, y, z and wk for k 2 N be indeterminates. For simplicity we denote by w the vector of
indeterminates ðw0,w1, :::Þ: We denote by K½x, y, z,w� the ring of polynomials in the indetermi-
nates x, y, z, w:

For a polynomial p ¼
X

k2N, l2N,m2N, a2NðNÞ
ak, l,m, ax

kylzmwa 2 K½x, y, z,w� we set

jjpjj :¼
X

k, l,m, a
jak, l,m, aj:

This is well defined because the sum is finite. This defines a norm on K½x, y, z,w�:

2 G. ROND



We denote by Kfx, y, z,wg the completion of K½x, y, z,w� for this norm. This is the following
commutative Banach algebra:

X
k2N, l2N,m2N, a2NðNÞ

ak, l,m, ax
kylzmwa

X
k2N, l2N,m2N, a2NðNÞ

jak, l,m, aj < 1
������

9=
;

8<
:

and the norm of an element f :¼
X

k2N, l2N,m2Na2NðNÞ
ak, l,m, ax

kylzmwa is

jjf jj :¼
X

k2N, l2N,m2N, a2NðNÞ
jak, l,m, aj:

In particular Kfx, y, z,wg is a subring of K½½x, y, z,wi��i2N:
We denote by I the ideal of K½x, y, z,w� generated by the polynomials

xw0 � z2 and ywk � ðkþ 1Þxwkþ1 for all k � 0:

The ideal IKfx, y, z,wg is not closed since it is not finitely generated. Thus, we denote by �I its
closure. This is the set of sums X

k2N
fkðx, y, z,wÞ

such that fkðx, y, z,wÞ 2 IKfx, y, z,wg and
P

k jjfkðx, y, z,wÞjj < 1:

Definition 2.2. We denote by R the Banach K-algebra Kfx, y, z,wg=�I :
In order to denote that two series f and g 2 Kfx, y, z,wg have the same image in R, we write

f�Rg: The norm of the image �f of an element f 2 Kfx, y, z,wg is

jj�f jj ¼ inf
g2�I

jjf þ gjj ¼ inf
g2I

jjf þ gjj:

Now we denote by Rftg the ring of convergent series in the indeterminate t with coefficients in
R. We have the following result.

Proposition 2.3. The linear equation

ðx� ytÞf ðtÞ ¼ z2 (2.1)

has a unique solution f(t) in R½½t�� and this solution is not convergent.
From this we will deduce the following result.

Theorem 2.4. The Banach K-algebra R is an integral domain and the morphism Rftg ! R½½t�� is
not flat.

2.1. Proofs of Proposition 2.3 and Theorem 2.4

We begin by giving the following key result.

Lemma 2.5. x is not a zero divisor in R.

Proof. First of all, we will determine a subset of Kfx, y, z,wg such that every element of
Kfx, y, z,wg is equal modulo �I to a unique series of this subset.

First we remark that

M1 :¼ ywiwj�Rðiþ 1Þxwiþ1wj�R
iþ 1
j

ywiþ1wj�1 ¼: M2 (2.2)

COMMUNICATIONS IN ALGEBRAVR 3



for all integers i and j with i< j. If j ¼ iþ 1 these two monomials are equal, otherwise the largest
index of a monomial wj appearing in the expression of M2 is strictly less than for M1.

Now we have, for i> 0:

z2wi�Rxw0wi�R
1
i
yw0wi�1: (2.3)

A well-chosen composition of these operations transforms any monomial of the form
Cxazkylwn0

0 � � �wni
i into a monomial of the form rCxa0zk0ylwn00

0 � � �wn0j
j where j is minimal

and r 2 ð0, 1�:
By repeating these two operations we may reduce every monomial to a constant times one of

the following monic monomials:

zexaylwn0
0 with a > 1, l, n0 � 0 and e 2 f0, 1g,

zeylwni
i with l > 0, i > 0, ni > 0 and e 2 f0, 1g,

zeylwni
i w

niþ1
iþ1 with l > 0, i � 0, ni, niþ1 > 0 and e 2 f0, 1g,

zewn0
0 :::wni

i with ni > 0 with e 2 f0, 1g:

8>>>><
>>>>:

(2.4)

We denote by E the subset of K½x, y, z,w� of polynomials that are sums of monomials of (2.4)
(up to multiplicative constants), and by �E the closure of E in Kfx, y, z,wg, that is the set of con-
vergent power series whose non zero monomials are those of (2.4) (up to multiplicative con-
stants). We have shown that every polynomial is equivalent to a polynomial of E modulo I. To
prove the unicity we proceed as follows.

We set

F0 :¼ xw0 � z2, Fkþ1 :¼ ywk � ðkþ 1Þxwkþ1 for k � 0

Gk, l :¼ ðlþ 1Þywkwlþ1 � ðkþ 1Þywlwkþ1 for all k < l:

Then we consider the following monomial order: We define

xaykzlwa1
1 � � �wan

n > xa0yk0zl0wa01
1 � � �wa0n

n

if

aþ kþ l þ
X
i

ai > a0 þ k0 þ l0 þ
X
i

ai
0, or aþ kþ l þ

X
i

ai ¼ a0 þ k0 þ l0 þ
X
i

ai
0

and ðl, a, k, an, :::, a0Þ>lexðl0, a0, k0, a0n, :::, a00Þ
where >lex denotes the lexicographic order. That is, we first compare the total degree of two
monomials, then we order the indeterminates as

z > x > y > wl > wk for all l > k:

We claim that fFj,Gk, lgj, k, l2N, l>k is a Gr€obner basis of I for this order. In order to prove this, we
only need to compute the S-polynomials of the elements of this set of polynomials, and then their
reduction (see [6] for the terminology). This is Buchberger’s Algorithm which is very classical in
the Noetherian case. The case of polynomial rings in countably many indeterminates works iden-
tically, cf. [8, Proposition 1.13] for instance. The only S-polynomials we have to consider are
those of polynomials whose leading terms are not coprime, that is, for l> k,

SðFkþ1, Flþ1Þ; SðGk, l, Flþ1Þ; SðGk, l, FkÞ:
We have SðFkþ1, Flþ1Þ ¼ Gk, l: Moreover

SðGk, l, Flþ1Þ ¼ yðywkwl � ðkþ 1Þxwlwkþ1Þ:

4 G. ROND



This leading term of SðGk, l, Flþ1Þ is �ðkþ 1Þxywlwkþ1, and it is equal to yðFkþ1wl � ywkwlÞ:
Therefore SðGk, l, Flþ1Þ ¼ Fkþ1ywl:

Finally we have

SðGk, l, FkÞ ¼ kxððl þ 1Þywkwlþ1 � ðkþ 1Þywlwkþ1Þ þ ðlþ 1Þywlþ1ðywk�1 � kxwkÞ
¼ ðlþ 1Þy2wk�1wlþ1 � kðkþ 1Þxywlwkþ1:

Its leading term is �kðkþ 1Þxywlwkþ1 and it is divisible by the leading term of Fkþ1: The remain-
der of the division of SðGk, l, FkÞ by Fkþ1 is

ðlþ 1Þy2wk�1wlþ1 � ky2wkwl ¼ yGk�1, l:

Therefore the reductions of these S-polynomials is always zero, hence the family
fFj,Gk, lgj, k, l2N, l>k is a Gr€obner basis of I. Thus, the initial ideal of I is generated by the mono-
mials

z2, xwkþ1, ywkwlþ1 for 0 � k < l:

Therefore every polynomial of K½x, y, z,w� is equivalent modulo I to a unique polynomial of E.

Now let f 2 Kfx, y, z,wg: We can write f ¼ P
n2N Cnxanybnzcnwan where the Cn are in K	: In

particular
P

n jCnj < 1: For every n 2 N, there is a unique ða0n, b0n, c0n, a0nÞ and a unique rn 2
ð0, 1� such that

Cnx
anybnzcnwan � rnCnx

a0nyb0nzc0nwa0n 2 I

and xanybnzcnwan has one the forms given in (2.4). Now, for every n 2 N, we set

gn :¼
Xn�1

k¼0

rkCkx
a0kyb0k zc0kwa0k þ

X
k�n

Ckx
akybkzckwak :

In particular we have that Pn :¼ f � gn 2 I and the sequence ðgnÞn converges in Kfx, y, z,wg to
the series g ¼ P

k2N rkCkxa0kyb0k zc0kwa0k 2 Kfx, y, z,wg: Therefore the sequence ðPnÞn converges in
Kfx, y, z,wg, and its limits is in �I :

Therefore, every power series of Kfx, y, z,wg can be written as a sum of a power series in �I
and a convergent power series whose monomials are as in (2.4) (up to multiplicative constants).

We remark that, by repeating (2.2) bj�i
2 c times, we have

ywiwj �R rywiþ⏧j�i
2 ⏧

w
j�⏧j�i

2 ⏧

for some constant r 2 ð0, 1�: Moreover applying (2.3) reduces by 2 the degree in z of a monomial.
Therefore, a monomial of the form

Cxaybzcwa1
1 � � �waj

j

of total degree d ¼ aþ bþ cþP
k ak, is not equal to a monomial involving only the indetermi-

nates

x, y, z, and wi for i <
j� c

2

2d
:

Moreover (2.2) and (2.3) transforms monomials into monomials of the same degree since I is
generated by homogeneous binomials. Therefore, given a monomial M among those of (2.4) (up
to some multiplicative constant), there is finitely many monomials that are equal to M modulo I.

Now let f 2 �E \ �I , f ¼ P
ða, b, c, aÞ fða, b, c, aÞx

aybzcwa: Let us fix such ða, b, c, aÞ that xaybzcwa is
one of the monic monomials of (2.4). There is only a finite number of distinct monomials that
are equal to fða, b, c, aÞxaybzcwa modulo I. Let us denote them by

COMMUNICATIONS IN ALGEBRAVR 5



C1x
a1yb1zc1wa1 , :::,CNx

aN ybN zcNwaN :

We can remark that there is only a finite number of Fl that have a monomial that divides at least
one of the following monic monomials

xaybzcwa, xa1yb1zc1wa1 , :::, xaN ybN zcNwaN : (2.5)

We denote them by Fl1 , :::, Flp : Because f 2 �I , we can write f ¼ P
l2N flFl where the fl are in

K½½x, y, z,w��: For every i 2 f1, :::, pg we remove from fli all the monomials that do not divide one
of the monomials (2.5), and we denote by f 0li the resulting polynomial. Then we have that

P :¼
Xp
i¼1

f 0liFli 2 I:

By construction the coefficients of the monomials (2.5) in the expansion of P are the correspond-
ing coefficients in the expansion of f, that is

fða, b, c, aÞ, 0, :::, 0

respectively. Therefore, the coefficient of xaybzcwa in the expansion of the unique Q 2 E such
that Q�R P, is equal to fða, b, c, aÞ because no other monomial than those listed in (2.5) (up to
some multiplicative constants) is equivalent to a monomial of the form Cxaybzcwa where C 2 K	:
But Q¼ 0 since P 2 I, thus fða, b, c, aÞ ¼ 0: Hence f¼ 0 and �E \ �I ¼ 0:

Therefore every series of Kfx, y, z,wg is equivalent modulo �I to a unique series of �E:
Now take f 2 Kfx, y, z,wg such that x�R0: We can write f ¼ xpðx, y, z,w0Þ þ qðy, z,wÞ and

assume that the monomials in the expansion of xpðx, y, z,w0Þ þ qðy, z,wÞ are only those of (2.4).
Then

x2pðx, y, z,w0Þ þ xqðy, z,wÞ�R 0:

The representation of x2pðx, y, z,w0Þ þ xqðy, z,wÞ as a sum of monomials as in (2.4) has the form

x2pðx, y, z,w0Þ þ xqðy, z,w0, 0Þ þ �qðy, z,wÞ ¼ 0 (2.6)

where �qðy, z,wÞ is the series obtained from xqðy, z,wÞ � xqðy, z,w0, 0Þ by replacing the monomials
as follows (using the two previous operations (2.2) and (2.3)):

xzeylwni
i 7! 1

i
zeylþ1wi�1w

ni�1
i , if i > 0

xzeylwni
i w

niþ1
iþ1 7! 1

iþ 1
zeylþ1wniþ1

i wniþ1�1
iþ1 , if i > 0

xzewn0
0 :::w

ni
i 7! Czeyw

mj

j w
mjþ1

jþ1 or Czeyw
mj

j

for i > 0 and ni > 0 for some C 2 K, jCj � 1, j � 0:

8>>>>>>><
>>>>>>>:

(2.7)

Indeed for the third monomial we have

xzewn0
0 :::wni

i �R
1

iþ 1
zeywn0

0 � � �wni�1þ1
i�1 wni�1

i

and this monomial on the right side can be transformed into a monomial of the form
Czeyw

mj

j wmiþ1
jþ1 or Czeyw

mj

j for some C 2 K, jCj � 1, and j � 0, by using the two operations (2.2)
and (2.3) on monomials.

This shows that the three types of monomials that we obtain after multiplication by x are all
distinct, that is the map defined by (2.7) is injective. By (2.6) we have �qðy, z,wÞ ¼ 0, there-
fore qðy, z,wÞ � qðy, z,w0, 0Þ ¼ 0:

6 G. ROND



Moreover, again by (2.6), we have

x2pðx, y, z,w0Þ þ xqðy, z,w0, 0Þ ¼ 0:

This shows that x2pðx, y, z,w0Þ þ xqðy, z,wÞ ¼ 0: Therefore x is not a zero divisor in R. w

Proof of Proposition 2.3. Let f ðtÞ 2 R½½t�� such that

ðx� ytÞf ðtÞ ¼ z2:

By writing f ¼ P1
k¼0 fkt

k with fk 2 R for every k, we have

xf0 ¼ z2

xfk � yfk�1 ¼ 0 8k � 1:

Thus

xf0 ¼ z2 ¼ xw0

so xðf0 � w0Þ ¼ 0 and f0 ¼ w0 by Lemma 2.5. Then we will prove by induction on k that fk ¼
k! wk for every k. Assume that this is true for an integer k � 0: Then we have

xfkþ1 ¼ yfk ¼ k! ywk ¼ ðkþ 1Þ! xwkþ1:

Hence xðfkþ1 � ðkþ 1Þ! wkþ1Þ ¼ 0 and fkþ1 ¼ ðkþ 1Þ! wkþ1 by Lemma 2.5. Therefore, the only
solution of

ðx� ytÞf ðtÞ ¼ z2

is the series
P1

k¼0 k! wktk, and this one is divergent because jjwkjj ¼ 1: This holds because in
every element of I, the monomial wk has coefficient 0. w

Now we can give the proof of Theorem 2.4.

Proof of Theorem 2.4. Since x is not a zero divisor in R by Lemma 2.5, the localization morphism

R ! R1=x

is injective. But R1=x is isomorphic to Kfx, y, zg1=x since in R1=x we have

w0 ¼ z2=x and 8k � 0,wk ¼ 1
k!
ykz2xkþ1:

But Kfx, y, zg1=x is an integral domain (this is a localization of the integral domain Kfx, y, zg),
therefore so is R.

Now assume that the morphism Rftg ! R½½t�� is flat. By [9, Theorem 7.6] applied to the linear
equation ðx� ytÞF � z2G ¼ 0, there exist an integer s � 1, and convergent series

a1ðtÞ, :::, asðtÞ, b1ðtÞ, :::, bsðtÞ 2 Rftg
such that

ðx� ytÞaiðtÞ � z2biðtÞ ¼ 0 for every i, (2.8)

and formal power series

h1ðtÞ, :::, hsðtÞ 2 R t½ �½ �
such that

f ðtÞ ¼
Xs

i¼1

aiðtÞhiðtÞ, 1 ¼
Xs

i¼1

biðtÞhiðtÞ:
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Indeed the vector ðf ðtÞ, 1Þ is a solution of the linear equation

ðx� ytÞf ðtÞ � z2gðtÞ ¼ 0

with f ðtÞ :¼ P1
k¼0 k! wktk:

Then

~gðtÞ :¼
Xs

i¼1

biðtÞhið0Þ ¼ 1þ teðtÞ

for some eðtÞ 2 Rftg: Since 1 is a unit of R, 1þ teðtÞ is a unit in Rftg:
Set ~f ðtÞ :¼ P

i aiðtÞhið0Þ: By (2.8), ð~f ðtÞ, ~gðtÞÞ is a solution of the equation

ðx� ytÞ~f ðtÞ � z2~gðtÞ ¼ 0:

Since ~gðtÞ is a unit in Rftg we have

ðx� ytÞ~f ðtÞ~gðtÞ�1 ¼ z2:

This contradicts Theorem 2.3. Therefore Rftg ! R½½t�� is not flat. w

3. An example concerning the strong Artin approximation theorem

Let n be a positive integer, x ¼ ðx1, :::, xnÞ and q > 0: We set K ¼ R or C: Then

Bn
q :¼ f ¼

X
a2Nn

aax
ajjjf jjq :¼

X
a2Nn

jaajqjaj < 1
� �

is a Banach space equipped with the norm jj � jjq: Of course K½x� 
 Bn
q:

Remark 3.1. We do not have

Bn
q t½ �½ � \Kfx, tg ¼ Bn

qftg:
For instance, the power series

f ¼
X
k2N

xk!1 t
k

is a convergent power series in (x, t), belongs to Bn
2 ½½t��, butX

k

jjxk!1 jj2sk ¼
X
k

2k!sk ¼ 1

for every s > 0. Therefore f 62 Bn
2ftg:

We provide two examples based on an example of Spivakovsky concerning the extension of
Theorem 1.2 to the nested case (see [16]).

Example 3.2. Let n¼ 1 and set

Fðx, t, y1, y2Þ :¼ xy21 � ðxþ tÞy22 2 Bqftg y1, y2½ �:
Let ffiffiffiffiffiffiffiffiffiffi

1þ t
p ¼ 1þ

X
n�1

ant
n 2 Qftg

be the unique power series such that ð ffiffiffiffiffiffiffiffiffiffi
1þ t

p Þ2 ¼ 1þ t and whose value at the origin is 1. For
every c 2 N we set yðcÞ2 ðtÞ :¼ xc and yðcÞ1 ðtÞ :¼ xc þPc

n¼1 anx
c�ntn 2 Bqftg: Then
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Fðx, t, yðcÞ1 ðtÞ, yðcÞ2 ðtÞÞ 2 ðtÞcþ1:

On the other hand the equation f ðx, t, y1ðtÞ, y2ðtÞÞ ¼ 0 has no solution ðy1ðtÞ, y2ðtÞÞ 2 Bqftg2 but
(0, 0). Indeed let us denote by T0 the Taylor map at 0:

T0 : Bqftg ! K x, t½ �½ �:
If f ðx, t, y1ðtÞ, y2ðtÞÞ ¼ 0 then

xT0ðy1ðtÞÞ2 � ðxþ tÞT0ðy2ðtÞÞ2 ¼ 0:

But since K½½x, t�� is a unique factorization domain, this equality implies that T0ðy1ðtÞÞ ¼
T0ðy2ðtÞÞ ¼ 0, hence y1ðtÞ ¼ y2ðtÞ ¼ 0:

This shows that there is no b : N ! N such that for every yðtÞ 2 Bqftg2 and every k 2 N with

Fðx, t, yðtÞÞ 2 ðtÞbðkÞ

there exists ~yðtÞ 2 Bqftg2 such that

Fðx, t,~yðtÞÞ ¼ 0

and ~yðtÞ � yðtÞ 2 ðtÞk:

Example 3.3. We can modify a little bit the previous example to construct a F as before that
does not depend on t. We set

Gðx, y1, y2, y3Þ :¼ xy21 � ðxþ y3Þy22 2 Bq y1, y2, y3½ �:
For every c 2 N we set yðcÞ2 ðtÞ :¼ xc, yðcÞ1 ðtÞ :¼ xc þPc

n¼1 anx
c�ntn and yðcÞ3 ðtÞ :¼ t 2 Bqftg: Then

Gðx, yðcÞ1 ðtÞ, yðcÞ2 ðtÞ, yðcÞ3 ðtÞÞ 2 ðtÞc:
Now if ~yðtÞ 2 Bqftg3 satisfies Gðx,~yðtÞÞ ¼ 0 and

~yðtÞ � yðtÞ 2 ðtÞ2

then ~y3ðtÞ ¼ xþ t þ eðtÞ with eðtÞ 2 ðt2Þ: Thus xþ ~y3ðtÞ is an irreducible power series in x and
t, and it is coprime with x. By the same argument based on the Taylor map as in Example 3.2,
the relation

x~y1ðtÞ2 � ðxþ t þ eðtÞÞ~y2ðtÞ2 ¼ 0

implies that ~y1ðtÞ ¼ ~y2ðtÞ ¼ 0:
This shows that there is no b : N ! N such that for every yðtÞ 2 Bqftg3 and every k 2 N with

Gðx, yðtÞÞ 2 ðtÞbðkÞ

there exists ~yðtÞ 2 Bqftg3 such that

Gðx,~yðtÞÞ ¼ 0

and ~yðtÞ � yðtÞ 2 ðtÞk:
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