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1. Introduction
The classical Artin Approximation Theorem is the following.

Theorem 1.1. [1] Let F(x, y) be a vector of convergent power series over C in two sets of variables
x and y. Assume given a formal power series solution y(x) vanishing at 0,

F(x,5(x) =0,
Then, for any c € N, there exists a convergent power series solution y(x) vanishing at 0,
F(xy(x)) =0
which coincides with y(x) up to degree c,
y(x) =5(x) modulo (x) .

The main tools for proving this theorem are the implicit function theorem and the
Weierstrass division theorem. But in the case the equations F(x, y) are linear in y, this theorem is
equivalent to the faithful flatness of the morphism C{x} — C[[x]] (see [14, Example 1.4] for
instance or [4, 1.3 Proposition 13]). In fact the faithful flatness of this morphism comes from the
fact that C{x} is a Noetherian local ring. And the Noetherianity of C{x} is usually proved by
using the Weierstrass division theorem.

Another version of this theorem is as follows.

Theorem 1.2. [2, 17] Let F(x, y) be a vector of convergent power series over C in two sets of varia-
bles x and y. Then for any integer c there exists an integer [ such that for any given approximate
solution y(x) at order f3, ¥(0) =0,

F(x,7(x)) =0 modulo (x)ﬁ,

there exists a formal power series solution y(x) vanishing at 0,
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F(x y(x)) =0
which coincides with y(x) up to degree c,
y(x) = y(x) modulo (x)°.

In particular this result implies that, if F(x,y) = 0 has approximate solutions at any order,
then it has a formal (even convergent by Theorem 1.1) power series solution.

Let us mention that these results remain valid when we replace C by a complete valued field,
or when we replace the ring of convergent power series over C by the ring of algebraic power
series over a field. In fact these results remain true in the more general setting of excellent
Henselian local rings by [12, 13] (see [14] for a review of all these different results).

The aim of this note is to show that these results are no longer true when we replace C by a
commutative Banach algebra over R or C. In the first part we construct a commutative Banach
algebra R such that R{t} — R][t]] is not flat, showing that Artin approximation theorem is not
true for linear equations with coefficients in R{t}.

Let us mention here that R[[t]] is flat over R, for a commutative ring R, if and only if R is
coherent (indeed R][[t]] is a direct product of copies of R - see [5, Theorem 2.1]). And there are
several known examples of Banach algebras which are not coherent (in fact most of the known
Banach algebras are not coherent; see for instance [10] or [7] and the references herein). But the
flatness of R{t} — R([[t]] is a different property that is not related to the coherence of R.

In the second part we provide an example of one polynomial F(y) with coefficients in R[¢], where
R is the Banach algebra of holomorphic functions over a disc, with the following property: F(y) has
approximate solutions up to any order but has no solution in R[[t]]. This shows that Theorem 1.2
does not hold for convergent power series over a Banach algebra. Let us mention that this example
is a slight modification of an example of Spivakovsky related to a similar problem [16].

Nevertheless we mention that in the case where R is a complete valuation ring of rank one (in
particular a non-Archimedean Banach algebra), Schoutens and Moret-Bailly proved several exten-
sions of Theorems 1.1 and 1.2 (see [15] and [11]).

The note has been motivated by questions from Nefton Pali and Wei Xia.

2. A Banach algebra R such that R{t} —R([[t]] is not flat

Let K=R or C. We begin by the following definition of power series in countable many
indeterminates.

Definition 2.1. Let NV be the submonoid of NV formed by the sequences whose all but finitely
terms are 0. Let (x;),.y be a countable family of indeterminates. Then K[[x;]],. is the set of series
YN dxx* where x* = xg®---x%---. This former product is finite since o; =0 for i large
enough. This set is a commutative ring since the sum of sequences N x N — N has finite
tibers (see [3, Chapter III, § 2, 11]). Let us mention that this ring is not the (x)-adic completion
of K[x], the ring of polynomials in the x; (see [18] for instance).

Let x, y, z and wy for k € N be indeterminates. For simplicity we denote by w the vector of
indeterminates (wp, wy, ...). We denote by Klx, y,z, w] the ring of polynomials in the indetermi-
nates x, y, z, w.

For a polynomial p = Z a1 m XY 2" w? € Kx, y, 2, w] we set

keN, IeN, meN, xeN™

Pl = lagsmal-

kylym,o

This is well defined because the sum is finite. This defines a norm on K[x, y, z, w].
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We denote by K{x,y,z,w} the completion of K[x,y,z w| for this norm. This is the following
commutative Banach algebra:

! o
E ak,l,m,otxky 2w § ak,l,m,ocl < oo

keN, leN, meN, aeNM keN, leN, meN, aeN®

and the norm of an element f := E ax 1 m XY 2" W is
keN, IeN, meNoaeN®

\fI] == > |k, 1,m, 2]
keN, leN, meN, acNM

In particular K{x, y,z, w} is a subring of K[[x,y,z, wi]];oy-
We denote by I the ideal of K]x, y,z, w] generated by the polynomials

xwo — z* and ywy — (k4 1)xwyy, for all k > 0.

The ideal IK{x,y,z, w} is not closed since it is not finitely generated. Thus, we denote by I its
closure. This is the set of sums

S fihnzw)

keN
such that fy(x,y,z,w) € IK{x,y,z,w} and > |[fi(x, 3, 2, w)|| < oc.

Definition 2.2. We denote by R the Banach K-algebra K{x,y,z,w}/I.
In order to denote that two series f and ¢ € K{x,y,z, w} have the same image in R, we write
f=rg. The norm of the image f of an element f € K{x,y,z, w} is

[If 1| = inf |If + gl| = inf [[f +glI-
ge[ g€[

Now we denote by R{¢} the ring of convergent series in the indeterminate ¢t with coefficients in
R. We have the following result.

Proposition 2.3. The linear equation

(x—y)f(t) =2° 2.1)

has a unique solution f(t) in R[[t]] and this solution is not convergent.
From this we will deduce the following result.

Theorem 2.4. The Banach K-algebra R is an integral domain and the morphism R{t} — R[[t]] is
not flat.

2.1. Proofs of Proposition 2.3 and Theorem 2.4
We begin by giving the following key result.
Lemma 2.5. x is not a zero divisor in R.

Proof. First of all, we will determine a subset of K{x,y,z,w} such that every element of
K{x,y,z,w} is equal modulo I to a unique series of this subset.
First we remark that

. i+1
M, == ywiw;=p(i + 1)xwip wj=g T)’WiJerj—l =: M, (22)
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for all integers i and j with i <j. If j = i + 1 these two monomials are equal, otherwise the largest
index of a monomial w; appearing in the expression of M, is strictly less than for M.
Now we have, for i > 0:

2 1

2 WISRXWOWI=R S YWoWi-1- (2.3)
A well-chosen composition of these operations transforms any %)onomial of the form
Cx“Z5ywi .- w! into a monomial of the form rCx"z¥ ylwg°--~wjj where j is minimal
and r € (0,1].

By repeating these two operations we may reduce every monomial to a constant times one of
the following monic monomials:
2 x*y g’ with a > 1,1,ny > 0 and ¢ € {0,1},
Zyw with [ >0,i > 0,m; >0 and ¢ € {0,1},
Zywliwiel  with 1> 0,i > 0,n;,n.1 >0 and ¢ € {0,1},
Zwp”..wi with n; > 0 with ¢ € {0,1}.

1

(2.4)

We denote by E the subset of K[x,y,z w] of polynomials that are sums of monomials of (2.4)
(up to multiplicative constants), and by E the closure of E in K{x,y,z, w}, that is the set of con-
vergent power series whose non zero monomials are those of (2.4) (up to multiplicative con-
stants). We have shown that every polynomial is equivalent to a polynomial of E modulo I. To
prove the unicity we proceed as follows.

We set

Fy:=xwy — 2%,  Fryp := ywp — (k+ 1)xwi,, for k>0
Gri:= (I+ Dywewipr — (k+ 1)ywywgyy for all k < 1.
Then we consider the following monomial order: We define

xaykzlwi” ._.Wzn > xa/yk/zl/wif/l “_Wi’,,
if
a+k+l+Zo¢i>a'+k'+I'+Zai’, or a+k+l+2ai:a’+k’+l'+2ai’
i i i i

and (La,k, oy, ... o0) >1ex (I ' K 0, .. )
where >, denotes the lexicographic order. That is, we first compare the total degree of two
monomials, then we order the indeterminates as
z>x>y>w > w for all 1> k.
We claim that {Fj, Gk 1}; . jen, -« is @ Grobner basis of I for this order. In order to prove this, we
only need to compute the S-polynomials of the elements of this set of polynomials, and then their
reduction (see [6] for the terminology). This is Buchberger’s Algorithm which is very classical in
the Noetherian case. The case of polynomial rings in countably many indeterminates works iden-

tically, cf. [8, Proposition 1.13] for instance. The only S-polynomials we have to consider are
those of polynomials whose leading terms are not coprime, that is, for [ >k,

S(Fis1> Fiy1); S(Gi 1> Fii1): S(Gr, 1> Fr)-
We have S(Fiy1, Fii1) = G- Moreover
S(Gi,1» Fi41) = y(ywiwr — (k + 1)xwiwiyr).



COMMUNICATIONS IN ALGEBRA® @ 5

This leading term of S(Gyj, Fii1) is —(k + 1)xywywiy1, and it is equal to y(Fryiw; — ywewy).
Therefore S(Gy, 1, Fi41) = Fri1ywi.
Finally we have

S(Gk,1 Fx) = kx((I + D)ywiwipr — (k+ Dywiwigr) + (L4 D)ywi (ywie—1 — koxwy)

kx
= (I+ 1)y*wp_wipy — k(k + Dxywwyy, .

Its leading term is —k(k + 1)xyw;wy; and it is divisible by the leading term of Fi;. The remain-
der of the division of S(Gy j, Fx) by Fiy is

(I + 1)y*wiywipr — ky*wiwy = yGy_y, -

Therefore the reductions of these S-polynomials is always zero, hence the family
{FJ le,l}j, klen, 1>k 18 @ Grobner basis of I. Thus, the initial ideal of I is generated by the mono-
mials

zz,xwkﬂ,ywkwm for 0<k<l
Therefore every polynomial of K[x, y, z, w] is equivalent modulo I to a unique polynomial of E.

Now let f € K{x,y,z,w}. We can write f =, Cax®y?zw* where the C, are in K*. In
particular ) |C,| < co. For every n € N, there is a unique (a/,b),c),o,) and a unique r, €
(0,1] such that

Cox™yPrzrw® — 1, Cox¥rytn zwn € [

and x%y¥ z%w® has one the forms given in (2.4). Now, for every n € N, we set

gn = E 1 Gyt 2% e 4 g Crx® yP 2% w ™,

k=0 k>n

In particular we have that P, :=f — g, € I and the sequence (g,), converges in K{x,y,z,w} to
the series g = >, kCex¥y? 2% w” € K{x,y,z, w}. Therefore the sequence (P,), converges in
K{x,y,z,w}, and its limits is in I.
Therefore, every power series of K{x,y,z,w} can be written as a sum of a power series in I
and a convergent power series whose monomials are as in (2.4) (up to multiplicative constants).
We remark that, by repeating (2.2) L !| times, we have

n

YWiWj SRIYW, i W

=iy
for some constant r € (0, 1]. Moreover applying (2.3) reduces by 2 the degree in z of a monomial.
Therefore, a monomial of the form

Cx™yPzw? - - w;f
of total degree d =a+ b+ c+ >, o, is not equal to a monomial involving only the indetermi-
nates

<
x, 9,2z, and w; for i<J d2

Moreover (2.2) and (2.3) transforms monomials into monomials of the same degree since I is
generated by homogeneous binomials. Therefore, given a monomial M among those of (2.4) (up
to some multiplicative constant), there is finitely many monomials that are equal to M modulo I.

Now let f € ENLf =34 00 ﬁa,b,c)a)x“ybzcy“. Let us fix such (a,b,¢c, o) that x*y’zw* is
one of the monic monomlals of (2.4). There is only a finite number of distinct monomials that
are equal to fi4,p,, 1)x”ybz“ﬁ/°‘ modulo I. Let us denote them by
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Clx‘“yb‘ Zwh L, CNx“NyI’NzC”y““’.

We can remark that there is only a finite number of F; that have a monomial that divides at least
one of the following monic monomials

x“ybzcy“, x“lyb1 Zwn, L, x“”be ZNWH, (2.5)

We denote them by Fi,...,Fj. Because f € I, we can write f = Y, fiF; where the f; are in
K{[[x, y, z, w]]. For every i € {1,...,p} we remove from f; all the monomials that do not divide one
of the monomials (2.5), and we denote by f; the resulting polynomial. Then we have that

)
P:=) fiF, €l
i=1

By construction the coefficients of the monomials (2.5) in the expansion of P are the correspond-
ing coefficients in the expansion of f, that is

f(u,b,c,oc), O’ ,0

respectively. Therefore, the coefficient of x?y’z‘w* in the expansion of the unique Q € E such
that Q=gr P, is equal to f(, ) because no other monomial than those listed in (2.5) (up to
some multiplicative constants) is equivalent to a monomial of the form Cx®y’z‘w* where C € K*.
But Q=0 since P € I, thus f, 5, = 0. Hence f=0 and ENI = 0.

Therefore every series of K{x,y,z, w} is equivalent modulo I to a unique series of E.

Now take f € K{x,y,z,w} such that x=g0. We can write f = xp(x,y,z,wo) + q(,z, w) and
assume that the monomials in the expansion of xp(x,y,z, wy) + q(y,2z, w) are only those of (2.4).
Then

p(x, y,2,wo) + xq(y, 2z, w)=g 0.
The representation of x*p(x, y,z, wy) + xq(y, 2z, w) as a sum of monomials as in (2.4) has the form
p(x,y,2,wo) + xq(y, 2, wo,0) + @(y,2,w) =0 (2.6)

where g(y,z,w) is the series obtained from xq(y,z, w) — xq(y, z, wp, 0) by replacing the monomials
as follows (using the two previous operations (2.2) and (2.3)):

o 1, L
xzywlt — ?zLyl+1wi_1w?’ ,if i>0
el i Mgl — 1 e 1, ni+1, ni—1 ifi>0
XTYy Wi Wi it1 1Z)’ Wi Wi > 11 (2.7)
£, 10 1; &0 M Mt O]
xz'wy’ ... w; = Czlyw;'wp or CZiyw;
for i >0 and n; >0 for some C € K,|C| < 1,j> 0.

Indeed for the third monomial we have

ni—1+1, ni—1

W' W= Zywp’ Wi

XZ Wy .. W, =R~
0 i l+1

and this monomial on the right side can be transformed into a monomial of the form
Cz“yw}nj wiiit or Cz“waqj for some C € K,|C| <1, and j > 0, by using the two operations (2.2)
and (2.3) on monomials.

This shows that the three types of monomials that we obtain after multiplication by x are all
distinct, that is the map defined by (2.7) is injective. By (2.6) we have g(y,z,w) =0, there-

fore q(y,z,w) — q(y, 2, wp,0) = 0.
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Moreover, again by (2.6), we have
x*p(x, v, 2, wo) + xq(y, 2, wg, 0) = 0.
This shows that x’p(x, y,z, wo) + xq(y, z, w) = 0. Therefore x is not a zero divisor in R. O
Proof of Proposition 2.3. Let f(t) € R[[t]] such that
(x = y0)f(t) = 2.
By writing f = Y o, fct* with f; € R for every k, we have
xfo = 2*
X — Y1 =0 Vk > 1.
Thus
xfo = 2% = xwp

so x(fo — wp) =0 and fy = wy by Lemma 2.5. Then we will prove by induction on k that f; =
k! wy for every k. Assume that this is true for an integer k > 0. Then we have

K1 = Ve = kL ywre = (k4 1) xwpyy.

Hence x(fyy1 — (k+ 1)! wiy1) =0 and fiy1 = (K4 1)! wiyq by Lemma 2.5. Therefore, the only
solution of

(x—yt)f(t) =2
is the series > ;2 k! wit*, and this one is divergent because ||wi|| = 1. This holds because in

every element of I, the monomial wy has coefficient 0. O
Now we can give the proof of Theorem 2.4.

Proof of Theorem 2.4. Since x is not a zero divisor in R by Lemma 2.5, the localization morphism
R— Rl/x

is injective. But Ry, is isomorphic to K{x,y,z}, Jx Since in Ry, we have

1
wo = z°/x and Vk > 0, w; = Eykzzxk“.

But K{x.y.z},,, is an integral domain (this is a localization of the integral domain K{x,y,z}),
therefore so is R.

Now assume that the morphism R{t} — R[[f]] is flat. By [9, Theorem 7.6] applied to the linear
equation (x — yt)F — z>G = 0, there exist an integer s > 1, and convergent series

ay (), ..., as(t), by (), ..., bs(t) € R{t}
such that
(x — yt)a;(t) — 2°b;(t) = 0 for every i, (2.8)

and formal power series

such that
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Indeed the vector (f(t),1) is a solution of the linear equation

(x —yt)f () — 2%g(t) = 0

with f(£) = Y00, k! witk.
Then

g(t) = Zbi(t)hi(o) =1+ te(t)
i=1
for some &(t) € R{t}. Since 1 is a unit of R, 1 + t&(t) is a unit in R{t}.
Set f(t) := >, ai(t)hi(0). By (2.8), (f(¢),g(t)) is a solution of the equation
(x —yt)f (1) = 2g(1) = 0.
Since g(¢) is a unit in R{¢} we have

(x—yt)f (N0~ =2

This contradicts Theorem 2.3. Therefore R{t} — R[[f]] is not flat. O

3. An example concerning the strong Artin approximation theorem

Let n be a positive integer, x = (xy, ..., x,) and p > 0. We set K =R or C. Then
B! = {f: S allllfll, = > ladlp < oo}
oeN" oeN"
is a Banach space equipped with the norm || - | . Of course K[x] C Bj.
Remark 3.1. We do not have
By[[tll N K{x, t} = B {t}.

For instance, the power series
_ Kt ok
f= E Xyt
keN

is a convergent power series in (x, t), belongs to Bj[[t]], but
Z ||xk[27F = sz!‘fk =00
k k

for every © > 0. Therefore f ¢ By{t}.
We provide two examples based on an example of Spivakovsky concerning the extension of
Theorem 1.2 to the nested case (see [16]).

Example 3.2. Let n=1 and set
F(x,t,y1,32) =3y — (x+ 0)y; € By{t}[y1, 1]
Let

VIFt=1+) ant"€Qft}

n>1

be the unique power series such that (v/1+ t)2 =1+t and whose value at the origin is 1. For
every ¢ € N we set y(zc)(t) = x° and ygc)(t) = x4+ >0 apx“"t" € B,{t}. Then
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F(x, t, 47 (0),95) () € (1)

On the other hand the equation f(x, £, y,(t), y2(t)) = 0 has no solution (y,(t),y.(t)) € B,{t}* but
(0, 0). Indeed let us denote by T, the Taylor map at 0:

To : B,{t} — K][x,t]].
If f(x, t, y1(t), y2(t)) = O then
*To(n () = (x + ) To( (1)) = 0.

But since K[[x,t]] is a unique factorization domain, this equality implies that Ty(y;(¢)) =

To(y2(t)) = 0, hence y;(t) = y,(t) = 0.
This shows that there is no : N — N such that for every y(t) € B,{t}* and every k € N with

Flx,t,y(1) € ()"
there exists j(t) € B,{t}” such that
Fx,1,5(t)) =0
and y(t) — y(t) € ().

Example 3.3. We can modify a little bit the previous example to construct a F as before that
does not depend on t. We set

G(% Y1, y2,y3) == %7 — (X +y3)y5 € By[y1,72,y3].

For every ¢ € N we set ygc)(t) = xc,y<16>(t) =X+ >0 ax """ and y§c>(t) =1t € B,{t}. Then

Gl 7 (1), 35 (0,35 (1) € (1)
Now if j(t) € B,{t}’ satisfies G(x, 7(t)) = 0 and

() = y(1) € (1)°

then y,(t) = x + t + &(t) with &(t) € (). Thus x + y,(¢) is an irreducible power series in x and
t, and it is coprime with x. By the same argument based on the Taylor map as in Example 3.2,
the relation

G, (1) = (x+ 1+ e(1)7,(1) = 0

implies that 7,(t) = y,(t) = 0.
This shows that there is no : N — N such that for every y(t) € B,{t}’ and every k € N with

Gl (1)) € ()"
there exists 7(t) € B,{t}’ such that
G(xy(t) =0
and y(t) — y(t) € (1)~

Acknowledgment

The author is deeply grateful to the UMI LASOL of the CNRS where this project has been carried out.



10 (&) G.ROND

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]

(14]
(15]

(16]
(17]

(18]

Artin, M. (1968). On the solutions of analytic equations. Invent. Math. 5(4):277-291. DOL 10.1007/
BF01389777.

Artin, M. (1969). Algebraic approximation of structures over complete local rings. Publications
Mathématiques de L'institut. Des. Hautes. Scientifiques. 36(1):23-58. DOI: 10.1007/BF02684596.

Bourbaki, N. (1970). Algebre, Chapitres 1 a 3. Paris: Hermann.

Bourbaki, N. (1985). Algebre Commutative, Chapitres 1 a 4. Paris: Masson.

Chase, S. U. (1960). Direct products of modules. Trans. Amer. Math. Soc. 97(3):457-473. DOI: 10.1090/
$0002-9947-1960-0120260-3.

Cox, D., Little, J., OShea, D. (1997). Ideals, varieties, and algorithms. In: Undergraduate Texts in
Mathematics, 2nd ed. New York: Springer-Verlag.

Hickel, M. (1990). Noncohérence de certains anneaux de fonctions holomorphes. Illinois J. Math. 34(3):
515-525. DOI: 10.1215/ijm/1255988168.

Iima, K., Yoshino, Y. (2009). Grobner bases for the polynomial ring with infinite variables and their appli-
cations. Commun. Algebra 37(10):3424-3437. DOI: 10.1080/00927870802502878.

Matsumura, H. (1989). Commutative ring theory. In: Cambridge Studies in Advanced Mathematics.
Cambridge: Cambridge University Press, xiv+320 pp.

McVoy, W. S., Rubel, L. A. (1976). Coherence of some rings of functions. J. Funct. Anal. 21(1):76-87. DOL
10.1016/0022-1236(76)90030-6.

Moret-Bailly, L. (2012). An extension of Greenberg’s theorem to general valuation rings. Manuscripta
Math. 139(1-2):153-166. DOI: 10.1007/500229-011-0510-5.

Popescu, D. (1986). General Néron desingularization and approximation. Nagoya Math. J. 104:85-115.
DOI: 10.1017/50027763000022698.

Ribenboim, P. (1992). Fields: algebraically closed and others. Manuscripta Math. 75(1):115-150. DOI: 10.
1007/BF02567077.

Rond, G. (2018). Artin Approximation. J. Singul. 17:108-192.

Schoutens, H. (1988). Approximation properties for some non-Noetherian local rings. Pacific J. Math.
131(2):331-359. DOI: 10.2140/pjm.1988.131.331.

Spivakovsky, M. (1994). Non-existence of the Artin function for Henselian pairs. Math. Ann. 299(1):
727-729. DOI: 10.1007/BF01459808.

Wavrik, J. J. (1975). A theorem on solutions of analytic equations with applications to deformations of
complex structures. Math. Ann. 216(2):127-142. DOI: 10.1007/BF01432540.

Yekutieli, A. (2011). On flatness and completion for infinitely generated modules over Noetherian rings.
Commun. Algebra 39(11):4221-4245. DOI: 10.1080/00927872.2010.522159.


https://doi.org/10.1007/BF01389777
https://doi.org/10.1007/BF01389777
https://doi.org/10.1007/BF02684596
https://doi.org/10.1090/S0002-9947-1960-0120260-3
https://doi.org/10.1090/S0002-9947-1960-0120260-3
https://doi.org/10.1215/ijm/1255988168
https://doi.org/10.1080/00927870802502878
https://doi.org/10.1016/0022-1236(76)90030-6
https://doi.org/10.1007/s00229-011-0510-5
https://doi.org/10.1017/S0027763000022698
https://doi.org/10.1007/BF02567077
https://doi.org/10.1007/BF02567077
https://doi.org/10.2140/pjm.1988.131.331
https://doi.org/10.1007/BF01459808
https://doi.org/10.1007/BF01432540
https://doi.org/10.1080/00927872.2010.522159

	Abstract
	Introduction
	A Banach algebra R such that R{t}→R[​[t]​] is not flat
	Proofs of Proposition 2.3 and Theorem 2.4

	An example concerning the strong Artin approximation theorem
	Acknowledgment
	References


