
ARTIN APPROXIMATION OVER BANACH SPACES

GUILLAUME ROND

Abstract. We give examples showing that the usual Artin Approxima-
tion theorems valid for convergent series over a field are no longer true
for convergent series over a commutative Banach algebra. In particular
we construct an example of a commutative integral Banach algebra R
such that the ring of formal power series over R is not flat over the ring
of convergent power series over R.

1. Introduction

The classical Artin Approximation Theorem is the following:

Theorem 1.1. [1] Let F (x, y) be a vector of convergent power series over
C in two sets of variables x and y. Assume given a formal power series
solution ŷ(x) vanishing at 0,

F (x, ŷ(x)) = 0.

Then, for any c ∈ N, there exists a convergent power series solution y(x)
vanishing at 0,

F (x, y(x)) = 0

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x) modulo (x)c.

The main tools for proving this theorem are the implicit function theorem
and the Weierstrass division theorem. But in the case the equations F (x, y)
are linear in y, this theorem is equivalent to the faithful flatness of the
morphism C{x} −→ CJxK (see [13, Example 1.4] for instance or [4, I. 3
Proposition 13]). In fact the faithful flatness of this morphism comes from
the fact that C{x} is a Noetherian local ring. And the Noetherianity of
C{x} is usually proved by using the Weierstrass division theorem.
Another version of this theorem is the following one:

Theorem 1.2. [2][16] Let F (x, y) be a vector of convergent power series
over C in two sets of variables x and y. Then for any integer c there exists

2010 Mathematics Subject Classification. 13J05, 13B40, 16W80, 46J99.
Key words and phrases. Banach algebra, flatness, Artin approximation.
The author is deeply grateful to the UMI LASOL of the CNRS where this project has

been carried out.

1



2 GUILLAUME ROND

an integer β such that for any given approximate solution y(x) at order β,
y(0) = 0,

F (x, y(x)) ≡ 0 modulo (x)β,

there exists a formal power series solution y(x) vanishing at 0,

F (x, y(x)) = 0

which coincides with y(x) up to degree c,

y(x) ≡ y(x) modulo (x)c.

In particular this result implies that, if F (x, y) = 0 has approximate so-
lutions at any order, then it has a formal (even convergent by Theorem 1.1)
power series solution.
Let us mention that these results remain valid when we replace C by a com-
plete valued field, or when we replace the ring of convergent power series
over C by the ring of algebraic power series over a field. In fact these results
remain true in the more general setting of excellent Henselian local rings by
[12] (see [13] for a review of all these different results).

The aim of this note is to show that these results are no longer true when we
replace C by a commutative Banach algebra over R or C. In the first part
we construct a commutative Banach algebra R such that R{t} −→ RJtK is
not flat, showing that Artin approximation theorem is not true for linear
equations with coefficients in R{t}.
Let us mention here that RJtK is flat over R, for a commutative ring R, if
and only if R is coherent (indeed RJtK is a direct product of copies of R
- see [5, Theorem 2.1]). And there are several known examples of Banach
algebras which are not coherent (in fact most of the known Banach algebras
are not coherent; see for instance [9] or [8] and the references herein). But
the flatness of R{t} −→ RJtK is a different property that is not related to
the coherence of R.
In the second part we provide an example of one polynomial F (y) with co-
efficients in R[t], where R is the Banach algebra of holomorphic functions
over a disc, with the following property: F (y) has approximate solutions up
to any order but has no solution in RJtK. This shows that Theorem 1.2 does
not hold for convergent power series over a Banach algebra. Let us mention
that this example is a slight modification of an example of Spivakovsky re-
lated to a similar problem [15].
Nevertheless we mention that in the case where R is a complete valua-
tion ring of rank one (in particular a non-archimedean Banach algebra),
Schoutens and Moret-Bailly proved several extensions of Theorems 1.1 and
1.2 (see [14] and [11]).
The note has been motivated by questions from Nefton Pali and Wei Xia.
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2. A Banach algebra R such that R{t} −→ RJtK is not flat

Let K = R or C. We begin by the following definition of power series in
countable many indeterminates:

Definition 2.1. Let N(N) be the submonoid of NN formed by the sequences
whose all but finitely terms are 0. Let (xi)i∈N be a countable family of
indeterminates. Then KJxiKi∈N is the set of series

∑
α∈N(N) aαx

α where xα =
xα0
0 · · ·xαn

n · · · . This former product is finite since αi = 0 for i large enough.

This set is a commutative ring since the sum of sequences N(N) × N(N) −→
N(N) has finite fibers (see [3, Chapter III, § 2, 11]). Let us mention that this
ring is not the (x)-adic completion of K[x], the ring of polynomials in the xi
(see [17] for instance).

Let x, y, z and wk for k ∈ N be indeterminates. For simplicity we denote
by w the vector of indeterminates (w0, w1, . . .). We denote by K[x, y, z, w]
the ring of polynomials in the indeterminates x, y, z, w.

For a polynomial p =
∑

k∈N,l∈N,m∈N,α∈N(N)

ak,l,m,αx
kylzmwα ∈ K[x, y, z, w] we

set

‖p‖ :=
∑

k,l,m,α

|ak,l,m,α|.

This is well defined because the sum is finite. This defines a norm on
K[x, y, z, w].
We denote by K{x, y, z, w} the completion of K[x, y, z, w] for this norm.
This is the following commutative Banach algebra: ∑

k∈N,l∈N,m∈N,α∈N(N)

ak,l,m,αx
kylzmwα |

∑
k∈N,l∈N,m∈N,α∈N(N)

|ak,l,m,α| <∞


and the norm of an element f :=

∑
k∈N,l∈N,m∈Nα∈N(N)

ak,l,m,αx
kylzmwα is

‖f‖ :=
∑

k∈N,l∈N,m∈N,α∈N(N)

|ak,l,m,α|.

In particular K{x, y, z, w} is a subring of KJx, y, z, wiKi∈N.
We denote by I the ideal of K[x, y, z, w] generated by the polynomials

xw0 − z2 and ywk − (k + 1)xwk+1 for all k ≥ 0.

The ideal IK{x, y, z, w} is not closed since it is not finitely generated. Thus,
we denote by I its closure. This is the set of sums∑

k∈N
fk(x, y, z, w)

such that fk(x, y, z, w) ∈ IK{x, y, z, w} and
∑

k ‖fk(x, y, z, w)‖ <∞.
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Definition 2.2. We denote by R the Banach K-algebra K{x, y, z, w}/I.

In order to denote that two series f and g ∈ K{x, y, z, w} have the same
image in R, we write f ≡R g. The norm of the image f of an element
f ∈ K{x, y, z, w} is

‖f‖ = inf
g∈I
‖f + g‖ = inf

g∈I
‖f + g‖.

Now we denote by R{t} the ring of convergent series in the indeterminate t
with coefficients in R. We have the following result:

Proposition 2.3. The linear equation

(2.1) (x− yt)f(t) = z2

has a unique solution f(t) in RJtK and this solution is not convergent.

From this we will deduce the following result:

Theorem 2.4. The Banach K-algebra R is an integral domain and the
morphism R{t} −→ RJtK is not flat.

2.1. Proofs of Proposition 2.3 and Theorem 2.4. We begin by giving
the following key result:

Lemma 2.5. x is not a zero divisor in R.

Proof. First of all, we will determine a subset of K{x, y, z, w} such that every
element of K{x, y, z, w} is equal modulo I to a unique series of this subset.
First we remark that

(2.2) M1 := ywiwj ≡R (i+ 1)xwi+1wj ≡R
i+ 1

j
ywi+1wj−1 =: M2

for all integers i and j with i < j. If j = i+1 these two monomials are equal,
otherwise the largest index of a monomial wj appearing in the expression of
M2 is strictly less than for M1.
Now we have, for i > 0:

(2.3) z2wi ≡R xw0wi ≡R
1

i
yw0wi−1.

A well chosen composition of these operations transforms any monomial of

the form Cxazkylwn0
0 · · ·w

ni
i into a monomial of the form rCxa

′
zk
′
ylw

n′0
0 · · ·w

n′j
j

where j is minimal and r ∈ (0, 1].
By repeating these two operations we may reduce every monomial to a con-
stant times one of the following monic monomials:

(2.4)


zεxaylwn0

0 with a > 1, l, n0 ≥ 0 and ε ∈ {0, 1},
zεylwni

i with l > 0, i > 0, ni > 0 and ε ∈ {0, 1},
zεylwni

i w
ni+1

i+1 with l > 0, i ≥ 0, ni, ni+1 > 0 and ε ∈ {0, 1},
zεwn0

0 . . . wni
i with ni > 0 with ε ∈ {0, 1},

We denote by E the subset of K[x, y, z, w] of polynomials that are sums of
monomials of (2.4) (up to multiplicative constants), and by E the closure



ARTIN APPROXIMATION OVER BANACH SPACES 5

of E in K{x, y, z, w}, that is the set of convergent power series whose non
zero monomials are those of (2.4) (up to multiplicative constants). We have
shown that every polynomial is equivalent to a polynomial of E modulo I.
To prove the unicity we proceed as follows.
We set

F0 := xw0 − z2, Fk+1 := ywk − (k + 1)xwk+1 for k ≥ 0

Gk,l := (l + 1)ywkwl+1 − (k + 1)ywlwk+1 for all k < l.

Then we consider the following monomial order: We define

xaykzlwα1
1 · · ·w

αn
n > xa

′
yk
′
zl
′
w
α′1
1 · · ·w

α′n
n

if

a+k+l+
∑
i

αi > a′+k′+l′+
∑
i

α′i, or a+k+l+
∑
i

αi = a′+k′+l′+
∑
i

α′i

and (l, a, k, αn, . . . , α0) >lex (l′, a′, k′, α′n, . . . , α
′
0)

where >lex denotes the lexicographic order. That is, we first compare the
total degree of two monomials, then we order the indeterminates as

z > x > y > wl > wk for all l > k.

We claim that {Fj , Gk,l}j,k,l∈N, l>k is a Gröbner basis of I for this order.
In order to prove this, we only need to compute the S-polynomials of the
elements of this set of polynomials, and then their reduction (see [6] for the
terminology). This is Buchberger’s Algorithm which is very classical in the
Noetherian case. The case of polynomial rings in countably many indeter-
minates works identically, cf. [7, Proposition 1.13] for instance. The only
S-polynomials we have to consider are those of polynomials whose leading
terms are not coprime, that is, for l > k,

S(Fk+1, Fl+1); S(Gk,l, Fl+1); S(Gk,l, Fk).

We have S(Fk+1, Fl+1) = Gk,l. Moreover

S(Gk,l, Fl+1) = y(ywkwl − (k + 1)xwlwk+1).

This leading term of S(Gk,l, Fl+1) is −(k + 1)xywlwk+1, and it is equal to
y(Fk+1wl − ywkwl). Therefore S(Gk,l, Fl+1) = Fk+1ywl.
Finally we have

S(Gk,l, Fk) = kx((l+1)ywkwl+1−(k+1)ywlwk+1)+(l+1)ywl+1(ywk−1−kxwk)

= (l + 1)y2wk−1wl+1 − k(k + 1)xywlwk+1.

Its leading term is −k(k+1)xywlwk+1 and it is divisible by the leading term
of Fk+1. The remainder of the division of S(Gk,l, Fk) by Fk+1 is

(l + 1)y2wk−1wl+1 − ky2wkwl = yGk−1,l
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Therefore the reductions of these S-polynomials is always zero, hence the
family {Fj , Gk,l}j,k,l∈N, l>k is a Gröbner basis of I. Thus, the initial ideal of
I is generated by the monomials

z2, xwk+1, ywkwl+1 for 0 ≤ k < l.

Therefore every polynomial of K[x, y, z, w] is equivalent modulo I to a unique
polynomial of E.
Now let f ∈ K{x, y, z, w}. We can write f =

∑
n∈NCnx

anybnzcnwαn where
the Cn are in K∗. In particular

∑
n |Cn| < ∞. For every n ∈ N, there is a

unique (a′n, b
′
n, c
′
n, α

′
n) and a unique rn ∈ (0, 1] such that

Cnx
anybnzcnwαn − rnCnxa

′
nyb

′
nzc

′
nwα

′
n ∈ I

and xanybnzcnwαn has one the forms given in (2.4). Now, for every n ∈ N,
we set

gn :=
n−1∑
k=0

rkCkx
a′kyb

′
kzc
′
kwα

′
k +

∑
k≥n

Ckx
akybkzckwαk .

In particular we have that Pn := f−gn ∈ I and the sequence (gn)n converges

in K{x, y, z, w} to the series g =
∑

k∈N rkCkx
a′kyb

′
kzc
′
kwα

′
k ∈ K{x, y, z, w}.

Therefore the sequence (Pn)n converges in K{x, y, z, w}, and its limits is in
I.
Therefore, every power series of K{x, y, z, w} can be written as a sum of a
power series in I and a convergent power series whose monomials are as in
(2.4) (up to multiplicative constants).

We remark that, by repeating (2.2) b j−i2 c times, we have

ywiwj ≡R rywi+b j−i
2
cwj−b j−i

2
c

for some constant r ∈ (0, 1]. Moreover applying (2.3) reduces by 2 the degree
in z of a monomial. Therefore, a monomial of the form

Cxaybzcwα1
1 · · ·w

αj

j

of total degree d = a+ b+ c+
∑

k αk, is not equal to a monomial involving
only the indeterminates

x, y, z, and wi for i <
j − c

2

2d
.

Moreover (2.2) and (2.3) transforms monomials into monomials of the same
degree since I is generated by homogeneous binomials. Therefore, given a
monomial M among those of (2.4) (up to some multiplicative constant),
there is finitely many monomials that are equal to M modulo I.
Now let f ∈ E∩I, f =

∑
(a,b,c,α) f(a,b,c,α)x

aybzcwα. Let us fix such (a, b, c, α)

such that xaybzcwα is one of the monic monomials of (2.4). There is only
a finite number of distinct monomials that are equal to f(a,b,c,α)x

aybzcwα

modulo I. Let us denote them by

C1x
a1yb1zc1wα1 , . . . , CNx

aN ybN zcNwαN .
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We can remark that there is only a finite number of Fl that have a monomial
that divides at least one of the following monic monomials

(2.5) xaybzcwα, xa1yb1zc1wα1 , . . . , xaN ybN zcNwαN .

We denote them by Fl1 , . . . , Flp . Because f ∈ I, we can write f =
∑

l∈N flFl
where the fl are in KJx, y, z, wK. For every i ∈ {1, . . . , p} we remove from
fli all the monomials that do not divide one of the monomials (2.5), and we
denote by f ′li the resulting polynomial. Then we have that

P :=

p∑
i=1

f ′liFli ∈ I.

By construction the coefficients of the monomials (2.5) in the expansion of
P are the corresponding coefficients in the expansion of f , that is

f(a,b,c,α), 0, . . . , 0

respectively. Therefore, the coefficient of xaybzcwα in the expansion of the
unique Q ∈ E such that Q ≡R P , is equal to f(a,b,c,α) because no other
monomial than those listed in (2.5) (up to some multilplicative constants) is
equivalent to a monomial of the form Cxaybzcwα where C ∈ K∗. But Q = 0
since P ∈ I, thus f(a,b,c,α) = 0. Hence f = 0 and E ∩ I = 0.

Therefore every series of K{x, y, z, w} is equivalent modulo I to a unique
series of E.

Now take f ∈ K{x, y, z, w} such that x ≡R 0. We can write f = xp(x, y, z, w0)+
q(y, z, w) and assume that the monomials in the expansion of xp(x, y, z, w0)+
q(y, z, w) are only those of (2.4). Then

x2p(x, y, z, w0) + xq(y, z, w) ≡R 0.

The representation of x2p(x, y, z, w0) +xq(y, z, w) as a sum of monomials as
in (2.4) has the form

(2.6) x2p(x, y, z, w0) + xq(y, z, w0, 0) + q(y, z, w) = 0

where q(y, z, w) is the series obtained from xq(y, z, w) − xq(y, z, w0, 0) by
replacing the monomials as follows (using the two previous operations (2.2)
and (2.3)):

(2.7)


xzεylwni

i 7−→ 1
i z
εyl+1wi−1w

ni−1
i , if i > 0

xzεylwni
i w

ni+1

i+1 7−→ 1
i+1z

εyl+1wni+1
i w

ni+1−1
i+1 , if i > 0

xzεwn0
0 . . . wni

i 7−→ Czεyw
mj

j w
mj+1

j+1 or Czεyw
mj

j

for i > 0 and ni > 0 for some C ∈ K, |C| ≤ 1, j ≥ 0

Indeed for the third monomial we have

xzεwn0
0 . . . wni

i ≡R
1

i+ 1
zεywn0

0 · · ·w
ni−1+1
i−1 wni−1

i

and this monomial on the right side can be transformed into a monomial of
the form Czεyw

mj

j w
mi+1

j+1 or Czεyw
mj

j for some C ∈ K, |C| ≤ 1, and j ≥ 0,
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by using the two operations (2.2) and (2.3) on monomials.
This shows that the three types of monomials that we obtain after multipli-
cation by x are all distinct, that is the map defined by (2.7) is injective. By
(2.6) we have q(y, z, w) = 0, therefore q(y, z, w)− q(y, z, w0, 0) = 0.
Moreover, again by (2.6), we have

x2p(x, y, z, w0) + xq(y, z, w0, 0) = 0.

This shows that x2p(x, y, z, w0) + xq(y, z, w) = 0. Therefore x is not a zero
divisor in R. �

Proof of Proposition 2.3. Let f(t) ∈ RJtK such that

(x− yt)f(t) = z2.

By writing f =
∑∞

k=0 fkt
k with fk ∈ R for every k, we have

xf0 = z2

xfk − yfk−1 = 0 ∀k ≥ 1.

Thus

xf0 = z2 = xw0

so x(f0 − w0) = 0 and f0 = w0 by Lemma 2.5. Then we will prove by
induction on k that fk = k!wk for every k. Assume that this is true for an
integer k ≥ 0. Then we have

xfk+1 = yfk = k! ywk = (k + 1)!xwk+1.

Hence x(fk+1 − (k+ 1)!wk+1) = 0 and fk+1 = (k+ 1)!wk+1 by Lemma 2.5.
Therefore the only solution of

(x− yt)f(t) = z2

is the series
∑∞

k=0 k!wkt
k, and this one is divergent because ‖wk‖ = 1. This

holds because in every element of I, the monomial wk has coefficient 0.
�

Now we can give the proof of Theorem 2.4:

Proof of Theorem 2.4. Since x is not a zero divisor in R by Lemma 2.5, the
localization morphism

R −→ R1/x

is injective. But R1/x is isomorphic to K{x, y, z}1/x since in R1/x we have

w0 = z2/x and ∀k ≥ 0, wk =
1

k!
ykz2xk+1.

But K{x, y, z}1/x is an integral domain (this is a localization of the integral
domain K{x, y, z}), therefore so is R.

Now assume that the morphism R{t} −→ RJtK is flat. By [10, Theorem
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7.6] applied to the linear equation (x − yt)F − z2G = 0, there exist an
integer s ≥ 1, and convergent series

a1(t), . . . , as(t), b1(t), . . . , bs(t) ∈ R{t}

such that

(2.8) (x− yt)ai(t)− z2bi(t) = 0 for every i,

and formal power series

h1(t), . . . , hs(t) ∈ RJtK

such that

f(t) =
s∑
i=1

ai(t)hi(t), 1 =
s∑
i=1

bi(t)hi(t).

Indeed the vector (f(t), 1) is a solution of the linear equation

(x− yt)f(t)− z2g(t) = 0

with f(t) :=
∑∞

k=0 k!wkt
k.

Then

g̃(t) :=
s∑
i=1

bi(t)hi(0) = 1 + tε(t)

for some ε(t) ∈ R{t}. Since 1 is a unit of R, 1 + tε(t) is a unit in R{t}.
Set f̃(t) :=

∑
i ai(t)hi(0). By (2.8), (f̃(t), g̃(t)) is a solution of the equation

(x− yt)f̃(t)− z2g̃(t) = 0.

Since g̃(t) is a unit in R{t} we have

(x− yt)f̃(t)g̃(t)−1 = z2.

This contradicts Theorem 2.3. Therefore R{t} −→ RJtK is not flat.
�

3. An Example concerning the strong Artin approximation
theorem

Let n be a positive integer, x = (x1, . . . , xn) and ρ > 0. We set K = R or
C. Then

Bn
ρ :=

{
f =

∑
α∈Nn

aαx
α | ||f ||ρ :=

∑
α∈Nn

|aα|ρ|α| <∞

}
is a Banach space equipped with the norm || · ||ρ. Of course K[x] ⊂ Bn

ρ .

Remark 3.1. We do not have

Bn
ρ JtK ∩K{x, t} = Bn

ρ {t}.
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For instance, the power series

f =
∑
k∈N

xk!1 t
k

is a convergent power series in (x, t), belongs to Bn
2 JtK, but∑

k

‖xk!1 ‖2τk =
∑
k

2k!τk =∞

for every τ > 0. Therefore f /∈ Bn
2 {t}.

We provide two examples based on an example of Spivakovsky concerning
the extension of Theorem 1.2 to the nested case (see [15]).

Example 3.2. Let n = 1 and set

F (x, t, y1, y2) := xy21 − (x+ t)y22 ∈ Bρ{t}[y1, y2].

Let
√

1 + t = 1 +
∑
n≥1

ant
n ∈ Q{t}

be the unique power series such that (
√

1 + t)2 = 1 + t and whose value

at the origin is 1. For every c ∈ N we set y
(c)
2 (t) := xc and y

(c)
1 (t) :=

xc +
∑c

n=1 anx
c−ntn ∈ Bρ{t}. Then

F (x, t, y
(c)
1 (t), y

(c)
2 (t)) ∈ (t)c+1.

On the other hand the equation f(x, t, y1(t), y2(t)) = 0 has no solution (y1(t),
y2(t)) ∈ Bρ{t}2 but (0, 0). Indeed let us denote by T0 the Taylor map at 0:

T0 : Bρ{t} −→ KJx, tK.

If f(x, t, y1(t), y2(t)) = 0 then

xT0(y1(t))
2 − (x+ t)T0(y2(t))

2 = 0.

But since KJx, tK is a unique factorization domain, this equality implies that
T0(y1(t)) = T0(y2(t)) = 0, hence y1(t) = y2(t) = 0.

This shows that there is no β : N −→ N such that for every y(t) ∈ Bρ{t}2
and every k ∈ N with

F (x, t, y(t)) ∈ (t)β(k)

there exists ỹ(t) ∈ Bρ{t}2 such that

F (x, t, ỹ(t)) = 0

and ỹ(t)− y(t) ∈ (t)k.
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Example 3.3. We can modify a little bit the previous example to construct
a F as before that does not depend on t. We set

G(x, y1, y2, y3) := xy21 − (x+ y3)y
2
2 ∈ Bρ[y1, y2, y3].

For every c ∈ N we set y
(c)
2 (t) := xc, y

(c)
1 (t) := xc +

∑c
n=1 anx

c−ntn and

y
(c)
3 (t) := t ∈ Bρ{t}. Then

G(x, y
(c)
1 (t), y

(c)
2 (t), y

(c)
3 (t)) ∈ (t)c.

Now if ỹ(t) ∈ Bρ{t}3 satisfies G(x, ỹ(t)) = 0 and

ỹ(t)− y(t) ∈ (t)2

then ỹ3(t) = x + t + ε(t) with ε(t) ∈ (t2). Thus x + ỹ3(t) is an irreducible
power series in x and t, and it is coprime with x. By the same argument
based on the Taylor map as in Example 3.2, the relation

xỹ1(t)
2 − (x+ t+ ε(t))ỹ2(t)

2 = 0

implies that ỹ1(t) = ỹ2(t) = 0.

This shows that there is no β : N −→ N such that for every y(t) ∈ Bρ{t}3
and every k ∈ N with

G(x, y(t)) ∈ (t)β(k)

there exists ỹ(t) ∈ Bρ{t}3 such that

G(x, ỹ(t)) = 0

and ỹ(t)− y(t) ∈ (t)k.
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