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Abstract. We answer in the negative the long-standing open question of

whether biholomorphic equivalence implies algebraic equivalence for germs of
real algebraic manifolds in Cn. More precisely we give an example of two

germs of real algebraic surfaces in C2 that are biholomorphic, but not via an

algebraic biholomorphism. In fact we even prove that the components of any
biholomorphism between these two surfaces are never solutions of polynomial

differential equations. The proof is based on enumerative combinatorics and

differential Galois Theory results concerning the nature of the generating series
of walks restricted to the quarter plane.

1. Introduction

Given two germs of smooth real analytic manifolds (M, 0) and (M ′, 0) in Cn, a
general question is to determine if there is a germ of biholomorphism Φ : (Cn, 0) −→
(Cn, 0) such that Φ(M) = M ′. The classification of real analytic manifolds up to lo-
cal biholomorphisms is an old and important problem that goes back to H. Poincaré
[Po07], when he showed that real analytic hypersurfaces of C2 have local invariants.
E. Cartan, for germs of real analytic smooth hypersurfaces in C2 [Ca32], and S. S.
Chern and J. K. Moser, for germs of real analytic smooth hypersurfaces in Cn for
n > 2 [CM75], gave a complete description of this classification, when the hypersur-
faces are assumed to be Levi non-degenerate. More precisely, S. S. Chern and J. K.
Moser first gave a complete classification up to formal biholomorphisms. Then they
prove that the unique formal biholomorphism sending such a Levi non-degenerate
hypersurface to its normal form is convergent.
Therefore a natural question was to investigate if the formal biholomorphic equiv-
alence implies the convergent biholomorphic equivalence. This question has been
widely studied and the reader can consult [Mir13] for a general account of this
problem. The first negative answer to this question has been given in [MW83]: the
authors considered a particular example of a germ of two real algebraic smooth
surfaces (M, 0) and (M ′, 0) that are formally equivalent but not biholomorphically
equivalent. This surface M has the following particular property: its tangent space
at any point near the origin is totally real, but its tangent space at the origin is a
complex line. A surface having this property is called a Bishop surface.
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The question remained open for long for CR manifolds, that is, for manifolds for
which the largest C-vector subspace of its tangent space has constant dimension.
Recently this question has been answered in the negative in [KS16] where the au-
thors constructed CR manifolds formally biholomorphic but non biholomorphic
(let us mention that the components of the formal biholomorphism are solutions of
polynomial differential equations).

In this paper we consider the case of real algebraic (not necessarily CR) mani-
folds in Cn. One can define the notion of algebraic (biholomorphic) equivalence:
two germs of smooth real analytic manifolds (M, 0) and (M ′, 0) in Cn are alge-
braically equivalent if there is a germ of biholomorphism Φ : (Cn, 0) −→ (Cn, 0),
defined by algebraic power series, such that Φ(M) = M ′. A formal power series
f(x1, . . . , xn) ∈ CJx1, . . . , xnK is called algebraic if it satisfies a non trivial relation

a0(x)f(x)d + a1(x)f(x)d−1 · · ·+ ad(x) = 0

where the ai(x) are polynomials. The question of whether biholomorphic equiva-
lence implies algebraic equivalence of germs of real algebraic manifolds in whole gen-
erality has first been asked in [BER00, 7. Question (b)] (see also [Mir13, Question
B]). But this question had already been investigated before: H. Poincaré already
studied algebraicity properties of local biholomorphisms between real algebraic hy-
persurfaces [Po07], and he proved that local biholomorphisms between pieces of
3-spheres in C2 are necessarily rational mappings (this has been extended in higher
dimension by Tanaka [Ta62]). Then an important step was the work of S. M.
Webster who proved that biholomorphisms between Levi non-degenerate real alge-
braic hypersurfaces are necessarily algebraic [We77]. Now the answer is known to
be positive in several cases: for example the case of real algebraic hypersurfaces
[We77], [BMR02], the case of real algebraic generic manifolds of finite type holo-
morphically non-degenerate [BER96], the case of real algebraic generic manifolds
of finite type not containing nontrivial holomorphic subvariety [BER96, Za99]. It
is known that, for CR manifolds, the biholomorphic equivalence implies the al-
gebraic equivalence on a Zariski dense subset of points [BRZ01, LM10]. See also
[Su93, Hu94, SS96, CMS99, Mer01, Mir12, KLS22] for other partial results and
references, and [Mir13] for a survey about this question.

In this paper we give an example of two Bishop surfaces that are biholomorphic
but not algebraically biholomorphic. Such surfaces have first been studied by E.
Bishop in [Bi65] where he proved that they are locally biholomorphic to a surface
defined (locally at 0) by:

w = zz + λ(z2 + z2) +O(|z|3) and Im(w) = 0.

The constant λ is a biholomorphic invariant of the germ (M,p), and is called the
Bishop invariant of (M,p). J. K. Moser and S. M. Webster proved that, for λ /∈
{0, 12 ,∞}, a Bishop surface admits a (formal) normal form as follows:

w = zz + (λ+ εws)(z2 + z2) and Im(w) = 0

where ε ∈ {−1, 0, 1} and s ∈ N ∪ {∞} (s is called the Moser invariant of (M,p)).
They also proved that this normal form can be obtain by a convergent biholomor-
phism when λ ∈]0, 12 [ but not when λ ∈] 12 ,∞[ [MW83]. In fact, when λ ∈]0, 12 [ the
automorphic group of the Bishop surface is trivial. Later, J. K. Moser studied the
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case λ = 0 and proved that, when s = ∞, a Bishop surface is biholomorphically
equivalent to the quadric

M∞ = {(z, w) ∈ C2 | w = |z|2}.

J. K. Moser remarked that the automorphic group of M∞ is infinite (see Lemma 6
below), making the situation apparently more flexible. Here we prove the following
theorem:

Theorem 1. Let M be the Bishop surface defined by

M{(z, w) ∈ C2 | w − |z|2(1 + zz2 + z2z + |z|4)−1 = 0 and Im(w) = 0}.

Then there are biholomorphisms Φ : (C2, 0) −→ (C2, 0) such that Φ(M∞) = M , but
none of them is algebraic.
In fact, for every such a Φ, if we set Φ(z, w) = (ϕ1(z, w), ϕ2(z, w)) and choose w0

small enough, the function z 7−→ ϕ1(z, w0) is hypertranscendental.

A function F (z) is called hypertranscendental if it is not solution of a polynomial
differential equation

P

(
z, F (z),

∂F

∂z
, . . . ,

∂NF

∂zN

)
= 0

where P ∈ C[z,X0, . . . , XN ] for some integer N .
Our proof is based on the fact that the functional equations satisfied by the gener-
ating series of the some walks restricted to the quarter plane involve a polynomial
(its kernel) that can be interpreted, in some cases, as the equation of a Bishop
surface. And we use the non trivial fact that the solution of these equations are
transcendental. This kind of idea appeared in [Ro20] where we give a negative
answer to a question of N. Mir.

We thank Andrew Elvey Price and Kilian Raschel for the fruitful discussions we
had on this problem.

2. Generating series of walks restricted to the quarter plane

We consider the following situation: We fix a set of steps S ⊂ {−1, 0, 1}2\{(0, 0)}.
For every (i, j) ∈ N2 and n ∈ N, we denote by ai,j,n the number of walks with steps
in S of length n, starting at the origin and ending at (i, j), and staying in the
quarter plane N2. The associated generating series Q is defined as follows:

Q(x, y, t) :=
∑

i,j,n∈N
ai,j,nx

iyjtn ∈ ZJx, y, tK.

The reader may consult [BMM09] or [DHRS18] for a general presentation of the
study of these generating series. We recall here that Q(x, y, t) is the solution of a
functional equation of the form

xy =

xy − t ∑
(a,b)∈S

xa+1yb+1

Q(x, y, t) +R(x, t) + S(y, t)(2.1)

where R(w, t) and S(y, t) can be expressed in term of Q(x, y, t). The polynomial

KS(x, y, t) := xy − t
∑

(a,b)∈S

xa+1yb+1
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is called the kernel of the equation.
By the division theorem of formal power series (see [Ro20]), this equation has
a unique solution (Q(x, y, t), R(x, t) + S(y, t)), that is a unique solution whose
second term is a power series without monomial divisible by xy, and this solution
is convergent. We can easily show that the real algebraic surface MS defined by

KS(z, z, w) = 0 and Im(w) = 0

is smooth if and only if (−1,−1) ∈ S, and in this case the germ (MS , 0) is a Bishop
surface with a Bishop invariant λ = 0 and Moser invariant s = ∞ (see [Ro20,
Lemma 3]).

To such a kernel KS is usually associated a group of birational automorphisms
G(S) that preserves KS . By [KR12, Theorem 1], this group is finite if and only
if the series Q is D-finite (or holonomic). In fact we have the following stronger
result:

Theorem 2. [KR12][DHRS18] If G(S) is infinite then R(x, t) and S(y, t) are x-
hypertranscendental and y-hypertranscendental. That is, R(x, t) (resp. S(y, t)) is
not a solution, as a function of x (resp. of y), of a polynomial differential equation.
In particular, in this case, R(x, t) and S(y, t) are transcendental convergent power
series.

There are 56 such walks and their list can be found in [BMM09, Table 4] for
instance.
Among these 56 walks with infinite group, only 7 satisfy the following two proper-
ties:

(1) (−1,−1) ∈ S
(2) Their kernel satisfying the following symmetry:

(2.2) KS(z, z, w) = KS(z, z, w).

These correspond to the following sets S:

Figure 1

Sketch of Proof of Theorem 2. For the convenience of the reader we provide here
the main ideas of the proof of Theorem 2.
First the equation KS(x, y, t) = 0 defines an algebraic curve in C2

x,y, as soon as

t ∈ C is fixed. The Zariski closure of this curve in P1(C)× P1(C) can be shown to
be an elliptic curve Et.
Now the series Q(x, y, t) is a convergent power series, so for |t| small enough, R(x, t)
and S(y, t) define analytic functions on pieces of Et. Equation (2.1) allows us to
prove that these two functions can be extended as meromorphic functions on the
whole Et.
Let π : C −→ Et be the uniformization of the elliptic curve Et. We can lift these
two functions as meromorphic functions rx and sy as they satisfy the following
equations (see [KR12, Theorem 4])

∀u ∈ C, rx(u+ ω1) = rx(u) and sy(u+ ω1) = sy(u)
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where ω1 is one of the periods of the elliptic curve. Moreover these two functions
satisfy some difference equations of the form

(2.3) τ ◦ rx − rx = b1 and τ ◦ sy − sy = b2

where b1 and b2 are two elliptic functions on C, and τ is a translation map on C.
This translation map is explicitly defined from the group G(S).
Now the space of meromorphic differential forms on Et is a one dimensional vector
space over C(Et). One can prove that there is a derivation δ on C(Et) such that
τ ◦ δ = δ ◦ τ . Thus (C(Et), δ, τ) is a differential field. This allows us to use
differential Galois Theory to prove the following (see [DHRS18, Proposition 3.6]):
if f is meromorphic on C and satisfies an equation τ(f)−f = b for some b ∈ C(Et),
and if f is a solution of a differential equation, then there exist constants c1, . . . ,
cd and g ∈ C(Et) such that

(2.4) δ(b)d + c1δ(b)
d−1 + · · ·+ cdb = τ(g)− g.

Then the idea is to look at the poles of such a b: if q0 is a pole of b of order m, then
any τk(q0) is also a pole of b of order m, when k ∈ Z, because τ and δ commute.
In particular, if b1 has a pole q0 of order m > 1, but one of the τk(q0) is not a pole
of order > m of b1, then b1 does not satisfy an equation of the form (2.4), thus rx
is hypertranscendental. This is done by determining explicitly the poles of b1 and
b2. This last part is a bit technical and depends explicitly on S. �

3. Proof of Theorem 1

In fact we will prove that Theorem 1 is true for every Bishop surface MS ⊂ C2
z,w

defined by
KS(z, z, w) = 0 and Im(w) = 0

where S is one of the sets given in Figure 1. That is, KS(z, z, w) equals one of the
following polynomials:

• |z|2 − w(1 + zz2 + z2z + |z|4)
• |z|2 − w(1 + z + z + |z|4)
• |z|2 − w(1 + z + z + zz2 + z2z)
• |z|2 − w(1 + z2 + z2 + zz2 + z2z)
• |z|2 − w(1 + z2 + z2 + zz2 + z2z + |z|4)
• |z|2 − w(1 + z + z + z2 + z2 + |z|4)
• |z|2 − w(1 + z + z + z2 + z2 + zz2 + z2z)

Let M∞ be the Bishop surface C2
z,w defined by

|z|2 + w + w = 0 and Im(w) = 0.

Definition 3. Let H : (C2, 0) −→ (C2, 0) be the germ of a (formal) holomorphic
map. We say that H is triangular if H has the form:

H :
(C2, 0) −→ (C2, 0)
(z, w) 7−→ (z, h(z, w))

with h(z, w) = µw + ε(z, w) where µ ∈ C∗ and ord(ε) > 2.

We have the following lemma:

Lemma 4. There is a unique triangular germ of formal map H such H(M∞) =
MS . Let h(z, w) be the second component of H. Then h(z, w) is convergent but
z-hypertranscendental. In particular it is not algebraic.



6 GUILLAUME ROND

Proof. Since H is biholomorphic and dim(M∞) = dim(MS), we have H(M∞) =
MS if and only if H(M∞) ⊂MS . Then, we notice that H(M∞) ⊂MS if and only
if there exist two formal power series k(z, w, z, w) and `(z, w, z, w) such that (here
w = u+ iv) :

|z|2 + 2 Re(h(z, w)) + vk(z, w, z, w) +KS(z, z, w)`(z, w, z, w) = 0.

This is equivalent to

(3.1) zz + h(z, u) + h(z, u) +KS(z, z, u)`(z, z, u) = 0.

for some `(z, z, u) ∈ CJz, z, uK. But (3.1) is exactly (2.1) whose unique solution is
the generating series ` that counts the number of walks restricted to the quarter
plane by the length and by the end point, and whose set of elementary steps is S.
Indeed, in (2.1) the series have real coefficients, and since the kernel satisfies the
symmetry (2.2), we have S(x, t) = S(x, t) = R(x, t). Thus, by unicity we have

h(z, u) + h(z, u) = R(z, u) + S(z, u)

is a transcendental power series (with real coefficients) as explained before.
Now, by (3.1), since KS = |z|2 − w(1 + η(z, w)) where ord(η) > 1, we have that
h(z, w) = 1

2w + ε(z, w) with ord(ε) > 2. This proves the lemma. �

Remark 5. This germ of formal map is exactly the germ of formal holomorphic
map given in [Mo85, Proposition 2.1].

Proof of Theorem 1. Let Φ : (C2, 0) −→ (C2, 0) such that Φ(M∞) = MS . Thus
g := Φ−1 ◦H ∈ Aut(M∞, 0), the group of biholomorphism germs of (C2, 0) preserv-
ing M∞. We need the use the following lemma (this statement appears in several
works without a proof, so we provide a proof below for the sake of completeness):

Lemma 6. [Mo85, 2.11] The automorphism group Aut(M∞, 0) of M∞ is the set
of automorphisms of the form

(C2, 0) −→ (C2, 0)

z 7−→
√

2a(w)
z − wb(w)

1− zb(w)
w 7−→ a(w)a(w)w

where a(w) and b(w) are power series with a(0) 6= 0 and b(0) = 0.

So, we can write

g(z) =
√

2a(w)
z − wb(w)

1− zb(w)
and g(w) = a(w)a(w)w

as in Lemma 6. We write Φ(z, w) = (ϕ1(z, w), ϕ2(z, w)). Since Φ(M∞) ⊂ MS ,
we have that (ϕ1(z, |z|2), ϕ2(z, |z|2)) ∈ MS for every z ∈ C small enough, so
Im(ϕ2(z, |z|2)) = 0 for every z. Thus ϕ2(z, w) depends only on w and is a conver-
gent power series with real coefficients. Hence, for every (z, w) ∈ C2 small enough,

a(ϕ2)a(ϕ2)ϕ2 = w and
√

2a(ϕ2)
ϕ1 − ϕ2b(ϕ2)

1− ϕ1b(ϕ2)
= h(z, w).

Let ρ > 0 such that the convergent power series a, b (resp. ϕ1, ϕ2, h) converge
on the disc of radius ρ (resp. ball of radius ρ). Let w0 ∈ C, |w0| < ρ. Set
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α := a(ϕ2(w0)), β := b(ϕ2(w0)) and γ := ϕ2(w0), and set F (z) := ϕ1(z, w0). Thus

√
2α
F (z)− γβ
1− βF (z)

= h(z, w0).

This proves that h(z, w0) ∈ C(F (z)), the field of rational functions in F (z). Thus
∂h

∂z
(z, w0) ∈ C

(
F (z),

∂F

∂z
(z)

)
. By induction on n, we have

h(z, w0),
∂h

∂z
(z, w0), . . . ,

∂nh

∂zn
(z, w0) ∈ C

(
F (z),

∂F

∂z
(z), . . . ,

∂nF

∂zn
(z)

)
.

If F (z) was solution of a polynomial differential equation

P

(
z, F (z),

∂F

∂z
(z), . . . ,

∂NF

∂zN
(z)

)
= 0

where P ∈ C[z,X0, . . . , XN ] for some integer N , then the transcendence degree
over C(z) of the field

L := C
(
z, F (z),

∂F

∂z
(z), . . . ,

∂nF

∂zn
(z), . . .

)
would less than or equal to N . But

∀n ∈ N,
∂nh

∂zn
(z, w0) ∈ L.

Hence h(z),
∂h

∂z
(z, w0), . . . ,

∂Nh

∂zN
(z, w0) would be algebraically dependent over

C(z), that is, h(z, w0) would be solution of a polynomial differential equation

P

(
z, h(z, w0),

∂h

∂z
(z, w0), . . . ,

∂Nh

∂zN
(z, w0)

)
= 0

which contradicts Lemma 4. Thus, ϕ1(z, w0) is z-hypertranscendental.
Finally, we note that if ϕ1(z, w) was algebraic, then ϕ1(z, w0) would also be al-
gebraic. We obtain a contradiction by using the following well known lemma (see
[St80] for example), so ϕ1(z, w) is not algebraic:

Lemma 7. If f(z) is an algebraic power series in one variable, then f(z) satisfies
a linear differential equation with polynomial coefficients.

Proof. If f(z) is an algebraic power series, the C(z)-vector space V generated by
z and the power series of f(z) is of finite dimension, and V is a field. But, by
differentiating a polynomial equation satisfied by f(z), we obtain that

∀n ∈ N,
∂nf

∂zn
(z) ∈ V.

Thus f(z) satisfies a linear differential equation with polynomial coefficients. �

�

Proof of Lemma 6. First, a direct computation shows that such automorphisms
preserve M∞.
Now let g : (z, w) −→ (Z(z, w),W (z, w)) be a biholomorphic map preserving M∞.
Thus |Z|2 = W + W and Im(W ) = 0. Since W is holomorphic in z and w, and
z is a complex coordinate, this implies that W is real valued and depends only
on w. Since g is a biholomorphism, W ′(0) 6= 0, so W (w) = wh(w) for some non



8 GUILLAUME ROND

vanishing holomorphic function h. Since W is real, the coefficients of h are real, so
h(w) = a(w)a(w) for some analytic function a(w) with a(0) 6= 0.

We set Z̃(z, w) := Z(z,w)√
2a(w)

. Thus |Z̃(z, w)|2 = w. In particular the linear part of

Z(z, w) is of the form αz where |α| = 1.

Now let us consider the restriction of Z̃(z, w)|w=w0
where w0 is a nonzero constant.

This function map is 1-1 in restriction to the circle |z|2 = w0. Thus Z̃(z, w)|w=w0

is a Möbius transform of the form α z−w0b

1−zb for some b ∈ C. Since b and θ depend

on w analytically, this proves the result by replacing a(w) by eiθ(w)a(w). �
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