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EM ′ , then necessarily f = g. Furthermore, the map p �→ kp
may be chosen to be bounded on compact subsets of M . As a 
consequence, we derive the finite jet determination property 
for pairs of germs of CR maps from minimal real-analytic CR 
submanifolds in CN into Nash subsets in CN ′ of D’Angelo 
finite type, for arbitrary N, N ′ ≥ 2.
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1. Introduction

A classical theorem by H. Cartan [6] states that if Ω ⊂ CN is a bounded domain, 
H : Ω → Ω is a biholomorphic map fixing a point p ∈ Ω, and satisfying H ′(p) = I, 
then H is the identity map. Boundary versions of this remarkable theorem have been 
studied intensively, and have lead to deep results for unique jet determination of (local) 
CR maps. Unique jet determination of CR diffeomorphisms by jets of higher order has 
been established under general assumptions involving CR geometric properties of the 
manifold; we refer the reader to the recent survey by the first two authors [18] for a 
thorough discussion. The first general results without dimension restrictions appeared 
only recently in [23,17].

One of the natural obstructions to finite jet determination for arbitrary CR maps 
arises when the target manifold contains complex varieties. Indeed, if we look at maps 
collapsing the source space into one of these varieties, they can never be recovered from 
a jet of finite order at any point.

It is therefore natural to consider maps which do not collapse the source space into 
the complex varieties in the target. Given a real-analytic set M ′ ⊂ CN ′ , we define its 
D’Angelo infinite type points EM ′ to be the union of all positive dimensional complex 
varieties contained in M ′ (see [7,9]). If EM ′ = ∅, then M ′ is said to be of D’Angelo finite 
type (see e.g. [14] for a complete overview about various notions of types).

Definition 1.1. Let M ⊂ CN be a real-analytic CR submanifold and M ′ as above. We 
say that a CR map f : M → M ′ is non-collapsing if f(M) � EM ′ .

The question of whether collapse, as defined above, is the only way for unique de-
termination of arbitrary maps to be violated has been open for many years. Here we 
prove that this is indeed the case for minimal sources (see e.g. [3,5] for this notion) and 
for real-analytic targets that are Nash, i.e. given by the zero-set of finitely many Nash 
functions on a Nash submanifold of CN ′ (see [2]). Our main result may be stated as 
follows.

Theorem 1.2. Let M ⊂ CN be a minimal real-analytic CR submanifold and M ′ ⊂ CN ′

a Nash set. Then, for every point p ∈ M , there exists an integer k = kp, bounded on 
compact subsets of M , such that for every pair of germs of non-collapsing C∞-smooth 
CR maps f, g : (M, p) → M ′, if jkpf = jkpg, then necessarily f = g.

In particular, we do obtain a positive answer to [18, Problem 7.4] for Nash targets 
containing no nontrivial complex-analytic subvarieties.

Corollary 1.3. Let M ⊂ CN be a minimal real-analytic CR submanifold and M ′ ⊂ CN ′

a Nash set of D’Angelo finite type. Then, for every point p ∈ M , there exists an integer 
k = kp, bounded on compact subsets of M , such that for every pair of germs of C∞-
smooth CR maps f, g : (M, p) → M ′, if jkpf = jkpg, then necessarily f = g.
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As a consequence of known results due to Diederich–Fornæss [10], we get the following 
global statement in the compact case.

Corollary 1.4. For every compact real-analytic hypersurface M ⊂ CN and every compact 
Nash set M ′ ⊂ CN ′ , there exists an integer � = �(M, M ′) such that if f, g : (M, p) → M ′

are two germs of C∞-smooth CR maps at some point p ∈ M with j�pf = j�pg, it follows 
that f = g.

Recall from the beginning that biholomorphisms of bounded domains are uniquely 
determined by their 1-jet at any interior point. In contrast, as follows from the works 
of Low [19] and Forstnerič [12], if we consider proper holomorphic embeddings between 
balls in different dimensions, such a uniqueness result does not hold in general. However, 
assuming enough boundary regularity, Forstnerič [11] proved that any such map is ratio-
nal with a degree bound only depending on the codimension, yielding as a consequence 
unique determination at any interior or boundary point. Our last corollary provides a 
general result for boundary uniqueness of proper maps in any codimension.

Corollary 1.5. Let Ω ⊂ CN and Ω′ ⊂ CN ′ be bounded domains with, respectively, smooth 
real-analytic boundary and smooth Nash boundary. Then there exists an integer �, depend-
ing only on ∂Ω and ∂Ω′, such that if F, G : Ω → Ω′ are two proper holomorphic mappings 
extending smoothly up to the boundary near some point p ∈ ∂Ω with j�pF = j�pG, it follows 
that F = G.

The first general jet determination result in arbitrary dimensions appeared in [17]. 
In that article, the first two authors dealt with targets which are Nash manifolds under 
the assumption that the maps under consideration do not possess what we called 2-
approximate deformations. This includes target manifolds for which the order of contact 
with complex curves is at most 1 (such as e.g. strictly pseudoconvex targets). The tech-
niques developed in the present paper allow us to handle non-collapsing CR maps into 
Nash targets, including, in particular, arbitrary maps into D’Angelo finite type targets, 
where the order of contact with complex curves can be arbitrary.

Our approach to prove jet determination in arbitrary dimensions is to construct 
universal families of systems of equations satisfied by the maps under consideration. 
A natural construction for these systems is given by the (iterated) refined CR prolon-
gations introduced in sections 2 and 3, in which a crucial sequence of invariants (κ�

p,f)�
associated to any germ of a CR map f at p ∈ M is studied. It turns out that vanishing 
of these invariants for large � allows a bound (depending on �) on the number of sys-
tems needed. If we are able to bound � uniformly over the maps under consideration, 
finite jet determination can be proven, as section 5 shows. We are able to prove such 
a uniform bound for non-collapsing maps if the target is Nash. One of the properties 
needed for this step relies on a subtle algebraic property of Nash functions that we call 
quasi-finiteness in section 5. Such a property is a consequence of a new global strong 
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approximation result à la Artin for Nash systems of equations, proven in section 6, that 
may be of independent interest.

2. The refined CR prolongation of a basic system

2.1. Allowable bases of CR vectors

For a generic real-analytic submanifold M ⊂ CN and p ∈ M , we shall denote by 
Kp(M) the quotient field of the ring of germs at p of (complex-valued) real-analytic 
functions on M . We will need the following result from basic linear algebra whose proof 
can essentially be found in [15]. In order to formulate it, we say that a vector subspace 
S ⊂ Kp(M)N ′ is CR closed if it is closed under the application of the CR vector fields, 
that is, L̄u ∈ S for every u ∈ S and every real-analytic CR vector field L̄ of M near p.

Lemma 2.1. Let M ⊂ CN be a generic real-analytic submanifold, p ∈ M , m, N ′ ∈ Z+
and A = (A1, . . . , Am) be m elements of (Kp(M))N ′ . Assume that the vector subspace 
generated by A1, . . . , Am is of dimension r < N ′ and that it is CR closed. Then for every 
choice of an invertible r× r submatrix (Aj�

ik
)1≤k,�≤r of A, there exists a unique collection 

of N ′ − r linearly independent CR vectors V 1, . . . , V N ′−r in (Kp(M))N ′ such that

tV j ·Aγ =
N ′∑
ν=1

V j
ν A

γ
ν = 0, 1 ≤ j ≤ N ′ − r, 1 ≤ γ ≤ m,

and such that the (N ′− r) × (N ′− r) matrix formed by removing the i1, . . . , ir rows from 
the (N ′ × (N ′ − r)) matrix (V 1, . . . , V N ′−r) equals the identity. In addition, once the 
above mentioned minor is fixed, there exists a unique universal rational map R such that

(V 1, . . . , V N ′−r) = R
(
A1, . . . , Am

)
. (2.1)

The previous lemma associates to every non-zero r × r minor of A a unique collec-
tion of CR vectors in (Kp(M))N ′ forming a basis of the annihilator of A and a unique 
representation through a rational universal map R as in (2.1). Such a collection of CR 
vectors will be called an allowable basis of CR vectors (associated to A). Note that since 
the number of non-zero minors of A is finite, the collection of all such allowable basis 
of CR vectors is also finite (and its cardinal is uniformly bounded in terms of m, r, N ′, 
independently of M and p). Hence the collection of universal rational representations R
as above is also finite as well.

2.2. General setting and some notation

Let M ⊂ CN be a real-analytic generic submanifold. For p ∈ M , we denote by 
KCR

p (M) the subfield of Kp(M) consisting of the CR ratios. It is well-known (see e.g. 
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[3,21]) that any such ratio can be identified with the restriction to M of a germ of a 
meromorphic function at p.

From now until §5, we fix p0 ∈ M and shrink M near p0 in such a way that it is 
equipped with a fixed basis of real-analytic CR vector fields, L̄ = (L̄1, . . . , L̄n) where 
n = dimCR M . For any multiindex α = (α1, . . . , αn) ∈ Nn, we write L̄α = L̄α1

1 . . . , L̄αn
n , 

and L̄f = (L̄1f, . . . , L̄nf) for any map f with components in Kp(M) for some p ∈ M .
Let p ∈ M and ξ = (ξ1, . . . , ξr) where each ξj ∈ (Kp(M))N ′ , with r ∈ Z+ arbitrary. 

We say that ξ is admissible if ξ has a fixed expression of the form

ξ = R
(
(L̄αB̄)|α|≤�, ψ(g, ḡ)

)
for some integer �, some rational holomorphic map R, some vector-valued map B whose 
components belong to KCR

p (M), some germ of a real-analytic CR map g : (M, p) → CN ′

and some germ of a real-analytic map ψ near g(p) in CN ′ . For an admissible ξ, we define

ξw := ∂

∂w

{
R
(
(L̄αB̄)|α|≤�, ψ(w, ḡ)

)}∣∣∣
w=g

where ξw = (ξ1
w, . . . , ξ

r
w) and each ξjw is viewed as a N ′×N ′ matrix. From the chain rule, 

it follows that ξw is admissible as well. Note also that if ξ is admissible, then, again by 
the chain rule, L̄ξ is also admissible and one has (L̄ξ)w = L̄(ξw).

Furthermore, for any polynomial map P (t) =
∑

ν∈Nr θνt
ν , t ∈ Ck, whose coefficients 

θν ∈ (Kp(M))m are admissible (k, m ∈ Z+), we define Pw(t) =
∑

ν∈Nr θν,wt
ν , whose 

coefficients remain admissible by the above. To every admissible ξ = (ξ1, . . . , ξr), and to 
every integer � ≥ 1, we define some associated (Kp(M))N ′-valued homogenous holomor-
phic polynomials D�(t), t = (t1, . . . , tr), as follows:

D1(t) := t · ξ, and for k ≥ 1, Dk+1(t) = 1
k + 1(t · ξ) ·Dk

w(t),

where t · ξ = t1ξ
1 + . . . + trξ

r ∈ (Kp(M))N ′ , and where

(t · ξ) ·Dk
w(t) = (t · ξ)1Dk

w1
(t) + . . . + (t · ξ)N ′Dk

wN′ (t) ∈ (Kp(M))N
′
.

Note that each D�(t) is a homogeneous polynomial map of degree � in t.
For any real-analytic function θ(w, w̄) defined over some open subset of CN ′ , for 

multiindices α, β ∈ NN ′ , we denote θαβ̄ for the partial derivative θwαw̄β .

2.3. The construction

Our goal in this section is to describe a certain procedure that we call the refined CR 
prolongation of a basic system: given a family of CR maps on M all satisfying a specific 
type of system of equations, that we will call a basic system, we construct finitely many 
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new basic systems, in a universal way, that the whole initial family of maps has to satisfy 
and with “better rank properties”, as will be explained below.

Let M and p0 be as §2.2 and Ω a given open subset in CN ′ . For every p ∈ M , we are 
given a family of germs of real-analytic CR maps (M, p) → Ω, that we denote by Fp

and we set F := ∪p∈MFp.
We assume that there exist integers �, k1, k2, m1, m2, N1, a CN1-valued polynomial 

map P = P(Λ, Λ̄, T, T̄ ), a rational map Q of its arguments, real-analytic maps 
θ : Ω → Ck1 , ψ : Ω → Ck2 , and maps A = (A1, . . . , Am1) and B = (B1, . . . , Bm2)
with components in KCR

p (M), such that for every p ∈ M and every germ f ∈ Fp, the 
following system holds in Kp(M):

(X) :

⎧⎪⎪⎨⎪⎪⎩
P
(
A, Ā, θ(f, f̄), θ(f, f̄)

)
= 0,

L̄A = 0,
A = Q

((
L̄αB̄

)
|α|≤�

, ψ(f, f̄)
)
.

(2.2)

We now make the following:

Definition 2.2. Given M and a family F of maps as above, any system of equa-
tions of type (X) satisfied by every map f ∈ F is called a basic system (asso-
ciated to F ) if the first set of equations in (2.2) is stable under conjugation, i.e. 
any component of P(Λ, Λ̄, θ(w, w̄), θ(w, w̄)) appears as one component of the map 
P(Λ, Λ̄, θ(w, w̄), θ(w, w̄)).

Let us therefore now assume that F satisfies a basic system as above. For every 
f ∈ F , using the chain rule, we may rewrite (2.2) as follows:⎧⎪⎪⎨⎪⎪⎩

P
(
A, Ā, θ(f, f̄), θ(f, f̄)

)
= 0,

Q̂
(
(L̄αB̄)|α|≤�+1, L̄f̄ , ψ(f, f̄), ψw̄(f, f̄)

)
= 0,

A = Q
((

L̄αB̄
)
|α|≤�

, ψ(f, f̄)
)
,

(2.3)

for some universal polynomial map Q̂ valued in Cnm1 depending only on Q. Consider 
the N ′ ×N1 matrix given by

If :=
(

∂

∂w

{[
P
(
Q
((

L̄αB̄
)
|α|≤�

, ψ(w, f̄)
)
, Ā, θ(w, f̄), θ(f, w̄)

)]} ∣∣∣
w=f

)
,

and the N ′ ×m1n matrix given

Jf =
{

∂

∂w

{[
Q̂
(
(L̄αB̄)|α|≤�+1, L̄f̄ , ψ(w, f̄), ψw̄(w, f̄)

)]} ∣∣∣
w=f

}
,

whose coefficients both belong to Kp(M). Let N ′ − κp,f (X) to be the rank of the N ′ ×
e(N1 + m1n) matrix (L̄αIf |L̄αJf )|α|≤N ′ where e := card{α ∈ Nn : |α| ≤ N ′}.
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Definition 2.3. Given a basic system as in (2.2) and any f ∈ Fp with p ∈ M , the integers 
N ′−κp,f (X) and κp,f (X) are called the rank, respectively the degeneracy, of the system 
(X) with respect to f .

For a fixed p ∈ M and f ∈ Fp, let us assume that κ := κp,f (X) > 0 and write, in 
what follows, κf for κp,f (X). Then by Lemma 2.1 applied to the column vectors of the 
matrix 

(
L̄α(If |Jf )

)
|α|≤N ′ , we may find an allowable basis of CR vectors associated to 

it, V := (V 1, . . . , V κf ) where each V j ∈ (Kp(M))N ′ such that,

tV · (If |Jf ) = 0. (2.4)

Furthermore, by the same lemma, we have only a finite number of choices for such 
allowable bases of CR vectors, and we may write

V = R
((

L̄α(If |Jf )
)
|α|≤N ′

)
, (2.5)

where R belongs to a finite family of universal rational maps (independent of f and p). 
The following notation will be useful.

Definition 2.4. The collection of all allowable bases of CR vectors associated to a given 
map f ∈ F is denoted by Vf (X), and the collection of all such bases associated to all 
maps f ∈ F is denoted by V (X).

We now analyse (2.4). Firstly, note that the system tV · If = 0 may be rewritten in 
the form

tV ·Aw · PΛ + tV · θw(f, f̄) · PT + tV · θw̄(f, f̄) · PT̄ = 0, (2.6)

where for ease of notation we dropped the arguments (A, Ā, θ(f, f̄), θ(f, f̄)) from the 
derivatives of P. Conjugating (2.6), we get:

tV ·Aw · PΛ + tV · θw(f, f̄) · PT + tV · θw̄(f, f̄) · PT̄ = 0. (2.7)

Hence (2.6) and (2.7) may be rewritten as

P̃

(
A,V, tV ·Aw, Ā,V, tV ·Aw,

(
θγβ̄(f, f̄), θγβ̄(f, f̄)

)
|γ|+|β|≤1

)
= 0, (2.8)

for some universal polynomial P̃ depending only on P.
Next, we claim that tV · Aw is CR. Indeed, from our construction, §2.2 and the fact 

that each component of V is CR, the relations tV·Jf = 0 (given by (2.4)) are equivalent 
to
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0 = tV · (L̄A)w = tV · L̄Aw = L̄(tV ·Aw). (2.9)

In addition, it follows from (2.5) that each V may be written in the form

V = R

(
(L̄αB̄)|α|≤�+N ′+1, (L̄αf̄)|α|≤N ′+1, (L̄αĀ)|α|≤N ′ ,(

θνγ̄(f, f̄), θνγ̄(f, f̄)
)

|ν|+|γ|≤N ′+1
, (ψνγ̄(f, f̄))|ν|+|γ|≤N ′+2

)

where R belongs to a finite family of universal rational maps (independent of f and p) 
and depending only on P and Q. Similarly, it is easy to check that

tV ·Aw = R̃

(
(L̄αB̄)|α|≤�+N ′+1, (L̄αf̄)|α|≤N ′+1, (L̄αĀ)|α|≤N ′ ,

(
θνγ̄(f, f̄), θνγ̄(f, f̄)

)
|ν|+|γ|≤N ′+1

, (ψνγ̄(f, f̄))|ν|+|γ|≤N ′+2

)
(2.10)

where R̃ also belongs to a finite family of universal rational maps (independent of f and 
p) and depending only on P and Q. Hence, for every f ∈ F and for every choice of an 
allowable basis of CR vectors V for the basic system (X), if we set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P# := (P, P̃)
A# := (A,V, tV ·Aw)

θ#(w, w̄) :=
(
θγβ̄(w, w̄), θγβ̄(w, w̄)

)
|γ|+|β|≤1

ψ#(w, w̄) :=
((

θνγ̄(w, w̄), θνγ̄(w, w̄)
)
|ν|+|γ|≤N ′+1

, (ψwνw̄γ (w, w̄))|ν|+|γ|≤N ′+2

)
B# := (B, f,A)

(2.11)
we obtain that f satisfies the following new basic system, that we call the refined CR 
prolongation of the system associated to X and V, denoted by X#(V):

(X#(V)) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P#

(
A#, A#, θ#(f, f̄)

)
= 0,

L̄A# = 0,

A# = Q#
((

L̄αB#
)
|α|≤�+N ′+1

, ψ#(f, f̄)
)
.

(2.12)
Since B# is CR, the system (X#(V)) is indeed a basic system, as previously defined, con-
tains the previous system (X), and satisfies the conjugation property on the polynomial 
P#. In the new basic system (X#(V)), the polynomial map P# depends universally 
on P, the rational map Q# belongs to a finite family (independent of any f ∈ F ) of 
universal rational maps depending only on Q. We stress here that the rational map Q#
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indeed depends on a given f ∈ F . But every f ∈ F will satisfy a refined CR prolonga-
tion for some Q# from a universally determined finite family. In particular, the cardinal 
of all such rational maps is uniformly bounded. To summarize, what we have done is, 
given a basic system satisfied by a family of maps f ∈ F , to construct finitely many new 
basic systems (whose cardinal is uniformly bounded), containing the original one, that 
depend universally on the original one, and such for each p ∈ M , every f ∈ Fp (with 
κp,f (X) > 0) satisfies one of this new basic systems. Furthermore, for each such f and 
each associated allowable basis of CR vectors V, by construction, we have

κp,f (X#(V)) ≤ κp,f (X). (2.13)

3. Iterated refined CR prolongations and their properties

In this section, we shall repeatedly apply the construction done in §2 to CR maps 
valued into a (fixed) real-analytic set M ′ ⊂ CN ′ . We are defining a so-called iterated 
refined CR prolongation procedure, describe some of its properties, and investigate the 
relationship between such a construction and the CR geometric properties of M and M ′.

Throughout this section, M is a real-analytic generic submanifold of CN with p0 ∈ M

as in §2.2. We also consider a real-analytic subset M ′ of CN ′ given by

M ′ = {w ∈ Ω : ρ(w, w̄) = 0} (3.1)

for some Rd-valued real-analytic function ρ = (ρ1, . . . , ρd) on some open subset Ω ⊂ CN ′ . 
The family of maps F we are considering is the family of all germs of real-analytic CR 
maps (M, p) → M ′ with p ∈ M arbitrary.

3.1. Iterated refined CR prolongations

In what follows, we define for j ∈ {1, . . . , 2n},

Xj =
{

Lj , if 1 ≤ j ≤ n,

L̄j−n, if n + 1 ≤ j ≤ 2n,
(3.2)

and set, for every integer r ≥ 0 and for every smooth map ϕ : M → CN ′ ,

X(r)ϕ := (Xj1 . . . Xjrϕ)1≤j1,...,jr≤2n . (3.3)

Using the construction introduced in §2, we now define the iterated refined CR pro-
longations associated to any map f ∈ F .

For p ∈ M and f ∈ Fp, we have the basic identity (in Kp(M))

(X) : ρ(f, f̄) = 0, (3.4)
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which we may view, since ρ is real-valued, as a basic system (X) associated to F . Set

κ1
p,f := κp,f (X). (3.5)

If κ1
p,f = 0 (which means that f is a holomorphically nondegenerate map in the sense of 

[15,16]), we also set for every integer s ≥ 2, κs
p,f = 0.

If now κ1
p,f > 0, then for every V(1) ∈ Vf (X), f satisfies the basic system (X#(V(1))), 

which can be described as follows:⎧⎪⎪⎨⎪⎪⎩
P(1)

(
V(1),V(1),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤1

)
= 0,

L̄V(1) = 0,
V(1) = Q(1)

((
L̄αf̄
)
|α|≤N ′+1 , (ρνγ̄(f, f̄))|ν|+|γ|≤N ′+1

)
,

(3.6)

where P(1) is a universal polynomial map, and Q(1) is a rational map belonging to 
a finite family of universal rational maps (the family being independent of f , but the 
particular choice of Q(1) not). Observe that in order to derive the system (3.6), we have 
used (2.11)–(2.12) and the fact that ρ is real-valued. Note also that by our construction, 
the first set of equations of (3.6) is stable under conjugation (following Definition 2.2).

We now set

κ2
p,f := min

{
κp,f (X#(V(1))) : V(1) ∈ Vf (X)

}
. (3.7)

If κ2
p,f = 0, then we set κs

p,f = 0 for s ≥ 3. If not, we then only consider those 
V(1) ∈ Vf (X) such that κp,f (X#(V(1))) = κ2

p,f and write

V 1
f (X) =

{
V(1) : κp,f (X#(V(1))) = κ2

p,f

}
.

For each V(1) ∈ V 1
f (X), consider now the collection Vf (X#(V(1))) of allowable bases of 

CR vectors V(2) associated to X#(V(1)) as explained in §2. These depend a priori on 
the chosen allowable basis V(1). For each V(1) and V(2) as above, we set:

A(1) := V(1), A(2) = (A(1),V(2), tV(2) ·A(1)
w ).

Then f satisfies the basic system 
(
X#(V(1))

)# (V(2)) =: (X#(V(1), V(2))) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(2)

(
A(2), A(2),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤2

)
= 0,

L̄A(2) = 0,

A(2) = Q(2)
((

L̄αf̄ , L̄αA(1)
)
|α|≤2N ′+2

, (ρνγ̄(f, f̄))|ν|+|γ|≤2N ′+3

)
,

(3.8)

where P(2) is a universal polynomial map and, again, Q(2) is a rational map belonging 
to a finite family of universal rational maps (independent of f as before). We call the 
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basic system given by (3.8) the second order CR refined prolongation of (X) with respect 
to (V(1), V(2)). Next, define

κ3
p,f := min

{
κp,f (X#(V(1),V(2))) : V(1) ∈ V 1

f (X), V(2) ∈ Vf (X#(V(1)))
}
. (3.9)

If κ3
p,f = 0, we set κs

p,f = 0 for s ≥ 4. If not, we consider only those pairs (V(1), V(2))
for which κp,f (X#(V(1), V(2))) = κ3

p,f and write

V 2
f (X) =

{(
V(1),V(2)

)
: κp,f

(
X#
(
V(1),V(2)

))
= κ3

p,f

}
.

For every (V(1), V(2)) ∈ V 2
f (X), applying again the construction given in §2 to 

the basic system (X#(V(1), V(2))) given in (3.8), we obtain a collection of allowable 
bases of CR vectors V(3) ∈ Vf (X#(V(1), V(2))) such that f satisfies a basic system 
(X#(V(1), V(2)))#(V(3)) =: (X#(V(1), V(2), V(3))), which we call a third order iterated 
refined CR prolongation of (X) with respect to (V(1), V(2), V(3)). Setting

A(3) = (A(2),V(3), tV(3) ·A(2)
w ),

such a basic system (X#(V(1), V(2), V(3))) may be written in the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(3)

(
A(3), A(3),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤3

)
= 0,

L̄A(3) = 0,

A(3) = Q(3)
((

L̄αf̄ , L̄αA(2)
)
|α|≤3N ′+3

, (ρνγ̄(f, f̄))|ν|+|γ|≤3N ′+5

)
,

(3.10)

where P(3) is a universal polynomial map and, again, Q(3) is a rational map belonging 
to a finite family of universal rational maps (the family being independent of f but the 
particular choice of Q(3) not).

Now, if for some integer � ≥ 2, we assume that κ1
p,f , . . . , κ

�
p,f have been defined 

as above and are non-zero with associated sets V 1
f (X), . . . , V �−1

f (X), and that for ev-
ery (� − 1)-tuple (V(1), . . . , V(�−1)) ∈ V �−1

f (X), the associated (� − 1)-th order refined 
CR prolongation (X#(V(1), . . . , V(�−1))) has been defined, with associated data A(�−1), 
P(�−1) and Q(�−1) given as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

P(�−1)
(
A(�−1), A(�−1),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤�−1

)
= 0,

L̄A(�−1) = 0,

A(�−1) = Q(�−1)
((

L̄αf̄ , L̄αA(�−2)
)
|α|≤(�−1)(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤(�−1)(N ′+2)−1

)
.

(3.11)
Since κ�

p,f > 0, for every (V(1), . . . , V(�−1)) ∈ V �−1
f (X), we apply the construction 

given in §2 to each basic system (X#(V(1), . . . , V(�−1))) to obtain a collection of allowable 
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bases of CR vectors V(�) ∈ Vf (X#(V(1), . . . , V(�−1))) such that f satisfies the basic 
system (X#(V(1), . . . , V(�−1)))#(V(�)) =: (X#(V(1), . . . , V(�−1), V(�))), which is the �-
th order refined CR prolongation of X with respect to (V(1), V(2), . . . , V(�−1), V(�)). As 
a consequence of the construction done in §2, such a system is of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(�)

(
A(�), A(�),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤�

)
= 0,

L̄A(�) = 0,

A(�) = Q(�)
((

L̄αf̄ , L̄αA(�−1)
)
|α|≤�(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤�(N ′+2)−1

)
,

(3.12)

where

A(�) = (A(�−1),V(�), tV(�) ·A(�−1)
w ),

and P(�) is a universal polynomial map and (yet again) Q(�) is a rational map belonging 
to a finite family of universal rational maps (the family being independent of f but the 
particular choice of Q(�) not). We also know from our construction that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(�−1) =Q(�−1)

((
L̄αf̄ , L̄αA(�−2)

)
|α|≤(�−1)(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤(�−1)(N ′+2)−1

)
,

...
A(1) =Q(1)

((
L̄αf̄
)
|α|≤N ′+1 , (ρνγ̄(f, f̄))|ν|+|γ|≤N ′+1

)
.

(3.13)
Then we set:

κ�+1
p,f := min

{
κp,f (X#(V(1), . . . ,V(�))) : (V(1), . . . ,V(�−1)) ∈ V �−1

f (X),

V(�) ∈ Vf (X#(V(1), . . . ,V(�−1)))
}
.

If κ�+1
p,f = 0, we set κs

p,f = 0 for s ≥ � + 2. Otherwise, we define the set V �
f (X) to 

be the collection of all �-tuples allowable bases of CR vectors (V(1), . . . , V(�)) such that 
κ�+1
p,f = κp,f (X#(V(1), . . . , V(�))).
Hence, for M, M ′ and F as above, we have attached to every p ∈ M and every 

f ∈ Fp, a sequence of integers (κ�
p,f )�∈Z+ . Such a sequence depends on our choice of 

M and associated CR vector fields as well as the chosen (global) defining function ρ for 
M ′. We always assume that all of these have been fixed once and for all. However, note 
that after fixing these choices, the dependence of the sequence on the base point p is, 
by unique continuation, pretty straightforward. Indeed, if U is an open subset of M and 
g : U → M ′ is a real-analytic CR map, for every integer �, U 	 p 
→ κ�

p,g is constant on 
any connected component of U .

We summarize (part of) the above construction in the following precise statement:
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Proposition 3.1. Let M , M ′ and F be as above and � a positive integer. Then there exists 
a universal polynomial map P(�), and 2� collections of sets S1, . . . , S� and S̃1, . . . , ̃S�, 
each consisting of finitely many rational maps (of their arguments) such that the fol-
lowing holds. For every p ∈ M and every f ∈ Fp with κ�

p,f > 0, there exist mappings 
A(1), . . . , A(�) with components in KCR

p (M), such that f satisfies the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(�)
(
A(�), A(�),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤�

)
= 0,

L̄A(j) = 0, j = 1, . . . , �

A(�) = Q(�)
((

L̄αf̄ , L̄αA(�−1)
)
|α|≤�(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤�(N ′+2)−1

)
A(�−1) = Q(�−1)

((
L̄αf̄ , L̄αA(�−2)

)
|α|≤(�−1)(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤(�−1)(N ′+2)−1

)
,

...
A(1) = Q(1)

((
L̄αf̄
)
|α|≤N ′+1 , (ρνγ̄(f, f̄))|ν|+|γ|≤N ′+1

)
,

(3.14)
for some Q(j) ∈ Sj, j = 1 . . . , �. Furthermore, the following also holds:

(i) for every j = 1, . . . , �, if we denote rj := j(j + 1)(N ′ + 1)/2 and use the notation 
from (3.3), there exists a rational map T (j) ∈ S̃j such that

A(j) = T (j) (Xrj (f, f̄), (ρνγ̄(f, f̄))|ν|+|γ|≤rj

)
; (3.15)

(ii) the rank of the (first two lines of the) system (3.14), as defined in §2.3, equals 
N ′ − κ�

p,f ;
(iii) the first line of the system (3.14) is stable under conjugation and is called the SUC 

part of the basic system X#(V(1), . . . , V(�−1), V(�)).

Proof. What remains to be proven in the proposition is the identity (3.15). Let �, p and 
f be as in the proposition. We shall now prove (3.15) by induction on j, and that T (j)

depends only on Q(1), . . . , Q(j). The statement for j = 1 follows immediately from the 
last equation in (3.14). Hence, let us assume that (3.15) holds for j = k with 1 ≤ k ≤ � −1
and let us prove it for j = k + 1. Since

A(k) = T (k) (Xrk(f, f̄), (ρνγ̄(f, f̄))|ν|+|γ|≤rk

)
,

by the chain rule, we have that there exists a rational map T̃ (k) depending only on T (k)

such that

(L̄αA(k))|α|≤(k+1)(N ′+1)

= T̃ (k)
(
Xrk+(k+1)(N ′+1)(f, f̄), (ρνγ̄(f, f̄))|ν|+|γ|≤rk+(k+1)(N ′+1)

)
. (3.16)
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Using the formula given by (3.14) for A(k+1) and substituting (3.16) into it yields that

A(k+1) = T (k+1)
(
Xrk+(k+1)(N ′+1)(f, f̄), (ρνγ̄(f, f̄))|ν|+|γ|≤rk+(k+1)(N ′+1)

)
,

for some rational map T (k+1) depending only on Q(k+1) and on T (k). Since rk+1 =
rk+(k+1)(N ′+1), we reach the desired result by induction. The proof of the proposition 
is complete now. �
3.2. Properties of the sequence (κ�

p,f )�∈Z+

In order to make in §4 relationships between the above formal construction and the 
CR geometry of the pair (M, M ′), we need to study the sequence (κ�

p,f )�∈Z+ and establish 
a few of its basic properties.

The first obvious but useful property of the sequence (κ�
p,f )�∈Z+ is the following:

Proposition 3.2. Let M , M ′ and F be as above. For every p ∈ M and f ∈ Fp, the 
sequence (κ�

p,f )�∈Z+ is decreasing.

Proof. The fact that κ�
p,f ≥ κ�+1

p,f follows from the construction and (2.13). �
Remark 3.3. In view of Proposition 3.2, for every f ∈ Fp, we may define

κ∞
p,f := lim�→+∞ κ�

p,f .

One of the key properties about the sequence (κ�
p,f ) is to understand the consequences 

on the map f when the sequence stagnates for a certain time. In order to do so, we need 
to introduce some notation.

Let � ≥ 1, p ∈ M and f ∈ Fp such that κ := κ�
p,f > 0. Let (V(1), . . . , V(�)) any element 

in V �
f (X) and let t = (t1, . . . , tκ) ∈ Cκ. Since V(�) is admissible, for every integer k ≥ 1, 

we may define, as in §2.2, by induction on k, the following CN ′-valued homogeneous 
(holomorphic) polynomials (in t) of degree k, denoted by Dk(t), with coefficients in 
(Kp(M))N ′ :

D1(t) := t · V(�), and for k ≥ 1, Dk+1(t) = 1
k + 1(t · V(�)) ·Dk

w(t). (3.17)

The following result is a crucial property of our construction. It is the bridge linking 
the iterated refined CR prolongations and CR geometric properties of the pair (M, M ′).

Proposition 3.4. Let M, M ′ and F be as above, p ∈ M , and f ∈ Fp. Let �, s ∈ Z+, with 
�, s ≥ 1 and assume that κ�

p,f = κ�+s
p,f =: κ > 0. Then for every (V(1), . . . , V(�)) ∈ V �

f (X), 
if we set D(t) = D1(t) + . . . + Ds(t), where each Dk(t) is given by (3.17), the following 
holds:



B. Lamel et al. / Advances in Mathematics 432 (2023) 109271 15
(a) D(t) ∈ (KCR
p (M)[t])N ′ ;

(b) in the ring Kp(M)[[t, ̄t]], we have the identity

ρ
(
f + D(t), f + D(t)

)
= O(|t|s+1). (3.18)

Proof. Let �, s ≥ 1 and pick (V(1), . . . , V(�)) ∈ V �
f (X) and assume that κ := κ�

p,f =
κ�+s
p,f > 0. Since κ�

p,f = κ�+1
p,f , the allowable basis of CR vectors V(�) for the basic 

system (X#(V(1), . . . , V(�−1))) happens to be also an allowable basis of CR vectors for 
the basic system (X#(V(1), . . . , V(�−1), V(�))), since the system (X#(V(1), . . . , V(�))) is 
the refined CR prolongation associated to the system (X#(V(1), . . . , V(�−1))) and V(�)

and therefore contains the basic system (X#(V(1), . . . , V(�−1))) by construction. Using 
the fact that κ�

p,f = κ�+s
p,f and proceeding inductively, we get that all the basic systems 

(X#(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸
s times

)) are satisfied and have the same rank N − κ. We 

now prove by induction on k ∈ {1, . . . , s} the following:
Claim – For 1 ≤ k ≤ s, the system of equations{

L̄(D1(t)) = . . . = L̄(Dk(t)) = 0
ρ
(
f + D1(t) + . . . + Dk(t), f + D1(t) + . . . Dk(t)

)
= O(|t|k+1), (3.19)

is contained in the set of equations of the basic system (X#(V(1), . . . , V(�−1),

V(�), . . . ,V(�)︸ ︷︷ ︸
k times

)), the second line of (3.19) is contained in the SUC part of the latter 

system, and therefore (3.19) is satisfied.

• k = 1:

The equations L̄(D1(t)) = 0 are identical to L̄(V(�)) = 0, which, by definition are 
contained in the system (X#(V(1), . . . , V(�))). The identity

ρ
(
f + D1(t), f + D1(t)

)
= O(|t|2)

is equivalent to the system ⎧⎪⎨⎪⎩
ρ(f, f̄) = 0,
V(�) · ρw(f, f̄) = 0
V(�) · ρw̄(f, f̄) = 0.

(3.20)

Every equation appearing in (3.20) is clearly contained in the SUC part of the system 
(X#(V(1), . . . , V(�))). Indeed this latter is the refined CR prolongation of the system 
(X#(V(1), . . . , V(�−1))) (as defined in §2.3) whose SUC part always contains the equation 
ρ(f, f̄) = 0.
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• Assume now that the claim holds for k ∈ {1, . . . , s − 1} and let us prove it for 
k + 1. By the above, we know that the systems (X#(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸

k times

))

and (X#(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸
k + 1 times

)) are satisfied and we know that the equations

L̄(Dk(t)) = 0, ρ
(
f + D1(t) + Dk(t), f + D1(t) + . . . Dk(t)

)
= O(|t|k+1) (3.21)

are part of the first mentioned system. From our original construction of the refined CR 
prolongation in §2.3 and from §2.2, we therefore obtain that the equations

V(�) · (L̄Dk(t))w = V(�) · L̄(Dk
w(t)) = 0 (3.22)

are also satisfied, as parts of the equations of the system (X(V(1), . . . , V(�−1),

V(�), . . . ,V(�)︸ ︷︷ ︸
k + 1 times

)). Since V(�) is CR, the identity (3.22) is the same as the identity

L̄(V(�) ·Dk
w(t)) = 0, (3.23)

which is clearly identical to L̄(Dk+1(t)) = 0 and therefore all equations L̄(D1(t)) =
. . . = L̄(Dk+1(t)) = 0 are part of the system (X(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸

k + 1 times

)). What 

remains to be shown is that the equation

ρ
(
f + D1(t) + . . . + Dk+1(t), f + D1(t) + . . . Dk+1(t)

)
= O(|t|k+2), (3.24)

is satisfied and is contained in the SUC part of the system (X(V(1), . . . , V(�−1),

V(�), . . . ,V(�)︸ ︷︷ ︸
k + 1 times

)), which we will do by using some arguments from [16]. We write

ρ
(
f + D1(t) + . . . + Dk+1(t), f + D1(t) + . . . Dk+1(t)

)
=
∑

i,j∈Z+

Ri,j(t, t̄)
i!j! ,

where each Ri,j is a polynomial map in (t, ̄t), homogeneous of degree i in t, of degree 
j in t̄, and with coefficients in Kp(M). By the induction assumption, we know that 
Ri,j(t, ̄t) = 0 for 0 ≤ i + j ≤ k and that such equations are contained in the SUC part of 
the system (X(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸

k times

)). Hence, by the definition of the refined 

CR prolongation, the equations

D1(t) ·Ri,j
w (t, t̄) = 0, 0 ≤ i + j ≤ k,
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are satisfied and are contained in the SUC part of the system (X(V(1), . . . , V(�−1),

V(�), . . . ,V(�)︸ ︷︷ ︸
k + 1 times

)). From the arguments of [16, Lemma 4.2], we have Ri+1,j(t, ̄t) = D1(t) ·

Ri,j
w (t, ̄t) and hence

Ri+1,j(t, t̄) = 0. (3.25)

Furthermore, since each component of ρ is real-valued, it follows that for all inte-
gers i, j as above, we have Ri,j(t, ̄t) = Rj,i(t, t̄). Hence, since the equations (3.25)
for all i, j with 0 ≤ i + j ≤ k are contained in the SUC part of the system 
(X(V(1), . . . , V(�−1), V(�), . . . ,V(�)︸ ︷︷ ︸

k + 1 times

)), we have Ri,j+1(t, t̄) = 0 and such equations also 

belong to the SUC part of the system (X(V(1), . . . , V(�−1) V(�), . . . ,V(�)︸ ︷︷ ︸
k + 1 times

)). This proves 

the desired statement for (3.24).
Proposition 3.4 now follows from the claim with k = s. �

4. Behavior of the sequence (κ�
p,f)�∈Z+

versus CR geometric properties of the triple 
(M, M ′, f)

In this section, we fix M , M ′ and F as in previous sections. Recall that this means 
that M is a fixed real-analytic generic submanifold of CN shrunk near a point p0 ∈ M

as in §2.2 (so that we are using a fixed basis of real-analytic CR vector fields on M). 
Furthermore M ′ is a real-analytic subset M ′ of CN ′ given by (3.1) for some fixed Rd-
valued real-analytic function ρ = (ρ1, . . . , ρd) on some open subset Ω ⊂ CN ′ . Recall also 
that F denotes the family of all germs of real-analytic CR maps (M, p) → M ′ with 
p ∈ M arbitrary.

In what follows, our goal is to show how the behaviour of the sequence (κ�
p,f )�∈Z+

associated to any f ∈ Fp (defined in §3) is directly connected to CR geometric properties 
of the triple (M, M ′, f). Recall that EM ′ is the set of D’Angelo infinite type points of 
M ′, i.e. the set of points in M ′ through which there passes a complex-analytic subvariety 
of positive dimension entirely contained in M ′.

Before stating the first result along the above lines, let us introduce some terminology. 
In what follows, for a positive integer s, a point q ∈ M ′ and a m-dimensional complex-
submanifold Γ ⊂ CN ′ passing through q, we say that Γ is tangent to M ′ up to order s
at q if for one (and hence any) local holomorphic parametrization γ : (Cm, 0) → (Γ, q), 
one has ρ(γ(t), γ(t)) = O(|t|s+1). Given an open subset M̃ of M , a family (Γξ)ξ∈M̃

of 
m-dimensional complex submanifolds of CN ′ is CR if for every ξ0 ∈ M̃ there exists a 
germ of a real-analytic CR map (Cm × M̃, (0, ξ0)) 	 (t, ξ) 
→ γξ(t) ∈ CN ′ such that 
(Cm, 0) 	 t 
→ γ(ξ, t) parametrizes Γξ near γ(ξ, 0) for ξ near ξ0.

We have the following:
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Proposition 4.1. Let M, M ′ and F be as above, p ∈ M , f ∈ Fp and s a positive integer. 
Assume that the sequence (κ�

p,f )�∈Z+ stagnates at some level κ > 0, that is, κ�+s
p,f = κ for 

some �. Then there exists a neighbourhood Mp of p in M , and an open dense subset of 
M̃p of Mp, and a CR family (Γξ)ξ∈M̃p

of κ-dimensional complex submanifolds of CN ′ , 
such that each Γξ is tangent to M ′ up to order s at f(ξ).

Proof. By assumption, there exists � ≥ 1 such that κ�
p,f = κ�+s

p,f . Pick V(�) as in Proposi-
tion 3.4, and let D(t) be the corresponding associated polynomial. The same proposition 
states that

D(t) ∈ (KCR
p (M)[t])N

′
, ρ

(
f + D(t), f + D(t)

)
= O(|t|s+1) in Kp(M)�t, t̄� (4.1)

where t ∈ Cκ. Now, since V(�) is formed by κ CR vectors of (KCR
p (M))N ′ of generic 

rank κ, analogously to [16, §4.2, p. 390], we may find a real-analytic CR map D̃s : (M ×
Cκ, (p, 0)) → (CN ′

, 0) such that the generic rank of (∂tD̃s)|M×{0} equals κ and such 
that for z in some neighbourhood Mp of p in M and t sufficiently small

ρ(f(z) + D̃s(z, t), f(z) + D̃s(z, t)) = O(|t|s+1). (4.2)

Let M̃p be the open dense subset of Mp consisting of those points z for which the rank 
of (∂tD̃s)(z, 0) is maximal and equals κ. Then for z ∈ M̃p, the map t 
→ f(z) + D̃s(z, t)
parametrizes a κ-dimensional complex submanifold Γz of CN ′ that is tangent to M ′ up 
to order s. Since f and D̃s are CR, the proposition follows. �

As a consequence of Proposition 4.1 and of its proof, we have the following.

Proposition 4.2. Let M, M ′ and F be as above, p ∈ M , f ∈ Fp. If κ∞
p,f > 0, then 

f(M) ⊂ EM ′ .

Proof. First, let us mention that the condition f(M) ⊂ EM ′ means there is a sufficiently 
small neighbourhood ω of p in M such that f(ω) ⊂ EM ′ .

Since by Proposition 3.2, the sequence (κ�
p,f )�∈Z+ is decreasing, for some integer �, 

large enough, we have κ�
p,f = κ�+s

p,f = κ∞
p,f = κ > 0 for every integer s ∈ Z+. Fix s ∈ Z+. 

It follows from Proposition 4.1 and, more precisely from its proof, that we may find a 
real-analytic CR map D̃s : (M × Cκ, (p, 0)) → (CN ′

, 0) such that the generic rank of 
(∂tD̃s)|M×{0} equals κ and such (4.2) holds that for z ∈ M sufficiently close to p and t
sufficiently small (depending a priori on s).

In what follows, we identify f with its unique holomorphic extension to a neighbour-
hood of p in CN . Writing E(z, ̄z, w, w̄) := ρ(f(z) + w, f(z) + w), we see that E is a 
real-analytic map in a neighbourhood of (p, 0) in CN × CN ′ . Using [16, Theorem 5.2], 
which is a parameter version of a result of [13], there exists a neighbourhood ωp of p in 
CN and a positive integer �1 such that for every z ∈ ωp (fixed) and every power series 
map S(t) ∈ (C{t})N ′ satisfying
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S(0) = 0, E(z, z̄, S(t), S(t)) = O(|t|�1+1)

there exists Ŝ(t) ∈ (C{t})N ′ (depending on z) such that

S(t) = Ŝ(t) + O(|t|2), E(z, z̄, Ŝ(t), Ŝ(t)) = 0.

By the above, for every z ∈ M ∩ ω̃p, for some neighbourhood ω̃p ⊂ ωp, we have

D̃�1(z, 0) = 0, E(z, z̄, D̃�1(z, t), D̃�1(z, t)) = O(|t|�1+1),

and, therefore, for every z ∈ M ∩ ω̃p, there exists a germ at 0 ∈ Cκ of a holomorphic 
map t 
→ D̂z(t) such that

D̂z(t) = D̃�1(z, t) + O(|t|2), ρ
(
f(z) + D̂z(t), f(z) + D̂z(t)

)
= 0. (4.3)

Since the generic rank of (∂tD̃�1)|M×{0} is equal to κ, it follows from both conditions 
in (4.3) that for a generic point z ∈ M ∩ ω̃p, the κ-dimensional complex submanifold 
t 
→ f(z) + D̂z(t) is contained in M ′, i.e. that for z in some dense open subset of M ∩ ω̃p, 
f(z) ∈ EM ′ . To reach the final desired conclusion, one needs to invoke the closedness of 
EM ′ in M ′ (see [8,9]). The proof of the proposition is complete. �

As an immediate consequence we obtain:

Corollary 4.3. Let M, M ′ and F be as above, p ∈ M , f ∈ Fp. If κ∞
p,f > 0, then the 

maximum dimension of real-analytic submanifolds contained in EM ′ is greater or equal 
to the generic rank of f .

Recall that for p ∈ M , a map f ∈ Fp is called non-collapsing if f(M) �⊂ EM ′ . 
Rephrasing Proposition 4.2, we see that any non-collapsing map germ f ∈ Fp must 
satisfy κ�

p,f = 0 for � large enough. Our goal now is to provide some sufficient conditions 
on the defining function ρ of M ′ that will guarantee that there exists a fixed integer �0
such that κ�0

p,f = 0 for all non-collapsing germs f ∈ Fp, for every p ∈ M .
To this end, we first recall the notion of regular 1-type (see e.g. [9]). We say that a 

real-analytic map ρ : Ω → Rd is of finite regular 1-type at q ∈ M ′ := {ρ = 0} if

Tρ(q) := supγ ν0(ρ ◦ γ) < ∞

where γ ranges over all germs of holomorphic maps (C, 0) → Ω with γ(0) = q and 
γ′(0) �= 0, and where ν0 (ρ ◦ γ) = inf{i + j : ∂i+j

ti t̄j
(ρ ◦ γ)(0) �= 0}. The number Tρ(q) is 

called the regular 1-type of ρ at q. We also introduce the set

E 1
ρ := {q ∈ Ω: Tρ(q) = ∞}
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and note that it follows from [13] and [22] that through any point q ∈ E 1
ρ there passes a 

nonsingular holomorphic curve contained in M ′.

Definition 4.4. Let ρ : Ω → Rd be a real-analytic map.

(i) We say that ρ is of finite type if Tρ := supq∈M ′Tρ(q) < ∞.
(ii) We say that ρ is of quasi-finite type if Iρ := supq∈M ′\E 1

ρ
Tρ(q) < ∞.

Remark 4.5. Note that ρ : Ω → Rd is of quasi-finite if and only if there exists an integer 
k0 such that if γ : (C, 0) → C is a holomorphic map with γ(0) ∈ M ′ and γ′(0) �= 0
satisfying ν0(ρ ◦ γ) > k0 then there exists a non-singular holomorphic curve Γ ⊂ M ′

passing through γ(0). Note also that the smallest of all such integers k0 coincides with 
Iρ.

It is obvious that if ρ is of finite type, then it is of quasi-finite type and, that in such 
a situation, Iρ ≤ Tρ. The converse is easily seen to be false by taking for example M ′ to 
be a complex submanifold of CN ′ .

If ρ is submersive at every point of M ′ = {w ∈ Ω : ρ(w, w̄) = 0}, then M ′ is a real-
analytic submanifold in Ω, and hence saying that ρ is of finite type exactly means that 
the order of contact of non-singular complex curves with M ′ is uniformly bounded (see 
[7,9]). It should be mentioned here that we do not assume that M ′ is a submanifold and 
therefore the notion we are considering here is different than the notion of 1-finite type 
for real-analytic sets, as we are fixing a global real-analytic defining function.

Note that if M ′ contains a complex-analytic subvariety of positive dimension, then 
ρ is obviously not of finite type. However, the converse need not hold as the following 
simple example shows.

Example 4.6. Choose, by the Weierstrass theorem, any entire function h : C → C such 
that for every positive integer n, h has a zero of order n at (n, 0). Then the real-analytic 
hypersurface Σ ⊂ C2

z,w given by {ρ = 0} where ρ := Imw − |h(z)|2 is pseudoconvex, 
everywhere of (D’Angelo) finite type, but ρ is neither of finite type nor of quasi-finite 
type since for every integer n the order of contact of the non-singular complex curve 
w = 0 with Σ at (n, 0) is exactly n.

Coming back to our original problem, the usefulness of the notion of quasi-finite type 
is revealed by the following observation.

Proposition 4.7. Let M , F and ρ be as above. If ρ is of quasi-finite type, then there 
exists an integer e0, depending only on M ′ and N ′, such that, for every p ∈ M and 
every non-collapsing map f ∈ Fp, we necessarily have κe0

p,f = 0. In particular, if ρ is of 
finite type, then such a property holds true for every f ∈ Fp and every p ∈ M .
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Proof. Since ρ is of quasi-finite type, the associated integer Iρ is finite. Let p ∈ M and 
f ∈ Fp a non-collapsing map. We claim that κe0

p,f = 0 for e0 := 1 + N ′Iρ. Assume by 
contradiction that this is not the case. It implies that there exists � ≥ 1 and s > Iρ such 
that κ�

p,f = κ�+s
p,f = κ > 0. By Proposition 4.1, there exist a neighbourhood Mp of p in 

M , and an open dense open subset of M̃p of Mp and a family (Γz)z∈M̃p
of κ-dimensional 

complex submanifolds of CN ′ such that each Γz is tangent to M ′ up to order s > Iρ at 
f(z). By the definition of Iρ, it follows that M ′ contains a non-singular complex curve 
through each point f(z) for z ∈ M̃p. Hence f(M̃p) ⊂ E 1

ρ ⊂ EM ′ , and therefore, by the 
closedness of EM ′ in M ′, we get that f(Mp) ⊂ EM ′ , a contradiction. The proof of the 
first part of the proposition is complete. The second part is an obvious consequence of 
the first. �

Let us emphasize again that the key point in the above proposition lies in the unifor-
mity of the integer e0 that is independent of all map germs and base points.

It is therefore natural to look for simple conditions implying that ρ is of (quasi-)finite 
type. We shall give two instances.

Proposition 4.8. Let ρ : Ω → Rd be a real-analytic map defined on some open subset of 
CN and M ′ the real-analytic set given by the zero set of ρ. If M ′ is compact, then ρ is 
of finite type.

Proof. Let q ∈ M ′. It follows from [13] or [16, Theorem 5.2], that there exists a neigh-
bourhood Vq of q in CN ′ and an integer mq such that if γ : (C, 0) → Ω is non-singular 
holomorphic curve with γ(0) ∈ Vq ∩M ′ and if ν0(ρ ◦ γ) > mq, then there exists a non-
singular holomorphic curve contained in M ′ through γ(0). But, in view of [10], such an 
outcome is impossible for a compact real-analytic set M ′. Hence

supγ

{
ν0(ρ ◦ γ) : γ(0) ∈ M ′ ∩ Vq, γ′(0) �= 0)

}
≤ mq < ∞.

The desired conclusion then follows from the compactness assumption on M ′ and cover-
ing M ′ by finitely many open subsets Vq as above with q ∈ M ′. The proof is complete. �

In view of Example 4.6, one cannot replace the compactness condition in Proposi-
tion 4.8 by assuming that M ′ does not contain any complex analytic disc. Interestingly, 
this is however possible if M ′ is a real-algebraic set, or more generally, if M ′ is a Nash set. 
Indeed, the following statement is a consequence of the more general result, Corollary 6.3, 
provided in §6.

Proposition 4.9. Let Ω be a semi-algebraic subset of CN ′ . Then every Nash map ρ : Ω →
Rd is of quasi-finite type. In particular, if the Nash set {w ∈ Ω : ρ(w, w̄) = 0} does not 
contain any complex-analytic subvariety of positive dimension, then ρ is of finite type.
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Combining Proposition 4.7 and Proposition 4.9, we obtain the following important 
property.

Proposition 4.10. Let M , F be as above, and assume that M ′ = {w ∈ Ω : ρ(w, w̄) = 0}
where Ω is semi-algebraic and ρ is Nash over Ω. Then there exists an integer e0, de-
pending only on M ′ and N ′, such that, for every p ∈ M and every non-collapsing map 
f ∈ Fp, we necessarily have κe0

p,f = 0.

5. Nash targets, mappings f with κ∞
f = 0, and finite jet determination

In this section, we let M ⊂ CN and p0 ∈ M , be as in previous sections and assume that 
M ′ is a Nash set given by M ′ = {w ∈ Ω : ρ(w, w̄) = 0} for some fixed (semi-algebraic) 
open subset of CN ′ and Nash map ρ : Ω → Rd. As before, F denotes the family of all 
germs of real-analytic CR maps from M into M ′. Our goal here is to show that if B ⊂ F

is the subfamily of map germs for which there exists a fixed integer e0 such that for every 
p ∈ M and every f ∈ Bp, κe0

p,f = 0 then, shrinking M around p0 if necessary, finite jet 
determination holds for all maps in B (see Theorem 5.3). In order to prove this, we will 
show that B satisfies property (∗) from [17] (finite jet determination then follows). To 
this end, we shall first recall some notation and notions from [17] and prove the main 
result of the section given by Proposition 5.2.

5.1. Complexification

Let M ⊂ CN and p0 ∈ M be as in previous sections. Denote by n its CR dimension 
n and by m its codimension in CN . We fix a basis of real-analytic CR vector fields 
L̄1, . . . , L̄n on M . Shrinking M near p0 if necessary, we may choose some polydisc neigh-
bourhood U of p0, and a real-valued real-analytic map r = (r1, . . . , rm) defined on U
such that M is given by

M =
{
Z ∈ U : r(Z, Z̄) = 0

}
, (5.1)

with ∂r1 ∧ . . . ∂rm �= 0 on U . The usual complexification of M is given by

M := {(Z, ζ) ∈ U × U∗ : r(Z, ζ) = 0},

where U∗ = {Z : Z̄ ∈ U}, which (for small enough U) is a complex submanifold of 
complex dimension 2n + d of U × U∗. Furthermore, as in [26,17], we shall consider the 
second order iterated complexification

M 2 := {(Z, ζ, Z1) ∈ U × U∗ × U : (Z, ζ) ∈ M , (Z1, ζ) ∈ M }.

We note that M 2 is a complex submanifold of U × U∗ × U ⊂ C3N .
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The basis of real-analytic CR vector fields may be written in the form

L̄j =
N∑

ν=1
Cν,j(Z, Z̄) ∂

∂Z̄ν

, j = 1, . . . , n, (5.2)

where each Cν,j is real-analytic over U (and depending only on r) and where Z =
(Z1, . . . , ZN ).

5.2. Property (∗)

We recall property (∗) introduced in [17].

Definition 5.1. Let M ⊂ CN be a real-analytic generic submanifold, S a subfamily of 
F , and p0 ∈ M . We say that S satisfies property (∗)p0 if there exist a sufficiently 
small neighbourhood Ω0 of p0 in CN , a positive integer r, a finite family of CN ′ -valued 
polynomial maps Ψ(1), . . . , Ψ(L), universal in the sense that they are independent of p0, 
M , and a holomorphic map Δ(Z, ζ, Z1), defined on Ω0 × Ω∗

0 × Ω0, depending only on 
M and p0, such that for every p ∈ M0 := M ∩ Ω0 and every f ∈ Sp, there exists 
� ∈ {1, . . . L} such that

Ψ(�)
j

(
Δ(Z, ζ, Z1),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤r

, fj(Z)
)

= 0, j = 1, . . . , N ′, and (5.3)

∂Ψ(�)
j

∂T

(
Δ(Z, ζ, Z1),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤r

, fj(Z)
)
�≡ 0, j = 1, . . . , N ′, (5.4)

for (Z, ζ, Z1) ∈ M 2 sufficiently close to (p, p̄, p), and where we write Ψ(�) =
(Ψ(�)

1 , . . . , Ψ(�)
N ′), with T denoting its last argument.

Let e0 be a fixed positive integer and consider now F ⊃ Be0 = ∪p∈MBe0
p where each 

Be0
p consists of those germs f ∈ Fp satisfying κe0

p,f = 0. Our main result in this section 
is the following:

Proposition 5.2. Let M, M ′, p0, e0 and Be0 be as above. Then Be0 satisfies property (∗)p0 .

Proof. Without loss of generality, we may assume that for every p ∈ M and every 
map f ∈ Be0

p , we have κe0
p,f = 0 and κe0−1

p,f > 0. Pick such a map f and point p. 
By Proposition 3.1, there exists a universal polynomial map P(e0), and rational maps 
Q(1), . . . , Q(e0), each belonging to a finite family of universal rational mappings (inde-
pendent of p and f , and depending only on e0) such that



24 B. Lamel et al. / Advances in Mathematics 432 (2023) 109271
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(e0)
(
A(e0), A(e0),

(
ρνγ̄(f, f̄)

)
|ν|+|γ|≤e0

)
= 0,

L̄A(e0) = 0,

A(e0) =Q(e0)
((

L̄αf̄ , L̄αA(e0−1)
)
|α|≤e0(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤e0(N ′+2)−1

)
A(e0−1) =Q(e0−1)

((
L̄αf̄ , L̄αA(�−2)

)
|α|≤(e0−1)(N ′+1)

,(ρνγ̄(f, f̄))|ν|+|γ|≤(e0−1)(N ′+2)−1

)
,

...
A(1) =Q(1)

((
L̄αf̄
)
|α|≤N ′+1 , (ρνγ̄(f, f̄))|ν|+|γ|≤N ′+1

)
.

(5.5)
Furthermore, for every j = 1, . . . , e0, there exists a rational map T (j), also belonging to 
a finite family of universal rational maps (independent of p and f , and depending only 
on e0) such that for every such j = 1, . . . , e0

A(j) = T (j) (Xrj (f, f̄), (ρνγ̄(f, f̄))|ν|+|γ|≤rj

)
, rj = j(j + 1)(N ′ + 1)/2, (5.6)

and such that the rank of the (first two lines of the) system (5.5), as defined in §2.3, is 
equal to N ′. These first two lines of (5.5) may be written in the form

P̃

(
A(e0),

(
L̄αf̄ , L̄αA(e0−1)

)
|α|≤e0(N ′+1)

, (ρνγ̄(f, f̄))|ν|+|γ|≤e0(N ′+2)

)
= 0, (5.7)

for some universal rational map P̃ depending only on P(e0) and Q(e0) satisfying

Rk ∂

∂w

{
P̃

(
A(e0),

(
L̄αf̄ , L̄αA(e0−1)

)
|α|≤e0(N ′+1)

, (ρνγ̄(w, f̄))|ν|+|γ|≤e0(N ′+2)

)}∣∣∣
w=f

= N ′. (5.8)

Since A(e0) and A(e0−1) have components in KCR
p (M), complexifying (5.7) and the vector 

fields given in (5.2) yields the identity

P̂

(
Δ̂(Z, ζ), A(e0)(ζ),

(
∂δ f̄(ζ), ∂δA(e0−1)(ζ)

)
|δ|≤e0(N ′+1)

,

(ρνγ̄(f(Z), f̄(ζ)))|ν|+|γ|≤e0(N ′+2)

)
= 0, (5.9)

for (Z, ζ) ∈ M near (p, p̄) i.e. in the field of fractions of C{Z − p, ζ − p̄}/M . Here 
P̂ is some universal polynomial map depending on P̃ and Δ̂ is a holomorphic map 
(constructed from the complexification of the coefficients of the CR vector fields) defined 
on U×U∗ and therefore depending only on M (and p0). In the same vein, taking complex 
conjugates in (5.6) and complexifying, we also have for j ∈ {e0 − 1, e0} and (Z1, ζ) ∈ M

near (p, p̄)
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A(j)(ζ) = T̃ (j)
(
Δ̃(Z1, ζ),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤rj

, (ρνγ̄(f(Z1), f̄(ζ)))|ν|+|γ|≤rj

)
,

(5.10)
for some universal rational map T̃ (j) and some map Δ̃ holomorphic on U×U∗ (depending 
on M). Furthermore, differentiating (5.10) for j = e0 − 1, we get that for (Z1, ζ) ∈ M

near (p, p̄)(
∂αA(e0−1)(ζ)

)
|δ|≤e0(N ′+1)

= U
(
Δ̌(Z1, ζ),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤re0

, (ρνγ̄(f(Z1), f̄(ζ)))|ν|+|γ|≤re0

)
, (5.11)

for some universal rational map U and some map Δ̌ holomorphic on U ×U∗ (depending 
on M). Substituting (5.11) and (5.10) (for j = e0) into (5.9), and using the fact that ρ
is a polynomial map, we obtain an identity of the form

Θ
(
Δ(Z, ζ, Z1),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤re0

, f(Z)
)

= 0, (5.12)

for (Z, ζ, Z1) ∈ M 2 near (p, p̄, p), for some universal ratio of complex-algebraic maps Θ, 
depending only ρ and, for some holomorphic map Δ on U × U∗ × U depending only on 
M and p0. Furthermore, from our construction, we also have

Rk
{∂Θ
∂w

(
Δ(Z, ζ, Z1),

(
∂μf(Z1), ∂μf̄(ζ)

)
|μ|≤re0

, w
)}∣∣∣

w=f(Z)
= N ′, (5.13)

where the rank is understood as the generic rank over the manifold M 2 near (p, p̄, p). 
Proposition 5.2 now follows using the same arguments as those that can be found at the 
end of the proof of [17, Theorem 3.3] relying on [17, Lemma 6.1]. �

The interest in establishing property (∗)p0 for the finite jet determination problem 
lies in the following result proved in [17].

Theorem 5.3. Let M ⊂ CN be a real-analytic generic submanifold, p0 ∈ M and S be a 
subfamily of F satisfying (∗)p0 . If M is minimal at p0, there exists a neighbourhood Mp0

of p0 in M and an integer K > 0, such that for every q ∈ Mp0 , if f, g are two elements 
of Sq satisfying jKq f = jKq g, then f = g.

Combining Theorem 5.3 with Propositions 5.2 and 4.10, we therefore obtain:

Theorem 5.4. Let M ⊂ CN be a generic real-analytic submanifold, minimal at a point 
p0 ∈ M and M ′ ⊂ CN ′ be a Nash set given by M ′ = {w ∈ Ω : ρ(w, w̄) = 0} for some 
semi-algebraic open subset Ω ⊂ CN ′ and Nash map ρ : Ω → Rd. Then there exists a 
neighbourhood Mp0 of p0 in M and an integer K > 0, such that for every q ∈ Mp0 , 
if f, g : (M, q) → M ′ are two germs of non-collapsing real-analytic CR maps satisfying 
jKq f = jKq g, then f = g.
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5.3. Proof of Theorem 1.2

We first note that all germs of non-collapsing C∞-smooth CR maps are automatically 
real-analytic according to [20] (the main result in [20] is stated for real-algebraic targets, 
but the proof applies for Nash targets as well). Next, observe that the Nash set M ′ can 
be written as a finite union ∪i∈IM

′
i where each M ′

i is open in M ′ and given by the zero 
set of a Nash map over some semi-algebraic open subset of CN ′ (see [2]). Hence, when 
M is generic, the desired conclusion follows after applying Theorem 5.4 to every M ′

i . 
The nongeneric case may be reduced to the generic one using standard arguments (see 
e.g. [17]).

6. Global strong approximation results for real-algebraic or Nash systems

For a field k and indeterminates x = (x1, . . . , xm), we denote by k�x� the ring of 
formal power series in the indeterminates xi over k. We denote by k〈x〉 the subring of 
algebraic power series, that is, the formal power series that are algebraic over k[x]. The 
ideal of the ring of power series k�x� generated by the xi is denoted by (x). For a power 
series h(x), h(x) ∈ (x)c if and only if the coefficients of all the monomials xα1

1 · · ·xαn
n , 

for α1 + · · · + αn < c, in the expansion of h(x) are zero.
The aim of this section is to prove Corollary 6.3, which is a global strong Artin 

approximation theorem for Nash systems. Before that, we start by proving Theorem 6.1
which is a global version of [13, Theorem 1.3] in the case of polynomial equations. This 
can be seen as a CR version of the strong Artin approximation Theorem [1, Theorem 
6.1]. The proof of this result is a bit different from the one given in [13], and is based 
on a reduction to Proposition 6.2, which is a global version of [13, Theorem 1.1] for 
polynomial equations. This reduction is based on arguments due to [4] and involving 
ultraproducts. Corollary 6.3 is completely new: its proof is based on a reduction to 
Theorem 6.1 involving an induction on the height of the ideal of equations, based on the 
Noetherianity of the ring of Nash functions.

Theorem 6.1. Let x = (x1, . . . , xp), y = (y1, . . . , yp), u = (u1, . . . , uN ), v = (v1, . . . , vN )
and let f ∈ R[x, y, u, v]d.

There is a function β : N −→ N such that for every c ∈ N, for every u(x, y), 
v(x, y) ∈ R�x, y�N with

∀k ∈ {1, . . . , d}, fk(x, y, u(x, y), v(x, y)) ∈ (x, y)β(c),

and

∀i, j, ∂ui

∂xj
(x, y) − ∂vi

∂yj
(x, y) = ∂ui

∂yj
(x, y) + ∂vi

∂xj
(x, y) = 0, (6.1)

there exist ũ(x, y), ṽ(x, y) ∈ R〈x, y〉N
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∀k ∈ {1, . . . , d}, fk(x, y, ũ(x, y), ṽ(x, y)) = 0,

∀i, j, ∂ũi

∂xj
(x, y) − ∂ṽi

∂yj
(x, y) = ∂ũi

∂yj
(x, y) + ∂ṽi

∂xj
(x, y) = 0 (6.2)

and

∀i, ũi(x, y) − ui(x, y), ṽi(x, y) − vi(x, y) ∈ (x, y)c.

Proof. First we prove the existence of formal power series ũ(x, y), ṽ(x, y) ∈ R�x, y�N

satisfying the conclusion of the theorem. The proof is done by contradiction: assume 
that such a β does not exist, that is, there exists c and, for every � ∈ N, u�(x, y), 
v�(x, y) ∈ R�x, y�N such that

∀k, fk(x, y, u�(x, y), v�(x, y)) ∈ (x, y)�,

∀i, j, ∂u�,i

∂xj
(x, y) − ∂v�,i

∂yj
(x, y) = ∂u�,i

∂yj
(x, y) + ∂v�,i

∂xj
(x, y) = 0,

but there is no ũ(x, y), ṽ(x, y) ∈ R�x, y�N such that

∀k ∈ {1, . . . ,m}, fk(x, y, ũ(x, y), ṽ(x, y)) = 0,

∀i, j, ∂ũi

∂xj
(x, y) − ∂ṽi

∂yj
(x, y) = ∂ũi

∂yj
(x, y) + ∂ṽi

∂xj
(x, y) = 0

and

∀i, ũi(x, y) − u�,i(x, y), ṽi(x, y) − v�,i(x, y) ∈ (x, y)c.

Let U be a non principal ultrafilter on N. (For the details concerning ultrafilters and 
ultrapowers, see [4] and the references therein.) For a ring A we denote by Ul(A) the 
ultrapower 

(∏
k∈N A

)
/D. We denote by u and v the images of the sequences (u�(x, y))�

and (v�(x, y))� in Ul(R�x, y�)N . We remark that Ul(R) is a real closed field (cf. [13, 
2.2] for example). We identify the ring Ul(R)[x, y] with a subring of Ul(R�x, y�) by 
identifying x (resp. y) with the image of the constant sequence (x)� (resp. (y)�). We 
denote again by f the image of the constant sequence (f)� in Ul(R[x, y, u, v]) that belongs 
to Ul(R)[x, y, u, v].

Because D is non principal, we have that fk(x, y, u, v) ∈ (x, y)� for every k and every 
� ∈ N. We denote by (x, y)∞ the intersection of all the powers of (x, y) in Ul(R�x, y�), 
we define Ul(R�x, y�)sep := Ul(R�x, y�)/(x, y)∞ and we denote by π the quotient map 
from Ul(R�x, y�) to Ul(R�x, y�)sep. The restriction of π to Ul(R)[x, y] is injective and, 
as a Ul(R)[x, y]-algebra, Ul(R�x, y�)sep is isomorphic to Ul(R)�x, y� by [4, Lemma 3.4]. 
Thus we identify Ul(R�x, y�)sep with Ul(R)�x, y� and therefore the restriction of π to 
Ul(R)[x, y] is the identity map.
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Hence, by using Proposition 6.2 given below with R = Ul(R), there is u′, v′ ∈
Ul(R)〈x, y〉N such that fk(x, y, u′, v′) = 0 in Ul(R)〈x, y〉 for every k,

∀i, j, ∂u′
i

∂xj
(x, y) − ∂v′i

∂yj
(x, y) = ∂u′

i

∂yj
(x, y) + ∂v′i

∂xj
(x, y) = 0

and

∀i, u′
i − π(ui), v′i − π(vi) ∈ (x, y)c.

We remark that Ul(R�x, y�) is a Henselian local ring (cf. [4, p. 193]) and Ul(R)〈x, y〉 is 
the Henselization of Ul(R)[x, y] (see [25, Lemma 2.29] for example). Therefore there is a 
unique Ul(R)[x, y]-morphism

ϕ : Ul(R)〈x, y〉 −→ Ul(R�x, y�).

We have that π ◦ϕ|Ul(R)[x,y] is the identity, therefore, by the unicity of the Henselization, 
π ◦ϕ|Ul(R)〈x,y〉 is also the identity. We also denote by ϕ the induced morphism of modules 
Ul(R)〈x, y〉N −→ Ul(R�x, y�)N . In particular this shows that

∀k, fk(x, y, ϕ(u′), ϕ(v′)) = 0 in Ul(R�x, y�)

and, because π ◦ ϕ(u′) = u′ equals π(u) modulo (x, y)c (resp. π ◦ ϕ(v′) = v′ equals π(v)
modulo (x)c), we have ϕ(u′) −u, ϕ(v′) −v ∈ (x, y)c. Let us denote by (u′′

� )� and (v′′� )� two 

sequences of 
(
R�x, y�N

)N whose images in Ul(R�x, y�)N equal ϕ(u′) and ϕ(v′). Since D
is non principal, we have

u′′
�,i − u�,i ∈ (x, y)� for every � ∈ E, ∀i = 1, . . . , N,

where E is an infinite subset of N. This contradicts our initial assumption and proves the 
existence of ũ(x, y), ṽ(x, y) ∈ R�x, y�N . Finally we apply Proposition 6.2 with R = R to 
see that we can choose ũ(x, y), ṽ(x, y) ∈ R〈x, y〉N . �
Proposition 6.2. Let R be a real closed field and let f ∈ R[x, y, u, v]d. Assume given a 
formal solution û, v̂ ∈ R�x, y�N

∀k, fk(x, y, û(x, y), v̂(x, y)) = 0

with

∀i, j, ∂ûi

∂xj
(x, y) − ∂v̂i

∂yj
(x, y) = ∂ûi

∂yj
(x, y) + ∂v̂i

∂xj
(x, y) = 0, (6.3)

and let c ∈ N. Then there exist u′, v′ ∈ R〈x, y〉N such that
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∀k, fk(x, y, u′(x, y), v′(x, y)) = 0

with

∀i, j, ∂u′
i

∂xj
(x, y) − ∂v′i

∂yj
(x, y) = ∂u′

i

∂yj
(x, y) + ∂v′i

∂xj
(x, y) = 0

and

∀i, u′
i − ûi, v

′
i − v̂i ∈ (x, y)c.

Proof. The proof is similar to the proof of [13, Theorem 1.1]: the idea is to reduce the 
theorem to the classical Artin Approximation Theorem for polynomial equations [1]. We 
set C := R +

√
−1R and we write the fk(x, y, u, v) as ρk(t, t, ζ, ζ) ∈ C[t, t, ζ, ζ] with

t = x +
√
−1y, t = x−

√
−1y, ζ = u +

√
−1v, ζ = u−

√
−1v.

We set ζ̂ := û +
√
−1v̂. It is well known that the Cauchy-Riemann Equations (6.3) are 

satisfied if and only if ζ̂ ∈ C�t�N . We define the morphisms

γ̂∗ : C[t, t, ζ, ζ] −→ C�t, t�

h(t, t, ζ, ζ) 
−→ h(t, t, ζ̂, ζ̂)

ζ̂∗ : C[t, ζ] −→ C�t�

h(t, ζ) 
−→ h(t, ζ̂)

Then, exactly as proved in [13], we have

Ker(γ̂∗) = Ker(ζ̂∗)C[t, t, ζ, ζ] + Ker(ζ̂∗)C[t, t, ζ, ζ] (6.4)

Then, we apply the Artin Approximation Theorem [1] to Ker(ζ̂∗):
For c ∈ N, there is ζ ′ ∈ C〈t〉N such that ζ ′ − ζ̂∗ ∈ (t)c and, for every s ∈ Ker(ζ̂∗), 

s(t, ζ ′(t)) = 0. Therefore, by (6.4), we have ρk(t, t, ζ ′(t), ζ
′(t)) = 0 for every k. This 

proves the result by defining u′ and v′ as u′(x, y) +
√
−1v′(x, y) = ζ ′. �

For an open subset Ω ⊂ Rk, we denote by N(Ω) the ring of Nash functions on Ω, that 
is, the real analytic functions on Ω whose germ at every point of Ω is algebraic over the 
field of rational functions.

If f = (f1, . . . , fd) ∈ N(Ω)d, we denote by 〈f〉 the ideal of N(Ω) generated by the fi. 
We remark that, for c ∈ N ∪ {∞} and u(x, y), v(x, y) ∈ R�x, y�N , we have

∀k ∈ {1, . . . , d}, fk(u(x, y), v(x, y)) ∈ (x, y)c ⇐⇒ ∀g ∈ 〈f〉, g(u(x, y), v(x, y)) ∈ (x, y)c.

By convention, h(x, y) ∈ (x, y)∞ if h(x, y) = 0.
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So, from now on, if we set I := 〈f〉, we will write I(u(x, y), v(x, y)) ∈ (x, y)c for:

∀k ∈ {1, . . . , d}, fk(u(x, y), v(x, y)) ∈ (x, y)c.

Corollary 6.3. Let Ω be an open subset of CN such that, for every V ⊂ W real algebraic 
subsets of CN , the set (W \V ) ∩Ω has finitely many connected components. Let ρ : Ω −→
Rd be a real-analytic map whose components are algebraic. Then there is a function 
β : N −→ N such that the following holds:

For every c ∈ N and every germ of a holomorphic map γ : (Cp, 0) −→ CN such that 
ρ ◦γ(t) ∈ (t)β(c), then there is a germ of a holomorphic algebraic map γ̃ : (Cp, 0) −→ CN

such that γ̃ − γ ∈ (t)c with ρ ◦ γ̃ ≡ 0.

Proof. First we remark that if the statement is true for an integer c + 1, then it is true 
for the integer c because (t)c+1 ⊂ (t)c. So we may assume that c ≥ 1. In this case if 
γ̃ − γ ∈ (t)c then γ̃(0) = γ(0).

We write ρ = (ρ1, . . . , ρd), and denote by f1, . . . , f2d the real and imaginary parts of 
the ρi. We set

t = x +
√
−1y, t = x−

√
−1y, ζ = u +

√
−1v, ζ = u−

√
−1v

and we write γ(t) = u(x, y) +
√
−1v(x, y) where u(x, y) and v(x, y) are real valued. It 

is well known that γ is holomorphic (that is, depends only on t and not on t) if and 
only if the Cauchy-Riemann Equations (6.1) are satisfied. Therefore we need to prove 
Theorem 6.1 for the fi and we set γ̃ = ũ +

√
−1ṽ.

Let I = 〈f〉 denote the ideal of N(Ω) generated by f1, . . . , f2d. By [24, Theorem 
2.1], under the condition on Ω given in the statement of the corollary, the ring N(Ω) is 
Noetherian. Moreover the height of an ideal of N(Ω) is less or equal to 2N (cf. [24, Prop. 
2.2, Cor. 2.12]). The proof of the corollary will be done by a decreasing induction on the 
height of I. If I is a maximal ideal, then I = 〈u1 −a1, . . . , uN −aN , v1 − b1, . . . , vN − bN 〉
where a +

√
−1b ∈ Ω (cf. [24, Cor. 2.12]). In this case, the corollary is trivial.

Now let h < 2N and assume that the corollary has been proved for the ideals of height 
> h. By the Noetherianity of N(Ω), we can write

I = Q1 ∩ · · · ∩Qs

where the Qk are primary ideals. Moreover if h denotes the height of I, the heights of 
the Qk are larger than or equal to h. If we set Pk =

√
Qk, the Pk are prime ideals. For 

every k, let �k ∈ N be such that P �k
k ⊂ Qk. We may assume that �k = � for every k by 

replacing the �k by a larger integer.
Assume that the corollary has been proved for every prime ideal of height h. Then let β

be a function satisfying the corollary for all the Pk. Let c and u(x, y), v(x, y) ∈ R�x, y�N

such that
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I(u(x, y), v(x, y)) ∈ (x, y)�sβ(c), (6.5)

and satisfying the Cauchy-Riemann Equations (6.2). Then we claim that there is k0 ∈
{1, . . . , s} such that Qk0(u(x, y), v(x, y)) ∈ (x, y)�β(c). Indeed, if this were not the case, 
for every k we may choose gk ∈ Qk such that gk(u(x, y), v(x, y)) /∈ (x, y)�β(c). Therefore ∏s

k=1 gk(u(x, y), v(x, y)) /∈ (x, y)�sβ(c) but 
∏s

k=1 gk ∈ I contradicting (6.5).
Thus, we have Pk0(u(x, y), v(x, y)) ∈ (x, y)β(c), and by assumption on β, there is ũ, 

ṽ ∈ N(Ω) such that Pk0(ũ, ̃v) = 0 and

∀i, ũi(x, y) − ui(x, y), ṽi(x, y) − vi(x, y) ∈ (x, y)c.

Since I ⊂ Pk0 we have I(ũ, ̃v) = 0, and the corollary is proved for I. Therefore, we are 
reduced to prove the corollary for prime ideals.

Assume that I is a prime ideal. We denote by I ′ the prime ideal of R[u, v] defined by 
I ′ = I ∩R[u, v]. By Theorem 6.1, the corollary is satisfied for I ′, and we denote by β′ a 
function for which this corollary is satisfied for I ′.

By [24, Prop. 2.9], we can write I ′N(Ω) = I∩I2 where I2 is an ideal of N(Ω) of height 
h such that I = I2 or I2 �⊂ I. If I = I2, then we can apply Theorem 6.1 to I ′ and the 
corollary is proved for I. If I2 �⊂ I, we set J = I + I2. Since I is prime, the height of J is 
larger than or equal to h + 1 and the inductive hypothesis applies to J . We denote by β
a function for which Corollary 6.3 is satisfied for J . Now let c ∈ N and assume that

I(u(x, y), v(x, y)) ∈ (x, y)β
′(β(c))+β(c).

We consider the following two cases:
(1) If J(u(x, y), v(x, y)) ∈ (x, y)β(c), then there is ũ, ṽ ∈ N(Ω) such that J(ũ, ̃v) = 0, 

satisfying the Cauchy-Riemann equations (6.2), and

∀i, ũi(x, y) − ui(x, y), ṽi(x, y) − vi(x, y) ∈ (x, y)c.

Since I ⊂ J , we have I(ũ, ̃v) = 0 and the corollary is proved.
(2) If J(u(x, y), v(x, y)) /∈ (x, y)β(c), then I2(u(x, y), v(x, y)) /∈ (x, y)β(c) because 

I(u(x, y), v(x, y)) ∈ (x, y)β(c). Since I ′ ⊂ I and I(u(x, y), v(x, y)) ∈ (x, y)β′(β(c))+β(c) ⊂
(x, y)β′(β(c)), there is ũ, ṽ ∈ N(Ω) such that I ′(ũ, ̃v) = 0, satisfying the Cauchy-Riemann 
equations (6.2), and

∀i, ũi(x, y) − ui(x, y), ṽi(x, y) − vi(x, y) ∈ (x, y)β(c). (6.6)

Now, by (6.6), because I2(u(x, y), v(x, y)) /∈ (x, y)β(c) we have I2(ũ, ̃v) �= 0. Since I I2 ⊂
I ′, we have I(ũ, ̃v) = 0. Therefore the corollary is proved for I with respect to the 
function β′ ◦ β + β. �
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Examples of open subsets Ω satisfying the assumption of Corollary include open sub-
sets definable in a o-minimal structure, such as semi-algebraic open subsets or subanalytic 
bounded open subsets (see [24]).
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