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Abstract

Mostowski showed that every (real or complex) germ of an analytic
set is homeomorphic to the germ of an algebraic set. In this paper
we show that every (real or complex) analytic function germ, defined
on a possibly singular analytic space, is topologically equivalent to a
polynomial function germ defined on an affine algebraic variety.

1. Introduction and statement of results

The problem of approximation of analytic objects (sets or mappings) by
algebraic ones has attracted many mathematicians; see e.g. [2] and the bibliog-
raphy therein. Nevertheless there are very few positive results if one requires
that the approximation gives a homeomorphism between the approximated
object and the approximating one. In this paper we consider two cases of this
problem: the local algebraicity of analytic sets and the local algebraicity of
analytic functions. The problem can be considered over K = R or C.

The local topological algebraicity of analytic sets has been established in
[12] by Mostowski. More precisely, given an analytic set germ (V, 0) ⊂ (Kn, 0),
Mostowski shows the existence of a local homeomorphism h̃ : (K2n+1, 0) →
(K2n+1, 0) such that, after the embedding (V, 0) ⊂ (Kn, 0) ⊂ (K2n+1, 0), the
image h̃(V ) is algebraic. It is easy to see that Mostowski’s proof together with
Theorem 2 of [2] (see Theorem 4.2 for a precise statement) gives the following
result.
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Theorem 1.1. Let K = R or C. Let (V, 0) ⊂ (Kn, 0) be an analytic germ.
Then there is a homeomorphism h : (Kn, 0) → (Kn, 0) such that h(V ) is the
germ of an algebraic subset of Kn.

Mostowski’s Theorem seems not to be widely known. Recently Fernández
de Bobadilla showed, by a method different from that of Mostowski, the local
topological algebraicity of complex hypersurfaces with one-dimensional singu-
lar locus; see [3]. We remark that in [12] Mostowski states his results only for
K = R, but his proof works, word by word, for K = C.

The first purpose of this paper is to present a short proof of Theorem 1.1.
We follow closely Mostowski’s original approach that is based on two ideas,
P"loski’s version of Artin approximation (cf. [13]) and Varchenko’s theorem
stating that the algebraic equisingularity of Zariski implies topological equi-
singularity. Our proof is shorter, but less elementary. We use a corollary
of the Néron Desingularization that we call the Nested Artin-P"loski-Popescu
Approximation Theorem. This result is shown in Section 2, and the proof of
Theorem 1.1 is given in Section 4. In Section 3 we recall Varchenko’s results.

The second purpose of this paper is to show the local algebraicity of analytic
functions.

Theorem 1.2. Let K = R or C. Let g : (Kn, 0) → (K, 0) be an analytic
function germ. Then there is a homeomorphism σ : (Kn, 0) → (Kn, 0) such
that g ◦ σ is the germ of a polynomial.

The proof of Theorem 1.2, given in Section 5, is based on the Nested Artin-
P"loski-Popescu Approximation Theorem and a refinement of Varchenko’s
method.

We end with the following generalization of Theorems 1.1 and 1.2.

Theorem 1.3. Let K = R or C. Let (Vi, 0) ⊂ (Kn, 0) be a finite family of
analytic set germs and let g : (Kn, 0) → (K, 0) be an analytic function germ.
Then there is a homeomorphism σ : (Kn, 0) → (Kn, 0) such that g ◦ σ is the
germ of a polynomial, and for each i, σ−1(Vi) is the germ of an algebraic
subset of Kn.

Corollary 1.4. Let g : (V, p) → (K, 0) be an analytic function germ defined
on the germ (V, p) of an analytic space. Then there exists an algebraic affine
variety V1, a point p1 ∈ V1, the germ of a polynomial function g1 : (V1, p1) →
(K, 0) and a homeomorphism σ : (V1, p1) → (V, p) such that g1 = g ◦ σ.

In Section 6 we present examples showing that Theorems 1.1, 1.2 and 1.3
are false if we replace “homeomorphism” by “diffeomorphism”. We do not
know whether these theorems hold true with “homeomorphism” replaced by
“bi-lipschitz homeomorphism”.
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Remark 1.5. We often identify the germ at the origin of a K-analytic
function f : (Kn, 0) → K with its Taylor series, that is, with a convergent
power series. We say that a (K-)analytic function or a germ is Nash if its
graph is semi-algebraic. Thus f : (Kn, 0) → K is the germ of a Nash function
if and only if its Taylor series is an algebraic power series (i.e. a power series
which is algebraic over K[x1, . . . , xn] - for instance the power series u(x) such
that u(0) = 1 and u(x)2 = 1 + x is an algebraic power series). A Nash set is
the zero set of finitely many Nash functions.

2. Nested Artin-P!loski-Popescu Approximation Theorem

We set x = (x1, . . . , xn) and y = (y1, . . . , ym). The ring of convergent
power series in x1,. . . , xn is denoted by K{x}. If A is a commutative ring,
then the ring of algebraic power series with coefficients in A is denoted by
A⟨x⟩.

The following result is a corollary of Theorem 11.4 in [16], which itself is a
corollary of the Néron-Popescu Desingularization (see [14], [16] or [17] for the
proof of this desingularization theorem in whole generality or [15] for a proof
in characteristic zero).

Theorem 2.1. Let f(x, y) ∈ K⟨x⟩[y]p and let us consider a solution y(x) ∈
K{x}m of

f(x, y(x)) = 0.

Let us assume that yi(x) depends only on (x1, . . . , xσ(i)) where i '−→ σ(i) is an
increasing function. Then there exist a new set of variables z = (z1, . . . , zs),
an increasing function τ , convergent power series zi(x) ∈ K{x} vanishing at
0 such that z1(x),. . . , zτ(i)(x) depend only on (x1, . . . , xσ(i)), and an algebraic
power series vector solution y(x, z) ∈ K⟨x, z⟩m of

f(x, y(x, z)) = 0,

such that for every i,

yi(x, z) ∈ K⟨x1, . . . , xσ(i), z1, . . . , zτ(i)⟩ and y(x) = y(x, z(x)).

Remark 2.2. Theorem 2.1 remains valid if we replace “convergent power
series” by “formal power series”.

For any i we set:

Ai = K⟨x1, . . . , xi⟩,
Bi = K{x1, . . . , xi}.

We will need at several places the following two lemmas whose proofs are
given later (for the definition and properties of an excellent ring see 7.8 [7]
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or [11]; a henselian local ring is a local ring satisfying the Implicit Function
Theorem; see 18.5 [8]).

Lemma 2.3. Let B be an excellent henselian local subring of K[[x1, . . . ,
xi−1]] containing K⟨x1, . . . , xi−1⟩ and whose maximal ideal is generated by
x1,. . . , xi−1. Then the ring Ai ⊗Ai−1 B is noetherian, and its henselization
is isomorphic to B⟨xi⟩.

Lemma 2.4. Let B be an excellent henselian local subring of K[[x1, . . . ,
xi−1]] containing K⟨x1, . . . , xi−1⟩ and whose maximal ideal is generated by

x1,. . . , xi−1. Let I be an ideal of B[xi]. Then the henselization of
B[xi](x1,...,xi)

I

is isomorphic to B⟨xi⟩
I .

Proof of Theorem 2.1. By replacing f(x, y) by f(x, y(0) + y) we may as-
sume that y(0) = 0.

For any i let l(i) be the largest integer such that y1(x),. . . , yl(i)(x) ∈
K{x1, . . . , xi}.

For any i let Ji be the kernel of the morphism

ϕi : K⟨x1, . . . , xi⟩[y1, . . . , yl(i)] −→ K{x1, . . . , xi} = Bi

defined by ϕi(g(x, y)) = g(x, y(x)). We define:

Ci =
K⟨x1, . . . , xi⟩[y1, . . . , yl(i)]

Ji
.

Then Ci is a finite type Ai-algebra and Ci is a sub-Ai-algebra of Ci+1 since
Ji ⊂ Ji+1. The morphism ϕi induces a morphism Ci −→ Bi such that the
following diagram is commutative:

A1

!!

"" A2

!!

"" · · · ""

!!

An

!!
C1

!!

"" C2

!!

"" · · · ""

!!

Cn

!!
B1

"" B2
"" · · · "" Bn
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By Theorem 11.4 in [16] (see also [18]) this diagram may be extended to a
commutative diagram as follows:

A1

!!

"" A2

!!

"" · · · ""

!!

An

!!
C1

!!

"" C2

!!

"" · · ·

!!

"" Cn

!!
D1

!!

"" D2

!!

"" · · ·

!!

"" Dn

!!
B1

"" B2
"" · · · "" Bn

where D1 is a smooth A1-algebra of finite type and Di is a smooth Di−1⊗Ai−1

Ai-algebra of finite type for all i > 1. We will denote by D′
i−1 the ring

Di−1 ⊗Ai−1 Ai for all i > 1 and set D′
1 = A1.

For any i let us write Di =
D′

i−1[ui,1,...,ui,qi ]

Ii
. We may make a change of

coordinates (of the form ui,j '−→ ui,j + ci,j for some ci,j ∈ K) in such a way
that the image of ui,j is in the maximal ideal of Bi for any i and j. Thus
Di −→ Bi factors through the localization morphism Di −→ (Di)mi where
mi = (x1, . . . , xi, ui,1, . . . , ui,qi). Let Dh

i be the henselization of (Di)mi . Since
Bi is a henselian local ring, the morphism Di −→ Bi factors through Dh

i by
the universal property of the henselization. Still by this universal property
the composition of the morphisms Di−1 −→ Di −→ Dh

i factors through Dh
i−1.

Thus we have the following commutative diagram:

A1

!!

"" A2

!!

"" · · · ""

!!

An

!!
C1

!!

"" C2

!!

"" · · ·

!!

"" Cn

!!
Dh

1

!!

"" Dh
2

!!

"" · · ·

!!

"" Dh
n

!!
B1

"" B2
"" · · · "" Bn

We will prove by induction that Dh
i is isomorphic to K⟨x1, . . . , xi, z1, . . . , zλ(i)⟩

where i −→ λ(i) is an increasing function and the zk are new indeterminates.
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Since Dh
1 is the henselization of (D1)m1 =

K⟨x1⟩[u1,1,...,u1,q1 ]
I (x1,u1,1,...,u1,q1 )

,

Dh
1 is isomorphic to

K⟨x1,u1,1,...,u1,q1 ⟩
I·K⟨x1,u1,1,...,u1,q1⟩

by Lemma 2.4. Moreover D1 is smooth

over K⟨x1⟩ means that the matrix
(

∂fj

∂uk
(0, 0)

)

i,j
, where the fj are generators

of the ideal I · K⟨x1, u1,1, . . . , u1,q1⟩, has maximal rank (by the jacobian cri-
terion for smoothness; see [6, Proposition 22.6.7 (iii)]). Thus by the Implicit
Function Theorem the ring Dh

1 is isomorphic to K⟨x1, z1, . . . , zλ(1)⟩ for some
new indeterminates z1,. . . , zλ(1). This proves the induction property for Dh

1 .
Now let us assume that the induction property is true for Dh

i−1. By as-
sumption Di is smooth over Di−1 ⊗Ai−1 Ai. Thus Dh

i is smooth over the
henselization of Di−1 ⊗Ai−1 Ai. By the universal property of the henseliza-
tion the morphism from Di−1 to the henselization of Di−1 ⊗Ai−1 Ai factors
through Dh

i−1; thus it factors through Dh
i−1⊗Ai−1 Ai. Hence the henselization

of Di−1 ⊗Ai−1 Ai is isomorphic to the henselization of Dh
i−1 ⊗Ai−1 Ai. But

Dh
i−1 ⊗Ai−1 Ai = K⟨x1, . . . , xi−1, z1, . . . , zλ(i−1)⟩ ⊗K⟨x1,...,xi−1⟩ K⟨x1, . . . , xi⟩.

Its henselization is isomorphic to K⟨x1, . . . , xi, z1, . . . , zλ(i−1)⟩ by Lemma 2.3.
This shows that Dh

i is smooth over K⟨x1, . . . , xi, z1, . . . , zλ(i−1)⟩. Hence,
by the Implicit Function Theorem as we did for Dh

1 , Dh
i is isomorphic to

K⟨x1, . . . , xi, z1, . . . , zλ(i)⟩ for some new indeterminates zλ(i−1)+1,. . . , zλ(i).
Finally the morphisms Ci−→Dh

i define the yk(x, z) satisfying f(x, y(x, z))
= 0. The power series zj(x) are defined by the morphisms Dh

i −→ Bi and the
fact that Ci −→ Bi factors through Dh

i yields y(x) = y(x, z(x)). !
Proof of Lemma 2.3. Let ψ : Ai ⊗Ai−1 B −→ B⟨xi⟩ be the morphism de-

fined by ψ(
∑

j aj ⊗ bj) =
∑

j ajbj with aj ∈ Ai and bj ∈ B for any j. The
morphism ψ is well defined since Ai and B are subrings of the ring B⟨xi⟩.
The image of ψ is the subring of B⟨xi⟩ generated by Ai and B.

Let us prove that ψ is injective: Let
∑

j aj ⊗ bj ∈ Ker(ψ) with aj ∈ Ai and

bj ∈ B for any j. This means that
∑

j ajbj = 0. Let us write aj =
∑

l∈N aj,lxl
i

where aj,l ∈ Ai−1 for any j and l. Thus we have

(2.1)
∑

j

aj,lbj = 0

for any l ∈ N, and this system of linear equations is equivalent to a fi-
nite system by noetherianity. The ring extension Ai−1 −→ B is flat since
Ai−1 −→ K[[x1, . . . , xi−1]] and B −→ K[[x1, . . . , xi−1]] are faithfully flat (they
are completions of local noetherian rings; cf. [11, p. 46, and Theorem 8.14,
p. 62]). Thus the solution vector (bj)j of (2.1) is a linear combination with
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coefficients in B of solution vectors in Ai−1 (cf. [11, Theorem 7.6, p. 49]).
Thus (bj)j =

∑
k b′k(a′

j,k)j where b′k ∈ B and, for any k, (a′
j,k)j are vectors

with entries in Ai−1 which are solutions of (2.1). This means that

∑

j

aj ⊗bj =
∑

j,k

aj ⊗b′ka′
j,k =

∑

k

∑

j

aja
′
j,k ⊗b′k =

∑

k

(
∑

l

(
∑

j

aj,la
′
j,k)xl

i)⊗b′k = 0.

Thus Ker(ψ) = (0).
Obviously Im(ψ) contains B[xi] whose henselization is B⟨xi⟩ by Lemma 2.4,

thus ψ induces a surjective morphism between the henselization of Ai⊗Ai−1 B
and B⟨xi⟩. This surjective morphism is also injective since ψ is injective and
Ai⊗Ai−1 B is a domain. (Indeed if y ̸= 0 is in the henselization of Ai⊗Ai−1 B,
then y is a root of a non-zero polynomial with coefficients in Ai⊗Ai−1 B. Since
Ai ⊗Ai−1 B is a domain and y ̸= 0 we may assume that this polynomial has a
non-zero constant term denoted by a. If the image of y in B⟨xi⟩ is zero, then
ψ(a) = 0 which is a contradiction.)

On the other hand, B⟨xi⟩ is the henselization of B[xi] which is noetherian;
thus B⟨xi⟩ is noetherian (cf. [8, Théorème 18.6.6]). This proves that the
henselization of Ai ⊗Ai−1 B is noetherian. Hence Ai ⊗Ai−1 B is noetherian
(cf. [8, Théorème 18.6.6]). !

Proof of Lemma 2.4. The elements of the henselization of a local ring A
are algebraic over A by construction. Thus the henselization of B[xi]

I is a

subring of B⟨xi⟩
I .

On the other hand let us prove first that B⟨xi⟩ is the henselization of
B[xi](x1,...,xi). If y ∈ B⟨xi⟩, then y is a root of a polynomial P (Y ) with
coefficients in B[xi]. By the Artin Approximation Theorem (see [16, Theorem
11.3]), y may be approximated by elements which are in the henselization
of B[xi]. Since P (Y ) has only a finite number of roots, this means that
y is in the henselization of B[xi](x1,...,xi). Thus B⟨xi⟩ is the henselization

of B[xi](x1,...,xi). Now the morphism B[xi] −→ B[xi]
I induces a morphism

B⟨xi⟩ −→
(

B[xi]
I (x1,...,xi)

)h
of B[xi]-algebras by the universal property of the

henselization. It is clear that the kernel of this morphism is generated by

I thus we get an injective morphism B⟨xi⟩
I −→

(
B[xi]

I (x1,...,xi)

)h
of B[xi]-

algebras. Since
(

B[xi]
I (x1,...,xi)

)h
is a subring of B⟨xi⟩

I , this shows that the

morphism B⟨xi⟩
I −→

(
B[xi]

I (x1,...,xi)

)h
is an isomorphism. !
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3. Algebraic equisingularity of Zariski

Notation: Let x = (x1, . . . , xn) ∈ Cn. Then we denote xi = (x1, . . . , xi) ∈
Ci.

3.1. Assumptions. Let V be an analytic hypersurface in a neighborhood
of the origin in Cl ×Cn and let W = V ∩ (Cl × {0}). Suppose there are given
complex pseudopolynomials1

Fi(t, x
i) = xpi

i +
pi∑

j=1

ai−1,j(t, x
i−1)xpi−j

i , i = 0, . . . , n,

t ∈ Cl, xi ∈ Ci, with complex analytic coefficients ai−1,j , that satisfy

(1) V = F−1
n (0).

(2) Fi−1(t, xi−1) = 0 if and only if Fi(t, xi−1, xi) = 0 considered as an
equation on xi with (t, xi−1) fixed, has fewer roots than for generic
(t, xi−1).

(3) F0 ≡ 1.
(4) There are positive reals δk > 0, k = 1, . . . , l, and εj > 0, j = 1, . . . , n,

such that Fi are defined on the polydiscs Ui := {|tk| < δk, |xj | <
εj , k = 1, . . . , l, j = 1, . . . , i}.

(5) All roots of Fi(t, xi−1, xi) = 0, for (t, xi−1) ∈ Ui−1, lie inside the circle
of radius εi.

(6) Either Fi(t, 0) ≡ 0 or Fi ≡ 1 (and in the latter case Fk ≡ 1 for all
k ≤ i).

We may take as Fi−1 the Weierstrass polynomial associated to the reduced
discriminant of Fi or a generalized discriminant (see the next section).

We shall denote Vi = F−1
i (0) ⊂ Ui. For the parameter t fixed we write

Vt := V ∩ ({t} × Cn), Vi,t := Vi ∩ ({t} × Ci), and Ui,t = Ui ∩ ({t} × Ci). We
identify W and U0.

Theorem 3.1 ([20, Theorem 1], [21, Theorem 1]). Under the above as-
sumptions V is topologically equisingular along W with respect to the family
of sections Vt = V ∩ ({t} × Cn). This means that for all t ∈ W there is a
homeomorphism ht : Un,0 → Un,t such that ht(V0) = Vt and ht(0) = 0.

3.2. Remarks on Varchenko’s proof of Theorem 3.1. As Varchenko
states in Remark 1 of [20] a stronger result holds, the family Vt is topologically
trivial, in the sense that the homeomorphisms ht depend continuously on t.

1A pseudopolynomial is a polynomial in xi with coefficients that are analytic in the other
variables. The pseudopolynomials Fi that we construct later are moreover distinguished

polynomials in x, i.e. are of the form xp
i +

p∑

j=1

aj(x
i−1)xp−j

i where aj(0) = 0 for all j. They

depend analytically on t, which is considered as a parameter.
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The details of the proof of Theorem 3.1 (with continuous dependence of ht on
t) are published in [19].

The homeomorphisms ht are constructed in [19] inductively by lifting step
by step the homeomorphisms

hi,t : Ui,0 → Ui,t,

so that hi,t(xi−1, xi) = (hi−1,t(xi−1), hi,t,i(xi)), hi,t(Vi,0) = Vi,t, hi,t(0) = 0. If
hi−1,t depends continuously on t, then the number of roots of Fi(hi−1,t(xi−1),
xi) = 0 is independent of t. Therefore, if Fn = G1 · · ·Gk, then the number of
roots of each Gj(hn−1,t(xn−1), xn) = 0 is independent of t; see Lemma 2.2 of
[19]. In particular ht preserves not only V = F−1

n (0) but also each of G−1
j (0).

Thus [19] implies the following.

Theorem 3.2. The homeomorphisms ht of Theorem 3.1 can be chosen
continuous in t. If Fn = G1 · · ·Gk, then for each s = 1, . . . , k, ht(G−1

s (0) ∩
({0} × Cn)) = G−1

s (0) ∩ ({t} × Cn).

4. Mostowski’s Theorem

In this section we show Theorem 1.1.
4.1. Generalized discriminants. Let f(T ) = T p +

∑p
i=1 aiT p−i =∏p

i=1(T − Ti). Then the expressions
∑

r1,...,rj−1

∏

k<l,k,l ̸=r1,...,rj−1

(Tk − Tl)
2

are symmetric in T1, . . . , Tp and hence polynomials in a = (a1, . . . , ap). We
denote these polynomials by ∆j(a). Thus ∆1 is the standard discriminant
and f has exactly p − j distinct roots if and only if ∆1 = · · · = ∆j = 0 and
∆j+1 ̸= 0.

4.2. Construction of a normal system of equations. Let us consider
a finite set of pseudopolynomials g1, . . . , gk ∈ C{x}:

gs(x) = xrs
n +

rs∑

j=1

an−1,s,j(x
n−1)xrs−j

n .

The coefficients an−1,s,j can be arranged in a row vector an−1 ∈ C{xn−1}pn

where pn :=
∑

s rs. Let fn be the product of the gs’s. The generalized
discriminants ∆n,i of fn are polynomials in an−1. Let jn be a positive integer
such that

∆n,i(an−1) ≡ 0 i < jn,(4.1)
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and ∆n,jn(an−1) ̸≡ 0. Then, after a linear change of coordinates xn−1, we
may write

∆n,jn(an−1) = un−1(x
n−1)(xpn−1

n−1 +

pn−1∑

j=1

an−2,j(x
n−2)xpn−1−j

n−1 ),

where un−1(0) ̸= 0 and for all j, an−2,j(0) = 0. We denote

fn−1 = xpn−1

n−1 +

pn−1∑

j=1

an−2,j(x
n−2)xpn−1−j

n−1

and the vector of its coefficients an−2,j by an−2 ∈ C{xn−2}pn−1 . Let jn−1

be the positive integer such that the first jn−1 − 1 generalized discriminants
∆n−1,i of fn−1 are identically zero and ∆n−1,jn−1 is not. Then again we define
fn−2(xn−2) as the Weierstrass polynomial associated to ∆n−1,jn−1 .

We continue this construction and define a sequence of pseudopolynomials
fi(xi), i = 1, . . . , n − 1, such that

fi = xpi
i +

pi∑

j=1

ai−1,j(x
i−1)xpi−j

i

is the Weierstrass polynomial associated to the first non-identically zero gen-
eralized discriminant ∆i+1,ji+1(ai) of fi+1, where we denote in general ai =
(ai,1, . . . , ai,pi+1),

∆i+1,ji+1(ai) = ui(x
i)(xpi

i +
pi∑

j=1

ai−1,j(x
i−1)xpi−j

i ), i = 0, . . . , n − 1.(4.2)

Thus the vector of functions ai satisfies

∆i+1,k(ai) ≡ 0, k < ji+1, i = 0, . . . , n − 1.(4.3)

This means in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0,

where u0 is a non-zero constant.
4.3. Approximation by Nash functions. Consider (4.2) and (4.3) as

a system of polynomial equations on ai(xi), ui(xi). By construction, this
system admits convergent solutions. Therefore, by Theorem 2.1, there ex-
ist a new set of variables z = (z1, . . . , zs), an increasing function τ , con-
vergent power series zi(x) ∈ C{x} vanishing at 0, algebraic power series
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ui(xi, z) ∈ C⟨xi, z1, . . . , zτ(i)⟩ and vectors of algebraic power series ai(xi, z) ∈
C⟨x(i), z1, . . . , zτ(i)⟩pi such that the following hold:

z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xi),

ai(x
i, z), ui(x

i, z) are solutions of (4.2), (4.3),

and ai(x
i) = ai(x

i, z(xi)), ui(x
i) = ui(x

i, z(xi)).

For t ∈ C we define

Fn(t, x) =
∏

s

Gs(t, x), Gs(t, x) = xrs
n +

rs∑

j=1

an−1,s,j(x
n−1, tz(xn−1))xrs−j

n ,

Fi(t, x) = xpi
i +

pi∑

j=1

ai−1,j(x
i−1, tz(xi−1))xpi−j

i , i = 0, . . . , n − 1.

Finally we set F0 ≡ 1. Because ui(0, 0) = ui(0, z(0)) ̸= 0, the family Fi(t, x)
satisfies the assumptions of Theorem 3.1 with |t| < R for any R < ∞.

Corollary 4.1. Let (V, 0) ⊂ (Kn, 0) be an analytic germ defined by g1 =
· · · = gk = 0 with gs ∈ K{x}. Then there are algebraic power series ĝs ∈ K⟨x⟩
and a homeomorphism germ h : (Kn, 0) → (Kn, 0) such that h(g−1

s (0)) =
ĝ−1

s (0) for s = 1, . . . , k. In particular, h(V ) is the Nash set germ {ĝ1 = · · · =
ĝk = 0}.

Proof. For K = C we set ĝi(x) = Gi(0, x), and then the corollary follows
from Theorem 3.2. The real case follows from the complex one, because if
the pseudopolynomials Fi of Subsection 3.1 have real coefficients, then the
homeomorphisms ht constructed in [19] are conjugation invariant; cf. §6 of
[19]. !

Now Theorem 1.1 follows from Corollary 4.1 and the following result.
Theorem 4.2 ([2, Theorem 2]). Let (V, 0) ⊂ (Kn, 0) be a Nash set germ.

Then there is a local Nash diffeomorphism σ : (Kn, 0) → (Kn, 0) such that
σ(V ) is the germ of an algebraic subset of Kn.

5. Topological equivalence between analytic
and algebraic function germs

In this section we show Theorem 1.2 and Theorem 1.3.
5.1. A variant of Varchenko’s method. We replace the assumptions

(2) and (3) of Subsection 3.1 by:

(2’) There are qi ∈ N such that xqi
1 Fi−1(t, xi−1) = 0 if and only if the

equation Fi(t, xi−1, xi) = 0 has fewer roots than for generic (t, xi−1).
(3’) F1 ≡ 1.
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Then Varchenko’s method gives the following result.
Theorem 5.1. Under the above assumptions, V is topologically equisin-

gular along W with respect to the family of sections Vt = V ∩ ({t} × Cn).
Moreover all the sections V ∩ {x1 = const} are also equisingular. This means
that for all t ∈ W there is a homeomorphism ht : Un,0 → Un,t such that
ht(V0) = Vt, ht(0) = 0, and ht preserves the levels of x1

ht(x1, . . . , xn) = (x1, ĥt(x1, . . . , xn)).(5.1)

Indeed, recall that the homeomorphisms ht are constructed inductively
by lifting step by step the homeomorphisms hi,t : Ui,0 → Ui,t, so that
hi,t(xi−1, xi) = (hi−1,t(xi−1), hi,t,i(xi)). At each stage such lifts hi,t exist and
preserve the zero set of Fi if hi−1,t depends continuously on t and preserves
the discriminant set of Fi; see [19, sections 2 and 3].

Because F1 ≡ 1, by (2’), the discriminant set of F2 is either empty or
given by x1 = 0. Therefore we may take h1,t(x1) = x1. Then we show by
induction on i that each hi,t can be lifted so that the lift hi+1,t preserves
the zero set of Fi+1 and the values of x1. The former condition follows by
inductive assumption; hi,t preserves the discriminant set of Fi+1. The latter
condition is satisfied trivially since hi+1,t is a lift of hi,t.

5.2. Equisingularity of functions. We apply Theorem 5.1 to study the
equisingularity of analytic function germs as follows. Let G(t, y) : (Cl ×
Cn−1, 0) → (C, 0) be analytic, y = (y1, . . . , yn−1). We consider G as an ana-
lytic family of analytic function germs Gt : (Cn−1, 0) → (C, 0) parametrized
by t ∈ W , where W is a neighborhood of the origin in Cl. We associate to G
its graph

V = {(t, x1, x2, . . . , xn); x1 = Gt(x2, . . . , xn)},

thus fixing the following notation:

x = (x1, x2, . . . , xn) = (x1, y).(5.2)

Theorem 5.2. Suppose that V and W satisfy the assumptions of The-
orem 5.1. Then the family of analytic function germs Gt is topologically
equisingular. This means that there is a family of local homeomorphisms
σt : (Cn−1, 0) → (Cn−1, 0) such that

G0 = Gt ◦ σt.

Proof. It follows from (5.1) by setting σt(y) = ĥt(G0(y), y). Indeed, since
ht preserves V we have

ht(G0(y), y) = (Gt(ĥt(G0(y), y)), ĥt(G0(y), y)),

and since it preserves the levels of x1,

G0(y) = Gt(ĥt(G0(y), y)). !
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5.3. Construction of a normal system of equations for a finite
family of function germs. Let gm : (Cn−1, 0) → (C, 0), m = 1, . . . , p, be
a finite family of analytic function germs that we assume are not identically
equal to zero. After a linear change of coordinates (x2, . . . , xn), we find that∏p

m=1(x1 − gm(x2, . . . , xn)) is equivalent to a pseudopolynomial; that is, we
may write

p∏

m=1

(x1 − gm(x2, . . . , xn)) = un(x)(xpn
n +

pn∑

j=1

an−1,j(x
n−1)xpn−j

n ),

where un(0) ̸= 0 and an−1,j(0) = 0. We denote

fn(x) = xpn
n +

pn∑

j=1

an−1,j(x
n−1)xpn−j

n

so that

un(x)fn(x) =
p∏

m=1

(x1 −
n∑

k=2

xkbm,k(x2, . . . , xn))(5.3)

with gm =
∑n

k=2 xkbm,k. We denote by b ∈ C{x}p(n−1) the vector of the
coefficients bm,k and by an−1 ∈ C{xn−1}pn the one of the coefficients an−1,j .

The generalized discriminants ∆n,i of fn are polynomials in an−1. Let jn

be a positive integer such that

∆n,i(an−1) ≡ 0, i < jn,

and ∆n,jn(an−1) ̸≡ 0. After a change of coordinates (x2, . . . , xn−1) we may
write

∆n,jn(an−1) = un−1(x
n−1)xqn−1

1 (xpn−1

n−1 +

pn−1∑

j=1

an−2,j(x
n−2)xpn−1−j

n−1 ),

where un−1(0) ̸= 0 and an−2,j(0) = 0. We denote

fn−1 = xpn−1

n−1 +

pn−1∑

j=1

an−2,j(x
n−2)xpn−1−j

n−1

and the vector of its coefficients an−2,j by an−2 ∈ C{xn−2}pn−1 . Let jn−1

be the positive integer such that the first jn−1 − 1 generalized discriminants
∆n−1,i of fn−1 are identically zero and ∆n−1,jn−1 is not. Then again we divide
∆n−1,jn−1 by the maximal power of x1 and, after a change of coordinates
(x2, . . . , xn−2), denote the associated Weierstrass polynomial by fn−2(xn−2).

We continue this construction and define a sequence of pseudopolynomials
fi(xi), i = 1, . . . , n − 1, such that fi = xpi

i +
∑pi

j=1 ai−1,j(xi−1)xpi−j
i is the

Weierstrass polynomial associated to the first non-identically zero generalized
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discriminant ∆i,ji(ai+1) of fi+1, divided by the maximal power of x1, where
we denote in general ai = (ai,1, . . . , ai,pi),

∆i+1,ji+1(ai) = ui(x
i)xqi

1 (xpi
i +

pi∑

j=1

ai−1,j(x
i−1)xpi−j

i ), i = 0, . . . , n − 1.

(5.4)

Thus the vector of functions ai satisfies

∆i+1,k(ai−1) ≡ 0 , k < ji+1, i = 0, . . . , n − 1.(5.5)

These equations mean in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0x
q0
1 ,(5.6)

where u0 is a non-zero constant. Hence f1 ≡ 1.
5.4. Approximation by Nash functions. Consider (5.3), (5.4), (5.5)

as a system of polynomial equations on ai(xi), ui(xi), and b(x). By con-
struction, this system admits convergent solutions. Therefore, by Theorem
2.1, there exist a new set of variables z = (z1, . . . , zs), an increasing func-
tion τ , convergent power series zi(x) ∈ C{x} vanishing at 0, algebraic power
series ui(xi, z) ∈ C⟨xi, z1, . . . , zτ(i)⟩, and vectors of algebraic power series

ai(xi, z) ∈ C⟨x(i), z1, . . . , zτ(i)⟩pi , b(x, z) ∈ C⟨x, z⟩n−1, such that the following
hold:

z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xi),

ai(x
i, z), ui(x

i, z), b(x, z) are solutions of (5.3), (5.4), (5.5),

and ai(x
i) = ai(x

i, z(xi)), ui(x
i) = ui(x

i, z(xi)), b(x) = b(x, z(x)).

For t ∈ C we define

Fi(t, x) = xpi
i +

pi∑

j=1

ai−1,j(x
i−1, tz(xi−1))xpi−j

i .

In particular, by (5.6), F1 ≡ 1. Since

un(x, tz(x))Fn(t, x) =
p∏

m=1

(x1 −
n∑

k=2

xkbm,k(x, tz(x))),

by the Implicit Function Theorem there are algebraic power series

Gm ∈ C⟨t, y1. . . . , yn−1⟩

such that

F−1
n (0) =

⋃

m

{(t, x); x1 = Gm(t, x2, . . . , xn)}

as germs at the origin. Then gm(y) = Gm(1, y) and Gm(0, y) ∈ C⟨y⟩. We
denote ĝm(y) = Gm(0, y).
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Because ui(0, 0) = ui(0, z(0)) ̸= 0, the family Fi(t, x) satisfies the assump-
tions of Theorem 5.1 with |t| < R for arbitrary R < ∞. By Theorem 5.1
there is a continuous family of homeomorphism germs ht : (Cn, 0) → (Cn, 0),
ht(x) = (x1, ĥt(x1, x2, . . . , xn)), such that

ht(gm(y), y) = (Gm(t, ĥt(gm(y), y)), ĥt(gm(y), y)).

Fix one m, for instance m = 1, and set

σt(y) = ĥt(g1(y), y)

as in the proof of Theorem 5.2 (we use here the notation (5.2)). Then g1(y) =
G1(t,σt(y)) and in particular

g1(y) = ĝ1(σ0(y)).(5.7)

It is not true in general that gm(y) = ĝm(σ0(y)) since the homeomorphism σt

is defined by restricting ht to the graph of G1. If we define

σm,t(y) = ĥt(gm(y), y),

then we have

gm(y) = ĝm(σm,0(y)).

Both homeomorphisms coincide on Xm = {y ∈ (Cn−1, 0); (gm − g1)(y) = 0}.
Therefore if we define X̂m = {y ∈ (Cn−1, 0); (ĝm − ĝ1)(y) = 0}, then

σ0(X̂m) = Xm.(5.8)

Therefore we have the following result.

Proposition 5.3. Let (Vi, 0) ⊂ (Kn, 0) be a finite family of analytic set
germs and let g : (Kn, 0) → (K, 0) be an analytic function germ. Then there
are Nash set germs (V̂i, 0) ⊂ (Kn, 0), an algebraic power series ĝ ∈ K⟨x⟩, and
a homeomorphism germ σ̂ : (Kn−1, 0) → (Kn−1, 0) such that σ(V̂i) = Vi and
g ◦ σ̂ = ĝ.

Proof. Let K = C. Choose a finite family gm : (Cn−1, 0) → (C, 0), m =
1, . . . , p, of analytic function such that g1 = g and for every i, the ideal of
Vi is generated by some of the differences gm − g1. We apply to the family
gm the procedure of Subsections 5.3 and 5.4 and set σ̂ = σ0. The claim now
follows from (5.7) and (5.8).

The real case follows from the complex one because if the pseudopolyno-
mials Fi of Subsection 3.1 have real coefficients, then the homeomorphisms ht

constructed in [19] are conjugation invariant; cf. §6 of [19]. !
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5.5. Proof of Theorem 1.2 and Theorem 1.3. It suffices to show
Theorem 1.3. It will follow from Proposition 5.3 and the next two results.

Theorem 5.4. Let K = R or C. Let fi : (Kn, 0) → (K, 0) be a finite family
of Nash function germs. Then there are a Nash diffeomorphism h : (Kn, 0) →
(Kn, 0) and analytic (even Nash) units ui : (Kn, 0) → K, ui(0) ̸= 0, such that
for all i, ui(x)fi(h(x)) are germs of polynomials.

Proof. For K = C Theorem 5.4 follows from Theorem 5 of [2]. Indeed, the
implication “(i) =⇒ (ii)” of this theorem gives:

If (V, 0) ⊂ (Kn, 0) is a Nash set germ, then there is a Nash diffeomorphism
h : (Kn, 0) → (Kn, 0) such that for any analytic irreducible component W of
(V, 0) the ideal of functions vanishing on h(W ) is generated by polynomials.

Now, if K = C, it suffices to apply the above result to (V, 0) defined as the
zero set of the product of fi’s.

If K = R such a set theoretic statement is not sufficient, but in this case
Theorem 5.4 follows from the proof of Theorem 5 of [2]. We sketch this
argument below.

First we consider K = C. Choose representatives fi : U → C of the
germs fi, i = 1, . . . , m, and let f = (f1, . . . , fm) : U → Cm. By the Artin-
Mazur Theorem, [1, Theorem 8.4.4], [2, Proposition 2], there is an algebraic
set X ⊂ Cn × CN of dimension n, a polynomial map Φ : Cn × CN → Cm,
and a Nash map s : U → X such that f = Φ ◦ s, s : U → s(U) is a Nash
diffeomorphism and s(U) ∩ Sing(X) = ∅. (X is the normalization of the
Zariski closure of the graph of f .) We may assume that p = s(0) is the origin
in Cn × CN .

Let π : X → Cn be a generic linear projection. Then the germ h of
(π ◦ s)−1 satisfies the claim. Indeed, denote Xi = X ∩ Φ−1

i (0). Then for
each i = 1, . . . , m, Zi = π(Xi) is an algebraic subset of Cn and, moreover, π
induces a local isomorphism (Xi, 0) → (Zi, 0). We fix a reduced polynomial
Pi that defines Zi. Then fi ◦ h, as a germ at the origin, vanishes exactly on
Zi and hence equals a power of Pi times an analytic unit.

If K = R, then we apply the complex case to the complexifications of
the fi’s keeping the construction conjugation invariant. In particular the
linear projection can be chosen real (that is conjugation invariant). Indeed,
this projection is from the Zariski open dense subset U of the set of linear
projections L(Cn × CN , Cn). Then U ∩ L(Rn × RN , Rn) is non-empty. (A
complex polynomial of M variables that vanishes on RM is identically equal
to zero.) This ends the proof. !

Theorem 5.5. Let K = R or C. Let f : (Kn, 0) → (K, 0) be an analytic
function germ and let u : (Kn, 0)→K be an analytic unit, u(0) ̸=0 (u(0)> 0
if K = R). Let (Vi, 0) ⊂ (Kn, 0) be a finite family of analytic set germs. Then
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there is a homeomorphism germ σ : (Kn, 0) → (Kn, 0) such that (σ(Vi), 0) =
(Vi, 0) for each i and uf = f ◦ σ.

Proof. If K = C we suppose additionally that the segment that joins u(0)
and 1 does not contain 0. The general case can be reduced to this one.

Fix a small neighborhood U of the origin in Kn so that the representatives
Vi ⊂ U , f : U → K, and u : U → K are well-defined. In the proof we often
shrink U when necessary. Let I denote a small neighborhood of [0, 1] in R.
We construct a Thom stratification of the deformation Ψ(x, t) = (F (x, t), t) :
U × I → K × I, where

F (x, t) = f(x)(1 − t + tu(x)) = f(x)(1 + t(u(x) − 1)), (x, t) ∈ U × I,

which connects f(x) = F (x, 0) and u(x)f(x) = F (x, 1). Then we conclude
by the second Thom-Mather Isotopy Lemma. For the Thom stratification we
refer the reader to [4, Chapter 1], and for the Thom-Mather Isotopy Lemmas
to [4, Chapter 2].

Fix a Thom stratification S ′ = {S′
j} of f : U → K such that each Vi

is a union of strata. That means that S ′ is a Whitney stratification of U ,
compatible with f−1(0) and f−1(K \ {0}), that satisfies Thom’s af condition.
(It is well-known that such a stratification exists; the existence of af regular
stratifications was first proved in the complex analytic case by Hironaka in
[5], using resolution of singularities, under the assumption “sans éclatement”,
which is always satisfied for functions. In the real subanalytic case it was first
shown in [9].)

First we show that S = {Sj = S′
j × I} as a stratification of U × I satisfies

aF condition

(aF ) for every stratum S ⊂ F−1(K\{0}) and every sequence of points pi =
(xi, ti) ∈ S that converges to a point p0 = (x0, t0) ∈ S0 ⊂ F−1(0),
such that ker dpiF |Tpi S → T , we have T ⊃ Tp0S0.

By the curve selection lemma it suffices to check this condition on every real
analytic curve p(s) = (x(s), t(s)) : [0, ε) → S ∪ S0, p(0) ∈ S0 and p(s) ∈ S for
s > 0. Since S ′ satisfies af , the condition aF for S follows from the following
lemma.

Lemma 5.6. Let S = S′ × I ⊂ F−1(K \ {0}) and S0 ⊂ F−1(0) be two
strata of S and let p(s) = (x(s), t(s)) : [0, ε) → U × I be a real analytic curve
such that p0 = p(0) ∈ S0 and p(s) ∈ S for s > 0. Then for s > 0 and small,
gradx F |S(p(s)) ̸= 0 and

lim
s→0

grad F |S(p(s))

∥ grad F |S(p(s))∥ = lim
s→0

(grad f |S′(x(s)), 0)

∥ grad f |S′(x(s))∥ .(5.9)
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Proof. By assumption f(x(s)) =
∑∞

i=i0
aisi, with i0 > 0 and ai0 ̸= 0. By

differentiating we obtain

|df
ds

| = | ⟨grad f |S′ , x′(s)⟩ | ≤ ∥ grad f |S′∥∥x′(s)∥.

Hence there exists C > 0 such that for small s > 0,

|f(x(s))| ≤ sC∥ grad f |S′∥.(5.10)

Moreover

grad F |S(p(s)) = (grad f |S′(x(s)), 0)(1 + t(s)(u(x(s))− 1))

+ f(x(s))(t(s) gradu|S′(x(s)), u(x)− 1).
(5.11)

Now (5.9) follows easily from (5.10) and (5.11). !
Finally S as a stratification of U ×I together with ((K\{0})×I, {0}×I) as

a stratification of K× I is a Thom stratification of Ψ. Indeed, S is a Whitney
stratification as the product of a Whitney stratification of U times I. Then
for any pair of strata S = S′× I ⊂ F−1(K \ {0}) and S0 = S′

0 × I ⊂ F−1(0) it
satisfies aF and hence also aΨ condition. Therefore Theorem 5.5 follows from
the second Thom-Mather Isotopy Lemma [4, Chapter 2 (5.8)]. !

Now we may conclude the proof of Theorem 1.3. By Proposition 5.3 we
may assume that g is a Nash function germ and the Vi’s are Nash set germs.
Moreover by Theorem 5.4, after composing with the Nash diffeomorphism h,
we may assume that g equals a polynomial times an analytic unit and that the
ideal of analytic function germs defining each Vi is generated by polynomials.
In particular each Vi is algebraic. Finally we apply Theorem 5.5 to show
that, after composing with a homeomorphism preserving each Vi, g becomes
a polynomial.

6. Examples

Example 6.1. We give here an example showing that the C1 analog of
Theorems 1.1 or 1.2 is false in the real case (this example is well-known; see
[2] for example). The germ (V, 0) ⊂ (R3, 0), defined by the vanishing of

f(t, x, y) = xy(y − x)(y − (3 + t)x)(y − γ(t)x)

where γ(t) ∈ R{t} is transcendental and γ(0) = 4, is not C1-diffeomorphic
to the germ of an algebraic set as follows from the argument of Whitney; cf.
Section 14 of [22]. Indeed V is the union of five smooth surfaces intersecting
along the t-axis and its tangent cone at the point (t, 0, 0) is the union of five
planes intersecting along a line. The cross-ratio of the first four planes is
3+ t, and the cross-ratio of the first three and the last plane is γ(t). Since the
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cross-ratio is preserved by linear maps, these two cross-ratios are preserved by
C1-diffeomorphisms. But these two cross-ratios are algebraically independent;
thus the image of V under a C1-diffeomorphism cannot be algebraic.

Example 6.2. The previous example also shows that the C1 analogs of
Theorem 1.1 or 1.2 are false in the complex case. Define V in a neighborhood
of 0 in C3 by the vanishing of the polynomial of Example 6.1. Modifying
Whitney’s argument (cf. [22, pp. 240, 241]) we will show that the germ of V
at 0 is not C1-equivalent to any Nash germ in C3.

For any (t, 0, 0) ∈ C3 with |t| small, the tangent cone to V at (t, 0, 0)
is the union of five two-dimensional C-linear spaces L1,t, . . . , L5,t, where Lj,t

corresponds to the j’th factor of f. Suppose that there is a C1-diffeomorphism
Φ : (C3, 0) → (C3, 0) such that Φ(V ) is a germ of a Nash set in C3. Then the
tangent cone to Φ(V ) at Φ(t, 0, 0) is the union of d(t,0,0)Φ(Lj,t), for j = 1, . . . ,
5. In particular, every d(t,0,0)Φ(Lj,t) is a C-linear subspace of C3 of dimension
2.

Let us check that for every t ∈ R with |t| small and for every pairwise
distinct k1, . . . , k4 ∈ {1, . . . , 5}, the cross-ratio of Lk1,t,. . . , Lk4,t is equal to the
cross-ratio of d(t,0,0)Φ(Lk1,t),. . . , d(t,0,0)Φ(Lk4,t). By a real line in C3 we mean
a set of the form {a + tb : t ∈ R} where a, b ∈ C3. For t ∈ R, Lk1,t, . . . , Lk4,t

are defined by real equations so there is a real line lt ⊂ C3 intersecting Lk1,t ∪
. . . ∪ Lk4,t at exactly four points, say a1,t,. . . , a4,t. Then the cross-ratio of
Lk1,t, . . . , Lk4,t equals the cross-ratio of a1,t,. . . , a4,t. Moreover, d(t,0,0)Φ(lt)
is also a real line and it intersects d(t,0,0)Φ(Lk1,t) ∪ . . . ∪ d(t,0,0)Φ(Lk4,t) at
d(t,0,0)Φ(a1,t),. . . , d(t,0,0)Φ(a4,t). The cross-ratio of the last four points equals
that of a1,t,. . . , a4,t because d(t,0,0)Φ is R-linear and a1,t, . . . , a4,t ∈ lt. Since
the cross-ratio of d(t,0,0)Φ(a1,t),. . . , d(t,0,0)Φ(a4,t) equals the cross-ratio of
d(t,0,0)Φ(Lk1,t),. . . , d(t,0,0)Φ(Lk4,t), we obtain our claim.

Now observe that the complex t-axis is the singular locus of V and its image
S by Φ is the singular locus of Φ(V ). Clearly, S is a smooth complex Nash
curve. Moreover, the cross-ratios h1, h2 of d(t,0,0)Φ(L1,t), . . . , d(t,0,0)Φ(L4,t)
and d(t,0,0)Φ(L1,t), d(t,0,0)Φ(L2,t), d(t,0,0)Φ(L3,t), d(t,0,0)Φ(L5,t), respectively,
depend algebraically on s = Φ(t, 0, 0) ∈ S (cf. [22, p. 241]); i.e. h1, h2 :
S → C are complex Nash functions. On the other hand, the cross-ratios of
L1,t, . . . , L4,t and of L1,t, L2,t, L3,t, L5,t equal 3 + t and γ(t), respectively.

The last two paragraphs imply that for t ∈ R with |t| small, we have

h1(Φ(t, 0, 0)) = 3 + t and h2(Φ(t, 0, 0)) = γ(t).

Since S is a smooth complex Nash curve, we may assume that h1, h2 are
defined in some neighborhood of 0 ∈ C and that Ψ(t) = Φ(t, 0, 0) is a map
into C. We have Ψ(t) = Ψ1(t)+iΨ2(t) where Ψ1,Ψ2 are real valued continuous
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functions and h1(s) = u1(s)+iv1(s), where u1, v1 are real Nash functions, and
u1(Ψ1(t),Ψ2(t)) = 3 + t, and v1(Ψ1(t),Ψ2(t)) = 0 for t ∈ R with |t| small.
Since u1, v1 satisfy the Cauchy-Riemann equations and h1 is not constant,
neither of u1, v1 is constant. Consequently, Ψ1|R, Ψ2|R are semi-algebraic
functions, which contradicts the fact that h2(Ψ(t)) = γ(t) for real t.

Example 6.3. Theorem 1.2 cannot be extended to many functions or to
maps to Km, m > 1. For example the one variable analytic germs x and ex−1
cannot be made polynomial (or Nash) simultaneously by composing with the
same homeomorphism.

Example 6.4. The key point in the previous examples is the fact that
two one variable functions which are algebraically independent remain alge-
braically independent after composition with a homeomorphism. Theorem
1.2 also cannot be extended to many functions, even if we assume them to
be algebraically dependent. For instance, one variable Nash germs x and
y(x) =

√
ϕ(x) − 2, with ϕ(x) = (x − 1)(x + 2)(x − 2), cannot be made

polynomial simultaneously since the cubic y2 = ϕ(x) is not rational.
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