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Abstract. Based on recently developed rank Theorems for Eisenstein power
series, we provide new proofs of the following two results of W. Pawłucki:
I) The non regular locus of a complex or real analytic map is an analytic set.
II) The set of semianalytic or Nash points of a subanalytic set X is a subanalytic
set, whose complement has codimension two in X.

Algebra is the offer made by the devil to the mathematician. The
devil says: “I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine."

Sir Michael Atiyah, (Collected works. Vol. 6.
Oxford Science Publications, 2004).

1. Introduction

We provide new proofs of two fundamental results of analytic and subanalytic
geometry due to Pawłucki [Pa90, Pa92]:
I) the non-regular (in the sense of Gabrielov) locus of a complex or real-analytic
map Φ : M −→ N is a proper analytic subset of M , see Theorem 1.1,
II) the set of semianalytic or Nash points of a subanalytic set X is a subanalytic set,
whose complement has dimension has dimension 6 dim(X)− 2, see Theorem 1.2.

This last result answers a question asked by H. Hironaka and S. Łojasiewicz
independently [FG85]. In spite of being considered as fundamental results of
subanalytic geometry, their original proofs are considered to be very hard, as noted
by Łojasiewicz: “Sans doute, parmi les faits établis en géométrie sous-analytique
le théorème de Pawłucki [result II] est le plus difficile à prouver (la démonstration
compte environ soixante dix pages!)", [Ło93, Page 1591]. The goal of this paper is
to provide short alternative proofs of these results. We develop, furthermore, new
algebraic methods to subanalytic geometry, notably related to Eisenstein power
series, which we expect to be of independent interest. These methods should be
useful in order to extend some of our results in the case of p-adic subanalytic sets,
cf. [DvdD88].

Let K = C or R and denote by K{x1, . . . , xn} the sub-ring of formal power series
which are convergent, that is, K-analytic. Given a ring homomorphism:

ϕ : K{x} −→ K{u}
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where x = (x1, . . . , xn) and u = (u1, . . . , um), we say that ϕ is a morphism con-
vergent power series if ϕ(f) = f(ϕ(x)) for every f ∈ K{x}. We denote by ϕ̂ its
extension to the ring of formal power series and we define:

(1)

the Generic rank: r(ϕ) := rankFrac(K{u})(Jac(ϕ)),

the Formal rank: rF (ϕ) := dim
(

KJxK
Ker(ϕ̂)

)
,

and the analytic rank: rA(ϕ) := dim
(

K{x}
Ker(ϕ)

)
,

of ϕ, where Jac(ϕ) stands for the matrix [∂uiϕ(xj)]i,j . The morphism ϕ is said to
be regular (in the sense of Gabrielov) if r(ϕ) = rF (ϕ). We recall that Gabrielov’s
rank Theorem [Ga71, To90, BCR21] states that:

r(ϕ) = rF (ϕ) =⇒ r(ϕ) = rF (ϕ) = rA(ϕ).

Consider a K-analytic map Φ : M −→ N between K-analytic manifolds M and N .
Given a ∈M , we denote by Φa the germ of the morphism at a point a ∈M , and by
Φ∗a : OΦ(a) −→ Oa the associated morphism of local rings, where Oa stands for the
ring of analytic function germs at a. For each a ∈ M , we set ra(Φ) := r(Φ∗a) and
rFa (Φ) := rF (Φ∗a). Consider:

R(Φ,M) = {a ∈M ; ra(Φ) = rFa (Φ)},

which is called the set of regular (in the sense of Gabrielov) points of Φ. We start
by proving a new proof of the following result:

Theorem 1.1 (Pawłucki Theorem I, [Pa92]). Let Φ : M 7−→ N be an analytic map
between connected manifolds. Then M rR(Φ,M) is a proper analytic subset of M .

The proof is given in §§1.1. The idea is to combine the uniformization Theorem
(see e.g. [BM88, Theorem 0.1]) with a new commutative algebra result, that is, the
rank Theorem for W-temperate families [BCR22, Theorem 1.1] applied to Eisenstein
power series, see §§3.1. Eisenstein power series have been systematically employed
in the study of families of singularities, see e.g. [Za79, Hi79, PP21], going back at
least to works of Zariski [Za79, pg. 502], and they play a crucial role in our paper.

Let us now specialize our presentation to K = R, and we refer to §§2.2 and §§2.4
for all the details of the following discussion. Let X ⊂ M be a subanalytic set.
Given a point a ∈ M , we denote by Xa the germ set of X at a. We say that an
equidimensional subanalytic set X is a Nash set at a ∈M (which might not belong
to X) if there exists a germ Ya of semi-analytic set at a such that Xa ⊂ Ya and
dim(Xa) = dim(Ya). More generally, a subanalytic set X ⊂ M of dimension d is
Nash at a point a ∈ M , if X is a union of equidimensional Nash sets Σ(k), where
k = 0, . . . , d. We consider the sets:

N (X) := {a ∈M | Xa is the germ of a Nash set}
SA(X) := {a ∈M | Xa is the germ of a semianalytic set}.

It is trivially true that M rX ⊂ SA(X) ⊂ N (X). But in general, SA(X) 6= N (X),
see example 2.18 below. Now, by combining Theorem 1.1 with the uniformization
Theorem, and following an argument from [BM87], we provide a new proof of the
following result:



ON THE NASH POINTS OF SUBANALYTIC SETS 3

Theorem 1.2 (Pawłucki Theorem II, [Pa90]). Let X be a subanalytic set of a real
analytic manifold M . Then

i) The sets N (X) and SA(X) are subanalytic.
ii) dim(M rN (X)) 6 dim(M r SA(X)) 6 dim(X)− 2.

In particular, if dim(X) 6 1, then N (X) = SA(X) = M .

Remark 1.3. The case of dim(X) 6 1 was originally proved by Łojasiewicz [Ło65]
and an alternative proof is given in [BM88, Theorem 6.1].

The original proof of Theorem 1.2 given in [Pa90] is an intricate construction
between geometrical, algebraic, and analytic arguments, which we do not fully
understand. Pawłucki then deduces Theorem 1.1 from Theorem 1.2 in [Pa92]. Our
proof of these results relies heavily on algebraic arguments, namely on [BCR22,
Theorem 1.1] and the use of Eisenstein power series, see §§3.1 instead of geometric
and analytic arguments as in [Pa90]. Our use of geometric techniques is essentially
reduced to the extension Lemma 6.1 together with the use of the Uniformization
Theorem of Hironaka [Hi73]; the former has been inspired from the work of Pawłucki
[Pa90, Lemme 6.3], while the later is not used in [Pa90, Pa92].

We would like to thank Edward Bierstone for bringing the topic of this paper
to our attention and for useful discussions. This work was supported by the
CNRS project IEA00496 PLES. The first author is supported by the project “Plan
d’investissements France 2030", IDEX UP ANR-18-IDEX-0001. The second author
thanks the grant NKFIH KKP 126683.

2. Preliminaries in analytic and subanalytic geometry

2.1. Analytic set and spaces. Let K = R or C and fix an analytic manifold M .

Definition 2.1 (Real-analytic set). A subset X of M is analytic if each point of
M admits a neighborhood U and an analytic function f ∈ O(U) such that:

X ∩ U = {a ∈ U ; f(a) = 0}.
We say that X is an analytic set generated by global sections in O(M) if we can
take U = M .

Definition 2.2 (cf. [GuRo65, Ch. V, Def 6]). A (coherent) K-analytic space is a
locally ringed space (X,OX), where:

(1) X is a Hausdorff topological space and OX is a coherent sheaf of functions,
(2) at each point a of X there is a neighborhood U such that (U,OX |U ) is

isomorphic to a ringed space (Y,OY ) where Y is an analytic subset of an
open set V ⊂ Kn and OY is its sheaf of analytic functions. That is, there
exist K-analytic functions (f1, . . . , fd) ∈ O(V ) such that:
Y = {a ∈ V ; fk(a) = 0, k = 1 . . . , d} and OY = OV /(f1, . . . , fd).

A subspace of (X,OX) is an analytic space (Z,OZ) such that Z ⊂ X and the
inclusion i : Z −→ X is an injection that is, an injective map such that i∗ : OX −→
OZ is surjective.

If K = R, then it is not true that every R-analytic set X admits the structure
of a R-analytic space, as illustrated by examples of Cartan, see e.g. [Na66, Ch.
V, §3]. In contrast, if K = C, then every C-analytic set X admits the structure
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of C-analytic space, essentially by a Theorem of Oka, see e.g. [Ho88, Ch. VII,
Th 7.1.5]. We refer to [GuRo65, page 155] for a definition of irreducible complex
analytic subspace X ⊂M , and we recall that if X is irreducible then it is not the
union of two proper complex analytic sets Y,Z ⊂ M , that is, if X = Y ∪ Z then
either Y = X or Z = X.

Remark 2.3. Note that if X ⊂ Ω ⊂ Cn is an irreducible complex analytic set
generated by global sections in a connected open set Ω, then the ring O(X) is an
integral domain.

2.2. Semianalytic and Subanalytic sets. We follow the presentation of [BM88].
Fix a real analytic manifold M .

Definition 2.4 (Semianalytic set). A subset X of M is semianalytic if each point
of M admits a neighborhood U and analytic functions fi ∈ O(U) and gi,j ∈ O(U)
for i = 1, . . . , p and j = 1, . . . , q such that:

X ∩ U =
p⋃
i=1
{a ∈ U ; fi(a) = 0, gi,j(a) > 0, 1, . . . , q}.

Definition 2.5 (Subanalytic set). A subset X of M is subanalytic if each point
of M admits a neighborhood U such that X ∩ U is the projection of a relatively
compact semi-analytic set.

The following is an important general example of subanalytic set:

Example 2.6. Let ϕ : N −→M be a proper analytic map. The image X = ϕ(N)
is a subanalytic set of M . Indeed, note that the graph Γ(ϕ) ⊂M ×N is a closed
analytic set and that the set X is the projection of Γ(ϕ) onto M , that is, the image
of Γ(ϕ) by the projection π : M ×N −→M . It is now enough to remark that since
ϕ is proper, given a relatively compact set U ⊂M , the intersection π−1(U) ∩ Γ(ϕ)
is relatively compact.

Definition 2.7. A subset X of Rn is finitely subanalytic if its image under the map

πn : x ∈ Rn 7−→

(
x1√

1 + ‖x‖2
, . . . ,

xn√
1 + ‖x‖2

)
∈ Rn

is subanalytic.

Remark 2.8. Because πn is a semialgebraic diffeomorphism, every finitely sub-
analytic subset of Rn is subanalytic, but the converse is not true in general: for
instance

X = {(t, sin(t)) | t ∈ R}
is subanalytic but not finitely subanalytic.

Let X be a subanalytic set. We say that X is smooth (of dimension d) at a
point a ∈ X if there exists a neighborhood U of a where X ∩ U is an analytic sub-
manifold (of dimension d). The dimension of X is defined as the highest dimension
of its smooth points, c.f. [BM88, Remark 3.5]. Given a subanalytic (respectively,
semianalytic) set X and a number k ∈ N, the set of all smooth points of X of
dimension k, which we denote by X(k), is subanalytic [Ta81], [BM88, Theorem 7.2]
(respectively, semianalytic [BM88, Remark 7.3]). The set of pure dimension k of
X is the set Σ(k) = X(k) ∩X, which is subanalytic. If there exists d ∈ N such that
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X = Σ(d), we say that X has pure dimension d. Note that X = ∪dk=0Σ(k), where d
is the dimension of X.

Example 2.9. Let M = R3 endowed with coordinate system (x, y, z), and consider
the Whitney umbrella X = {x2 − zy2 = 0} ⊂ R3. Then:

Σ(2) = {x2 − zy2 = 0 and z > 0}, Σ(1) = {x = y = 0, and z 6 0}.
Note that their intersection is non-empty.

We now recall a classical result about subanalytic sets due to Hironaka [Hi73];
we follow the presentation of [BM88, Theorem 0.1]:

Theorem 2.10 (Uniformization Theorem I). Let X ⊂M be a closed subanalytic
set of dimension d. There exists an analytic manifold N of dimension d and a
proper analytic map ϕ : N −→M such that ϕ(N) = X.

In what follows, we use the following variant of the above result:

Theorem 2.11 (Uniformization Theorem II). Let X ⊂M be a closed subanalytic
set of dimension d. There exists d+ 1 analytic manifolds Nk, where k = 0, . . . , d,
where the dimension of Nk is equal to k, and d+ 1 proper and generically immersive
analytic maps πk : Nk −→M such that πk(Nk) = Σ(k).

Proof. It is enough to prove the result when X is an equidimensional subanalytic
set, that is, when X = Σ(d). Let ϕ : N −→ M be the proper analytic map given
by Theorem 2.10 such that ϕ(N) = X. We note that N = ∪ι∈INι where each Nι
is a connected manifold and I is an index set. Denote by ϕι := ϕ|Nι : Nι −→ M .
Note that the generic rank of ϕ is constant along connected components of N , and
denote by rι the generic rank associated to each ϕι. Let J ⊂ I be the subindex set
of ι ∈ I such that rι = d; since ϕ(N) = X is of dimension d, we conclude that J 6= ∅
and that rι < d for every ι ∈ I r J . We consider the manifold Nd = ∪ι∈JNι and
the associated proper analytic morphism ϕd : Nd −→M , which we claim to satisfy
all properties of the Theorem.

Indeed, we start by noting that X r ϕd(Nd) is a subanalytic set of dimension
smaller than d and, therefore, the closure of ϕd(Nd) is equal to X. Since ϕ is proper
and continuous, we conclude that ϕd(Nd) = X. It is now enough to prove that
the mapping is generically immersive. This easily follows from the fact that ϕ is
generically of the same rank as the dimension of Nd. �

We finish this section with a sufficient condition for a subanalytic to be analytic:

Lemma 2.12 ([Pa92, Lemma 3]). Let X ⊂M be a subanalytic set which is a union
of countably many analytic subsets. Then X is an analytic set.

Proof. We claim that if X is a subanalytic set contained in a union of countably
many analytic subsets (Yk)k∈N, then it is locally contained in a union of a finite
number of the analytic sets (Yk)k∈N. Note that the lemma easily follows from the
claim. Since X = ∪Σ(k), where Σ(k) is a subanalytic equidimensional set, it is
enough to prove the claim in the case that X is an equidimensional set. By the
uniformization Theorem 2.11 there exists a proper analytic map ϕ : N −→M such
that ϕ(N) = X and ϕ is generically of rank d = dim(X); the later condition implies
that ϕ−1(X) is subanalytic set of N whose interior is dense in N . Let us fix a ∈ X;
since ϕ is proper, the fiber ϕ−1(a) has a finite number of connected components
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T1, . . . , Tr; denote by U1, . . . , Ur connected open neighborhoods of the Tk. Now,
given an analytic subset Y ⊂ M , its pre-image Z = ϕ−1(Y ) is analytic in N . It
follows that for each k = 1, . . . , r, either Z ∩ Uk = Uk, or Z ∩ Uk is a closed set
with empty interior in Uk. Since X is contained in countable many analytic sets,
and the union of countable many closed sets with empty interior has empty interior
by Baire’s Theorem, we conclude that for each k = 1, . . . , r, there is an analytic set
Yk ⊂ X such that ϕ−1(Yk) ∩ Uk = Uk. We conclude easily. �

2.3. Regular locus of analytic maps. Let K = R or C. Consider an analytic
map Φ : Ω ⊂ Km −→ Kn where Ω is an open set. The set of regular points of Φ is
given by:

R(Ω) = {a ∈ Ω; ra(Φ) = rFa (Φ)}.
We recall that Gabrielov’s rank Theorem [Ga71, BCR21] states that:

r(Φa) = rF (Φa) =⇒ r(Φa) = rF (Φa) = rA(Φa).
In particular, the set R(Ω) is open. As a matter of fact it also contains a non-empty
analytic-Zariski set:

Lemma 2.13. Let Φ : Ω ⊂ Km −→ Kn be an analytic map. Then the set
R(Φ) := {a ∈ Ω | Φa is regular }

contains a set of the form Ω r Z where Z is a proper analytic set of Ω generated by
global equations in O(Ω).

Proof. It is enough to prove the Lemma in the case that Ω is connected. Let r be
the generic rank of Φ and denote by Z the set of points a ∈ Ω where the rank of
Φ is smaller than r. Note that F is a proper analytic subset generated by global
equations in O(Ω); indeed, it is the zero set of the r-minors of the Jacobian of Φ. It
is now enough to note that Φ is regular at every point of Ω r Z by the constant
rank Theorem. �

We now recall a result that relates the regular locus of complex and real analytic
morphisms due to Milman [Mi78], but which we state as in [Pa92]:

Lemma 2.14 ([Pa92, Lemma 4]). Let Φ : Ω ⊂ Cm −→ Cn be a complex analytic
map and denote by ΦR its real-analytic counterpart. Then R(Φ,Ω) = R(ΦR,Ω).

Proof. The inclusion R(Φ,Ω) ⊂ R(ΦR,Ω) is immediate. In order to prove the other
inclusion, suppose that ΦR is regular at a and denote by r = ra(ΦR). Since ΦR

is the real-analytic counterpart of Φ, r = 2s where s = ra(Φ). The result is now
immediate from [Mi78, Theorem 2]. �

2.4. The Nash and the Semianalytic locus. Given a subanalytic set X ⊂ M
and a point a ∈M , we will denote by Xa the germ set of X at a.

Definition 2.15 (Nash points). Let X ⊂M be a subanalytic set of pure dimension
d. We say that X is a Nash set at a ∈M (which might not belong to X) if there
exists a germ Ya of semi-analytic set at a such that Xa ⊂ Ya and dim(Xa) = dim(Ya).
More generally, a subanalytic set X ⊂M of dimension d is Nash at a point a ∈M ,
if Σ(k)

a is Nash for each k = 0, . . . , d. We consider the set:
N (X) := {a ∈M | Xa is the germ of a Nash set}

We say that X is a Nash set if it is Nash at every point, that is, if N (X) = M .
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It is clear that every semi-analytic set is Nash subanalytic. A more general
example is given by the following Lemma:

Lemma 2.16. Let ϕ : N −→ M be a proper and regular analytic map, that
is, at every point a ∈ N , ra(ϕ) = rFa (ϕ) = rAa (ϕ). Suppose that X = ϕ(N) is
equidimensional of dimension d. Then X is Nash subanalytic.

Proof. Indeed, fix a point b ∈ X. Consider a relatively compact neighborhood V of
b, and note that ϕ−1(V ) = U is a relatively compact open set of N . Now, for each
point a ∈ U , it follows from the regularity of the mapping that there exists an open
neighborhood Ua of a and a semi-analytic set Ya ⊂M of dimension at most d such
that ϕ(Ua) ⊂ Ya. From the relative compactness of U , it follows that there exists a
semi-analytic set Y of dimension at most d (given as the union of a finite number of
sets Ya) such that ϕ(U) ⊂ Y , finishing the proof. �

Indeed, we may generalize the above idea to provide a description of the Nash
locus in terms of the regular points of a morphism:

Lemma 2.17. Let ϕ : N −→M be a proper generically immersive analytic mor-
phism such that ϕ(N) = X is a closed equidimensional set. Then

X rN (X) = ϕ(N rR(ϕ,N)).

Proof. First, let us show thatXrN (X) ⊂ ϕ(NrR(ϕ,N)) by proving the associated
inclusion of their complements. Fix a point b ∈ X r ϕ(N rR(ϕ,N)). This means
that ϕ is regular on the pre-image of ϕ−1(b). Since being regular is an open
property, there exists a neighborhood U of ϕ−1(b) such that ϕ|U is everywhere
regular. Moreover, since ϕ is proper and continuous, there exists a neighborhood V
of b such that ϕ−1(V ) ⊂ U . By Lemma 2.16 applied to X ∩ V , we conclude that
b ∈ N (X) as desired.

Now, let us prove that ϕ(N rR(ϕ,N)) ⊂ X rN (X) by proving the associated
inclusion of their complements. Fix a point b ∈ N (X) and let Yb be the germ
of a semi-analytic set of dimension d which contains Xb; let V be a subanalytic
and relatively compact neighborhood of b where Yb admits a representative Y
defined in V such that X ∩ V ⊂ Y . Let U = ϕ−1(V ), which is a relatively compact
neighborhood of ϕ−1(b). It follows that ϕ(U) ⊂ Y , which implies that ϕ is regular
at every point a ∈ U ; in particular, at every point a ∈ ϕ−1(b). We conclude that
b /∈ ϕ(N rR(ϕ,N)), finishing the proof. �

We now consider the following set:
SA(X) := {a ∈M | Xa is the germ of a semianalytic set}.

It is trivially true that M r X ⊂ SA(X) and SA(X) ⊂ N (X). But in general,
SA(X) 6= N (X) as is illustrated by the following examples:

Example 2.18.
i) Consider a subanalytic two dimensional set S in R3 such that the germ

at the origin S0 is not semianalytic (for instance, the image of a compact
set through the Osgood mapping [Os1916] provides such a surface). We
consider X := R3 r S; X is subanalytic and of pure dimension 3, thus it is
Nash subanalytic since X ⊂ R3. But the germ X0 is not semianalytic. Note
that 0 /∈ X.
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ii) We may modify the example as follows: we set

X := R4 r (R3 × {0}) ∪ (S × {0} × {0}).

Then X is equidimensional of dimension 4, and N (X) = R4, but X0 is not
semianalytic. Note that 0 ∈ X.

Remark 2.19. We recall that the closure of a semianalytic (respectively, a subana-
lytic) set is semianalytic (respectively, subanalytic) set of the same dimension. It
follows that N (X) = N (X) for every subanalytic set X ⊂M . In contrast, we can
only conclude from this argument that SA(X) ⊂ SA(X), c.f. example 2.18(i).

3. Eisenstein power series and families of morphisms

3.1. Eisenstein power series. Given a closed polydisc D ⊂ Cn, we denote by
O = O(D) the ring of analytic functions defined in a neighborhood of D, and note
that it is an UFD by [Da74]. Let K be an algebraic closure of its fraction field. The
ring of Eisenstein series over O is the filtered limit of rings:⋃

c∈K

⋃
f∈Or{0}

Of Jx1, . . . , xnK[c]

where Of denotes the localization of O with respect to the multiplicative family
{1, f, f2, . . . , }. We denote by K{{x1, . . . , xr}} this family of rings. Now let us
consider a ring homomorphism:

ϕ : K{{x}} −→ K{{u}}

where x = (x1, . . . , xn) and u = (u1, . . . , um). We say that ϕ is a morphism of
Eisenstein power series if ϕ(f) = f(ϕ(x)) for every f ∈ K{{x}}. We denote by ϕ̂ its
extension to the ring of formal power series and we define:

(2)

the Generic rank: r(ϕ) := rankFrac(K{{u}})(Jac(ϕ)),

the Formal rank: rF (ϕ) := dim
(
KJxK

Ker(ϕ̂)

)
,

and the temperate rank: rT (ϕ) := dim
(
K{{x}}
Ker(ϕ)

)
,

of ϕ, where Jac(ϕ) stands for the matrix [∂uiϕ(xj)]i,j . It follows from [BCR22, Th.
1.1 and Prop. 4.9] that:

Theorem 3.1 (Eisenstein power series rank Theorem). Let ϕ : K{{x}} −→ K{{u}}
be a morphism of rings of Eisenstein power series. Then

r(ϕ) = rF (ϕ) =⇒ r(ϕ) = rF (ϕ) = rT (ϕ).

3.2. Families of morphisms.

Definition 3.2. Consider two analytic maps Φ : Ω ⊂ Km −→ Kn and ϕ : Λ ⊂
Kl −→ Ω, where Ω is a connected open set and one of the following holds:

(1) Λ = Ω and ϕ is the identity;
(2) Λ is a connected open set and ϕ is an analytic map;
(3) Λ ⊂ Ω is an analytic subspace of Ω such that O(Λ) is an integral domain,

and ϕ is its inclusion.
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An admissible family of analytic germs (associated to Φ and ϕ) is the analytic map
Ψ : Λ× (Km, 0) −→ (Kn, 0)

given by Ψ(a,u) = Φ(ϕ(a) + u)− Φ(ϕ(a)). We denote by Ψa : (Km, 0) −→ (Kn, 0)
the associated germ at a; in particular Ψa = Φa − Φ(ϕ(a)).

Lemma 3.3. Given an admissible family of analytic germs:
(1) The generic rank is constant along Λ, that is,

∀a, b ∈ Λ, r(Ψa) = r(Ψb).
(2) The map a ∈ Λ 7−→ rA(Ψ∗a) ∈ N is upper semi-continuous for the Euclidean

topology.
(3) The ring of global sections O(Λ) is an integral domain.

Proof. Condition (1) and (3) are straightforward. In order to prove (2), let f1, . . . ,
fs be generators of Ker(Φ∗ϕ(a)) and U be an open neighborhood of ϕ(a) such that
the fi are well defined on U . Let V be a connected neighborhood of a contained
in ϕ−1(U). Since Φ is analytic, apart from shrinking U and V , we have that
fi ◦ Φ ◦ ϕb ≡ 0, for all b ∈ V . We conclude easily. �

Now fix an admissible family of analytic map germs
Ψ : Λ× (Km, 0) −→ (Kn, 0).

and let L denote the fractions field of the ring O(Λ) of analytic functions on Λ.
Note that Ψ induces a morphism of power series rings:

Ψ∗L : LJxK −→ LJuK

where x = (x1, . . . , xn), u = (u1, . . . , um) and

Ψ∗L(xi) =
∑

γ∈Nmr0
Fi,γuγ , Fi,γ = 1

γ!
∂|γ|

∂wγ
(xi ◦ Φ) ◦ ϕ ∈ O(Λ).

where w = (w1, . . . , wm) are globally defined coordinate systems over Ω. Note that
Fi,0 = 0 for every i = 1, . . . , n, which guarantees that Ψ∗L is well-defined.

Now let r = r(Ψ∗L). Thus any (r + 1)× (r + 1) minor of the Jacobian matrix of
Φ∗L is zero, therefore r(Ψa) 6 r for every a ∈ Λ. On the other hand, there is a r × r
minor of the Jacobian matrix of Φ∗L, denoted by M , that is not identicaly zero. So,
for a generic a ∈ Λ, we have M(a) 6= 0 and r(Ψa) = r. Therefore, by Lemma 3.3(1),
we have that:

r(Ψ∗L) = r(Ψa), ∀a ∈ Λ.
We now turn to the problem of relating the formal rank of Ψ at a point a ∈ Λ with
the formal rank of Ψ∗L:

Proposition 3.4. Let Ψ : Λ × (Km, 0) −→ (Kn, 0) be an admissible family of
analytic map germs. If there is a ∈ Λ such that r(Ψa) = rF (Ψa), then:
(3) r(Ψ∗L) = rF (Ψ∗L).
In particular, the set

R(Ψ,Λ) := {a ∈ Λ | Ψa is regular }
is either empty or contains a set of the form Λ rW where W is a countable union
of proper analytic subsets of Λ generated by global equations in O(Λ).
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The proof of this Proposition is based on an extension result, namely Lemma
6.1 below, whose proof is strongly inspired by an argument of Pawłucki cf. [Pa90,
Lemme 6.3]. We postpone the proof to §6. Condition (3) is the deepest statement
of the above Proposition which, together with Theorem 3.1, allows us to prove the
following crucial technical result:

Theorem 3.5. Let Ψ : Λ× (Km, 0) −→ (Kn, 0) be an admissible family of analytic
germs where Λ is a connected open set of Kl (that is, we consider cases (1) and (2)
of Definition 3.2). Then either R(Ψ,Λ) = ∅ or, for every a ∈ Λ, there exists an open
neighborhood Ua ⊂ Λa and a proper analytic set Z ⊂ Ua such that R(Ψ, Ua) ⊃ UarZ.

Proof. Let L denote the fraction field of O(Λ). Note that Ψ yields a morphism
Ψ∗L : LJxK −→ LJuK and that r(Ψ∗L) = r(Ψa) for any a ∈ Λ. Now, suppose that;
R(Ψ,Λ) 6= ∅ so that Proposition 3.4 yields:

r(Ψ∗L) = rF (Ψ∗L).

We now first prove the Lemma in the case that K = C. Let a ∈ Λ be fixed and
consider a sufficiently small closed polydisc Da ⊂ Λ centered at a. Let O(Da) denote
the ring of analytic functions defined in a neighborhood of Da; note that this ring
is a UFD by [Da74]. Let K denote the algebraic closure of the fraction field of
O(Da). We note that the restriction of Ψ to Da, yields a temperate morphism
Ψ∗K : K{{x}} −→ K{{u}}. It is clear that r(Ψ∗K) = r(Ψ∗L), and since the restriction
from Λ to Da yields an injective morphism from O(Λ) into O(Da), we conclude
that:

r(Ψ∗K) = rF (Ψ∗K).
so that we may apply Theorem 3.1 in order to get

r(Ψ∗K) = rT (Ψ∗K) =: r.

Now, up to a K-linear change of coordinates, applying [BCR22, Prop. 2.8 vi)], the
morphism K{{x1, . . . , xr}} −→ K{{x}}

/
Ker(Ψ∗K) is finite, which means that there

are non-zero Weierstrass polynomials

Qi(x1, . . . , xr, xr+i) ∈ K{{x1, . . . , xr}}[xr+i] for i = 1, . . . , n− r,

such that Ψ∗K(Qi) ≡ 0. By the definition of K{{x}} and the primitive element
theorem, there exists f ∈ O(Da) and c ∈ K of degree d such that Qi ∈ O(Da)f JxK[c],
that is

Qi =
d−1∑
j=0

Qi,jc
j , Qi,j ∈ O(Da)f JxK.

Note that Ψ∗K(c) = c and {1, c, . . . , cd−1} are linearly independent overO(Da). Hence,
up to replacing Qi by Qi,0, which is monic, we can choose the Qi in O(Da)f JxK.
Let Ua ⊂ Da be any open neighborhood of a. We set Z = {b ∈ Ua; f(b) = 0}. Note
that Qi yields a power series Qi,b ∈ CJxK at each b ∈ UarZ and that Ψ∗b(Qi,b) ≡ 0,
for every i = 1, . . . , n− r. We conclude that r(Ψ∗b) = rF (Ψ∗b) for every b ∈ Ua r Z
as we wanted to prove.

Now let us consider the case that K = R. Denote by ΛC a complex open
neighborhood of Λ such that ΛC ∩ Rl = Λ, over which Ψ admits an holomorphic
extension:

ΨC : ΛC × (Cm, 0) −→ (Cn, 0).
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By the first part of the proof, for each a ∈ ΛC, there exists a neighborhood UC
a and

a complex analytic set ZC ⊂ UC
a such that R(Ψ, Ua) ⊃ UarZ. We fix a point a ∈ Λ

and we consider the neighborhood Ua = UC
a ∩Rl and the intersection Z := ZC ∩Ua.

It is now enough to note that Z is a proper real-analytic subset of Ua. �

4. Proof of Theorem 1.1

We start by a well-known result, which follows from the geometrical statement of
Proposition 3.4:
Proposition 4.1 (cf. [Pa92, Prop. 1]). Let Φ : Ω ⊂ Km −→ Kn be an analytic
map where Ω is open. Then Ω rR(Φ,Ω) is a union of countably many analytic
subsets.
Proof. Let us first argue the case that K = C, in which case every complex analytic
set is a complex analytic space. By Proposition 3.4 applied to each connected
component of Ω, X := Ω r R(Φ,Ω) is included in the union of countably many
analytic subsets

⋃∞
i=0 Yi of Ω. We may assume that the Yi are irreducible (in Ω)

by replacing each Yi by its irreducible components, and we change the family {Yi}i
according to the following rule:

(R) For a given i0, if there is countably many irreducible analytic subspaces Yi0,k
of Ω of dimension < dim(Yi0) such that X ∩ Yi0 ⊂

⋃∞
k=0 Yi0,k, we replace

the family {Yi}i∈N by {Yi}i6=i0 ∪ {Yi0,k}k∈N.
By repeating this rule countably many times, we can assume that the family {Yi}i∈N
is minimal in respect to (R) and contains X. Now assume by contradiction that
X 6=

⋃
i∈N Yi. This means that there is i0 ∈ N such that Yi0 6⊂ X but Yi0 ∩X 6= ∅.

By Proposition 3.4 applied to Yi0 (cf. Remark 2.3 and Definition 3.2(3)) we have
that Yi0 ∩X is included in a countable number of proper analytic subsets {Yi0,k}k∈N
of Yi0 that are of dimension < dim(Yi0). Since Yi0 is an analytic subspace of Ω, we
conclude that each Yi0,k is analytic subspace of Ω, which contradicts the minimality
of the family {Yi}i∈N in respect to (R).

If K = R, the result follows from considering a complexification of Φ, and noting
that the set of regular points is non-empty by Lemma 2.13. �

We are now ready to prove the following local version of Theorem 1.1, which
immediately implies it:
Theorem 4.2 (Pawłucki Theorem I [Pa92]). Let Φ : Ω ⊂ Km 7−→ Kn be an analytic
map where Ω is open. Then Ω rR(Φ,Ω) is a proper analytic subset of Ω.
Proof. By Lemma 2.14 and Corollary 4.1, it is enough to consider the case where
K = R. Furthermore, from Lemma 2.12 and Proposition 4.1, it is enough to show
that R(Φ,Ω) is a subanalytic set of Ω. Note that being subanalytic is a local
property, so we may suppose that Ω is a subanalytic open set.

We claim that for every closed subanalytic setX ⊂ Ω, the intersectionX∩R(Φ,Ω)
is subanalytic in Ω. The result then follows from the Claim applied to X = Ω. We
prove the claim by induction on the dimension of X.

When dim(X) = 0, the result immediate. Assume the Claim is proved for
d − 1 > 0 and let X be a subanalytic subset of Ω of dimension d. Consider its
equidimensional part Σ(d) and let E = X r Σ(d), which is a closed subanalytic set
of dimension < d. By induction E ∩ R(Φ,Ω) is a subanalytic subset of Ω. It is,
therefore, enough to prove the claim when X = Σ(d) is an equidimensional set.
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By Corollary 2.11, there exists a proper and generically immersive analytic
morphism ϕ : N −→ X such that ϕ(N) = X. Now fix a point a ∈ Λ and
a connected open neighborhood Λa of a. We consider the family of admissible
morphism:

Ψ : Λa × (Rm, 0) −→ (Rn, 0)
(a′,u) 7−→ Φ(ϕ(a′) + u)− Φ(ϕ(a′))

By Theorem 3.5, apart from shrinking Λa, we conclude that either ϕ(Λa) ⊂ Ω r
R(Φ,Ω) or there exists a analytic proper set Za ⊂ Λa such that ϕ(ΛarZa) ⊂ R(Φ,Ω).
Note that, since a ∈ N was arbitrary and both of these properties are open, they
hold globally over each different connected component of N . We conclude that there
exist two closed subanalytic subsets Y and Z of X, such that: Y is of dimension d
and Y ⊂ ΩrR(Φ,Ω); and Z is of dimension < d and X r (Y ∪Z) ⊂ R(Φ,Ω). The
result now follows from induction applied over Z. �

5. Proof of Theorem 1.2

We start by proving the following Corollary of the uniformization Theorem 2.11
and Theorem 1.1.

Proposition 5.1. Let X be a subanalytic set of a real analytic manifold M . Then
i) The set N (X) is subanalytic.
ii) dim(M rN (X)) 6 dim(X)− 2.

In particular, if dim(X) 6 1, then N (X) = M .

Proof. By remark 2.19, we may suppose without loss of generality that X is a
closed subanalytic set. First consider the equidimensional case X = Σ(d). Denote
by ϕ : N −→ M the proper generically immersive analytic morphism given by
Corollary 2.11, where N is of dimension d and ϕ(N) = X. In particular r(ϕ) = d.
By Theorem 4.2, N rR(ϕ,N) is a proper analytic subset of N . It follows from
Lemma 2.17 that X r N (X) is a subanalytic set of codimension at least 1. It
remains to prove that it has codimension 2.

Denote by F the set of points in N where ϕ does not have maximal rank. Note
that F is analytic (it is given by the zero locus of the Jacobean ideal of ϕ) so,
apart from applying resolution of singularities, we may suppose that F is a simple
normal crossing divisor in N . Now, note that N r F ⊂ R(ϕ,N) since ϕ|NrF is a
local submersion. It follows that N rR(ϕ,N) ⊂ F . So, it is enough to prove that
the image ϕ(E rR(ϕ,N)) has dimension at most d − 2 for every irreducible (in
particular connected) component E ⊂ F . Fix such an E and consider the morphism
ϕE = ϕ|E : E −→M . Let r denote the generic rank of ϕE and note that r 6 d− 1
since E has dimension d−1. If r < d−1, then ϕ(E) is a subanalytic set of dimension
at most d− 2 and the result is clear. So we may suppose that r = d− 1.

Fix a point a ∈ E and consider a local coordinate system (u, v) = (u, v1, . . . , vd−1)
of N centered at a and defined in an open neighborhood U of a, such that E ∩ U =
(u = 0). From the rank condition over ϕE , and the inverse function Theorem,
there exists a coordinate system (x, y, z) = (x1, . . . , xd−1, y, zd+1, . . . , zn) centered
at ϕ(a) = b such that:

ϕ∗(xi) = vi, i = 1, . . . , d− 1.
Now, apart from an analytic change of coordinates in the target and a permutation
of y and the zk, we may further suppose that there exists a positive integer a such
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that:
ϕ∗(y) = uagd(u, v)
ϕ∗(zk) = uagk(u, v), k = d+ 1, . . . , n

where gd(0, v) 6≡ 0. In particular, the set of points of E ∩ U where gd(0, v) 6= 0 is
an open dense set E′ of E ∩ U . We claim that at every point of E′, ϕ is a regular
mapping; this claim implies that R(ϕ,N)∩E ∩U is a proper analytic set of E and,
therefore, ϕ(E rR(ϕ,N)) has dimension at most d− 2. We turn to the proof of
the Claim: suppose that a is a point in E′. Apart from shrinking U and making a
change of coordinates in the source and target, we may further suppose that:

ϕ∗(y) = ua,

and we consider the following functions defined in the target:

Pk(x, y, z) =
a∏
i=1

(zk − ygk(x, ξiy1/a)), k = d+ 1, . . . , n

where ξ is a primitive a-root of unity. By construction, it is clear that Pk ◦ ϕ|U ≡ 0
for every k = d+ 1, . . . , d. We conclude that ra(ϕ) = rAa (ϕ) = d proving the claim
and finishing the proof of the Theorem in the case of an equidimensional subanalytic
set X.

We now consider a general closed subanalytic set X. Consider the morphisms
from Corollary 2.11 ϕk : Nk −→ M , for k = 0, . . . , d − 1. From the previous
argument applied to each set Σ(k), we conclude that M rN (Σ(k)) is a subanalytic
set of dimension at most k − 2. It follows from the definition of N (X) that:

N (X) = ∩dk=0N (Σ(k))
which is a subanalytic set. Furthermore, its complement is equal to the union of the
complements of N (Σ(k)), and therefore is a subanalytic set of dimension at most
d− 2, finishing the proof. �

We are now ready to complete the proof of Theorem 1.2, following an argument
from [BM87]. We start with two lemmas (see also [FG86] for the study of the
relations between SA(X) and N (X) in general):

Lemma 5.2. Let X be a subanalytic set of dimension d. Then

SA(X) = SA(X rX(d)) ∩ SA(X(d)).

Proof. Note that SA(X rX(d)) ∩ SA(X(d)) ⊂ SA(X) is trivial. In order to prove
the other inclusion, let a ∈ SA(X); in particular Xa is a semi-analytic germ. Let U
be a sufficiently small neighborhood of a where Xa is realizable by X ∩ U , which
is semi-analytic. We recall that if Y is semi-analytic, the n Y (d) is a semi-analytic
set, see e.g. [BM88, Remark 7.3], so we conclude that X(d) ∩U is semi-analytic and
a ∈ SA(X(d)). Since (X rX(d))∩U = X ∩U r (X(d) ∩U), we conclude easily. �

Lemma 5.3 (c.f. [BM87, p. 200]). Let X be a closed subanalytic set of equidimen-
sion d. Then:

SA(X(d)) = SA(X rX(d)) ∩N (X(d)).

Proof. Clearly we have SA(X(d)) ⊂ N (X(d)). Moreover, if a ∈ SA(X(d)), then
X

(d)
a is semianalytic, so its closure, which is Xa, is semianalytic and Xa rX

(d)
a is

semianalytic. Thus SA(X(d)) ⊂ SA(Y ) ∩N (X(d)).
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In order to prove the other inclusion, let a ∈ SA(Y ) ∩ N (X(d)) where Y =
X rX(d). Since the result is local, apart from replacing M by a sufficiently small
neighborhood of a, we may suppose that Y is semianalytic and that there exists a
closed analytic set Z of dimension d such that X(d) ⊂ Z; we conclude that X ⊂ Z.
Let Sing(Z) denote the singular points of Z. It follows that X r (Y ∪ Sing(Z)) is
open and closed in Z r (Y ∪ Sing(Z)) and, thus, X r (Y ∪ Sing(Z)) is semi-analytic.
Since the closure of this set is equal to X, we conclude that X is semianalytic, and
we conclude by Lemma 5.2. �

Proof of Theorem 1.2. Because of Proposition 5.1, it only remains to show that
SA(X) is a subanalytic set whose complement is of dimension at most d− 2. We
prove this result by induction on the dimension of X; the case that d = 0 being
trivial. So, fix a subanalytic set X of dimension d and consider the set Y = XrX(d),
which is a subanalytic set of dimension at most d− 1. By Lemmas 5.2 and 5.3 we
get:

SA(X) = SA(Y ) ∩ SA(X(d)) = SA(Y ) ∩ SA(X(d) rX(d)) ∩N (X(d)).

By induction applied to Y and X(d) rX(d), and by Proposition 5.1 applied to X(d),
we conclude that SA(X) is a subanalytic set whose complement has dimension
smaller or equal to d− 2. �

We finish this section by proving the following corollary:

Corollary 5.4. Let X ⊂ Rn be a finitely subanalytic set. Then N (X) and SA(X)
are finitely subanalytic.

Proof. Let us denote by π the map

x ∈ Rn 7−→

(
x1√

1 + ‖x‖2
, . . . ,

xn√
1 + ‖x‖2

)
∈ Rn.

By hypothesis the image Y = π(X) is a subanalytic set. By Theorem 1.2 N (Y ) is
subanalytic. Furthermore, since π is a semialgebraic diffeomorphism, we conclude
that π(N (X)) = N (Y ) ∩ π(Rn) is subanalytic, which proves that N (X) is finitely
subanalytic.

The proof that SA(X) is finitely subanalytic is identical. �

6. Proof of Proposition 3.4

6.1. Extension Lemma. The goal of this subsection is to prove the following:

Lemma 6.1 (Extension Lemma). Let Ψ : Λ× (Km, 0) −→ (Kn, 0) be an admissible
family of analytic map germs (see Definition 3.2) and let L be the field of fractions
of O(Λ). Let (x, y) be a coordinate system of (Kn, 0) where y is a distinguished
variable. Let U be an open and connected subset of Λ and suppose that there exists
a polynomial in y

f(x, y) = yd + a1(a,x)yd−1 + · · ·+ ad(a,x)
such that

i) ai(a,x) ∈ O(U)JxK, i = 1, . . . , d;
ii) ai(·, 0) ≡ 0 on U , i = 1, . . . , d;
iii) for all a ∈ U , f(a,x, y) is a generator of Ker(Ψ̂∗a).
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Let us write ai(a,x) =
∑
β∈Nn−1 ai,β(a)xβ. Then, for every i and β, there is a

proper global analytic subset Zi,β ( Λ such that ai,β extends on Λ r Zi,β as an
analytic function ai,β ∈ L. Moreover if we set

f := yd +
∑

β∈Nn−1

a1,β(a)xβyd−1 + · · ·+
∑

β∈Nn−1

ad,β(a)xβ ∈ LJxK[y]

then f(x, y) ∈ Ker(Ψ∗L).

The proof of this result is strongly inspired by the proof of [Pa90, Lemme 6.3],
and is based on Chevalley’s Lemma:

Proposition 6.2 (Chevalley’s Lemma). [Ch43, Lemma 7] Let k be a field. Let
ϕ : kJxK −→ kJuK be a morphism of formal power series rings. Then there exists a
function λ : N −→ N such that

∀k ∈ N, ϕ−1((u)λ(k)) ⊂ (x)k + Ker(ϕ).
The smallest function satisfying this property is called the Chevalley’s function of ϕ,
and is denoted by λϕ.

We start by fixing notation and by proving a Corollary of Chevalley’s Lemma.
Let k be a field and ϕ : kJxK −→ kJuK be a morphism of formal power series rings.
We set x′ := (x1, . . . , xn−1). Let us consider the images of the xi by ϕ:

ϕi =
∑
α∈Nm

ϕi,αuα

where the ϕi,α ∈ k. Let

(4) F (x) := xdn +A1(x′)xd−1
n + · · ·+Ad(x′)

where the Ai are universal power series

(5) Ai :=
∑

β∈Nn−1

Ai,βx′β

and the Ai,β are new indeterminates. Then we can expand

F (ϕ1, . . . , ϕm) =
∑
γ∈Nm

Fγuγ

where
Fγ =

∑
i,β

Mγ,i,βAi,β +Bγ

with Mγ,i,β and Bγ polynomials in the ϕj,α.
Let R be a ring. Then the system of linear equations

(S∞) ∀γ ∈ Nm, Fγ(Ai,β) = 0
has a solution (ai,β) ∈ RN if and only if Ker(ϕ) contains a non zero Weierstrass
polynomial

(6) f = xdn + a1(x′)xd−1
n + · · ·+ ad(x′), where ai(x′) =

∑
β∈Nn−1

ai,βx′β .

Let us consider the systems of linear equations
(Sk) ∀γ ∈ Nm, |γ| < k, Fγ(Ai,β) = 0
where k runs over N. We have
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Corollary 6.3 (Approximation). Let k be a field. Assume that f , given as in (6), is
a generator of Ker(ϕ). Then (ai,β) is the unique solution of (S∞) in kN. Moreover,
there is a function µ : N −→ N such that, for all k ∈ N, all solutions (ãi,β) ∈ kN of
(Sµ(k)) satisfies

∀β ∈ Nn, |β| 6 k =⇒ ãi,β = ai,β .

Proof. Let (ãi,β) be a solution of (S∞). Then

f̃ := xdn +
∑

β∈Nn−1

ã1,βxβxd−1
n + · · ·+

∑
β∈Nn−1

ãd,βxβ ∈ Ker(ϕ).

Since f is a generator of Ker(ϕ), there is g ∈ kJxK such that f̃ = fg. Since f and f̃
are Weierstrass polynomials, by the uniqueness of the decomposition of a series as a
product of a Weierstrass polynomials with a unit, we have that g = 1 and f̃ = f .
This shows that (ai,β) is the unique solution of (S∞). Next, for k ∈ N we set

µ(k) = λ
(
(d+ 1)d(k + 1)

)
where λ is given in Proposition 6.2. Consider a solution (ãi,β) ∈ kN of (Sµ(k)). Set

f̃ := xdn + ã1(x′)xd−1
n + · · ·+ ãd(x′), where ãi :=

∑
β∈Nn−1

ãi,βxβ , i = 1, . . . , d.

Since ϕ(f̃) ∈ (u)µ(k), by Proposition 6.2, f̃ ∈ (x)(d+1)d(k+d+1) + Ker(ϕ). Therefore

f̃ = fg +
d∑
i=1

(ãi − ai)xd−in

for some g, where
d∑
i=1

(ãi − ai)xd−in ∈ Ker(ϕ) + (x)(d+1)d(k+d+1).

Thus we can write

(7)
d∑
i=1

(ãi − ai)xd−in = fh+ ε

where ε ∈ (x)(d+1)d(k+d+1). We denote by ν the monomial valuation defined by

ν

(∑
α∈Nn

gαx
α

)
:= min{(d+ 1)(α1 + · · ·+ αn−1) + αn | gα 6= 0}.

For a power series g, we denote by in(g) its initial term in respect to this monomial
valuation. We remark that, for any g, (d+ 1) ord(g) > ν(g) > ord(g).
Note that in(f) = xdn. But, in (7), we see that the initial term of the left hand side
is not divisible by xdn. Therefore ν

(∑d
i=1(ãi − ai)xd−in

)
> ν(ε). Therefore

(d+ 1) ord
(

d∑
i=1

(ãi − ai)xd−in

)
> ord(ε).

Thus, there is a i0 such that

ord((ãi0 − ai0)xd−i0n ) > (d+ 1)d−1(k + d+ 1).
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In particular ãi0 − ai0 ∈ (x)(d+1)d−1(k+d+1)−(d−i0) ⊂ (x)k+1. On the other hand we
have that

∑
i 6=i0(ãi − ai)xd−in ∈ Ker(ϕ) + (x)(d+1)d−1(k+d+1). The result is proved

by induction on the number of terms in the sum. �

We are now ready to turn to the proof of the main result of this subsection:

Proof of the Extension Lemma 6.1. We consider, for each a ∈ U , the following
system of linear equations

(S∞(a)) ∀γ ∈ Nm, Fγ(a)(Ai,β) = 0

where F,Ai are as in equations (4) and (5), respectively. Set Ψk = πk ◦Ψ where
πk : Kn −→ K is the projection to the k-entry, and note that all of its derivatives
∂|γ|

∂uγ Ψk(·, 0) are globally defined morphisms over Λ. Now consider:

F (Ψ∗1,a, . . . ,Ψ∗n,a) =
∑
γ∈Nm

Fγ(a) uγ

where a ∈ Λ, and

Fγ(a) =
d∑
i=1

∑
β∈Nn−1, β6γ

Mγ,i,β(a)Ai,β +Bγ(a)

with Mγ,i,β(a) and Bγ(a) polynomials in the derivatives of Ψ∗a. In particular, note
that Mγ,i,β(a) and Bγ(a) belong to O(Λ).

As before, for any k ∈ N, we consider the finite system of linear equations:

(Sk(a)) ∀γ ∈ Nm, |γ| < k, Fγ(a)(Ai,β) = 0.

Let sk denote the number of indexes γ such that |γ| < k. The system (Sk(a)) can
be written as

M (k)(a) ·A(k) +B(k)(a) = 0
where M (k)(a) is the (sk × dsk)-matrix with entries Mγ,i,β(a), A(k) is the (dsk × 1)-
column with entries Ai,β , and B(k)(a) is the (sk × 1)-column with entries Bγ(a).
We denote by M (k)

i,β (a) the column of M (k)(a) corresponding to Ai,β , that is:

M (k)(a) ·A(k) =
d∑
i=1

∑
|β|<k

M
(k)
i,β (a)Ai,β

Let us fix i0 ∈ {1, . . . , d} and β0 ∈ Nn−1 and let us prove that there exists ai0,β0 ∈ L
whose restriction to U is equal to ai0,β0 . For every k ∈ N with k > |β0|, let us denote
by t(k)

0 (a) the dimension of the K-vector space T (k)
0 (a) generated by the M (k)

i,β (a) for
(i, β) 6= (i0, β0). There is an analytic proper subset D(k) of Λ such that for every
a ∈ Λ rD

(k)
0 , t(k)

0 (a) is maximal; denote by t(k)
0 this maximal value.

We now fix a ∈ U r
⋃
k>|β|D

(k)
0 and consider µa the Chevalley function of

Corollary 6.3 associated to f(a, x). We now fix k = |β0|+ 1 and we set ` = µa(k).
To simplify the notation, set t(`)0 = t0, and consider K-linearly independent vectors
M

(`)
i1,β1

(a), M (`)
i2,β2

(a), . . . , M (`)
it0 ,βt0

(a) which generate T (`)
0 (a).

Claim 6.4. There exists a neighborhood Ua of a such that M (`)
i0,β0

(b) does not belong
to the vector space generated by T (`)

0 (b) for every b ∈ Ua.
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Proof. Indeed, from the definition of T (`)
0 (a) the equalityM (`)(a) ·A(`) +B(`)(a) = 0

can be re-written as:

Ai0,β0M
(`)
i0,β0

(a) +
t0∑
j=1

(Aij ,βj + Lj)M (`)
ij ,βj

(a) +B(`)(a) = 0.

where the Lj are K-linear combinations of the terms Ai,β with (i, β) 6= (ij , βj)
for j = 0, . . . , t0. We recall that, by Corollary 6.3, there exists a unique entry
ai0,β0 = Ai0,β0 for which the above system admits a solution. It is now immediate
that M (`)

i0,β0
(a) /∈ T (`)

0 (a) (otherwise, for each choice of Ai0,β0 , it would be possible to
compensate the terms Ai,β with (i, β) 6= (i0, β0) in order to get a different solution).
We conclude easily from the analyticity of the vectors M (`)

i,β . �

Now, by analyticity of the entries M (`)
i,β , there is a proper analytic subset E0 of Λ

such that, for every b ∈ ΛrE0, the vectors M (`)
ij ,βj

(b), for 0 6 j 6 t0, are K-linearly
independent. Moreover, since t0 = maxc{t(`)0 (c)}, these vectors form a basis of the
vector space generated by all the M (`)

i,β (b). Therefore, for a given (i, β) 6= (ij , βj) for
j = 0, . . . , t0 and for a given b ∈ Λ rE0, the equation

∑t0
j=0M

(`)
ij ,βj

(b)Xj = Mi,β(b)
has a unique solution X = (X0, . . . , Xt0) ∈ K. Let us denote by M0(b) the
s` × (t0 + 1)-matrix with columns M (`)

ij ,βj
(b) for j = 0, . . . , t0. By Cramer’s rule, the

Xi have the form gi(b)/∆0(b) where gi(b) is a minor of a matrix whose entries are
some of the entries of the M (`)

ij ,βj
(b) and of Mi,β(b), and ∆0(b) is the determinant of

a (t0 + 1)-square sub-matrix N0(b) of M0(b). Therefore, there is a proper analytic
subset E1 of Λ, such that for every b′ ∈ Λ r E1, ∆0(b′) 6= 0. In particular the
system (S`(b)), for b ∈ Λ r (E0 ∪ E1), can be rewritten as

t0∑
j=0

M
(`)
ij ,βj

(b)(Aij ,βj + Lij ,βj (b)) +B(`)(b) = 0

where the Lij ,βj (b) are linear forms in the Ai,β for (i, β) 6= (ij , βj) for j = 0, . . . , t0,
with analytic coefficients. We claim that Li0,β0(b) ≡ 0. Indeed, by Claim 6.4, note
that for every c ∈ Ua r

⋃
k>|β|D

(k)
0 we have that M (`)

i0,β0
(c) does not belong to the

t0-vector space T (`)
0 (c), implying that Li0,β0(c) is equal to zero in an open set; by

analyticity Li0,β0 ≡ 0. In particular the system (S`(b)), for b ∈ Λ r (E0 ∪ E1), can
be rewritten as:

M
(`)
i0,β0

(b)Ai0,β0 +
t0∑
j=1

M
(`)
ij ,βj

(b)(Aij ,βj + Lij ,βj (b)) +B(`)(b) = 0.

It now follows from Cramer’s rule that there exists a solution ai0,β0(b) of the
truncated system which can be expressed as a division Q0(b)/∆0(b), where Q0(b)
depends on the entries of M (`)

ij ,βj
(b) for j = 1, . . . , t0} and B(`)(b). We now remark

that Claim 6.4 implies that ai0,β0(b) = ai0,β0(b) for every b ∈ Uar (D0 ∪Z0), which
implies that they are equal over U r Z0. We conclude that ai0,β0 can be extended
as a holomorphic function on Λ r Z0 that belongs to L. Since the choice of (i0, β0)
was arbitrary, this proves the Lemma. �
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6.2. Proof of Proposition 3.4. Let Φ : Ω −→ Kn and ϕ : Λ −→ Ω be the two
morphisms from the definition of admissible family 3.2, and recall that Ψ(a,u) =
Φ(ϕ(a) + u)−Φ(ϕ(a)). Let a ∈ R(Ψ,Λ) and set r := r(Ψa) = rF (Ψa); in particular,
r = r(Φϕ(a)) = rF (Φϕ(a)). It follows from Gabrielov’s rank Theorem (or the rank
Theorem 3.1) that rA(Φϕ(a)) = r.

Apart from a translation in x, we may suppose that Φ(ϕ(a)) = 0. Let (Z, 0)
be the germ of analytic set defined by Ker(Φ∗ϕ(a)) and note that r = dim(Z, 0).
Apart from a linear change of coordinates in x, we may assume that the projection
π : (Z, 0) −→ (Kr, 0) on the first r coordinates is finite. In particular, each function
xi, for i > r, is finite over the ring of convergent power series K{x1, . . . , xr}. That is,
by the Weierstrass preparation theorem, there exist non zero Weierstrass polynomials

Pi(x1, . . . , xr, xr+i) ∈ K{x1, . . . , xr}[xr+i], for i = 1, . . . , n− r,

belonging to Ker(Φ∗ϕ(a)). By replacing each Pi by one of its irreducible factors we
may assume that the Pi are irreducible Weierstrass polynomials at 0.

We claim that, apart from changing the choice of point a ∈ R(Ψ,Λ) and re-
centering the coordinate system x accordingly, there exists a neighborhood U of a
such that Pi are well-defined and irreducible at every point in Φ(ϕ(U)). Indeed, let
V be an open neighborhood of 0 in Kn on which the Pi are well-defined, and U be
an open connected neighborhood of a such that Φ(ϕ(U)) ⊂ V . Apart from shrinking
U and V , we may suppose that Pi ∈ Ker(Φ∗ϕ(b)) for every b ∈ U ; in particular,
U ⊂ R(Ψ,Λ). Now, recall that being not irreducible is an open property for the
Euclidean topology, thus the property of being irreducible is a closed property. If
one of Pi is not irreducible at a point Φ(ϕ(b)), for some b ∈ U , we may replace
a by b, Pi by one of its irreducible factors at this point, and we shrink U and V
accordingly. Since the degree of the Pi is a positive integer, this process should end
in a finite number of steps, proving the claim.

Fix s = 1, . . . , n − r, set x(s) = (x1, . . . , xr, xr+s), Φ(s) := (Φ1, . . . ,Φr,Φr+s),
and denote by Ψ(s) = (Ψ1, . . . ,Ψr,Ψr+s) the family associated to Φ(s) and ϕ. Note
that U ⊂ R(Ψ(s),Λ) by construction. Moreover Ker(Ψ(s)

a

∗
) is generated by Ps since

Ps is irreducible and Ker(Ψ(s)
a

∗
) is a height one prime ideal of K{x(s)}. We set:

fs(b,x(s)) := Pi

(
Φ(s)(ϕ(b)) + x(s)

)
for every b ∈ U , which can be written as:

fs(b,x(s)) = yd + a1(b,x′)yd−1 + ·+ ad(b,x′)

where y = xr+s and x′ = (x1, . . . , xr). First, note that ai(b,x′) ∈ O(U)Jx′K since
Φ ◦ ϕ is an analytic map defined on U and Pi is well defined in Φ(ϕ(U)). Second,
note that fs(b,x(s)) ∈ Ker(Ψ(s)

b

∗
) for every b ∈ U since Ψ(s)

b

∗
(fi) = Ps ◦ Φ(s)

ϕ(b) ≡ 0,

and that fs(b,x(s)) generates Ker(Ψ(s)
b

∗
) since Pi is irreducible. Third, note that

fi(b, 0, y) = yk(b)U(b, y) for some 1 6 k(b) 6 d and U(b, y) is a monic polynomial
in y coprime with y. By Hensel Lemma (see [Gro67, 18.5.13]), this implies that
fi(b,x′, y) is the product of two monic polynomials of degree k(b) and d − k(b)
respectively. From the fact that Pi is irreducible and k(b) > 0 at every point b ∈ U ,
we conclude that k(b) = d, that is, fs(b, 0, y) = yd. These three observations show
that fs satisfies all hypothesis of Lemma 6.1, so that it can be extended as a power
series fs(x(s)) of LJxK, where L is the fraction field of O(Λ), such that Ψ∗L(fs) = 0.
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We conclude that rF (Ψ∗L) 6 r, and since r(Ψ∗L) = r, we get that r(Ψ) = rF (Ψ∗L),
finishing the proof.
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