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Abstract. The aim of this paper is to review how some approximation results
in commutative algebra are being used to construct equisingular deformations
of singularities. The first example of such an approximation result appeared
for the first time in A. Płoski’s PhD thesis.

1. Introduction

The Artin’s seminal approximation Theorem [1], which established the density
of convergent solutions in the space of formal solutions for systems of analytic
equations, has been an important result having a lot of applications in different
fields, in particular in singularity theory [22]. This theorem lead to new problems
of approximations in local algebra and local analytic geometry [3].

In his PhD thesis, A. Płoski made a significant contribution to this area by
proposing a strengthened version of Artin’s theorem, now known as the Płoski’s
Approximation Theorem. His result not only extended Artin’s theorem but also
gave hints for generalizations in commutative algebra and provided applications to
singularity theory. In particular it has implications for the study of equisingular
deformations of singularities, which play a key role in understanding the topological
and analytical properties of singular spaces.

This paper reviews Płoski’s Approximation Theorem, examining its implications
and generalizations, particularly in the context of equisingular deformations and
algebrization of analytic sets and functions. By integrating recent advancements,
we aim to shed light on the broader relevance of Płoski’s Theorem. Furthermore, we
explore their connections to the algebraization of function germs and meromorphic
functions, with a focus on two variables cases. These results demonstrate the far-
reaching impact of Płoski’s work on contemporary mathematical research.

2. Approximation Theorems

2.1. Artin approximation Theorem. In 1968 M. Artin proved the following
result:

Theorem 2.1 (Artin approximation Theorem). [1] Let x = (x1, . . . , xn) and y =
(y1, . . . , yp) be an n-tuple and a p-tuple of indeterminates. Let f = (f1, . . . , fm) ∈
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C{x, y}m be an m-tuple of convergent power series. Assume given a formal power
series solution vector ŷ(x) ∈ CJxKp vanishing at 0:

f(x, ŷ(x)) = 0.
Then, for every c ∈ N, there is a convergent power series solution vector y(x) ∈
C{x}p vanishing at 0:

f(x, y(x)) = 0
such that

∀i, yi(x)− ŷi(x) ∈ (x)c.

This result means that the set of convergent solutions of f(x, y) = 0 is dense
in the set of formal solutions for the (x)-adic topology. One year later, M. Artin
proved several extensions of this theorem. In particular he proved that this result
remains true if we replace the rings of convergent power series C{x} and C{x, y} by
the rings of algebraic power series k〈x〉 and k〈x, y〉 for a characteristic zero field k.
Let us recall that the elements of k〈x〉 are the formal power series f(x) such that
P (x, f(x)) = 0 for some nonzero polynomial P (x, t) ∈ k[x, t]. Moreover this set of
algebraic power series is a Noetherian local ring satisfying the Weierstrass division
and preparation theorems.

2.2. Płoski approximation Theorem. In his PhD thesis [15], A. Płoski made
a deep study of the method of M. Artin to prove a strengthened version of his
theorem:

Theorem 2.2 (Płoski approximation Theorem). Let x = (x1, . . . , xn) and y =
(y1, . . . , yp) be an n-tuple and a p-tuple of indeterminates. Let f = (f1, . . . , fm) ∈
C{x, y}m be an m-tuple of convergent power series. Assume given a formal power
series solution vector ŷ(x) ∈ CJxKp vanishing at 0:

f(x, ŷ(x)) = 0.
Then there is a convergent power series solution y(x, z) ∈ C{x, z}p, where z =
(z1, . . . , zs) is a new s-tuple of indeterminates:

f(x, y(x, z)) = 0
and a vector of formal power series ẑ(x) ∈ CJxKs such that

y(x, ẑ(x)) = ŷ(x).

This result trivially implies Artin approximation Theorem. Indeed, with the
notations of Theorem 2.1 and Theorem 2.2, it is enough to replace ẑ(x), by any
vector of convergent power series z(x) such that ẑ(x)− z(x) ∈ (x)c, and set y(x) :=
y(x, z(x)) to obtain the conclusion of Theorem 2.1.

A. Płoski published this theorem in [16] without the details of the proof. He did
not published any complete proof (except of his PhD thesis [15] written in Polish)
before 2017. At a conference at Lille in 1999, he gave a course presenting this result,
and wrote notes with a complete proof [17] (written in French). These notes are
available on the web, but have not been formally published. Therefore in 2017, A.
Płoski published a complete proof in [18].

Remark 2.3. Płoski’s result can be roughly rephrased as follows: any formal power
series solution of f(x, y) = 0 is a formal point in an analytically parametrized family
of solutions. This result can be thought as a kind of uniformization theorem.
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Remark 2.4. Ploski’s proof works in exactly the same way when replacing rings of
convergent series with rings of algebraic series over a characteristic zero field. In-
deed, the essential arguments of the proof are the Jacobian criterion and the Weier-
strass division theorem. In fact, this theorem holds in the more general framework
of Weierstrass systems in any characteristic [21].

Example 2.5. Assume that f(x, y) satisfies the assumptions of the Implicit function
Theorem : f(0, 0) = 0 and ∂f

∂y (0, 0) is an invertible matrix (here we assume m = p).
Therefore, the equation f(x, y) = 0 has only one solution y0(x) ∈ C{x}p which is
convergent. Therefore Theorem 2.2 is obviously true with s = 0 and y(x) = y0(x).

Example 2.6. Consider one equation f(x, y) := y2
1 − y3

2 = 0. Then, since C{x}
are CJxK are unique factorization domains, the set of convergent (resp. formal)
solutions is

{(z(x)3, z(x)2) | z(x) ∈ C{x} (resp.CJxK)}.

Therefore Theorem 2.2 is true with s = 1. Moreover, in this case the analytically
parametrized family of solutions is the whole set of solutions of f(x, y) = 0.

Example 2.7. Consider the same f(x, y) as before and assume that x is a single
indeterminate. Let (ŷ1(x), ŷ2(x)) be a nonzero formal power series solution. Let
d := ord(ŷ1(x)) > 0. Since ŷ1(x)2 = ŷ2(x)3, we have that d ∈ 3Z. Let d =
3(e + 1) where e ∈ N. Then we have ŷ1(x) = x3eẑ(x)3 and ŷ2(x) = x2eẑ(x)2

for some formal power series ẑ(x) vanishing at 0. Then in Theorem 2.2 we can
choose (y1(x, z), y2(x, z)) := (x3ez3, x2ez2). The analytically parametrized family
of solutions we obtain in this way does not cover the whole set of solutions of
f(x, y) = 0.
The proof of Płoski is completely effective, and if we follows his proof for this
particular example, this is the analytically parametrized family of solutions that
we obtain. Therefore, the proof of Płoski does not provide the whole set of solutions
of f(x, y) = 0 in general.

Remark 2.8. Giving a formal power series solution ŷ(x) of f(x, y) = 0 is equivalent
to the data of a morphism of C{x}-algebra:

ϕ : C{x}[y]
(f(x, y)) −→ CJxK

Theorem 2.2 asserts that this morphism factors as

CJxK

C{x, y}
(f(x, y))

ϕ

::

// C{x, z}

OO

Having taken note of Płoski’s Theorem, D. Popescu conjectured that this result
was more general: given a Henselian local ring A, Â denoting its completion, for
every finitely generated A-algebra B and any A-morphism ϕ : B −→ Â, there exists
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a smooth A-algebra C such that ϕ factors through C:

Â

B

ϕ

??

// C

OO

Then D. Popescu proved his conjecture in [19] (see also [23], [25], [20], [26] for
subsequent proofs). Moreover, in [25], M. Spivakovsky proved a nested version of
Popescu’s Theorem. We will not state this statement, which is a bit technical, but
from Spivakovsky’s Theorem we can deduce the following nested version of Płoski
result:

Theorem 2.9 (Nested Artin-Płoski-Popescu Approximation Theorem, [4]). Let
f(x, y) ∈ k〈x〉[y]m and let us consider a solution y(x) ∈ kJxKp of

f(x, y(x)) = 0.
Let us assume that yi(x) depends only on (x1, . . . , xσ(i)) where i 7−→ σ(i) is an
increasing function. Then there exist a new set of indeterminates z = (z1, . . . , zs),
an increasing function τ , convergent power series zi(x) ∈ kJxK vanishing at 0 such
that z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xσ(i)), and an algebraic power series
vector solution y(x, z) ∈ k〈x, z〉p of

f(x, y(x, z)) = 0,
such that for every i,

yi(x, z) ∈ k〈x1, . . . , xσ(i), z1, . . . , zτ(i)〉 and y(x) = y(x, z(x)).

Remark 2.10. Let us mention that this nested version of Płoski’s Theorem is no
longer true for rings of convergent power series by an example of A. Gabrielov [8].

3. Algebrization of the germ of an analytic set or of an analytic
function

Let K = R or C, x = (x1, . . . , xn). If f ∈ K{x} is an isolated singularity then, by
a result of Samuel [24], f is finitely determined, that is, there exists an integer k such
that for every g ∈ K{x} with f − g ∈ (x)k, there exists an analytic diffeomorphism
h : (Kn, 0) −→ (Kn, 0) such that

f ◦ h(x) = g(x).
In particular, if we choose g to be the truncation of f at an order ≥ k, we obtain
that f can be transformed into a polynomial after a local analytic change of coor-
dinates (one says that f is analytically equivalent to a polynomial function germ).
Several authors generalized Samuel’s result, and eventually Kucharz [10] proved
that every (non necessarily reduced) analytic function in two variables is finitely
determined (he also proved that any analytic function in n variables is equivalent
to a polynomial in two variables whose coefficients are analytic functions in n − 2
variables).

Thus in the case of n = 2 any reduced analytic singularity can be transformed
by an analytic change of coordinates to a polynomial one. When f is a (reduced)
convergent power series in three or more variables, this is no longer true: H. Whitney
[30] gave an example of a three variable reduced convergent power series which is
not equivalent to a polynomial function neither to an algebraic one.
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We explain below how to construct a deformation of a given analytic function
germ f : (Kn, 0) → (K, 0) that is topologically trivial (with repect to the right
equivalence, i.e. by a homeomorphism in the source (Kn, 0)), and such that one
fibre of this deformation is an algebraic function germ. This construction is based
on Theorem 2.9 and the notion of Zariski equisingularity.

3.1. Zariski equisingularity. Zariski equisingularity of families of singular vari-
eties was introduced by Zariski in [31] in the context of equisingularity of a hyper-
surface along a smooth subvariety. It can be formulated over any field of charac-
teristic zero in the algebroid set-up (varieties defined by the formal power series)
and over K = R or C in the analytic case. For a survey on Zariski equisingularity
see [12], it also contains an appendix on the higher order (also called generalized)
discriminants that are used in the construction below.

Definition 3.1. Let V = F−1(0), F ∈ K{t, x}, be an analytic hypersurface in a
neighborhood of the origin in K` ×Kn. We say that V is Zariski equisingular with
respect to the parameter t ∈ K` (and a local system of coordinates x1, . . . , xn in Kn)
if (here π : (K` ×Kn, 0) −→ (K` ×Kn, 0) denotes the canonical projection):

(1) (K`, 0)× ({0}) ⊂ (V, 0).
(2) The restriction π|(V,0) is (algebraically) finite.
(3) The branch locus of π|(V,0) is itself Zariski equisingular with respect to the

parameter t.
(4) When ` = dim(V, 0), then (V, 0) is Zariski equisingular with respect to the

parameter t if (V, 0) = (C`, 0) (or at some stage the branch locus is empty).
We say that V is Zariski equisingular with respect to the parameter t ∈ K` if it is
so after a local change of coordinates (K` × Kn, 0) → (K` × Kn, 0) preserving the
parameter t.

Remark 3.2. Note that this notion depends heavily on the local choice of coordi-
nates. Therefore often we consider Zariski equisingularity with respect to generic
or generic linear x coordinates, see [32]. Whether a generic linear choice is generic
in the sense of [32] is an open problem for singularities of codimension ≥ 3. For
singularities of codimension 1, i.e. equisingular families of plane curves the positive
answer follows from Zariski’s theory of equisingularity of families of plane curves.
For singularities in codimension 2, i.e. equisingular families of surfaces singularities
in C3, the positive answer was given in [14].

In practice one may argue as follows. Let F be an analytic function defining
(V, 0) and suppose that F (0, x) 6≡ 0. Then after a linear change of coordinates x,
we may assume that F is a pseudopolynomial Fn times a unit un(t, x). This means
that Fn is a polynomial in xn with coefficients that are analytic in t (t, xn−1) (Here
xn−1 = (x1, . . . , xn−1)):

Fn(t, x) = xpn
n +

pn∑
j=1

an−1,j(t, xn−1)xpi−j
i

where an−1,j(0) = 0 for every j. Then, we denote by ∆n(t, xn−1) the discriminant
of Fn seen as a polynomial in xn. If F is reduced, ∆n is not identically zero. We
assume again that ∆n(0, x) 6≡ 0. In general, if F is not reduced we replace it by
(F )red, or equivalently we consider the higher order discriminants of Fn. Thus by
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induction we define a sequence of pseudopolynomials

Fi(t, xi) = xpi

i +
pi∑
j=1

ai−1,j(t, xi−1)xpi−j
i , i = 0, . . . , n,

t ∈ K`, xi := (x1, . . . , xi) ∈ Ki, with analytic coefficients ai−1,j , that satisfy
(1) Fi−1(t, xi−1) = 0 if and only if Fi(t, xi−1, xi) = 0 considered as an equation

in xi with (t, xi−1) fixed, has fewer complex (!) roots than for generic
(t, xi−1).

(2) F0 ≡ 1.
(3) There are positive reals δk > 0, k = 1, . . . , `, and εj > 0, j = 1, . . . , n,

such that Fi are defined on the polydiscs Ui := {|tk| < δk, |xj | < εj , k =
1, . . . , `, j = 1, . . . , i}.

(4) All roots of Fi(t, xi−1, xi) = 0, for (t, xi−1) ∈ Ui−1, lie inside the circle of
radius εi.

(5) Either Fi(t, 0) ≡ 0 or Fi ≡ 1 (and in the latter case we define Fk ≡ 1 for
all k ≤ i).

In practice, to define Fi−1 in term of Fi, we do the following: if Fi is not
reduced then we denote by ∆i the first nonzero generalized discriminant of Fi as
a polynomial in xi. Then, after a linear change of coordinates in (t, xi−1), we may
assume that

∆i(t, xi−1) = ui−1(t, xi−1)Fi−1(t, xi−2, xi−1)(1)

where Fi−1 is a pseudopolynomial in xi−1. After this linear change of coordinates,
Fj , for j ≥ i, is transformed into a new pseudopolynomial in xj of degree pj
satisfying again Properties (1), (3) and (4), so it does not affect the form of the
previous pseudopoynomials.

An important result due to Varchenko is the following one:

Theorem 3.3 ([27], ([28], [29]). A Zariski equisingular family of singularities is
topologically trivial.

3.2. Construction of a deformation of the germ of an analytic set. Suppose
now that (V, 0) is the germ at the origin of an analytic subset of Kn given by one
equation f(x) = 0. We do not assume f reduced but we assume f 6≡ 0 . We define
a local system of coordinates x = (x1, . . . , xn) and a sequence of distinguished
pseudopolynomials

fi(xi) = xpi

i +
pi∑
j=1

ai−1,j(xi−1)xpi−j
i , i = 1, . . . , n,

as follows.
Let, after a local change of coordinates x, fn be the Weierstrass polynomial

associated to f . Then we consider the generalized discriminants ∆n,i of fn that
are polynomials in the entries of an−1 := (an−1,1, . . . , an−1,pn). Let ln be a positive
integer such that

∆n,l(an−1) ≡ 0 l < ln,(2)
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and ∆n,ln(an−1) 6≡ 0. Then, after a local change of coordinates xn−1, by the
Weierstrass Preparation Theorem, we may write

∆n,ln(an−1) = un−1(xn−1)
(
x
pn−1
n−1 +

pn−1∑
j=1

an−2,j(xn−2)xpn−1−j
n−1

)
,

where un−1(0) 6= 0 and for all j, an−2,j(0) = 0. Note that if f is reduced then
ln = 1 and the only generalized discriminant we consider is the standard one. Then
we set

fn−1 := x
pn−1
n−1 +

pn−1∑
j=1

an−2,j(xn−2)xpn−1−j
n−1 ,

We continue this construction and define a sequence of pseudopolynomials fi(xi),
i = 1, . . . , n − 1, such that fi = xpi

i +
∑pi

j=1 ai−1,j(xi−1)xpi−j
i is the Weierstrass

polynomial associated to the first non-identically zero generalized discriminant
∆i+1,li+1(ai) of fi+1, where we denote in general ai = (ai,1, . . . , ai,pi+1),

∆i+1,li+1(ai) = ui(xi)
(
xpi

i +
pi∑
j=1

ai−1,j(xi−1)xpi−j
i

)
, i = 0, . . . , n− 1,(3)

and ai−1,j(0) = 0. Thus, for i = 0, . . . , n− 1, the vector of functions ai satisfies

∆i+1,l(ai) ≡ 0 for l < li+1, ∆i+1,li+1(ai) 6= 0.(4)

This means in particular that

∆1,l(a0) ≡ 0 for l < l1 and ∆1,l1(a0) ≡ u0,

where u0 is a nonzero constant.
Next we apply the algebraic power series version of Theorem 2.9 to the sys-

tem of equations given by (3) and (4). By construction, this system admits con-
vergent solutions. Therefore, by Theorem 2.9, there exist a new set of variables
z = (z1, . . . , zs), an increasing function τ , convergent power series zi(x) ∈ C{x}
vanishing at 0, algebraic power series ui(xi, z) ∈ C〈xi, z1, . . . , zτ(i)〉, and vectors of
algebraic power series ai(xi, z) ∈ C〈x(i), z1, . . . , zτ(i)〉pi , b(x, z) ∈ C〈x, z〉n−1, such
that the following holds:

z1(x), . . . , zτ(i)(x) depend only on (x1, . . . , xi),
ai(xi, z), ui(xi, z), are solutions of (3) and (4)
and ai(xi) = ai(xi, z(xi)), ui(xi) = ui(xi, z(xi)), b(x) = b(x, z(x)).

It is essential that the new solutions ui(t, xi), ai,j(t, xi) depend only on the first i
variables in x. Thanks to this property it is easy to check that the one parameter
deformation t→ {((t, x);F (t, x) = 0} of

F (t, x) = xpi
n +

pn∑
j=1

an−1,j(xn−1, tz(xn−1))xpn−j
n

is Zariski equisingular. Because F (1, x) = f(x) and F (0, x) is algebraic we have
shown

Theorem 3.4 ([11], [4]). Every analytic set germ given by one equation f = 0,
f ∈ K{x}, is Zariski equisingular to a germ defined by an algebraic power series.
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Remark 3.5. The first proof of algebraicity of analytic set germs was given by
Mostowski in [11]. At that time Popescu’s Theorem was not yet available. Instead,
Mostowski proposes an ingenious recursive construction of the system of equations
(3) and (4) giving Zariski equisingularity conditions by local linear changes of co-
ordinates and, at the same time, step by step, provides the deformation to an
algebraic power series solution following the recipe given by Płoski in [16].

3.3. Algebraization. Final steps. Using Varchenko’s theorem, Theorem 3.3,
Theorem 3.4 shows that every analytic set germ is homeomorphic to a one defined
by the algebraic power series, moreover by an ambient homeomorphism. This
holds not only for hypersurfaces. If (V, 0) is given by a finite system of equations
gs = 0, s = 1, . . . , k, gs ∈ K{x}, then we proceed as follows. In a system of local
coordinates we replace gs = 0 by the associated pseudopolynomials:

gs(x) = xrs
n +

rs∑
j=1

an−1,s,j(xn−1)xrs−j
n ,

and arrange the coefficients an−1,s,j in a row vector an−1 ∈ K{xn−1}pn where
pn :=

∑
s rs. Then apply the previous construction to fn being the product of the

gs’s. After solving the system of equations for t ∈ K we define

Fn(t, x) =
∏
s

Gs(t, x), Gs(t, x) = xrs
n +

rs∑
j=1

an−1,s,j(xn−1, tz(xn−1))xrs−j
n .

Then Varchenko’s proof of Theorem 3.3 provides a topological trivialization that
preserves the zero sets of Gs(x, t) = 0, s = 1, . . . , k, and thus the ambient homeo-
morphism between (V, 0) and {G(x, 0)s = 0, s = 1, . . . , k}.

Finally, the following theorem due to Bochnak and Kucharz [6], based on Artin-
Mazur Theorem, gives an equivalence, up to a Nash diffeomorphism, between the
zeros of algebraic power series (or equivalently germs of Nash functions) and the
local zeros of polynomial functions.

Theorem 3.6. Let K = R or C. Let gs : (Kn, 0) → (K, 0), be a finite family of
Nash function germs. Then there is a Nash diffeomorphism h : (Kn, 0) → (Kn, 0)
and analytic (even Nash) units us : (Kn, 0) → K, us(0) 6= 0, such that for all s,
us(x)gs(h(x)) are germs of polynomials.

3.4. Algebraization of function germs. The algebraization of analytic set germs
can be extended to analytic function germs, that is the mappings with values in K.
The following theorem was proven in [4].

Theorem 3.7. Let K = R or C. Let g : (Kn, 0) → (K, 0) be an analytic function
germ. Then there is a homeomorphism σ : (Kn, 0)→ (Kn, 0) such that g ◦ σ is the
germ of a polynomial.

The idea how to adapt Zariski equisingularity to the function case comes from
[27]. Given a family gt(y) = g(t, y1, . . . , yn−1) of such germs parameterized by
t ∈ K`, the idea is to consider the associated family of set germs defined by the graph
of g, the zero set of F (t, x1, . . . , xn) := x1−g(t, x2, . . . , xn). If the family V = V (F )
is Zariski equisingular, with respect to the system of coordinates x1, . . . , xn, then
the trivialization constructed in [27] does not move the variable x1

ht(x1, . . . xn) = (x1, ĥt(x1, x2, . . . , xn)).(5)
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Set σt(y) := ĥt(g(y), y). Then
gt ◦ σt = gt0 ,

To complete the passage from algebraic power series to polynomials one uses
again Theorem 3.6. See [4] for details.

4. Algebraization of the germ of a meromorphic function in
dimension 2

As said before, every two variables analytic function germ is finitely determined,
so it is analytically equivalent to a polynomial function germ. The case of meromor-
phic function germs has been studied in [7]. The author shows that, on the contrary
of analytic function germs, a two variables meromorphic germ is not always finitely
determined. But the question whether a two variables meromorphic function germ
is analytically equivalent to a rational function germ remains open. The following
result has been proved recently:

Theorem 4.1. [9] Let K = R or C. Let ϕ be the germ of a meromorphic function at
(K2, 0). Then there is the germ of an analytic diffeomorphism h : (K2, 0) −→ (K2, 0)
such that ϕ◦h is the germ of an algebraic meromorphic function, that is, ϕ◦h = f

g

where f , g ∈ C〈x1, x2〉.
Moreover, for any k ∈ N, we may assume that ϕ(x)− x ∈ (x)k.

Sketch of proof. The main case is when K = C. We consider this case now. The
idea is to associate to ϕ a germ of analytic 1-form ω, and then to use Płoski The-
orem to construct an analytic deformation of ω that has one algebraic fibre. Then
we use a result of D. Cerveau and J.-F. Mattei to prove that this deformation is
analytically trivial. Let us give more details.

Step 1. Let us write ϕ = f
g where f and g are coprime convergent power series.

Let us write
f = f `1

1 · · · f `p
p and g = gk1

1 · · · gkq
q

where the fi and gj are irreducible convergent power series and the `i and kj are
positive integers. We set

θ := f1 · · · fpg1 · · · gq
fg

(gdf − fdg).

Then θ is a holomorphic 1-form and each of its analytic divisors h ∈ C{x} is coprime
with fg (here x = (x1, x2)). Let us recall that a divisor of θ is a common divisor
of the coefficients of dx1 and dx2 in the expansion of θ. Then we can prove the
following lemma:

Lemma 4.2. [9, Prop. 3.2] Let h ∈ C{x} be an irreducible convergent power series.
Then h divides θ if and only if there is c ∈ C such that h divide f − cg. In this
case, if µ is the largest power of h dividing θ, µ+1 is the largest power of h dividing
f − cg.

Denote by h1, . . . , he the irreducible divisors of θ, and by µ1, . . . , µe ∈ N∗ the
maximal exponents such that hµ1

1 · · ·hµe
e divides θ. We define

ω := 1
hµ1

1 · · ·h
µe
e
θ.
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This is a holomorphic 1-form with (at most) an isolated singularity (let us recall
that the singular locus of ω is the zero locus of the coefficients of dx1 and dx2
in ω). We recall that a first integral of ω is a meromorphic function R such that
ω ∧ dR = 0 ; so ϕ is a first integral of ω.

We denote by c1, . . . , ce ∈ C the complex numbers corresponding to the hi in
Lemma 4.2, that is, f − cig = hµi+1

i ρi for some convergent power series ρi.

Step 2. We consider the following system of equations:

(S)


y`1

1,1 · · · y
`p

1,p − c1y
k1
2,1 · · · y

kq

2,q = yµ1+1
3,1 y4,1

y`1
1,1 · · · y

`p

1,p − c2y
k1
2,1 · · · y

kq

2,q = yµ2+1
3,2 y4,2

...
y`1

1,1 · · · y
`p

1,p − cey
k1
2,1 · · · y

kq

2,q = yµe+1
3,e y4,e

By assumption
y(x) := (f1(x), . . . , fp(x), g1(x), . . . , gq(x), h1(x), . . . , he(x), ρ1(x), . . . , ρe(x))

is a solution of (S). By Theorem 2.2, there exists a vector of algebraic power
series y(x, z) ∈ C〈x, z〉 solution of (S), and convergent power series z1(x), . . . ,
zs(x) ∈ C{x} such that

y(x) = y(x, z(x)).
We denote by
f1(x, z), . . . , fp(x, z), f1(x, z), . . . , gq(x, z), h1(x, z), . . . , he(x, z), ρ1(x, z), . . . , ρe(x, z)
the components of y(x, z). Let k0 ∈ N. For t ∈ [0, 1], we set

z(x, t) = zk0(x) + (1− t)rk0(x)
where zk0(x) is the truncation of z(x) at order k0 and rk0(x) = z(x) − zk0(x). So
z(x, 0) = z(x) and z(x, 1) is a polynomial. We set

Fi(x, t) := fi(x, z(x, t)), Gj(x, t) := gj(x, z(x, t)), Hk(x, t) := hk(x, z(x, t))
and

F (x, t) := F1(x, t)`1 · · ·Fp(x, t)`p , G(x, t) := G1(x, t)k1 · · ·Gq(x, t)kq ,

H(x, t) = H1(x, t)µ1 · · ·He(x, t)µe .

We set
Φ(x, t) := F (x, t)

G(x, t) .

We have that Φ(x, 0) = ϕ(x), and Φ(x, 1) is an algebraic meromorphic function
germ. We set

Θ := F1 · · ·FpG1 · · ·Gq
FG

(GdF − FdG) and Ω := Θ
Hµ1

1 · · ·H
µe
e
.

Step 3. We denote by Ωτ the restriction of Ω to the plane of equation t = τ .
Then Ω0 = ω has an isolated singularity at 0 and Ω1 is a 1-form having Φ(x, 1) as
a first integral.
In fact one can prove that Ωt has an isolated singularity for any t ∈ [0, 1] if k0 is
chosen large enough (See [9] for more details). This comes from the fact that the
coefficients of dx1 and dx2 in Ωt are tangent to those of Ω0 = ω at order ≥ k0.
Then we use the following lemma:
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Lemma 4.3. [7, Lemme 2.1, p. 149] Let ω be an analytic 1-form germ with an
isolated singularity at 0 ∈ Cn. Then there is an integer N such that, for every
integrable analytic 1-form germ Ω at (Cn+m, 0) satisfying

(1) Ω0 = ω,
(2) Ω− ω ∈ (x)N ,

there is a germ of biholomorphism Ψ, of the form Ψ(x, t) = (Ψ1(x, t), t), and a unit
u ∈ C{x, t}, such that

Ψ∗Ω = uω.

Therefore, if k0 ≥ N , we have that Ψ∗Ω1 = uω and ϕ◦Ψ1(x, 1) is a first integral
of Ω1. Now we use [7, Thm 1.1, p. 137] that asserts that the set of first integrals
of a meromorphic 1-form having a meromorphic first integral has the form

C(κ) = {γ ◦ κ | γ ∈ C(T )}.

We can apply this to Ω1: let κ such a meromorphic function, so Φ(x, 1) = R(κ) for
some rational functionR ∈ C(T ). Since Φ(x, 1) is algebraic, it satisfies P (x,Φ(x, 1)) =
0 for some nonzero polynomial P (x, y). So κ annihilates P (x,R(z)) = 0. But
P (x,R(z)) is a rational function, so κ is a root of its denominator, thus κ ∈ C〈x〉.
In particular all the first integrals of Ω1 are algebraic. But ϕ ◦ Ψ1(x, 1) is also a
first integral of Ω1, so ϕ ◦Ψ1(x, 1) is algebraic. This proves the theorem for K = C
with h(x) := Ψ(x, 1).

The real case proceeds essentially in the same way, but we have to prove that at
each step of the proof, the objects that intervene are real. �
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