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Abstract. We study algebraic, combinatorial and topological properties of the set of preorders on a group,

and the set of valuations on a field. We show strong analogies between these two kinds of sets and develop

a dictionary for these ones. Among the results we make a detailed study of the set of preorders on Zn. We
also prove that the set of valuations on a countable field of transcendence degree at least 2 is an ultrametric

Cantor set.

1. Introduction

The purpose of this paper is to investigate some algebraic, combinatorial and topological properties of

spaces of preorders on a given group, and spaces of valuations on a given field. In particular we show that

these spaces share very strong similarities, and we develop a dictionary between preorders on groups and

valuations on fields.

Historically, the study of orderable groups has been developed since the end of the nineteen century for

their importance in algebraic topology. But the first study of the topological properties of the set of orders

on a group is due to Kuroda in the case G = Zn [Ku02], and to Sikora in the general case [Si04]. Here,

an order means a total order that is left-invariant. In his paper, Sikora introduced a topology on the set of

orders on a group, and showed that this topology is a metric topology in the case of countable groups. For

a countable group G, Sikora proved that the space of left-invariant orders (denoted by Ordl(G)) on G is a

compact metric space, and shows that this is even a Cantor set when G = Zn. Subsequently, several authors

proved that Ordl(G) is a Cantor set for several examples of groups G.

The first study (to our knowledge) of the space of preorders on a group G is due to Ewald and Ishida [EI06]

for G = Zn. Let us mention that a preorder satisfies all the properties of an order except that it may not be

antisymmetric. In their paper, they introduce a topology of the set of preorders on Zn (extending the one

of Kuroda), and show the compacity of this set.

On the other hand, Zariski introduced a topology on the set of valuations of a field (called the Zariski-

Riemann space), proved its compacity and used this in order to deduce the resolution of singularities in

dimension two from the local uniformization theorem (see [Za40] and [Za44]). The study of valuation theory

has been revived in the last twenty years for its applications in commutative algebra and algebraic geometry

(see [Va06] or [HS06] for example).

In this paper we begin by studying preorders on groups. First, we show that the set of left-invariant

preorders on a group G (denoted by ZRl(G)) is equipped with a natural order that makes ZRl(G) a join-

semilattice (see Theorem 2.20) and even a rooted graph under some assumptions on G (see Proposition 2.21

and Corollary 2.39). Then we introduce and investigate three topologies on ZRl(G): the Zariski topology,

the Inverse topology and the Patch topology. These correspond to the topologies having the same name on

the set of valuations on a given field and introduced by Zariski (see [SZ60] or [Ho69]). Moreover the Patch

topology coincides with the Chabauty topology on the sets of submonoids of G, where G is endowed with
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the cofinite topology. We prove that ZRl(G) is compact for these three topologies (using the same argument

as Zariski for the case of spaces of valuations), see Theorem 2.30. The first two topologies are not metric,

but we show, following Sikora, that the last one is ultrametric when G is countable (see Proposition 2.67).

Let us mention that these three topologies coincide on the subset of orders and, therefore, correspond to the

topology introduced by Sikora. Then we study in more details the case of abelian groups, and we make a

detailed study of ZR(Zn): we show that this is not a Cantor set in general, but that it contains infinitely

many explicit Cantor subsets when n ≥ 2, generalizing the result of Sikora (see Theorem 3.15). In fact

the set ZR(Zn) can be seen as a rooted graph on which acts Aut(Qn). More precisely ZR(Zn) can be seen

as follows: we consider the rooted graph T0 that has one root ≤0 and a set of vertices in bijection with

the sphere of dimension n − 1, and the edges are the pairs (≤0,�) where � runs over the other vertices.

Then ZR(Zn) is obtained by gluing T0 with infinitely many copies of the ZR(Zd) for d < n. From this we

deduce an effective version of Hausdorff-Alexandroff Theorem for the spheres of any dimension (Proposition

3.19). The case of non-commutative groups is much more difficult in general. We provide two examples:

the description of ZR(G) when G is the fundamental group of the Klein bottle, and we give an example of

a torsion free group G for which ZR(G) is trivial.

Then we develop the analogy with the set of valuations on a field K. We denote by ZR(K/k) the set of

valuations on K that are trivial on the subfield k. Here again, ZR(K/k) is a join-semilattice (Proposition

4.31). When K is a countable field, we show in an explicit way that the Patch topology is an ultrametric

topology (see Theorem 4.43). The main difference with ZRl(G) for a group G, is that the subfield k plays

the role of the trivial subgroup {1}, but k is not finite in general. Therefore several difficulties appear. For

example, the Zariski, Inverse and Patch topologies do not coincide in general on the set of rational valuations,

but they do when k is a finite field (see Proposition 4.22). Then, by analogy with the case of orders and

preorders on Zn, we investigate when ZR(K/k) (or some subsets of it) are Cantor sets. First we prove an

analogue of the result of Sikora: the set of rational valuations on k(x1, . . . , xn) vanishing on k (when k is

a finite field), is a Cantor set for the Zariski topology (see Theorem 4.50). When k is not finite, this set is

unfortunately not closed, therefore not compact. But we prove that ZR(K/k) is a Cantor set for the Patch

topology when k −→ K is a finitely generated field extension of transcendence degree at least 2 and k is at

most countable (Theorem 4.51).

The dictionary between preorders on a group G and valuations on a field K can be summarized in the

following table (the corresponding objects will be introduced all along the paper):

Group G Field K
monoid S Ring R

Preorder � Valuation ν
Preorder monoid V� Valuation ring Vν
maximal ideal m� maximal ideal mν

rank(�) rank(ν)
Residue group G� Residue field kν

deg(�) tr.degk(kν)
Ou O(x)
Uu U(x)

Let us mention that this analogy has been emphasized in the case of preorders on Zn and valuations on

k(x1, . . . , xn) in [EI06], where the authors extend the Zariski topology to the set of preorders on Zn and

show its compacity, and in [Te18] where the author provides a new proof of the fact that the set of orders

on Zn is a Cantor set. This work has been motivated by our previous work where we used in an essential

way the compacity of ZR(Zn) [ADR].

Acknowledgments. We would like to thank Andrés Navas for stimulating discussions related to this
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2. The Zariski-Riemann space of preorders

2.1. Generalities.

Definition 2.1. Let G be a group. We denote by ZRl(G) the set of left-invariant (total) preorders on G,

i.e. the set of binary relations � on G such that

i) ∀u, v ∈ G, u � v or v � u,

ii) ∀u, v, w ∈ G, u � v and v � w implies u � w,

iii) (left invariance) ∀u, v, w ∈ G, u � v implies wu � wv.

In the same way, we define right-invariant preorders whose set is denoted by ZRr(G). The set of preorders

that are bi-invariant, that is, left and right-invariant, is denoted by ZR(G). The subset of orders of ZR∗(G)

is denoted by Ord∗(G) for ∗ = l, r or ∅.
The trivial preorder, i.e. the unique preorder � such that u � v for every u, v ∈ G is denoted by ≤0.

Remark 2.2. Sometimes in the literature, the terminology preorder refers to binary relations satisfying only

Properties ii) and iii) given in Definition 2.1. In this case, the binary relations satisfying Definition 2.1 are

called total preorders in these ones. Both conventions exist and the one we choose is the one given in [EI06].

These are also very strongly related to the notion of relative order - see Remark 2.54 for more details about

this notion.

Remark 2.3. If G is an abelian group, then ZR(G) = ZRl(G) = ZRr(G).

Remark 2.4. There is a bijection between ZRl(G) and ZRr(G) defined as follows:

For �∈ ZRl(G) we define the right-invariant preorder �′ by

∀u, v ∈ G, u �′ v ⇐⇒ v−1 � u−1.

So from now on, we will no longer consider right-invariant preorders.

Definition 2.5. Let G be a group. For �∈ ZR∗(G) and u, v ∈ G, we write u ≺ v if

u � v and ¬(v � u).

Lemma 2.6. Let G be a group. Let a, b, c, d ∈ G with a � b and c � d.

(1) If �∈ ZR(G) then ac � bd.

(2) If �∈ ZRl(S), then b−1ad−1c � 1.

If we assume moreover that a ≺ b or c ≺ d, then we obtain strict inequalities in both cases.

Proof. For the first inequality just remark that ac � bc � bd.

Now if �∈ ZRl(G) we have b−1a � 1 and d−1c � 1. Therefore we have b−1ad−1c � b−1a � 1.

Let us remark that if a ≺ b, �∈ ZRl(G), then ca ≺ cb for every c ∈ G. Thus the cases of strict inequalities

are proved as the previous cases. �

Definition 2.7. Let G be a group. Let �∈ ZR∗(G). We define a congruence relation ∼� as follows:

u ∼� v if u � v and v � u.

This congruence relation is compatible with the group law if � is bi-invariant. In this case the quotient

G/ ∼� is a group denoted by G� and � induces in an obvious way an order on G� still denoted by �.

Remark 2.8. Let G be a group. If Tor(G) 6= {1}, then Ord∗(G) = ∅. Indeed let u ∈ Tor(G) be of order

n ≥ 1 and let �∈ Ord∗(G). Assume 1 � u. Thus

1 � u � u2 � · · · � un = 1.

Since � is an order, we have u = 1. The same is true if we assume u � 1. Therefore Tor(G) = {1}.
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2.2. Preorder monoid. Let G be a group and �∈ ZRl(G). We set

V� = {u ∈ G | u � 1},

m� := {u ∈ G | u � 1}.

It is straightforward to check that V� is a monoid, and m� a two-sided ideal of V� (by Lemma 2.6). Moreover

V� is a preorder monoid:

Definition 2.9. Let G be a group and V be a sub monoid of G. We say that V is a preorder monoid if

(2.1) ∀u ∈ G, u ∈ V or u−1 ∈ V.

Moreover, if V is a preorder monoid, then V = V� where �∈ ZRl(G) is defined as follows: for every u,

v ∈ G, we set u � v if and only if v−1u ∈ V . Since V satisfies (2.1), Definition 2.1 i) is satisfied. Since V is

a monoid, Definition 2.1 ii) is satisfied, and Definition 2.1 iii) is automatically satisfied.

Moreover � is bi-invariant if and only if V� is a normal sub monoid of G, that is

∀u ∈ V�, v ∈ G, v−1uv ∈ V�.

We remark that m� is the unique maximal two-sided ideal of V� since the inverse of every element of V�\m�
is in V�.

Definition 2.10. Let G be a group and �∈ ZRl(G). The monoid V� is called the preorder monoid associated

to �, and m� is its maximal ideal.

2.3. Ordering of the set of orders.

Definition 2.11. Given two preorders �1, �2∈ ZRl(G) where G is a group, we say that �2 refines �1 if

∀u, v ∈ G, u �2 v =⇒ u �1 v.

Remark 2.12. Let �1, �2∈ ZRl(G). If �1 refines �2 and �2 refines �1 then �1=�2.

Remark 2.13. By contraposition, �2 refines �1 if and only if

∀u, v ∈ G, u ≺1 v =⇒ u ≺2 v.

Definition 2.14. Let G be a group. We define an order ≤ on ZRl(G) as follows: for every preorders �1,

�2∈ ZRl(G) we have

�1 ≤ �2

if �2 is a refinement of �1. By Remark 2.12 it is straightforward to check that ≤ is an order.

Lemma 2.15. Let G be a group. Given �, �′∈ ZRl(G), the following properties are equivalent:

i) �≤�′
ii) V�′ ⊂ V�
iii) m� ⊂ m�′

Proof. Assume i) holds, and let u ∈ V�′ , that is u �′ 1. Then u � 1 and u ∈ V�. Thus ii) holds.

Now assume that ii) holds, and let u ∈ m�, that is u � 1. Therefore u−1 ≺ 1, that is u−1 /∈ V�. Thus

u−1 /∈ V�′ and u ∈ m�′ . Thus iii) holds.

Finally, assume iii) holds. Let u, v ∈ G with u ≺ v, that is u−1v � 1. Thus, u−1v ∈ m� ⊂ m�′ . Therefore

u ≺′ v, and �≤�′. �
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Lemma 2.16. Let G be a group and let E ⊂ ZRl(G) be non empty. The set

AE :=

S sub monoid of G |
⋃
�∈E

V� ⊂ S


is non empty and contains a minimal element. This minimal element is a preorder monoid, and its associated

preorder is denoted by �inf E. It is the infimum of E.

Moreover, if E ⊂ ZR(G), then �inf E is bi-invariant.

Proof. We have that G ∈ AE , therefore this set is not empty. We set V :=
⋂

S∈AE

S. We have
⋃
�∈E

V� ⊂ V ,

and for every u ∈ G, u ∈ V or u−1 ∈ V since the V� are preorder monoids. Moreover V is a monoid since

the S are monoids. This proves the existence of �inf E . By Lemma 2.15, �inf E is the infimum of E.

Now, if all the V� are normal monoids, then V is a normal monoid, and �inf E is bi-invariant. �

Let G be a group and let �∈ ZR∗(G). We set

Raf−∗ (�) := {�′∈ ZR∗(G) such that �′≤�},

Raf+∗ (�) := {�′∈ ZR∗(G) such that �≤�′}.

Lemma 2.17. Let G be a group and E ⊂ ZR∗(G). We have⋂
�∈E

Raf−∗ (�) = Raf−∗ (�inf E) .

Proof. Indeed, we have

�′≤�inf E⇐⇒ V�inf E
⊂ V ′� ⇐⇒ [∀ �∈ E, V� ⊂ V�′ ]⇐⇒ [∀ �∈ E, �′≤�].

�

Remark 2.18. If E := {�1,�2}, then �inf E is denoted by �1 ∧ �2.

Lemma 2.19. Let G be a group. Let �1, �2∈ ZRl(G), none of them refining the other one. Then there is

u ∈ G such that

u ≺1 1 and 1 ≺2 u.

Proof. Because �2 is not refining �1 there are a, b ∈ G such that a �2 b and b ≺1 a. By symmetry there

are c, d ∈ G such that c �1 d and d ≺2 c. Set u = a−1bd−1c. Then u ≺1 1 by Lemma 2.6. By symmetry we

have 1 ≺2 u. �

Therefore we have:

Theorem 2.20. Let G be a group. Then ZR∗(G) is a join-semilattice, that is, a partially ordered set in

which all subsets have an infimum.

Moreover, for every �∈ ZR∗(G), (Raf−∗ (�), ≤) is a totally ordered set.

Proof. We have that ZR∗(G) is a join-semilattice by Lemma 2.17.

Now let �∈ ZR∗(G). Let �1, �2∈ Raf−∗ (�), �1 6=�2. Assume, aiming for contradiction, that �1 /∈ Raf−∗ (�2)

and �2 /∈ Raf−∗ (�1). Then by Lemma 2.19 there exists u ∈ G such that u ≺1 1 and u �2 1. Since � refines

�1 and �2 then u ≺ 1 and u � 1 which is a contradiction. �

Proposition 2.21. Assume the following:

i) for every �∈ ZR∗(G), there is a maximal element �′<�.

ii) for every �1, �2∈ ZR∗(G) with �1 <�2, there is a minimal �′∈ ZR∗(G) such that

�1 <�′≤�2 .
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In this case, ZR∗(G) has a rooted tree structure: the vertices of ZR∗(G) are the elements of ZR∗(G), and

there is an edge between two vertices �1, �2 if �1 <�2 or �2 <�1 and there is no preorder between �1

and �2. The root is the trivial preorder.

Proof. We only have to prove that, for every �1, �2∈ ZR∗(G), there is a unique path connecting �1 to �2.

By replacing �2 by �1 ∧ �2, we may assume that �2 ≤�1. Since Raf−∗ (�1) is totally ordered, we only need

to prove that there is a path between �2 and �1. We consider the set

E := {�∈ Raf−∗ (�1) ∩ Raf+∗ (�2) |� is connected to �1}.

We claim that �inf E∈ E. First we have �inf E∈ Raf−∗ (�1)∩Raf+∗ (�2) since it is the infimum of E. Moreover,

by ii), if �inf E 6=�1, then there is a minimal �∈ ZR∗(G) such that �inf E<�≤�1 . Therefore �inf E is

connected by an edge to � and �∈ E.

Now, if �2 6=�inf E , then by i) there is �∈ ZR∗(G) such that �2 ≤�<�inf E , and � and �inf E are connected

by an edge. This contradicts the definition of E. Therefore �inf E=�2. This proves the result. �

2.4. Topologies.

2.4.1. The Zariski topology.

Definition 2.22. Let G be a group. The Zariski topology on ZR∗(G) (or Z-topology for short) is the

topology for which the sets

Ou := {�∈ ZR∗(G) | u � 1},
where u runs over the elements of G, form a basis of open sets.

Proposition 2.23. Let G be a group. The order ≤ is the specialization order of the topological set ZR∗(G),

that is

∀ �1,�2∈ ZR∗(G), �1 ≤�2 ⇐⇒ {�2}
Z
⊂ {�1}

Z

where E
Z

is the closure of E ⊂ ZR∗(G) for the Zariski topology.

Proof. Let �1 ≤�2. If �2∈ Ou, then u �2 1 and u �1 1 since �2 refines �1. Thus �1∈ Ou. Hence every

open set containing �2 contains �1. Hence �2 belongs to the Z-closure of {�1}.
On the other hand assume {�2}

Z
⊂ {�1}

Z
. Let u, v ∈ G such that u �2 v, that is �2∈ Ov−1u. Since Ov−1u

is open we have �1∈ Ov−1u. Therefore u �1 v and �1 ≤�2. �

In particular this implies that for a given preorder �∈ ZR∗(G) we have Raf+∗ (�) = {�}
Z

.

2.4.2. The Inverse topology.

Definition 2.24. Let G be a group. The set ZR∗(G) is endowed with a topology for which the sets

Uu := {�∈ ZR∗(G) | u � 1},

where u runs over the elements of G, form a basis of open sets. This topology is called the Inverse topology

or I-topology.

Remark 2.25. For every u ∈ G, Ou is the complement of Uu−1 .

Proposition 2.26. Let G be a group. The order ≤ is the specialization inverse order of the topological set

ZR∗(G), that is

∀ �1,�2∈ ZR∗(G), �1 ≤�2 ⇐⇒ {�1}
I
⊂ {�2}

I
.

Proof. Let �1 ≤�2. If �1∈ Uu, then u �1 1. Therefore u �2 1 since �2 refines �1. Thus �2∈ Uu. Hence

every open set containing �1 contains �2. Hence �1 belongs to the I-closure of {�2}.
On the other hand assume {�1}

I
⊂ {�2}

I
. Let u, v ∈ G such that u �1 v, that is �1∈ Uv−1u. Since Uv−1u

is open we have �2∈ Uv−1u. Therefore u �2 v and �1 ≤�2. �
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Therefore for a given preorder �∈ ZR∗(G) we have Raf−∗ (�) = {�}
I
.

2.4.3. The Patch topology.

Definition 2.27. The Patch topology on ZR∗(G) (or P-topology for short) is the topology for which the

sets Uu and Ou, where u runs over G, form a basis of open sets. This is the coarsest topology finer than the

Zariski and the Inverse topologies.

2.4.4. Remarks about these topologies. From now on, for a set E ⊂ ZR∗(G) where G is a group, we say that

that E is ?-open if E is open in the ?-topology for ? = Z, I, or P. In the same way we define ?-continuous

maps and ?-homeomorphisms.

Proposition 2.28. Let G be a group. The space ZR∗(G) endowed with the Zariski or the Inverse topology is

T0, but it is not T1 when ZR∗(G) 6= {≤0}. In particular ZR∗(G) is not metrizable for these two topologies.

Proof. Let us prove the statement for the Zariski topology.

Let �1≤�2. Then �2 belongs to the closure of {�1} by Proposition 2.23 and ZR∗(G) is not T1.

Now let �1 and �2 two distinct preorders on G. In particular one of them does not refine the other. Assume

for instance that �2 does not refine �1. Thus there exist u, v ∈ Zn such that u �2 v and v ≺1 u. Thus

�2∈ Ou−1v but �1 /∈ Ou−1v. Hence ZR∗(G) is T0.

The proof is similar for the Inverse topology. �

Lemma 2.29. The I-topology and the Z-topology agree on Ord∗(G).

Proof. Indeed, for u ∈ G, u 6= 1 we have Uu ∩Ord∗(G) = Ou ∩Ord∗(G). �

2.5. Compactness of the space of preorders.

Theorem 2.30. Let G be a group. Then ZR∗(G) is compact for the P-topology. Therefore it is compact for

the Z-topology and the I-topology.

Remark 2.31. Let us mention that this result has been proved when G is a countable group in [AR20] (see

Remark 2.54).

Proof. We follow the method of Samuel and Zariski [SZ60, Theorem 40].

We do the proof for the space of left-invariant preorders. The case of bi-invariant preorders is similar.

For every �∈ ZRl(G), we define the map ν� : G→ {−1, 0, 1} as follows:

ν�(u) :=

 −1 if u ≺ 1
0 if u ∼� 1
1 if u � 1.

This defines an inclusion

ZRl(G) ⊂ {−1, 0, 1}G.
We consider the discrete topology on {−1, 0, 1}, and we consider the product topology on {−1, 0, 1}G. The

induced topology on ZRl(G) is the P-topology.

We have that {−1, 0, 1} is compact, and the product {−1, 0, 1}G is compact by Tychonoff’s Theorem. In

the corresponding product topology, we claim that ZRl(G) is a closed set, so compact. That is, ZRl(G) is

compact in the P-topology.

Thus let us prove that ZRl(G) is closed in {−1, 0, 1}G. For any map ν ∈ {−1, 0, 1}G, we have that ν ∈ ZRl(G)

if and only if:

i) For all u, v ∈ G, either ν(u) = −1 or ν(v) = −1 or ν(uv) ∈ {0, 1}
ii) For all u ∈ G, ν(u−1) = −ν(u).
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Clearly, if ν = ν� for some �∈ ZR∗(G), then these properties are satisfied. On the other hand, if ν satisfies

these properties, then let us show that ν = ν� for some �. In this case, necessarily � is defined as follows:

∀u, v ∈ G, u ≺ v if ν(u−1v) = 1; u � v if ν(u−1v) = −1; u ∼� v if ν(v−1u) = 0. We only need to prove that

� is a preorder in the sense of Definition 2.1.

Clearly, for every u, v ∈ G we have u � v or u � v. By ii), we have u ∼� u for every u ∈ G. Then let u, v,

w be elements of G, and assume u � v and v � w. It means that ν(u−1v) and ν(v−1w) are in {0, 1}. By i),

we have ν(u−1w) ∈ {0, 1}, hence u � w.

Now let u, v, w ∈ G with v � w, that is, ν(v−1u−1uw) = ν(v−1w) ∈ {0, 1}. Thus, uv � uw.

For every u ∈ G, we denote by Φu : {−1, 0, 1}G → {−1, 0, 1} the map sending ν onto ν(u). This map is

continuous for the discrete topology.

For every u, v ∈ G, we set

Fu,v := Φ−1u ({−1}) ∪ Φ−1v ({−1}) ∪ Φ−1uv ({0, 1})

and

F ′u := Φ−1u ({0}) ∪
(
Φ−1u ({1}) ∩ Φ−1u−1 ({−1})

)
Since Φu is continuous for the discrete topology, the sets Fu,v and F ′u are closed sets for all u, v ∈ G.

Moreover, we have that ZRl(G) =
⋂

u,v∈G
Fu,v ∩

⋂
u∈G

F ′u. Therefore ZRl(G) is a closed set. This completes the

proof. �

Lemma 2.32. Let G be a group. Then Ord∗(G) is a closed set of ZR∗(G) in the Z-topology and the

P-topology.

Proof. We have Ord∗(G) =
⋂

u∈G,u 6=1

(Ou ∩ Ou−1)
c
. �

Remark 2.33. As a closed subset of a compact set, Ord∗(G) is compact for the Z-topology. Since the

Z-topology and the I-topology coincide on the set of orders, Ord∗(G) is compact for the I-topology.

Proposition 2.34. Let G be a group. Then ZR(G) is a closed subset of ZRl(G) for the I-topology and the

P-topology.

Proof. Let �∈ ZRl(G). We have that � is bi-invariant if and only if it is right invariant, that is

∀u, v, w ∈ G, u � v ⇐⇒ uw � vw.

Therefore ZR(G) = ZRl(G)
⋂(⋂

u∈G
(⋂

w∈GOw−1uw ∪
⋂
w∈GOw−1u−1w

))
is closed for these two topologies.

�

2.6. Residue group of a preorder.

Definition 2.35. Let G be a group and �∈ ZRl(G). Let H be a subset of G. We say that H is �-isolated

(or �-convex ) if, for every u1, u2 ∈ H, v ∈ G,

u1 � v � u2 =⇒ v ∈ H.

Lemma 2.36. Let G be a group and let �∈ ZRl(G). The set

G� := {u ∈ G | u ∼� 1}

is a �-isolated subgroup of G called the residue group of �.

Moreover, if � is bi-invariant, then G� is normal.

Proof. It is straightforward to check that G� is a subgroup. Let us prove that G� is �-isolated. Let u,

v ∈ G� and w ∈ G such that u � w � v. Then 1 � u � w � v � 1, hence w ∈ G�. Thus G� is �-isolated.

Let us prove that G� is normal when � is bi-invariant. Let u ∈ G and v ∈ G�. Then uv ∼� u, thus

uvu−1 ∼� 1. Thus uG�u
−1 ⊂ G� for every u ∈ G. Hence G� is normal. �
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Remark 2.37. Equivalently, we have G� = V� \m�.

Lemma 2.38. Let �≤�′ be two elements of ZR∗(G) where G is a group. Then

G�′ ⊂ G�
with equality if and only if �=�′.

Proof. Let u ∈ G�′ , that is, u �′ 1 and 1 �′ u. Since �′ refines � we have u � 1 and 1 � u, that is,

u ∈ G�. �

Corollary 2.39. If G is a Noetherian and Artinian group, then ZRl(G) is a rooted tree.

If G is a group satisfying the ascending and descending chain conditions on normal subgroups, then ZR(G)

is a rooted tree.

Proof. This is a direct consequence of Proposition 2.21, and Lemmas 2.36 and 2.38. �

Proposition 2.40. Let G be a group and H be a normal subgroup of G. Then

Ord∗(G/H) 6= ∅ ⇐⇒ ∃ �∈ ZR∗(G) such that H = G�.

Proof. Let �′∈ Ord∗(G/H). This induces a preorder on G by defining for every u, v ∈ G:

u � v ⇐⇒ u �′ v,

where u = uH. It is straightforward to check that H = G�. �

It is a difficult problem to determine in general if a given subgroup H of a group G is the residue

subgroup of a preorder of G. Let us mention that [ADS18, Theorem 5] provides a criterion to insure that

such a subgroup H is the residue subgroup of a preorder of G (see Remark 2.54 to compare the terminology

used in [ADS18] and ours).

Example 2.41. If G is a torsion-free abelian group, then Ord(G) 6= ∅ (see Example 1.3.8 [Gl99]).

Proposition 2.42. Let G be a group. Let �∈ ZR∗(G). Then we have:

i) There is an order-preserving bijection between ZR∗(G�) and Raf+∗ (�). This bijection is a Z-

homeomorphism and an I-homeomorphism.

ii) If � is bi-invariant, there is an injective order-preserving Z-continuous and I-continuous map

ψ� : Raf−∗ (�) −→ ZR∗(G/G�).

Its image is Raf−∗ (ψ�(�)). Moreover the inverse

ψ−1� : Raf−∗ (ψ�(�)) −→ Raf−∗ (�)

is order-preserving, Z-continuous, and I-continuous.

Proof. Let us prove i). First we show that the inclusion G� ⊂ G induces a bijection ϕ� between ZR∗(G�)

and Raf+∗ (�). Let �′∈ ZR∗(G�). This preorder defines in a unique way a preorder

ϕ�(�′) :=�′′∈ Raf+∗ (�)

as follows:

Let u, v ∈ G. If u ≺ v then we set u ≺′′ v.

If u ∼� v then v−1u ∈ G� and we set u �′′ v (resp. u �′′ v) if v−1u �′ 1 (resp. v−1u �′ 1).

It is straightforward to check that �′′∈ ZR∗(G) refines � (that is �′′∈ Raf+∗ (�)), and that the restriction

of �′′ to G� is �′. Thus ϕ� is a injecttion and the restriction map is its inverse:

�′′∈ Raf+∗ (�) 7−→�′′|G�∈ ZR∗(G�),
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thus it is a bijection For u ∈ G�, we have

(ϕ−1� )−1(Ou ∩ ZR∗(G�)) = Ou ∩ Raf+(�).

Hence ϕ−1� (Ou ∩ Raf+(�)) = Ou ∩ ZR∗(G�), Therefore ϕ� and ϕ−1� are Z-continuous and I-continuous.

Moreover these two maps are order-preserving maps from their construction.

Now let us prove ii). Let �′∈ ZR∗(G) such that �′ ≤ �. Then G� ⊂ G�′ . Therefore �′ induces a

preorder �′′ on G/G� by defining

u �′′ 1⇐⇒ u �′ 1

for every u ∈ G, where u denotes the image of u in G/G�. Then �′′ is well defined because, if v ∈ G is such

that u = v, we have v−1u ∈ G� ⊂ G�′ and v �′ 1 when u �′ 1. Thus we can define a map

ψ� : Raf−∗ (�) −→ ZR∗(G/G�)

such that ψ�(�′) =�′′, and this map is clearly injective and order-preserving. The image of � by ψ� is an

order on G/G� and the image of ψ� is included in Raf−(ψ�(�)).

The inverse of ψ� is defined by

u ψ−1� (�′′) v ⇐⇒ u �′′ v
for every u, v ∈ G.

Now let u ∈ G. We have

ψ−1� (Ou ∩ Raf−∗ (ψ�(�))) = Ou ∩ Raf−∗ (�)

and

(ψ−1� )−1
(
Ou ∩ Raf−∗ (�)

)
= Ou ∩ Raf−∗ (ψ�(�)).

Therefore ψ� is Z-continuous and I-continuous and ψ−1� also. �

Proposition 2.43. Let G be a group and H be a normal subgroup of G. Then there is a bijection, which is

an order-preserving Z-homeomorphism and a I-homeomorphism:

ZR∗(G/H) ' {�∈ ZR∗(G) | H ⊂ G�}.

Proof. Let �∈ ZR∗(G) such that H ⊂ G�. Therefore � induces a preorder �′ on G/H by defining

u �′ 1⇐⇒ u � 1

for every u ∈ G, where u denotes the image of a in G/H. Then �′ is clearly well defined. Thus we can

define a map

ψH : {�∈ ZR∗(G) | H ⊂ G�} −→ ZR∗(G/H)

such that ψH(�) =�′, and this map is clearly injective and increasing.

The inverse of ψH is defined by

u ψ−1H (�′) v ⇐⇒ u �′ v
for every u, v ∈ G. As in the proof of Theorem 2.42 ii), it is straightforward to check that ψH is Z-continuous

and I-continuous and ψ−1H also. �

Definition 2.44. Let G be a group, and H be a subset of G. The relative Zariski-Riemann space ZR∗(G/H)

is defined to be the set of �∈ ZR∗(G) such that u ∼� 1 for every u ∈ H. Equivalently,

ZR∗(G/H) = {�∈ ZR∗(G) | H ⊂ G�}.

Remark 2.45. When H is a normal subgroup of G, Proposition 2.43 allows us this abuse of notation.

Lemma 2.46. Let G be a group and H be a subset of G. Then

i) ZRl(G/H) = ZRl(G/〈H〉) where 〈H〉 is the subgroup of G generated by H.

ii) ZR(G/H) = ZR(G/〈HG〉) where 〈HG〉 is the normal subgroup of G generated by H.
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Proof. This is a direct consequence of Lemma 2.36 and Definition 2.44. �

Example 2.47. Let G be a group. The abelianization Gab of G is the quotient of G by its commutator

subgroup: Gab = G/[G,G]. By the previous proposition ZR(Gab) embeds in ZR(G). For instance if G = Fn,

the free group generated by n elements, then we have that ZR(Zn) embeds in ZR(Fn).

Definition 2.48. Let G be group and H a subgroup of G. We denote by G/H the set of left cosets {uH}u∈G.

We consider the set of left invariants preorders on G/H:

X := {� preorder on G/H | ∀u, v, w ∈ G, uH � vH =⇒ wuH � wvH}.

For �∈ X, we can define �′∈ ZRl(G) by

∀u, v ∈ G, u �′ v if uH � vH.

Clearly, for every w ∈ H, w ∼�′ 1, thus �′∈ ZRl(G/H).

On the other hand, for �′∈ ZRl(G/H), we define �∈ X as

∀u, v ∈ G, uH � vH if u �′ v.

Then � is well defined, because for u, v ∈ G with u �′ v, we have, for w1, w2 ∈ H:

w1 ∼�′ 1, w2 ∼�′ 1 =⇒ w1 �′ 1, w2 �′ 1 =⇒ uw1 �′ u �′ v �′ vw2.

Therefore we can identify X with ZRl(G/H), and we denote X by ZRl(G/H). The set of orders of ZRl(G/H)

is denoted by Ordl(G/H).

Definition 2.49. Let G be a group and H a subgroup of G. Let �1∈ Ordl(G/H) and �2∈ ZRl(H). We

define �∈ ZRl(G) as follows:

∀u, v ∈ G, u � v if

{
uH ≺1 vH

or uH ∼�1
vH (i.e. v−1u ∈ H) and v−1u �2 1

We denote � by �1 ◦ �2 and it is called the composite preorder of �1 and �2. It is straightforward to see

that H is �-isolated and �1 ≤�.

Lemma 2.50. Let �, �′∈ ZRl(G), �′≤�. Then G�′ is �-isolated.

Proof. Let u ∈ G, v ∈ G�′ satisfy v � u � 1. Then v �′ u �′ 1. So u ∼�′ 1 and u ∈ G�′ . �

Proposition 2.51. Let G be a group and H a subgroup of G. Let �∈ ZRl(G) such that H is �-isolated.

We define �1 by

∀u, v ∈ G, uH �1 vH if

{
v−1u ∈ H

or v−1u � 1

Then �1 is well defined and belongs to Ordl(G/H). If we set �2=�|H , then we have

�=�1 ◦ �2 .

Proof. If v−1u ∈ H, then w−12 v−1uw1 ∈ H, for every w1, w2 ∈ H. Therefore uH �1 vH is well defined in

this case.

Assume now that v−1u /∈ H and v−1u � 1. Since H is �-isolated, we have v−1u � w2, thus u−1vw2 � 1.

Again, because H is �-isolated, we have u−1vw2 � w1, thus vw2 � uw1. This proves that �1 is well defined.

It is straightforward to see that �1 is a preorder and that �1|H is trivial. Moreover, by definition, �1 is left

invariant. Finally, if v−1u ∼� 1, then v−1u ∈ H since H is �-isolated. Therefore �1∈ Ordl(G/H).

Now let u, v ∈ G with u � v. In particular, uH �1 vH. If uH ∼�1 vH, then v−1u ∈ H, and v−1u �2 1.

This shows that �=�1 ◦ �2. �

Corollary 2.52. Let G be a group and let �′, �∈ ZRl(G). Then

�′≤� ⇐⇒ ∃ �2∈ ZRl(G�′), �=�′ ◦ �2
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Proof. Let H := G�′ . It is straightforward to check that �′ is equal to the preorder �1 defined in Proposition

2.51. Therefore there is �2∈ ZRl(G�′) such that �=�′ ◦ �2 (just take �2:=�|G�′ ). �

The following corollary is an analogue of [Gh01, Theorem 6.8] and Proposition [AR20, Proposition 2.2]

for non necessarily countable groups:

Corollary 2.53. Let G be a group. Then ZRl(G) 6= {≤0} if and only if it there is a totally ordered set

(Ω,≤) on which G acts (non-trivially) by order-preserving bijections.

Proof. If ZRl(G) 6= {≤0}, then pick a non-trivial preorder �∈ ZRl(G) and set Ω = G/G�. By applying

Proposition 2.51 with H = G� (which is allowed by Lemma 2.50) we have the existence of an order on Ω

which is G-invariant.

On the other hand, assume that there is a totally ordered set (Ω,≤) on which G acts (non-trivially) by

order preserving bijections and let us denote by ∗ the action of G on Ω. Let ω be an element of Ω such that

g ∗ ω 6= h ∗ ω for some g, h ∈ G. Such a ω exists because the action of G on Ω is not trivial. We define �ω
by:

∀g, h ∈ G, g �ω h⇐⇒ g ∗ ω ≤ h ∗ ω.
Then the relation �ω is a non-trivial preorder on G. �

Let us mention that in the case where G is countable, then (Ω,≤) can be changed by (R,≤) in the previous

corollary (see [AR20, Proposition 2.2]).

Remark 2.54. Let us mention that some authors also call relative order (with respect to H) a binary relation

satisfying Definition 2.48 (see [AR20] for example). Therefore, using Lemma 2.50 and Proposition 2.51, we

see that the set of preorders on a group G coincides with the set of relative orders on G. In particular, this

shows that the topology on the set of relative orders on a group G introduced in [AR20] coincides with the

Patch Topology on the set of preorders on G. In particular Theorem 2.30 has been proven in [AR20] for

countable groups equipped with the Patch Topology.

2.7. Extension and restriction of preorders.

Lemma 2.55. Let G be a group. Then there is a bijection between ZR∗(G) and ZR∗(G/Tor(G)). This

bijection is an order-preserving Z-homeomorphism and a I-homeomorphism.

Proof. Let u ∈ Tor(G) be an element of order n. Let �∈ ZR∗(G). Then, if 1 � u, we have

1 � u � u2 � · · · � un = 1.

Thus Tor(G) ⊂ G� for every �∈ ZR∗(G). Therefore this lemma is a particular case of Proposition 2.43

since where H = Tor(G). �

Lemma 2.56. Let G be an abelian group. Then the restriction map

ZR(Q⊗G) 7−→ ZR(G)

is an order-preserving Z-homeomorphism and I-homeomorphism.

Proof. By the previous lemma we may assume that G is torsion-free. Thus G can be seen as a subgroup of

Q⊗G through the map u ∈ G 7−→ 1⊗ u ∈ Q⊗G.

We define the map

ϕ : ZR(G) −→ ZR(Q⊗G)

by

∀
( n
m
⊗ u, p

m
⊗ v
)
∈ (Q⊗G)

2
,∀ �∈ ZR(G),

n

m
⊗ u ϕ(�)

p

m
⊗ v ⇐⇒ nu � pv.

It is bijective since its inverse is the restriction map

�∈ ZR(Q⊗G) −→�|G∈ ZR(G).
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We have ϕ−1(O n
m⊗u) = Onu and (ϕ−1)−1(Ou) = O1⊗u for every u ∈ G, m, n ∈ Z.

It is straightforward to check that ϕ is order-preserving. �

2.8. Rank and degree of a preorder.

Definition 2.57. Let G be a group and �∈ ZR∗(G). We denote by # Raf−∗ (�) the cardinal of Raf−∗ (�)

(as an initial ordinal). We define the rank of � in ZR∗(G) to be

rank∗(�) :=

{
# Raf−∗ (�)− 1 if this cardinal is finite

# Raf−∗ (�) if this cardinal is infinite

The subset of ZR∗(G) of preorders of rank equal to r (resp. greater than or equal to r) is denoted by ZRr
∗(G)

(resp. ZR≥r∗ (G)).

Definition 2.58. Let G be a group and �∈ ZR∗(G). The degree of � in ZR∗(G) is

deg∗(�) :=


sup

�′∈Ord∗(G))∩Raf+∗ (�)
#
(
Raf−∗ (�′) \ Raf−∗ (�)

)
− 1 if this supremum is finite

sup
�′∈Ord∗(G))∩Raf+∗ (�)

#
(
Raf−∗ (�′) \ Raf−∗ (�)

)
if this supremum is infinite

The subset of ZR∗(G) of preorders of degree equal to d (resp. less than or equal to d) is denoted by dZR∗(G)

(resp. ≤dZR∗(G)).

Remark 2.59. By Definition 2.49 and Proposition 2.51, Raf−l (�) is in bijection with the set of �-isolated

subgroups of G. By Lemma 2.38, this bijection is an increasing map. In particular the set

{H ⊂ G | H � -isolated subgroup}

is totally ordered under inclusion.

2.9. Action on the set of preorders.

Definition 2.60. Let G be a group and let Aut(G) be the group of automorphisms of G. Then there is a

left action of Aut(G) on ZR∗(G) defined as follows:

α : (ϕ,�) ∈ Aut(G)× ZR∗(G) 7−→ �ϕ=: αϕ(�)

with

∀u, v ∈ G, u �ϕ v if ϕ(u) � ϕ(v).

Remark 2.61. Let G be a group. In fact the action of Inn(G) on ZR(G) is trivial. Therefore, if we consider

only bi-invariants preorders, then the previous action induces an action of the outer automorphisms group

Out(G) on ZR(G).

Lemma 2.62. For every ϕ ∈ Aut(G), the map

αϕ : ZR∗(G) −→ ZR∗(G)

� 7−→�ϕ
is an order-preserving continuous map for the Z-topology, the I-topology, and the P-topology. In particular

the rank and the degree are preserved by the action of Aut(G) on ZR∗(G).

Proof. Indeed, for every �, �′∈ ZR∗(G) we have

�≤�′⇐⇒ V�′ ⊂ V� ⇐⇒ ϕ(V�′) ⊂ ϕ(V�)⇐⇒�ϕ≤�′ϕ .

�

Example 2.63. The action of Aut(G) on ZR∗(G) is not faithful in general. For instance let us consider G = Q
and ϕ ∈ Aut(Q) be defined by ϕ(x) = 2x. Then �ϕ=� for every �∈ ZR(G).

This also shows that the action is not free.
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Lemma 2.64. We denote the stabilizer of �∈ ZR∗(G) by Aut(G)�. We have

i) ∀ϕ ∈ Aut(G)�, ϕ(G�) = G�,

ii) If G� is normal, then

Aut(G)� = {ϕ ∈ Aut(G) | ϕ(G�) = G� and ϕ|G/G�
∈ Aut(G/G�)�}.

Proof. Let ϕ ∈ Aut(G)� and u ∈ G�. We have

1 � u and u � 1.

Since �ϕ=� we have

1 � ϕ(u) and ϕ(u) � 1

that is, ϕ(u) ∈ G�. By replacing ϕ by ϕ−1 we prove i).

Now let ϕ ∈ Aut(G) be such that ϕ(G�) = G� and ϕ|G/G�
∈ Aut(G/G�)�. Let u ∈ G such that

u � 1.

If 1 � u, then u ∈ G�. Since ϕ(G�) = G� we have ϕ(u) � 1.

If 1 ≺ u, then the class of u in G/G�, denoted by u, is not trivial. The preorder � induces a preorder on

G� by Proposition 2.42, that we still denote by �. Therefore we have 1 ≺ u. Since ϕ|G/G� ∈ Aut(G/G�)�,

we have 1 ≺ ϕ|G/G�(u) = ϕ(u). Hence 1 ≺ϕ u. Therefore �ϕ=� and ϕ ∈ Aut(G)�.

The reverse inclusion is straightforward to check.

�

2.10. A metric: the case of countable groups. In the case of a countable group G, Sikora [Si04] proved

that the Zariski topology on Ord∗(G) is a metric topology. We extend here this result to ZR∗(G) endowed

with the Patch topology.

Definition 2.65. Let G be a countable group. Let

G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · ·

be a chain of finite subsets of G such that
⋃
n≥1
Gn = G. We denote this chain by G. For a given u ∈ G, we

define the height of u with respect to G as

htG(u) = min{n ∈ N∗ | u ∈ Gn}.

Definition 2.66. Let �1, �2∈ ZR∗(G) where G is a countable group. Let us fix a chain G as in Definition

2.65. If �1 6=�2, then we set

dG(�1,�2) =
1

n
where n is the only integer such that �1|Gn−1

=�2|Gn−1
but �1|Gn 6=�2|Gn . And we set dG(�1,�1) = 0.

Proposition 2.67. Let G be a countable group and G be a chain as in Definition 2.65. Then we have:

i) The function dG is an ultrametric.

ii) The topology defined on ZR∗(G) by dG is the Patch topology. In particular, it does not depend on

the choice of G.

Proof. Clearly dG is non negative, reflexive and symmetric. The ultrametric inequality is straightforward to

check. Therefore we only need to prove ii).

Now let n ∈ N∗ and �∈ ZR∗(G). We denote by B
(
�, 1

n

)
the open ball centered at � of radius 1

n for

the metric dG . Then �′∈ B
(
�, 1

n

)
if and only if

∀u, v ∈ Gn,
{
u � v =⇒ u �′ v
u ≺ v =⇒ u ≺′ v
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Therefore we have

B

(
�, 1

n

)
=

⋂
u∈Gn,u�1

Uu ∩
⋂

u∈Gn,u�1

Ou

is open for the topology generated by the Uu and the Ou. Indeed this intersection is finite since the Gn are

finite.

On the other hand, let u ∈ G. For �∈ Uu we have B
(
�, 1

htG(u)

)
⊂ Uu. For �∈ Ou we have B

(
�, 1

htG(u)

)
⊂

Ou. Thus the Uu and the Ou are open for the topology induced by dG .

�

Remark 2.68. Let G be a countable group and {Gk}k be a chain as in Definition 2.65. Let (�n)n∈N be a

sequence of preorders on G that converges to �∈ ZR∗(G) for the Patch topology. Then

∀k ∈ N, ∃N ∈ N, ∀n ≥ N, G�n
∩ Gk = G� ∩ Gk.

2.11. Cantor sets. Assume that G is a countable group. Then ZR∗(G), endowed with the Patch topology,

is a metrizable compact space. Moreover it is totally disconnected:

Lemma 2.69. Any subspace E ⊂ ZR∗(G) is totally disconnected for the Patch topology.

Proof. Indeed, if �1, �2∈ E, �1 6=�2, then there is u ∈ G such that u �1 1 and 1 �2 u (eventually after

permutation of �1 and �2). Therefore �1∈ Ou and �2∈ Uu−1 . But Ou∩Uu−1 = ∅ and Ou∪Uu−1 = ZR∗(G).

�

Moreover any closed subset of ZR∗(G) is a also a metrizable totally disconnected compact space. Therefore,

a closed subset of ZR∗(G) is a Cantor set if and only if it is a perfect space, that is, it does not have isolated

points.

There are several cases for which Ord∗(G) is known to be a Cantor set. Here is a non complete list of

some examples:

• The space Ord(Qn) for n ≥ 2 is a Cantor set [Si04].

• The space Ordl(Fn) for n ≥ 2 is a Cantor set, where Fn is the free group generated by n elements

[MC85], [Na10].

• The space Ord∗(G), where G is a countable, torsion-free, nilpotent group which is not rank-1 abelian,

is a Cantor set [MW12] and [DNR].

• The space Ordl(G), where G is a compact hyperbolic surface group, is a Cantor set [ABR17].

In 3.2 we will see that ZR(Qn), for ≥ 2, contains infinitely many Cantor subsets.

3. Examples

3.1. The Q-vector spaces. By Lemma 2.56, in order to study ZR(G) for an abelian group, we only need

to study ZR(Q ⊗ G). Therefore we may assume that G is a Q-vector space. We begin with the following

lemma:

Lemma 3.1. Let H be a subgroup of a Q-vector space G such that Tor(G/H) = {0}. Then H is a Q-subspace

of G.

Proof. Since H is a subgroup, H is stable by addition and by multiplication by integers. Therefore, we only

have to prove that for every h ∈ H and n ∈ N∗, 1
nh ∈ H.

Indeed, for such a h and such a n, the image g of 1
nh in G/H is a torsion element since ng ≡ 0 modulo H.

Hence 1
nh ∈ H since Tor(G/H) = {0}. �

On the other hand, every Q-subspace of G is a normal subgroup of G with Tor(G/H) = {0}. Therefore,

by Example 2.41, the residue groups G� of preorders �∈ ZR(G) are exactly the Q-subspaces of G.
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Proposition 3.2. Let G be a Q-vector space and �∈ ZR(G). Then

deg(�) = dimQ(G�).

Proof. By Lemma 3.1 and Example 2.41, the residue groups of preorders on G are the subvector spaces of

G. Therefore, by Lemma 2.38 and Proposition 2.40, we have that dimQ(G�) is the supremum of the lengths

of increasing sequences of sub-Q-vector spaces of G (minus 1 in the finite dimensional case), so it is equal to

sup
�′∈Ord∗(G))∩Raf+∗ (�)

#
(
Raf−∗ (�′) \ Raf−∗ (�)

)
(−1 in the finite dimensional case)

which is deg(�). �

We have the following inequality relating the rank and the degree of a preorder (this can be seen as the

counterpart of the inequality concerning valuations given in Remark 4.33):

Corollary 3.3. Let G be a Q-vector space and �∈ ZR(G). Then

rank(�) + deg(�) ≤ dimQ(G).

Proof. By definition, the rank of � is the supremum of the length of chains of preorders {�i}i∈I (i.e. I is

totally ordered and �i<�j for every i < j) such that �i<� for every i ∈ I. By Lemma 2.38 and Lemma

2.50, it is also bounded by the supremum of the lengths of chains {Hi}i∈I of subvector spaces such that

G� ( Hi for every i ∈ I. This proves the claim, since deg(�) = dimQ(G�). �

Corollary 3.4. Let G be a countable Q-vector space, �∈ ZR(G) and let (�n)n∈N be a sequence of preorders

on G that converges to � for the Patch topology. If dimQ(G�) <∞, then, for n large enough,

G� ⊂ G�n
.

In any case we have

lim inf deg(�n) ≥ deg(�).

Proof. Let {Gk}k∈N be a chain as in Definition 2.65. Let (ul)l∈L be a Q-basis of G�.

Assume that L is finite, and let k be large enough to insure that ul ∈ Gk for every l ∈ L. By Remark 2.68,

and since G�n
is a Q-vector space for every n, we have G� ⊂ G�n

for n large enough.

Now assume that L is infinite. For every integer k, we set Wk := VectQ(G�∩Gk). Therefore G� =
∞⋃
k=1

Wk =

sup
k
Wk. Thus

deg(�) = lim
k

dimQ(Wk) = sup
k

dimQ(Wk)

by Lemma 3.2. But, still by Remark 2.68, for any fixed k, we have Wk ⊂ G�n for n large enough. Thus

lim inf deg(�n) ≥ deg(�). �

Example 3.5. For a vector u ∈ Rn we define ≤u∈ ZR(Qn) as

∀v, w ∈ Qn, v ≤u w ⇐⇒ v · u ≤ w · u.

Let (un) ∈ (Q2)N be a sequence of vectors of norm 1 that converges to a vector u with an irrational slope.

We set �n:=≤un and �:=≤u∈ ZR(Z2). Then deg(�n) = 1 for every n and deg(�) = 0.

On the other hand, if we set Gk = {−k, . . . , k}2, with k ∈ N, then we have the following property:

∀k ∈ N, ∃N ∈ N, ∀n ≥ N, �n|Gk≡�|Gk .

Thus (�n) converges to � for the Patch topology. This shows that the inequality in Corollary 3.4 may be

strict.
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Now we consider a totally ordered set I and we denote by GI a Q-vector space with a basis {ei}i∈I .
A subset A of I is called a upper set (or just an upset) if it satisfies the following property:

∀i ∈ A, ∀j ∈ I, i ≤ j =⇒ j ∈ A.

For a given upset A we define the preorder ≤A as follows:

For u =
∑
k∈I

ukek and v =
∑
k∈I

vkek ∈ GI , we define

u <A v

if and only if there is i0 /∈ A, such that uj = vj for all j < i0, and ui0 < vi0 . Then ≤A is well defined because

all but finitely many uk and vk are zero. Moreover the residue group of ≤A is the Q-vector space generated

by the ej for j ∈ A.

Lemma 3.6. Let A ⊂ B be two upsets of I. Then

≤B≤≤A .

Proof. Let u, v ∈ GI such that u <B v. Then there is j0 /∈ B such that uk = vk for all k < j0 and uj0 < vj0 .

Since A ⊂ B, j0 /∈ A and u <A v. Therefore we have u ≤A v. Thus, ≤B≤≤A. �

Therefore the subset E := {≤A| A upset of I} is a totally ordered subset of ZR(GI). The set E′ :=

{≤{j∈I|j≥i}| i ∈ I} is a subset of E, which is totally ordered, order isomorphic to I.

Example 3.7. If I = R, then we obtain a totally ordered subset E′ of ZR(GI), such that for every �1,

�2∈ E′, there exists �′∈ E′ with

�1 <�′<�2 .

The upsets of R have the form

]x,+∞[ or [x,+∞[ for some x ∈ R.
Therefore E is order isomorphic to the union of two copies of R, denoted by R1 and R2. The elements of R1

are the open right segments of R, and the elements of R2 are the closed right segments of R. The order on

R1 ∪ R2 is the inclusion.

Lemma 3.8. The chain E = {≤A}A upset of I is a maximal chain.

Proof. Let �∈ ZR(GI) such that, for every upset A, we have �≤≤A or ≤A≤� . For a upset A we set

HA := Vect{ei | i ∈ A}. Therefore, by Lemma 2.38, we have HA ⊂ GI� or GI� ⊂ HA. By Lemma 3.1, GI�
is a Q-subspace of GI . We set

B := {i ∈ I | ei ∈ GI�}.
We claim that B is an upset of I. Indeed, if it is not the case, then there exist i, j ∈ I with i < j and i ∈ B,

j /∈ B. Set

C := {k ∈ I | k ≥ j}.
Then ej ∈ HC and ei /∈ HC . By hypothesis we have GI� ⊂ HC or HC ⊂ GI�. But this contradicts the fact

that ei ∈ GI� and ej /∈ GI�. Hence B is an upset.

Now we claim that HB = GI�. Indeed, assume that this is not the case. Then there exist u ∈ GI� \ HB

such that u is of the form u =

n∑
k=1

uikeik where none of the ik is in B and n > 1 since otherwise, by definition

of B, u ∈ HB . Assume that i1 < i2 < · · · < in and ui1 6= 0. Set

A := {i ∈ I | i ≥ i1}.
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Then A is the smallest upset containing B and u. We have HB ⊂ HA or HA ⊂ HB by Lemma 2.38. But

we have GI� ⊂ HA or HA ⊂ GI�. By definition of B we do not have HA ⊂ GI�. Therefore we have

HB ( GI� ( HA. Since u is not a multiple of some ei, there is an upset D with B ( D ( A. Therefore

we do not have GI� ⊂ HD, neither HD ⊂ GI�. This contradicts the hypothesis. Therefore GI� = HB and

�=≤B . �

Remark 3.9. In particular if I is not finite, then I contains a countable subset I ′. But, for a well chosen

order I ′ can be identified with Q. Therefore, the chain {≤A}A upset of I′ is a totally ordered set of preorders

on ZR(GI) that is not well ordered. Therefore ZR(GI) is not a graph.

3.2. Description of ZR(Qn). We have the following result:

Theorem 3.10. [Ro86, Theorem 4] Let �∈ ZR(Qn). Then there exist an integer s ≥ 0 and vectors u1,. . . ,

us ∈ Rn such that

∀u, v ∈ Qn, u � v ⇐⇒ (u · u1, . . . , u · us) ≤lex (v · u1, . . . , v · us).

Then we write �=≤(u1,...,us).

Proposition 3.11. For a given non trivial preorder �∈ Qn, let s be the smallest integer s satisfying Theorem

3.10. Then the rank of � is s.

Proof. We have # Raf−(�) = s+ 1. Indeed Raf−(�) = {�∅,≤u1 ,≤(u1,u2), . . . ,≤(u1,...,us)}. �

Proposition 3.12. For a given non trivial preorder �∈ Qn let u1,. . . , us be vectors in Rn such that

�=≤(u1,...,us). We assume s to be minimal for this property. For k = 0, . . . , s, let Ψk be the Q-linear map

Ψk : Qn −→ Rk
q 7−→ (q · u1, . . . , q · uk)

where Ψ0 is the zero map. Then Ker(Ψs) = G� and the following subgroups are the only �-isolated subgroups

of Qn:

G� = Ker(Ψs) ( Ker(Ψs−1) ( · · · ( Ker(Ψ1) ( Ker(Ψ0) = Qn.

Definition 3.13. For such a preorder, we set dk := dimQ(Ker(Ψk−1)/Ker(Ψk)). In particular we have

(3.1)

s∑
k=1

dk + deg(�) = n.

Here, the integer
s∑

k=1

dk is the analogue of the rational rank of a valuation (see Definition 4.32), and (3.1)

is the analogue of the second inequality in Remark 4.33. The sequence (d1, . . . , ds) is called the type of the

preorder.

The set of preorders of type (d1, . . . , ds) is denoted by ZR(d1,...,ds)(Qn).

Proof of Proposition 3.12. We denote by Vk the space Ker(Ψk). It is straightforward to see that Ker(Ψs) =

G�.

Moreover if Vk+1 = Vk, then we have

≤(u1,...,un)=≤(u1,...,uk−1,uk+1,...,un) .

Therefore, since s is assumed to be minimal, we have Vk+1 ( Vk for every k.

Let k ≥ 1, and let V be a subspace of Vk such that Vk+1 ( V . Assume that V is �-isolated. There is v ∈ V
such that v ∈ Vk \ Vk+1. Let u ∈ Vk. Since v /∈ Vk+1, v · uk+1 6= 0. Thus there is m ∈ Z such that

−mv · uk+1 ≤ u · uk+1 ≤ mv · uk+1.

Thus, −mv � u � mv. Therefore u ∈ V , since V is �-isolated. Thus V = Vk. This proves the result. �
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Remark 3.14. Assume given u1, . . . , us as in Proposition 3.10. Then we can replace uk, for k ≥ 1, by the

orthogonal projection of uk onto R⊗Ker(Ψ1). By induction, we may assume that uk ∈ R⊗Ker(Ψk−1) for

every k.

In this case, if we define ek = dimQ(VectQ(uk,1, . . . , uk,n)), then we have dimQ Ker(Ψ1) = n − e1 and

R⊗Ker(Ψ1) ' Rn−e1 . In particular e1 = d1. Moreover Ker(Ψ2) = Ker(Ψ′) where Ψ′ is the Q-linear map

Ψ′ : Ker(Ψ1) −→ Rs−1
q 7−→ (q · u2, . . . , q · us)

Hence, by induction, we have ek = dk for every k.

Then we have the following description of the topological set ZR(Qn):

Theorem 3.15. We fix n ≥ 2 and consider ZR(Qn) endowed with the Patch topology. We have the following

properties:

i) Every �∈ ZR(Qn) is an isolated point if and only if deg(�) ≥ n− 1. If deg(�) ≤ n− 2, then every

open neighborhood of � contains infinitely many preorders of same rank and same degree as �.

ii) For n ≥ d ≥ 0, ≤dZR(Qn) is a metric compact totally disconnected space. Therefore, for d ≤ n− 2,

it is a Cantor set.

iii) For �∈ ZR(Qn), the set Raf+(�) is homeomorphic to ZR(Qdeg(�)).

iv) Let �∈ ZR(Qn) and d ≤ deg(�)− 1. Then Raf+(�) ∩ ≤dZR(Qn) is a Cantor set.

v) The only elements of Aut(Qn) whose action on ZR(Qn) is the identity, is the set of Q-linear maps

x 7−→ λx with λ ∈ Q>0.

vi) Let �∈ ZR(Qn). Then the stabilizer of � under the action of Aut(Qn) is

Aut(Qn)� = {ϕ ∈ Aut(Qn) | ϕ(G�) = G�, and ϕ|G/G�
= λ11|G/G�

with λ > 0}.

vii) For every s, d and (d1, . . . , ds) ∈ Zs>0 with
∑
dk+d = n, Aut(Qn) acts transitively on ZR(d1,...,ds)(Qn).

Proof. Let us prove i). Take a basis of Qn, u1, . . . , un. Then {≤0} =
n⋂
i=1

(Oui
∩ O−ui

). Therefore ≤0 is an

isolated point. Now let u ∈ Qn, u 6= 0. Let v2, . . . , vn ∈ Qn be such that (u, v2, . . . , vn) is an orthogonal

basis of Qn. Then we have

{≤u} = Uu
⋂(

n⋂
i=2

Ovi ∩ O−vi

)
.

Therefore ≤u is an isolated point of ZR1(Qn).

On the other hand, assume that � is not the trivial preorder nor a preorder of the form ≤u for some u

multiple of a vector in Qn. We set s = rank(�) and d = deg(�). If s = 1, then �=≤u for some u ∈ Rn that

is not a multiple of a vector of Qn. Therefore, by Proposition 3.12, d ≤ n − 2. If s ≥ 2, then we have that

deg(�) = dimQ(G�) ≤ s− 2 ≤ n− 2 by Corollary 3.3. Thus we always have d ≤ n− 2.

Assume that � is an isolated point and write �=≤(u1,...,us). Therefore we may assume that there are vectors

vi, wj ∈ Qn such that (
r⋂
i=1

Ovi

)
∩

 s⋂
j=1

Uwj

 = {�}.

We may assume that vi ∼� 0 for every i and write

E :=

(
r⋂
i=1

Ovi ∩ O−vi

)
∩

 s⋂
j=1

Uwj

 = {�}.

We may also assume that none of the vi and wj are collinear.

Moreover vi ∈ G� for every i. Therefore we will show how to construct infinitely many preorders of rank s
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and degree d belonging to E, and contradicting the assumption on �. For this we consider the set

C := {x ∈ Rn | x · wj > 0 for every j ≤ s}.

This is a non-empty open set (since �∈
s⋂
j=1

Uwj
). Therefore we may choose u′1, . . . , u′s ∈ C ∩G⊥�, Q-linearly

independent (because dimQ(G⊥�) = n − d ≥ s by Corollary 3.3). Moreover we may choose the u′i in such a

way that the kernel of the linear map Ψ defined in Proposition 3.12 is d. Indeed, by Remark 3.14, in order

to do this, we choose u′1 such that

d1 := dimQ(VectQ(u′1,1, . . . , u
′
1,n)) = dimQ(VectQ(u1,1, . . . , u1,n)),

and by induction, we choose

u′i ∈ R⊗ (Vect(u1, . . . , ui−1)⊥ ∩Qn)

with

di := dimQ(VectQ(u′i,1, . . . , u
′
i,n)) = dimQ(VectQ(ui,1, . . . , ui,n)).

By Remark 3.14,
∑
i di = deg(�), thus we may choose such u′i. And again by Remark 3.14, the preorder

≤(u′1,...,u
′
s)

has degree d. Moreover it has rank s since we have

≤u′1 <≤(u′1,u
′
2)
< · · · <≤(u′1,...,u

′
s)
.

Moreover the residue group of ≤(u′1,...,u
′
s)

contains G�, because the u′i belong to G⊥�. Since the u′i are in C

we have

≤(u′1,...,u
′
s)
∈ E.

Because there are infinitely many ways of choosing the vector u′1 of norm 1 (and therefore of choosing the

unique preorder of rank 1 refined by ≤(u′1,...,u
′
s)

), E contains infinitely many preorders of rank s and degree

d. This proves i).

The set ≤dZR(Qn) is closed by Corollary 3.4, therefore it is compact. This set is a metric space. Moreover

it is totally disconnected, by Lemma 2.69. Therefore, by i), it is a Cantor set for d ≤ n− 2.

Clearly iii) holds by Proposition 3.12 and Proposition 2.42.

We have that Raf+(�) ∩ ≤dZR(Qn) is homeomorphic to ≤dZR(Qdeg(�)) by Proposition 2.42. Therefore

iv) follows from ii) and iii).

Let ϕ be defined by ϕ(x) = λx, for every x ∈ Qn, where λ > 0. Then, for �∈ ZR(Qn), and for every

u, v ∈ Qn, we have u � v if and only if λu � λv. That is, �=�ϕ. On the other hand, assume that ϕ is

not of this form. Then there is x ∈ Qn such that x 6= λϕ(x) for all λ > 0. Thus, there is u ∈ Qn, such that

x ·u > 0 and ϕ(x) ·u < 0. Set �:=≤u. Then we have 0 ≺ x but 0 � ϕ(x). Therefore �6=�ϕ. This proves v).

Therefore, by Lemma 2.64 ii), we have vi).

If �∈ ZR(d1,...,ds)(Qn) and ϕ ∈ Aut(Qn), then we have �ϕ∈ ZR(d1,...,ds)(Qn) by Proposition 3.12.

Let �, �′∈ ZR(d1,...,ds)(Qn). We denote by

Vs := G� ( Vs−1 ( · · · ( V1 ( V0 := Qn

(resp. V ′s := G�′ ( V ′s−1 ( · · · ( V ′1 ( V ′0 := Qn)

the �-isolated (resp. �′-isolated) subvector spaces of Qn. Therefore dimQ(Vk−1/Vk) = dimQ(V ′k−1/V
′
k) = dk

for every k. If �=≤(u1,...,us) and �′=≤(u′1,...,u
′
s)

, thenwe have V1 = 〈u1〉⊥ ∩ Qn and V ′1 = 〈u′1〉 ∩ Qn.

After a Q-linear change of coordinates, we may assume that V1 = V ′1 = {0} × Qd1 , in particular u1 =
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(u1,1, . . . , u1,n−d1 , 0, . . . , 0) and u′1 = (u′1,1, . . . , u
′
1,n−d1 , 0, . . . , 0).

We have dimQ(
∑

Qu1,i) = dimQ(
∑

Qu′1,i) = n − d1, therefore there exists a (n − d1) × (n − d1)-matrix A

with entries in Q such that A

 u1,1
· · ·

u1,n−d1

 =

 u′1,1
· · ·

u′1n−,d1

. Now we apply an induction on s, and assume the

result is true for s− 1, that is, there is a linear ϕ′ : Qd1 −→ Qd1 , whose matrix is denoted by B, such that

≤(u2,...,us)ϕ′
=≤(u′2,...,u

′
s)
.

Therefore we consider the Q-linear map ϕ whose matrix is

[
A 0
0 B

]
, and we have �ϕ=�′. This proves

vii). �

Example 3.16. In general ZRs(Qn) = ZRs(Zn) is not a closed subset for the Patch topology. For instance

let us consider the sequence of rank one orders (�n)n∈N∗ in ZR(Z2) defined by

�n=≤un

where un = (1, 1√
2n

).

Let �=≤(u,v) where u = (1, 0) and v = (0, 1).

If we consider the filtration of Z2 given by {Gk}k∈N where Gk is the set of vectors whose coordinates are

in {−k, . . . , k}, then we see that �n and � agrees on Gn. Therefore (�n)n converges to � in the Patch

topology. But rank(�) = 2.

Example 3.17. Let (un) ∈ (Q2)N be a sequence of vectors of norm 1 that converges to a vector u with an

irrational slope, and let vn ∈ (Q2)N be a sequence of non zero vectors with vn · un = 0. Then, as in Example

3.5, the sequence of orders �n:=≤(un,vn) converges to ≤u. But we have

∀n rank(�n) = 2 and rank(≤u) = 1.

This shows that ZR≤s(Zn) is not closed. This also shows (along with the previous example), that there is

no relation between lim sup rank(�n) or lim inf rank(�n), and rank(limn �n).

Example 3.18. Example 3.5 shows that dZR(Qn) is not closed in general.

Again Example 3.5 shows that dZR(Qn) is not open neither. Indeed for every n we have deg(�n) = 1, but

deg(lim �n) = 0. Therefore the complement of 0 ZR(Z2) is not closed.

Hausdorff-Alexandroff Theorem asserts that any compact metric set is the image under a continuous map

of a Cantor set. The following result provides an example of such a map in the case of the spheres Sn−1.

This generalizes [Si04, Proposition 3.1] where such a result is given for n = 2.

Proposition 3.19. The set of rank one preorders ZR1(Qn), endowed with the Inverse topology, is homeo-

morphic to the euclidean sphere Sn−1.

Moreover the map π : Ord(Qn) −→ ZR1(Qn), where π(�) is the unique preorder of rank one such that

π(�) ≤� for every �∈ Ord(Qn), is a continuous surjective map (for the Inverse topology) between an

ultrametric Cantor set and the (n− 1)-dimensional sphere.

Proof. The set ZR1(Qn) is the set of preorders of the form ≤u for some non zero u ∈ Rn. In fact we can

choose u to be of norm 1, hence ZR1(Qn) is in bijection with Sn−1. The Inverse topology on ZR1(Qn) is

generated by the Uv where v runs over the vectors in Qn. But the bijection between ZR1(Qn) and Sn−1
induces a bijection between Uv and the open half sphere {u ∈ Sn−1 | u · v > 0}. Since Q is dense in R, the

sets {u ∈ Sn−1 | u · v > 0} where v runs over Qn, generate the euclidean topology. Therefore, ZR1(Qn) is

homeomorphic to the (n− 1)-dimensional sphere.

In order to prove that π is continuous, it is enough to prove that π−1(Uu) is open in Ord(Qn), for every

u ∈ Qn. Then, let us fix such a u ∈ Qn, u 6= 0. Let �∈ π−1(Uu). Since π(�) ∈ Uu, we have �=≤(u1,...,us)
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where u · u1 > 0. Let v1, . . . , vn ∈ Qn be a basis of Qn, such that u1 · (u ± vi) > 0 for every i. Then

�∈
⋂n
i=1 Uu+vi ∩ Uu−vi . Moreover, we have

n⋂
i=1

Uu+vi ∩ Uu−vi ⊂ π−1(Uu).

Indeed, let �′∈
⋂n
i=1 Uu+vi ∩ Uu−vi , and write �′=≤(u′1,...,u

′
s)

. Then u′1 · (u ± vi) ≥ 0 for every i. Then

u′1 · u ≥ 0. If u′1 · u = 0, then we have u′1 · vi = 0 for every i. This is not possible, because u′1 6= 1 and the vi
form a Q-basis of Qn. Therefore u′1 · u > 0 and �′∈ π−1(Uu). This shows that π−1(Uu) is open in Ord(Qn).

Finally Ord(Qn) is an ultrametric Cantor set by Theorem 3.15. �

Now we can represent ZR(Qn) as a tree by Proposition 2.21 and Corollary 2.39. Every preorder corre-

sponds to a vertex of the graph. For a preorder �6=≤0, we consider the largest preorder �′ such that �′<�.

Every such a pair (�,�′) corresponds to an edge between � and �′. Moreover ZR(Qn) is a rooted tree by

designing ≤0 to be the root.

Example 3.20. For n = 1, ZR(Q) consists of three elements: the trivial preorder ≤0 for which u ≤0 v for

every u, v ∈ R≥0, and the orders ≤1 and ≤−1. Since ≤1 and ≤−1 are the two refinements of ≤0, ZR(Q) is

a rooted tree with two vertices:

≤0 ≤1≤−1
Figure 1. The tree ZR(Q)

Example 3.21. For n = 2, ZR(Q2) can be described as follows:

Every order � on R≥0n has the form ≤u1,u2
where u1 and u2 are nonzero orthonormal vectors. Since � is

a preorder on R≥0n, we have that u1 is in the dual of R≥0n, so u1 ∈ R≥0n. Now if u1 = ( ab ) has Q-linearly

independent coordinates, then ≤u1
is already an order and has no refinement, and the data of u2 is super-

fluous. If the coordinates of u1 are linearly dependent on Q, then we can choose freely u2 in 〈u1〉⊥. Since

‖u2‖ = 1 there are two possible choices:
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≤(0,1)

≤(0,1),(−1,0)≤(0,1),(1,0)

≤(1,1)

Figure 2. The tree ZR(Q2). The green zone is the set O(1,0) (if we include the boundary),
or U(1,0) (if we remove the boundary). The red zone is O(−1,1), and the intersection of both
is O(1,0) ∩ O(−1,1).

Example 3.22. In dimension 3, we have the following picture:

Figure 3. The tree ZR(Q3)

.

3.3. Some non commutative groups.

3.3.1. The Klein Bottle group. Let G = 〈x, y | xyx−1 = y−1〉. This is the fundamental group of the Klein

Bottle. It is well known that there is 4 orders on G and that these orders are not bi-invariants. The following

lemma is well known for orders (see [CR16, Problem 9.1] for example):
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Lemma 3.23. Let �∈ ZRl(G) with x 6∼� 1. Then the subgroup generated by y is a �-isolated normal

subgroup of G.

Proof. Clearly 〈y〉 is a normal subgroup of G. Let us prove that it is �-isolated.

We remark that every element of G can be written as ymxn, with m, n ∈ Z. Assume that y ∼� 1. If for

some k, l, m, n ∈ Z we have

yk � ymxn � yl,
then xn ∼� 1, and n = 0 since x 6∼� 1. Thus in this case, 〈y〉 is �-isolated. Therefore we may assume that

y 6∼� 1 and x 6∼� 1.

Assume that y � 1 and x � 1. Then, for every k ∈ N, xyk � 1. But xyk = y−kx � 1. Therefore x � yk for

every k ∈ N. In the same way, x−1y−k = ykx−1 ≺ 1, and x−1 ≺ y−k for every k ∈ N.

Now let n, m ∈ N. If n > 0 and m ∈ Z, then

ymxn � yk ∀k.

In the same way, for every k ∈ N, n ∈ N, m ∈ Z, ymx−n ≺ y−k. This proves that 〈y〉 is �-isolated.

Now if y ≺ 1 and x ≺ 1, then we replace x and y by x−1 and y−1, and, since the relation xyx−1 = y−1 can

be rewritten as x−1y−1x = y, the result follows from the previous case.

If x ≺ 1 and y � 1, then we remark that every element of G can be written as xmyn, with m, n ∈ Z. Since

y−kx−1 = x−1yk � 1, we have x−1 � yk for every k ∈ N. In the same way x ≺ y−k for every k ∈ N.

Therefore the same reasoning applies. The case y � 1 and x ≺ 1 is obtained by replacing x and y by x−1

and y−1. �

Therefore for every preorder �, we have G� = 〈1〉, 〈y〉, or G.

If G� = G, then �=�0 is bi-invariant.

Now, let �∈ ZRl(G) and assume x ∼� 1. Since xy = y−1x, we have y−1 � xy � y−1. Therefore y ∼� 1,

and �0 is the only preorder for which x is equivalent to 1.

If G� = 〈y〉, then � is the composite preorder of an order on G/〈y〉 ' Z with the trivial preorder on 〈y〉,
which is completely determined by the sign of x. We denote by �+1 (resp. �−1) the preorder such that x

is positive (resp. negative). Therefore there are two such preorders, and these are bi-invariant.

Finally, if G� = 〈1〉, then, because 〈y〉 is �-isolated, the order � is lexicographically defined by the following

short exact sequence (see Proposition 2.51):

(3.2) 1 −→ 〈y〉 −→ G −→ G/〈y〉 ' Z −→ 1

But, since 〈y〉 ' Z, the only possible orders are determined by their (positive or negative) signs on x and y.

We denote by �ε1,ε2 the order for which the sign of x (resp. of y) is ε1 (resp. ε2), where εi = ±1. Moreover

we have

�+1 <�+1,ε2 ∀ε2,

�−1 <�−1,ε2 ∀ε2.
Finally, these orders are not bi-invariant since xyx−1 = y−1.

≤∅

Figure 4. The tree ZRl(G) where G is the Klein Bottle group. The bi-invariant preorders
are in blue, the other ones in red.

.
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The facts that there are 4 left-orders on the Klein bottle and what are the isolated subgroups in each case

are known (see for exemple Example 2.2.14 of [DNR]).

3.3.2. Some groups with no non-trivial preorders. If G is a torsion group, then we have that ZRl(G) = {≤∅}.
But there are also torsion free groups for which ZRl(G) = {≤0}. One example is given as follows (this

example is the group G′ of [CR16, Example 1.64] for which it is shown that Ordl(G
′) = ∅).

We consider the Klein bottle group G given in the previous example. If we set

a = xy and b = y−1xy,

then we obtain the presentation G = 〈a, b | a2 = b2〉. We remark that the subgroup H generated by a2 and

ab, is isomorphic to Z2.

Now we consider the group given in [CR16, Example 1.64]: we consider two copies of G, denoted by G1,

G2, whose generators are a1, b1 and a2, b2 respectively. We denote by H1 and H2 the respective subgroups

isomorphic to H. We denote by G′ the amalgamated free product G1 ∗ G2 along H1 ' H2, where the

isomorphism between H1 and H2 is given by

a21 = (a22)p(a2b2)q and a1b1 = (a2)r(a2b2)s

where p, q, r, s ∈ Z and ps− rq = ±1. We have the presentation

G′ = 〈a1, a2, b1, b2 | a21 = b21, a
2
2 = b22, a

2
1 = (a22)p(a2b2)q and a1b1 = (a2)r(a2b2)s〉.

Now assume that p, q ≥ 0 and r, s ≤ 0 and let �∈ ZRl(G
′). Then the first relation in G′ implies that a1

and b1 are both non-negative or both non-positive for �. In the same way a2 and b2 are both non-negative

or both non-positive for �.

The third relation implies that if a2, b2 � 1 (resp. a2, b2 � 1), then a1 � 1 (resp a1 � 1). But the last

relation implies that

a2, b2 � 1 (resp. a2, b2 � 1) =⇒ a1b1 � 1 (resp. a1b1 � 1)

Therefore we have a1, b1 ∼� 1. This implies that a2, b2 ∼� 1. Therefore �=≤∅.
Moreover G′ is torsion free, since it is the amalgamated product of two torsion free groups.

Now, if we set G′′ = G′×Z, then G′′ is a torsion free group, G′ is a normal subgroup of G′′, and G′ ⊂ G′′� for

every �∈ ZRl(G
′×Z) by the previous reasoning. Therefore ZRl(G

′×Z) is homeomorphic to ZRl(Z) = ZR(Z).

Thus Ordl(G
′′) = ∅, and ZRl(G

′′) = ZR(G′′) 6= {≤0}.

4. The Zariski-Riemann space of valuations

4.1. From preorders to (monomial) valuations.

Definition 4.1. [Sc45] A pair (G,�) is called a simply ordered `-group if G is a group, �∈ Ord(G) (in

particular it is bi-invariant), and G is lattice with respect to the order �.

Definition 4.2. [Sc45] Let K be a division ring and (G,�) be a simply ordered `-group. A valuation on K
with values in G is a surjective function ν : K −→ G ∪ {∞} such that

i) ν(0) =∞ � u for all u ∈ G, and ν−1(∞) = {0},
ii) ν(uv) = ν(u)ν(v) for all u, v ∈ K,

iii) ν(u+ v) � min{ν(u), ν(v)} for all u, v ∈ K.

In this case, the group G is the value group of ν and is denoted by Γν .

Remark 4.3. Let ν be a valuation on K and u, v ∈ K. If ν(u) 6= ν(v), then ν(u + v) = min{ν(u), ν(v)}. In

fact we can replace iii) in Definition 4.2 by the stronger statement

iv) ν(u+ v) � min{ν(u), ν(v)} for all u, v ∈ K, with equality if ν(x) 6= ν(y).

Remark 4.4. The set Vν := {x ∈ K | ν(x) ≥ 1} is a ring with the two following properties:
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a) ∀a ∈ Vν , ∀b ∈ K∗, bab−1 ∈ Vν .

b) ∀a ∈ K∗ , a ∈ Vν or a−1 ∈ Vν .

The ring Vν is a local ring and its maximal ideal is mν := {x ∈ K | ν(x) > 1}.
On the other hand, every subring V ⊂ K satisfying a) and b) is called a valuation ring and there is a simply

ordered `-group G and a valuation ν : K −→ G ∪ {∞} such that V = Vν . See [Sc45] for the details.

Definition 4.5. Let G be a group and k be a field. Let us denote by k[G] the k-algebra of non commutative

polynomials with exponents in G and coefficients in k:

k[G] :=

∑
g∈G

agx
g | ag ∈ k


where the addition is defined term by term and the multiplication is defined by xgxg

′
:= xgg

′
. It has a

multiplicative identity which is x1.

This k-algebra may have nonzero divisors, for instance when Tor(G) 6= {1}. When k[G] has no nonzero

divisors, if k[G] satisfies the Ore condition, we can consider its fraction field that is denoted by Kk
G.

Proposition 4.6. Let G be a group and let �∈ ZR(G) such that (G/G�,�) is a simply ordered `-group,

k[G] has no nonzero divisors and satisfies Ore condition. Then � defines a valuation ν� on Kk
G in the

following way:

ν�(
∑
g∈G

agx
g) := min{g | ag 6= 0} ∈ G/G�

where g denotes the equivalence class of g under ∼�.

Proof. Let P =
∑
g agx

g and Q =
∑
g bgx

g ∈ k[G]. Assume that ν�(P ) = g0 and ν�(Q) = g′0. Then

PQ =
∑
h∈G

 ∑
g,g′∈G,gg′=h

agbg′

xh.

Since k[G] has no nonzero divisors, we have∑
g,g=g0

agx
g
∑

g′,g′=g′0

bg′x
g′ 6= 0,

therefore ν�(PQ) = g0g
′
0 and ii) of Definition 4.2 is satisfies for every P , Q ∈ k[G]. Thus it is satisfied for

any P , Q ∈ Kk
G. The remaining properties i) and iii) are straightforward. �

Definition 4.7. Such a valuation is called a monomial valuation.

Definition 4.8. [Sc45] Let V be a valuation ring and let p be a two-sided prime ideal. Then the localization

Vp is the set of equivalence classes (v, s) ∈ V × (V \p) under the equivalence

(v, s) ∼ (v′, s′) if vs′ = v′s.

The equivalent class of (v, s) is denoted by v
s . The quotient set is a ring because for every (v, s) ∈ V × (V \p)

there exists (v′, s′) ∈ V × (V \p) such that

vs′ = sv′.

This comes from the fact that p is a two-sided ideal (see [Sc45, Lemma 7] for the details).

Theorem 4.9. [Sc45, Theorem 2][Va06, Proposition 4.1] Let G be a simply ordered `-group and H be an

isolated normal proper subgroup of G. Let V be a valuation ring of value group G and let ν : V −→ G be
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the associated valuation. Let p be the two-sided prime ideal of V corresponding to H, that is p = ν−1(G\H).

Then Vp is a valuation ring of value group G/H, whose valuation is denoted by ν′ and is defined by

ν′(v/s) = ν(v) mod. H.

On the other hand V/p is a valuation ring of value group H, whose valuation is denoted by ν, and is defined

by

∀a /∈ p, ν(a+ p) = ν(a).

Definition 4.10. Under the situation of Theorem 4.9 we say that ν is the composite valuation with the

valuations ν′ and ν and denote

ν = ν′ ◦ ν.

The following proposition shows that the composition of preorders corresponds to the composition of

valuations:

Proposition 4.11. Let G be a group and k be a field. Let �1∈ Ord(G) and �2∈ ZR(G) with �2 ≤�1, such

that G�2
is a normal subgroup of G and for which the following three monomial valuations are well defined

(according to Definition 4.6):

ν�1
: Kk

G −→ G,

ν�2 : Kk
G −→ G/G�2 ,

ν�3
: Kk

G�2
−→ G�2

where �3 is the restriction of �1 to G�2 , that is �1=�2 ◦ �3. Then

ν�1
= ν�2

◦ ν�3
.

Proof. Let V be the valuation ring of ν1. The set

p := {f ∈ V | ν�1(f) ∈ G\G�2}

is a two-sided prime ideal of V by Lemma 2.50. The ring Vp is a valuation ring with value group G/G�2 by

Definition 4.10. Its valuation ν′ is the valuation sending an element v
s , for s ∈ V \p and v ∈ V , to the class

v of v ∈ G in G/G�2
. Thus ν′|Kk

G
= ν�2

.

Now the ring V/p is a valuation ring with value group G�2
. We denote by ν its valuation. For an element

v ∈ V \p, ν(v + p) = ν�1(v). By construction we have

Kk
G�2

= Kk
G/(p ∩Kk

G).

Hence, by Definition 4.7 we have that ν = ν�3
. �

4.2. The Zariski-Riemann space. From now on we will consider the commutative case, which is the most

important from the point of view of the algebraic geometry, that is, we only consider valuations defined on

a field. Therefore we will use the additive notation for the group of values G: we will denote by + the law

group and by 0 its identity element. In particular Definition 4.2 ii) becomes

ν(uv) = ν(u) + ν(v) for all u, v ∈ G.

Definition 4.12. [SZ60, VI § 8] Let K be a field. Let ν be a valuation on K, that is, a function ν : K −→
G ∪ {∞}, where G is a totally ordered abelian group, satisfying Definition 4.2. For such a valuation, we

denote by Vν its valuation ring, by mν := {x | ν(x) > 0} its unique maximal ideal and by kν := Vν/mν its

residue field.

We define an equivalence relation on the set of such valuations: two valuations ν and µ are equivalent if

Vν = Vµ or, equivalently, if there exists an order-preserving group isomorphism λ : µ(K) → ν(K) such that

ν = λ ◦ µ.

The set of such valuations modulo this equivalence relation is called the Zariski-Riemann space of K and

denoted by ZR(K).
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In some cases, it is useful to assume that the valuations are trivial on some base field. Therefore we have

the following relative version of the Zariski-Riemann space:

Definition 4.13. Let K be a field and k be a subfield of K. The Zariski-Riemann space of K modulo k is

the subset of ZR(K) of the valuations ν such that ν|k ≡ 0. It is denoted by ZR(K/k).

4.3. Topologies on the Zariski-Riemann space.

Definition 4.14. [SZ60] We define the Zariski topology on ZR(K) to be the topology generated by the sets

O(x) := {ν ∈ ZR(K) | ν(x) ≥ 0}

where x runs over K.

Theorem 4.15. [SZ60, Theorem 38][Va06, Théorème 7.1] For every ν ∈ ZR(K) we have

{ν}
Z

= {µ ∈ ZR(K) | µ is composite with ν}.

Definition 4.16. [SZ60] Let x ∈ K. We define

U(x) := {ν ∈ ZR(K) | ν(x) > 0}.

The Inverse topology on ZR(K) is the topology generated by the U(x) where x runs over the elements of K.

Definition 4.17. [SZ60] We call Patch Topology on ZR(K) the topology generated by the sets O(x) and

U(x) where x runs over K.

Definition 4.18. Let K be a field and k be a subfield of K. For x ∈ K we set

V(x) = {ν ∈ ZR(K/k) | ∃a ∈ k, ν(x+ a) > 0}.

The Weak Inverse topology on ZR(K/k) is the topology generated by the V(x) where x runs over K.

Remark 4.19. For every x ∈ K we have U(x) ⊂ V(x) ⊂ O(x).

Proposition 4.20. The Inverse Topology on ZR(K/k) is finer than the Weak Inverse topology. Both coincide

when k is a finite field.

Proof. We have

V(x) = {ν ∈ ZR(K/k) | ∃a ∈ k, ν(x+ a) > 0} =
⋃
a∈k
U(x+ a).

This shows that the Inverse Topology is finer than the Weak Inverse topology.

Then we claim that

(4.1) U(x) = V(x) ∩
⋂
a∈k∗
V((x+ a)−1).

Indeed, let ν ∈ U(x), that is, ν(x) > 0. Thus, for a ∈ k∗, we have ν(x+ a) = min{ν(x), ν(a)} = 0 and

ν

(
1

x+ a
− 1

a

)
= ν

(
−x
x+ a

)
> 0.

This proves that U(x) ⊂ V(x) ∩
⋂
a∈k∗ V((x+ a)−1).

On the other hand, assume

ν ∈ V(x) ∩
⋂
a∈k∗
V((x+ a)−1).

Let a ∈ k∗. Since ν ∈ V(x), ν(x+ a) ≥ 0, thus ν((x+ a)−1) = 0. In particular ν(x+ a) = 0 for every a ∈ k∗.
But, because ν ∈ V(x), we have ν(x) > 0. This proves (4.1) and the second claim. �

Definition 4.21. Let k ⊂ K be two fields. Let L be a field. We denote by ZR(K)L the subset of valuations

of ZR(K) whose residue field is L. When k ⊂ L, we denote by ZR(K/k)L the subset of valuations of ZR(K/k)

whose residue field is L. The valuations of ZR(K/k)k are called rational valuations.
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Proposition 4.22. The Zariski and the Weak Inverse topologies coincide on ZR(K/k)k.

If k is a finite field, then the Zariski and the Inverse topologies coincide on ZR(K/k)k.

Proof. Let x ∈ K. Let ν ∈ O(x) ∩ ZR(K/k)k, that is, ν(x) ≥ 0. Since the residue field of ν is k, there is

a ∈ k such that ν(x+ a) > 0. Therefore ν ∈ V(x). On the other hand, if ν ∈ V(x), then there is a ∈ k such

that ν(x+ a) > 0. We have that ν(a) = 0 or ∞, hence ν(x) ≥ min{ν(x+ a), ν(a)} ≥ 0, and ν ∈ O(x). This

proves that

O(x) ∩ ZR(K/k)k = V(x) ∩ ZR(K/k)k.

This proves the first claim. The second claim comes from Proposition 4.20. �

Lemma 4.23. Let k ⊂ K be two fields. Then ZR(K/k) is closed in ZR(K) for the Inverse and the Patch

topologies.

Proof. Indeed

ZR(K/k) =
⋂
x∈k∗

(O(x) ∩ O(x−1)).

�

4.4. Compacity of the Zariski-Riemann space. We mention here the following analogue of Theorem

2.30. Its proof is completely similar to the proof of Theorem 2.30. Indeed the proof of Theorem 2.30 is based

on the original proof of the following result:

Theorem 4.24. [SZ60, Theorem 40][Ho69, Theorem 1] The spaces ZR(K) and ZR(K/k) are compact for

the Zariski, the Inverse and the Patch topologies.

4.5. Order on the Zariski-Riemann space. Therefore we can do exactly as for ZR(G):

Definition 4.25. Let ν1 : K −→ G1 and ν2 : K −→ G2 be two valuations of ZR(K). We say that

ν1 ≤ ν2

if there is a valuation ν3 such that

ν2 = ν1 ◦ ν3.
In analogy with the case of preorders, we also say that ν2 is a refinement of ν1.

Given two valuations ν and µ ∈ ZR(K) we say that ν and µ are comparable if ν ≤ µ or µ ≤ ν. Otherwise

we say that they are incomparable.

The following result is well known:

Lemma 4.26. Given ν, µ ∈ ZR(K), the following are equivalent:

i) µ ≤ ν,

ii) Vν ⊂ Vµ,

iii) mµ ⊂ mν .

Proof. By the construction given in Definition 4.10, we have µ ≤ ν if and only if Vµ is a localization of Vν
at a prime ideal of Vν . In particular we have Vν ⊂ Vµ.

On the other hand, if Vν ⊂ Vµ, then the maximal ideal of Vµ, denoted by mµ, is a prime ideal of Vν , and Vµ
is the localization of Vν at mµ (see [Va06, Proposition 3.3]). This proves the equivalence of i) and ii).

Now if Vν ⊂ Vµ then mµ ⊂ mν . On the other hand, if mµ ⊂ mν , then (mµ \ {0})−1 ⊂ (mν \ {0})−1. Thus

Vν ⊂ Vµ. This proves the equivalence of ii) and iii). �

Example 4.27. Let k be a field and K = k(x1, . . . , xn) where the xi are algebraically independent over k.

The map

�∈ ZR(Zn) −→ ν� ZR(K/k)
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as defined in Proposition 4.6 is an injective map and its image is the set of monomial valuations in the

coordinates x1, . . . , xn. It is straightforward to check that this map is continuous for the Zariski, Inverse or

Patch topology (when the same topology is considered on both sides), and that this is an order-preserving

map (by Proposition 4.11). Therefore, any choice of generators x1, . . . , xn of K over k defines such an

embedding.

Lemma 4.28. Let ν, µ ∈ ZR(K) be incomparable. Then there exists f ∈ K such that ν(f) < 0 and 0 < µ(f).

Proof. By Lemma 4.26, ν and µ are incomparable if and only if there is u ∈ Vµ \ Vν and v ∈ Vν \ Vµ.

Therefore we set f = u/v and the claim is proved. �

Remark 4.29. If ν1 ≤ ν2, then we have that G1 is the quotient of G2 by a subgroup that is ν2-isolated by

Definition 4.10.

Lemma 4.30. Let E ⊂ ZR(K) be non empty. The set

RE :=

{
R subring of K |

⋃
ν∈E

Vν ⊂ R

}
is non empty and contains a minimal element. This minimal element is a valuation ring, and its associated

valuation is denoted by νinf E. If E ⊂ ZR(K/k), then νinf E ∈ ZR(K/k).

Proof. The set RE is non empty since K ∈ RE . We set V :=
⋂

R∈RE

R. Then V is a valuation ring since, for

at least one ν ∈ E, we have Vν ⊂ V ⊂ K : the property a) of Remark 4.4 is trivial since K is commutative,

and b) is clear since it is satisfied for Vν . This proves the lemma. �

Proposition 4.31. Let E ⊂ ZR(K) be non empty, and let ν ∈ ZR(K). We have

[∀µ ∈ E, ν ≤ µ]⇐⇒ ν ≤ νinf E .

In particular ZR(K) is a join-semilattice, i.e. a partially ordered set in which all subsets have an infimum.

Moreover, for every ν ∈ ZR(K), the set {µ ∈ ZR(K) | µ ≤ ν} is totally ordered.

The same remains valid if we replace ZR(K) by ZR(K/k).

Proof. Indeed, by Lemmas 4.26 and 4.30, we have

ν ≤ νinf E ⇐⇒ Vνinf E
⊂ Vν ⇐⇒ [∀µ ∈ E, Vµ ⊂ Vν ]⇐⇒ [∀µ ∈ E, ν ≤ µ].

This proves the first claim. The second claim comes from Lemma 4.28 exactly as in the proof of Theorem

2.20. �

Definition 4.32. Let K be a field and ν ∈ ZR(K). The rank of ν is the rank of its value group (that is, the

ordinal type of the totally ordered set of its proper isolated subgroups). It is denoted by rank(ν).

The (transcendence) degree of ν is the transcendence degree of kν = Vν/mν over its prime field k0. We recall

that k0 is the smallest field included in kν .

When k is a subfield of K, the (transcendence) degree of ν is the transcendence degree of k −→ kν , and is

denoted by tr.degk ν.

The rational rank of ν is the rational rank of its value group Gν , that is the dimension of the Q-vector space

Gν ⊗Z Q. It is denoted by rat. rank(ν).

Remark 4.33. Let k −→ K be a field extension of finite transcendental degree. Let ν ∈ ZR(K/k) with value

group G. Then we have

rank(ν) + tr.degk ν ≤ rat. rank(ν) + tr.degk ν ≤ tr.degk(K)

by [Va06, Corollary to Theorem 1.20]. In particular G can be embedded in Qtr.degk(K).
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Remark 4.34. Let ν ∈ ZR(K/k). Then rank(ν) > 1 if and only if there exists a non trivial valuation

ν′ ∈ ZR(K/k) such that ν′ < ν. Therefore the rank one valuations are the minimal valuations ν such that

ν0 < ν, where ν0 denotes the trivial valuation, that is, defined by ν0(x) = 0 for every x ∈ K.

More generally, rank(ν) corresponds to the ordinal type of the maximal chain of valuations between the

trivial valuation and ν. Therefore this is the natural analogue of the rank of a preorder.

Remark 4.35. Let ν ∈ ZR(K/k). For any ν ∈ ZR(kν/k), the composite valuation ν ◦ ν is well defined. If ν

is the trivial valuation, then ν = ν ◦ ν.

On the other hand, if ν = ν ◦ν, then ν is the trivial valuation. Therefore ν ∈ ZR(K/k) is a maximal element

if and only if ZR(kν/k) contains only the trivial valuation. And this is the case only if k −→ kν is algebraic

by [Va06, § 1.3].

Therefore the maximal elements of ZR(K/k) are the valuations ν such that k −→ kν is algebraic, that is the

valuations of degree 0.

More generally, tr.degk ν corresponds to the ordinal type of the maximal chain of valuations between ν and

a valuation ν′ with tr.degk ν
′ = 0. Therefore tr.degk ν is the natural analogue of the degree of a preorder.

Corollary 4.36. Let k −→ K be a field extension of finite transcendental degree. Then ZR(K/k) is a rooted

graph where the vertices are the valuations on ZR(K/k), the root is the trivial valuation, and for every pair of

valuations (ν, µ), there is an edge between ν and µ if ν and µ are comparable and there is no other valuation

between them (with respect to the order on ZR(K/k)).

Proof. This comes directly from the last three remarks and Proposition 4.31, following the same proof as

the one of Proposition 2.21. �

Remark 4.37. We can make the similar reasoning for ZR(K). A valuation ν ∈ ZR(K) has no refinement if

and only if ZR(kν) contains only the trivial valuation. But any characteristic zero field contains non trivial

valuations (any p-adic valuation on Q, and any extension of it on a characteristic zero field). For p > 0,

ZR(Fp) contains only the trivial valuation, and this remains true for ZR(K) when Fp −→ K is algebraic.

Therefore, the maximal elements ν of ZR(K) are the valuations for which kν is an algebraic extension of Fp.

Now we can prove the analogue of Theorem 4.15 for the Inverse topology and the Weak Inverse topology

(this is certainly well known but we could find a precise reference):

Theorem 4.38. Let K be a field and k a subfield of K. We have:

∀ν ∈ ZR(K/k), {ν}
I

= {ν}
WI

= {µ ∈ ZR(K/k) | µ ≤ ν},

∀ν ∈ ZR(K), {ν}
I

= {µ ∈ ZR(K) | µ ≤ ν}.

Proof. Let µ ≤ ν, that is Vν ⊂ Vµ. Let x ∈ K such that µ ∈ V(x). Then there is a ∈ k such that µ(x+a) > 0.

Therefore ν(x+ a) > 0 since mµ ⊂ mν , and ν ∈ V(x). Therefore {µ ∈ ZR(K/k) | µ ≤ ν} ⊂ {ν}
WI

.

Now, if µ and ν are incomparable, then there is x ∈ K such that µ(x) > 0 and ν(x) < 0 by Lemma 4.28.

Therefore µ ∈ V(x) and ν /∈ V(x). Hence µ /∈ {ν}
WI

.

Finally, let ν ≤ µ, that is mν ⊂ mµ. Let x ∈ mµ, i.e. µ(x) > 0. Then µ ∈ V(x). If µ ∈ {ν}
WI

, then

ν ∈ V(x), and there is a ∈ k such that ν(x+ a) > 0. Therefore, by hypothesis, µ(x+ a) > 0 and necessarily

a = 0. This shows that mµ ⊂ mν , hence mµ = mν and µ = ν. This proves the result for the Weak Inverse

topology.

For the Inverse topology, the proof is similar. �

Remark 4.39. Let k −→ K be a field extension. The analogue of the action of Aut(G) over ZR∗(G), is the

left action of Gal(K/k) over ZR(K/k) defined as follows:

∀σ ∈ Gal(K/k),∀ν ∈ ZR(K,k),∀x ∈ K, (σ · ν)(x) := ν(σ−1(x)).
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For instance, if K = k(x1, . . . , xn) where the xi are algebraically independent over k, then Gal(K/k) is the

Cremona group Crn(k) of Pn(k). This group contains the subgroup of monomial bijections of the form

(x1, . . . , xn) 7−→ (xa111 xa122 . . . xa1nn , . . . , xan1
1 xan2

2 . . . xann
n )

where the matrix (aij) ∈ Matn(Z) is invertible in Matn(Z). Therefore Aut(Zn) ⊂ Crn(k). Moreover the

action of Aut(Zn) on ZR(Zn) is induced by the action of Aut(Zn) on ZR(K/k) via the embedding introduced

in Example 4.27.

4.6. Metric on the Zariski space in the countable case.

Definition 4.40. Let K be a countable field, and let {Fn}n∈N be a filtration of K by finite sets. That is,

the Fn ⊂ K are finite, Fn ⊂ Fn+1 for every n, and
⋃
n
Fn = K. Moreover we assume that, for all x ∈ Fn,

x 6= 0, we have x−1 ∈ Fn.

For x ∈ K we set ht(x) := min{n ∈ N | x ∈ Fn}.

Definition 4.41. Let K be a countable field and {Fn} be a filtration of K as in Definition 4.40.

For ν, µ ∈ ZR(K), ν 6= µ, we set

d(ν, µ) =
1

n
if for every x ∈ K with ht(x) < n, we have

ν(x) > 0 =⇒ µ(x) > 0

ν(x) = 0 =⇒ µ(x) = 0,

and there is x ∈ K, with ht(x) = n, such that one of these implications is not satisfied.

If ν = µ, then we set

d(ν, µ) = 0.

Remark 4.42. Since the filtration is stable by taking inverses, we have d(ν, µ) = 1
n if for eevry x ∈ K with

ht(x) < n, we have

ν(x) > 0⇐⇒ µ(x) > 0,

and this equivalence is not satisfied for at least one x with ht(x) = n.

Theorem 4.43. Let K be a countable field. We have

i) The function d is an ultrametric on ZR(K).

ii) The topology induced by d coincides with the Patch topology on ZR(K). In particular it does not

depend on the choice of the filtration {Fn}n∈N.

Proof. Clearly d is non negative, reflexive (since the filtration is stable by taking inverses) and symmetric.

The ultrametric inequality is straightforward to check. Therefore we only need to prove ii).

Now let n ∈ N∗ and ν, µ ∈ ZR(K).

For all x ∈ K, let ν ∈ U(x). Then

B

(
ν,

1

ht(x)

)
⊂ U(x).

Indeed, if µ ∈ B
(
ν, 1

ht(x)

)
, then we have

ν(x) > 0 =⇒ µ(x) > 0.

Hence the U(x) are open for the topology induced by d, and the topology induced by d is finer than the

I-topology on ZR(K).

Now let x ∈ K, ν ∈ O(x), and µ ∈ B
(
ν, 1

ht(x)

)
. Then we have

ν(x) ≥ 0 =⇒ µ(x) ≥ 0.
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Therefore

B

(
ν,

1

ht(x)

)
⊂ O(x),

and the topology induced by d is finer than the Z-topology on X. Hence, the topology induced by d is finer

than the Patch topology.

On the other hand, we have that µ ∈ B(ν, 1
n ) if and only if, for every x ∈ K with ht(x) ≤ n,

ν(x) > 0 =⇒ µ(x) > 0,

ν(x) = 0 =⇒ µ(x) = 0.

Therefore we have

B

(
ν,

1

n

)
=

⋂
x,ht(x)≤n,ν(x)>0

U(x) ∩
⋂

x,ht(x)≤n,ν(x)=0

(
O(x) ∩ O(x−1)

)
.

And this ball is open in the Patch topology because this intersection is finite. Therefore both topologies

coincide. �

Corollary 4.44. Let k −→ K be a field extension where k is a finite field and K is countable. Then the

Zariski topology on ZR(K/k)k is a metric topology.

Proof. This comes from Theorem 4.43 and Proposition 4.22. �

4.7. Cantor sets. We have the following lemma:

Lemma 4.45. Let E ⊂ ZR(K/k). Then E is totally disconnected for the Patch topology.

Proof. Let ν, µ ∈ ZR(K/k), ν 6= µ. Therefore Vν 6= Vµ; for instance Vµ * Vν . Thus there is x ∈ K such that

ν(x) < 0 and µ(x) ≥ 0. Thus, ν ∈ U(x−1) and µ ∈ O(x). But

U(x−1) ∪ O(x) = ZR(K/k) and U(x−1) ∩ O(x) = ∅.

This proves the claim. �

Therefore, when K is a countable field, ZR(K/k) is a metric compact totally disconnected space for the

Patch topology. A natural question is to investigate when this is a Cantor space, or when a closed subset E

of ZR(K/k) is a Cantor space. This happens if and only if ZR(K/k) (or E) is a perfect space.

Example 4.46. When x is a single indeterminate and k is algebraically closed, ZR(k(x)/k) is not a perfect

space. Indeed, for every ν ∈ ZR(k(x)/k), ν being non trivial, we have that rank(ν) = 1 by the inequality

given in Remark 4.33. Therefore, there is a y ∈ K such that K = k(y) and ν(y) > 0 by [Va06, Remark 1.15].

Since tr.degk(ν) = 0 by inequality given in Remark 4.33 and k is algebraically closed, we have k = kν . Thus,

either ν(x+ a) > 0 for some a ∈ k, either ν(x) < 0. Therefore, we see that y can be chosen as x−1 or x+ a

for some a ∈ k. Moreover, for such a y, there is a unique valuation ν ∈ ZR(K/k) such that ν(y) > 0, since k
is algebraically closed. We denote by νa the unique valuation such that ν(x+ a) > 0, and by ν− the unique

valuation such that ν−(x) < 0. Therefore we have

ZR(k(x)/k) = {ν0} ∪ {ν−}
⋃
a∈k
{νa}.

Moreover, {ν−} = U(x−1) and, for every a ∈ k, {νa} = U(x+ a) are open sets.

Example 4.47. Let k be a finite or countable field, and K = k(x, y) where x and y are algebraically indepen-

dent over k. Let ν be the monomial valuation defined by

ν(x) = 1 and ν(y) = 1.
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We have tr.degk ν = 1 since the image of x/y in kν is transcendental over k (this is a particular case of the

valuations presented in [Va06, Example 7]). Then we claim that ν is a limit of valuations of degree 0. In

particular the inequality about the degree in Corollary 3.4 does not hold for valuations. To show this, we

consider two cases (depending on whether k is finite or not):

• If k is countable, then we consider a filtration of k by finite sets kn, and we set

Fn := {P/Q | P,Q ∈ kn[x, y],deg(P ),deg(Q) ≤ n}.

Since the kn are finite, we may choose, for every integer n, an ∈ k such that x + any does not divide any

nonzero homogeneous form of any polynomial P ∈ kn[x, y] of degree ≤ n. We denote by νn the monomial

valuation defined by

νn(y) = 1 and νn(x+ any) =
√

2.

We have deg(νn) = 0 (see [Va06, Example 11]). Then, for P ∈ kn[x, y] of degree ≤ n, we write

P = Pk(x, y) + Pk+1(x, y) + · · ·

where Pj is a homogeneous polynomial of degree j, and Pk 6= 0. Then ν(P ) = k.

Now, the Euclidean division of Pj by x+ any (with respect to the indeterminate x) yields:

Pj(x, y) = cjy
j + Pj,1(x, y)(x+ any)

with cj ∈ k. Since x+ any does not divide any nonzero homogeneous form of any polynomial in kn[x, y] of

degree ≤ n, we have that cj 6= 0 as soon as Pj 6= 0. Since Pj,1(x, y) is a homogeneous polynomial of degree

j − 1, we have νn(Pj) = j when Pj 6= 0, and νn(P ) = k. Therefore

νn(R) = ν(R), ∀R ∈ Fn.

This shows that the sequence (νn) converges to ν for the Patch topology. We remark that the νn are rational

valuations and ν is not (the transcendence degree of ν is 1). This shows that ZR(k(x, y)/k)k is not closed

when k is infinite. Even more, this shows that the set of valuations of transcendence degree equal to 0 is not

closed for the Patch topology.

• If k is finite, then we consider a filtration of k by finite sets kn as before, and we set

Fn := {P/Q | P,Q ∈ kn[x, y],deg(P ),deg(Q) ≤ n}.

For every integer n, we consider an irreducible polynomial Pn(T ) ∈ k[T ] of degree > n. The polynomial

pn(x, y) := ydeg(Pn)Pn(x/y) is an irreducible homogenous polynomial of degree deg(Pn) > n. For every

f ∈ k[x, y], we consider the pn-expansion of f (with respect to the indeterminate y):

f =

k∑
i=0

fip
i
n

where degy(fi) < degy(pn) for every i. Then we define the valuation µn by

µn(f) := min {(0, ν(fi)) + (i, 0)}

where the minimum on Z2 is considered with respect to the lexicographic order. Then µn 6= ν and the

sequence (µn)n converges to ν for the Patch topology. Moreover we have rank(µn) = rank(Z2) = 2. Thus

tr.degk νn = 0 by the inequality of Remark 4.33. But tr.degk ν = 1, therefore, the set of valuations of

transcendence degree equal to 0 is not closed for the Patch topology.

Let us remark that this example can be easily extended to k(x1, . . . , xn) where the xi are algebraically

independent over k, by considering the monomial valuation ν defined by

ν(x1) = ν(x2) = 1

and choosing the ν(xi), i ≥ 3, such that 1, ν(x3), . . . , ν(xn) are Q-linearly independent.
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Remark 4.48. In the previous example we have rank(νn) = 2 while rank(ν) = 1. Then the inequality about

the rank in Corollary 3.4 does not hold for valuations.

We have the following lemma:

Lemma 4.49. Let k be a finite field and K be any field extension of k. Then ZR(K/k)k is a compact subset

of ZR(K,k) for the Zariski Topology.

Proof. We remark that

ν /∈ ZR(K/k)k ⇐⇒ ∃y ∈ K, ∀a ∈ k, ν(y + a) = 0.

Then

ZR(K/k)k =

⋃
y∈K

⋂
a∈k

(O(y + a) ∩ O((y + a)−1))

c

is closed if k is finite for the Zariski Topology by Proposition 4.20. In particular it is compact. �

Then we can formulate the following conjecture.

Conjecture A. Let k be a field, and let K be a countable field extension of k of transcendence degree at

least 2. Then ZR(K/k)k is a perfect set for the Patch Topology. In particular, when k is finite, it is a Cantor

set for the Patch and the Zariski Topologies.

We give a proof of this conjecture in the following case:

Theorem 4.50. Let n ≥ 2 and k be a countable field. Then the set ZR(k(x1, . . . , xn)/k)k is a totally

disconnected perfect metric set for the Patch topology. Moreover, if k is finite, then it is a Cantor set for the

Patch and the Zariski topologies.

Proof. By Lemma 4.45, ZR(k(x1, . . . , xn)/k)k is totally disconnected. Since k is countable, the Patch topol-

ogy is a metric topology by Theorem 4.43. In particular, we only need to prove that ZR(k(x1, . . . , xn)/k)k

is a perfect space.

Now assume that ZR(k(x1, . . . , xn)/k)k is not perfect. Thus, there exist a1, . . . , as, b1, . . . , bm ∈ k(x1, . . . , xn)

such that the set

E :=

s⋂
i=1

O(ai) ∩
m⋂
j=1

U(bj)

is finite and non empty. Even if it means to add some points ai or bj , we may assume that E has exactly

one element, that we denote by ν.

Since ν is rational, for all i, there exists λi ∈ k such that ν(λi + ai) > 0. Then

ν ∈
s⋂
i=1

U(ai + λi) ∩
m⋂
j=1

U(bj) ⊂ A =

s⋂
i=1

O(ai) ∩
m⋂
j=1

U(bj).

Hence, we may assume that

E = {ν} =

m⋂
j=1

U(bj).

Let T be a key polynomial associated to ν with respect to the variable xn (see [Va07, the definition before

Lemme 1.1]). For every polynomial P ∈ k(x1, . . . , xn−1)[xn], we consider the T -expansion of P :

P =

d∑
l=0

plT
l
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with degxn
(pl) < degxn

(T ) for all l. Let G be an ordered group strictly containing Γν ⊗Z Q, and let

δ ∈ G \ Γν ⊗Z Q be such that δ > ν(T ). We set νδ(P ) = min
0≤l≤d

{ν(pl) + lδ}.

Since T is a key polynomial, by [Va07, Lemme 1.1], for such a P ∈ k(x1, . . . , xn−1)[xn], we have

ν(P ) = min
0≤l≤d

{ν(pl) + lν(T )}.

Let r be the least integer such that ν(P ) = ν(pr) + rν(T ). Then, for δ − ν(T ) > 0 small enough, we still

have νδ(P ) = ν(pr) + rδ.

Let Q ∈ k(x1, . . . , xn−1)[xn], whose T -expansion is Q =
∑e
l=0 qlT

l, and let s be the least integer such that

ν(Q) = ν(qs) + sν(T ). Assume that ν(P/Q) > 0. Then for δ − ν(T ) > 0 small enough, we have

νδ(P/Q) = νδ(P )− νδ(Q) = ν(pr)− ν(qs) + (r − s)δ > 0.

If r − s > 0, then we have νδ(P/Q) > ν(P/Q) > 0. If r − s < 0, then we have ν(P/Q) > 0, hence
ν(pr)−ν(qs)

s−r > ν(T ). Therefore, for δ < ν(pr)−ν(qs)
s−r we have νδ(P/Q) > 0.

We write bj =
Pj

Qj
for every j, where Pj , Qj ∈ k(x1, . . . , xn−1)[xn]. Then, for δ− ν(T ) > 0 small enough, we

have νδ(Pj/Qj) > 0. Moreover, since δ /∈ Γν⊗ZQ, the valuation νδ is a rational valuation by [Va07, Théorème

1.12, Proposition 1.13] (see also [McL36, Theorem 12.1]), hence νδ ∈ E. Finally, since δ > ν(T ), νδ 6= ν. This

contradicts the fact that E contains only one element in ZR(k(x1, . . . , xn)/k)k. Thus ZR(k(x1, . . . , xn)/k)k

is a perfect space.

Hence it is a Cantor set, when k is finite by Lemma 4.49 (for both topologies by Proposition 4.22). �

For ZR(K/k) we have the following conjecture.

Conjecture B. Assume that k is a finite or countable field and K a countable field extension of k of tran-

scendence degree at least 2. Then ZR(K/k) is a Cantor set for the Patch topology.

We prove here an important case of this conjecture:

Theorem 4.51. Assume that k is a finite or countable field and K a finitely generated field extension of k
of transcendence degree at least 2. Then ZR(K/k) is a Cantor set for the Patch topology.

Proof. As for Theorem 4.50, we only have to show that ZR(K/k) is a perfect space. Assume, aiming for

contradiction, that this space is not perfect. Then there exist a1, . . . , as, a
′
1, . . . , a

′
m ∈ K such that

E :=

s⋂
i=1

O(ai) ∩
m⋂
j=1

U(a′j)

is non empty and contains a unique element ν. Let x1, . . . , xd be elements of K such that K = k(x1, . . . , xd).

By replacing xk by x−1k , we may assume that ν(xk) ≥ 0 for every k. We denote by A the k-algebra generated

by the xk, the ai and the a′j . Then A is an integral domain whose field of fractions is K. We have that, for

every a ∈ A, ν(a) ≥ 0. We set

I := {a ∈ A | ν(a) > 0}.

This is a prime ideal of A containing the a′j . We denote by B the normalization of A. Then B is Noetherian

since A is finitely generated over k (see [HS06, Theorem 4.6.3] for instance). Moreover the ideal p := {b ∈
B | ν(b) > 0} is a prime ideal of B lying over I.

We have that dim(Bp) = dim(A) = tr.degk(K) = n ≥ 2. Then Bp is not a valuation ring since Bp is

Noetherian, therefore there exists y ∈ K such that y /∈ Bp and y−1 /∈ Bp.

We claim that yBp[y] + pBp[y] 6= Bp[y]. Indeed, if

1 = y(b0 + b1y + · · ·+ bmy
m) + p0 + p1y + · · ·+ pmy

m
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for some bk ∈ Bp and pl ∈ p, then we would have

(1− p0)y−m−1 − (b0 + p1)y−m + · · · − (bm−1 + pm)y−1 − bm = 0

and y−1 would be integral over Bp since 1 − p0 /∈ p is invertible in Bp. But this is not possible since Bp is

integrally closed and y−1 /∈ Bp.

In the same way, y−1Bp[y−1] + pBp[y−1] 6= Bp[y−1].

Now let q1 (resp. q2) be a prime ideal of Bp[y] (resp. Bp[y−1]) containing yBp[y]+pBp[y] (resp. y−1Bp[y−1]+

pBp[y−1]). Then there exists a valuation ring V1 in K, whose maximal ideal mV1
satisfies mV1

∩ Bp[y] = q1
(see for example [HS06, Theorem 6.3.2]). Therefore the associated valuation ν1 satisfies ∀q ∈ q, ν1(q) > 0.

Therefore ν1(ai) ≥ 0 for every i, and ν1(a′j) > 0 for every j. In the same way, there exists a valuation ring

V2 in K, whose maximal ideal mV2
satisfies mV2

∩ Bp[y−1] = q2, and its associated valuation ν2 satisfies

ν1(ai) ≥ 0 for every i, and ν1(a′j) > 0 for every j. But ν1 6= ν2 because ν1(y) > 0 and ν2(y−1) > 0. This

contradicts the fact that E is a singleton. Therefore ZR(K/k) is a perfect set. �

References

[ABR17] J. Alonso, J. Brum, C. Rivas. Orderings and flexibility of some subgroups of Homeo+(R), J. Lond. Math. Soc., II.

Ser., 95, No. 3, (2017), 919-941.
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