ON RANK THEOREMS FOR MORPHISMS OF LOCAL RINGS

ANDRE BELOTTO DA SILVA, OCTAVE CURMI, AND GUILLAUME ROND

ABSTRACT. We prove a generalization of Gabrielov’s rank theorem for families
of rings of power series which we call W-temperate. Examples include the
families of complex analytic functions and of Eisenstein series. As a Corollary,
we provide rank Theorems for convergent series in general characteristic zero
complete valued fields (not necessarily algebraically closed, nor archimedean).

1. INTRODUCTION

A classical idea in local analytic geometry, which goes back at least to the
Newton-Puiseux Theorem, consists of first studying a problem or an object formally,
and then proving that the formal solution converges. Rank Theorems stand between
the fundamental results of this philosophy applied to maps and equations, and
they can be seen as the dual to the celebrated Artin approximation Theorem
[Ar68, [Ar69, [DLK0], cf. Remark We start by proving a rank Theorem for
general families of rings which we call W-temperate, see Theorem [I.1] generalizing
the classical Gabrielov’s rank Theorem [GaT73| [To90, BCR21]. These are families
of Weierstrass rings (K{{x1, ..., 2z, }})ren, that is, families of rings of power series
satisfying the Weierstrass division theorem, see Definition 2.1} where K is any
uncountable algebraically closed field of characteristic zero, which satisfies three
axioms: closure under local blowing-down, closure under restriction to generically
hyperplane sections and temperateness, a closure under evaluation by algebraic
elements type condition, see Definition [2.2

Examples of Weierstrass families include the family of germs of complex-analytic
functions, algebraic power series, Eisenstein power series, and convergent series over
a complete non-archimedean field. Rank Theorems were known to hold in the first
two examples [Ga73l, [To90, BCR21], but our current methods greatly simplifies and
shortens the proof in these contexts. Eisenstein power series have been systematically
employed in the study of families of singularities, see e.g. [Za79, Hi79, [PP21], going
back at least to works of Zariski [Za79, pp. 502]. In particular, they allow us to
obtain rank Theorems for families of morphisms, see [BCR22, Lemma 5.18]. In
particular, we use them in our follow-up work [BCR22] to provide new proofs of
two fundamental results of analytic and subanalytic geometry due to Pawlucki
[Pa90l, [Pa92], whose original proofs are considered very difficult [Lo93| pp. 1591].
Finally, the last example allows us to deduce rank Theorems for convergent power
series in non-archimedean fields such as Q,, C, and k((¢)), see Corollary It can
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be seen as a new extension of a complex-analytic technique to the p-adic setting, c.f.
[DvdDSS].

Let K be a characteristic zero algebraically closed field. We consider families
of rings of power series (K{{z1,...,z,}})ren called Weierstrass, see Definitions
which were introduced by Denef and Lipshitz [DL80]. Note that the completion of
K{z1,...,z-}} is K[z, ..., 2], see Proposition Given a ring homomorphism:

¢ K{{x} — K{{u}}

where x = (21,...,2,) and u = (uy,...,Uy), we say that ¢ is a morphism of
Weierstrass power series if p(f) = f(¢(x)) for every f € K{{x}}, see Definition
We denote by ¢ its extension to the ring of formal power series. We define:

the Generic rank:  r(p) := rankHaC(K{{u}})(Jac(tp)),

(1)

the Formal rank: 17 (p) := dim <K’2£[‘)(((£)> ,

and the Weierstrass rank: 1"(p) := dim Mixh ,
Ker(p)
of ¢, where Jac(p) stands for the matrix [0y, ¢(z;)]; ;. Our main result concerns

Weierstrass families that satisfy three extra axioms which we call W-temperate, see
Definitions .1t

Theorem 1.1 (W-temperate rank Theorem). Let ¢ : K{x}} — K{{u}} be a
morphism of rings of W-temperate power series. Then
i T(p) =" ().

r(p) =17 (p) = 1(p) =1

This result is proved in It generalizes the original rank Theorem of Gabrielov
[Ga73], which concerns the case where K{{x}} stands for the family of complex
analytic function germs. We rely on [BCR21] for a presentation of the importance
and consequences of the Theorem to local analytic geometry and commutative
algebra. The original proof of Gabrielov’s rank Theorem is considered to be very
difficult, cf. [1z89) pp. 1]. We have recently provided an alternative proof in [BCR21]
by developing geometric-formal techniques inspired by works of Gabrielov [Ga73]
and Tougeron [To90]. One of the difficulties involved in the proof is the intricate
interplay between algebraic geometry and complex analysis. Our new result greatly
simplifies and shortens the proof by addressing this difficulty: the proof of Theorem
[I3] follows from algebraic geometry methods; complex analysis is only used in order
to show that complex analytic functions form a W-temperate family, see §§ As
a mater of fact, we systematically generalize the arguments introduced in [BCR21]
to their most general context, which demand us to introduce new commutative
algebra arguments. It seems likely that the discussion of rank Theorems for non
W-temperate families will demand a complete different strategy. In order to motivate
this discussion, we provide a family of local rings of interest to function theory and
tame geometry (that is, families of quasianalytic Denjoy-Carleman functions and
families of C'°°-definable functions over an o-minimal and polynomially bounded
structure) where the rank Theorem does not hold, see

As a Corollary of Theorem [T} we prove rank Theorems for convergent series in
arbitrary complete valued (not necessarily algebraically closed) fields of characteristic
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zero (K, |-]). In fact, recall that a power series f = > cyn faX® € K[x] is convergent
if there exist real positive numbers A, B > 0 such that

Va e N, |f.]Al* < B.

We denote by K{z1,...,x,} the subring of formal power series which are convergent
(we follow here the convention used in commutative algebra, c.f. [AMT0], instead of
non-archimedean analytic geometry, where K{xz1, ..., x,} would stand for convergent
series with radius 1). For a morphism ¢ : K{x} — K{u} of convergent power

series, we denote by r(¢) the analytic rank that is equal to dim (K{X}/Ker(@).

Corollary 1.2 (Gabrielov’s rank Theorem for ring of convergent power series). Let
K be a complete valued field of characteristic zero. Let ¢ : K{x} — K{u} be a
morphism of convergent power series. Then

r(p) = 17 () = 17 () = r(p).

In particular, this theorem applies to fields as L = R or C, as discussed above
and previously proved in [Ga73, [BCR21], but also to non-archimedean fields such
as Qp, Cp and k((t)). We prove this result in §§4.2]

Remark 1.3. Theorem can be seen as a "dual" of the Artin approximation
Theorem. More precisely, let ¢ be such that r(¢) = 17 (). Then,

VF(x) € K[x], such that F(e(x)) =0,

Ve € N,3F,(x) € K{{x}}, F.(p(x)) = 0 and F(x) — F.(x) € (x)°.

where p(x) = (¢(x1),...,9(x,)). Indeed, the ideals Ker(yp) and Ker(p) are prime
ideals of K{{x}} and K[x] respectively, and the equality r” (¢) = r"Y(y) is equivalent
to the equality of the heights of these two ideals. Since K{{x}} is Noetherian (see
Proposition R.§|[)]), the height of Ker(o)K[x] equals the height of Ker(y). Now, by
Artin Approximation Theorem, see Corollary Ker()K[x] is again a prime ideal,
so the equality 17 (¢) = 1"V (i) is equivalent to the equality Ker(p)K[x] = Ker(3).
It is well known that, since K{{x}} is Noetherian, Ker(¢)K[x] is the closure of
Ker(p) in K[x] for the (x)-adic topology, and we conclude easily.

We would like to thank Charles Favre for sketching the proof of Lemma [£.7]
and Antoine Ducros and Lorenzo Fantini for answering our questions about non-
archimedean fields and Berkovich geometry. We would also like to thank Edward
Bierstone for useful discussions. This work was supported by the CNRS project
TEA00496 PLES. The first author is supported by the project “Plan d’investissements
France 2030", IDEX UP ANR-18-IDEX-0001. The second author thanks the grant
NKFIH KKP 126683.

2. WEIERSTRASS TEMPERATE FAMILIES

2.1. W-Temperate families. Let I be a field of characteristic zero. For every
n € N, we denote by (z1,...,z,) indeterminates; we will use the compact notation
x = (z1,...,2,) and X' = (z1,...,%,_1) whenever there is no risk of confusion on
n. We start by recalling the notion of Weierstrass family introduced in [DL80]:

Definition 2.1. A Weierstrass family (over K), or just a W-family, of rings is a
family (K{z1,...,2n}})nen of K-algebras such that,
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i) For every n,
K[x] ¢ K{x}} c K[x].

ii) For every n and m, denoting x = (21,...,2,) and y = (y1,. .., Ym):

Ki{x, vy} N Klx] = K{{x}}.

iii) For any permutation o of {1,...,n}, and any f € K{{x}},

f(@oys -5 To(m) € K{x}}.
iv) If f e K{{x}} with f(0) # 0, then f is a unit in L{{x}}.
v) The family is closed by Weierstrass division. More precisely, let F' € K{{x}}
be such that F(0,z,) = 2%u(x,) where u(0) # 0. For every G € K{{x}},
G=FQ+R,
where @ € K{{x}} and R € K{{x'}}[2,,11], deg,, (R) < d, are unique.

A W-family satisfies several extra well-known properties which we recall in §§2.3]
below; in what follows we use these properties. Let us now provide the definition of
W-temperate family:

Definition 2.2. Let K be an uncountable algebraically closed field of characteristic
zero. A Weierstrass temperate family (over K), or just a W-temperate family, of
rings is a Weierstrass family (C{{z1,...,2n}})nen over K satisfying the following
three properties:

i) Closure by local blowings-down: For every f € K[x], n > 1, we have

f& mrn) € K{{x}} = f(x) € K{x}}.
ii) Closure by generic hyperplane sections: Let F' € K[x] ~ K{{x}}. Set
W:={ e K| F(', A1) e C{x'}}}.
Then the set K ~ W is uncountable.
iii) Temperateness: Let x = (x1,22) and o € N*. Let I'(t,2) € K[t, 2] be

an irreducible polynomial that is monic in z, and assume that T" splits in
K{{t}}[z]. Let v(¢t) and v'(t) € K{{t}} be two roots of I and consider

P(x,z) = chlfpk(xz»z) € K[x][~],
keN

where py(z2,2) € K[zz,2] is such that deg,, (px) < ak for every k € N.
Then

P(x,7(22)) € K{{x}} = P(x,7(22)) € K{{x}}.
Note that properties [ii)| and are used only once in the paper, see § and
the proof of Theorem [3.20] respectively.

2.2. Weierstrass morphisms and ranks. We start by providing a detailed defi-
nition of the morphisms we consider:

Definition 2.3. Let (K{{z1,...,2,}})n be a Weierstrass family (resp. a W-
temperate familly) and let ¢ : C{{x}} — K{{u}} be a morphism of local rings. We
call p a morphism of rings of Weierstrass power series (resp. of W-temperate power
series) if there exist power series ¢1(u), ..., p,(u) € (0)K{{u}} such that

Vix) e K{{x}} o(f) = fler(u),..., on(u)).
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For such a morphism, we have introduced in the introduction three notions of
ranks: generic, formal and Weierstrass (or temperate), see Equation . Note that
the generic and formal ranks can be introduced, in an obvious way, for general
morphisms of power series rings ¢ : K[x] — K[u]. Let us start by showing that
these ranks are well-defined:

Lemma 2.4. Let ¢ : K{{x}} — K{u}} be a morphism of Weierstrass power
series. Then (), 17 (¢) and t"V(p) are natural numbers such that:
<

r(p) <17 (p) <™(p).

Proof. Tt is straightforward that r() is well-defined; r7 () and r"V(yp) are well-
defined since ’C[[X]]/Ker((ﬁ) and /C{{X}}/Ker(@ are Noetherian local rings. Next,
consider a general morphism of power series ring ¢ : K[x] — K[u] and set
r =r(¢)). Apart from re-ordering the coordinates, we may assume that the matrix
[0u,0(5)]i<m,j<r has rank 7. Therefore, if we set R := K[y, ..., z,], ¥, is injective
by |[Ga73l Lemma 4.2] (whose proof remains valid over any characteristic zero field
K). Thus r = dim(R) < dim (K[[XH/Ker(w)>~ This proves the first inequality.
Finally, by Artin approximation Theorem Ker(p)K[x] is a prime ideal, and by

[Mat89, Theorem 9.4] the height of Ker(¢)K[x] is less than or equal to the height
of Ker(p). We conclude that r¥ () < 1"V (yp). O

Remark 2.5. The proof of Lemma also shows the result for a general morphism
of power series rings v : K[x] — K[u], that is, its generic and formal ranks are
well defined and:

r(y) <17 ().

Definition 2.6. Let ¢ : K{{x}} — K{{u}} be a morphism of Weierstrass power
series. We say that ¢ is regular (in the sense of Gabrielov) if r(¢) = r7 ().

We finish this subsection by useful results about the ranks of a morphism of
Weierstrass power series, which is a Weierstrass version of [BCR21], Prop. 2.2]:

Proposition 2.7 (cf. [BCR21l, Prop.2.2]). Let ¢ : K{{x}} — K{{u}} be a mor-
phism of Weierstrass power series. The ranks v(¢), 17 (¢) and vV (p) are preserved
if we compose @ with:

(1) a morphism o : K{uq, ..., um}} — K{ul,...,u.}} such that (o) = m,

(2) an injective finite morphism 7 : K{z}, ..., 2} }} — K{{z1,..., 201},

(3) an injective finite morphism 7 : K{z,...,z}}} — K{{X}}/Ker(cp)-

Proof. We start by proving (1). Note that it is straightforward from linear algebra
that r(c o) = r(¢). In order to prove the other two equalities, it is enough to prove
that o and & are injective morphisms of local rings. This follows from Lemma [2.4]
since m =1(0) <17 (0) < (0) < dmK{uy, ..., unl} =m.

We now prove that 1"V (p) = 1"V (p o 7) under the hypothesis given in (2) and
(3). Indeed, we have Ker(p o 7) = Ker(¢) N K{{x'}} because 7 is injective. Since
K{{u}} is an integral domain, Ker(¢) and Ker(y o 7) are prime ideals. Thus, by the
Going-Down theorem for integral extensions [Mat89, Theorem 9.4ii], we have that
ht(Ker(¢ o 7)) < ht(Ker(y)), thus 1"V (¢) < V(¢ o 7). On the other hand, we have
the equality 1"V () = 1"V (p o 7) because ht(Ker(p o 7)) = ht(Ker(p)) by [Mat89,
Theorem 9.3].
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We now prove that 17 (¢) = 17 (¢ o 7) under the hypothesis given in (2). Indeed,
since 7 is finite, 7 is also finite by the Weierstrass division Theorem (see for instance
[BCR21], Cor. 1.10] for this claim). Moreover, we have

dim(K[x]) — ht(Ker7) = dim(K[x]) = n

since finite morphisms preserve the dimension and 7 is injective. But ht(Ker(7)) = 0
if and only if Ker(7) = (0) because K{{x'}} is an integral domain. Thus, 7T is
injective and 17 (¢ o 7) = 17 ().

Now we prove that 7 (p) = 17 (¢ o 7) under the hypothesis given in (3). We
denote by 7/ the morphism induced by 7:

Klzy, ...z 71 (Ker(3)) — ]C[[X]]/Ker(@
As in the previous case, since 7 is finite, 7 is also finite, therefore 7/ is finite.
Moreover, by definition, 7’ is injective. Thus, by [Mat89, Theorem 9.3], we have
" (por) =17(p).

We now turn to the proof of r(¢) = r(p o 7). We start by (2). Let J, and J;
denote the Jacobian matrices of ¢ and 7. Then we have Jyor = J, - ¢(J;); note
that it is enough to prove that the hypothesis imply that r(7) = n in order to
conclude by standard linear algebra. Indeed, since 7 is finite and injective, for every
i €{1,...,n}, there is a monic polynomial P;(x’, z;) € K{{x'}}[z;] such that

Pi(r(X), ..., m(xX'),2;) = 0 and or, (11 (X'), ..., Tn(X'), @) # 0.

(9.%1'
Therefore, for every i and j, we have
P.
87’@(){) i if i=j
azé "or, 0 if i
Thus
OF; OF; _ OPR
o} oxl,| T T Tom ¢

where e; is the vector whose coordinates are zero except the i-th one which is equal
to 1. In particular J, is generically a matrix of maximal rank, that is r(7) = n, so
r(¢) =1r(p o) by standard linear algebra. This proves (2).

Finally, let us finish the proof of (3). By adding the &} to the z;, we can assume
that o) = x; for i < t. By assumption, for every ¢ € {1,...,n}, there is a monic
polynomial P;(x',z;) € K{{x'}}[x;] such that

Pi(r1(x),...,mn(x),z;) = fi(x) € Ker(p) and or, (r1(xX'), ..., (X)), ;) & Ker(p).

Bxl-
s OP, OP, 3] 0 0
i i __op fi 9fi
[633’1 axgj = g e {a ;) B, )
Since f; € Ker(p), we have f;(¢(u)) = 0. By differentiation we obtain
. a,fz &Pk(u) _
W Z du, =0,
k=
that is,

T )| R
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This proves that the generic rank of Joor = J, - ¢(J;) is the rank of J,,. O

2.3. Properties of Weierstrass families. We now recall several useful properties
of W-families which are either proved in [DL80) [Ro09] (see precise references in the
proof), or which follow easily from classical results:

Proposition 2.8. Let (K{{z1,...,zn}})nen be a Weierstrass family. Then the
following properties are satisfied:

i) For every n, K{{x}} is a Henselian, Noetherien, UFD regular local ring
whose mazimal ideal is generated by (x1,...,2,), and completion is K[x].

it) For f € K{t,x}} and any g € (x) K{x}}, f(g,x) € K{x]}}.
iii) For every f € K[x], and any q € N*, we have
fx a2l € K{{x}} = f(x) € K{x}}.

i) For every n and k < n,

KAty 0 (an) KIx] = (2x) K-

v) Weierstrass preparation Theorem: Let f € K{{x}} be such that f(0,...,0,z,) #
0 has order d in x,. Then there exists a unit U and a Weierstrass polynomial

P =g +a;(x")zd"t + .-+ aq(x’) such that
Fx) = Ux) - (2 + ar(x)zg !+ + ag(x)).

vi) Noether Normalization: Let A = K{x}}/1 where I is an ideal of K{x}}.
Then, apart from a linear change of indeterminates x1, ..., x,, there exists
an integer v > 0 such that the canonical morphism

’C{{Jﬁl, e 71'7"}} — IC{{azl, e 7$n}}/[

is finite. Moreover, since the dimension does not change under finite mor-
phisms, if dim (/C{{X}}/]) =7, then ht(I) =n —r.

Proof. Properties are given in [DL80, Remark 1.3]; property is given in
[Ro09, Lemme 5.13]. To prove property it is enough to consider the Weierstrass
division of z¢ by f(x). Finally, it is classical that property follows from the
Weierstrass division Theorem, see e.g. [dJP{00] 3.319]. O

We add to this list of properties the following two Theorems:

Theorem 2.9 ([PR12, Theorem 5.5]). A Weierstrass family of rings satisfies the
Abhyankar-Jung Theorem. More precisely, let P(x,Z) € K{x}}[Z] be a monic
polynomial in Z. Assume that

Discz(P) = x%u(x)
where u(x) € K{{x}} satisfies u(0) # 0. Then there is ¢ € N* such that the roots of
P belong to K{a1'%, ... x/ .

The next result motivates the introduction of the notion of W-families in [DL80).

Theorem 2.10 ([DL80, Theorem 1.1)). A Weierstrass family of rings satisfies
the Artin Approzimation Theorem: let F = (Fy,...,F,) € K{x}}y]? withy =
(Y1, Ym), and let g(x) = (G1(X), ..., Gm(x)) € K[x]™ be a formal power series
solution:

F(x,9(x)) = 0.
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Let ¢ € N. Then there is a solution g'©)(x) = (g%c) (x),... Lg% (x)) € K{x}™:
Flx, g (x)) = 0

with gfc) (x) — gi(x) € (x)¢ for every i.

In what follows, we will use the following well known corollaries of the above
result (and we provide their proofs for the sake of completeness).

Corollary 2.11. Let ¢ : K{{x}} — K{u}} be a morphism of Weierstrass power
series. Then Ker(o)K[x] is a prime ideal.

Proof. The following is a well-known argument. Let f, 9 € K[x] be such that

fg € Ker(¢)K[x]. That is, there exist fi, ..., fs € Ker(e) and hy, ..., hs € K[x]
such that

73— Zfzﬁz = 0.
i—1

By Artin approximation Theorem applied t0 ys11Ys+2 — 25— fi¥i, for every ¢ € N*,
there exist f(¢), g(©) hgc), e e K{{x}} such that

FOge — 57 finl =
i=1

and f— .5 — ¢ e (x)°. Since Ker(y) is a prime ideal, then f(©) or ¢(°) is
in Ker(p). Apart from replacing f by g, we may assume that f(©) € Ker(yp) for
infinitely many c. Therefore, f is the limit of elements of Ker(y), that is, f belongs
to the closure of Ker(p) in K[x] for the (x)-topology. But, by [Mat89, Theorem
8.11], this closure is exactly Ker(p)K[x], so f € Ker(¢)K[x]. This proves that
Ker(¢)K[x] is a prime ideal. O

Corollary 2.12. Let (K{{z1,...,2n}}), be a Weierstrass family. Suppose that P
and Q are monic polynomials in y, P € K[x][y] and Q € K{x}}[y], that are not
coprime in K[x,y]]. Then P and Q admits a common W-factor R € K{x}}[y].

Proof. By hypothesis, there is a non unit R € K[x,y] that divides P and @ in
K[x,y]. Since P is monic in y, then R(0,y) # 0, so R equals a unit times a monic
polynomial by Weierstrass preparation for formal power series. By replacing R by
this monic polynomial we may assume that R is monic in y. So we have RS = Q)
where S € K[x][y] is monic in y. We write

d+e

d e
R= Zri(x)yi7 S = Z si(x)y’  and Q = Z%‘(X)yi-
1=0 1=0 =0

The equality RS = @ is equivalent to the system of equations
min{¢,d}
Z ri(X)se—k(x) — qe(x) =0for £=0,...,d+e.
k=max{0,{—e}
By Artin approximation Theorem [2.10] for any ¢ € N, this system of equations has
a solution (r}(x), s}(x)) € K{x}}*"**? and that coincide with (r;(x), s;(x)) up to
(x)°. We set R'(x,y) = Z?:o 7 (x)y’. Since K{{x}} is a UFD by Proposition
Q@ has finitely many monic factors of degree d in y that we denote by R, ..., R,.
Let us choose ¢ € N large enough to insure that R; — R; ¢ (x)° when ¢ # j. Since
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R’ equals one of the R;, necessarily R’ = R. This proves that R € K{{x}}[y], so P
and @ admits a common W-factor R € K{{x}}[y]. O

3. PROOF OF W-TEMPERATE RANK THEOREM

3.1. Reduction of Theorem to Theorem We start by proving by
contradiction that the following result implies Theorem [I.T}

Theorem 3.1. Let ¢ : K{{x,y}} — K{{u}} be a morphism of rings of W-temperate
power series such that

i) The kernel of ¢ is generated by one Weierstrass polynomial P € K[x][y].
ii) 1(p) =17 () = n.
Then P € K{x}}[y].

Remark 3.2. In fact we prove here that the statement of Theorem implies
the statement of Theorem when (K{z1,...,2,}})n) is a Weierstrass family
(and not only a W-temperate family). Indeed, we will need this reduction in the
case of the family of convergent power series over a (not necessarily algebraically
closed) complete field of characteristic zero, which is a Weierstrass family but not a
W-temperate family.

Reduction of Theorem[1.1) to Theorem[3.1. We follow closely [BCR21, page 1347].
Assume that Theorem does not hold, that is, there exists a morphism of rings
of Weierstrass power series ¢ : K{x}} — K{{u}}, where x = (x1,...,2,) and
u = (u,...,un), such that r(¢) = r7(¢) > 1, but r’ (p) < 1"(¢). Consider
the induced injective morphism ’C{{X}}/Ker(cp) — K{{u}} and, by the Noether
normalization given in Proposition there exists a finite injective morphism
7: K {x}} — K{{X}}/Ker(go)~ By Proposition we can replace ¢ by o, that
is, we may assume that ¢ is injective.

Next, since 17 (p) < t"(¢) = m, we know that Ker(3) # (0). Now, suppose
that Ker(®) is not principal or, equivalently, that its height is at least 2. By the
normalization theorem for formal power series, after a linear change of coordinates,
the canonical morphism

Klx]
K c. —_— -~
s [[:I;lﬂ b) xr(«p)]] Ker((p)
is finite and injective. Thus, the ideal p := Ker(®) N K[z1,. .., Zr)41] is a nonzero
height one prime ideal. Because K[z1, ... 7xr(¢)+1]] is a unique factorization domain,

p is a principal ideal (see [Mat89, Theorem 20.1] for example). After a linear change
of coordinates, we may assume that p is generated by a Weierstrass polynomial
Pe IC[[l‘l, . ,xr(w)]][xr(w)+1].

Now, denote by ¢ the restriction of ¢ to K{{z1,...,%(,)41}}. By definition
P is a generator of Ker('), thus 17 (') = 1(p) +1 -1 = r(¢) = 17 (p). Since
¢ is injective, ¢’ is injective and P does not belong to K{x1, ..., %) }}HTr(p)+1]-
Moreover, since 7 is finite, we can use again Proposition [2.7] to see that

(@) = 1(¢') =1() = r(¢).
¢') = m — 1, contradicting Theorem |3.1 (]
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3.2. Reduction to the low-dimensional case. We now prove by contradiction
that the following result implies Theorem [3.1}

Theorem 3.3. Let ¢ : K{z1,z2,y}} — K{u1,u2}} be a morphism of rings of
W-temperate power series such that

i) o(x1) = u1 and p(x2) = ujus,
i) Ker(p) is generated by one Weierstrass polynomial P € K[x][y].

Then P € K{x}}[y].

Reduction of Theorem[3.1] to Theorem[3.3. We follow closely [BCR21, 3rd Reduc-
tion]. Assume that there is a morphism ¢ satisfying the hypothesis of Theorem (3.1
but where P ¢ K{{x}}[y].

(1) First, after a linear change of coordinates in u we may assume that
o(z1)(u1,0,...,0) # 0. Thus, the morphism o o ¢, where o is given by

o(ur) =u; and o(u;) = ugu; Vi >1

satisfies the hypotheses of Theorem and its kernel is generated by P, by Propo-
sition Thus we may assume that p(z1) = u$ x U(u) where U(u) is a unit. And
by replacing z; by ﬁxl we may further assume that U(0) = 1.

(2) We define the morphism 7 by
7(x1) = 2§ and 7(x;) = a; Vi> 1.

Let V(u) € K[u] be a power series such that V(u)¢ = U(u). Such a power series
exists since U(0) = 1 and, by the Implicit Function Theorem cf. Proposition
V(u) € K{{u}}. We define the morphism v by

Y(z1) = wiV(u) and P(z;) = p(x;) Vi> 1.

Then ¢ o7 = ¢ and P(z$,22,...,2,,y) € Ker(¢p). Since P(x§,xa,...,2n,y) is
a Weierstrass polynomial in y, Ker(@) is generated by a Weierstrass polynomial
Q@ that divides P. Thus P is the product of @@ with the distinct polynomials
Q(&x1,xa,...,x,,y) where £ runs over the e-th roots of unity. Therefore, if @ €
K{x}}y], P € K{{x}}[y] which contradicts the hypothesis. Thus, v satisfies the
hypothesis of Theorem but Ker(@) is generated by a Weierstrass polynomial
that is not in K{{x}}[y]. By Proposition we may replace ¢ by ¢ and assume
that 9 (x1) = x1 by composing ¢ by the inverse of the temperate automorphism
that sends uy onto ui V' (u).

(3) Now we have ¢(x1) = u; and we perform “Gabrielov’s trick", cf. [BCR21]
Example 3.5]. We denote by ¢;(u) the image of x; by ¢. We consider the temperate
automorphism x defined by

x(z1) = z1 and x(z;) = 2; — @i(21,0,...,0) Vi> 1.

If we replace ¢ by ¢ o x we may assume that every nonzero monomial of ¢(z;)
is divisible by one of the w; for ¢ > 1. Then by replacing ¢ by ¢ o ¢, where o is
defined above, we may assume that ¢(x;) = ui*g;(u) where a; > 0, ¢;(0) = 0 and
9i(0,29,...,2,) # 0, for i > 1. Moreover, by composing with the morphism

Hk;ﬁi 4k

Ti——,;
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for ¢ > 1, we may assume that a; = a is independent of i. Finally, by replacing x;
by 2§t we may assume that ¢(z;) = uf™'. Composing ¢ with these morphisms

does not change the ranks, by Proposition 2.7
(4) Now we set, for A = (Aa,..., \,) € K" 71 {0}, hy =21 — Yy Niwi. We have

p(ha) = uiga(u)

where gx(u) = u1 — Y i, Nigi(u) € K{{u}}. By the implicit function Theorem,
there exists a unique nonzero &(us, . .., uy) € K{{u}} such that £,(0) = 0 and

g)\(é-)\(m% .. ~,$n);$27 cee 7mn) = 0.

Let M (u) be a nonzero minor of the Jacobian matrix of ¢ that is of maximal rank.
Then assume that M (u) is divisible by hy(u) for every A € A, where A cannot be
written as a finite union of sets included in proper affine subsets of X"~ !. Thus,
because K[u] is a UFD, there is a finite number of subsets A, C K" k=1, ...,
N, whose union equals A, and such that for every A\, A’ € Ag, hy and hy are equal
up to multiplication by a unit. Thus, by the assumption on A, there is k& such that

Ak_ contains n vectors of K"~ 1, denoted by XY, ..., A(™ such that the vectors
MO — XM are K-linearly independent. Therefore, there are units U;(u), for i = 2,
..., m, such that

uy — (9) - A0 = Ui(u)(u1 — (9) - /\(1)) Vi=2,...,n

where (g) denote the vector whose entries are the g;(u). This implies that the
(9)-(A® =X are divisible by hy ). But the A\ —=\(1) being K-linearly independent,
every g;(\) is divisible by hy), thus uy is divisible by hy@a), which implies that
&ya) = 0 contradicting the assumption. Therefore, there is a finite union of proper
affine subspaces of K"~1, denoted by A, such that M (u) is not divisible by hy for
every A € K"~1 ~ A. In particular £~ \ A is uncountable.

After a linear change of coordinates, we may assume that K x {0}"~2 is not
included in A, in particular (K x {0}"72) N A is finite. For any (),0,...,0) €
(K x {0}"72) \\ A the morphism

Kz, .. 2a] Y] Klug, ...y un][y]
O T ) (un— ga(w)

is of rank r(py) = n — 1. Then if n > 3, by Bertini’s Theorem [BCR21l Theorem
3.4], and by Definition (note that this is the only point of the paper where we
use Definition R.I|[ii)), the polynomial P remains irreducible and not in K{{x}}[y] in

Klz1, ... x]y]
(.’)31 — )\1'2)

~ Klza, ..., 20][y]

when A belongs to W C K that is uncountable. Therefore we can choose (A,0,...,0) €
(W x {0}™2)\ A, and this allows us replace n by n—1 in Theoremm By repeating
this process, we construct an example of a morphism ¢ with n = 2 satisfying Theo-
rem (i) such that Ker(®) is generated by a Weierstrass polynomial that is not
K{{x}}y]; note that we must stop the reduction at n = 2, because Bertini’s Theorem
does not hold for n < 3, cf. [BCR21I, Remark 3.6(3)]. Moreover, by repeating the
argument given in part (2) if necessary, we may assume that ¢(x1) = uq, and ¢(x2)
has the form u§g(u) with g(0) = 0 and ¢(0, uz) # 0.
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By composing ¢ with the morphism o defined in (1), we can assume that
g(u) = wbU(u) for some unit U(u). Now let o/ be the morphism defined by
o' (u1) = ub and o’ (ug) = uyuy ™. Then, we have

o' o p(x1) = ub and o’ 0 p(3) = (u1uz)*@ TV (u)
for some unit V(u). Therefore, as done in (2), we can assume that
o(x1) = uy and @(x2) = ujus.

Hence, we have constructed a morphism ¢ that satisfies the hypothesis of Theorem
but Ker(p) is generated by Weierstrass polynomial in y that is not in K{x}}[y],
contradicting Theorem [3.3] O

The rest of this section is devoted to the proof of Theorem given in §§3.7]

3.3. Newton-Puiseux-Eisenstein Theorem. In [BCR21| Section 5|, we pro-
vided a framework allowing us to obtain a good factorization of a polynomial in
C[x][y]. We recall here the main definitions and adapt the main results to the more
general context of polynomials in K[x][y].

Consider the ring of power series K[x] where x = (z1,...,2,) and denote by
K((x)) its field of fractions. We denote by v the (x)-adic valuation on K[x]. The
valuation v extends to K((x)) by defining v(f/g) = v(f) —v(g) for every f, g € K[x],
g # 0. Denote V,, the valuation ring of v in K((x)), and V, its completion with
respect to v. Let us now recall the notion of homogeneous element:

Definition 3.4 (Homogeneous elements). Let w = p/e € Qs¢. We say that
I' € K[x, 2] is w-weighted homogeneous if T'(x§,- -, x&, 2P) is homogeneous.

A homogeneous element 7 is an element of an algebraic closure of K(x), satisfying
a relation of the form I'(x,~v) = 0 for some w-weighted homogeneous polynomial
I'(x, z), where w € Qs¢. Furthermore, if I'(x, z) is monic in z, we say that v is an

integral homogeneous element. In this case, w is called the degree of ~.

Given an integral homogeneous element ~ of degree w, there exists an extension
of the valuation v, still denoted by v, to the field K(x)[v], defined by

d—1
v <Z ak(x)7k> = min{v(ay) + kw}.
k=0

where d is the degree of the field extension KC(x) — K(x)[y]. We denote V,, - the
valuation ring of v in K(x)[v], and V,, , its completion with respect to v.

Definition 3.5 (Projective rings and temperate projective rings). Let h € K[x]
be a homogeneous polynomial. Denote by Py ((«)) the ring of elements A for which
there is kg € Z, «, 8 € N and ay(x) homogeneous polynomials in K[z] for k > ko
such that:

a(x
A= Z hj’g'*‘;’ where v(ag) — (ak + B)v(h) =k, Yk > ko
k>ko

We denote by P, [x] the subring of Pj,((x)) of elements A such that ko belongs to
Z>0, and we denote by Pp,{{x}} the subring of P, [x] of elements A such that

> ar(x) € K{{x}}

k>ko
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When + is an integral homogeneous element, we denote by Pp,[x,~] the subring of
Vi, whose elements £ are of the form:

d-1
&= ZAk(x)vk, where Ay, € Py ((x)) and v(AL(x)y*) >0, k=0,...,d 1.
k=0

Remark 3.6. Lemma below shows that if A € P [x], the fact that A € Pp{{x}}
is independent of the presentation of A, that is, Pp{{x}} is well-defined. This
observation greatly simplifies [BCR21), Prop 5.13], which relied in complex analysis.

The next two results have been proven (in greater generality) in [Rol7], but we
refer the reader to [BCR21] where the statement is given when I = C, but whose
proof remains valid in the case of a general characteristic zero field.

Theorem 3.7 (Newton-Puiseux-Eisenstein, cf. [BCR2I, Th 5.8]). Let K be a
characteristic zero field and let P(x,y) € K[x][y] be a monic polynomial. There
exists an integral homogeneous element vy, and a homogeneous polynomial h(x), such
that P(x,y) factors as a product of degree 1 monic polynomials in y with coefficients

in Pp[x,7].
The following result is a convenient reformulation of Theorem

Corollary 3.8 (Newton-Puiseux-Eisenstein factorization, cf. [BCR21, Cor 5.9]).
Let K be a characteristic zero field and let P € K[x][y] be a monic polynomial.
Then, there is a homogenous polynomial h and integral homogenous elements ; ;,
such that P can be written as

T

(2) Pixy)=]J@i and Qi =] -&(x79))

j=1
where

(i) the Q; € Ph[x][y] are irreducible in V,[y],
(ii) for every i, there are A; 1(x) € P (%)), for 0 < k < k; such that

ki
&i(x,7i4) = Z Ai,k(x)%k,j € Pu[x, i1
k=0
(iit) for every i, the v; ; are distinct conjugates of an homogeneous element v;,
that is, roots of its minimal polynomial T; over K(x).

3.4. Blowings-up and the geometric setting. In what follows, we use algebraic-
geometry methods concerning blowings-up o : N’ — N, where N will stand for
some affine space over K (the precise meaning of this statement will be clarified
in this subsection). Nevertheless, and in contrast to usual algebraic and analytic
geometry, we do not have access ,as far as we know, to a theory of varieties and
sheaves valid for W-temperate families. We do not have the ambition to develop
such a general theory in here, but rather to introduce the minimal set of definitions
which are necessary for this work. In particular, we will greatly exploit the fact that
we only need to work over K{{x}}, where x = (1, x2) stands for two indeterminates,
in order to avoid a more technical discussion.

Let us start by fixing a set of indeterminate x = (x1,...,x,), and a W-temperate
ring {{x}}. In what follows, we will often need to change indeterminate:
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Definition 3.9 (Temperate automorphism). Let ¢ be a K-automorphism of the
ring of power series [x]. We say that ¢ is temperate if p(K{x}}) € K{x}}.

Lemma 3.10. A K-automorphism ¢ given by series o(x;) € K[x] is temperate if
and only if for every i we have p(z;) € K{{x}}. In this case ¢~ is also temperate.
In particular, when ¢ is temperate, we have p(K{x}}) = K{x}}.

Proof. The condition is necessary by definition, and sufficient from the fact that
K{{x}} is stable by composition. Now ¢! is also temperate since K{{x}} satisfies
the implicit function Theorem, cf. Proposition O

It follows directly from this lemma that any K-linear automorphism in x is
a temperate automorphism. We are ready to introduce the notion of temperate
coordinate systems:

Definition 3.11 (Temperate coordinates). Let K{{x}} be a temperate ring. A
system of parameters X of the ring K[x] is said to be temperate if X is obtained
from x by a temperate K-automorphism. A system of parameters X of K[[x] which
is not temperate will be called formal.

We will denote by O the intrinsic ring of temperate power series associated
to K{{x}} up to temperate automorphisms, that is, O denotes K{{x}}, for some
temperate coordinate system x, and is isomorphic to K{{X}} for any temperate
coordinate system X.

We now specialize to the case that n = 2. Let K{{z1,22}} be a temperate ring
and Ny = 1&% be the affine scheme associated to the complete local ring K[z, z2].
We denote by Oy and @0 the rings of temperate and formal power series at 0. We
consider the formal blowing-up of the origin:

o (Nl,El) — (N(),O)
where 071(0) = E is called the exceptional divisor. Given any closed point b € E, we
can localize o to b in order to obtain a morphism between local rings oy; : OO — Ob,
where Ob stands for the local ring of formal power series at b. Now, apart from a
K-linear change of indeterminacy in x (which is a temperate change of coordinates),
we may suppose that b is the origin of the z;-chart of the blowing-up, that is, there
exists a system of parameters v = (vy,v2) of Oy such that op  K[x] — K[v] is
given by

($1,$2) — (’111,1)11]2).
We note that the ideal of E is generated by vy in this chart.

Definition 3.12. Following the above construction, we say that v = (v1,v2) is a
system of temperate coordinates at b. In particular o, induces a morphism:

op : K{{x}} — K{{v}}.
The next lemma shows that this definition is consistent with temperate changes
of coordinates, allowing us to write:

UZ:OO—>Ob.

Lemma 3.13. Let X = (T1,Z2) be a different system of temperate coordinates at
0, that is, there exists a temperate authomorphism ¢ : K{X}} — K{{x}}. Suppose
that there exists a system of parameters v = (v1,v2) of Op such that:

(51752) — (51,5152)
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Then v is a system of temperate coordinates, that is, there exists a temperate
automorphism ¢ : K{v}} — K{v}}.
Proof. Let o(T1) = ¢1(1,22) and ¢(Z2) = @a(z1,x2). From the assumption
_ p2(v1,v102)
901(111,?11112)’

and from usual formal algebraic geometry, we know that defines an authomor-

(3) U1 = 1(v1,v102), V2

phism of @b. Let us show that this automorphism is temperate. We consider the
Taylor expansion of ¢; and g9 in order to get:
p1(vi,v1v2) = vy (@11 + a1202 +01®1),  @2(vi,v1v2) = vy (a2,1 + az.2v2 + v1P2)
where the K-matrix A = [a; ;] is invertible and ®; and ®, are temperate functions
by Proposition Therefore:

~ a1+ as2v3 +v1Py

Vo =

a1,1 + a1 202 + 019

and we conclude that a; ; # 0 and ag; = 0. The result is now immediate from the
implicit function Theorem, cf. Proposition O

In what follows, we will consider sequences of point blowings-up
(Np, Fr) =7 o =2 (Ny, Fy) =2 (No, 0) = (A,0)
and it will be convenient to fix notation. We set ¢ = o1 o --- 0 ¢, and, for every
j€{l,...,r}, F; is a simple normal crossing divisor that can be decomposed as

F=FYUF?u...uFY

where F' j(k) is the strict transform of F’ j(f)l (when k < j) and F J(J ) is the exceptional
divisor of ;. Now, fixed a temperate ring O = K{{z1,22}} at 0, the formal
morphism ¢ can be localized at every point b € F). in order to generate a morphism
between temperate rings, that is, there are system of parameters v = (v1,vy) of (5[,
such that o : K{x}} — K{{v}} is well-defined and can be written o : Oy — Op.

Remark 3.14. If b € Fﬁl) then, from usual combinatorial considerations about
blowings-up, we may further suppose that o : C{x}} — K{v}} is given by:

(21, 22) — (v105, v105TY)
for some natural number 0 < ¢ < r.

3.5. Blowings-up and Projective rings. We present in this subsection different
results about the behavior of projective series and temperate projective series under
blowing-up, which will be most useful in the sequel.

Definition 3.15. Let A € P,[x] and o : (N,, F.) — (N, 0) a sequence of point
blowings-up. We say that A extends at a point b € F, if Ay := o (A) belongs to
(’3[,. Furthermore, we say that A extends temperately if A, € Oy, where we recall
that Oy stands for the ring of W-temperate functions at b.

The next Lemma is a generalization of [BCR21l Proposition 5.13 and Lemma
5.14] for W-temperate rings. Note that the proof given in [BCR21] relies in complex
analysis, cf. [BCR21l §§5.3], and does not adapt in a trivial way to W-temperate
rings, so we provide a new commutative algebra argument:



16 A. BELOTTO DA SILVA, O. CURMI, AND G. ROND

Lemma 3.16 (cf. [BCR21], Proposition 5.13 and Lemma 5.14]). Let A € Pp[x]

and let o : (N, F,.) — (N, 0) be a sequence of point blowings-up. Let b € EY pe
such that A extends at b (that is the case for instance when b does not belong to the

strict transform of h = 0 or the in the intersection with Fr(j) for some j > 1). Then
A € Pr{{x}} if and only if Ay € Oy. In particular, Pr{{x}} N K[x] = L{x}}.

Proof. Let A € P[[x] and fix a point b € FY, By definition and the local
expressions of blowings-up given in Remark we can write:

— ak(X) _ vk ak(l,vg)
A=) ke and Ao = > () L, vy)oh P
k2k0 k}>k70
Denote by d the degree of h, and consider:
A= Z ap(x), and Ay =of(A) = Z (vyv§) @Bk G, (1, 05).
k>ko k>ko
Let us define the following auxiliary function:
B(w) := Z (wrw$)*a(1,ws) € Kw].
k>ko
Now, writing h(1,ve) = v5*g(ve), where g is a unit and m € N, we have:
Ap(v) = (0105) B (0] 105 vn)
B(w) = wy" g(ws)? Ag (wiw5**g(ws)", wy).

Since being temperate is closed by division by a coordinate, ramification and local

blowing-down (see Proposition and Definition [2.2)), and A, € K[v] by
hypothesis, we conclude that

Ap(v) eK{ivl <= B(w) € K{{wl} <= Au(v) € K{v}},
finishing the proof. (]

We conclude this subsection with a useful characterization of projective series
which are not formal power series:

Lemma 3.17. Let A € P[x] \ K[x] and consider a point blowing-up o centered
at the origin. There exists a point b € o~ 1(0) such that Ay = o (A) is not a power

series, that is, of(A) ¢ Op.
Proof. Let A € Pp[x] ~\ K[x]; from definition [3.5] we may write
a(x)

A =
2 bi(x)

keN

where the a; and by are homogeneous polynomials in K[x] such that deg(ax) —
deg(by) = k and ged(ag, br) = 1. By hypothesis, there exists kg such that by, (x)
is not a constant polynomial. Apart from a K-linear change of coordinates in x,
we may furthermore suppose that by, (1,0) = 0. It follows that after the local
blowing-up o : (z1,22) — (v2, v1v2) We obtain

si4) = Y b el te)

keN " o(1,v2)”

this expression has a pole in the term kg, and we conclude easily. [
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3.6. Extension along the exceptional divisor. We introduce the notion of
Laurent series with support in a strongly convex cone, and we refer the reader to
[AT09] for extra details.

Definition 3.18. Let w € (R<¢)" be a vector whose coordinates are Q-linearly
independent. This vector defines a total order on the set of monomials by setting

x® < xP ifa-w<p w.
Let ¥ be a strongly rational cone. We say that X is w-positive if s-w > 0 for every
s € ¥\ {0}; under this hypothesis, X NZ" and ¥ N %Z" for ¢ € N* are well-ordered
for <, and (R>()“X because w € (Rs0)".

Assume that ¥ is w-positive strongly rational cone. We denote by K[X] (resp.
K[ n %Z"]] for ¢ € N*) the set of Laurent series with support in ¥ N Z" (resp.
with support in ¥ N %Z”). Since ¥ N Z™ and 3 N %Z” are well-ordered for =<, they
are rings containing respectively KC[x] and K[x'/9]. These rings are commutative

integral domains, and we denote by (X)) and (XN %Z" ) their respective fraction
fields.

The next result is a generalization of [BCR21, Theorem 5.16] for W-temperate
rings. Once again, the proof given in [BCR21] relies in complex analysis, cf. [BCR21
§85.4], so we can not adapt it in a trivial way to W-temperate ring. Instead, we
provide a new commutative algebra argument, which greatly simplifies the proof:

Theorem 3.19 (cf. [BCR21l, Theorem 5.16]). Let P € K[x][y] be a monic reduced
polynomial, and let Q be an irreducible factor of P in some Py[x][y] for a convenient
h € K[x] as in Corollary[3.8 Let o : (N,,F,) — (No,0) be a sequence of point
blowings-up such that o*(Ap) is everywhere monomial, that is, at any point b there
exist (non mecessarily temperate) coordinates V such that

o*(Ap) =V X unit .
Then Q extends at every point b’ € Fﬁl).

Proof. Let b € FY. From Remark , there are coordinates v = (01, 02) centered
at b’ and ¢ € N such that

(x1,29) = (0105, 0105 +1).

Let A be a coefficient of Q. By definition and by writing h(1,72) = 05"g(02)
where g is a unit and m € N, we have

. ak(x) . _ ~—mf ~k~k(c—ma) ak(1762)
(4) A= % W so that Ab = Uy Z V1 Uy W

Note that the series Uy’ ¥ A, has support in a translation of the strongly convex cone
¥ generated by the vectors (0, 1) and (1, min{0, ¢ —ma}), thus Ay belongs to KL(X)).
We conclude that Qp = o (Q) is a factor of Py, = o (P) in K(X))[y].

Now, by the Abhyankar-Jung Theorem for formal power series, the roots of Py
can be written as Puiseux power series in K[5./9,55/7] ¢ K[ N +2%] for some
q € N*. Since K(X N %Z”)) is a field, we conclude that Qp splits in (X N %Z")) [y]

and its roots are in K[[ﬁ%/q,ﬁé/q]]. By (), we conclude that Q, € K[V]. O
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We are ready to prove the main result of this subsection, which generalizes
[BCR21l Theorem 5.18] for W-temperate rings. We highlight that this is the only
point where Definition intervenes:

Theorem 3.20 (cf. [BCR21, Theorem 5.18)). Let P € K[xz1,x2][y] be a monic
reduced polynomial, and h be a homogeneous polynomial for which Theorem[3.7 is
satisfied. Let o : (N, F.) — (No,0) be a sequence of point blowings-up. Suppose:

o At every point b € F,ﬁl), the pulled-back discriminant of(Ap) is monomial;

o There exists by € F\") such that Py, = oy, (P) admits a factor in Ok, .
Then P admits a non-constant factor Q € Pr{{x}}[y], such that either P/Q s
constant, or oy (P/Q) admits no non-constant temperate factor for all b € rW.

Proof. Consider the factorization P = []}_; Q; given in Corollary (3.8 where the Q;
belong to some P [x][y]. It follows from Remark that there exists temperate
coordinates v = (v1,vq) centered at by such that oy, 1s locally given by (z1,22) —

(v1v5, v105Th), so that we get:

Pbo = HUZO (Ql)
i=1

where the o} (Q;) € K[v][y] have formal power series coefficients according to
Theorem Moreover, since K[x] is a UFD, for some i, o} (Q;,) has a common
factor with a polynomial in K{{v}}[y]. Therefore, by Corollary o, (Qi,) has a
non trivial divisor R € K{{v}}[y] that is monic in y.

We claim that of (Qi,) has its coefficients in K{{v}}. Note that the Theorem
immediately follows from the Claim applied to every polynomial ); having a
temperate factor at some point of Fﬁl). Let us prove the Claim. For simplicity
we denote @);, by @, and U;O(Qio) by Qs,. Now, we may suppose without loss
of generality that the discriminant of P is monomial in respect to the temperate
coordinate system (v1,v2). Indeed, up to making a blowing-up with center by, we
may suppose that the discriminant of P is monomial in respect to the temperate
coordinate system (v1, v2) by considering, for example, the point ¢y = F,S_)l ﬂFr(ﬁl);
we note that if we show that o} (Q) is W-temperate, then so is Q, by Def.

At the one hand, we may apply Abhyankhar-Jung Theorem for formal power series
in order to show that Qg splits in K[v'/9] for some ¢ € N, that is Qp, = [[(y — ;)
where 9; € IC[[vl/ ]. Furthermore, we may apply the temperate Abhyankhar-Jung
Theorem to the temperate factor of Qp,, in order to conclude that one of these
roots is temperate, say, 11 € K{{v!/9}}. At the other hand, by Theorem the
roots of @ belong to a ring P, [x,71], where 7 is an integral homogeneous element.
Let T'(x, 2) € K[x, z] be the irreducible w-weighted homogeneous polynomial having
7 as a root (see Definition and that is monic in z. By Corollary the
roots of @ are given by £(x,7) where v runs over the roots of I'(x, z), that is,
Q = J[(y — &(x,7")) where the product is taken over every root 7’ of I'. In what
follows, we perform a detailed study on how roots of @ in Pp,[x,v1][y] transform by
the blowing-up in order to compare them to the temperate root of Qp, in K[v'/].

We start by describing how the roots 7/ of T' transform by o. Consider

d
I(x,z2) =2+ Z fi(x)z4~
i=1
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where the f;(x) are homogeneous polynomials of degree wi. Since K is algebraically
closed, we may suppose that w > 0 (otherwise @ is a degree one polynomial, and the
Claim is trivial), that is, I'(x, z) is a Weierstrass polynomial in z. We write w = p/e
with ged(p,e) = 1, and we note that f; = 0 if e does not divide i. Furthermore,
because I is irreducible, f; # 0, hence, e divides d. We have

D (v105, vio5T v82) = 24 + Z fi(v1vs, v1v§ ™) (vy 2) 4
d/e
=o® | 24 4 Z 05 fe; (1, vg) 247
j=1
and we set
d/e
(v, 2) = 2% + Zv;p]fej(l,vg)zd_ej € Klve, 2°] C K[ve, 2].
j=1

Note that 7 is a root of ¢*(T') = I'(v1v§,v1v5, 2) if and only if 5§ = v$7 where
7 is a root of I'(vy,2z). Now, let us remark that ' is irreducible in K[vg, 2¢].
Indeed, if T = flfg where T'; € K[va,2¢] have positive degree ¢; in 2¢, we set
T (v1,v9, 2¢) == v{i°T; for i = 1, 2. Then we would have

— [ xstt xg x5 — [zt oy 2P
(x,2) =Ty | L, 2 2 Ty | 2, 25, 22 2¢
( ) ( ye (c+1)p ye ’ 1 xgchl)p
contradicting the irreducibility of I'(x,z). In particular, this implies that the

irreducible factors of T'(vs, z) are conjugates up to multiplication of z by a e-th root
of unity. This means that we may write

U27 HF V2, 2

where 7 runs through a subgroup H of the group of the e-th root of unity and the
', (v2, ) are irreducible (monic in z) polynomials, such that

fn(vg, 2) =T (v2,m2).

It follows that we may parametrize all roots of I by Viy for 1.=1,... ,d/e
and n € H, where ¢’ = |H| and 7, , = 1-7, ;. We may index the roots of T,
therefore, by v;, in such a way that of (vin) = %iy = v1'%;, are the roots of

o*(T) = T(v1v§,v105T, 2). We fix the convention that of, (71)/1,50 =%, and, more
generally, that op (%)/UT =7, are all the roots of T';. Next, by Newton-Puiseux
Theorem, we can write the roots of T'(va, z) as Puiseux series in ’C<’U;/ ), even if it

means replacing g by a larger integer.
Now, we use the normal form given by Definition [3.5] in order to write

ak,;(x)
(%, %,n) ZAJ '72 ., With Aj(x) = Wﬁﬂ(x)

k>k;

where the aj j(x) are homogeneous polynomials. Since there are only finitely many
4, apart from multiplying the numerators and the denominators of the coefficients
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of A;(x) by a power of h(x), we may assume that the a; (resp. the f;) are all
independent of j and equal to some integer o (resp. B). Note that

ktwj, ck ak,;(1,v2)
Ubo X %»77 Zabo Z%TI Z Uy 5 hak+ﬂ(1 02)
j=0 k>k; ’

(5) :

v
= Z Wwb k(V2,Vin)
kelN
where by, € K[vg, z] with deg,(bx) < d — 1. We remark that deg,, (bx) is bounded
by a linear function in k because, for each j, deg, (ax, ;(x)) is bounded by a linear
function in k.
We note that we can write h(1,v2) = v5g(v2) for some unit g(vs), and some

m € N. Therefore, as already shown in the proof of Theorem the series
vy A (A;)p are Laurent series with support in the strongly convex cone ¥ generated
by the vectors (0,1) and (1, min{0, c — ma}. Therefore, if we identify the ¥, , with

their expansions as Puiseux series of K (vi/ ), we have that
1
605 700)) < K |20 222

Since L{v}} C K[EN LZ°] C K(EN ;Z%), and K(E N Z*)[y] is a UFD, we
conclude that the set of roots of (§(x,7i,)) and 9; of Qp, must coincide when
we expand the 7, , as Puiseux series. From now, the 7, , € IC(vQ/ 7). We set
Vi = o5, (§(X,7iy)); note that ¢, € K[[vl/e
from re-indexing, we have ¢ ; € IC{{U%/E, 2/q}}.

Next, note that for every e-th root of unity 7, there exists a e-th root of unity 7
such that 777 = 7 since ged(e, p) = 1, so that:

2/ ] for every i and n and, apart

d-1
1/e o ktwi, ok @k,j(1,02)
1/)1,77(”1/ ,V2) = Ubo(f(xm’h)) = Z (n71) Z U1 Fedy km
§=0

k>k;
! (075 (1 UQ)
=J ~, 1/eye c ) ~ 1/e
= ’yjl (17 1/ ) k—i_pijII€ ak—&j-ﬁ = 1/11,1(77”1/ 702)u
hok (1, vs)
j:0 ICZ]C]

so that ¢, € IC{{U}/  va}} for every e-th root of unity n. More generally, this
argument shows that:

Vi, i€ Kol = i € Ko 0ol
for every n € H. We are, therefore, reduced to show that ¢; 1 = oy (&(x,7:)) €

IC{{vl/e é/q}} forall i =1,...,d/e’, where we recall that the 7, are the roots of
the irreducible polynomial fl. Now, we introduce the auxiliary function

(6) = > witbi(w§,z) € Klwr, wi][2].

kelN

where deg,,, (bx) is bounded by a linear function in &. Since vy 1(v) € /C{{vi/e, v,
and @ imply that

B(w, 7, (ws2)) = wy ™ g(w)? - g1 (wiwd™ g(wd)*, wd) € Kf{wr, wi}}.
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Moreover, because B(w, z) € K[wy,wi][z] and B(wy, (wa, 7, (Cws)) € K{w1,wd}},
we have that B(w,7,(Cws)) € K{{wi,wi}} for every ¢-th root of unity (. We
remark that T';(wd,z) may factor as a product of monic polynomials that are
conjugated under the action of a subgroup G of the ¢-th roots of unity. Thus, the set
{71(Cws) | ¢ € G} contains exactly one root of every factor of I'y(wi, z). Therefore,

by definition (and we highlight that this is the only point of the paper where
Definition liii)| intervenes), we conclude that:

B(w,7;(we)) € K{{w:, w2 }}

for every 7, which is a root of T'y. Now, note that:

B(w,7;(wz)) = w; ™ g(wd)? - s, (wiw§™ g (w§)™, wh) € Kf{wn, wa}}

for every i = 1,...,d/e’. Since we also know that ¢, 1 € K[[v%/e7 v%/q]], we conclude

from the fact that being temperate is closed under division, ramification and local
blowings-up, see Proposition and Definition that ;1(v) €
K{{vi/e, va }}, finishing the proof. O

3.7. Proof of Theorem Let P be a Weierstrass polynomial in y as in the
statement of Theorem [3.3] Since Ker(Q) is a prime ideal, P is irreducible, so it is
a reduced polynomial. In particular the discriminant of P is a formal curve A(P).
By resolution of singularities, there exists a sequence of point blowings-up

(N, F) =25 oo =25 (N}, i) =2 (N, 0) = (AZ,0)

such that the discriminant of P, = o (P) is everywhere monomial; we set o =
o10---00,.. Apart from blowing-up the origin once, we can always suppose that the
sequence of blowings-up has at least one blowing-up, that is, » > 1. In particular,
the blowing-up o1 : (N1, F1) — (Np,0) is always defined. Now, there exists a
point b € F} and a temperate coordinate system v = (vq,v2) where (o1)j is given
by (x1,z2) = (v1,v1v2). It follows from the expressions of ¢ and P given in the
statement of Theorem [3.3] that:

(Ub)T(P) = P(v1,v1v2,y), @(vi,v2) = (v1,v2,9(V)),

are such that @ o 0 = ¢; moreover, since P € Ker(y), (0p)5(P) is divisible by
y —¥(v1,v9) € K{{v}}y] and, therefore, admits a temperate factor. We conclude
that there exists a point by € F}. where Py, = of (P) admits a temperate factor. In
order to finish the proof, it is enough to prove the following result:

Proposition 3.21 (cf. [BCR21l Proposition 4.6]). Let P € K[x][y], and let
o : (N, F.) — (No,0) be a sequence of point blowings-up such that the discriminant
of P oo is everywhere monomial. Let b € Fr(k) be such that Py, = o;(P) has a
temperate factor. Then P has a non-constant temperate factor.

Proof. We prove this result by induction on the lexicographical order on (r, k). First,
suppose that (r,k) = (r,1) with » > 1. By Theorem there is a non-constant
factor Q € Pp{{x}}[y] of P. Without loss of generality, we may suppose that @ is
the monic factor of P in P {{x}}[y] of maximal degree. Note that @ extends at
every point of Fl(r) by Theorem %L and furthermore, @) extends temperately by
Lemma If r = 1, then we conclude from Lemma that Q € K[x][y], so
that @ € K{x}}[y] since K[x] NPy {{x}} = K{{x}} by Lemma
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If » > 1, let ai,...,a; be the points of Fl(l) that are centres of subsequent
blowings-up, and denote P; := (01); (P). Denote ¢’ := g3 0---00,. By the
induction hypothesis, for every ¢, P; has a temperate factor. Indeed, denoting by b;
the point of FY which is sent to a; by o', we get that oy (Q) is a temperate factor
of o'y, (P;) = oy (P), obtained after only  — 1 blowings-up.

Now, denote by g; the monic temperate factor of P; of maximal degree. Then
o'y, (i) is a temperate factor of (o’); (P;) such that (o'); (P;/¢;) has no non-
constant temperate factor, otherwise by induction hypothesis, P;/q; would have a
non-constant temperate factor. Next, note that, by Theorem o (Q) is also
a temperate factor of o (P) such that o} (P/Q) has no non-constant temperate
factor. We conclude that o’y (¢;) = o (Q), hence ¢; coincides with (o1);,(Q),
which therefore admits a temperate extension at a;. Moreover at every point b’
of Fl(l) ~Aar, ... 05}, (01)5(Q) is temperate, since it coincides with of, (Q). We
conclude now, exactly as in the case r = 1, that lemma implies that @ is a
temperate factor of P.

Finally, suppose that (r, k) is such that £ > 1, and denote by a € F,gj_)l the
center of oy, for some j < k — 1. Denote Py := (01 0---004_1), (P). Then by
the induction hypothesis, P, has a non-constant temperate factor. Therefore, by
denoting ¢’ := oj 0+ - 00, at every point b’ € (¢/)"1(a), the polynomial (o)}, (P,)
has a temperate factor. In particular, if b’ € (¢/)~1(a) N FY | we get that i (P)
has a temperate factor at a point of Frgj ) with j < k, and we conclude by induction.

O

4. EXAMPLES OF W-TEMPERATE FAMILIES

4.1. Algebraic power series. When K is a field, we denote by K(z1,...,z,) the
subring of K[z1,...,x,] of formal power series that are algebraic over K[x1, ..., x,].
We have the following proposition:

Proposition 4.1. Let K be an uncountable algebraically closed field of characteristic
zero. The family of algebraic power series rings (K{x1,...,xn))n is a minimal W-
temperate family, that is, it is contained in every other W-temperate family.

Proof. Let (K{{z1,...,2,}})n be a arbitrary W-temperate family. Since K{{x}} is
a Henselian local ring containing K[x](x), and since K(x) is the Henselization of
K[x](x), we have K(x) C K{{x}} by the universal property of the Henselization.

Next, let us prove that (K(z1,...,z,)), is a W-temperate family. The first four
axioms of Definition [2.1] are classical, while the fifth axiom has been proved by Lafon
in [La65], see also [Rol8b|. So, let us check that Definition is verified. Once
again, axiom [i)| is straightforward, and we consider:

Axiom of Definition We prove the contrapositive of the axiom, that is,
let F' € K[x] be such that

W:={ e K| F(x',\z) € K{(x)}
is uncountable and let us prove that F € K(x'). Let us denote by Ky the algebraic
closure of the field extension of QQ generated by the coefficients of F'. Since F' has

a countable number of coefficients, g is a countable field. Let A\ € W ~ Ky; in
particular \ is transcendental over Ky. By assumption on W, we have

(7) ao(X')VF(x', Az1)? + ay (X )F(x, Ae) 4+ - Fag(x) =0
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where the a;(x’) € K[x/]. Let us denote by (a) the vector whose entries are the
coefficients of the a;(x’). Then (7)) is satisfied if and only if (a) satisfies a (countable)
system of linear equations (S) whose coefficients are in Ko(A) (determined by the
vanishing of the coefficients of each monomial x'* for o € N*=1). And (S) is
equivalent to a finite system of linear equations (S’) with coefficients in Ky(X). And
this system has a nonzero solution in I if and only if it has a nonzero solution in
Ko(X), and this solution yields non trivial polynomials @;(x’) € Ko(\)[x'] such that

Go(X')F(x', Ax1) + ay (X F (X', Aey) 4 4+ Gg(x)) = 0.
By multiplying by some polynomial in Ky[A] we may assume that the a;(x’) belong
to Ko[x'][A], thus we write a; = @;(x’,\). By dividing by a large enough power of
n — AT1, we may assume that one of them is not divisible by z,, — Azy. Therefore
not all the @;(x’, z,/x1) are zero, and
ao(x', &y /21 F (X', 2 J21) ¥ ar (X, 20 210 ) F (X, 0 f21) T 4 Fag(X 20 f21) = 0,
whence F'(x) € K(x). This proves the result.

Axiom of Definition We follow the notation of axiom For each
pr (2, z), we consider its Euclidean division by the minimal polynomial I of ~:

pr(w2,2) = D(22, 2) - qr(@2, 2) + re(z2, 2)
where deg,(ry) < d = deg,(I'). By Lemma there is a € N such that
deg,, (1% (w2, 2)) < ak for every k.
Note that pg (a2, (z2)) = ri(x2,v (z2)) for every root v'(x3) of I, so we may
consider the auxiliary function:

d—1
_ k
1'1,1'2, 1’1Tk xT2,%) = Qk(x)z
k=0

keN
where ¢;(x) € Kzz][z1], and note that P(x,7'(z2)) = Q(x,7'(x2)) for every
root 7'(x2) of I'. Since deg,, (rx(z2,2)) < ak for every k, we may write qx(x) =
Qr(1, 2129, ..., 212%) for some formal power series qp(z1,vy1,..-,%.) € K[x1,y].
Now, there exist formal power series g;, for i =1, ..., a, and % such that:

qu z1,y)z +Z = 212)3i (%, y,1,2) + (2 = 1) k(x, ¥, 1, 2).

By the nested approximation Theorem for linear equations (see [CPR19, Theorem
3.1]) this equation has a non trivial nested algebraic solution

(ij(mh y)aﬁi(x> Yy, t7 Z))7 k(X, Yy, t7 Z)) € K:<x1a Y>d X IC<X7 Yy, t7 Z>a+1'
In particular Q := Go(w1, 120, ..., 2128) + - + Qu_1(71, 2120, . .., 7128) 2971 is an

algebraic power series satisfying

Qx,7(2)) = Q(x,7(x2)).

Moreover we have Q = Y keN %7, (29, 2) where the 7 (z2,2) € Kl[wa,z] with
deg,(7%) < d — 1 and deg,,(7:) < ak. So, since for every k, ri(z2,v(x2)) =
Tx(z2,v(22)), we have Ty, = ry, since the degree of the minimal polynomial of v(x5)
over K[zz] is d. In particular we have

P(x,7(x2)) = Q(x,7(x2)) = Q(x,7 (x2)) € K{w1,x2)
for every root 7/(z3) of . This ends the proof. a
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Lemma 4.2. Let T'(x,2) € K[x,z] be a monic polynomial in z of degree e. Let
p(x, z) € K[x, z] with deg,(p) < d, where d > e —1. Consider the division of p by I':
p(x,2) = I'(x, 2)q(x,2) + r(x, 2)

with deg, (1) < e. Then deg, (r) < deg,(p) + (d — e + 1) deg, (T).

Proof. The proof is made by induction on d > e—1. If d = e —1, it is clear. Assume
that the result is proved for polynomials of degree d — 1 where d > e. We can write

p(x,2) =T (x,r) X be(x) —|—g(x, 2)

where p.(x) is the coefficient of z¢ in p(x, z), and deg,(p) < deg,(b). Therefore
deg, (p) < degy(p) + deg,(T'). Since p and p have the same remainder r by the
division by I'(x, z), we apply the inductive assumption to see that

deg, (1) < deg, (p) + (d — ) deg, (I') < deg, (p) + (d — e + 1) deg, (I"),
finishing the proof. O

4.2. Convergent power series. The goal of this Section is to prove Corollary [1.2]
We start by recalling the definition of convergent power series:

Definition 4.3. Let K be a field equipped with an absolute value | - | for which
K is complete. Let f =3 cyn fax® € K[x] be a power series. We say that f is
a convergent power series if the series f(£) converges for £ € K" small enough or,
equivalently, if there exist real positive numbers A, B > 0 such that

Ya e N, |f.]Al*l < B.

The set of convergent power series over K is a subring of K[z1,...,x,] denoted by
K{x1,...,xn}.

A morphism of analytic K-algebras is a morphism of local rings ¢ : A — B,
where A = K{x}/; and B = K{u}/j, and ¢ is induced by a morphism of power
series rings K{x} — K{u}. For a morphism ¢ : A — B of analytic K-algebras,

we denote by r(y) the analytic rank that is equal to dim (A/Ker(go))

4.2.1. Convergent power series rings as W-temperate families. We begin by recalling
the following result:

Theorem 4.4. [AMT70] Let K be a field equipped with an absolute value such that
that {|y| | y € K} is dense in Ry, and let f € K[z1,...,z,] be a divergent power
series. Let W be the set of A\ € K such that f(Axa,xa,...,2,) is convergent. Then
W is a countable union of closed nowhere dense subsets of K.

Proposition 4.5. Let IC be a characteristic zero field that is equipped with a non triv-
ial absolute value that makes IC a complete field. Then the family (K{x1,...,2n})n
is a Weierstrass family over K. Moreover, if we assume that K is algebraically
closed, then (K{x1,...,zn})n is a W-temperate family over K.

Proof. Axioms [i)] )| [ii)| fiv)] of Definition [2.1] and Axiom [i)] of Definition are
easily verified. Axiom [v)| of Definition [2.1is Well known (see [Bol4| for example).
Therefore (KC{x1,...,zn})n is a Weierstrass family over K. We assume, from now
on, that IC is algebralcaﬂy closed.

First let us prove [ii)| of Definition First, we remark that, since K is complete
and the absolute value is not trivial, X is uncountable. Moreover because | - | is non
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trivial, there is y € K such that |y| # 0 or 1. Because K is algebraically closed, |K|
contains the set {|y[?/? | p,q € N*} that is dense in Ry. Therefore we can apply
Theorem [.4] to see that W is a countable union of closed nowhere dense subsets of
K. But since K is a complete metric space, by Baire category theorem, IC ~\ W is
uncountable.

Now let us prove Axiom of Definition Denote by T' € K[t, z] the minimal
polynomial of v and let 4" € K[[t] be a conjugate root; note that v and v’ € K{t}
since they are algebraic. Consider the curve C C K7, given by T'[t, z] = 0, and let
7 : K7, — K¢ be the projection 7(t,z) = t. Since v and v € K{t}, there exists
a closed ball Dy C K; centered at the origin such that, v and 7/ induce analytic
functions on Dgy. If I = C, let C*™ = C, and if K is a non-archimedean field, let C*™
be the analytification of C in the sense of Berkovich. Denote by D and D’ C C*
the images of v and 7' over D§™ respectively. Set & = «(0) and & = «(0). The
points & and £ are type-1 points of C%", therefore they admit a fondamental system
of open neighborhoods in C** that are open balls (see [BPR13| Corollary 4.27)).
Therefore, because Dg§"™ is compact, we may choose Dy small enough such that
there exist closed balls By and By with £ € By C D and D’ C Bs. Now, recall that
P(x,v(z2)) € K{z1,22}, where:

P(x,2) = 3 akp(as, 2)
keN

and py(r2,z) are polynomials such that deg,, (pr) < ak for some a € N. In
particular this implies that there exists A and B > 0 such that:

Ipk(w2,v(22)) D, < AB*K!, VkeN.

But Dy is dense in D§", therefore we have

Ik (22, 2) |15, < llpk(22, 2)|l D = [Ipk (22, ¥(22))llDgr < AB" k!, Vk € N.

We claim that, up to replacing Dy by a smaller closed ball, we have
Ik (2, 2) | B, < M*||pr (@2, 2) |11
where M > 0. So we conclude that
(2,7 (22)) | Dy < P12, 2)l| By < M¥||pi(22,2) | 5, < A(MOB)* k!, Vk €N
which implies that P(x,v/(z2)) € K{z1,22} as we wanted to prove.

Proof of the Claim: Since C is an affine algebraic curve, it admits a compactification
C’ in the projective space P¥. Denote by  : C — C' the normalization, and note
that C is a projective smooth curve. We still denote by 7 the analytic map induced
by m between the analytification of C and C'. We denote by Ej = 7~ 1(B;) for
j =1,2. Consider the pullbacks f; := 7*(z;) of the coordinate functions z; of the

affine space ™. We denote by q1, ..., gs € C the poles of the f; and we denote
by m; the maximal multiplicity of the poles g; for the functions fi, ..., f,. Now,
consider the divisor:

S
D=mgqgy— Z m;q;
j=1
where gy € C an interior point of By and m = Z‘;:l m; +genus(C). By the Riemann-
Roch Theorem, there exists a rational function h defined over C such that (h)+ D
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is an effective divisor, where (h) denotes the divisor associated to h. Apart from
enlarging Bs, we may suppose that h is never zero over OB,. If K = C, it is always
possible to enlarge By. If K is non-archimedean, we may replace Dy and Bs by
smaller ball, in such a way that we can enlarge Bs.

Let d be the degree of py. Then (p o 7) - h¥ induces an analytic function on
[N {qo}. Therefore, since h is non-zero over OBy, Lemma (or the Maximum
principle when K = C) given below implies that:

d
lpkllzs = ko iz, = ok o 7llyz, < (107 ,5,) < 189 oy oz,
Next, since (pg o 7) - h¢ has no poles in [CAAAN El, we conclude via Lemma that:

h? - promll,5, < 1K promligen 5

d
<In?prorl,z, < (IRl,5,) - lIpeonllyz,

Finally, by combining the above inequalities, we get:
d
okl < (107 7, - IRl,g, ) - ko ml,z,

d
< (I Nz, - IRl ) - Ipkls,.

So the Claim is proved with M = ||h~ O

o5, - A,z
Remark 4.6. The proof of the previous proposition (especially the fact that con-
vergent power series satisfy Axiom [iii)| of Definition works over any algebraically

closed complete valued field K of characteristic zero. But when /X is archimedean,
that is L = C, a different proof is given by [BCR21 Lemma 5.36].

We warmly thank Charles Favre for providing us the sketch of the proof of the
following Lemma in a private communication.

Lemma 4.7. Let K be a non-archimedean complete valued field of characteristic zero
that is algebraically closed. Let U be a connected open subset of a smooth projective
analytic curve C. Let f be an analytic function on U. If |f||, has a mazimum at a
point of U then f is constant on U. Moreover if f extends continuously on U, then
|f| attains its mazimum on U at a point of OU = U \ U.

Proof. Let z be a point of U at which | f| has a local maximum, and assume that f
is not constant. If = is of type 1, 3 or 4, then x has a neighborhood D included in
U that is an open ball or an open annulus (see [BPR13| Corollary 4.27]). Therefore
we may assume that D is in the Berkovich line, and we get a contradiction by the
Maximum Principle for domains in the Berkovich line (cf. [BR10l Proposition 3.4.5]).
If x is of type 2, we set F':= —log|f|. Then, by [BPR13, Theorem 5.15 (4)], the
sum of the outgoing slopes of F' at x equals 0. But since x is a local maximum of F,
then all the outgoing slopes of F' are zero. Let ¥ be the skeleton of U with respect
to some semistable vertex set of U containing z (see [BPR13, Definitions 3.1 &
3.3]). By [BPR13, Theorem 5.15 (2)], F' is piecewise linear on ¥. Therefore, F|, is
constant, where ¥, denotes the connected component of 3 containing x. Therefore
F is locally constant at « because, by [BPRI13| Theorem 5.15 (1)], F' = F o 7 where
7 : U — X is the retraction of U onto its skeleton 3. This is a contradiction, thus
f is constant. Since U is compact, |f| has a maximum on it. If the maximum is
attained at a point of U, then |f| is constant on U, thus on U by continuity. Thus
in any case the maximum is attained at a point of OU. (]
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4.2.2. Proof of Corollary . We just need to prove the following result (the
reduction of Corollary [I.2) to the following result follows the lines of Section [3.1] see
Remark [3:2] because the family of convergent power series over a characteristic zero
complete field is a Weierstrass family by Proposition :

Theorem 4.8. Let ¢ : K{x1,...,2n,y} — K{u1,...,u,} be a morphism of
convergent power series rings over a characteristic zero complete field K such that

i) The kernel of ¢ is generated by one Weierstrass polynomial P € K[x][y].
i) v(p) =17 (p) =n.
Then P € K{x}[y].

Proof. We denote by K the completion of an algebraic closure of K. This is
an algebraically closed field. Therefore we can apply Theorem to the W-
temperate family (K{x1,...,2n})n. This shows that P € K{x}[y]. Therefore
P e K{x}y] nKx][y] = L{x}y]. O

4.3. Eisenstein power series. Let O be a UFD, and let K be an algebraic closure
of its fraction field. The ring of Eisenstein series over O is the filtered limit of rings:

U U Ofﬂxla"'axnﬂ[c]

€K feO~{0}

where Oy denotes the localization of O with respect to the multiplicative family

{1L,f,f%...,}

The main result of this subsection is the following:

Proposition 4.9. If O is a UFD containing an uncountable characteristic zero
field k, the ring of Eisenstein series is a W-temperate family over K.

Proof. Axioms of Definition are easily verified.

Axiom [v)| of Definition consider F' and G € O¢[x][¢] as in the statement of
Axiom We have F(0,z,,) = z¢u(z,). If we multiply f by u(0), we may assume
that u(zy) is a unit in Of[c][x,]. Let L be the fraction field of O[¢]. By the
Weierstrass division theorem for power series in L[x], G = QF + R where Q € L[x]
and R € L[x'][x,] and deg, (R) < d. We claim that the coefficients of ) and R are
also in Of[c]. Indeed, fix the following order on the monomials: We have x* < x# if

(14 F+ap_1+(d+D)a,, 00, ...,0p) <tex (B1+- 4 Pn_1+(d+1)Bn, 1. .., 5n)

where <j¢x denotes the lexicographic order. In particular the nonzero monomial of
least order in the expansion of F is Cz& where C is a unit in Oy[c]. For a series
H € L[x] we denote by in(H) the monomial of least weight in the expansion of H.

We now consider an inductive way to construct the unique coefficients @ and
R. We start by setting G© = G, Q® = 0 and R® = 0. Fix k¥ > 0, and
assume that Q® and R®) have been constructed for every ¢ < k in such a way
that G) = G — FQY — RY satisfies ord(Gyy1) = ord(Gy). We consider the two
following cases:

i) If in(G®) is divisible by z¢, we set R*+1) := R*) and Q*+1) .= Q¥ +
in(G(k))/in(F)~

i) If in(G(k)) is not divisible by a:fll, we set RETD .= R(K) 4 in(G(k)) and
QU+ = k).
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By the formal Weierstrass division Theorem, this process converges as G*) —s 0,
Q% — @ and R*®) — R when k — co. But we see that we do not need to
introduce elements of L that does not belong to Of[c] because the coefficient of
initial term of F is a unit in O¢[c]. This proves the claim.

Axiom [i)| of Definition This property is easily verified.

Axiom of Definition The property follows from the following Lemma,
which is stronger version of the axiom valid for Eisenstein power series:

Lemma 4.10. In the conditions of the statement of Proposition [[.9, consider
F € K[x]] and assume that F ¢ K{{x}}. Then the following set is countable

W= {\ek|F(x, 1) € K{x'V}.

Proof. We start by a general claim. Let P(x1,22) € O[z1,22] be a homogeneous
polynomial. Write

d
d—k_k
P:g prT] Ty,
k=0

so that P(z1,\x1) = (Zk pk)\k) zd. Let g € O, g # 0; we claim that if ged(pg, k =
0,...,d) =1, then ged (Zk pk)\k,g) # 1 for at most finitely many A\ € k. Indeed,
assume that ged (Zk pk)\k,g) # 1 for infinitely many A € k. Since g has finitely
many factors, this implies that ¢ has an irreducible factor h such that, for infinitely
many A € k, h divides Y, ppA¥. Hence the polynomial Q(T) := Y., pT* €
Frac(o/(h))[T] has infinitely many roots in k, which is possible only if h divides
all the py since Frac(O/(h)) is an infinite field (it is a field containing k). This
contradicts the hypothesis, proving the Claim.

Now, we prove the contrapositive of the Lemma, that is, consider an element
F € K[x] such that

W:={\ek|F(x \r;) € K{x'}}}

is uncountable, and let us prove that F' € K{{x}}. Let L be the fraction field of
0. Since F has countably many coefficients, the field extension of L. generated by
the coefficients of F' is a L-vector space of countable dimension. Let (¢x)xen be a
L-basis of this vector space, so

F(x) =Y e Fi(x)
keN

where the Fj(x) are in L[x] and, for each o € N", the coefficient of x* is zero in
all but finitely many Fj(x). Moreover, we can write

P, o sdn a Qi
Fi(x) = Z (Z b1, 2 )>$22"'$n"12

acNn-2 \den ~ Ihad

where the Py, o ¢ € O[z1,z,] are homogeneous polynomials of degree d, and g o 4 is
coprime with the ged of the coefficients of Py 4. Now ged(Pr a.da(1, ), gk.a.a) =1
for A € E} ,q where Ej, o 4 C W is cofinite by the Claim. Thus the complement
of the set £ := Ny 0,dFk,a,q in k is at most countable. Therefore ENW # 0
if k is uncountable. Hence, by choosing A € E N W, there is f € O such that
Fi(x', Ax1) € Of[x'] for every k. Then we see that for every k, o and d, gx.a.q
divides a power of f, whence F(x) € Of[x]. O
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Axiom of Definition The proof of this result is based on the following
Galois-type result whose proof we postpone to §§§4.3.1|

Theorem 4.11. Let A be a UFD, L be its fraction field and ¢ be in an algebraic
closure of I and be separable over L. Let T in Alt, z| be irreducible. Assume that T
splits as a polynomial with coefficients in A[c|[t] and let the v;(t) € Alc][t] denote
the roots of T'. Then there is f € A such that, for every Q € L[t, z]:

Q(t;m) € A[d[t] = Q(t,72) € A[c][1].

We now follow the notation of axiom By the definition of Eisenstein power
series and the assumption, we know that P(x,y(z2)) € Oglc][z1, z2] for some g € O
and some ¢ € K; note that ¢ is separable over K since K is of characteristic zero.
Moreover, by assumption:

P(x,z) = Zx’fpk(xg,z)
keN
where py (22, 2) are polynomials such that deg,, is bounded by a liner function in k.
Since P(x,v(x2)) € Oy[c][z1,z2], we conclude that pg(x2, v(z2)) € Oylc][x2]. Let
~' be a conjugate root of . By Theoremapplied to A = 0Oy, there is f € O such
that, for every k € N, pi(22,7'(22)) € Of4lc][z2]. Thus P(x,7'(x2)) € Of4lcl[x],
proving that the axiom is verified. O

Remark 4.12. The following example shows that we really need f in the statement
of Theorem Let f € A irreducible and let I'(t,2) = 22 — (1 + ft). So
v1 =1+ ft and v = —/1+ ft. For Q = %(1 — 2), we have
1 1
Q) =5 (1= VI+ 1) € Al QEr2) =7 (1+ VIH]7) € Al ~ Al

4.3.1. Algebraic power series with coefficients in a UFD and proof of Theorem [{.11]
In this subsubsection, we provide a proof of Theorem [4.11] and we collect results
concerning algebraic power series which are of independent interest. We start with
a simple Lemma:

Lemma 4.13. Let I'(t, 2) € A[t, 2] be a polynomial with coefficients in an integral
domain A. Let us write I' = ag(t)z? + -+ + aq(t). Assume that T'(t,z) has a root in
A[t] of degree D. Then D < max;{deg,(a;(t))}.

Proof. After changing the indices we may assume that ao(t) # 0. Let F(t) € A[t]
with deg,(F(t)) = D and assume that D > max;{deg,(a;(t))}. Then for ¢ > 0:

deg, (a;(H)F(£)"™) < max{deg,(a;(1))} + (d =)D < dD < deg,(ao () F (¢)").
Therefore I'(¢, F(t)) # 0. O

The next Lemma shows that the coefficients of an algebraic infinite series over
an UFD satisfies strong relations:

Lemma 4.14. Let A be a UFD, ¢ in an algebraic closure of Frac(A) be finite and
separable over A. Let P be a representative family of primes of A (i.e. each principal
prime ideal of A is generated by a unique element of P) and F(t) € A[c|[t] \ Alc, ]
be algebraic over A[t]. Then the following set is finite

{geP[F(t) € Ale,t] + (9) A[lel[t]} -
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Proof. We start by showing that we can reduce the Lemma to the case that F(t) €
A[t] ~ Alt], that is, F' is independent of ¢. Indeed let e denote the degree of ¢ over
A. Then F(t) can be written in a unique way as

F(t) = Fo(t) + Fy(t)e + -+ + Fe_y (t)e*
where the F;(t) belong to A[t]. We denote by co, ..., ¢, the distinct conjugates of
¢ over A. The power series FU)(t) = Fy(t) + Fy(t)c; + - + Fe_1(t)c§_1 for j =2,

.., e are the conjugates of F(t) over A[t], therefore they are also algebraic over
Alt]. We have

F(t) 1 ¢ & 0 ot Fo(t)
F@ (1) 1 e & o 5t Fy(t)
F)(t) 1 ¢ ¢ oo ot F._1(t)

The Vandermonde matrix is invertible, its entries are algebraic over A, thus the
entries of its inverse are algebraic over A. Therefore the F;(t) € A[t] are algebraic
over A[t]. Thus, it is enough to prove the lemma for the F;(¢); we may therefore
assume that F(t) € A[t].

Write F(t) = Y, oy Fit® with Fi, € A for every k. Let g € A and N € N*. We
have that F(t) is equal to a polynomial of degree < N in ¢t modulo gA[t] if and
only if

Vk > N, Fy € (g).
Therefore for distinct g1, ..., gs € P and because A is a UFD, F(t) is equal to a
polynomial of degree < N in t modulo every g; A[t] if and only if

Vk> N, Fy€ (g1 9s)

Since F'(t) ¢ A[t], we conclude that there does not exist an infinite subset Gy C
P such that for every g € Gy, F(t) is equal to a polynomial of degree < N
in ¢ modulo gA[¢]. In particular, if we assume by contradiction that the set
{geP | F(t) € Alt] + (9)A[t]} is not finite, then there exists a sequence (g,) of
distinct primes in P, such that F(t) is equal to a polynomial of degree N,, modulo
gnA[t] where the sequence (N,,),, is increasing and tends to infinity. In what follows,
we show that the existence of this sequence would contradict Lemma [4.13

Indeed, since F(t) is algebraic, we may consider I'(t,2) := ag(t)2? + - - -+ aq(t) €
Alt, z] a polynomial such that I'(¢, F(t)) = 0 and ag(t) # 0. Denote by Fy,(t) (resp.
I (t,2)) the image of F(t) in A/(gn)[t] (resp. of T'(t,2) in A/(gn)t, z]). We have
deg,(F,(t)) = N, and T',(t, F\,(t)) = 0. For n € N large enough we have that
I'n(t,z) # 0 and deg,(I',(t,2)) = d, because any given a € A has finitely many
prime divisors. We conclude from Lemma that N,, < max;{deg,(a;(t))} for
every n sufficiently big, yielding a contradiction. (|

Remark 4.15. Recall that, in general, an irreducible polynomial T'(z) with coeffi-
cients in a UFD may be reducible modulo infinitely many primes of A. One classical
example is given by I'(z) = 2* 4 1 that is irreducible over Z[z] but reducible modulo
every prime number p. In contrast, Lemma guarantees that for an irreducible
polynomial I'(¢, z) € A[t, 2], the set

{g € P | I'(t,2) is reducible modulo (g)}
is finite, provided that I" has a root in A[c][t] ~ Al¢][t].
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Before proving Theorem recall that given a UFD A and f € A, f # 0, the
the localization Ay is also a UFD; we will use this observation implicitly below. We
recall that this claim follows from the fact that a UFD is a Krull domain in which
every prime ideal of height 1 is principal. Since A is a UFD, it is a Krull domain so
Ay is also a Krull domain. Because the localization morphism A — A induces an
isomorphism between the primes of Ay and the primes of A avoiding f, every prime
ideal of Ay of height 1 is necessarily principal. We are now ready to prove our main
result about algebraic power series with coefficients in a UFD:

Proof of Theorem[4.11 We start by showing that we may suppose that I" is monic.
We write

I =poz’ +p1z"" + -+ pa.
We have pg_lF(t, z) = R(t, poz) where

R(t,2) =T+ pi T + popoT2 + - + pap .

We have R(t,poy;) = 0 for ¢ = 1, 2. If we set v, = po7yi, and we prove the statement
of the Theorem for the ~/ then we also deduce the statement of the Theorem for the
~;, since Q(t,po_lz) € L[t, 2] if and only if @ € L[t, z]; therefore, we suppose that T’
is monic in z.

Let us first treat the case that ¢ € L. By replacing A by A, for some well chosen
g € A, we can assume that ¢ € A. We claim that there exists f € A such that

(8) VP € Alt,z],Vg € A, P(t,m) € gA[t] = P(t,72) € gAs[t]-

Note that the Theorem then follows from the Claim. Indeed, if @ € L[t, z] then
there exists g € A such that P = g@Q € A[t,z]. In particular, Q(¢,71(t)) € A[t]
implies that P(t,7v:(t)) € gA[t], so the Claim implies that P(t,2) € gA¢[t] and,
therefore, Q € A¢[t]. In order to prove the Claim, we start by noting that, since A
is a UFD, it is enough to prove the Claim for every irreducible element g of A. By
replacing P by its remainder under its Euclidean division by I', furthermore, we
may assume that deg,(P) < d. So let’s consider the set

G:={g € Aprime | 3P, P(t,71) € gA[t], P(t,2) ¢ gAlt, z] and deg,(P) < d},

and let’s prove that it is finite (up to multiplication by a unit). Indeed, note that if
P(t,y1) € gA[t] and P(t,z) ¢ gAlt, 2], we have that T is not irreducible A/glt, 2],

where R denote the image of a polynomial R € A[t][z] in A/g[t][z]. Thus

II =) € 4/glt. 2]
i€E,
for some E, C {1,...,d}. For E C {1,...,d}, we set I'p :=[[;cp(z — 7)-

Now assume by contradiction that G is infinite. In this case, there is £ C
{1,...,d} such that 'y € A/glt, 2] for infinitely many primes g. But the coefficients
of T'g are in A[t], and at least one of them is not in A[t] because I is irreducible in
Alt, z]. Since the v; are algebraic over A[t], the coefficients of Qf are also algebraic
over Aft]. We therefore obtain a contradiction with Lemma and conclude that
g is finite. We may therefore define

f=1]s
geg

Note that the Claim is verified with this choice of f for every irreducible g by
construction. Thus the Claim is proved, finishing the case that ¢ € L.
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Now we assume that ¢ ¢ LL. Since ¢ is algebraic, we may write agc® + ajc~! +
-+ a. = 0 where a; € A for every i = 0,...,e. By replacing A by A,, we may
assume that c is finite over A (of degree e). For every ¢ we can write in a unique way

9) Vi =0+ Yiac+ o+ Yie—1¢c!

where the ; ; belong to A[t] and are algebraic over A[t]. For @ € L[¢, z] we can
expand in a unique way

e—1
Q(tv zo+z10+ -+ Ze—lce_l) = ZQk(ta R0y ZE—l)ck
k=0

where the Qj, belong to LL[t, zp, . . ., ze—1]. For i # 1, ; is obtained from -y; expanded
as in @[) by replacing the v ; by its conjugates ; ;. Following the same logic as of
the first case, we are reduced to proving the claim that there is f € A such that for
every P € Alt, zg,...,2.-1] and every g € A,

P(t7 71,07 ... 7’}/1,8—1) S gA[[t]] - P(ta 72,05 ce ”72,6—1) S gAf[[t]]

By the primitive element Theorem (that we can apply since L[t] — L(t) is
separable), we have that

e—1
L(t, 7,05 -+ -5 Vie—1) = L (t, Z Ak%,k)
k=0

for every (Ag)g in a Zariski open dense subset V; of L¢. Therefore we may choose
(Ax)x € N, V; and assume that for every i = 1, ..., d

e—1
L(t,¥i,00- - Vie—1) = L (t, Z /\k’)’i,k> .
k=0

Thus there is T'; ;, € L(¢)[U] such that

e—1
(10) Yike = Lk (tZM%x) -
k=0

By replacing the +y; ;. by their conjugates 7, ;. in we see that we can choose the
I'; . to be independent of i. From now we denote I'; ,, by I'y;, and Zz;é Akik by
d;. By the claim made in the first case where we assumed that ¢ € L, there exists
f € A such that

VP’ € Alt, z|,Yg € A, P'(t,61) € gA[t] = P'(t,02) € gAs][t].
Now, let P € Alt, 2q,...,2—1] and g € A such that

P(t, 71,05y 71e-1) € gAf[t]-
Let D(t) € Aft] be a common denominator of the I'y, that is, a polynomial such
that D(¢)I'y € Alt, U] for every k. Then there is an integer ¢, depending on P, such
that
R(t,z) := D(t)*P(t,T(t, 2),...,Te_1(t,2)) € Alt, 2].

By assumption R(t,01) € gA[t], whence R(t,d2) € gAf[t]. We can write D(t) =
fotd x u(t) where fo € A and u(t) € Ay, [t] satisfies u(0) = 1. This shows that
P(t,72,0,--,72,e—1) € gAsy, [t] proving the Claim, and the Theorem is proven. 0O
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5. ON RANK THEOREMS FOR NON W-TEMPERATE FAMILIES

We provide examples of a families of local rings where the rank Theorem does not
hold. We consider an example given in [BB22| Example 1.8], which is based on a
construction due to Nazarov, Sodin and Volberg [NSV04] § 5.3]. We refer the reader
to [BB22, §3] for a detailed presentation of quasianalytic classes, and we follow its
notation. Consider quasianalytic Denjoy-Carleman classes Qj; which satisfies two
properties:

1) There is a function g € Qp(]0, 1)) which admits no extension to a function
in Qp((—9,1)), for all § > 0 and all quasianalytic Denjoy-Carleman class
O (these classes exist by [NSV04, §5.3]);

2) The shifted class Q,;¢, where M,gp ) = ok, is @ quasianalytic Denjoy-
Carleman class for every p € N.

For example, the class Qps given by the sequence M = (My)ken, where My, =
(log(log k))¥, satisfies both conditions.

Let ® : (—1,1) — R? denote the Qj/-morphism ®(u) = (u?, g(u?)), and let
¢ = ®* denote its pull-back at 0. Note that () = 17 (¢) since G(z) = x5 — §(x1)
is a formal power series such that ¢(G) = §(u?) — g(u?) = 0. Now, suppose by
contradiction that there exists a function germ h € Qps(—e, €), for some € < 1, such
that o(h) = h o p(u) = 0. We remark that h(t, §(t)) = 0 since

0= p(h) = h(u®,§(u?)),
so we conclude that the equation h(x1,z2) = 0 admits a formal solution x5 = §(x1).
By [BBBI17, Theorem 1.1], apart from shrinking e, there exists a function f €
Qo) (—€,€), for some p € N, such that h(zq, f(z1)) =0 and f = ¢. Since Qu
is quasianalytic by condition 2) and contains Qys, we conclude that fijo.c) = gjo,e)-
This implies that g admits an extension in the shifted quasianalytic class Qe ,
contradicting condition 1). We conclude Theorem does not hold for these classes.

We can also consider the o-minimal structure Rg,, given by expansion of the real
field by restricted functions of class Q) satisfying conditions 1) and 2) above, cf.
[RSW03], and the quasianalytic class Q of C* functions that are locally definable in
Rg,,- By [BBCI8, Theorem 1.6], any function h € Q((—1, 1)) belongs to a shifted
Denjoy-Carleman class Q;,w), for some positive integer p. We conclude that the
morphism ® defined above shows that the rank Theorem can not hold for Q.

Remark 5.1. Every quasianalytic class which properly contains the analytic func-
tions does not satisfy the Weierstrass preparation property [PR13].

Finally, let us note that Theorem holds for at least one family of rings which
is not Weierstrass. For instance, if we set K{{z1,...,2,}} = K[21,.. ., Zn](21,...20)
for any integer n, then for any morphism ¢ : K{{x}} — K{{u}}, we have

r(p) =17 () = dim (K{{x}}/ Ker(y))
essentially by Chevalley’s constructible set Theorem. But the rings of rational
functions are not Henselian local rings, so they do not form a Weierstrass family, c.f.

Proposition [2.8}i)| below.
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