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CHAPITRE 2

INTRODUCTION

Nous présentons dans ce mémoire une partie des résultats que nous avons
obtenus depuis 2006. Ces travaux portent sur l’étude des solutions y = y(x)
d’équations (ou de systèmes d’équations) du type

f(x, y) = 0

où f(x, y) appartient à une classe de (germes) de fonctions vérifiant le théo-
rème des fonctions implicites, et x et y sont des multivariables. Les types de
classes de fonctions considérées sont, par exemple, les germes de fonctions ana-
lytiques à l’origine de Cn+m, les séries algébriques ou les séries formelles en
n+m variables, etc.
Le premier résultat général sur ce type d’équations est bien évidemment le
théorème des fonctions implicites qui nous donne l’existence de solutions à ce
type d’équations sous une hypothèse de lissité du système par rapport aux va-
riables y. Le cas singulier est donc celui qui nous intéresse. Le second résultat
le plus connu est le théorème suivant dû à M. Artin :

Théorème 2.0.1. — [Ar68] Les solutions y = y(x) (germes de fonctions)
analytiques d’un système d’équations analytiques de la forme f(x, y) = 0 sont
denses dans l’ensemble des solutions formelles.

Ici la densité signifie que pour toute solution formelle il existe une solution
analytique dont le développement de Taylor coïncide avec le développement de
Taylor de la solution formelle à un ordre arbitrairement grand.

Les questions abordées dans ce mémoire sont des trois types suivants :

• Pour construire des solutions analytiques à un système f(x, y) = 0, M. Artin
a montré qu’il suffit de construire des solutions approchées à un ordre grand.
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Le problème est d’avoir des bornes effectives sur ces ordres d’approximation.

• Le deuxième problème consiste à savoir dans quelle mesure le théorème de
Artin cité ci-dessus reste valable quand on impose des contraintes sur les solu-
tions (contraintes du type : certains des yi ne dépendent que de certaines des
variables xj).

• Le troisième consiste à comprendre et décrire la structure de l’ensemble des
solutions d’un tel système.

Ce mémoire comprend deux parties : la première présente un survol des ré-
sultats connus sur l’approximation de Artin, thème qui a connu de grands dé-
veloppements dans les années 70 et 80 et pour lequel il n’existe pas de texte de
référence récent et complet (on peut néanmoins citer [Ra69], [Te94], [Po00]).
Néanmoins prétendre être complet serait une gageure, et nous nous restreignons
à un cadre très algébrique (en particulier nous ne parlons pas d’approximation
globale dans les variétés de Nash ou d’approximation en géométrie CR). C’est
pourquoi nous l’avons rédigée en anglais car beaucoup de personnes suscep-
tibles d’être intéressées par ce texte ne lisent pas le français. La seconde partie
présente avec plus de détails nos contributions à ces trois problèmes :

• Pour la première question, nous étudions le cas des systèmes d’équations po-
lynomiales f(x, y) = 0 où x = (x1, x2). Ceci correspond aux articles [Ron10a]
et [Ron13a].

• Pour la seconde question, nous étudions le cas de systèmes d’équations "cy-
lindriques" ("nested" en anglais), i.e. le cas où yi = yi(x1, ..., xn(i)) et (n(i))i est
une suite croissante. Dans notre travail ces systèmes d’équations proviennent
d’équations "fonctionnelles" du type f ◦ g(y) = h(y) où g(y) et h(y) sont des
germes de fonctions analytiques (par exemple) et l’inconnue f(x) est une série
formelle. Ceci correspond aux articles [Ron08a], [Ron09b].

• Pour la dernière question, nous étudions le cas d’une équation polynomiale
en une seule variable y à coefficients dans l’anneau des séries formelles en n
variables sur un corps de caractéristique nulle. C’est-à-dire nous nous intéres-
sons à la clôture algébrique du corps des séries formelles en plusieurs variables
en caractéristique nulle. Ceci correspond aux articles [PaRo12] et [Ron13b].



CHAPITRE 3

ARTIN APPROXIMATION : A SURVEY

3.1. Introduction

The aim of this chapter is to present the Artin Approximation Theorem
and some related results. The problem we are interested in is to find analytic
solutions of some systems of equations when this system admits formal power
series solutions and the Artin Approximation Theorem yields a positive answer
to this problem. We begin this chapter by giving several examples explaining
what this sentence means exactly. Then we will present the state of the art
on this problem. There are essentially three parts: the first part is devoted to
present the Artin Approximation Theorem and its generalizations; the second
part presents a stronger version of Artin Approximation Theorem; the last
part is mainly devoted to explore the Artin Approximation Problem in the
case of constraints. Sections 3.6, 3.7 and 3.8 present the algebraic material
used in this chapter (Weierstrass Preparation Theorem, excellent rings, étales
morphisms and Henselian rings).
We do not give the proofs of all the results presented in this chapter but, at
least, we always try to outline the proofs and give the main arguments.

Example 3.1.1. — Let us consider the following curve C := {(t3, t4, t5), t ∈
C} in C3. This curve is an algebraic set which means that it is the zero locus
of polynomials in three variables. Indeed, we can check that C is the zero locus
of the polynomials f := y2−xz, g := yz−x3 and h := z2−x2y. If we consider
the zero locus of any two of these polynomials we always get a set larger than
C. The complex dimension of the zero locus of one non-constant polynomial
in three variables is 2 (such a set is called a hypersurface of C3). Here C is the
intersection of the zero locus of three hypersurfaces and not of two of them,
but its complex dimension is 1.
In fact we can see this phenomenon as follows: we call an algebraic relation be-
tween f , g and h any element of the kernel of the linear map ϕ : C[x, y, z]3 −→
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C[x, y, z] defined by ϕ(a, b, c) := af + bg + ch. Obviously r1 := (g,−f, 0),
r2 := (h, 0,−f) and r3 := (0, h,−g) ∈ Ker(ϕ). These are called the trivial
relations between f , g and h. But in our case there is one more relation which
is r0 := (z, y,−x) and r0 cannot be written as a1r1 + a2r2 + a3r3 with a1, a2

and a3 ∈ C[x, y, z], which means that r0 is not in the sub-C[x, y, z]-module of
C[x, y, z]3 generated by r1, r2 and r3.
On the other hand we can prove that Ker(ϕ) is generated by r0, r1, r2 and r3.
Let X be the common zero locus of f and g. If (x, y, z) ∈ X and x 6= 0, then
h = zf+yg

x = 0 thus (x, y, z) ∈ C. If (x, y, z) ∈ X and x = 0, then y = 0.
Geometrically this means that X is the union of C and the z-axis, i.e. the
union of two curves.

Now let us denote by CJx, y, zK the ring of formal power series with coeffi-
cients in C. We can also consider formal relations between f , g and h, that is
elements of the kernel of the map CJx, y, zK3 −→ CJx, y, zK induced by ϕ. Any
element of the form a0r0 + a1r1 + a2r2 + a3r3 is a formal relation as soon as
a0, a1, a2, a3 ∈ CJx, y, zK.
In fact any formal relation is of this form, i.e. the algebraic relations generate
the formal and analytic relations. We can show this as follows: we can assign
the weights 3 to x, 4 to y and 5 to z. In this case f , g, h are homogeneous poly-
nomials of weights 8, 9 and 10 and r0, r1, r2 and r3 are homogeneous relations
of weights (5, 4, 3), (9, 8, 0), (10, 0, 8) and (0, 10, 9). If (a, b, c) ∈ CJx, y, zK3 is
a formal relation then we can write a =

∑∞
i=0 ai, b =

∑∞
i=0 bi and c =

∑∞
i=0 ci

where ai, bi and ci are homogeneous polynomials of degree i with respect to
the previous weights. Then saying that af + bg + ch = 0 is equivalent to

aif + bi−1g + ci−2h = 0 ∀i ∈ N
with the assumption bi = ci = 0 for i < 0. Thus (a0, 0, 0), (a1, b0, 0) and any
(ai, bi−1, ci−2), for 2 ≤ i, are in Ker(ϕ), thus are homogeneous combinations
of r0, r1, r2 and r3. Hence (a, b, c) is a combination of r0, r1, r2 and r3 with
coefficients in CJx, y, zK.

Now we can investigate the same problem by replacing the ring of formal
power series by C{x, y, z}, the ring of convergent power series with coefficients
in C, i.e.

C{x, y, z} :=

 ∑
i,j,k∈N

ai,j,kx
iyjzk / ∃ρ > 0,

∑
i,j,k

|ai,j,k|ρi+j+k <∞


We can also consider analytic relations between f , g and h, i.e. elements of the
kernel of the map C{x, y, z}3 −→ C{x, y, z} induced by ϕ. From the formal
case we see that any analytic relation r is of the form a0r0 +a1r1 +a2r2 +a3r3
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with ai ∈ CJx, y, zK for 0 ≤ i ≤ 4. In fact we can prove that ai ∈ C{x, y, z} for
0 ≤ i ≤ 4. Let us remark that, saying that r = a0r0 + a1r1 + a2r2 + a3r3 is
equivalent to say that a0,..., a3 satisfy a system of three affine equations with
analytic coefficients. This is the first example of the problem we are interested
in: if we some equations with analytic coefficients have formal solutions do
they have analytic solutions? Artin Approximation Theorem yields an answer
to this problem. Here is the first theorem proven by M. Artin in 1968:

Theorem 3.1.2 (Artin Approximation Theorem)
[Ar68] Let f(x, y) be a vector of convergent power series over C in two sets

of variables x and y. Assume given a formal power series solution ŷ(x),

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, a convergent power series solution y(x),

f(x, y(x)) = 0

which coincides with ŷ(x) up to degree c,

y(x) ≡ ŷ(x) modulo (x)c.

We can define a topology on CJxK by saying that two power series are close
if their difference is in a high power of the maximal ideal (x). Thus we can
reformulate Theorem 3.1.2 as: formal power series solutions of a system of
analytic equations may be approximated by convergent power series solutions.

Example 3.1.3. — A special case of Theorem 3.1.2 and a generalization of
Example 3.1.1 occurs when f is linear in y, say f(x, y) =

∑
fi(x)yi, where fi(x)

is a vector of convergent power series with r coordinates for any i. A solution
y(x) of f(x, y) = 0 is a relation between the fi(x). In this case the formal
relations are linear combinations of analytic combinations with coefficients in
CJxK. In term of commutative algebra, this is expressed as the flatness of the
ring of formal power series over the ring of convergent powers series, a result
which can be proven via the Artin-Rees Lemma.
It means that if ŷ(x) is a formal solution of f(x, y) = 0, then there exist
analytic solutions of f(x, y) = 0 denoted by ỹi(x), 1 ≤ i ≤ s, and formal power
series b̂1(x),..., b̂s(x), such that ŷ(x) =

∑
i b̂i(x)ỹi(x). Thus, by replacing in

the previous sum the b̂i(x) by their truncation at order c, we obtain an analytic
solution of f(x, y) = 0 coinciding with ŷ(c) up to degree c.
If the fi(x)’s are vectors of polynomials then the formal relations are also linear
combinations of algebraic relations since the ring of formal power series is flat
over the ring of polynomials, and Theorem 3.1.2 remains true if f(x, y) is linear
in y and C{x} is replaced by C[x].
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Example 3.1.4. — A slight generalization of the previous example is when
f(x, y) is a vector of polynomials in y of degree one with coefficients in C{x}
(resp. C[x]), say

f(x, y) =

m∑
i=1

fi(x)yi + b(x)

where the fi(x)’s and b(x) are vectors of convergent power series (resp. polyno-
mials). Here x and y are multi-variables If ŷ(x) is a formal power series solution
of f(x, y) = 0, then (ŷ(x), 1) is a formal power series solution of g(x, y, z) = 0
where

g(x, y, z) :=
m∑
i=1

fi(x)yi + b(x)z

and z is a single variable. Thus using the flatness of CJxK over C{x} (resp.
C[x]) (Example 3.1.3), we can approximate (ŷ(x), 1) by a convergent power
series (resp. polynomial) solution (ỹ(x), z̃(x)) which coincides with (ŷ(x), 1)
up to degree c. In order to obtain a solution of f(x, y) = 0 we would like to be
able to divide ỹ(x) by z̃(x) since ỹ(x)z̃(x)−1 would be a solution of f(x, y) = 0
approximating ŷ(x). We can remark that, if c ≥ 1, then z̃(0) = 1 thus z̃(x) is
not in the ideal (x). But C{x} is a local ring. We call a local ring any ring
A that has only one maximal ideal. This is equivalent to say that A is the
disjoint union of one ideal (its only maximal ideal) and of the set of units in A.
In particular z̃(x)−1 is invertible in C{x}, hence we can approximate formal
power series solutions of f(x, y) = 0 by convergent power series solutions.
In the case (ỹ(x), z̃(x)) is a polynomial solution of g(x, y, z) = 0, z̃(x) is not
invertible in general in C[x] since it is not a local ring. For instance set

f(x, y) := (1− x)y − 1

where x and y are single variables. Then y(x) :=

∞∑
n=0

xn =
1

1− x
is the only

formal power series solution of f(x, y) = 0, but y(x) is not a polynomial. Thus
we cannot approximate the roots of f in CJxK by roots of f in C[x].
But instead of working in C[x] we can work in C[x](x) which is the ring of
rational functions whose denominator does not vanish at 0. This ring is a
local ring. Since z̃(0) 6= 0, then ỹ(x)z̃(x)−1 is a vector of rational function of
C[x](x). In particular any system of polynomial equations of degree one with
coefficients in C[x] which has solutions in CJxK has solutions in C[x](x).

Example 3.1.5. — The next example we are looking at is the following: set
f ∈ A where A = C[x] or C[x](x) or C{x}. When do there exist g, h ∈ A such
that f = gh?
First of all, we can take g = 1 and h = f or, more generally, g a unit in A and
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h = g−1f . These are trivial cases and thus we are looking for non units g and
h.
Of course, if there exist non units g and h in A such that f = gh, then
f = (ûg)(û−1h) for any unit û ∈ CJxK. But is the following true: let us as-
sume that there exist ĝ, ĥ ∈ CJxK such that f = ĝĥ. Then do there exist non
units g, h ∈ A such that f = gh ?
Let us remark that this question is equivalent to the following: if A

(f) is an

integral domain, is CJxK
(f)CJxK still an integral domain?

The answer to this question is no in general: set A := C[x, y] and set f :=
x2 − y2(1 + y). Then f is irreducible as a polynomial since y2(1 + y) is not
a square in C[x, y]. But f = (x + y

√
1 + y)(x − y

√
1 + y) where

√
1 + y is a

formal power series such that
√

1 + y
2

= 1 + y. Thus f is not irreducible in
CJx, yK nor in C{x, y} but it is irreducible in C[x, y] or C[x, y](x,y).

In fact it is easy to see that x + y
√

1 + y and x − y
√

1 + y are power se-
ries which are algebraic over C[x, y], i.e. they are roots of polynomials with
coefficients in C[x, y]. The set of such algebraic power series is a subring of
CJx, yK and it is denoted by C〈x, y〉. In general if x is a multivariable the ring
of algebraic power series C〈x〉 is the following:

C〈x〉 := {f ∈ CJxK / ∃P (z) ∈ C[x][z], P (f) = 0} .

It is not difficult to prove that the ring of algebraic power series is a subring
of the ring of convergent power series and is a local ring. In 1969, M. Artin
proved an analogue of Theorem 3.2.1 for the rings of algebraic power series
[Ar69]. Thus if f ∈ C〈x〉 (or C{x}) is irreducible then it remains irreducible
in CJxK, this is a consequence of Artin Approximation Theorem. From this
theorem we can also deduce that if f ∈ C〈x〉

I (or C{x}
I ), for some ideal I, is

irreducible, then it remains irreducible in CJxK
ICJxK .

Example 3.1.6. — Let us strengthen the previous question. Let us assume
that there exist ĝ, ĥ ∈ CJxK such that f = ĝĥ with f ∈ A with A = C〈x〉 or
C{x}. Then does there exist a unit û ∈ CJxK such that ûĝ ∈ A and û−1ĥ ∈ A
?
The answer to this question is positive if A = C〈x〉 or C{x}, this is a non
trivial corollary of Artin Approximation Theorem (see Corollary 3.4.4). But it
is negative in general for C〈x〉

I or C{x}
I if I is an ideal. The following example

is due to S. Izumi [Iz92]:
Set A := C{x,y,z}

(y2−x3)
. Set ϕ̂(z) :=

∑∞
n=0 n!zn (this is a divergent power series) and
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set
f̂ := x+ yϕ̂(z), ĝ := (x− yϕ̂(z))(1− xϕ̂(z)2)−1 ∈ CJx, y, zK.

Then we can check that x2 = f̂ ĝ modulo (y2 − x3). Now let us assume that
there exists a unit û ∈ CJx, y, zK such that ûf̂ ∈ C{x, y, z} modulo (y2 − x3).
Thus P := ûf̂ − (y2− x3)ĥ ∈ C{x, y, z} for some h ∈ CJx, y, zK. We can check
easily that P (0, 0, 0) = 0 and ∂P

∂x (0, 0, 0) = û(0, 0, 0) 6= 0. Thus by the Implicit
Function Theorem for analytic functions there exists ψ(y, z) ∈ C{y, z}, such
that P (ψ(y, z), y, z) = 0 and ψ(0, 0) = 0. This yields

ψ(y, z) + yϕ̂(z)− (y2 − ψ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0.

By substituting 0 for y we obtain ψ(0, z) + ψ(0, z)3k̂(z) = 0 for some power
series k̂(z) ∈ CJzK. Since ψ(0, 0) = 0, this gives that ψ(0, z) = 0, thus ψ(y, z) =
yθ(y, z) with θ(y, z) ∈ C{y, z}. Thus we obtain

θ(y, z) + ϕ̂(z)− (y − y2θ(y, z)3)ĥ(ψ(y, z), y, z)û−1(ψ(y, z), y, z) = 0

and by substituting 0 for y, we see that ϕ̂(z) = θ(0, z) ∈ C{z} which is a
contradiction.
Thus x2 = f̂ ĝ modulo (y2 − x3) but there is no unit û ∈ CJx, y, zK such that
ûf̂ ∈ C{x, y, z} modulo (y2 − x3).

Example 3.1.7. — A similar question is the following: if f ∈ A with A =
C[x], C[x](x), C〈x〉 or C{x} and if there exist a non unit ĝ ∈ CJxK and an
integer m ∈ N such that ĝm = f , does there exist a non unit g ∈ A such that
gm = f?
A weaker question is the following: if A

(f) is reduced, is CJxK
(f)CJxK still reduced?

Indeed, if ĝm = f for some non unit ĝ then CJxK
(f)CJxK is not reduced. Thus, if the

answer to the second question is positive, then there exists a non unit g ∈ A
and a unit u ∈ A such that ugk = f for some integer k.

As before, the answer to the first question is positive for A = C〈x〉 and
A = C{x} by Artin Approximation Theorem.
If A = C[x] or C[x](x), the answer to this question is negative. Indeed let us
consider f = xm + xm+1. Then f = ĝm with ĝ := x m

√
1 + x but there is no

g ∈ A such that gm = f .

Nevertheless, the answer to the second question is positive in the cases A =
C[x] or C[x](x). This deep result is due to D. Rees (see [HuSw06] for instance).

Example 3.1.8. — Using the same notation as in Example 3.1.5 we can ask
a stronger question: set A = C〈x〉 or C{x} and let f be in A. If there exist g
and h ∈ C[x], vanishing at 0, such that f = gh modulo a large power of the
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ideal (x), do there exist g and h in A such that f = gh? By example 3.1.5
there is no hope, if g and h exist, to expect that g and h ∈ C[x].
We have the following theorem:

Theorem 3.1.9 (Strong Artin Approximation Theorem)
[Ar69] Let f(x, y) be a vector of polynomials over C in two sets of variables

x and y. Then there exists a function β : N −→ N, such that for any integer c
and any given approximate solution y(x) at order β(c),

f(x, y(x)) ≡ 0 modulo (x)β(c),

there exists an algebraic power series solution y(x),

f(x, y(x)) = 0

which coincides with y(x) up to degree c,

y(x) ≡ y(x) modulo (x)c.

In particular, if gh − f ≡ 0 modulo (x)β(1), where β is the function of the
previous theorem for the polynomial y1y2 − f , and if g(0) = h(0) = 0, then
there exist non units g and h ∈ C〈x〉 such that gh− f = 0.
A natural question is: given f ∈ C[x] how to compute β or, at least, β(1)? That
is, up to what order do we have to check that the equation y1y2 − f = 0 has
an approximate solution in order to be sure that this equation has solutions?
For instance, if f := x1x2 − xd3 then f is irreducible but x1x2 − f ≡ 0 modulo
(x)d for any d ∈ N, so obviously β(1) really depends on f .
In fact, in Theorem 3.1.9 M. Artin proved that β can be chosen independently
of the degree of the components of the the vector f(x, y). But it is still an
open problem to find effective bounds on β (see Section 3.3.4).

Example 3.1.10 (Ideal Membership Problem). — Set f1,...., fr ∈ CJxK
where x = (x1, ..., xn). Let us denote by I the ideal of CJxK generated by f1,...,
fr. If g is a power series, how can we detect that g ∈ I or g /∈ I? Since a
power series is determined by its coefficients, saying that g ∈ I will depend in
general on a infinite number of conditions and it will not be possible to check
that all these conditions are satisfied in finite time. Another problem is to find
canonical representatives of power series modulo the ideal I that will help us
to make computations in the quotient ring CJxK

I .

One way to solve these problems is the following. Let us consider the following
order on Nn: for any α, β ∈ Nn, we say that α ≤ β if (|α|, α1, ..., αn) ≤lex
(|β|, β1, ..., βn) where |α| := α1 + · · ·+ αn and ≤lex is the lexicographic order.
For instance

(1, 1, 1) ≤ (1, 2, 3) ≤ (2, 2, 2) ≤ (3, 2, 1) ≤ (2, 2, 3).
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This order induces an order on the sets of monomials xα1
1 ...xαnn : we say that

xα ≤ xβ if α ≤ β. Thus

x1x2x3 ≤ x1x
2
2x

3
3 ≤ x2

1x
2
2x

2
3 ≤ x3

1x
2
2x3 ≤ x2

1x
2
2x

3
3.

If f :=
∑

α∈Nn fαx
α ∈ CJxK, the initial exponent of f with respect to the

previous order is

exp(f) := min{α ∈ Nn / fα 6= 0} = inf Supp(f)

where the support of f is Supp(f) := {α ∈ Nn / fα 6= 0}. The initial term
of f is fexp(f)x

exp(f). This is the smallest non zero monomial in the Taylor
expansion of f with respect to the previous order.
If I is an ideal of CJxK, we define Γ(I) to be the subset of Nn of all the initial
exponents of elements of I. Since I is an ideal, for any β ∈ Nn and any f ∈ I,
xβf ∈ I. This means that Γ(I) + Nn = Γ(I). Then we can prove that there
exists a finite number of elements g1,..., gs ∈ I such that

{exp(g1), ..., exp(gs)}+ Nn = Γ(I).

Set

∆1 := exp(g1) + Nn and ∆i = (exp(gi) + Nn)\
⋃

1≤j<i
∆j , for 2 ≤ i ≤ s.

Finally, set

∆0 := Nn\
s⋃
i=1

∆i.

For instance, if I is the ideal of CJx1, x2K generated by g1 := x1x
3
2 and g2 :=

x2
1x

2
2, we can check that

Γ(I) = {(1, 3), (2, 2)}+ N2.

∆1

∆2

∆0

•
(1, 3)•

(2, 2)
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Set g ∈ CJxK. Then, by Galligo-Grauert-Hironaka Division Theorem [Gal79],
there exist unique power series q1,..., qs, r ∈ CJxK such that

g = g1q1 + · · ·+ gsqs + r

exp(gi) + Supp(qi) ⊂ ∆i and Supp(r) ⊂ ∆0.

The uniqueness of the division comes from the fact the ∆i’s are disjoint sub-
sets of Nn. The existence of such decomposition is proven through the division
algorithm:

Set α := exp(g). Then there exists an integer i1 such that α ∈ ∆i1 .
• If i1 = 0, then set r(1) := in(g) and q(1)

i := 0 for all i.
• If i1 ≥ 1, then set r(1) := 0, q(1)

i := 0 for i 6= i1 and q(1)
i1

:= in(g)
exp(gi1 ) .

Finally set g(1) := g−
s∑
i=1

giq
(1)
i −r

(1). Thus we have exp(g(1)) > exp(g). Then

we replace g by g(1) and the repeat the preceding process.
In this way we construct a sequence (g(k))k of power series such that, for any

k ∈ N, exp(g(k+1)) > exp(g(k)) and g(k) = g −
s∑
i=1

giq
(k)
i − r

(k) with

exp(gi) + Supp(q
(k)
i ) ⊂ ∆i and Supp(r(k)) ⊂ ∆0.

At the limit k −→∞ we obtain the desired decomposition.

In particular since {exp(g1), ..., exp(gs)} + Nn = Γ(I) we deduce from this
that I is generated by g1,..., gs.

This algorithm means that for any g ∈ CJxK there exists a unique power series
r whose support is included in ∆ and such that g − r ∈ I and the division
algorithm yields a way to obtain this representative r.
Moreover, saying that g /∈ I is equivalent to r 6= 0 and this is equivalent to
say that, for some integer k, r(k) 6= 0. But g ∈ I is equivalent to r = 0 which
is equivalent to r(k) = 0 for all k ∈ N. Thus applying the division algorithm,
if for some integer k, r(k) 6= 0, then we can conclude that g /∈ I. But this
algorithm will not help us to determine if g ∈ I since we would have to make
a infinite number of computations.

Now a natural question is, what happens if we replace CJxK by A := C〈x〉
or C{x}? Of course we can proceed with the division algorithm but we do not
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know if q1,..., qs, r ∈ A. In fact by controlling the size of the coefficients of
q

(k)
1 ,..., q(k)

s , r(k) at each step of the division algorithm, we can prove that if
g ∈ C{x} then q1,..., qs and r remain in C{x} ([Hir64], [Gra72], [Gal79] and
[JoPf00]). But if g ∈ C〈x〉 then it may happen that q1,..., qs and r are not in
C〈x〉 (see Example 3.5.4 of Section 3.5).

Example 3.1.11 (Arcs Space and Jets Spaces). — Let X be an affine
algebraic subset of Cm, i.e. X is the zero locus of some polynomials in m
variables: f1,..., fr ∈ C[y1, ..., ym]. Let t be a single variable. For any integer
n, let us define Xn to be the set of vectors y(t) whose coordinates are polyno-
mials of degree ≤ n and such that f(y(t)) ≡ 0 modulo (t)n+1. The elements
of Xn are called n-jets on X.
If yi(t) = yi,0 + yi,1t+ · · ·+ yi,nt

n and if we consider each yi,j has one indeter-
minate, saying that f(y(t)) ∈ (t)n+1 is equivalent to the vanishing of r(n+ 1)
polynomials equations involving the yi,j ’s. This shows that the jets spaces of
X are algebraic sets.
For instance, if X is a cusp, i.e. the plane curve defined by X := {y2

1−y3
2 = 0},

then
X0 := {(a0, b0) ∈ C2 / a2

0 − b30 = 0} = X.

We have

X1 = {(a0, a1, b0, b1) ∈ C4 / (a0 + a1t)
2 − (b0 + b1t)

3 ≡ 0 modulo t2}

= {(a0, a1, b0, b1) ∈ C4 / a2
0 − b30 = 0 and 2a0a1 − 3b20b1 = 0}.

The morphisms C[t]
(t)k+1 −→

C[t]
(t)n+1 , for k ≥ n, induce truncation maps πkn :

Xk −→ Xn by reducing k-jets modulo (t)n+1. In the example we are consider-
ing, the fibre of π1

0 over the point (a0, a1) 6= (0, 0) is the line in the (a1, b1)-plane
whose equation is 2a0a1 − 3b20b1 = 0. This line is exactly the tangent space at
X at the point (a0, b0). The tangent space at X in (0, 0) is the whole plane
since this point is a singular point of the plane curve X. This corresponds to
the fact that the fibre of π1

0 over (0, 0) is the whole plane.
On this example we show that X1 is isomorphic to the tangent bundle of X,
which is a general fact.
We can easily see that X2 is given by the following equations:

a2
0 − b30 = 0

2a0a1 − 3b20b1 = 0

a2
1 + 2a0a2 − 3b0b

2
1 − 3b20b2 = 0

In particular, the fibre of π2
0 over (0, 0) is the set of points of the form (0, 0, a2, 0, b1, b2)

and the image of this fibre by π2
1 is the line a1 = 0. This shows that π2

1 is not
surjective.
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But, we can show that above the smooth part of X, the maps πn+1
n are sur-

jective and the fibres are isomorphic to C.

The space of arcs on X, denoted by X∞, is the set of vectors y(t) whose
coordinates are formal power series satisfying f(y(t)) = 0. For such a general
vector of formal power series y(t), saying that f(y(t)) = 0 is equivalent to say
that the coefficients of all the powers of t in the Taylor expansion of f(y(t))
are equal to zero. This shows that X∞ may be defined by a countable number
of equations in a countable number of variables. For instance, in the previous
example, X∞ is the subset of CN with coordinates (a0, a1, a2, ...., b0, b1, b2, ...)
defined by the infinite following equations:

a2
0 − b30 = 0

2a0a1 − 3b20b1 = 0

a2
1 + 2a0a2 − 3b0b

2
1 − 3b20b2 = 0

· · · · · · · · ·

The morphisms CJtK −→ C[t]
(t)n+1 induce truncations maps πn : X∞ −→ Xn by

reducing arcs modulo (t)n+1.
In general it is a difficult problem to compare πn(X∞) and Xn. It is not even
clear if πn(X∞) is finitely defined. But we have the following theorem due to
Greenberg which is a particular case of Theorem 3.1.9 in which β is bounded
by an affine function:

Theorem 3.1.12 (Greenberg’s Theorem). — [Gre66] Let f(y) be a vec-
tor of polynomials in m variables and let t be a single variable. Then there
exist two positive integers a and b, such that for any polynomial solution y(t)
modulo (t)an+b,

f(y(t)) ≡ 0 modulo (t)an+b+1,

there exists a formal power series solution ỹ(t),

f(ỹ(t)) = 0

which coincides with y(t) up to degree n+ 1,

y(t) ≡ ỹ(t) modulo (t)n+1.

We can reinterpret this result as follows: let X be the zero locus of f and
let y(t) be a (an + b)-jet on X. Then the truncation of y(t) modulo (t)n+1 is
the truncation of a formal power series solution of f = 0. Thus we have

πn(X∞) = πan+b
n (Xan+b), ∀n ∈ N.
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A constructible subset of Cn is a set defined by the vanishing of some polyno-
mials and the non-vanishing of other polynomials, i.e. a set of the form

{x ∈ Cn / f1(x) = · · · = fr(x) = 0, g1(x) 6= 0, ..., gs(x) 6= 0}

for some polynomials fi, gj . In particular algebraic sets are constructible sets.
Since a theorem of Chevalley asserts that the projection of an algebraic subset
of Cn+k onto Ck is a constructible subset of Cn, Theorem 3.1.12 asserts that
πn(X∞) is a constructible subset of Cn since Xan+b is an algebraic set. In
particular πn(X∞) is finitely defined, i.e. it is defined by a finite number of
data (see [GoLJ96] for an introduction to the study of these sets).

A difficult problem in singularity theory is to understand the behaviors of
Xn and πn(X∞) and to relate them to the geometry of X. One way to do
this is to define the (motivic) measure of a constructible subset of Cn, that is
a additive map χ from the set of constructible sets to a commutative ring R,
such that:
• χ(X) = χ(Y ) as soon as X and Y are isomorphic algebraic sets,
• χ(X\U) + χ(U) = χ(X) as soon as U is an open set of an algebraic set X,
• χ(X × Y ) = χ(X).χ(Y ) for any algebraic sets X and Y .
Then we are interested to understand the following formal power series:∑

n∈N
ϕ(Xn)Tn and

∑
n∈N

χ(πn(X∞))Tn ∈ RJT K.

The reader may consult [DeLo99], [Lo00], [Ve06] for instance.

Example 3.1.13. — Let f1,..., fr ∈ k[x, y] where k is an algebraically closed
field and x := (x1, ..., xn) and y := (y1, ..., ym) are multivariables. Moreover
we will assume here that k is uncountable. As in the previous example let us
define the following sets:

Xl := {y(x) ∈ k[x]m / fi(x, y(x)) ∈ (x)l+1 ∀i}.

As we have done in the previous example, for any l there exists an inte-
ger N(l) ∈ N such that Xl ⊂ kN(l). Moreover Xl is an algebraic subset of
KN(l) and the morphisms k[x]

(x)k+1 −→
k[x]

(x)l+1 for k ≤ l induce truncations maps
πkl : Xk −→ Xl for any k ≥ l.

By a theorem of Chevalley, for any l ∈ N, the sequence (πkl (Xk))k is a de-
creasing sequence of constructible subsets of Xl. Thus the sequence (πkl (Xk))k
is a decreasing sequence of algebraic subsets of Xl, where Y denotes the Zariski
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closure of a subset Y , i.e. the smallest algebraic set containing Y . By Noetheri-
anity this sequence stabilizes: πkl (Xk) = πk

′
l (Xk′) for all k and k′ large enough

(say for any k, k′ ≥ kl). Let us denote by Fl this algebraic set.
Let us assume that Xk 6= ∅ for any k ∈ N. This implies that Fl 6= ∅. Set

Ck,l := πkl (Xk). It is a constructible set whose Zariski closure is Fl for any
k ≥ kl. Thus Ck,l has the form Fl\Vk where Vk is an algebraic proper subset
of Fl, for any k ≥ kl. Since k is uncountable the set Ul :=

⋂
k Ck,l =

⋂
k Fl\Vk

is not empty. By construction Ul is exactly the set of points of Xl that can be
lifted to points ofXk for any k ≥ l. In particlar πkl (Uk) = Ul. If x0 ∈ U0 then x0

may be lifted to U1, i.e. there exists x1 ∈ U1 such that π1
0(x1) = x0. By induc-

tion we may construct a sequence of points xl ∈ Ul such that πl+1
l (xl+1) = xl

for any l ∈ N. At the limit we obtain a point x∞ in X∞, i.e. a power series
y(x) ∈ kJxKm solution of f(x, y) = 0.

We have proved here the following result similar to Theorem 3.1.9: if k is a
uncountable algebraically closed field and if f(x, y) = 0 has solutions modulo
(x)k for any k ∈ N, then there exists a power series solution y(x):

f(x, y(x)) = 0.

This kind of argument using asymptotic contructions (here the Noetherianity
is the key point of the proof) may be nicely formalized using ultraproducts.
Ultraproducts methods can be used to prove easily stronger results as Theorem
3.1.9 (See Part 3.3.3 and Proposition 3.3.24).

Example 3.1.14 (Linearization of germ of diffeomorphism)
Given f ∈ C{x}, x being a single variable, let us assume that f ′(0) = λ 6= 0.

Then f defines an analytic diffeomorphism from a neighborhood of 0 in C onto
a neighborhood of 0 in C preserving the origin. The linearization problem,
firstly investigated by C. L. Siegel, is the following: is f conjugated to its lin-
ear part? That is: does there exist g(x) ∈ C{x}, with g′(0) 6= 0, such that
f(g(x)) = g(λx) or g−1◦f ◦g(x) = λx (in this case we say that f is analytically
linearizable)?
This problem is difficult and the following cases may occur: f is not lineariz-
able, f is formally linearizable but not analytically linearizable (i.e. g exists
but g(x) ∈ CJxK\C{x}), f is analytically linearizable (see [Ce91]).

Let us assume that f is formally linearizable, i.e. there exists ĝ(x) ∈ CJxK
such that f(ĝ(x))− ĝ(λx) = 0. By considering the Taylor expansion of ĝ(λx):

ĝ(λx) = ĝ(y) +
∞∑
n=1

(y − λx)n

n!
f (n)(y)
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we see that there exists ĥ(x, y) ∈ CJx, yK such that ĝ(λx) = ĝ(y) + (y −
λx)ĥ(x, y). Thus f is formally linearizable if and only if there exists ĥ(x, y) ∈
CJx, yK such that

f(ĝ(x))− ĝ(y) + (y − λx)ĥ(x, y) = 0.

This former equation is equivalent to the existence of k̂(y) ∈ CJyK such that{
f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(y) = 0

Using the same trick as before (Taylor expansion), this is equivalent to the
existence of l̂(x, y, z) ∈ CJx, y, zK such that

(1)

{
f(ĝ(x))− k̂(y) + (y − λx)ĥ(x, y) = 0

k̂(y)− ĝ(x) + (x− y)l̂(x, y) = 0

Hence, we see that, if f is formally linearizable, there exists a formal solution
(ĝ(x), k̂(z), ĥ(x, y), l̂(x, y, z)) of the system (1). Such a solution is called a so-
lution with constraints. On the other hand, if the system (1) has a convergent
solution (g(x), k(z), h(x, y), l(x, y, z)), then f is analytically linearizable.

We see that the problem of linearizing analytically f when f is formally lin-
earizable is equivalent to find convergent power series solutions of the system
(1) with constraints. Since it happens that f may be analytically linearizable
but not formally linearizable, such a system (1) may have formal solutions with
constraints but no analytic solutions with constraints.
In Section 3.5 we will give some results about the Artin Approximation Prob-
lem with constraints.

Example 3.1.15. — Another related problem is the following: if a differen-
tial equation with convergent power series coefficients has a formal power series
solution, does it have convergent power series solutions? We can ask the same
question by replacing "convergent" by "algebraic".
For instance let us consider the (divergent) formal power series ŷ(x) :=

∑
n≥0

n!xn+1.

It is straightforward to check that it is a solution of the equation

x2y′ − y + x = 0 (Euler Equation).

On the other hand if
∑

n anx
n is a solution of the Euler Equation then the

sequence (an)n satisfies the following recursion:

a0 = 0, a1 = 1

an+1 = nan ∀n ≥ 1.
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Thus an+1 = (n+ 1)! for any n > 0 and ŷ(x) is the only solution of the Euler
Equation. Hence we have an example of a differential equation with polyno-
mials coefficients with a formal power series solution but without convergent
power series solution. We will discuss in Section 3.5 how to relate this phe-
nomenon to an Artin Approximation problem for polynomial equations with
constraints (see Example 3.5.2).



24 CHAPITRE 3. ARTIN APPROXIMATION

Conventions We will assume that all the rings we consider are Noetherian
commutative rings with unity. Ring morphisms A −→ B are assumed to take
the unit element of A into the unit element of B.
If A is a local ring, then mA will denote its maximal ideal. For any f ∈ A,
f 6= 0,

ord(f) := max{n ∈ N \ f ∈ mn
A}.

If A is an integral domain, Frac(A) denotes its field of fractions.
If no other indication is given the letters x and y will always denote multivari-
ables, x := (x1, ..., xn) and y := (y1, ..., ym), and t will denote a single variable.
If f(y) is a vector of polynomials with coefficients in a ring A,

f(y) := (f1(y), ..., fr(y)) ∈ A[y]r,

if I is an ideal of A and y ∈ Am, then f(y) ∈ I (resp. f(y) = 0) means
fi(y) ∈ I (resp. fi(y) = 0) for 1 ≤ i ≤ r.

3.2. Artin Approximation

In this first part we review the main results concerning the Artin Approxi-
mation Property. We give four results that are the most characteristic in the
story: the classical Artin Approximation Theorem in the analytic case, its gen-
eralization by A. Płoski, a result of J. Denef and L. Lipschitz concerning rings
with the Weierstrass Division Property and, finally, Popescu’s Approximation
Theorem.

3.2.1. The analytic case. — In the analytic case, the first result is due to
Michael Artin in 1968 [Ar68]. His result asserts that the set of convergent
solutions is dense in the set of formal solutions of a system of implicit analytic
equations. This result is particularly useful, since if you have some analytic
problem that you can express in a system of analytic equations, in order to
find solutions of this problem you only need to find formal solutions and this
may be done in general by an inductive process. Another way to use this result
is the following: let us assume that you have some algebraic problem and that
you are working over a ring of the form A := kJxK, where x := (x1, ..., xn) and
k is a characteristic zero field. If the problem involves only a countable number
of data (which is often the case in this context), since C is algebraically closed
and the transcendence degree of Q −→ C is uncountable, you may assume that
you work over CJxK. Using Theorem 3.2.1, you may, in some cases, reduce the
problem to A = C{x}. Then you can use powerful methods of complex ana-
lytic geometry to solve the problem. This kind of method is used, for instance,
in the recent proof of the Nash Conjecture for algebraic surfaces (see Theorem
A of [FB12] and the crucial use of this theorem in [FBPP12a]) or in the proof
of the Abhyankar-Jung Theorem given in [PaRo12].
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Let us mention that C. Chevalley had apparently proven this theorem some
years before M. Artin but he did not publish it because he did not find appli-
cations of it [Ra].

3.2.1.1. Artin’s result. —

Theorem 3.2.1. — [Ar68] Let k be a valued field of characteristic zero and
let f(x, y) be a vector of convergent power series in two sets of variables x and
y. Assume given a formal power series solution ŷ(x) vanishing at 0,

f(x, ŷ(x)) = 0.

Then there exists, for any c ∈ N, a convergent power series solution y(x),

f(x, ỹ(x)) = 0

which coincides with ŷ(x) up to degree c,

ỹ(x) ≡ ŷ(x) modulo (x)c.

Remark 3.2.2. — This theorem has been conjectured by S. Lang in [Lan54]
(last paragraph p. 372) when k = C.

Remark 3.2.3. — The ideal (x) defines a topology on kJxK called the Krull
topology induced by the following norm: |a(x)| := e−ord(a(x)). In this case
small elements of kJxK are elements of high order. Thus Theorem 3.2.1 asserts
that the set of solutions in k{x}m of f(x, y) = 0 is dense in the set of solutions
in kJxKm of f(x, y) = 0 for the Krull topology.

Proof of Theorem 3.2.1. — Let us first give the main ideas of the proof. The
proof is done by induction on n, the case n = 0 being obvious.
The first step is to reduce the problem to the case the ideal I generated by
f1,..., fr is a prime ideal by adding to I all the elements g(x, y) such that
g(x, ŷ(x)) = 0. Let us denote by X the analytic set defined by I.
The next step is to reduce to the case X is complete intersection, this means
that I is generated by r elements where r is equal to the codimension of X in
kn+m.
After these reductions, the proper proof starts. The key ingredient is a suitable
minor δ of the Jacobian matrix

(
∂f
∂y

)
of f , namely one which is not identically

zero on X. The existence of such a minor is ensured by the Jacobian Criterion:
at a smooth point of X, the rank of the Jacobian matrix is the codimension of
X at this point. Since the set of smooth points is dense, the assertion follows.
We denote by δ̂(x) := δ(x, ŷ(x)) the evaluation of δ at our given formal so-
lution. Then, the idea is the following: instead of trying to solve f(x, y) =
0 with a convergent solution, we aim at finding a convergent power series
vector y(x) such that δ2(x, y(x)) divides f(x, y(x)). Since f(x, ŷ(x)) = 0,
then δ2(x, ŷ(x)) already divides f(x, ŷ(x)), we will reformulate the statement
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"δ2(x, y(x))2 divides f(x, y(x))" as the vanishing of analytic equations defined
over k{x1, ..., xn−1}.
By a linear change of coordinates in x we may transform δ̂(x)2 into a xn-
regular series of order d. Thus δ̂(x)2 is, up to multiplication by a unit, a monic
polynomial in xn of degree d with coefficients in kJx′K where x′ denotes the
first n− 1 variables x1,..., xn−1 (by the Weierstrass Preparation Theorem, see
Section 3.6). We first divide ŷ(x) by δ̂(x)2 and work with the remainder of this
division. So write ŷ(x) ≡ ẑ(x) modulo δ̂(x)2 with ẑ(x) a vector of polynomials
in xn of degree < d with coefficients in kJx′K. A short but technical compu-
tation shows that the divisibility of f(x, y(x)) by δ(x, y(x))2 is equivalent to
solving a finite system of analytic equations for the coefficients of a vector z(x)
of polynomials in xn of degree < d with coefficients in k{x′}. As ẑ(x) solves
this system, we know from the induction hypothesis that an analytic solution
z(x) exists. This, in turn, yields the required solution analytic solution y(x).
Therefore we may assume to have found an analytic vector y(x) such that
δ2(x, y)) divides f(x, y(x)). Then we conclude with a generalization of the
Implicit Function Theorem due to J.-Cl. Tougeron (cf. Theorem 3.2.5).

Let us now explain the proof in more details. Let us assume that the the-
orem is proven for n and let us prove it for n+ 1.
Let I be the ideal of k{x, y} generated by f1(x, y),..., fr(x, y). Let ϕ be the
k{x}-morphism k{x, y} −→ kJxK sending yi onto ŷi(x). Then Ker(ϕ) is a
prime ideal containing I and if the theorem is true for generators of Ker(ϕ)
then it is true for f1,..., fr. Thus we can assume that I = Ker(ϕ).
The local ring k{x, y}I is regular by a theorem of Serre (see Theorem 19.3
[Mat80]). Set h :=height(I). Thus, from the Jacobian Criterion, there exists
a h× h minor of the Jacobian matrix ∂(f1,...,fr)

∂(x,y) , denoted by δ(x, y), such that
δ /∈ I = Ker(ϕ). In particular we have δ(x, ŷ(x)) 6= 0.
By considering the partial derivative of fi(x, ŷ(x)) = 0 with respect to xj we
get

∂fi
∂xj

(x, ŷ(x)) = −
r∑

k=1

∂ŷk(x)

∂xj

∂fi
∂yk

(x, ŷ(x)).

Thus there exists a h×h minor of the Jacobian matrix ∂(f1,...,fr)
∂(y) , still denoted

by δ(x, y), such that δ(x, ŷ(x)) 6= 0. In particular δ /∈ I. From now on we will
assume that δ is the determinant of ∂(f1,...,fh)

∂(y1,...,yh) .
If we denote J := (f1, ..., fh), then ht(Jk{x, y}I) ≤ h. On the other hand
we have ht(Jk{x, y}I) ≥ rk(∂(f1,...,fh)

∂(y1,...,yh)) mod. I, and h ≤rk(∂(f1,...,fh)
∂(y1,...,yh)) mod. I
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since δ(x, ŷ(x)) 6= 0. Thus ht(Jk{x, y}I) = h and
√
Jk{x, y}I = Ik{x, y}I .

This means that there exists q ∈ k{x, y}, q /∈ I, and e ∈ N such that qfei ∈ J
for h+ 1 ≤ i ≤ m. In particular q(x, ŷ(x)) 6= 0. We will use this fact later.

Then we will use the following lemma with g := δ2.

Lemma 3.2.4. — Let us assume that Theorem 3.2.1 is true for an integer
n − 1. Let g(x, y) be a convergent power series and let f(x, y) be a vector of
convergent power series.
Let ŷ(x) be in (x)kJxKm such that g(x, ŷ(x)) 6= 0 and f(x, ŷ(x)) = 0 mod.
g(x, ŷ(x)).
Let c be an integer. Then there exists y(x) ∈ (x)k{x}m such that f(x, y(x)) = 0
mod. g(x, y(x)) and y(x)− ŷ(x) ∈ (x)c.

Proof of Lemma 3.2.4. — If g(x, ŷ(x)) is invertible, the result is obvious (just
take for ỹi(x) any truncation of ŷi(x)). Thus let us assume that g(x, ŷ(x))
is not invertible. By making a linear change of variables we may assume
that g(x, ŷ(x)) is regular with respect to xn and by Weierstrass Preparation
Theorem g(x, ŷ(x)) = â(x)× unit where

â(x) := xdn + â1(x′)xd−1
n + · · ·+ âd(x

′)

where x′ := (x1, ..., xn−1) and ai(x′) ∈ (x′)kJx′K, 1 ≤ i ≤ d.
Let us perform the Weierstrass division of ŷi(x) by â(x):

ŷi(x) = â(x)ŵi(x) +
d−1∑
j=0

ŷi,j(x
′)xjn

for 1 ≤ i ≤ m. Let us denote

ŷ∗i (x) :=
d−1∑
j=0

ŷi,j(x
′)xjn, 1 ≤ i ≤ m.

Then g(x, ŷ(x)) = g(x, ŷ∗(x)) mod. â(x) and fk(x, ŷ(x)) = fk(x, ŷ
∗(x)) mod.

â(x) for 1 ≤ k ≤ r.

Let yi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ d − 1, be new variables. Let us denote
y∗i :=

∑d−1
j=1 yi,jx

j
n, 1 ≤ i ≤ m. Let us denote the polynomial

A(ai, xn) := xdn + a1x
d−1
n + · · ·+ ad ∈ k[xn, a1, ..., ad]

where a1,..., ad are new variables. Let us perform the Weierstrass division of
g(x, y∗) and fi(x, y∗) by A:

g(x, y∗) = A.Q+

d−1∑
l=1

Glx
l
n
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fk(x, y
∗) = A.Qk +

d−1∑
l=1

Fk,lx
l
n, 1 ≤ k ≤ r

where Q, Qk ∈ k{x, yi,j , ap} and Gl, Fk,l ∈ k{x′, yi,j , ap}.
Then we have

g(x, ŷ∗(x)) =
d−1∑
l=1

Gl(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x))

fk(x, ŷ
∗(x)) =

d−1∑
l=1

Fk,l(x
′, ŷi,j(x

′), âp(x
′))xln mod. (â(x)), 1 ≤ k ≤ r.

This proves that Gl(x′, ŷi,j(x′), âp(x′)) = 0 and Fk,l(x
′, ŷi,j(x

′), âp(x
′)) = 0

for all k and l. By the inductive hypothesis, there exists yi,j(x′) ∈ k{x′}
and ap(x′) ∈ k{x′} for all i, j and s, such that Gl(x′, yi,j(x), ap(x

′)) = 0 and
Fk,l(x

′, yi,j(x
′), ap(x

′)) = 0 for all k and l and yi,j(x′)−ŷi,j(x′), ap(x′)−âp(x′) ∈
(x′)c for all i, j and p (Formally in order to apply the induction hypothesis we
should have ŷi,j(0) = 0 and âp(0) = 0 which is not necessarily the case here.
We can remove the problem by replacing ŷi,j(x′) and âp(x′) by ŷi,j(x′)− ŷi,j(0)
and âp(x′)− âp(0), and Gl(x′, yi,j , ap) by G(x′, yi,j + ŷi,j(0), ap + âp(0)) - idem
for Fk,l).

Let us denote
a(x) := xdn + a1(x′)xd−1

n + · · ·+ ad(x
′)

yi(x) := a(x)wi(x) +
d−1∑
j=0

yi,j(x
′)xjn

for some wi(x) ∈ k{x} such that wi(x)− ŵi(x) ∈ (x)c for all i. It is straight-
forward to check that fi(x, y(x)) = 0 mod. g(x, y(x)) for 1 ≤ i ≤ r and
yj(x)− ŷj(x) ∈ (x)c for 1 ≤ j ≤ m.

We can apply this lemma to g(x, y) := δ2(x, y) with c′ := c + d + 1 and
d := ord(δ2(x, ŷ(x))). Thus we may assume that there is yi(x) ∈ k{x}, 1 ≤
i ≤ m, such that f(x, y) ∈ δ2(x, y) and yi(x) − ŷi(x) ∈ (x)c+d+1, 1 ≤ i ≤ m.
Since ord(δ2(x, y)) = d, then we have f(x, y) ∈ δ2(x, y)(x)c. Then we use the
following generalization of the Implicit Function Theorem to show that there
exists ỹ(x) ∈ k{x}m with ỹ(0) = 0 such that ỹj(x)− ŷj(x) ∈ (x)c, 1 ≤ j ≤ m,
and and fi(x, ỹ(x)) = 0 for 1 ≤ i ≤ h.

Theorem 3.2.5 (Tougeron’s Implicit Function Theorem)
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[To72] Let f(x, y) be a vector of k{x, y}h with m ≥ h, and let δ(x, y) be a
h× h minor of the Jacobian matrix ∂(f1,...,fh)

∂(y1,...,ym) . Let us assume that there exists
y(x) ∈ k{x}m such that

f(x, y(x)) ∈ (δ(x, y(x)))2(x)c for all 1 ≤ i ≤ h
and for some c ∈ N. Then there exists ỹ(x) ∈ k{x}m such that

fi(x, ỹ(x)) = 0 for all 1 ≤ i ≤ h
ỹ(x)− y(x) ∈ (δ(x, y(x)))(x)c.

Moreover ỹ(x) is unique if we impose ỹj(x) = yj(x) for h < j ≤ m.

If c > ord(q(x, ŷ(x))), then q(x, ỹ(x)) 6= 0. Since qfei ∈ J for h+ 1 ≤ i ≤ r,
this proves that fi(x, ỹ(x)) = 0 for all i.

Proof of Theorem 3.2.5. — We may assume that δ is the first r × r minor of
the Jacobian matrix. If we add the equations fh+1 := yh+1 − ỹh+1(x) = 0,...
fm := ym − ỹm(x) = 0, we may assume that m = h and δ is the determinant
of the Jacobian matrix J(x, y) := ∂(f1,...,fh)

∂(y) . We have

f (x, y(x) + δ(x, y(x))z) = f(x, y(x))+δ(x, y)zJ(x, y(x))+δ(x, y(x))2H(x, y(x), z)

where z := (z1, ..., zm) and H(x, y(x), z) ∈ k{x, y(x), z}m is of order at least 2
in z. Let us denote by J ′(x, y(x)) the comatrix of J(x, y(x)). Let ε(x) be in
(x)ck{x}r such that f(x, y(x)) = δ2(x, y(x))ε(x). Then we have
f(x, y(x) + δ(x, y(x))z) =

= δ(x, y(x))
(
ε(x)J ′(x, y(x)) + z +H(x, y(x), z)J ′(x, y(x))

)
J(x, y(x)).

Let us denote

g(x, z) := ε(x)J ′(x, y(x)) + z +H(x, y(x), z)J ′(x, y(x)).

Then g(0, 0) = 0 and the matrix ∂g(x,z)
∂z (0, 0) is the Identity matrix. Thus, by

the Implicit Function Theorem, there exists a unique z(x) ∈ k{x}m such that
f(x, y(x) + δ(x, y(x))z(x)) = 0. This proves the theorem.

Remark 3.2.6. — We can do the following remarks about the proof of The-
orem 3.2.1:

i) In the case n = 1 i.e. x is a single variable, set e := ord(δ(x, ŷ(x))). If
y(x) ∈ k{x}m satisfies ŷ(x)− y(x) ∈ (x)2e+c, then we have

ord(f(x, y(x))) ≥ 2e+ c

and
δ(x, y(x)) = δ(x, ŷ(x)) mod. (x)2e+c,
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thus ord(δ(x, y(x))) = ord(δ(x, ŷ(x))) = e. Hence we have automatically
f(x, y(x)) ∈ (δ(x, y(x)))2(x)c since k{x} is a discrete valuation ring (i.e.
if ord(a(x)) ≤ ord(b(x)) then a(x) divides b(x) in k{x}).
Thus Lemma 3.2.4 is not necessary in this case and the proof is quite
simple. This fact will be general: approximation results will be easier to
obtain, and sometimes stronger, in discrete valuation rings than in more
general rings.

ii) In fact, we did not use that k is a field of characteristic zero, we just need
k to be a perfect field in order to use the Jacobian Criterion. But the
use of the Jacobian Criterion is more delicate for non perfect fields. This
also will be general: approximation results will be more difficult to prove
in positive characteristic. For instance M. André proved Theorem 3.2.1
in the case k is a complete field of positive characteristic and replace the
use of the Jacobian Criterion by the homology of commutative algebras
[An75].

iii) For n ≥ 2, the proof of Theorem [Ar68] uses an induction on n. In order
to do it we use the Weierstrass Preparation Theorem. But to apply the
Weierstrass Preparation Theorem we need to do a linear change of coor-
dinates in k{x}, in order to transform g(x, ŷ(x)) into a power series h(x)
such that h(0, ..., 0, xn) 6= 0. Then the proof does not adapt to prove sim-
ilar results in the case of constraints: for instance if ŷ1(x) depends only
on x1 and ŷ2(x) depends only on x2, can we find a convergent solution
such that ỹ1(x) depends only on x1, and ỹ2(x) depends only on x2?
Moreover, even if we can use a linear change of coordinates without modi-
fying the constrains, the use of the Tougeron’s Implicit Function Theorem
may remove the constrains. We will discuss these problems in Section 3.5.

Corollary 3.2.7. — Let k be a valued field of characteristic zero and let I
be an ideal of k{x}. If f(y) ∈

(
k{x,y}
Ik{x,y}

)r
, let ŷ ∈

(
kJxK
IkJxK

)m
be a solution of

f = 0 such that ŷ ≡ 0 modulo I + (x). Then there exists a solution of f = 0 in
∈ k{x}

I

m
denoted by ỹ such that ỹ ≡ 0 modulo I + (x) and ỹ − ŷ ∈ (x)c kJxK

IkJxK .

Proof. — Set Fi(x, y) ∈ k{x, y} such that Fi(x, y) = fi(y) mod. I for 1 ≤
i ≤ r. Let a1,..., as ∈ k{x} be generators of I. Set ŵ(x) ∈ kJxKm such
that ŵj(x) = ŷj mod. I for 1 ≤ j ≤ m. Since fi(ŷ) = 0 then there exists
ẑi,k(x) ∈ kJxK, 1 ≤ i ≤ r and 1 ≤ k ≤ s, such that

Fi(x, ŵ(x)) + a1ẑi,1(x) + · · ·+ asẑi,s(x) = 0 ∀i.

After Theorem 3.2.1, there exist w̃j(x), z̃i,k(x) ∈ k{x} such that

Fi(x, w̃(x)) + a1z̃i,1(x) + · · ·+ asz̃i,s(x) = 0 ∀i
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and ŵj(x) − w̃j(x) ∈ (x)c for 1 ≤ j ≤ m. Then the images of the w̃j(x)’s in
k{x}
I satisfy the conclusion of the corollary.

3.2.1.2. Płoski’s result. — A few years after M. Artin’s result, A. Płoski
strengthened Theorem 3.2.1 by a careful analysis of the proof. His result
yields an analytic parametrization of a piece of the set of solutions of f = 0
such that the formal solution ŷ(x) is a formal point of this parametrization.

Theorem 3.2.8. — [Pł74] Let k be a valued field of characteristic zero and
let f(x, y) be a vector of power series in two in k{x, y}r. Let ŷ(x) be a formal
power series solution such that ŷ(0) = 0,

f(x, ŷ(x)) = 0.

Then there exists a convergent power series solution y(x, z) ∈ k{x, z}m, where
z = (z1, ..., zs) are new variables,

f(x, y(x, z)) = 0,

and a vector of formal power series ẑ(x) ∈ kJxKs with ẑ(0) = 0 such that

ŷ(x) = y(x, ẑ(x)).

This result obviously implies Theorem 3.2.1 since we can choose convergent
power series z̃1(x),..., z̃s(x) ∈ k{x} such that z̃j(x)− ẑj(x) ∈ (x)c for 1 ≤ j ≤ s.
Then, by denoting ỹ(x) := y(x, z̃(x)), we get the conclusion of Theorem 3.2.1.

Remark 3.2.9. — Let us remark that this result remains true if we replace
k{x} by a quotient k{x}

I as in Corollary 3.2.7.

Remark 3.2.10. — Let I be the ideal generated by f1,..., fr. The formal so-
lution ŷ(x) of f = 0 induces a k{x}-morphism k{x, y} −→ kJxK defined by the
substitution of y(x) for y. Then I is included in the kernel of this morphism
thus, by the universal property of the quotient ring, this morphism induces a
k{x}-morphism ψ : k{x,y}

I −→ kJxK. On the other hand, any k{x}-morphism
ψ : k{x,y}

I −→ kJxK is clearly defined by substituting for y a formal power series
ŷ(x) such that f(x, ŷ(x)) = 0.

Thus we can reformulate Theorem 3.2.8 as follows: Let ψ : k{x,y}
I −→ kJxK

be the k{x}-morphism defined by the formal power series solution ŷ(x). Then
there exist an analytic k{x}-algebra D := k{x, z} and k{x}-morphisms C −→
D (defined via the convergent power series solution y(x, z) of f = 0) and
D −→ kJxK (defined by substituting ẑ(x) for z) such that the following dia-
gram commutes:



32 CHAPITRE 3. ARTIN APPROXIMATION

k{x}
ϕ //

��

kJxK

k{x,y}
I

ψ
88

// D := k{x, z}

OO

We will use and generalize this formulation later (see Theorem 3.2.16)

3.2.2. Artin Approximation and Weierstrass Division Theorem. —
The proof of Theorem 3.2.1 uses essentially only two results: the Weierstrass
Division Theorem and the Implicit Function Theorem. In particular it is
straightforward to check that the proof of Theorem 3.2.1 remains true if we
replace k{x, y} by k〈x, y〉, the ring of algebraic power series in x and y, since
this ring satisfies the Weierstrass Division Theorem (cf. [Laf67], see Section
3.6) and the Implicit Function Theorem. In [Ar69], M. Artin gives a ver-
sion of Theorem 3.2.1 in the case of polynomials equations over a field or a
excellent discrete valuation ring k, and proves that formal solutions of such
equations can be approximated by solutions in the Henselization of the ring
of polynomials over k, i.e. in a localization of a finite extension of the ring
of polynomials over k. The proof, when k is an excellent discrete valuation
ring, uses Néron p-desingularization [Né64] (see Section 3.2.3 for a statement
of Néron p-desingularization). This result is very important since it allows to
reduce some algebraic problems over complete local ring to local rings which
are localization of finitely generated rings over a field or a discrete valuation
ring.
For instance, this idea, along with an idea of C. Peskine and L. Szpiro, was used
by M. Hochster to reduce problems over complete local rings in characteristic
zero to the same problems in positive characteristic. The idea is the following:
let us assume that some statement (T ) is true in positive characteristic (where
you can use the Frobenius map to prove it for instance) and let us assume that
there exists an example showing that (T ) is not true in characteristic zero. In
some cases we can use Artin Approximation Theorem to show the existence
of a counterexample to (T ) in the Henselization at a prime ideal of a finitely
generated algebra over a field of characteristic zero. Since the Henselization is
the direct limit of étale extensions, we can show the existence of a counterex-
ample to (T ) in a local ring A which is the localization of a finitely generated
algebra over a field of characteristic zero k. If the example involves only a finite
number of data in A, then we may lift this counterexample in a ring which is
the localization of a finitely generated ring over Q, and even over Z[ 1

p1
, ..., 1

ps
]

where the pi’s are prime integers. Finally we may show that this counterex-
ample remains a counterexample to (T ) over Z/pZ for all but finitely many
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primes p by reducing the problem modulo p (in fact for p 6= pi for 1 ≤ i ≤ s).
This idea was used to prove important results about Intersection Conjectures
[PeSz73], big Cohen-Macaulay modules [HoRo74], Homological Conjectures
[Ho75].

J Denef and L. Lipschitz axiomatized the properties a ring needs to satisfy
in order to adapt the proof the main theorem of [Ar69] due M. Artin. They
called such families of rings Weierstrass Systems. There are two reasons for
introducing such rings : the first one is the proof of Theorem 3.5.16 and the
second one is their use in proofs of Strong Artin Approximation results. In-
dependently H. Kurke, G. Pfister, D. Popescu, M. Roczen and T. Mostowski
(cf. [KPPRM78]) introduced the notion of Weierstrass category which is very
similar (see [KuPf82] for a connection between these two notions).

Definition 3.2.11. — [DeLi80] Let k be a field or a discrete valuation ring
of maximal ideal p. By a Weierstrass System of local k-algebras, or a W-system
over k, we mean a family of k-algebras kVx1, ..., xnW, n ∈ N such that:

i) For n = 0, the k-algebra is k,
For any n ≥ 1, k[x1, ..., xn](p,x1,...,xn) ⊂ kVx1, ..., xnW ⊂ kJx1, ..., xnK
and kVx1, ..., xn+mW

⋂
kJx1, ..., xnK = kVx1, ..., xnW for m ∈ N. For any

permutation σ of {1, ..., n} if f ∈ kVx1, ..., xnW, then f(xσ(1), ..., xσ(n)) ∈
kVx1, ..., xnW.

ii) Any element of kVxW, x = (x1, ..., xn), which is a unit in kJxK, is a unit
in kVxW.

iii) If f ∈ kVxW and p divides f in kJxK then p divides f in kVxW.
iv) Let f ∈ (p, x)kVxW such that f 6= 0. Suppose that f ∈ (p, x1, ..., xn−1, x

s
n)

but f /∈ (p, x1, ..., xn−1, x
s−1
n ). Then for any g ∈ kVxW there exist a unique

q ∈ kVxW and a unique r ∈ kVx1, ..., xn−1W[xn] with deg xnr < d such that
g = qf + r.

v) (if char(k) > 0) If y ∈ (p, x1, ..., xx)kJx1, ..., xnKm and f ∈ kVy1, ..., ymW
such that f 6= 0 and f(y) = 0, then there exists g ∈ kVyW irreducible
in kVyW such that g(y) = 0 and such that there does not exist any unit
u(y) ∈ kVyW with u(y)g(y) =

∑
α∈Nn aαy

pα (aα ∈ k).
vi) (if char(k/p) 6= 0) Let (k/p)VxW be the image of kVxW under the projection

kJxK −→ (k/p)JxK. Then (k/p)VxW satisfies v).

Proposition 3.2.12. — [DeLi80] Let us consider a W -system kVxW.
i) For any n, kVx1, ..., xnW is a Noetherian Henselian regular local ring.
ii) If f ∈ kVx1, ..., xn, y1, ..., ymW and g := (g1,..., gm) ∈ (p, x)kVx1, ..., xnWm,

then f(x, g(x)) ∈ kVxW.

iii) If f ∈ kVxW, then ∂f
∂xi
∈ kVxW.
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iv) If kVx1, ..., xnW is a family of rings satisfying i)-iv) of Definition 3.2.11
and if all these rings are excellent, then they satisfy v) and vi) of Defini-
tion 3.2.11.

Proof. — All these assertions are proven in Remark 1.3 [DeLi80], except
iv). Thus we prove here iv): let us assume that char(k) = p > 0 and
let y ∈ (p, x)k̂JxKm. Let us denote by I the kernel of the kVxW-morphism
kVx, yW −→ k̂JxK defined by the substitution of y for y and let us assume that
I
⋂

kVyW 6= (0). Since kVxW is excellent, the morphism kVxW −→ k̂JxK is regu-
lar. Thus Frac(k̂JxK) is a separable extension of Frac(kVxW), but Frac

(
kVx,yW
I

)
is a subfield of Frac(k̂JxK), hence Frac(kVxW) −→ Frac

(
kVx,yW
I

)
is a separable

field extension. This implies that Frac(k) −→ Frac
(

kVyW
I
⋂

kVyW

)
is a separable

field extension. But if for every irreducible g ∈ I
⋂
kVyW, there would ex-

ist a unit u(y) ∈ kVyW with u(y)g(y) =
∑

α∈Nn aαy
pα, then the extension

Frac(k) −→ Frac
(

kVyW
I
⋂

kVyW

)
would be purely inseparable. This proves that

Property v) of Definition 3.2.11 is satisfies.
The proof that Property vi) of Definition 3.2.11 is satisfied is identical.

Example 3.2.13. — We give here few examples of Weierstrass systems:
i) If k is a field or a complete discrete valuation ring, the family kJx1, ..., xnK

is a W-system over k (using Proposition 3.2.12 iv) since complete local
rings are excellent rings).

ii) Let k〈x1, ..., xn〉 be the Henselization of the localization of k[x1, ..., xn]
at the maximal ideal (x1, ..., xn) where k is a field or an excellent discrete
valuation ring. Then, for n ≥ 0, the family k〈x1, ..., xn〉 is a W-system
over k (using Proposition 3.2.12 iv) since the Henselization of an excellent
local ring is still excellent - see Proposition 3.8.17).

iii) The family k{x1, ..., xn} (the ring of convergent power series in n variables
over a valued field k) is a W-system over k.

iv) The family of Gevrey power series in n variables over a valued field k is
a W-system [Br86].

Then we have the following Approximation result (the case of k〈x〉 where k
is a field or a discrete valuation ring is proven in [Ar69], the general case is
proven in [DeLi80]):

Theorem 3.2.14. — [Ar69][DeLi80] Let kVxW be a W-system over k, where
k is a field or a discrete valuation ring with prime p. Let f ∈ kVx, yWr and
ŷ ∈ (p, x)k̂JxKm satisfy

f(x, ŷ) = 0.
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Then, for any c ∈ N, there exists a convergent power series solution ỹ ∈
(p, x)kVxWm,

f(x, ỹ) = 0 such that ỹ − ŷ ∈ (p, x)c.

Let us mention that Theorem 3.2.8 extends also for Weierstrass systems (see
[Ron10b]).

3.2.3. Néron’s desingularization and Popescu’s Theorem. — During
the 70’s and the 80’s one of the main goals about Artin Approximation Problem
was to find necessary and sufficient conditions on a local ring A for it having
the Artin Approximation Property, i.e. such that the set of solutions in Am of
any system of algebraic equations (S) in m variables with coefficients in A is
dense for the Krull topology in the set of solutions of (S) in Âm. Let us recall
that the Krull topology on A is the topology induced by the following norm:
|a| := e−ord(a) for all a ∈ A\{0}. The problem was to find a way of proving
approximation results without using Weierstrass Division Theorem.

Remark 3.2.15. — Let P (y) ∈ A[y] satisfy P (0) ∈ mA and ∂P
∂y (0) /∈ mA.

Then, by the Implicit Function Theorem for complete local rings, P (y) has
a unique root in Â equal to 0 modulo mA. Thus if we want being able to
approximate roots of P (y) in Â by roots of P (y) in A, a necessary condition is
that the root of P (y) constructed by the Implicit Function Theorem is in A.
Thus it is clear that if a local ring A has the Artin Approximation Property
then A is necessarily Henselian.

In fact M. Artin conjectured that a sufficient condition would be that A
is an excellent Henselian local ring (Conjecture (1.3) [Ar70]). The idea to
prove this conjecture is to generalize Płoski’s Theorem 3.2.8 and a theorem of
desingularization of A. Néron [Né64]. This generalization is the following (for
the definitions see Appendix 3.7):

Theorem 3.2.16. — [Po85] [Po86] Let ϕ : A −→ B be a regular morphism
of local Noetherian rings, C a finitely generated A-algebra and ψ : C −→ B a
morphism of A-algebras. Then ψ factors through a finitely generated A-algebra
D which is smooth over A:

A
ϕ //

��

B

C

ψ
>>

// D

OO

Historically this theorem has been proven by A. Néron [Né64] when A and
B are discrete valuation rings. Then several authors gave proofs of particular
cases (see for instance [Po80], [Br83b] [ArDe83], [ArRo88], or [Rot87] - in
this last paper the result is proven in the equicharacteristic zero case) until D.
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Popescu [Po85] [Po86] proved the general case. Then, several authors gave
simplified proofs or strengthened the result [Og94], [Sp99], [Sw98]. This
result is certainly the most difficult to prove among all the results presented
in this paper. We will just give a slight hint of the proof of this result here
since there exist very nice presentations of the proof elsewhere (see [Sw98] in
general, [Qu97] or [Po00] in the equicharacteristic zero case).
Since A −→ Â is regular if A is excellent, I is an ideal of A and Â := lim

←−
A
In ,

we get the following result (exactly as Theorem 3.2.8 implies Theorem 3.2.1):

Theorem 3.2.17. — Let (A, I) be an excellent Henselian pair. Let f(y) ∈
A[y]r and ŷ ∈ Âm satisfy f(ŷ) = 0. Then, for any c ∈ N, there exists ỹ ∈ Am
such that ỹ − ŷ ∈ IcÂ, and f(ỹ) = 0.

Proof. — The proof goes as follows: let us denote C := A[y]
J where J is the

ideal generated by f1,..., fr. The formal solution ŷ ∈ Â defines a A-morphism
ϕ̂ : C −→ Â (see Remark 3.2.10). By Theorem 3.2.16, since A −→ Â is regular
(Example 3.7.4), there exists a smooth A-algebra D factorizing this morphism.
After some technical reductions we may assume that the morphism A −→ D
decomposes as A −→ A[z] −→ D where z = (z1, ..., zs) and A[z] −→ D is stan-
dard étale. Let us choose z̃ ∈ As such that z̃− ẑ ∈ mc

AÂ
s (ẑ is the image of z in

Âs). This defines a morphism A[z] −→ A. Then A −→ D
(z1−z̃1,...,zs−z̃s) is stan-

dard étale and admits a section in A
mcA

. Since A is Henselian, this section lifts
to a section in A by Proposition 3.8.9. This section composed with A[z] −→ A
defines a A-morphism D −→ A, and this latter morphism composed with
C −→ D yields a morphism ϕ̃ : C −→ A such that ϕ̃(zi) − ϕ̂(zi) ∈ mc

AÂ for
1 ≤ i ≤ m.

Remark 3.2.18. — Let (A, I) be a Henselian pair and let J be an ideal of
A. By applying this result to the Henselian pair

(
B
J ,

IB
J

)
we can prove the

following (using the notation of Theorem 3.2.17): if f(ŷ) ∈ JÂ then there
exists ỹ ∈ Am such that f(ỹ) ∈ J and ỹ − ŷ ∈ IcÂ.

Remark 3.2.19. — In [Rot90], C. Rotthaus proves the converse of Theorem
3.2.17 in the local case: if A is a Noetherian local ring that satisfies Theorem
3.2.17, then A is excellent. In particular Weierstrass systems are excellent local
rings. Previously this problem had been studied in [CiPo81] and [Br83a].

Remark 3.2.20. — Let A be a Noetherian ring and I be an ideal of A. If
we assume that f1(y),..., fr(y) ∈ A[y] are linear, then Theorem 3.2.17 may be
proven easily in this case since A −→ Â is flat (see Example 3.1.3). The proof
of this flatness result uses the Artin-Rees Lemma.
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Example 3.2.21. — If A is an excellent integral local domain let us denote
by Ah its Henselization. Then Ah is the ring of algebraic elements of Â over A.
In particular, if k is a field then k〈x〉 is the ring of formal power series which
are algebraic over k[x].
Indeed A −→ Ah is a filtered limit of algebraic extensions, thus Ah is a subring
of the ring of algebraic elements of Â over A.
On the other hand if f ∈ Â is algebraic over A, then f satisfies an equation

a0f
d + a1f

d−1 + · · ·+ ad = 0

where ai ∈ A for all i. Thus for c large enough there exists f̃ ∈ Ah such that
f̃ satisfies the same polynomial equation and f̃ − f ∈ mc

A (by Theorem 3.2.17
and Theorem 3.8.17). Since

⋂
cm

c
A = (0) and a polynomial equation has a

finite number of roots, this proves that f̃ = f for c large enough and f ∈ Ah.

Example 3.2.22. — The strength of this result comes from the fact that it
applies to rings that do not satisfy the Weierstrass Preparation Theorem. For
example Theorem 3.2.17 applies to the local ring B = A〈x1, ..., xn〉 where
A is an excellent Henselian local ring (the main example is A = kJtK〈x〉
where t and x are multivariables). Indeed, this ring is the Henselization of
A[x1, ..., xn]mA+(x1,...,xn). Thus B is an excellent local ring by Example 3.7.4
and Proposition 3.8.17.
This case was the main motivation of D. Popescu for proving Theorem 3.2.16
(see also [Ar70]), since this case implies a nested Artin Approximation result
(see Theorem 3.5.8).
Previous particular cases of this application had been studied before: see
[PfPo81] for a direct proof that V Jx1K〈x2〉 satisfies Theorem 3.2.17, when V is
a complete discrete valuation ring, and [BDL83] for the ring kJx1, x2K〈x3, x4, x5〉.

Hint of the proof of Theorem 3.2.16. — Let A be a Noetherian ring and C be
a A-algebra of finite type, C = A[y1,...ym]

I with I = (f1, ...., fr). We denote by
∆g the ideal of A[y] generated by the h × h minors of the Jacobian matrix(
∂gi
∂yj

)
1≤i≤h,1≤j≤m

for g := (g1, ..., gh) ⊂ I. We define the ideal

HC/A :=

√∑
g

∆g((g) : I)C

where the sum runs over all g := (g1, ..., gh) ⊂ I and h ∈ N. This ideal is
independent of the presentation of C and it defines the singular locus of C
over A:

Lemma 3.2.23. — For any p ∈ Spec(C), Cp is smooth over A if and only if
HC/A 6⊂ p.
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We have the following property:

Lemma 3.2.24. — Let C and C ′ be two A-algebras of finite type and let
A −→ C −→ C ′ be two morphisms of A-algebras. Then HC′/C

⋂√
HC/AC ′ =

HC′/C

⋂
HC′/A.

The idea of the proof of Theorem 3.2.16 is the following: if HC/AB 6= B,
then we replace C by a A-algebra of finite type C ′ such that HC/AB is a proper
sub-ideal of HC′/AB. Using the Noetherian assumption, after a finite number
we have HC/AB = B. Then we use the following proposition:

Proposition 3.2.25. — Using the notation of Theorem 3.2.16, let us assume
that HC/AB = B. Then ψ factors as in Theorem 3.2.16.

Proof of Proposition 3.2.25. — Let (c1, ..., cs) be a system of generators of

HC/A. Then 1 =
s∑
i=1

biψ(ci) for some bi’s in B. Let us define

D :=
C[z1, ..., zs]

(1−
∑s

i=1 cizi)
.

We construct a morphism of C-algebra D −→ B by sending zi onto bi, 1 ≤ i ≤
s. It is easy to check Dci is a smooth C-algebras, thus ci ∈ HD/C by Lemma
3.2.23, and HC/AD ⊂ HD/C . By Lemma 3.2.24, since 1 ∈ HC/AD, we see that
1 ∈ HD/A. By Lemma 3.2.23, this proves that D is a smooth A-algebra.

Now to increase the size of HC/AB we use the following proposition:

Proposition 3.2.26. — Using the notation of Theorem 3.2.16, let p be a min-
imal prime ideal of HC/AB. Then there exist a factorization of ψ : C −→
D −→ B such that D is finitely generated over A and

√
HC/AB (

√
HD/AB 6⊂

p.

The proof of Proposition 3.2.26 is done by induction on height(p). Thus
there is two things to prove: first the case ht(p) = 0 which is equivalent to
prove Theorem 3.2.16 for Artinian rings, then the reduction ht(p) = k+1 to the
case ht(p) = k. This last case is quite technical, even in the equicharacteristic
zero case (i.e. when A contains Q, see [Qu97] for a good presentation of this
case). In the case A does not contain Q there appear more problems due to
the existence of inseparable extensions of residue fields. In this case the André
homology is the good tool to handle these problems (see [Sw98]).
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3.3. Strong Artin Approximation

We review here results about the Strong Approximation Property. There
is clearly two different cases: the first case is when the base ring is a discrete
valuation ring (where life is easy!) and the second case is the general case
(where life is less easy).

3.3.1. Greenberg’s Theorem: the case of a discrete valuation ring.
— Let V be a Henselian discrete valuation ring, mV its maximal ideal and K
be its field of fractions. Let us denote by V̂ the mV -adic completion of V and
by K̂ its field of fractions. If char(K) > 0, let us assume that K −→ K̂ is a
separable field extension (in this case this is equivalent to V being excellent,
see Example 3.7.2 iii) and Example 3.7.4 iv)).

Theorem 3.3.1 (Greenberg’s Theorem). — [Gre66] If f(y) ∈ V [y]r, then
there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+b
V

∃ỹ ∈ V m such that f(ỹ) = 0 and ỹ − y ∈ mc
V .

Sketch of proof. — We will give the proof in the case char(K) = 0. The result
is proven by induction on the height of the ideal generated by f1(y),..., fr(y).
Let us denote by I this ideal. We will denote by ν, the mV -adic order on V
which is a valuation by assumption.
There exists an integer e ≥ 1 such that

√
I
e ⊂ I. Then f(y) ∈ mec

V for all f ∈ I
implies that f(y) ∈ mc

V for all f ∈
√
I since V is a valuation ring. Moreover

if
√
I = P1

⋂
· · ·
⋂
Ps is prime decomposition of

√
I, then f(y) ∈ msc

V for all
f ∈
√
I implies that f(y) ∈ mc

V for all f ∈ Pi for some i. This allows us to
assume that I is a prime ideal of V [y].
Let h be the height of I. If h = m+ 1, then I is a maximal ideal of V [y] and
thus it contains some non zero element of V denoted by v. Then there does
not exist y ∈ V m such that f(y) ∈ m

ν(v)+1
V for all f ∈ I. Thus the theorem is

true for a = 0 and b = ν(v) + 1.
Let us assume that the theorem is proven for ideals of height h + 1 and let I
be a prime ideal of height h. As in the proof of Theorem 3.2.1, we may assume
that r = h and that the determinant of the Jacobian matrix of f , denoted by
δ, is not in I. Let us denote J := I+(δ). Since ht(J) = h+1, by the inductive
hypothesis, there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ V m such that f(y) ∈ mac+b
V ∀f ∈ J

∃ỹ ∈ V m such that f(ỹ) = 0 ∀f ∈ J and ỹj − yj ∈ mc
V , 1 ≤ j ≤ m.
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Then let c ∈ N and y ∈ V m satisfy f(y) ∈ m
(2a+1)c+2b
V for all f ∈ I. If

δ(y) ∈ mac+b
V , then f(y) ∈ mac+b

V for all f ∈ J and the result is proven by the
inductive hypothesis.
If δ(y) /∈ mac+b

V , then fi(y) ∈ (δ(y))2mc
V for 1 ≤ i ≤ r. Then the result comes

from the following result.

Theorem 3.3.2 (Tougeron’s Implicit Function Theorem)
Let A be a Henselian local ring and f(y) ∈ A[y]r, y = (y1, ..., ym), m ≥ r.

Let δ(x, y) be a r × r minor of the Jacobian matrix ∂(f1,...,fr)
∂(y1,...,ym) . Let us assume

that there exists y ∈ Am such that

fi(y) ∈ (δ(y))2mc
A for all 1 ≤ i ≤ r

and for some c ∈ N. Then there exists ỹ ∈ Am such that

fi(ỹ) = 0 for all 1 ≤ i ≤ r, and ỹ − y ∈ (δ(y))mc
A.

Proof. — The proof is completely similar to the proof of Theorem 3.2.5.

In fact we can prove the following result whose proof is identical to the proof
of Theorem 3.3.1:

Theorem 3.3.3. — [Sc83] Let V be a complete discrete valuation ring and
f(y, z) ∈ V JyK[z]r, where z := (z1, ..., zs). Then there exist a, b ≥ 0 such that

∀c ∈ N ∀y ∈ (mV V )m, ∀z ∈ V s such that f(y, z) ∈ mac+b
V

∃ỹ ∈ (mV V )m, ∃z̃ ∈ V s such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈ mc
V .

Remark 3.3.4. — M. Greenberg proved this result in order to study Ci fields.
Previous results about Ci fields had been already been studied, in particular
by S. Lang in [Lan52] where appeared for the first time a particular case of
Artin Approximation Theorem (see Theorem 11 and its corollary in [Lan52]).

Remark 3.3.5. — In the case f(y) has no solution in V , we can choose a = 0
and Theorem 3.3.1 asserts there exists a constant b such that f(y) has no
solution in V

mbV
.

Remark 3.3.6. — The valuation ν of V defines a ultrametric norm on K: we
define it as ∣∣∣y

z

∣∣∣ := eν(z)−ν(y), ∀y, z ∈ V \{0}.

This norm defines a distance on V m, for any m ∈ N∗, denoted by d(., .) and
defined by

d(y, z) :=
m

max
k=1
|yk − zk| .
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Then Theorem 3.3.1 can be reformulated as a Łojasiewicz Inequality (see
[Te12]):

∃a ≥ 1, C > 0 s.t. |f(y)| ≥ Cd(f−1(0), y)a ∀y ∈ V m.

This Łojasiewicz Inequality is well known for algebraic or analytic functions
and Theorem 3.3.1 can be seen as a generalization of this Łojasiewicz Inequality
for algebraic or analytic functions defined over V . If V = kJtK where k is a
field, there is very few results known about the geometry of algebraic varieties
defined over V . It is a general problem to extend classical results of differential
or analytic geometry over R or C to this setting. See for instance [HaMü94],
[BH10] (extension of Rank Theorem), [Reg06] or [FBPP12b] (Extension of
Curve Selection Lemma), [Hic05] for some results in this direction.

For any c ∈ N let us denote by β(c) the smallest integer such that:
for all y ∈ V m such that f(y) ∈ (x)β(c), there exists ỹ ∈ V m such that
f(ỹ) = 0 and ỹ − y ∈ (x)c. Greenberg’s Theorem asserts that such a function
β : N −→ N exists and that it is bounded by an affine function. We call this
function β the Greenberg function of f . We can remark that the Greenberg
function is an invariant of the integral closure of the ideal generated by f1,...,
fr:

Lemma 3.3.7. — Let us consider f(y) ∈ V [y]r and g(y) ∈ V [y]q. Let us
denote by βf and βg their Greenberg functions. Let I (resp. J) be the ideal
of V [y] generated by f1(y),..., fr(y) (resp. g1(y),..., gq(y)). If I = J then
βf = βg. The same is true for Theorem 3.3.3.

Proof. — Let I be an ideal of V and y ∈ V m. We remark that

f1(y), ..., fr(y) ∈ I ⇐⇒ g(y) ∈ I ∀g ∈ I.

Then by replacing I by (0) and mc
V , for all c ∈ N, we see that βf depends only

on I.
Now, for any c ∈ N, we have:

g(y) ∈ mc
V ∀g ∈ I ⇐⇒ ν(g(y)) ≥ c ∀g ∈ I

⇐⇒ ν(g(y)) ≥ c ∀g ∈ I

⇐⇒ g(y) ∈ mc
V ∀g ∈ I.

Thus βf depends only on I.

In general, it is a difficult problem to compute the Greenberg function of an
ideal I. It is even a difficult problem to bound this function in general. We can
give few results giving some informations about the Greenberg functions. First
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of all let us remark that, in the proof of Theorem 3.3.1, we proved a particular
case of the following inequality:

βI(c) ≤ 2βJ(c) + c, ∀c ∈ N
where J is the Jacobian Ideal of I (for a precise definition of the Jacobian
Ideal in general and a general proof of this inequality let see [Elk73]). The
coefficient 2 comes from the use of Tougeron’s Implicit Function Theorem. We
can sharpen this bound in the following particular case:

Theorem 3.3.8. — [Hic93] Let k be an algebraically closed field of charac-
teristic zero and V := kJtK where t is a single variable. Let f(y) ∈ V JyK be one
power series. Let us denote by J the ideal of V JyK generated by f(y), ∂f

∂t (y),
∂f
∂y1

(y),..., ∂f
∂ym

(y), and let us denote by βf the Greenberg function of (f) and
by βJ the Greenberg function of J . Then

βf (c) ≤ βJ(c) + c ∀c ∈ N.

This bound may be used to find sharp bounds of some Greenberg functions
(see Remark 3.3.10).
On the other hand we can describe the behaviour of β in the following case:

Theorem 3.3.9. — [De84][DeLo99] Let V be Zp or a Henselian discrete
valuation ring whose residue field is an algebraically closed field of character-
istic zero. Let us denote by mV the maximal ideal of V . Let us denote by
β the Artin function of f(y) ∈ V [y]r. Then there exists a finite partition of
N in congruence classes such that on each such congruence class the function
c 7−→ β(c) is linear for c large enough.

Hints on the proof in the case the residue field has characteristic zero
Let us consider the following first order language of three sorts:
1) the field (K := Frac(V ),+,×, 0, 1)

2) the group (Z,+, <,≡d (∀d ∈ N∗), 0) (≡d is the relation a ≡d b if and only
if a− b is divisible by d for a, b ∈ Z)

3) the residue field (k := Frac
(
V
mV

)
,+,×, 0, 1)

with both following functions:
a) ν : K −→ Z∗

b) ac : K −→ k ("angular component")
The function ν is the valuation of the valuation ring V . The function ac may
be characterized by axioms, but here let us just give an example: let us assume
that V = kJtK. Then ac is defined by ac(0) = 0 and ac

(∑∞
n=n0

ant
n
)

= an0 if
an0 6= 0.
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The second sort (Z,+, <,≡d, 0) admits elimination of quantifiers ([Pr29]) and
the elimination of quantifiers of (k,+,×, 0, 1) is a classical result of Chevalley.
J. Pas proved that the first sort language and the three sorted language admits
elimination of quantifiers [Pas89]. This means that any subset of Kn1 ×Zn2 ×
kn3 defined by a first order formula in this three sorts language (i.e. a logical
formula involving 0, 1,+ ,× (but not a × b where a and b are integers), (, ),
=, <, ∧, ∨, ¬, ∀, ∃, ν, ac, and variables for elements of K, Z and k may be
defined by a formula involving the same symbols except ∀, ∃.
Then we see that β is defined by the following logical sentence:

[∀c ∈ N ∀y ∈ Km (ν(f(y)) ≥ β(c)) ∧ (ν(y) ≥ 0) ∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]

∧ [∀c ∈ N ∃y ∈ Km (ν(f(y)) ≥ β(c) + 1) ∧ (ν(y) ≥ 0)

¬∃ỹ ∈ Km (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c)]

Applying the latter elimination of quantifiers result we see that β(c) may be
defined without ∀ and ∃. Thus β(c) is defined by a formula using +, <, ≡d
(for a finite set of integers d). This proves the result.
The case where V = Zp needs more work since the residue field of Zp is not
algebraically closed, but the idea is the same.

Remark 3.3.10. — When V = C{t}, t being a single variable, it is tempting
to link together the Greenberg function of a system of equations with coeffi-
cients in V and some geometric invariants of the germ of complex set defined
by this system of equations. This has been done in several cases:

i) In [El89], a bound (involving the multiplicity and the Milnor number) of
the Greenberg function is given when the system of equations defines a
curve in Cm.

ii) Using Theorem 3.3.8 [Hic93] gives the following bound of the Greenberg
function β of a germ of complex hypersurface with an isolated singularity:
β(c) ≤ bλcc + c for all c ∈ N, and this bound is sharp for plane curves.
Here λ denotes the Łojasiewicz exponent of the germ, i.e.

λ := inf {θ ∈ R / ∃C > 0 ∃U neighborhood of 0 in Cm,

|f(z)|+
∣∣∣∣ ∂f∂z1

(z)

∣∣∣∣+ · · ·+
∣∣∣∣ ∂f∂zm (z)

∣∣∣∣ ≥ C|z|θ ∀z ∈ U} .
iii) [Hic04] makes the complete computation of the Greenberg function of

a branch of plane curve and proves that it is a topological invariant.
This computation has been done for several branches in [Sa10]. Some
particular cases depending on the Newton polygon of the plane curve
singularity are computed in [Wa78].
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Finally we mention the following recent result that extends Theorem 3.3.1
to non-Noetherian valuation rings and whose proof is based on ultraproducts
methods used in [BDLvdD79] to prove Theorem 3.3.1 (see 3.3.3):

Theorem 3.3.11. — [M-B11] Let V be a Henselian valuation ring and ν :

V −→ Γ its associated valuation. Let us denote by V̂ its mV -adic completion,
K := Frac(V ) and K̂ := Frac(V̂ ). Let us assume that K −→ K̂ is a separable
extension. Then for any f(y) ∈ V [y]r there exist a ∈ N, b ∈ Γ+ such that

∀c ∈ Γ ∀y ∈ V m (ν(f(y)) ≥ ac+ b) =⇒ ∃ỹ ∈ V m (f(ỹ) = 0 ∧ ν(ỹ − y) ≥ c) .

3.3.2. Strong Artin Approximation Theorem: the general case. —
In the general case (when V is not a valuation ring), there still exists an
approximation function β. We have the following results:

Theorem 3.3.12. — [Ar68][BDLvdD79] Let k be a field. For all n,m, d ∈
N, there exists a function βn,m,d : N −→ N such that the following holds:
Set x := (x1, ..., xn) and y := (y1, ..., ym). Then for all f(x, y) ∈ k[x, y]r of
total degree ≤ d, for all c ∈ N, for all y(x) ∈ kJxKm such that

f(x, y(x)) ∈ (x)βn,m,d(c),

there exists ỹ(x) ∈ kJxKm such that f(ỹ(x)) = 0 and ỹ(x)− y(x) ∈ (x)c.

Remark 3.3.13. — By following the proof of M. Artin, D. Lascar proved
that there exists a recursive function β that satisfies the conclusion of Theorem
3.3.12 [Las78]. But the proof of Theorem 3.3.12 uses a double induction on
the height of the ideal (like in Theorem 3.3.1) and on n (like in Theorem 3.2.1).
In particular, in order to apply the Jacobian Criterion, we need to work with
prime ideals, and replace the original ideal I generated by f1,..., fr by one of
its associated prime and then make a reduction to n − 1 variables. But the
bounds of the degree of the generators of such associated prime may be very
large compared to the degree of the generators of I. This is essentially the
reason why the proof of this theorem does not give much more information
about the growth of β than Lascar’s result.

Theorem 3.3.14. — [PfPo75] [Po86] Let A be a complete local ring whose
maximal ideal is denoted by mA. Let f(y, z) ∈ AJyK[z]r, with z := (z1, ..., zs).
Then there exists a function β : N −→ N such that the following holds:
For any c ∈ N and any y ∈ (mA.A)m and z ∈ As such that f(y, z) ∈ m

β(c)
A ,

there exists ỹ ∈ (mA.A)m and z̃ ∈ As such that f(ỹ, z̃) = 0 and ỹ − y, z̃ − z ∈
mc
A.
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Example 3.3.15. — [Sp94] Set f(x1, x2, y1, y2) := x1y
2
1 − (x1 + x2)y2

2. Set
√

1 + t = 1 +
∑
n≥1

ant
n ∈ CJtK

be the power series such that
√

1 + t
2

= 1 + t. For any c ∈ N set y(c)
2 (x) := xc1

and y(c)
1 (x) := xc1 +

∑c
n=1 anx

c−n
1 xn2 . Then

f(x1, x2, y
(c)
1 (x), y

(c)
2 (x)) ∈ (x2)c.

On the other side the equation f(x1, x2, y1(x), y2(x)) = 0 has no other solution
(y1(x), y2(x)) ∈ kJxK2 but (0, 0). This proves that Theorem 3.3.16 is not valid
for general Henselian pairs since (kJx1, x2K, (x2)) is a Henselian pair.
Let us notice that L. Moret-Bailley proved that if a pair (A, I) satisfies Theorem
3.3.16, then A has to be an excellent Henselian local ring [M-B07]. It is still
open to know under which conditions on I the pair (A, I) satisfies Theorem
3.3.16 when A is an excellent Henselian local ring.

Corollary 3.3.16. — [PfPo75] [Po86] Let A be an excellent Henselian local
ring whose maximal ideal is denoted by mA and let f(y) ∈ A[y]r. Then there
exists a function β : N −→ N such that:

∀c ∈ N, ∀y ∈ Am such that f(y) ∈ m
β(c)
A

∃ỹ ∈ Am such that f(ỹ) = 0 and ỹ − y ∈ mc
A.

Corollary 3.3.17. — [Wa75][DeLi80] Let kVxW be a W-system over k, where
k is a field or a discrete valuation ring with prime p. Let f(x, y) ∈ kVx, yWr.
Then there exists a function β : N −→ N such that for any c ∈ N and any
y ∈ (p, x)k̂JxKm such that f(x, y) ∈ (p, x)β(c), there exists ỹ ∈ (p, x)kVxWm
such that f(x, ỹ) = 0 and ỹ − y ∈ (p, x)c.

Proof. — We first apply Theorem 3.3.14 then we apply Theorem 3.2.14.

Remark 3.3.18. — As for Theorem 3.3.1, Corollary 3.3.16 implies that, if
f(y) has no solution in A, there exists a constant c such that f(y) has no
solution in A

mcA
.

Definition 3.3.19. — Let f be as in Theorem 3.3.14 or Corollary 3.3.16.
The least function β that satisfies these theorems is called the Artin function
of f .

Remark 3.3.20. — As before, the Artin function of f depends only on the
integral closure of the ideal I generated by f1,..., fr (see Lemma 3.3.7).
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Remark 3.3.21. — Let f(y) ∈ AJyKr and y ∈ (mA)m satisfy f(y) ∈ mc
A and

let us assume that A −→ B := AJyK
(f(y)) is a smooth morphism. This morphism

is local thus it splits as A −→ C := A[z]mA+(z) −→ B such that C −→ B is
étale (see Definition 3.8.5) and z := (z1, ..., zs). We remark that y defines a
morphism of A-algebras ϕ : B −→ A

mcA
. Let us choose any z̃ ∈ As such that

zi − z̃i ∈ mc
A for all 1 ≤ i ≤ s (zi denotes the image of zi in A

mcA
). Then

A −→ B
(z1−z̃1,...,zs−z̃) is étale and admits a section in A

mcA
. By Proposition 3.8.9,

this section lifts to a section in A. Thus we have a section B −→ A equal to
ϕ modulo mc

A.
This proves that β(c) = c when A −→ AJyK

(f(y)) is smooth.

3.3.3. Ultraproducts and proofs of Strong Approximation type re-
sults. — Historically, M. Artin proved Theorem 3.3.12 in [Ar69] by slightly
modifying the proof of Theorem 3.2.1, i.e. by an induction on n using the
Weierstrass Division Theorem. Then some people tried to prove this kind of
result in the same way, but this was not always easy, in particular when the
base field was not a characteristic zero field (for example there is a gap in
the inseparable case of [PfPo75]). Then four people introduced the use of
ultraproducts to give easy proofs of this kind of Strong Approximation type
results ([BDLvdD79] and [DeLi80]; see also [Po79] for the general case).
The general principle is the following: ultraproducts reduce Strong Artin Ap-
proximation Problems to Artin Approximation Problems. We will present here
the main ideas.

Let us start with some terminology. A filter D (over N) is a non empty subset
of P(N), the set of subsets of N, that satisfies the following properties:

a) ∅ /∈ D, b) E , F ∈ D =⇒ E
⋂
F ∈ D, c) E ∈ D, E ⊂ F =⇒ F ∈ D.

A filter D is principal if D = {F / E ⊂ F} for some subset E of N. A ultrafilter
is a filter which is maximal for the inclusion. It is easy to check that a filter
D is a ultrafilter if and only if for any subset E of N, D contains E or its
complement N − E . In the same way a ultrafilter is non-principal if and only
if it contains the filter E := {E ⊂ N / N − E is finite}. Zorn’s Lemma yields
the existence of non-principal ultrafilters.

Let A be a Noetherian ring. Let D be a non-principal ultrafilter. We de-
fine the ultrapower (or ultraproduct) of A as follows:

A∗ :=
{(ai)i∈N ∈

∏
iA}

((ai) ∼ (bi) iff {i / ai = bi} ∈ D)
.
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We have a morphism A −→ A∗ that sends a onto the class of (a)i∈N. We have
the following fundamental result:

Theorem 3.3.22. — [ChKe73] Let L be a first order language, let A be a
structure for L and let D be an ultrafilter over N. Then for any (ai)i∈N ∈ A∗
and for any first order formula ϕ(x), ϕ((ai)) is true in A∗ if and only if {i ∈
N / ϕ(ai) is true in A} ∈ D.

In particular we can deduce the following properties:
The ultraprower A∗ is equipped with a structure of commutative ring. If A
is a field then A∗ is a field. If A is an algebraically closed field then A∗ is an
algebraically closed field. If A∗ is a local ring with maximal ideal mA then
A∗ is a local ring with maximal ideal m∗A defined by (ai)i ∈ m∗A if and only if
{i / ai ∈ mA} ∈ D. If A is a local Henselian ring, then A∗ is a local Henselian
ring. In fact all these facts are elementary and can be checked directly by
hand. Elementary proofs of these results can be found in [BDLvdD79].
Nevertheless if A is Noetherian, then A∗ is not Noetherian in general, since
Noetherianity is a condition on ideals of A and not on elements of A. For
example, if A is a Noetherian local ring, then m∗∞ :=

⋂
n≥0 m

∗
A
n 6= (0) in

general. But we have the following lemma:

Lemma 3.3.23. — [Po00] Let (A,mA) be a Noetherian complete local ring.
Let us denote A1 := A∗

m∗∞
. Then A1 is a Noetherian complete local ring of same

dimension as A and the composition A −→ A∗ −→ A1 is flat.

In fact, since A is excellent and mAA1 is the maximal ideal of A1, it is not
difficult to prove that A −→ A1 is regular. Details can be found in [Po00].

Let us sketch the idea in the case of Theorem 3.3.16:

Sketch of the proof of Theorem 3.3.16. — Let us assume that some system of
algebraic equations over an excellent Henselian local ring A, denoted by f = 0,
does not satisfy Theorem 3.3.16. Using Theorem 3.2.17, we may assume that
A is complete. Thus it means that there exist an integer c0 ∈ N and y(c) ∈ Am,
∀ c ∈ N, such that f(y(c)) ∈ mc

A and there does not exists ỹ(c) ∈ Am such that
f(ỹ(c)) = 0 and ỹ(c) − y(c) ∈ mc0

A .
Let us denote by y the image of (y(c))c in (A∗)m. Since f(y) ∈ A[y]r, we may
assume that f(y) ∈ A∗[y]r using the morphism A −→ A∗. Then f(y) ∈ m∗∞.
Thus f(y) = 0 in A1. Let us choose c > c0. Since A −→ A1 is regular and A
is Henselian, following the proof of Theorem 3.2.17, for any c ∈ N there exists
ỹ ∈ Am such that f(ỹ) = 0 and ỹ−y ∈ mc

AA1. Thus ỹ−y ∈ mc
AA
∗. Hence the

set {i ∈ N / ỹ − y(i) ∈ mc
AA
∗} ∈ D is non-empty. This is a contradiction.
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We can also prove easily the following proposition with the help of ultraprod-
ucts:

Proposition 3.3.24. — [BDLvdD79] Let f(x, y) ∈ C[x, y]r. For any 1 ≤
i ≤ m let Ji be a subset of {1, ..., n}.
Let us assume that, for any c ∈ N, there exist y(c)

i (x) ∈ C[xj , j ∈ Ji], 1 ≤ i ≤
m, such that

f(x, y(c)(x)) ∈ (x)c.

Then there exist ỹi(x) ∈ CJxj , j ∈ JiK, 1 ≤ i ≤ m, such that f(x, ỹ(x)) = 0.

Proof. — Let us denote by y ∈ C[x]∗ the image of (y(c))c. Then f(x, y) = 0

modulo (x)∗∞. It is not very difficult to check that C[x]∗

(x)∗∞
' C∗JxK as C∗[x]-

algebras. Moreover C∗ ' C as k-algebras (where k is the subfield of C gener-
ated by the coefficients of f), since they are algebraically closed field of same
transcendence degree over Q and same characteristic. Then the image of y by
the isomorphism yields the desired solution in CJxK.

Let us remark that the proof of this result remains valid if we replace C by any
algebraically closed field k whose cardinal is strictly greater that the cardinal
of N. If we replace C by Q, this result is no more true in general (see Example
3.5.23).

Remark 3.3.25. — Several authors proved "uniform" Strong Artin approx-
imation results, i.e. they proved the existence of a function β satisfying Theo-
rem 3.3.14 for a family of (fλ(y, z))λ∈Λ which satisfy tameness properties that
we do not describe here. The main example is Theorem 3.3.12 that asserts
that the Artin functions of polynomials in n+m variables of degree less than
d are uniformly bounded. There are also two types of proof for these kind of
"uniform" Strong Artin approximation results : the ones using ultraproducts
(see Theorem 4.2 of [BDLvdD79] which is a generalization of Theorem 3.3.12
where the base field is not fixed, or Theorems 8.2 and 8.4 of [DeLi80] where
uniform Strong Artin approximation results are proven for families of polyno-
mials whose coefficients depend analytically on some parameters) and the ones
using the scheme of proof due to Artin (see [ElTo96] where more or less the
same results as those of [BDLvdD79] and [DeLi80] are proven).

3.3.4. Effectivity of the behaviour of Artin functions: some exam-
ples. — In general the proofs of Strong Artin Approximation results do not
give much information about the Artin functions, since ultraproducts methods
use a proof by contradiction (see also Remark 3.3.13). The problem of finding
estimates of Artin functions was raised first in [Ar70] and very few general re-
sults are known (the only ones in the case of Greenberg Theorem are Theorems
3.3.8, 3.3.9 and Remark 3.3.10 and Remark 3.3.13 in the general case). We
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give here a list of examples for which we can give non trivial effective behaviour
about their Artin function.

3.3.4.1. Artin-Rees Lemma. — The following result has been known for long
by the specialists and has been communicated to the author by M. Hickel:

Theorem 3.3.26. — [Ron06a] Let f(y) ∈ A[y]r be a vector of linear poly-
nomials with coefficients in a Noetherian ring A. Let I be an ideal of A. Then
there exists a constant c0 ≥ 0 such that:

∀c ∈ ∀y ∈ Am such that f(y) ∈ Ic+c0

∃ỹ ∈ Am such that f(ỹ) = 0 and ỹ − y ∈ Ic.

This theorem asserts that the function β of Theorem 3.3.16 is bounded by
the function c −→ c+ c0. Moreover let us remark that this theorem is valid for
general Noetherian ring and general ideals I if A. This can be compared with
the fact that, for linear equations, Theorem 3.2.16 is true for any Noetherian
ring A without Henselian condition (see Remark 3.2.20).

Proof. — For convenience, let us assume that there is only one linear polyno-
mial:

f(y) = a1y1 + · · ·+ amym.

Let us denote by I the ideal of A generated by a1,..., am. Artin-Rees Lemma
implies that there exists c0 > 0 such that I

⋂
Ic+c0 ⊂ I.Ic for any c ≥ 0.

If y ∈ Am is such that f(y) ∈ Ic+c0 then, since f(y) ∈ I, there exists ε ∈ (Ic)m
such that f(y) = f(ε). If we define ỹi := yi − εi, for 1 ≤ i ≤ m, we have the
result.

We have the following result whose proof is similar:

Proposition 3.3.27. — Let (A,mA) be a Henselian excellent local ring, I an
ideal of A generated by a1,..., aq and f(y) ∈ A[y]r. Set

Fi(y, z) := fi(y) + a1zi,1 + · · ·+ aqzi,q ∈ A[y, z], 1 ≤ i ≤ r
where the zi,k’s are new variables and let F (y, z) be the vector whose coordinates
are the Fi(y, z)’s. Let us denote by β the Artin function of f(y) seen as a vector
of polynomials of A

I [y] and γ the Artin function of F (y, z) ∈ A[y, z]r. Then
there exists a constant c0 such that:

β(c) ≤ γ(c) ≤ β(c+ c0), ∀c ∈ N.

Proof. — Let y ∈ A
I

m satisfies f(y) ∈ m
γ(c)
A

A
I . Then there exists z ∈ Aqr such

that F (y, z) ∈ m
γ(c)
A (we still denote by y a lifting of y in Am). Thus there

exists ỹ ∈ Am and z̃ ∈ Aqr such that F (ỹ, z̃) = 0 and ỹ− y, z̃ − z ∈ mc
A. Thus

f(ỹ) = 0 in A
I .
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Let c0 be a constant such that I
⋂
mc+c0
A ⊂ I.mc

A for all c ∈ N (such constant
exists by the Artin-Rees Lemma). Let y ∈ Am, z ∈ Aqr satisfy F (y, z) ∈
m
β(c+c0)
A . Then f(y) ∈ m

β(c+c0)
A + I. Thus there exists ỹ ∈ Am such that

f(ỹ) ∈ I and ỹ − y ∈ mc+c0
A . Thus F (ỹ, z) ∈ mc+c0

A

⋂
I. Then we conclude by

following the proof of Theorem 3.3.26.

Remark 3.3.28. — By Theorem 3.2.17, in order to study the behaviour of
the Artin function of some ideal we may assume that A is a complete local
ring. Let us assume that A is an equicharacteristic local ring. Then A is
the quotient of a power series ring over a field by Cohen Structure Theorem
[Mat80]. Thus Proposition 3.3.27 allows us to reduce the problem to the case
A = kJx1, ..., xnK where k is a field.

3.3.4.2. Izumi’s Theorem and Diophantine Approximation. — Let (A,mA) be
a Noetherian local ring. We denote by ν the mA-adic order on A, i.e.

ν(x) := max{n ∈ N / x ∈ mn
A} for any x 6= 0.

We always have ν(x) + ν(y) ≤ ν(xy) for all x, y ∈ A. But we do not have the
equality in general. For instance, if A := CJx,yK

(x2−y3)
then ν(x) = ν(y) = 1 but

ν(x2) = ν(y3) = 3. Nevertheless we have the following theorem:

Theorem 3.3.29 (Izumi’s Theorem). — [Iz85][Ree89] Let (A,mA) be a
local Noetherian ring. Let us assume that A is analytically irreducible, i.e. Â
is irreducible. Then there exist b ≥ 1, and d ≥ 0 such that

∀x, y ∈ A, ν(xy) ≤ b(ν(x) + ν(y)) + d.

This result implies easily the following corollary using Corollary 3.3.27:

Corollary 3.3.30. — [Iz95][Ron06a] Let us consider the polynomial

f(y) := y1y2 + a3y3 + · · ·+ amym,

with a3,..., am ∈ A where (A,mA) is a Noetherian local ring such that A
(a3,...,am)

is analytically irreducible. Then there exist b ≥ 1 and d ≥ 0 such that the Artin
function β of Theorem 3.3.16 satisfies β(c) ≤ bc+ d for all c ∈ N.

Proof. — By Proposition 3.3.27 we have to prove that the Artin function β of
y1y2 ∈ A[y] is bounded by an affine function if A is analytically irreducible.
Thus let y1, y2 ∈ A satisfy y1y2 ∈ m2bc+d

A where b and d satisfies Theorem
3.3.29. This means that

2bc+ d ≤ ν(y1y2) ≤ b(ν(y1) + ν(y2)) + d.
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Thus ν(y1) ≥ c or ν(y2) ≥ c. In the first case we denote ỹ1 = 0 and ỹ2 = y2

and in the second case we denote ỹ1 = y1 and ỹ2 = 0. Then ỹ1ỹ2 = 0 and
ỹ1 − y1, ỹ2 − y2 ∈ mc

A.

Hints on the proof of Theorem 3.3.29 in the complex analytic case
According to the theory of Rees valuations, there exists discrete valuations

ν1,..., νk such that ν(x) = min{ν1(x), ..., νk(x)} (they are called the Rees
valuation of ν). The valuation rings associated to ν1,..., νk are the valuation
rings associated to the irreducible components of the exceptional divisor of the
normalized blowup of mA.
Since νi(xy) = νi(x) + νi(y) for any i, in order to prove the theorem we have
to see that there exists a ≥ 1 such that νi(x) ≤ aνj(x) for any x ∈ A and any i
and j. If A is a complex analytic local ring, following S. Izumi’s proof, we may
reduce the problem to the case dim(A) = 2 by using a Bertini type theorem,
and then assume that A is normal by using an inequality on the reduced order
proved by D. Rees. Then let us consider a resolution of singularities of Spec(A)
(denoted by π) that factors through the normalized blow-up of mA. In this
case, let us denote by E1,..., Es the irreducible components of the exceptional
divisor of π. Let us denote ei,j := Ei.Ej for all 1 ≤ i, j ≤ s. Let x be an
element of A. This element defines a germ of analytic hypersurface whose
total transform Tx may be written Tx = Sx +

∑s
j=1mjEj where Sx is the

strict transform of {x = 0} and mi = νi(x), 1 ≤ i ≤ s. Then we have

0 = Tx.Ei = Sx.Ei +

s∑
j=1

mjei,j .

Since Sx.Ei ≥ 0 for any i, the vector (m1, ...,ms) is contained in the convex
cone C defined by xi ≥ 0, 1 ≤ i ≤ s, and

∑s
j=1 ei,jxj ≤ 0, 1 ≤ i ≤ s. To prove

the theorem, it is enough to prove that C is included in xi > 0, 1 ≤ i ≤ s.
Let assume that it is not the case. Then, after renumbering the Ei’s, we may
assume that (x1, ..., xl, 0, ..., 0) ∈ C where xi > 0, 1 ≤ i ≤ l < s. Since ei,j ≥ 0
for all i 6= j,

∑s
j=1 ei,jxj = 0 for l < i ≤ s implies that ei,j = 0 for all l < i ≤ s

and 1 ≤ j ≤ l. This contradicts the fact that the exceptional divisor of π is
connected (since A is an integral domain).

Let us mention that Izumi’s Theorem is the key ingredient to prove the
following result:

Corollary 3.3.31. — [Ron06b][Hic08][ItIz08] Let (A,mA) be a regular ex-
cellent Henselian domain. Let us denote by K and K̂ the fraction fields of A
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and Â respectively. Let z ∈ K̂\K be algebraic over K. Then

∃a ≥ 1, C ≥ 0,∀x ∈ A ∀y ∈ A∗
∣∣∣∣z − x

y

∣∣∣∣ ≥ C|y|a
where |u| := e−ν(u) and ν is the usual mA-adic valuation.

This result is equivalent to the following:

Corollary 3.3.32. — [Ron06b][Hic08][ItIz08] Let (A,mA) be an excellent
Henselian local ring and let f1(y1, y2),..., fr(y1, y2) ∈ A[y1, y2] be homogeneous
polynomials. Then the Artin function of f1,..., fr is bounded by an affine
function.

3.3.4.3. Reduction to one quadratic equation and examples. — In general Artin
functions are not bounded by affine functions as in Theorem 3.3.1. Here is such
an example:

Example 3.3.33. — [Ron05b] Set f(y1, y2, y3) := y2
1−y2

2y3 ∈ kJx1, x2K[y1, y2, y3]
where k is a field of characteristic zero. Let us denote by h(T ) :=

∑∞
i=1 aiT

i ∈
QJT K the power series such that (1 + h(T ))2 = 1 + T . Let us denote

y
(c)
1 := x2c+2

1

(
1 +

c+1∑
i=1

ai
xci2
x2i

1

)
= x2c+2

1 +

c+1∑
i=1

aix
2(c−i+1)
1 xci2 ,

y
(c)
2 := x2c+1

1 ,

y
(c)
3 := x2

1 + xc2.

Then in the ring k(x2x1 )Jx1K we have

f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) =

(y(c)
1

y
(c)
2

)2

− y(c)
3

 y
(c)
2

2
=

(y(c)
1

y
(c)
2

)2

− x2
1

(
1 +

xc2
x2

1

) y
(c)
2

2

=

(
y

(c)
1

y
(c)
2

− x1

(
1 + h

(
xc2
x2

1

)))(
y

(c)
1

y
(c)
2

+ x1

(
1 + h

(
xc2
x2

1

)))
y

(c)
2

2
.

Thus we see that f(y
(c)
1 , y

(c)
2 , y

(c)
3 ) ∈ (x)c

2+4c for all c ≥ 2. But if (ỹ1, ỹ2,
ỹ3) ∈ kJx1, x2K3 is a solution of f = 0 then

1) Either ỹ3 is a square in kJx1, x2K. But supz∈kJxK(ord(y
(c)
3 − z2)) = c.

2) Either ỹ3 is not a square, hence ỹ1 = ỹ2 = 0. But ord(y
(c)
1 ) − 1 =

ord(y
(c)
2 ) = 2c+ 1.
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In any case we have

sup(min{ord(y
(c)
1 − ỹ1), ord(y

(c)
2 − ỹ2), ord(y

(c)
3 − ỹ3)}) ≤ 2c+ 1.

This proves that the Artin function f is bounded from below by a polynomial
function of degree 2. Thus Theorem 3.3.1 does not extend to kJx1, ..., xnK if
n ≥ 2.

In [Ron06a] another example is given: the Artin function of the polynomial
y1y2 − y3y4 ∈ kJx1, x2, x3K[y1, y2, y3, y4] is bounded from below by a polyno-
mial function of degree 2. Both examples are the only known examples of Artin
functions which are not bounded by an affine function.

In general, in order to investigate bounds on the growth of Artin functions
in general, we can reduce the problem as follows, using a trick of [Ron10b].
From now on we assume that A is a complete local ring.

Lemma 3.3.34. — [Be77b] For any f(y) ∈ A[y]r or AJyKr the Artin func-
tion of f is bounded by the Artin function of

g(y) := f1(y)2 + y1(f2(y)2 + y1(f3(y)2 + · · · )2)2.

Proof. — Indeed, if β is the Artin function of g and if f(ŷ) ∈ m
β(c)
A then

g(ŷ) ∈ m
β(c)
A . Thus there exists ỹ ∈ Am such that g(ỹ) = 0 and ỹi − ŷi ∈ mc

A.
But clearly g(ỹ) = 0 if and only if f(ỹ) = 0. This proves the lemma.

This allows us to assume that r = 1 and we define f(y) := f1(y). If f(y) is
not irreducible, then we may write f = h1...hs, where hi ∈ AJyK is irreducible
for 1 ≤ i ≤ s, and the Artin function of f is bounded by the sum of the Artin
functions of the hi’s. Hence we may assume that f(y) is irreducible.
We have the following lemma:

Lemma 3.3.35. — [Ron09b][Ron10b] For any f(y) ∈ AJyK, where A is a
complete local ring, the Artin function of f(y) is bounded by the Artin function
of the polynomial

P (u, x, z) := f(y)u+ x1z1 + · · ·+ xmzm ∈ B[x, z, u]

where B := AJyK.

Proof. — Let us assume that f(y) ∈ m
β(c)
A where β is the Artin function of

P . By replacing f(y) by f(y0 + y), where y0 ∈ A is such that y0
i − yi ∈ mA,
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1 ≤ i ≤ m, we may assume that yi ∈ mA for 1 ≤ i ≤ m.
Then there exists zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

f(y) +
m∑
i=1

(yi − yi)zi(y) ∈ (mA + (y))β(c).

Thus there exists u(y), fi(y), zi(y) ∈ AJyK, 1 ≤ i ≤ m, such that

u(y)− 1, zi(y)− zi(y), xi(y)− (yi − yi) ∈ (mA + (y))c, 1 ≤ i ≤ n

and f(y)u(y) +

m∑
i=1

xi(y)zi(y) = 0.

In particular u(y) is invertible in AJyK if c > 0. Let us assume that c ≥ 2. In
this case the matrix of the partial derivatives of (xi(y), 1 ≤ i ≤ m) with respect
to y1, ..., ym has determinant equal to 1 modulo mA + (y). By the Henselian
property there exist yj,c ∈ mA such that xi(y1,c, ..., ym,c) = 0 for 1 ≤ i ≤ m.
Hence, since u(yi,c) is invertible, f(y1,c, ..., ym,c) = 0 and yi,c − yi ∈ mc

A, 1 ≤
i ≤ m.

Thus, by Corollary 3.3.27, in order to study the general growth of Artin
functions, it is enough to study the Artin function of the polynomial

y1y2 + y3y4 + · · ·+ y2m+1y2m ∈ A[y]

where A is a complete local ring.

3.4. Examples of Applications

In this part we give some examples of applications of Theorem 3.2.17 and
Corollary 3.3.16.

Proposition 3.4.1. — Let A be an excellent Henselian local ring. Then A is
reduced (resp. is an integral domain, resp. an integrally closed domain) if and
only if Â is reduced (resp. is an integral domain, resp. an integrally closed
domain).

Proof. — If Â is not reduced, then there exists ŷ ∈ Â, ŷ 6= 0, such that ŷk = 0
for some positive integer k. Thus we apply Theorem 3.2.17 to the polynomial
yk with c ≥ ord(ŷ) + 1 in order to find ỹ ∈ A such that ỹk = 0 and ỹ 6= 0.
In order to prove that Â is an integral domain if A is an integral domain, we
apply the same procedure to the polynomial y1y2.
If A is an integrally closed domain, then A is an integral domain. Let P (z) :=

zd + â1z
d−1 + · · · + âd ∈ Â[z], f̂ , ĝ ∈ Â, ĝ 6= 0, satisfy P

(
f̂
ĝ

)
= 0, i.e.

f̂d + â1f̂
d−1ĝ + · · · + âdĝ

d = 0. By Theorem 3.2.17, for any c ∈ N, there



3.4. EXAMPLES OF APPLICATIONS 55

exist ãi,c, f̃c, g̃c ∈ A such that f̃dc + ã1,cf̃
d−1
c g̃c + · · · + ãd,cg̃

d
c = 0 and f̃c − f̂ ,

g̃c − ĝ ∈ mc
A. Then for c > c0, for some integer c0, g̃c 6= 0. Since A is an

integrally closed domain, then f̃c ∈ (g̃c) for c > c0. Thus f̂ ∈ (ĝ) + mc for
c large enough. By Nakayama’s Lemma this implies that f̂ ∈ (ĝ) and Â is
integrally closed.

Proposition 3.4.2. — Let A be an excellent Henselian local ring. Let Q be
a primary ideal of A. Then QÂ is a primary ideal of Â.

Proof. — Let f̂ ∈ Â and ĝ ∈ Â\
√
QÂ satisfy f̂ ĝ ∈ QÂ. By Theorem 3.2.17,

for any c ∈ N, there exist f̃c, g̃c ∈ A such that f̃cg̃c ∈ Q and f̃c− f̂ , g̃c− ĝ ∈ mc
A.

For some c large enough, g̃c /∈
√
Q. Since A is a primary ideal, this proves that

f̃c ∈ Q for c large enough, hence f̂ ∈ QÂ.

Corollary 3.4.3. — Let A be an excellent Henselian local ring. Let I be an
ideal of A and let I = Q1

⋂
· · ·
⋂
Qs be a primary decomposition of I in A.

Then Q1Â
⋂
· · ·QsÂ is a primary decomposition of IÂ.

Proof. — Since I =
⋂s
i=1Qi, then IÂ =

⋂s
i=1(QiÂ) by faithfull flatness (or by

Theorem 3.2.17 for linear equations). We conclude with the help of Proposition
3.4.2.

Corollary 3.4.4. — [Iz92] Let A be an excellent Henselian local integrally
closed domain. If f̂ ∈ Â and if there exists ĝ ∈ Â such that f̂ ĝ ∈ A\{0}, then
there exists a unit û ∈ Â such that ûf̂ ∈ A.

Proof. — Let (f̂ ĝ)A = Q1
⋂
· · ·
⋂
Qs be a primary decomposition of the prin-

cipal ideal of A generated by f̂ ĝ. Since A is an integrally closed domain, it
is a Krull ring and Qi = p

(ni)
i for some prime ideal pi, 1 ≤ i ≤ s, where p(n)

denote the n-th symbolic power of p (see [Mat80] p.88). In fact ni := νpi(f̂ ĝ)
where νpi is the pi-adic valuation of the valuation ring Api . By Corollary
3.4.3, p(n1)

1 Â
⋂
· · ·
⋂
p

(ns)
s Â is a primary decomposition of (f̂ ĝ)Â. Since νpi are

valuations, then

f̂ Â = p
(k1)
1 Â

⋂
· · ·
⋂

p(ks)
s Â =

(
p

(k1)
1

⋂
· · ·
⋂

p(ks)
s

)
Â

for some non negative integers k1,..., ks. Let h1,..., hr ∈ A be generators

of p(k1)
1

⋂
· · ·
⋂
p

(ks)
s . Then f̂ =

r∑
i=1

âihi and hi = b̂if̂ for some âi, b̂i ∈ A,
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1 ≤ i ≤ r. Thus
r∑
i=1

âib̂i = 1, since Â is an integral domain. Thus one of the

b̂i’s is invertible and we choose û to be this invertible b̂i.

Corollary 3.4.5. — [To72] Let A be an excellent Henselian local ring. For
f(y) ∈ A[y]r let I be the ideal of A[y] generated by f1(y),..., fr(y). Let us
assume that ht(I) = m. Let ŷ ∈ Âm satisfy f(ŷ) = 0. Then ŷ ∈ Am.

Proof. — Set p := (y1−ŷ1, ..., ym−ŷm). It is a prime ideal of Â and ht(p) = m.
Of course IÂ ⊂ p and ht(IÂ) = m by Corollary 3.4.3. Thus p is of the form
p′Â where p′ is minimal prime of I. Then ŷ ∈ Âm is the only common zero
of all the elements of p′. By Theorem 3.2.17, ŷ can be approximated by a
common zero of all the elements of p′ which is in Am. Thus ŷ ∈ Am.

Proposition 3.4.6. — [KPPRM78][Po86] Let A be an excellent Henselian
local ring. Then A is a unique factorization domain if and only if Â is a unique
factorization domain.

Proof. — If Â is a unique factorization domain, then any irreducible element
of Â is prime. Thus any irreducible element of A is prime. Since A is a Noethe-
rian integral domain, it is a unique factorization domain.
Let us assume that Â is a Noetherian integral domain but not a unique fac-
torization domain. Thus there exists an irreducible element x̂1 ∈ Â that is not
prime. This equivalent to

∃x̂2, x̂3, x̂4 ∈ Â such that x̂1x̂2 − x̂3x̂4 = 0

6 ∃ẑ1, ẑ2 ∈ Â such that x̂1ẑ1 − x̂3 = 0 and x̂2ẑ2 − x̂4 = 0

and 6 ∃ŷ1, ŷ2 ∈ mAÂ such that ŷ1ŷ2 − x̂1 = 0.

Let us denote by β the Artin function of

f(y, z) := (x̂1z1 − x̂3, x̂2z2 − x̂4, y1y2 − x̂1) ∈ ÂJyK[z].

Since f(y, z) has no solution in (mAÂ)2×Â2, by Remark 3.3.18 β is a constant,
and f(y, z) has no solution in (mAÂ)2 × Â2 modulo mβ

A.
On the other hand by Theorem 3.2.17 applied to x1x2 − x3x4, there exists
x̃i ∈ A, 1 ≤ i ≤ 4, such that x̃1x̃2 − x̃3x̃4 = 0 and x̃i − x̂i ∈ mβ+1

A , 1 ≤ i ≤ 4.
Hence

g(y, z) := (x̃1z1 − x̃3, x̃2z2 − x̃4, y1y2 − x̃1) ∈ ÂJyK[z]

has no solution in (mAÂ)2×Â2 modulo mβ
A, hence has no solution in (mAA)2×

A2. This means that x̃1 is an irreducible element of A but it is not prime. Hence
A is not a unique factorization domain.



3.5. APPROXIMATION WITH CONSTRAINTS 57

3.5. Approximation with constraints

We will now discuss the problem of the Artin Approximation with con-
straints that is the following:

Problem 1 (Artin Approximation with constraints):
Let A be an excellent Henselian local subring of kJx1, ..., xnK and f(y) ∈ A[y]r.
Let us assume that we have a formal solution ŷ ∈ Âm of f = 0 and assume
moreover that

ŷi(x) ∈ Â
⋂

kJxj , j ∈ JiK

for some subset Ji ⊂ {1, ..., n}, 1 ≤ i ≤ m.
Is it possible to approximate ŷ(x) by a solution ỹ(x) ∈ Am of f = 0 such that
ỹi(x) ∈ A

⋂
kJxj , j ∈ JiK, 1 ≤ i ≤ m?

Another problem is the following:

Problem 2 (Strong Artin Approximation with constraints):
Let us consider f(y) ∈ kJxK[y]r and Ji ⊂ {1, ..., n}, 1 ≤ i ≤ m. Does there
exist a function β : N −→ N such that:
for all c ∈ N and all yi(x) ∈ kJxj , j ∈ JiK, 1 ≤ i ≤ m, such that

f(y(x)) ∈ (x)β(c),

there exist ỹi(x) ∈ kJxj , j ∈ JiK such that f(ỹ(x)) = 0 and ỹi(x)−yi(x) ∈ (x)c,
1 ≤ i ≤ m?

If such function β exists, the smallest function satisfying this property is called
the Artin function of the system f = 0.

Let us remark that we have already given a positive answer to a similar weaker
problem (see Proposition 3.3.24). The answer will be no in general for both
problems and yes for some particular cases. We present here the positive and
negative results concerning these problems. We will see that some systems
yield a positive answer to Problem 2 but a negative answer to Problem 1.

3.5.1. Examples. — First of all we give here a list of examples that show
that there is no hope, in general, to have a positive answer to Problem 1
without any more specific hypothesis, even if A is the ring of algebraic or
convergent power series. These examples are constructed by looking at the
Artin Approximation Problem for equations involving differentials (Examples
3.5.3 and 3.5.6) and operators on germs of functions (Examples 3.5.4 and 3.5.5).
To construct these examples, the following lemma will be used repeatedly:
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Lemma 3.5.1. — [Be77a] Let (A,mA) be a Noetherian local ring and let B
be a Noetherian local subring of AJyK such that B̂ = ÂJyK. For any P (y) ∈ B
and ŷ ∈ (mA.A)m, P (ŷ) = 0 if and only if there exists ĥ(y) ∈ Bm such that

P (y) +
m∑
i=1

(yi − ŷi)ĥ(y) = 0.

Proof of Lemma 3.5.1. — If P (ŷ) = 0 then, by Taylor expansion, we have:

P (y)− P (ŷ) =
∑

α∈Nm\{0}

1

α1!...αm!
(y1 − ŷ1)α1 ....(ym − ŷm)αm

∂αP (ŷ)

∂yα
.

Thus there exists ĥ(y) ∈ AJyKm such that

P (y) +
m∑
i=1

(yi − ŷi)ĥ(y) = 0.

Since B −→ B̂ = ÂJxK is faithfully flat and we may assume that ĥ(y) ∈ B
(See Example 3.1.4).
On the other hand if P (y) +

∑m
i=1(yi − ŷi)ĥ(y) = 0, by substitution of yi by

ŷi, we get P (ŷ) = 0.

Example 3.5.2. — Let us consider P (x, y, z) ∈ kJx, y, zK where x, y and
z are single variables and ŷ ∈ (x).kJxK. Then P (x, ŷ, ∂ŷ∂x) = 0 if and only if
P (x, ŷ, ẑ) = 0 and ẑ − ∂ŷ

∂x = 0.

Moreover ẑ − ∂ŷ
∂x = 0 if and only if ẑ −

(
ŷ(x+t)−ŷ(x)

t

)
∈ (t)kJx, tK. By Lemma

3.5.1 this is equivalent to: there exist ĥ(x, t, u), k̂(x, t, u) ∈ kJx, t, uK such that

tẑ(x)− ŷ(u)− ŷ(x) + t2ĥ(x, t) + (u− x− t)k̂(x, t, u) = 0.

Finally we see that

P

(
x, ŷ(x),

∂ŷ

∂x
(x)

)
= 0⇐⇒

∃ẑ(x) ∈ kJxK, ĥ(x, t, u), k̂(x, t, u), l̂(x, t, u) ∈ kJx, t, uK, ĝ(u) ∈ kJuK s.t.
P (x, ŷ(x), ẑ(x)) = 0

tẑ(x)− ĝ(u)− ŷ(x) + t2ĥ(x, t, u) + (u− x− t)k̂(x, t, u) = 0

ĝ(u)− ŷ(x) + (u− y)l̂(x, t, u) = 0

Lemma 3.5.1 and Example 3.5.2 allow us to transform any system of equa-
tions involving partial differentials and compositions of power series into a
system of algebraic equations whose solutions depend only on some of the xi’s.
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Of course there exists plenty of examples of such systems of equations with al-
gebraic or analytic coefficients that do not have algebraic or analytic solutions.
These kinds of examples will provide counterexamples to Problem 1 as follows:

Example 3.5.3. — Let us consider the following differential equation: y′ =
y. The solutions of this equation are the convergent power series cex ∈ C{x}
where c is a complex number.
On the other hand, by Example 3.5.2, ŷ(x) is convergent power series solution
of this equation if and only if there exists ŷ1(x1) ∈ C{x1}, ŷ2(x2) ∈ C{x2}
and ĥ(x1, x2, x3), k̂(x1, x2, x3), l̂(x1, x2, x3) ∈ C{x1, x2, x3} such that (with
ŷ1 := ŷ):{

ŷ2(x2)− ŷ1(x1) = x3ŷ1(x1) + x2
3ĥ(x1, x2, x3) + (x2 − x1 − x3)k̂(x1, x2, x3)

ŷ2(x2)− ŷ1(x1) = (x1 − x2)l̂(x1, x2, x3)

Thus the former system of equations has a convergent solution

(ŷ1, ŷ2, ĥ, k̂, l̂) ∈ C{x1} × C{x2} × C{x1, x2, x3}3,

but no algebraic solution in C〈x1〉 × C〈x2〉 × C〈x1, x2, x3〉3.

Example 3.5.4 (Kashiwara-Gabber’s Example). — ([Hir77] p. 75) Let
us perform the division of xy by

g := (x− y2)(y − x2) = xy − x3 − y3 + x2y2

as formal power series in C{x, y} with respect to the monomial xy (see Example
3.1.10 in the introduction). The remainder of this division can be written
r(x) + s(y) where r(x) ∈ (x)C{x} and s(y) ∈ (y)C{y} since this remainder
has no monomial divisible by xy. By symmetry, we get r(x) = s(x), and by
substituting y by x2 we get the following equation:

r(x2) + r(x)− x3 = 0.

This relation yields the expansion

r(x) =
∞∑
i=0

(−1)ix3.2i

and shows that the remainder of the division is not algebraic. This proves that
the equation

xy − gQ(x, y)−R(x)− S(y) = 0

has a convergent solution (q̂(x, y), r̂(x), ŝ(y)) ∈ C{x, y}×C{x}×C{y} but has
no algebraic solution (q(x, y), r(x), s(y)) ∈ C〈x, y〉 × C〈x〉 × C〈y〉.
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Example 3.5.5 (Becker’s Example). — ([Be77b]) By direct computation
we show that there exists a unique power series f(x) ∈ CJxK such that f(x+
x2) = 2f(x)− x and that this power series is not convergent. But, by Lemma
3.5.1, we have:

f(x+ x2)− 2f(x) + x = 0

⇐⇒ ∃g(y) ∈ CJyK, h(x, y), k(x, y) ∈ CJx, yK s.t.{
F1 := g(y)− 2f(x) + x+ (y − x− x2)h(x, y) = 0

F2 := g(y)− f(x) + (x− y)k(x, y) = 0

Then this system of equations has solutions in CJxK× CJyK× CJx, yK2 but no
solution in C〈x〉×C〈y〉×C〈x, y〉2, even no solution in C{x}×C{y}×C{x, y}2.

Example 3.5.6. — Set ŷ(x) :=
∑
i≥0

i!xi+1 ∈ CJxK. This power series is

divergent and we have shown in Example 3.1.15 that it is the only solution of
the equation

x2y′ − y + x = 0 (Euler Equation).
By Example 3.5.2, ŷ(x) is a solution of this differential equation if and only
if there exist ŷ2(x2) ∈ CJx2K and k̂(x1, x2, x3), ĥ(x1, x2, x3), l̂(x1, x2, x3) ∈
CJx1, x2, x3K such that (x := (x1, x2, x3)):{
x2

1(ŷ2(x2)− ŷ1(x1))− x3ŷ1(x1) + x3x1 + x3k̂(x) + (x1 + x3 − x2)ĥ(x) = 0

ŷ2(x2)− ŷ1(x1)− (x2 − x1)l̂(x) = 0

with ŷ1(x1) := ŷ(x1). Thus this system has no solution in C{x1} × C{x2} ×
C{x1, x2, x3}3 but it has solutions in CJx1K× CJx2K× CJx1, x2, x3K3.

Remark 3.5.7. — By replacing f1(y),..., fr(y) by g(y) := f1(y)2+y1(f2(y)2+
y1(f3(y)2 + · · · )2)2 in these examples as in the proof of Lemma 3.3.34, we can
construct the same kind of examples involving only one equation. Indeed
f1 = f2 = · · · = fr = 0 if and only if g = 0.

3.5.2. Nested Approximation in the algebraic case. — All the exam-
ples of Section 3.5.1 involve components that depends on separate variables.
Indeed, Example 3.5.2 shows that equations involving partial derivatives yield
algebraic equations whose solutions have components with separate variables.
In the case the variables are nested (i.e. yi = yi(x1, ..., xs(i)) for some integer i,
which is equivalent to say that Ji contains or is contained in Jj for any i and
j with notations of Problems 1 and 2) it is not possible to construct a coun-
terexample as we did in Section 3.5.1 from differential equations or equations
as in Example 3.5.5. We will see, in the nested case, that the algebraic case is
completely different from the analytic case. First of all in the algebraic case,
we have a nested Artin approximation result as follows:
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Theorem 3.5.8. — [KPPRM78][Po86] Let (A,mA) be an excellent Henselian
local ring and f(x, y) ∈ A〈x, y〉r. Let ŷ(x) be a solution of f = 0 in (mA +

(x))ÂJxKm. Let us assume that ŷi ∈ ÂJx1, ..., xsiK, 1 ≤ i ≤ m, for integers si,
1 ≤ si ≤ n.
Then for any c ∈ N there exists a solution ỹ(x) ∈ A〈x〉m such that ỹi(x) ∈
A〈x1, ..., xsi〉 and ỹ(x)− ŷ(x) ∈ (mA + (x))c.

This result has a lot of applications and his one of the most important about
Artin Approximation. The proof we present here uses the formalism of codes
for algebraic power series and is a bit different from the classical one. The key
point is the fact that A〈x〉 satisfies Theorem 3.2.17 for any excellent Henselian
local ring A (see Remark 3.2.22).

Proof of Theorem 3.5.8. — Lemma 3.5.9. — Let A be a complete normal
local domain, u := (u1, ..., un), v := (v1, ..., vm). Then

AJuK〈v〉 = {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, ..., zs〉,
ẑi ∈ (mA + (u))AJuK, f = g(v, ẑ1, ..., ẑs)}.

Proof of Lemma 3.5.9. — Let us denote
B := {f ∈ AJu, vK / ∃s ∈ N, g ∈ A〈v, z1, ..., zs〉,

ẑi ∈(mA + (u))AJuK, f = g(v, ẑ1, ..., ẑs)}.

Clearly B is a subring of AJuK〈v〉.
If f ∈ AJuK〈v〉 we can write f = f0 + f1 where f0 ∈ A and f1 ∈ (mA +

(v))A〈v〉. There exist F1,..., Fr ∈ AJuK[v][X1, ..., Xr] such that ∂(F1,...,Fr)
∂(X1,...,Xr)

is
non-zero modulo mA + (u, v,X) and such that the unique (f1, ..., fr) ∈ (mA +
(u, v))AJuK〈v〉r with F (f1, ..., fr) = 0 (by the Implicit Function Theorem) is
such that f1 = f1 (cf. Proposition 3.5.10). Let us write

Fi :=
∑
α,β

Fi,α,βv
αXβ, 1 ≤ i ≤ r

with Fi,α,β ∈ AJuK for all i, α, β. We can write Fi,α,β = F 0
i,α,β + ẑi,α,β where

F 0
i,α,β ∈ A and ẑi,α,β ∈ (mA + (u))AJuK. Let us denote

Gi :=
∑
α,β

(
F 0
i,α,β + zi,α,β

)
vαXβ, 1 ≤ i ≤ r

where zi,α,β are new variables. Let us denote by z the vector whose coordinates
are the variables zi,α,β . Then

∂(G1,...,Gr)
∂(X1,...,Xr)

= ∂(F1,...,Fr)
∂(X1,...,Xr)

modulo mA+(u, v, z,X).
Hence, by the Implicit Function Theorem, there exists h := (h1, ..., hr) ∈
(mA + (v, z))A〈v, z〉r such that G(h) = 0. Moreover f1 = f1 = h1(v, ẑ), thus
we have f = g(v, ẑ) where g(v, z) := f0 +h1(v, z). This proves the lemma.
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Then we can prove Theorem 3.5.8 by induction on n. First of all, since A = B
I

where B is a complete regular local ring (by Cohen’s Structure Theorem), by
using the same trick as in the proof of Corollary 3.2.7 we may replace A by
B and assume that A is a complete regular local ring. Let us assume that
Theorem 3.5.8 is true for n − 1. We denote x′ := (x1, ..., xn−1). We will
denote by y1,..., yk the unknowns depending only on x′ and by yk+1,..., ym the
unknowns depending on xn. Let us consider the following system of equations

(2) f(x′, xn, y1(x′), ..., yk(x
′), yk+1(x′, xn), ym(x′, xn)) = 0.

By Theorem 3.2.17 and Remark 3.2.22 we may assume that ŷk+1,..., ŷm ∈
kJx′K〈x〉. Thus by Lemma 3.5.9 we can write ŷi =

∑
j∈N hi,j(ẑ)x

j
n with∑

j∈N hi,j(z)x
j
n ∈ k〈z, xn〉 and ẑ = (ẑ1, ..., ẑs) ∈ (x′)kJx′Ks. We can write

f

x′, xn, y1, ..., yk,
∑
j

hk+1,j(z)x
j
n, ..., ,

∑
j

hm,j(z)x
j
n

 =
∑
j

Gj(x
′, y1, ..., yk, z)x

j
n

where Gj(x′, y1, ..., yk, z) ∈ k〈x′, y1, ..., yk, z〉 for all j ∈ N. Thus ŷ1,...,ŷk,
ẑ1,..., ẑs ∈ kJx′K is a solution of the equations Gj = 0 for all j ∈ N. Since
k〈t, y1, ..., yk, z〉 is Noetherian, this system of equations is equivalent to a finite
system Gj = 0 with j ∈ E where E is a finite subset of N. Thus by the
induction hypothesis applied to the system Gj(x

′, y1, ..., yk, z) = 0, j ∈ E,
there exist ỹ1,..., ỹk, z̃1,..., z̃s ∈ k〈x′〉, with nested conditions, such that ỹi− ŷi,
z̃l − ẑl ∈ (x′)c, for 1 ≤ i ≤ k and 1 ≤ l ≤ s, and Gj(x′, ỹ1, ..., ỹk, z̃) = 0 for all
j ∈ E, thus Gj(x′, ỹ1, ..., ỹk, z̃) = 0 for all j ∈ N.
Set ỹi =

∑
j∈N hi,j(z̃)x

j
n for k < j ≤ m. Then ỹ1,..., ỹm satisfy the conclusion

of the theorem.

Proposition 3.5.10. — [ArMa65][AMR92] Let A be a complete local nor-
mal domain and v := (v1, ..., vn). If f ∈ (mA + (v))A〈v〉 then there exists an
integer r ∈ N and F1,..., Fr ∈ A[v][X1, ..., Xr] such that ∂(F1,...,Fr)

∂(X1,...,Xr)
is non-zero

modulo mA + (v,X) and such that the unique (f1, ..., fr) ∈ (mA + (v))A〈v〉r
with F (f1, ..., fr) = 0 (according to the Implicit Function Theorem) is such that
f = f1.

Proof. — Let P (v,X1) ∈ A[v][X1] be an irreducible polynomial such that
P (v, f) = 0. Set R := A[v,X1]

(P (v,X1)) and let R be its normalization. Let ϕ : R −→
A〈v〉 be the A[v]-morphism defined by ϕ(X1) = f . Since A〈v〉 is an integrally
closed domain, by the universal property of the normalization, the morphism
ϕ factors through R −→ R. Let ϕ : R −→ A〈v〉 be the extension of ϕ to R.
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Since R is finitely generated over a local complete domain A, then R is module-
finite over R. Hence R = A[v,X1,X2,...,Xr]

(F1,...,Fs)
. Set fi := ϕ(Xi), for 2 ≤ i ≤ r. By

replacing Xi by Xi+ai for some ai ∈ A we may assume that fi ∈ mA+(v). Let
us denote B := RmA+(v,X1,...,Xr). Thus ϕ induces a surjective A[v]-morphism
B −→ A[v] and by the universal property of the Henselization it induces a
surjective A[v]-morphism Bh −→ A〈v〉 where Bh denotes the Henselization
of B. Moreover A[v]mA+(v) −→ B induces a morphism between A〈v〉 and
Bh which is finite since A[v] −→ R is finite. Since B is an integrally closed
local domain then its completion is a local domain [Za48], hence Bh is a local
domain. If b ∈ Bh is in the kernel of Bh −→ A〈v〉, since b is finite over
A〈v〉, then b would satisfy bk = 0 for some positive integer k. But Bh being a
domain, then b has to be zero. Thus Bh −→ A〈v〉 is injective hence Bh and
A〈v〉 are isomorphic. Moreover we have Bh ' B ⊗A[v]mA+(v)

A〈v〉. Using the
definition of an étale morphism, since A[v]mA+(v) −→ A〈v〉 is faithfully flat,
it is an exercice to check that A[v]mA+(v) −→ B is étale. Thus s = r and
∂(F1,...,Fr)
∂(X1,...,Xr)

is non-zero modulo mA + (v,X) and the unique solution of F = 0

in (mA + (v))A〈v〉r is (f, f2, ..., fr).

Using ultraproducts methods we can deduce the following Strong Approxi-
mation result:

Corollary 3.5.11. — [BDLvdD79] Let k be a field and f(x, y) ∈ k〈x, y〉r.
There exists β : N −→ N satisfying the following:
Let c ∈ N and y(x) ∈ ((x)kJxK)m satisfy f(x, y(x)) ∈ (x)β(c). Let us assume
that yi(x) ∈ kJx1, ..., xsiK, 1 ≤ i ≤ m, for integers si, 1 ≤ si ≤ n.
Then there exists a solution ỹ(x) ∈ ((x)k〈x〉)m such that ỹi(x) ∈ k〈x1, ..., xsi〉
and ỹ(x)− y(x) ∈ (x)c.

3.5.3. Nested Approximation in the analytic case. — In the analytic
case, Theorem 3.5.8 is no more valid, as shown in the following example:

Example 3.5.12 (Gabrielov’s Example). — [Gab71] Let ϕ : C{x1, x2, x3} −→
C{y1, y2} be the morphism of analytic C-algebras defined by ϕ(x1) = y1,
ϕ(x2) = y1y2, ϕ(x3) = y1e

y2 .
Let f ∈ Ker(ϕ̂) be written as f =

∑+∞
d=0 fd where fd is a homogeneous

polynomial of degree d for all d ∈ N. Then 0 = ϕ̂(f) =
∑

d y
d
1fd(1, y2, y2e

y2).
Thus fd = 0 for all d ∈ N since 1, y2 et y2e

y2 are algebraically independent
over C. Hence Ker(ϕ̂) = (0) and Ker(ϕ) = (0). This example is due to W. S.
Osgood [Os16].

• We may remark that "ϕ
(
x3 − x2e

x2
x1

)
= 0". But x3 − x2e

x2
x1 is not an
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element of C{x1, x2, x3}.
Let us denote

fn :=

(
x3 − x2

n∑
i=0

1

i!

xi2
xi1

)
xn1 ∈ C[x1, x2, x3], ∀n ∈ N.

Then

ϕ(fn) = yn+1
1 y2

+∞∑
i=n+1

yi2
i!
, ∀n ∈ N.

Then we see that (n+ 1)!ϕ(fn) is a convergent power series whose coefficients
have module less than 1. Moreover if the coefficient of yk1yl2 in the Taylor
expansion of ϕ(fn) is non zero then k = n + 1. Thus h :=

∑
n(n + 1)!ϕ(fn)

is a convergent power series since each of its coefficients has module less than
1. But ϕ̂ being injective, the unique element whose image is h is necessarily
ĝ :=

∑
n(n+ 1)!fn. But

ĝ =
∑
n

(n+ 1)!fn =

(∑
n

(n+ 1)!xn1

)
x3 + f̂(x1, x2)

and
∑

n(n+ 1)!xn1 is a divergent power series and ϕ̂(ĝ(x)) = h(y) ∈ C{y}.
Hence ϕ(C{x}) ( ϕ̂(CJxK)

⋂
C{y}.

• By Lemma 3.5.1 ϕ̂(ĝ(x)) = h(y) is equivalent to say that there exist k̂1(x, y),
k̂2(x, y), k̂3(x, y) ∈ CJx, yK such that

(3) ĝ(x)+(x1−y1)k̂1(x, y)+(x2−y1y2)k̂2(x, y)+(x3−y1e
y2)k̂3(x, y)−h(y) = 0.

Since ĝ(x) is the unique element whose image under ϕ̂ equals h(y), Equation (3)
has no convergent solution g(x) ∈ C{x}, k1(x, y), k2(x, y), k3(x, y) ∈ C{x, y}.
Thus Theorem 3.5.8 is not true in the analytic setting.
Let us denote ĝ1(x1, x2) :=

∑
n(n + 1)!xn1 and ĝ2(x1, x2) := f̂(x1, x2). By

replacing y1 by x1, y2 by y and x3 by x1e
y in Equation (3) we see that the

equation

(4) ĝ1(x1, x2)x1e
y + ĝ2(x1, x2) + (x2 − x1y)k̂(x, y)− h(x1, y) = 0.

has a nested formal solution but no nested convergent solution.

Nevertheless there are, at least, three positive results about the nested ap-
proximation problem in the analytic category. They are the followings.
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3.5.3.1. Grauert’s Theorem. — The first one is due to H. Grauert who proved
it in order to construct analytic deformations of a complex analytic germ in
the case it has an isolated singularity. The approximation result of H. Grauert
may be reformulated as: "if a system of complex analytic equations, considered
as a formal nested system, admits an Artin function (as in Problem 2) which is
the Identity function, then it has nested analytic solutions". We present here
the result.
Set x := (x1, ..., xn), t := (t1, ..., tl), y = (y1, ..., ym) and z := (z1, ..., zp). Let
f := (f1, ..., fr) be in C{t, x, y, z}r. Let I be an ideal of C{t}.

Theorem 3.5.13. — [Gra72] Let d0 ∈ N and (y(t), z(t, x)) ∈ C[t]m×C{x}[t]p
satisfy

f(t, x, y(t), z(t, x)) ∈ I + (t)d0 .

Let us assume that for any d ≥ d0 and for any (y(d)(t), z(d)(t, x)) ∈ k[t]m ×
k{x}[t]p such that, y(t)− y(d)(t) ∈ (t)d0 et z(t, x)− z(d)(t, x) ∈ (t)d0, and such
that

f
(
t, x, y(d)(t), z(d)(t, x)

)
∈ I + (t)d,

there exists (ε(t), η(t, x)) ∈ k[t]m × k{x}[t]p homogeneous in t of degree d such
that

f(t, x, y(d)(t) + ε(t), z(d)(t, x) + η(t, x)) ∈ I + (t)d+1.

Then there exists (ỹ(t), z̃(t, x))C{t}m × C{t, x}p such that

f(t, x, ỹ(t), z̃(t, x)) ∈ I and ỹ(t)− y(t), z̃(t, x)− z(t, x) ∈ (t)d0 .

The main ingredient of the proof is a result of Functional Analysis called
"voisinages privilégiés" and proven by H. Cartan ([Ca44] Théorème α). We
do not give details here, but the reader may consult [JoPf00]. B. Malgrange
generalized this result to partial differential equations in [Mal72].

3.5.3.2. Gabrielov’s Theorem. — The second positive result about the nested
approximation problem in the analytic category is due to A. Gabrielov. Before
giving his result, let us explain the context.
Let ϕ : A −→ B be a morphism of analytic algebras where A := C{x1,...,xn}

I

and B := C{y1,...,ym}
J are analytic algebras. Let us denote ϕi := ϕ(xi) for

1 ≤ i ≤ n. Let us denote by ϕ̂ : Â −→ B̂ the morphism induced by ϕ.
A. Grothendieck [Gro60] and S. S. Abhyankar [Ar71] raised the following
question: Does Ker(ϕ̂) = Ker(ϕ).Â?
Without loss of generality, we may assume that A = C{x1, ..., xn} and B =
C{y1, ..., ym}.
In this case, an element of Ker(ϕ) (resp. of Ker(ϕ̂)) is called an analytic
(resp. formal) relation between ϕ1(y),..., ϕm(y). Hence the previous question
is equivalent to the following: is any formal relation Ŝ between ϕ1(y),..., ϕn(y)
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a linear combination of analytic relations?
This question is also equivalent to the following: may any formal relation
between ϕ1(y),..., ϕn(y) be approximated by analytic relations for the (x)-
adic topology? In this form the problem is the "dual" problem to the Artin
Approximation Problem.
In fact this problem is also a nested approximation problem. Indeed let Ŝ be a
formal relation between ϕ1(y),..., ϕn(y). This means that Ŝ(ϕ1(y), ..., ϕn(y)) =

0. By Lemma 3.5.1 this is equivalent to the existence of ĥ1(x, y),..., ĥn(x, y) ∈
CJx, yK such that

Ŝ(x1, ..., xn)−
n∑
i=1

(xi − ϕi(y))ĥi(x, y) = 0.

If this equation has an analytic nested solution S(x) ∈ C{x}, h1(x, y),...,
hn(x, y) ∈ C{x, y}, it gives an analytic relation between ϕ1(y),..., ϕn(y).
Example 3.5.12 yields a negative answer to this problem as follows:

Example 3.5.14. — [Gab71] Let us consider now the morphism

ψ : C{x1, x2, x3, x4} −→ C{y1, y2}
defined by

ψ(x1) = y1, ψ(x2) = y1y2, ψ(x3) = y1y2e
y2 , ψ(x4) = h(y1, y2).

Then x4 − ĝ(x1, x2, x3) ∈ Ker(ψ̂). On the other hand the morphism in-
duced by ψ̂ on CJx1, ..., x4K/(x4 − ĝ(x1, x2, x3)) is isomorphic to ϕ̂ (where ϕ
is the morphism of Example 3.5.12) that is injective. Thus we have Ker(ψ̂) =
(x4 − ĝ(x1, x2, x3)).
Since Ker(ψ) is a prime ideal of C{x}, Ker(ψ)CJxK is a prime ideal of CJxK
included in Ker(ψ̂) by Proposition 3.4.1. Let us assume that Ker(ψ) 6= (0),
then Ker(ψ)CJxK = Ker(ψ̂) since ht(Ker(ψ̂)) = 1. Thus Ker(ψ̂) is gener-
ated by one convergent power series denoted by f ∈ C{x1, ..., x4} (in unique
factorization domains, prime ideals of height one are principal ideals). Since
Ker(ψ̂) = (x4 − ĝ(x1, x2, x3)), there exists u(x) ∈ CJxK, u(0) 6= 0, such that
f = u(x).(x4 − ĝ(x1, x2, x3)). By applying Weierstrass Preparation Theo-
rem to f with respect to x4 we see that u(x) and x4 − ĝ(x1, x2, x3) must
be convergent, which is impossible since ĝ is a divergent power series. Hence
Ker(ψ) = (0) but Ker(ψ̂) 6= (0).

Nevertheless A. Gabrielov proved the following theorem:

Theorem 3.5.15. — [Gab73] Let ϕ : A −→ B be a morphism of complex
analytic algebras. Let us assume that the generic rank of the Jacobian matrix
is equal to dim( A

Ker(ϕ̂)). Then Ker(ϕ̂) = Ker(ϕ).Â.
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Sketch of the proof. — We give a sketch of the proof given by J.-Cl. Tougeron
[To90]. As before we may assume thatA = C{x1, ..., xn} andB = C{y1, ..., ym}.
Let us assume that Ker(ϕ).Â ( Ker(ϕ̂). Using a Bertini type theorem we may
assume that n = 3, ϕ is injective and dim( CJxK

Ker(ϕ̂)) = 2 (in particular Ker(ϕ̂) is
a principal ideal). Moreover, in this case we may assume that m = 2. After
a linear change of coordinates we may assume that Ker(ϕ̂) is generated by an
irreducible Weierstrass polynomial of degree d in x3. Using change of coordi-
nates and quadratic transforms on C{y1, y2} and using changes of coordinates
of C{x} involving only x1 and x2, we may assume that ϕ1 = y1 and ϕ2 = y1y2.
Let us denote f(y) := ϕ3(y). Then we have

f(y)d + â1(y1, y1y2)f(y)d−1 + · · ·+ âd(y1, y1y2) = 0

for some âi(x) ∈ CJx1, x2K, 1 ≤ i ≤ d. Then we want to prove that the âi’s
may be chosen convergent in order to get a contradiction. Let us denote

P (Z) := Zd + â1(x1, x2)Zd−1 + · · ·+ âd(x1, x2) ∈ CJxK[Z].

Since Ker(ϕ̂) is prime we may assume that P (Z) is irreducible. J.-Cl. Tougeron
studies the algebraic closure K of the field C((x1, x2)). Let consider the fol-
lowing valuation ring

V :=

{
f

g
/ f, g ∈ CJx1, x2K, g 6= 0, ord(f) ≥ ord(g)

}
,

let V̂ be its completion and K̂ the fraction field of V̂ . J.-Cl. Tougeron proves
that the algebraic extension K −→ K splits into K −→ K1 −→ K where K1 is
a subsfield of the following field

L :=
{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i,

ord
( ai

δm(i)

)
= i, ∃a, b such that m(i) ≤ai+ b ∀i and A =

∞∑
i=0

ai

δm(i)

}
.

Moreover the algebraic extension K1 −→ K is the extension of K1 generated
by all the roots of polynomials of the form Zq + g1(x)Zq−1 + · · · + gq where
gi ∈ C(x) are homogeneous rational fractions of degree ei, 1 ≤ i ≤ q, e ∈ Q.
A root of such polynomial is called a homogeneous element of degree e. For
example, square roots of x1 or of x1 + x2 are homogeneous elements of degree
2. We have K

⋂
L = K1.

In the same way he proves that the algebraic closure Kan of Kan, the fraction
field of C{x1, x2} can be factorized as Kan −→ Kan

1 −→ Kan with Kan
1 ⊂ Lan
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where

Lan :=

{
A ∈ K̂ / ∃δ, ai ∈ k[x] is homogeneous ∀i, ord

( ai

δm(i)

)
= i, A =

∞∑
i=0

ai

δm(i)

∃a, b such that m(i) ≤ ai+ b ∀i and ∃r > 0 such that
∑
i

||ai||ri <∞

}
and ||a(x)|| := max

|zi|≤1
|a(z1, z2)| for a homogeneous polynomial a(x).

Clearly, ξ := f(x1,
x2
x1

) is an element of K since it is a root of P (Z). More-
over ξ may be written ξ =

∑q
i=1 ξiγ

i where γ is a homogenous element and
ξi ∈ Lan

⋂
K for any i, i.e. ξ ∈ Lan[γ]. Thus the problem is to show that

ξi ∈ Kan
1 for any i, i.e. Lan

⋂
K = Kan

1 .
Then the idea is to resolve, by a sequence of blowing-ups, the singularities of
the discriminant locus of P (Z) which is a germ of plane curve. Let us call
π this resolution map. Then the discriminant of π(P )(Z) is normal crossing
and π(P )(Z) defines a germ of hypersurface along the exceptional divisor of
π, denoted by E. Let p be a point of E. At this point π(P )(Z) may factor
as a product of polynomials and ξ is a root of one of these factors denoted by
Q1(Z) and this root is a germ of an analytic function at p. Then the other
roots of Q1(Z) are also in Lan[γ′] according to the Abhyankar-Jung Theorem,
for some homogeneous element γ′. Thus the coefficients of Q1(Z) are in Lan
and are analytic at p.
Then the idea is to use the special form of the elements of Lan to prove that the
coefficients of Q1(Z) may be extended as analytic functions along the excep-
tional divisor E (the main ingredient in this part is the Maximum Principle).
We can repeat the latter procedure in another point p′: we take the roots of
Q1(Z) at p′ and using Abhyankar-Jung Theorem we construct new roots of
π(P )(Z) at p′ and the coefficients of Q2(Z) :=

∏
i(Z − σi), where σi runs over

all these roots, are in Lan and are analytic at p′. Then we extend the coefficients
of Q2(Z) everywhere along E. Since π(P )(Z) has exactly d roots, this process
stops after a finite number of steps. The polynomial Q(Z) :=

∏
(Z − σk),

where the σk’s are the roots of π(P )(Z) that we have constructed, is a polyno-
mial whose coefficients are analytic everywhere and it divides π(P )(Z). Thus,
by Grauert’s Direct Image Theorem, there exists R(Z) ∈ C{x}[Z] such that
π(R)(Z) = Q(Z). Thus R(Z) divides P (Z), but since P (Z) is irreducible,
then P (Z) = R(Z) ∈ C{x}[Z] and the result is proven.

3.5.3.3. One variable Nested Approximation. — In the example of A. Gabrielov
we can remark that the nested part of the solutions depends on two variables x1

and x2. In the case they depend only on one variable the nested approximation
property is true. This is the following theorem:
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Theorem 3.5.16. — (cf. Theorem 5.1 [DeLi80]) Let k be a field and let
kVxW be a W-system over k. Let t be one variable, x = (x1, ..., xn), y =
(y1, ..., ym, ym+1, ..., ym+k), f ∈ kVt, x, yWr. Let ŷ1,..., ŷm ∈ (t)kJtK and ŷm+1,...,
ŷm+k ∈ (t, x)kJt, xK satisfy f(t, x, ŷ) = 0. Then, for any c ∈ N, there exists
ỹ1,..., ỹm ∈ (t)kVtW, ỹm+1,...., ỹm+k ∈ (t, x)kVt, xW such that f(t, x, ỹ) = 0
and ŷ − ỹ ∈ (t, x)c.

Example 3.5.17. — The main example is the case where k is a valued field
and kVxW is the ring of convergent power series over k.

Proof. — The proof is very similar to the proof of Theorem 3.5.8.
Set u := (u1, ..., uj), j ∈ N and Set

kJtK[〈u〉] := {f(z1(t), ..., zs(t), u) ∈ kJt, uK /

f(z1, ..., zs, u) ∈ kVz, uW and z1(t), ..., zs(t) ∈ (t)kJtK for some s}.
The rings kJtK[〈u〉] form aW -system over kJtK (cf. Lemma 52. [DeLi80] but it
is straightforward to check it since kVxW is a W -system over k - in particular,
if char(k) > 0, vi) of Definition 3.2.11 is satisfied since v) of Definition 3.2.11
is satisfied for kVxW). By Theorem 3.2.14 applied to

f(t, ŷ1, ..., ŷm, ym+1, ..., ym+k) = 0

there exist ym+1,..., ym+k ∈ kJtK[〈x〉] such that f(t, ŷ1, ..., ŷm, ym+1, ..., ym+k) =
0 and yi − ŷi ∈ (t, x)c for m < i ≤ m+ k.
Let us write yi =

∑
α∈Nn hi,α(ẑ)xα with

∑
α∈Nn hi,α(z)xα ∈ kVz, xW and

ẑ = (ẑ1, ..., ẑs) ∈ kJtK. We can write

f

(
t, x, y1, ..., ym,

∑
α

hm+1,α(z)xα, ..., ,
∑
α

hm+k,α(z)xα

)
=
∑
α

Gα(t, y1, ..., ym, z)x
α

where Gα(t, y1, ..., ym, z) ∈ kVt, y1, ..., ym, zW for all α ∈ Nn. Thus ŷ1,...,ŷm,
ẑ1,..., ẑs ∈ kJtK is a solution of the equations Gα = 0 for all α ∈ Nn. Since
kVt, y1, ..., ym, zW is Noetherian, this system of equations is equivalent to a finite
system Gα = 0 with α ∈ E where E is a finite subset of Nn. Thus by Theorem
3.2.14 applied to the system Gα(t, y1, ..., ym, z) = 0, α ∈ E, there exist ỹ1,...,
ỹm, z̃1,..., z̃s ∈ kVtW such that ỹi−ŷi, z̃j−ẑj ∈ (t)c, for 1 ≤ i ≤ m and 1 ≤ j ≤ s,
and Gα(t, ỹ1, ..., ỹm, z̃) = 0 for all α ∈ E, thus Gα(t, ỹ1, ..., ỹm, z̃) = 0 for all
α ∈ Nn.
Set ỹi =

∑
α∈Nn hi,α(z̃)xα for m < i ≤ m + k. Then ỹ1,..., ỹm+k satisfy the

conclusion of the theorem.

Remark 3.5.18. — The proof of this theorem uses in an essential way the
Weierstrass Division Property (in order to show that kJtK[〈u〉] is a Noetherian
local ring, which is the main condition to use Theorem 3.2.17. The Henselian
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and excellent conditions may be proven quite easily). It is an open question
to know if this result remains true if we do no have the Weierstrass Division
Property.
For example let Cn be the ring of germs of k-valued Denjoy-Carleman functions
defined at the origin of Rn, where k = R or C (see [Th08] for definitions and
properties of these rings). It is still an open problem to know if Cn is Noetherian
or not for n ≥ 2 (C1 is a discrete valuation ring, thus it is Noetherian). These
rings have similar properties to the Weierstrass systems (stability by partial
derivates, stability by division by coordinates, ...), except that there is no
Weierstrass Division Theorem [Chi76]. For instance, there exists f ∈ C1 and
ĝ ∈ kJxK\C1 such that f(x) = ĝ(x2) (see [Th08]). This implies that

(5) f(x) = (x2 − y)ĥ(x, y) + ĝ(y)

where ĥ(x, y) ∈ kJx, yK but Equation (5) has no nested solution in C1 × C2.
On the other hand, if the rings Cn were Noetherian, since their completions are
regular local rings, they would be regular. Then using Example 3.7.4 iii) we
see that they would be excellent (see also [ElKh12]). Thus these rings would
satisfy Theorem 3.2.17. It would show that the Weierstrass Division Theorem
is necessary to obtain Theorem 3.5.16.

3.5.4. Other examples of approximation with constraints. — We present
here some examples of positive or negative answers to Problems 1 and 2 in sev-
eral contexts.

Example 3.5.19. — [Mi78b] P. Milman proved the following theorem:

Theorem 3.5.20. — Let f ∈ C{x, y, u, v}r where x := (x1, ..., xn), y =
(y1, ..., yn), u := (u1, ..., um), v := (v1, ..., vm). Then the set of convergent
solutions of the following system:

(6)



f(x, y, u(x, y), v(x, y)) = 0

∂uk
∂xj

(x, y)− ∂vk
∂yj

(x, y) = 0

∂vk
∂xj

(x, y) +
∂uk
∂yj

(x, y) = 0, 1 ≤ j ≤ n

is dense (for the (x, y)-adic topology) in the set of formal solutions of this
system.

Hints on the proof. — Let (û(x, y), v̂(x, y)) ∈ CJx, yK2m be a solution of (6).
Let us denote z := x+ iy and w := u+ iv. In this case the Cauchy-Riemann
equations of (6) are equivalent to ŵ(z, z) := û(x, y) + iv̂(x, y) ∈ CJzK (or in
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C{x}). Let ϕ : C{z, z, w,w} −→ CJz, zK and ψ : C{z, w} −→ CJzK be the
morphisms defined by

ϕ(h(z, z, w,w)) := h(z, z, ŵ(z), ŵ(z)) and ψ(h(z, w)) := h(z, ŵ(z)).

Milman proved that

Ker(ϕ) = Ker(ψ).C{z, z, w,w}+ Ker(ψ).C{z, z, w,w}.

Since Ker(ψ) (as an ideal of C{z, w}) satisfies Theorem 3.2.1, the result follows.

This proof does not give the existence of an Artin function for this kind of
system, since the proof consists in reducing Theorem 3.5.20 to Theorem 3.2.1,
but this reduction depends on the formal solution of (6). Nevertheless in
[Hic-Ro11], it is proven that such a system admits an Artin function using
ultraproducts methods. The survey [Mir13] is a good introduction for appli-
cation of Artin Approximation in CR geometry.

Example 3.5.21. — [BiMi79]
LetG be a reductive algebraic group. Suppose thatG acts linearly on Cn and

Cm. We say that y(x) ∈ CJxKm is equivariant if y(σx) = σy(x) for all γ ∈ G.
E. Bierstone and P. Milman proved that, in Theorem 3.2.1, the constraint for
the solutions of being equivariant may be preserved for convergent solutions:

Theorem 3.5.22. — [BiMi79] Let f(x, y) ∈ C{x, y}r. Then the set of equiv-
ariant convergent solutions of f = 0 is dense in the set of equivariant formal
solutions of f = 0 for the (x)-adic topology.
This result remains true is we replace C (resp. C{x} and C{x, y}) by any field
of characteristic zero k (resp. k〈x〉 and k〈x, y〉).

Using ultraproducts methods we may probably prove that Problem 2 has a
positive answer in this case.

Example 3.5.23. — [BDLvdD79] Let k be a field. Let us consider the
following differential equation:
(7)

a2x1
∂f

∂x1
(x1, x2)− x2

∂f

∂x2
(x1, x2) =

∑
i,j≥1

xi1x
j
2

(
=

(
x1

1− x1

)(
x2

1− x2

))
.

For a ∈ k, a 6= 0, this equation has only the following solutions

f(x1, x2) := b+
∑
i,j≥1

xi1x
j
2

a2i− j
, b ∈ k.
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Let us consider the following system of equations:
(8)

y2
9x1y5(x1, x2)− x2y7(x1, x2) =

∑
i,j≥1

xi1x
j
2

y1(x1, x2) = y2(x3, x4, x5) + (x1 − x3)z1(x) + (x2 − x4)z2(x)

y2(x3, x4, x5) = y1(x1, x2) + x5y5(x1, x2)+

x2
5y6+(x3 − x1 − x5)z3(x) + (x4 − x2)z4(x)

y3(x3, x4, x5) = y1(x1, x2) + x5y7(x1, x2)+

x2
5y8+(x3 − x1)z5(x) + (x4 − x2 − x5)z5(x)

y9(x1, x2) = y10(x3,4 , x5) i .e. y9 ∈ k and y9y11 = 1.

It is straightforward, by Lemma 3.5.1 and Example 3.5.2, to check that (a, f(x1, x2))
is a solution of (7) if and only if (8) has a solution when y1 = f and y9 = a.
Moreover, if y1,..., y11, z1,..., z5 is a solution of Equation (8), then (y9, y1) is a
solution of (7).
Thus (8) has no solution in QJxK. But clearly, (7) has solutions in Q[x]

(x)c for any
c ∈ N and the same is true for (8). This shows that Proposition 3.3.24 is not
valid if the base field is not C.

Example 3.5.24. — [BDLvdD79] Let us assume that k = C and consider
the latter example. The system of equations (8) does not admit an Artin func-
tion. Indeed, for any c ∈ N, there is ac ∈ Q, such that (8) has a solution
modulo (x)c with y9 = ac. But there is no solution in CJxK with y9 = ac
modulo (x), otherwise y9 = ac which is not possible.
Thus systems of equations with constraints does not satisfy Problem 2 in gen-
eral.

3.6. Weierstrass Preparation Theorem

In this part set x := (x1, ..., xn) and x′ := (x1, ..., xn−1). Moreover k will
denote a local ring of maximal ideal m (if k is a field, m = (0)). A local subring
of kJxK will be a subring of kJxK which is a local ring and whose maximal ideal
is generated by (m + (x))

⋂
A.

Definition 3.6.1. — If f ∈ kJxK we say that f is regular of order d with
respect to xn if f = uxdn modulo m + (x′) where u is invertible in kJxK

m+(x′) '
k
mJxnK.

Definition 3.6.2. — Let A be a local subring of kJxK. We say that A has
the Weierstrass Division Property if for any f , g ∈ A such that f is regular of
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order d with respect to xn, there exist q ∈ A and r ∈ (A
⋂
kJx′K)[xn] such that

deg xn(r) < d and g = qf + r.

Definition 3.6.3. — Let A be a local subring of kJxK. We say that A sat-
isfies the Weierstrass Preparation Theorem if for any f ∈ A which is regu-
lar with respect to xn, there exist an integer d, a unit u ∈ A and a1(x′),...,
ad(x

′) ∈ A
⋂

(x′)kJxK such that

f = u
(
xdn + a1(x′)xd−1

n + · · ·+ ad(x
′)
)
.

In this case f is necessarily regular of order d with respect to xn.

Remark 3.6.4. — Clearly, if they exist, q and r are unique in Definition
3.6.2. The same is true for u and the ai(x′)’s in Definition 3.6.3.

Lemma 3.6.5. — If a local subring A of kJxK has the Weierstrass Division
Property then it satisfies the Weierstrass Preparation Theorem.

Proof. — If A has the Weierstrass Division Property and if f ∈ A is regular
of order d with respect to xn, then we can write xdn = qf + r where r ∈
(A
⋂

kJx′K)[xn] such that deg xn(r) < d. Thus qf = xdn − r. Since f is regular
of order d with respect to xn, then q is invertible in kJxK and r ∈ (m + (x′)).
Thus q /∈ (m + (x)) and q is invertible in A. Hence f = q−1(xdn − r).

Theorem 3.6.6. — The following rings have the Weierstrass Division Prop-
erty:

i) The ring A = kJxK where k is complete local ring ([Bo65]).

ii) The ring A = k〈x〉 of algebraic power series where k is a field or a Noethe-
rian Henselian local ring of characteristic zero which is analytically nor-
mal ([Laf65] and [Laf67]).

iii) The ring A = k{x} of convergent power series over a valued field k
([Na62]).

3.7. Regular morphisms and excellent rings

Definition 3.7.1. — Let ϕ : A −→ B be a morphism of Noetherian rings.
We say that ϕ is regular if it is flat and if for any prime ideal P of A, the
κ(P)-algebra B ⊗A κ(P) is geometrically regular (where κ(P) := AP

PAP is the
residue field of AP). This means that B ⊗A K is a regular Noetherian ring for
any finite field extension of κ(P).

Example 3.7.2. —
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i) If A and B are fields, then A −→ B is regular if and only if B is a separable
field extension of A.
ii) If A is excellent, for any ideal I of A, the morphism A −→ Â is regular where
Â := lim

←−
A
In is the I-adic completion of A (cf. [GrDi65] 7.8.3).

iii) If V is a discrete valuation ring, then the completion morphism V −→ V̂ is
regular if and only if Frac(V ) −→ Frac(V̂ ) is separable. Indeed, V −→ V̂ is
always flat and this morphism induces an isomorphism on the residue fields.
iv) Let X be compact Nash manifold, let N (X) be the ring of Nash functions
on X and let O(X) be the ring of real analytic functions on X. Then the
natural inclusion N (X) −→ O(X) is regular (cf. [CRS95]).
v) Let L ⊂ Cn be a compact polynomial polyhedron and B the ring of holomor-
phic function germs at L. Then the morphism of constants C −→ B is regular
(cf. [Le95]). This example and the previous one allow to use Theorem 3.2.16
to show global approximation results in complex geometry or real geometry.

In the case of Artin Approximation, we will be mostly interested in the
morphism A −→ Â. Thus we need to know what is an excellent ring.

Definition 3.7.3. — A Noetherian ring A is excellent if the following con-
ditions hold:

i) A is universally catenary.

ii) For any p ∈ Spec(A), the formal fibre of Ap is geometrically regular.

iii) For any p ∈ Spec(A) and for any finite separable extension Frac
(
A
p

)
−→

K, there exists a finitely generated sub-Ap -algebra B of K, containing A
p ,

and such that Frac(B) = K and the set of regular points of Spec(B)
contains a non-empty open set.

This definition may be a bit obscure at first sight. Thus we give here the
main examples of excellent rings:

Example 3.7.4. —
i) Local complete rings (thus any field) are excellent. Dedekind rings of char-
acteristic zero are excellent. Any ring which is essentially of finite type over
an excellent ring is excellent. ([GrDi65] 7-8-3).
ii) If k is a complete valued field, then k{x1, ..., xn} is excellent [Ki69].
iii) We have the following result: Let A be a regular ring containing a field of
characteristic zero denoted by k. Suppose that for any maximal ideal m, the
field extension k −→ A

m is algebraic and ht(m) = n. Suppose moreover that
there exist D1,..., Dn ∈ Derk(A) and x1,..., xn ∈ A such that Di(xj) = δi,j .
Then A is excellent (cf. Theorem 102 [Mat80]).
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iv) A Noetherian local ring A is excellent if and only if it is universally catenary
and A −→ Â is regular ([GrDi65] 7-8-3 i)). In particular, if A is a quotient
of a local regular ring, then A is excellent if and only if A −→ Â is regular (cf.
[GrDi65] 5-6-4).

Example 3.7.5. — [Na62][Mat80] Let k be a field of characteristic p > 0
such that [k : kp] = ∞ (for instance let us take k = Fp(t1, ...., tn, ...)). Let
V := kpJxK[k] where x is a single variable, i.e. V is the ring of power series∑∞

i=0 aix
i such that [kp(a0, a1, ....) : kp] < ∞. Then V is a discrete valuation

ring whose completion is kJxK and it is a Henselian ring.
We have V̂ p ⊂ V , thus [Frac(V̂ ) : Frac(V )] is purely inseparable. Hence
V −→ V̂ is not regular by Example 3.7.2 and V is not excellent by Example
3.7.4 iv).
On the other hand, let f be the power series

∑∞
i=0 aix

i, ai ∈ k such that
[kp(a0, a1, ...) : kp] = ∞. Then f ∈ V̂ but f /∈ V , and fp ∈ V . Thus f
is the only root of the polynomial yp − fp. This shows that the polynomial
yp − fp ∈ V [y] does not satisfies Theorem 3.2.16.

3.8. Étale morphisms and Henselian rings

The material presented here is very classical and has first been studied by
G. Azumaya and M. Nagata. We will give a quick review of the definitions
and properties that we need for the understanding of the rest of the chapter.
Nevertheless, the reader may consult [Na62], [GrDi65], [Ra70] or [Iv73].

Example 3.8.1. — In classical algebraic geometry, the Zariski topology has
too few open sets. For instance, there is no Implicit Function Theorem.
Let X be the zero set of the polynomial y2−x2(x+1) in C2. On an affine open
neighborhood of 0, denoted by U , X

⋂
U is equal to X minus a finite number

of points, thus X
⋂
U is irreducible since X is irreducible. In the analytic

topology, we can find an open neighborhood of 0, denoted by U , such that
X
⋂
U is reducible, for instance take U = {(x, y) ∈ C2 / |x|2+|y|2 < 1/2}. This

comes from the fact that x2(1+x) is the square of an analytic function defined
on U

⋂
(C× {0}). Let z(x) be such an analytic function, z(x)2 = x2(1 + x).

In fact we can obtain z(x) from the Implicit Function Theorem. We see that
z(x) is a root of the polynomial Q(x, z) := z2 − x2(1 + x). We have Q(0, 0) =
∂Q
∂z (0, 0) = 0, thus we can not use directly the Implicit Function Theorem to
obtain z(x) from its minimal polynomial.
Nevertheless let us take P (x, t) := (t + 1)2 − (1 + x) = t2 + 2t − x. Then
P (0, 0) = 0 and ∂P

∂t (0, 0) = 2 6= 0. Thus, from the Implicit function Theorem,
there exists t(x) analytic on a neighborhood of 0 such that t(0) = 0 and
P (x, t(x)) = 0. If we denote z(x) := x(1+ t(x)), we have z2(x) = x2(1+x). In
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fact z(x) ∈ B :=
C[x,t](x,t)
(P (x,t)) . The morphism C[x] −→ B is an example of étale

morphism.

Definition 3.8.2. — Let ϕ : A −→ B be a ring morphism. We say that
ϕ is smooth (resp. étale) if for any A-algebra C along with an ideal I such
that I2 = (0) and any morphism of A-algebras ψ : B −→ C

I there exists a
morphism σ : B −→ C (resp. a unique morphism) such that the following
diagram commutes:

A
ϕ //

��

B

ψ
��σ

��
C // C

I

Example 3.8.3. — Let k := R or C and let us assume that A = k[x1,...,xn]
J

and B = A[y1,...,ym]
K for some ideals J and K. Let X be the zero locus of J in

kn and Y be the zero locus of K in kn+m. The morphism ϕ : A −→ B defines
a regular map Φ : Y −→ X. Let C := k[t]

(t2)
and I := (t). Let f1(x),..., fr(x) be

generators of J .

A morphism A −→ C is given by elements ai, bi ∈ k such that fj(a1 +
b1t, ..., an + bnt) ∈ (t)2 for 1 ≤ j ≤ r. We have

fj(a1 + b1t, ..., an + bnt) = fj(a1, ..., an) +

(
n∑
i=1

∂fj
∂xi

(a1, ..., an)bi

)
t mod. (t)2.

Thus a morphism A −→ C is given by a point x := (a1, ..., an) ∈ X (i.e. such
that fj(a1, ..., an) = 0 for all j) and a tangent vector u := (b1, ..., bn) to X at

x (i.e. such that
n∑
i=1

∂fj
∂xi

(a1, ..., an)bi = 0 for all j). In the same way a A-

morphism B −→ C
I = k is given by a point y ∈ Y . Moreover the first diagram

commutes if and only if Φ(y) = x.

Then ϕ is smooth if for any x ∈ X, any y ∈ Y and any tangent vector u
to X at x such that Φ(y) = x, there exists a tangent vector v to Y at y such
that Dy(Φ)(v) = u. And ϕ is étale if and only if v is unique. This shows that
smooth morphisms correspond to submersions and étale morphisms to local
diffeomorphisms.

Example 3.8.4. — Let ϕ : A −→ Bp be the canonical morphism where
B := A[x]

(P (x)) and p is a prime ideal of B such that ∂P
∂x (x) /∈ p. If we have such
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a commutative diagram

A
ϕ //

��

Bp

ψ
��

C // C
I

then the morphism Bp −→ C
I is given by an element c ∈ C such that P (c) ∈ I.

Looking for a lifting of ψ is equivalent to finding ε ∈ I such that P (c+ ε) = 0.
We have

P (c+ ε) = P (c) +
∂P

∂x
(c)ε

since I2 = (0). Since ∂P
∂x is invertible in Bp, ∂P∂x (c) is invertible in C

I , i.e. there
exists a ∈ C such that a∂P∂x (c) = 1 mod. I. Moreover a is unique modulo I.
For any η ∈ I let us set ε := −P (c)(a+ η). Since P (c) ∈ I, ε does not depend
on η and the lifting of ψ is unique. This proves that ϕ is étale. Compare this
example with Example 3.8.1.

Definition 3.8.5. — Étale morphisms of Example 3.8.4 are called standard
étale morphisms. We can prove that if A and B are local rings then any étale
morphism is standard ([Iv73] III. 2).

Example 3.8.6 (Jacobian Criterion). — We can generalize the former
example as follows. If k is a field and ϕ : k −→ B := k[x1,...,xn]m

(g1,...,gr)
where

m := (x1 − c1, ..., xn − cn) then ϕ is smooth if and only if the jacobian matrix(
∂gi
∂xj

(c)
)
has rank equal to the height of (g1, ..., gr). This is equivalent to say

that V (I) has a non-singular point at the origin. Let us recall that the fibers
of submersions are always smooth.

Definition 3.8.7. — Let A be a local ring. An étale neighbourhood of A
is an étale local morphism A −→ B inducing an isomorphism on the residue
fields.
If A is a local ring, the étale neighbourhoods of A form a filtered inductive
limit and the limit of this system is called the Henselization of A ([Iv73] III.
6. or [Ra69] VIII) and denoted by Ah.
We say that A is Henselian if A = Ah. The morphism A −→ Ah is universal
among all the morphisms A −→ B inducing an isomorphisms on the residue
fields and where B is Henselian.

Proposition 3.8.8. — If A is a Noetherian local ring, then its Henselization
Ah is a Noetherian local ring and A −→ Ah is faithfully flat. If ϕ : Ah −→ B
is an étale neighbourhood of Ah, then there is a section σ : B −→ A, i.e.
σ ◦ ϕ = idAh.
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Proposition 3.8.9. — Let A be a Henselian local ring and let ϕ : A −→ B be
an étale neighbourhood that admits a section in A

mcA
for c ≥ 1, i.e. a morphism

of A-algebra σ : B −→ A
mcA

. Then there exists a section s̃ : B −→ A such that
s̃ = s modulo mc.

Proof. — Since A is Henselian and ϕ is étale then A is isomorphic to the
Henselization of B. Moreover A

mcA
is Henselian. The result comes from the

universal property of the Henselization.

Definition 3.8.10. — Let A be a Henselian local ring and x := (x1, ..., xn).
Then the Henselization of A[x]mA+(x) is denoted by A〈x〉.

Remark 3.8.11. — Let P (y) ∈ A[y] and a ∈ A satisfy P (a) ∈ mA and
∂P
∂y (a) /∈ mA. If A is Henselian, then A −→ A[y]

(P (y)) mA+(y−a) is an étale neigh-
borhood of A, thus it admits a section. This means that there exists ỹ ∈ mA

such that P (a+ ỹ) = 0.
If A is a local ring, then any étale neighborhood of A is of the previous form.
Thus, by Proposition 3.8.8, we have the following proposition:

Proposition 3.8.12. — Let A be a local ring. Then A is Henselian if and
only if for any P (y) ∈ A[y] and a ∈ A such that P (a) ∈ mA and ∂P

∂y (a) /∈ mA

there exists ỹ ∈ mA such that P (a+ ỹ) = 0.

We can generalize this proposition as follows:

Theorem 3.8.13 (Implicit Function Theorem). — Let f(y) ∈ A[y]r, y =
(y1, ..., ym), r ≤ m. Let J be the ideal of A[y] generated by the r× r minors of
the Jacobian matrix of f(y). If A is Henselian and if f(0) = 0 and J /∈ mA.

A[y]
(y) ,

then there exists ỹ ∈ mm
A such that f(ỹ) = 0.

Example 3.8.14. — The ring of germs of C∞ function at the origin of Rn
is a Henselian local ring but it is not Noetherian. The ring of germ of analytic
functions at the origin of Cn is a Noetherian Henselian local ring; it is the ring
of convergent power series.

Example 3.8.15. — If A = kVx1, ..., xnW for some Weierstrass system over
k, then A is a Henselian local ring by Proposition 3.8.12. Indeed, let P (y) ∈
A[y] satisfies P (0) = 0 and ∂P

∂y (0) /∈ (p, x). Thus P (y) contains a nonzero term
of the form cy, c ∈ k∗. Then we have y = P (y)Q(y) + R where R ∈ mA.
Clearly Q(y) is a unit, thus P (R) = 0.

Proposition 3.8.16 (Hensel Lemma). — Let (A,mA) be a local ring. Then
A is Henselian if and only if for any monic polynomial P (y) ∈ A[y] such that
P (y) = f(y)g(y) mod mA for some f(y), g(y) ∈ A[y] which are coprime modulo
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mA, there exists f̃(y), g̃(y) ∈ A[y] such that P (y) = f̃(y)g̃(y) and f̃(y)− f(y),
g̃(y)− g(y) ∈ mA[y].

Proof. — Let us prove the sufficiency of the condition. Let P (y) ∈ A[y] and
a ∈ A satisfy P (a) ∈ mA and ∂P

∂y (a) /∈ mA. This means that P (X) = (X −
a)Q(x) where X−a and Q(X) are coprime modulo m. Then this factorization
lifts to A[X], this means ỹ ∈ mA such that P (a+ ỹ) = 0. This proves that A
is Henselian.
To prove that the condition is necessary, let P (y) ∈ A[y] be a monic polynomial,
P (y) = yd + a1y

d−1 + · · · + ad. Let k := A
mA

be the residue field of A, an
for any a ∈ A, let us write a for the image of a in k. Let us assume that
P (y) = f(y)g(y) mod mA for some f(y), g(y) ∈ k[y] which are coprime in k[y].
Let us write

f(y) = yd1 + b1y
d1−1 + · · ·+ bd1 , g(y) = yd2 + c1y

d2−1 + · · ·+ cd2

where b = (b1, · · · , bd1) ∈ kd1 , c = (c1, · · · , cd2) ∈ kd2 . The product of polyno-
mials P = fg defines a map Φ : kd1 × kd2 → kd, that is polynomial in b and c
with integer coefficients, and Φ(b, c) = a := (a1, ..., ad). The determinant of the
Jacobian matrix ∂a

∂(b,c) is the resultant of f(y) and g(y), and hence is nonzero

at (b, c). Using the Implicit Function Theorem 3.8.13, there exist b̃ ∈ Ad1 ,
c̃ ∈ Ad2 such that P (y) = P1(y)P2(y) where P1(y) = yd1 + b̃1y

d1−1 + · · ·+ b̃d1
and P2(y) = yd2 + c̃1y

d2−1 + · · ·+ c̃d2 .

Proposition 3.8.17. — ([GrDi67] 18-7-6) If A is an excellent local ring,
then its Henselization Ah is also an excellent local ring.





CHAPTER 4

PRESENTATION OF OUR WORK

4.1. Study of the Artin function of polynomial equations with coef-
ficients in the ring of power series in two variables

The aim of this part is to present our results concerning the problem of
obtaining effective bounds on Artin functions of polynomials with coefficients
in the ring of polynomials in one or two polynomials. The work follows on
from our work done during our PhD thesis.
As seen in the previous part, M. Artin has shown the following result (cf.
Theorem 3.3.12) :

Theorem 4.1.1. — [Ar69] Let k be a field and f1,..., fp ∈ k[t1, ..., tm, X1, ..., Xn]
be polynomials. Then for any integer c ∈ N there exists an integer β(c) ∈ N
satisfying the following property: for any x ∈ kJt1, ..., tmKn such that

f1(t, x), ..., fp(t, x) ∈ (t)β(c),

there exists x̃ ∈ kJtKn such that

f1(t, x̃), ..., fp(t, x̃) = 0

and x̃− x ∈ (t)c.

Definition 4.1.2. — For any integer c we denote by β(c) the least integer
satisfying the property of Theorem 4.1.1. The function c 7−→ β(c) is called
the Artin function of f1,..., fN and, in fact, it depends only on the ideal I of
k[t,X] generated by f1,..., fN . This means that if g1,..., gr generate the same
ideal I, then the Artin function of g1,..., gr is the same as the Artin function
of f1,..., fp (See Remark 3.3.20).
When m = 1, we call this function the Greenberg function of f1,..., fp.

Indeed a few years before, M. Greenberg had given a proof of this theorem
in the case m = 1 (cf. Theorem 3.3.1 in the preceding part) and in this case
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he showed that we may choose β to be affine (cf. [Gre66]). This means that
any Greenberg function is bounded by an affine function.
In fact M. Artin has shown a stronger result than the one stated here: β(c)
may be chosen in such a way that it depends only on the degrees of f1,..., fp
and on the number of variables n and m (see Theorem 3.3.12 for a precise
statement).

In [Ar70], M. Artin raised the problem of having estimates for the Artin func-
tion of a given system of equations. We know (see Example 3.3.33 or [Ron05b]
and [Ron06a]) that for m ≥ 2 the Artin function of a system of equations is
not bounded by an affine function in general, unlike the case m = 1 proven
by M. Greenberg. But while we know few precise results in the case m = 1
(as shown in Part 3.3.1), there is no general known bound for m ≥ 2, the
only know result is that such an Artin function is bounded by a computable
function (see [Las78] or [BDLvdD79]). Moreover the only examples of Artin
functions whose a bound is known are always very particular examples and
the bounds are always affine. (see Part 3.3.4, [Ron06a] or [Di07]). Thus the
question asked by M. Artin is still widely open.
The difficulty to obtain an "effective" bound in Theorem 4.1.1 can be explained
by sketching the proof of this result. There exist several analogues of Theorem
4.1.1 in different situations, but there exist essentially two proofs. The first one
is due to M. Artin and is based on an induction on the numberm of variables t.
The second one uses model theoretical methods (ultraproducts) as presented
in Part 3.3.3, and is absolutely not effective.
The proof due to M. Artin consists in several steps: first, if I is the ideal of
k[t,X] generated by f1,..., fp and if I = Q1 ∩ · · · ∩Qs is a primary decompo-
sition of I then the Artin function of I is bounded by the sum of the Artin
functions of the Qi’s. Then if Q is a primary ideal and e is an integer such that√
Q
e ⊂ Q, the Artin function of Q is bounded by e times the Artin function

of
√
Q. Therefore we may assume that I is a prime ideal. Then, if I is prime,

either we can apply the Implicit function theorem and the Weierstrass division
Theorem to reduce the problem to the case of m − 1 variables t, either we
replace I by I + (δ) where δ is a well chosen minor of the Jacobian matrix of
I and we increase the height of the ideal (according to the Jacobian criterion
since I is prime). Thus we do a double induction on the height of I and the
number m of variables t. But, at each step of the induction on the height of I
we need to replace I by one of its minimal prime ideals. This double induction
makes the effectivity of the Artin functions involved quite difficult to control.
The only thing that can be done is to remark (as M. Artin did) that we have
a control on the degrees of the generators of each ideal involved in this dou-
ble induction. Hence the idea is to try to prove the existence of β satisfying
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Theorem 4.1.1 but depending only on the degrees of the generators of I. The
control we have on the degrees of the generators of each ideal appearing in the
induction is quite tedious since we need to replace at each step the ideal I by
one of its minimal prime. Nevertheless, for m small enough (in order to avoid
a heavy induction on the number m of variables t), more precisely for m ≤ 2,
this idea gives us few effective results. This is the aim of this first part.

The first result we obtain is the following (in the case m = 1):

Theorem 4.1.3. — [Ron10a] Let k be a perfect field. For any n, d ∈ N, there
exists β : N −→ N such that for any ideal I de k[t,X], with X = (X1, ..., Xn),
generated by polynomials of degree less than d, and for any c ∈ N and any
x(t) ∈ kJtKn such that f(t, x(t)) ∈ (t)β(c) for all f ∈ I, there exists x(t) ∈ kJtKn
such that f(t, x(t)) = 0 for all f ∈ I and x(t)− x(t) ∈ (t)c.
Moreover β may be chosen to be affine, of the form c 7−→ a(n, d)(c+ 1) where
a(n, d) is bounded by a polynomial function in d of degree exponential in n.

The new thing here, compared to Greenberg’s result, is that the affine bound
of the Greenberg function is uniform in d andm, but moreover we have a bound
on the coefficients of this affine function. The fact that the bound is doubly
exponential in n comes from the fact that the bound on the degrees of the
generators of an associated prime of I is doubly exponential in n (cf. [Se74]
and [Te90]).

Let us remark that this result is stated for a characteristic zero field in [Ron10a].
In fact the only difficulty appearing in positive characteristic is the use of the
Jacobian criterion, but this difficulty is avoided by assuming that the field is
perfect.

Then we can use this result to find bounds of the Artin function of polynomi-
als equations with coefficients in k[t1, t2]. The first result we obtain concerns
the case of binomial equations. The will explain this through the following
example:

Let us consider the polynomial X2−Y 3 seen as a polynomial of k[t1, t2][X,Y ].
Let x(t) and y(t) ∈ kJt1, t2K be two given non zero formal power series. Let us
denote respectively by r and s their vanishing order at 0. After a linear change
of coordinates in t1 and t2 we may assume that x(t) and y(t) are t2-regular
of order r and s, i.e. x(0, t2) = atr2 et y(0, t2) = bts2 with a and b two non
zero elements of k. By the Weierstrass preparation Theorem for formal power
series we can write

x(t) = u(t)
(
tr2 + a1(t1)tr−1

2 + · · ·+ ar(t1)
)
,
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y(t) = v(t)
(
ts2 + b1(t1)ts−1

2 + · · ·+ bs(t1)
)

where u(t) and v(t) are units of kJtK and the ai(t1)’s and bj(t1)’s are formal
power series in one variable. Then let us denote by P (t2) the polynomial
x(t)u(t)−1 and by Q(t2) the polynomial y(t)v(t)−1. These are polynomials of
kJt1K[t2].
Let us assume that

(9) x(t)2 − y(t)3 ∈ (t)c

where c is a sufficiently large integer (let us say larger than r and s). This can
be rewritten as the following:

u(t)2P (t2)2 − v(t)3Q(t2)3 ∈ (t)c.

Let us write
P (t2)2 = t2r2 + c1(t1)t2r−1

2 + · · ·+ c2r(t1)

Q(t2)3 = t3s2 + d1(t1)t3s−1
2 + · · ·+ d3s(t1).

Thus we can express the ci’s and dj ’s as polynomials in the coefficients of P (t2)
and Q(t2):

ci = Ci(a1, ..., ar) and dj = Dj(b1, ..., bs).

For example C2r = a2
r and C2r−1 = 2arar−1. Then we can show (cf. lemme

4.1 [Ron10a]) that necessarily 2r = 3s and

(10) u(t)2 − v(t)3 ∈ (t)c−2r,

(11) ci(t1)− di(t1) ∈ (t1)c−2r+i for any i.

Thus we have obtained a new system of equations, formed by the equations
(10) and (11) that we can consider separately since they do depend on sepa-
rated sets of unknowns.

Equation (10) may be solved easily since u(0) and v(0) are different from zero
and the point (u(0), v(0)) ∈ k2 is not in the singular locus of X2 − Y 3 = 0.
Now, it is easy to check, using the Implicit Function Theorem, that the Artin
function of smooth systems of equations is the identity function (see Remark
3.3.21). Hence there exist two power series u(t) and v(t) ∈ kJtK such that

u(t)2 − v(t)3 = 0

u(t)− u(t), v(t)− v(t) ∈ (t)c.

The system of equations (11) may be written as follows:

Ci(a1(t1), ..., ar(t1))−Di(b1(t1), ..., bs(t1)) ∈ (t1)c ∀i.
This is a system of equations whose approximated solutions are power series
in one variable t1. Thus we may apply Theorem 4.1.3 since we know that the
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degree of the polynomials Ci − Di is less than 3. Thus we know that there
exist aj(t1) and bk(t1) such that

Ci(a1(t1), ..., ar(t1))−Di(b1(t1), ..., bs(t1)) = 0 ∀i
and aj(t1) − aj(t1), bk(t1) − bk(t1) ∈ (t1)c

′ where c′ can be determined in
function of c. Hence we set

x(t) := u(t)
(
tr2 + a1(t1)tr−1

2 + · · ·+ ar(t1)
)
,

y(t) = v(t)
(
ts2 + b1(t1)ts−1

2 + · · ·+ bs(t1)
)
.

We will have x(t)2 − y(t)2 = 0 and x(t)− x(t), y(t)− y(t) ∈ (t)c
′ . We do not

give here more details but this method can be used for any system of binomial
equations and yields the following result:

Theorem 4.1.4. — [Ron10a] Let k be a perfect field. Let us set t = (t1, t2).
Then the followings are satisfied:

i) For any d, d′ ∈ N, there exists ad,d′ > 0 satisfying the following property:
Let I be a binomial ideal of k[X1, ..., Xn] generated by binomials f1, ..., fp
of degree less than d′. Let c ∈ N and x1(t),..., xn(t) ∈ kJtK satisfy
ord(xj(t)) ≤ d and fk(xj(t)) ∈ (t)ad,d′ (c+1) for any j and k. Then there
exists xj(t) ∈ kJtK such that fk(xj(t)) = 0 for all k and xj(t)−xj(t) ∈ (t)c

for all j.

ii) For any d′ ∈ N there exists a doubly exponential function in c, denoted
by βd′, such that for any binomial ideal I of k[X1, ..., Xn] generated by
binomials of degree less than d′, the Artin function of IkJtK[X] is bounded
by βd′ .

Once more in [Ron10a] this result is stated for algebraically closed fields of
characteristic zero, but we can extend to algebraically closed fields of positive
characteristic since it is proven using Theorem 4.1.3. In [Ron10a] the fact that
k is algebraically closed is used to reduce the problem to the case of a prime
ideal. Indeed if I is a binomial ideal and k is algebraically closed then the
minimal primes of I are binomial ideals. Nevertheless it is enough to replace I
by its radical that is always a binomial ideal (see [EiSt96]). Indeed, by slightly
modifying the previous example, if I = ((X2−Y 3)2) then (u(0), v(0)) is in the
singular locus of (X2−Y 3)2 = 0 which is the entire cusp and we cannot apply
Remark 3.3.21. Thus we need to replace I by its radical. If I is radical then the
singular locus of V (I) is included in the union of the coordinates hyperplanes,
thus (u(0), v(0)) is never included in the singular locus of V (I).
Let us remark here that the only two known examples of Artin functions which
are not bounded by affine functions are Artin functions of binomial equations.
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In these two cases we just know that these Artin functions are bounded from
below by a polynomial function of degree 2 (cf. Example 3.3.33 or [Ron05b]
and [Ron06a]).

More generally we can use Theorem 4.1.3 to study Artin functions of sys-
tems of polynomial equations with coefficients in k[t1, t2]. The idea is to follow
the proof of M. Artin of Theorem 4.1.1 in the case m = 2. Hence we obtain
the following result:

Theorem 4.1.5. — [Ron13a] Let k be a perfect field and let f1,..., fp be
polynomials of k[t1, t2][X1, ..., Xn] generating an ideal I. Let us denote by H an
ideal of k[t,X] defining the non-smoothness locus of the morphism k[t1, t2] −→
k[t1,t2,X1,...,Xn]

(f1,...,fp) , i.e. the critical locus of the projection π : V (f1, ..., fp) ⊂ k2 ×
kn −→ k2. Then for any d ∈ N there exists a(d) > 0 and b(d) > 0 such that
for any x(t) ∈ kJtKn satisfying

f(t, x(t)) ∈ (t)a(d)(c+1) for all f ∈ I

and ∃h ∈ H, h(t, x(t)) /∈ (t)b(d),

there exists x(t) ∈ kJtKn such that

f(t, x(t)) = 0 for all f ∈ I
and x(t)− x(t) ∈ (t)c.

Let us remark that if I is generated by polynomials of k[X1, ..., Xn] (i.e. the
fi’s do not depend on t1 and t2), then H is just an ideal defining the singular
locus of f = 0 in kn.

Remark 4.1.6. — There are several ways to define such an ideal H. The
first definition is due to Elkik [Elk73] and it is the following:
LetA be a Noetherian ring (hereA = kJt1, t2K) and let f1,..., fp ∈ A[X1, ..., Xn].
Let E be a subset of {1, ..., p} whose cardinal is h for some integer h. We de-
note by ∆E(f) the ideal of A[X1, ..., Xn] generated by the h× h minors of the
Jacobian matrix

(
∂fi
∂Xj

)
i∈E,1≤j≤n

(This ideal is zero if h > n). We define the

following ideal of A[X1, ..., Xn]:

Hf1,...,fp :=
∑
E

∆E(f)((fi, i ∈ E) : I)

where the sum runs over all subsets E of {1, ..., p}. This ideal Hf1,...,fp defines
the non-smoothness locus of the morphism A −→ A[X1,...,Xn]

(f1,...,fp) . I have never
found any reference about the fact that this ideal is independent of the choice
of the generators f1,..., fp of the ideal I. Most of the time nothing is said about



4.1. ARTIN FUNCTION 87

this problem and sometimes it is claimed that it is easy to check that it does
not depend on this choice without giving a proof of it. Unfortunately, as shown
on an example in [Ron13a] (we consider I = (X1, X2) ∩ (X3, X4) defining a
non complete intersection singularity), this definition depends on the choice of
the generators of I. On the other hand the radical of this ideal Hf1,...,fp does
not depend on the generators of I. In fact it does not depend on the choice of
a representation of the morphism A −→ A[X1,...,Xn]

(f1,...,fp) . In the previous theorem,
we can take any ideal H whose radical is equal to the radical of Hf1,...,fp .

This theorem may be rephrased as saying that the Artin function of a system of
equations in k[t1, t2][X1, ..., Xn] is bounded by an affine function if we consider
approximated solutions whose contact order with the critical locus of π is
bounded.
In fact the result proven in [Ron13a] is more precise and may be stated more
easily by using the norm induced by ord on kJt1, t2K as follows (see Remark
3.2.3 and Remark 3.3.6 in the previous part for a precise definition of this
topology and for the relation with Łojasiewicz inequalities) :

Theorem 4.1.7. — [Ron13a] Let A := kJt1, t2K where k is a perfect field.
Then there exist constants K1, K2 > 0 such that for any d ≥ 2 and n ≥ 1,
for any ideal I = (f1, ..., fp) of k[t1, t2, X1, ..., Xn] generated by polynomials of
degrees less than d with V (I) 6= ∅, we have the following inequality:

(12) ||f(x)|| ≥ (K1d(x, f−1(0)))d

(
1

||H(x)||

)K2n

∀x ∈ Am\V (H)

where H is an ideal of k[t1, t2, X1, ..., Xm] defining the critical locus of the
projection

V (f1, ..., fp) ⊂ k2 × kn −→ k2.

Let us mention that this result is no more valid when m ≥ 3 (i.e. A =
kJt1, ..., tmK with m ≥ 3). Indeed let us consider the following example (see
[Ron06a]) :

Example 4.1.8. — Let A := kJt1, t2, t3K and let f := X1X2 − X3X4. Here
we can take for H the ideal (X1, X2, X3, X4). For c ≥ 3 let us set

x
(c)
1 := tc1, x

(c)
2 := tc2, x

(c)
3 := t1t2 − tc3.

Then there exists x(c)
4 ∈ A such that x(c)

1 x
(c)
2 − x

(c)
3 x

(c)
4 ∈ (t)c

2 . This means
that ||f(x(c))|| ≤ e−c

2 for any c ≥ 3. Moreover it is shown in [Ron06a] that
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any solution x̃ ∈ A4 of f = 0 satisfies

min
i=1,...,4

{ord(x
(c)
i − x̃i)} ≤ c.

this means that d(x(c), f−1(0)) ≥ e−c for all c ≥ 3. Thus we see that there do
not exist constants a > 0 and b > 0 such that ||f(x(c))|| ≥ a d(x(c), f−1(0))b

for all c ≥ 3, but ||H(x(c))|| = e−2 is a constant not depending on c.

From Theorem 4.1.5 we can deduce the following corollary which is an ana-
logue of the second part of Theorem 4.1.4 for isolated singularities:

Corollary 4.1.9. — [Ron13a] We use the notation of the previous theorem.
Let I be an ideal of k[t1, t2, X1, ..., Xn] such that the critical locus of the projec-
tion V (f1, ..., fp) ⊂ k2× kn −→ k2 has an isolated singularity. Then the Artin
function of I is bounded by a doubly exponential function.

We can mention here that Hickel has given a bound of the Artin function
of ideals I of k[t,X1, ..., Xn] (t being a single variable) satisfying the same
hypothesis (see Remark 3.3.10 ii) or [Hic93]).

4.2. Morphisms of local algebras and nested approximation

In this part we present our results concerning some regularity properties of
morphisms between rings of formal or convergent power series. This is related
to a particular case of Artin approximation with constraints. We begin with
a short survey of the problem. This work has been motivated by a question
that S. Izumi asked us in 2005 during a stay at Osaka. The problem raised by
S. Izumi was the possibility to extend in positive characteristic some known
results in characteristic zero. The question was more specifically related to
the Chevalley function of a morphism between local rings. One of our main
contributions has consised to extend known results in characteristic zero to the
positive characteristic case (see Theorem 4.2.16 in particular).

4.2.1. Persistence of properties of an analytic morphism after com-
pletion. — Let us begin by stating two classic corollaries of the Weierstrass
preparation Theorem (see [Ho61], [Mal68] or [To72] for example):

Proposition 4.2.1. — Let k be a valued field. Let ϕ : A −→ B be a morphism
of analytic algebras. Then B is finite over A if and only if B̂ is finite over Â.

Proof. — Indeed by the Weierstrass preparation Theorem, B is finite over A
if and only if B/mB is finite over A/mA. Now B̂/m

B̂
' B/mB and Â/m

Â
'

A/mA. By applying the Weierstrass preparation Theorem of algebras of formal
power series we obtain the result.
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Proposition 4.2.2. — Let ϕ : A −→ B be a morphism of analytic algebras.
Then

i) ϕ is surjective if and only if ϕ̂ is surjective.
ii) If ϕ̂ is injective then ϕ is injective.
iii) ϕ is an isomorphism if and only if ϕ̂ is an isomorphism.

Proof. — First of all if ϕ or ϕ̂ is surjective then B is finite over A or B̂ is
finite over Â, thus B is finite over A and B̂ is finite over Â by the previous
proposition. Since B/mB ' B̂/m

B̂
, by using Nakayama’s Lemma we obtain

the first statement.
If ϕ̂ is injective then ϕ is obviously injective.
If ϕ is an isomorphism then ϕ̂−1 is the inverse of ϕ̂ which is also an iso-
morphism. If ϕ̂ is an isomorphism then ϕ is injective and surjective by the
preceding points, hence ϕ is an isomorphism.

In [Gro60], A. Grothendieck conjectured that an injective morphism of ana-
lytic algebras induces an injective morphism between the completions. More
generally we can ask if an injective morphism of analytic algebras ϕ : A −→ B
satisfies ϕ̂−1(B) = A. A similar question is the following: if the image of a
formal power series is convergent is it the image of a convergent power se-
ries, i.e. if i ϕ : A −→ B is a morphism of analytic algebras, do we have
ϕ̂(Â)∩B = ϕ(A) ? The first answer to these questions appeared in the paper
[Gab71] by A. Gabrielov and is negative (see Examples 3.5.12 and 3.5.14 of
the previous part for a detailed presentation of this example).

4.2.2. Chevalley function. — In the paper [Ch43] the following result is
proven:

Theorem 4.2.3 (Chevalley’s Lemma). — Let A be a complete local ring
with maximal ideal mA. Let (In) be a decreasing sequence of ideals of A such
that ∩nIn = {0}. Then there exists a function β : N −→ N such that Iβ(n) ⊂
mn
A for any positive integer n.

Thus we deduce the following result (by applying the previous theorem to
the sequence (ϕ−1(mn

B))n of ideals of A/Ker(ϕ̂)):

Corollary 4.2.4. — Let ϕ : A −→ B be a morphism of local complete k-
algebras. Then there exists a function λ : N −→ N such that

∀n ∈ N, ϕ−1(m
λ(n)
B ) ⊂ Ker(ϕ) + mn

A.

The least function λ satisfying this property is called the Chevalley function of
the morphism ϕ. This is an increasing function.
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A natural question is to know the behaviour or the growth of this function.
In particular what are the morphisms whose Chevalley function is bounded by
an affine function ?

Example 4.2.5. — [Ron09b] Once more, as the example of Gabrielov, this
example is inspired by Osgood’s Example (see Example 3.5.12) and a remark
of Abhyankar [Ab56].
Let α : N −→ N be an increasing function and let k be a valued field. Let
(ni)i be a sequence of natural numbers such that ni+1 > α(ni) for any i and
such that the element ξ(Y ) :=

∑
i≥1 Y

ni is transcendental over k(Y ) (such an
element exists according to the constructive proof of Lemma 1 in [McLSc39]).
Let us define the morphism ϕ : k{x1, x2, x3} −→ k{y1, y2} by

(ϕ(x1), ϕ(x2), ϕ(x3)) = (y1, y1y2, y1ξ(y2)).

We show exactly as for Osgood’s Example (see Example 3.5.12) that ϕ̂ is
injective. For any positive natural number i we define:

fi := xni−1
1 x3−

(
xn1

2 xni−n1
1 + · · ·+ x

ni−1

2 x
ni−ni−1

1 + xni2

)
= xni−1

1 x3−xni1

∑
j≤i

(
x2

x1

)nj
.

Then we get:

ϕ(fi) = yni1 ξ(y2)− yni1

i∑
k=1

ynk2 ∈ m
ni+ni+1

B ⊂ m
α(ni)
B

But fi /∈ mni+1
A thus β(ni + 1) > α(ni) where β is the Chevalley function

associated to ϕ. Because ni −→ +∞ when i −→ +∞, we get lim sup β(n)
α(n) ≥ 1.

Thus for any increasing function α there exists a morphism of analytic algebras
whose Chevalley function increases faster than α. In particular there exist
such morphisms whose Chevalley function is not computable since there exist
increasing functions whose growth is larger than any computable function.
Once more this shows that the question has no good general answer.

4.2.3. Relation with the nested Artin approximation property. —
This part has been inspired by the work of Becker (see Part 0 of [Be77a]).
Let ϕ : k{x1, ..., xn}/I −→ k{y1, ..., ym} be an injective morphism of ana-
lytic algebras. Let us denote by ϕ′ : k{x1, ..., xn} −→ k{y1, ..., ym} the in-
duced morphism. Let us denote by x and y the multi-variables (x1, ..., xn) and
(y1, ..., ym). Then ϕ̂ is injective if and only Ker(ϕ̂′) = IkJxK = Ker(ϕ′)kJxK.
Thus in order to study the first question we may assume that ϕ is a morphism
of convergent power series rings, ϕ : k{x} −→ k{y}, and investigate under
what conditions Ker(ϕ̂) is generated by Ker(ϕ).
We can remark that Ker(ϕ)kJxK = Ker(ϕ) :=

⋂
c∈N (Ker(ϕ) + (x)ckJxK) is the
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closure of Ker(ϕ) in kJxK for the Krull topology of this ring.
Now let us consider the proof of Lemma 3.5.1 :
We denote by ϕi(y) ∈ k{y} the image of xi under ϕ for 1 ≤ i ≤ n. Let us
consider f ∈ Ker(ϕ̂). The Taylor expansion of f(x) yields

f(x) = f(x)−f(ϕ(y)) =
∑

α∈Nn,α 6=0

1

α1!...αn!
f

(α)
(ϕ(y))(x1−ϕ1(y))α1 ...(xn−ϕn(y))αn .

Thus there exist gi ∈ kJx, yK, for 1 ≤ i ≤ n, such that

f(x) +
n∑
i=1

(xi − ϕi(y))gi(x, y) = 0.

Then f ∈ Ker(ϕ) if and only if for any c ∈ N there exists fc ∈ Ker(ϕ) such
that f(x)−fc(x) ∈ (x)c. The Taylor expansion of fc shows us that f ∈ Ker(ϕ)
if and only if there exist fc(x) ∈ k{x} and gi,c(x, y) ∈ k{x, y} such that

fc(x) +
n∑
i=1

(xi − ϕi(y))gi,c(x, y) = 0 ∀c ∈ N

and fc(x)− f(x) ∈ (x)c ∀c ∈ N.
Now let us fix P (Fi, Gj) ∈ k{x, y}[F1, ..., Fr, G1, ..., Gs]. We say that P satisfies
the nested Artin approximation property if:

∀ f ∈ kJxKr, ∀ g ∈ kJx, yKs, such that P (f, g) = 0, ∀c ∈ N,

∃f ∈ k{x}r, ∃g ∈ k{x, y}s such that P (f, g) = 0,

and f i − fi ∈ (x)c, gj − gj ∈ (x, y)c for all 1 ≤ i ≤ r, 1 ≤ j ≤ s.
Thus we deduce the following proposition form the remark at the begin of this
part (in fact we have shown here something weaker; for the complete proof of
this proposition see [Ron08a]):

Proposition 4.2.6. — [Ron08a] Let us consider the following equation:

(E1) F (x) +
n∑
i=1

(xi − ϕi(y))Gi(x, y) = 0

Thus Ker(ϕ̂) = Ker(ϕ)kJxK if and only if Equation (E1) satisfies the nested
Artin approximation property.

We can generalize this result:

Proposition 4.2.7. — [Ron08a] Let us consider the following equation:

(E2) F (x) +

n∑
i=1

(xi − ϕi(y))Gi(x, y) + h(y) = 0
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where h ∈ k{y}. Then Equation (E2) satisfies the nested Artin approximation
property if and only if h ∈ ϕ(k{x}).
In particular Equation (E2) satisfies the nested Artin approximation property
for any h convergent if and only if ϕ̂(kJxK) ∩ k{y} = ϕ(k{x}).

We also obtain the following result which is an example of positive answer
to Problem 2 in Part 3.5 :

Proposition 4.2.8. — [Ron08a] Let us consider the following equation:

(E2) P (F (x), G(x, y)) := F (x) +

n∑
i=1

(xi − ϕi(y))Gi(x, y) + h(y) = 0.

Then there exists a function β : N −→ N satisfying the following property:

∀c ∈ N,∀ f ∈ kJxKr, ∀ g ∈ kJx, yKs, such that P (f, g) ∈ (x, y)β(c),

∃f ∈ kJxKr, ∃g ∈ kJx, yKs such that P (f, g) = 0,

and f i − fi ∈ (x)c, gj − gj ∈ (x, y)c for all 1 ≤ i ≤ r, 1 ≤ j ≤ s.
Moreover the least function satisfying this property is exactly the Chevalley
function of the morphism ϕ.

4.2.4. Definitions et main theorem. — Nevertheless there is an impor-
tant case where the previous questions have a positive or "good" answer. This
is the case of regular morphisms in the sense of Gabrielov. Before defining
these morphisms we have to give some preliminary definitions. The reader can
consult [Ron09b] for having details about the proofs.

Definition 4.2.9. — Let k be a valued field. Let ϕ : A −→ B be a ho-
momorphism of local k-algebras and let us assume that GrmBB is an integral
domain (this is the case for example when B is regular). In this case ordB, de-
fined by ordB(f) := max{n ∈ N / f ∈ mn

B}, is a valuation. Let us still denote
by ϕ the morphism induced on A/Ker(ϕ) and let us denote by ν := ordB ◦ ϕ
the valuation defined on the fraction field of A/Ker(ϕ). Let kν be the residue
field of ν, i.e. kν := Aν/mν where Aν is the valuation ring of ν and mν its
maximal ideal, and let tr.degkν denote the transcendence degree of k −→ kν .
If ϕ(mA) = {0}, then we set r1(ϕ) := 0 ; otherwise we set r1(ϕ) := tr.degkν+1.
Moreover we define

r2(ϕ) := dim

(
Â

Ker(ϕ̂)

)
,

r3(ϕ) := dim
(

A

Ker(ϕ)

)
.
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Remark 4.2.10. — We can give a characterisation of r1 in the case char(k) =
0 which is more geometric : if (A,m) is a local k-algebra, we denote by Ω1

k(A)

the A-module of the Kähler differentials and Ω
1
k(A) :=

Ω1
k(A)

∩∞i=0m
i
AΩ1

k(A)
the A-

module of separated Kähler differentials (see [GrDi64] Part 20.7 or [Sp90a]).
If ϕ : A −→ B is a morphism of local k-algebras then there exists a unique
morphism of B-modules denoted by ϕ1 : Ω

1
k(A)⊗AB −→ Ω

1
k(B) which is com-

patible with the canonical derivations A −→ Ω
1
k(A) and B −→ Ω

1
k(B). Then

we have r1(ϕ) = rankB(ϕ1(Ω
1
k(A))⊗A B).

In particular if k = R or C, we denote by Φ : (X, 0) −→ (Y, 0) the morphism
of analytic spaces induced by ϕ. Then r1(ϕ) is the generic rank of the jacobian
of Φ. and it is equal to the dimension over k of the image of Φ. Moreover r2(ϕ)
is the dimension of the formal Zariski closure of the image of Φ and r3(ϕ) is
the dimension of the analytic Zariski closure of the image of Φ.

In fact the characterization of r1(ϕ) involving the rank of the jacobian matrix is
the usual definition since regular morphisms were defined only in characteristic
zero before our work. Since one our goals was to extend to the positive charac-
teristic case the study of regular morphisms we needed to extend the definition
of r1(ϕ) to this setting. But the rank of the jacobian matrix of a morphism
of formal power series rings may be zero even in this case although it should
not be zero for our purpose. For instance the morphism ϕ : kJxK −→ kJyK
defined by ϕ(xi) = ypi for any i satisfies ϕ−1((y)pc) ⊂ (x)c for any c ∈ N, i.e.
its Chevalley function is bounded by a linear function. In characteristic zero
this is a characterization of regular morphisms, thus this morphism has to be
regular. If char(k) = 0, then r1(ϕ) = n but if char(k) = p > 0 the rank of the
jacobian matrix of ϕ is zero when we want r1(ϕ) = n (see Definition 4.2.13).
This why we need to define r1(ϕ) in a way that do not involve derivatives.

Remark 4.2.11. — We can also give the following interpretation of r1(ϕ)
when ϕ : kJxK −→ kJyK is a morphism of power series rings. We can define
a total order on the set of monomials in y1,..., ym as done in Example 3.1.10.
Let us use the notations of Example 3.1.10. Then r1(ϕ) is the dimension of
the minimal cone of Rm containing {exp(ϕ(f)), f ∈ kJxK}.

Lemma 4.2.12. — With the previous notation we have r1(ϕ) ≤ r2(ϕ) ≤
r3(ϕ).

Proof. — The first inequality is the Abhyankar’s inequality for the valuation
ν. The second one comes from the fact that ht(Ker(ϕ)) = ht(Ker(ϕ)Â) ≤
ht(Ker(ϕ̂)).
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Definition 4.2.13. — Let ϕ : A −→ B be a morphism of analytic algebras.
We say that ϕ is regular in the sense of Gabrielov if r1(ϕ) = r3(ϕ).

Next theorem asserts that regular morphisms are the ones for which the ques-
tions of the introduction have a positive answer:

Theorem 4.2.14. — Let k be a valued field and let ϕ : A −→ B be a mor-
phism of analytic algebras where B is regular. Let us consider the following
properties:

(i) r1(ϕ) = r2(ϕ) = r3(ϕ).
(ii) ∃a ≥ 1, b ≥ 0 such that ϕ̂−1(man+b

B ) ⊂ Ker(ϕ̂) + mn
A ∀n ∈ N.

(iii) ϕ̂(Â) ∩B = ϕ(A).

Then the following implications are satisfied:

(i)⇐⇒(ii) for any valued field k.
(i)=⇒(iii) if k = R or C, or if k is any valued field and A is regular.
(iii)=⇒(i) if k = R or C.

The equivalence (i)⇐⇒(ii) remains true if si A = kVxW
I and B = kVyW where the

family (kVx1, ..., xnW)n∈N is a Weierstrass system over a field k (see Definition
3.2.11 for the definition of a Weierstrass system). Moreover the implication
(i)=⇒(iii) is satisfied A = kVxW et B = kVyW.

Remark 4.2.15. — If char(k) = 0 and if B is an integral domain, the ex-
istence of a resolution of singularities for B gives an injective morphism π :
B −→ k{y} such that r1(π) = dim(B). Thus the previous theorem remains
valid if char(k) = 0 and B is an integral domain.

Historically, A. Gabrielov first proved that r1(ϕ) = r2(ϕ) implies r2(ϕ) =
r3(ϕ) when k = C or R [Gab71] (the reverse implication is trivial) and deduced
easily that (i) =⇒ (iii). The proof of this result of Gabrielov is quite difficult
and several people tried to give a correct proof of it (see [To90] or [Sp90a]
- we confess having given a wrong proof of this result). We may reformulate
this implication in the following way: if (X, 0) is a germ of irreducible formal
space of which a piece is the image of a germ of analytic space by an analytic
map, then (X, 0) is a germ of analytic space.
The proof of (i)=⇒(iii) for any valued field has been given by the author
[Ron09b].
The equivalence (i)⇐⇒(ii) has first been proven by S. Izumi for k = C or R
[Iz86], then for any characteristic zero field k [Iz89], then by the author for any
field k and for Weierstrass systems [Ron09b]. The implication (iii) =⇒ (i)
has been proven by P. Eakin and G. Harris in the case A is regular [EaHa77]
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(they asserts that they prove it for any valued field of characteristic zero, but
their proof works only when k = R or C), then by P. Milman [Mi78a] for any
A.
We will only sketch the proofs of (i)⇐⇒(ii)=⇒(iii).
The reader may consult [BiMi82], [BiMi87], [BiMi98], [Pał92] for a study
of global properties of regular morphisms and the relation with the composite
functions problem in the C∞ case.

4.2.5. Monomialisation of a morphism and proof of (i) ⇐⇒(ii). —
We present here a very useful result about the monomialisation of a morphism
between power series rings. This one has been proven in characteristic zero in
[EaHa77] then in positive characteristic in [Ron09b]. This is the key tool for
the proof of (i)⇐⇒(ii)=⇒(iii).

Theorem 4.2.16. — [EaHa77][Ron09b] Let ϕ : k{x} −→ k{y} be a mor-
phism of convergent power series rings where k is a valued field. Then there ex-
ist morphisms σ1 : k{x} −→ k{x}, σ2 : k{y} −→ k{y} and ϕ : k{x} −→ k{y}
satisfying the following properties:

i) The morphism σ1 is the composition of k-automorphisms of k{x}, of
morphisms χd (d ∈ N∗ is any prime number) defined χd(x1) = xd1 and
χd(xi) = xi ∀i 6= 1, and the morphism q defined by q(x1) = x1x2 and
q(xi) = xi for i 6= 1.

ii) The morphism σ2 is the composition of k-automorphisms of k{y} and of
the morphism q defined by q(y1) = y1y2 and q(yi) = yi for i 6= 1.

iii) The morphism ϕ satisfies

ϕ(xi) = yp
αi

i vi where vi is a unit and αi ∈ N, for i ≤ r, if char(k) = p > 0

or ϕ(xi) = yi for i ≤ r, if char(k) = 0

and ϕ(xr+1) = · · · = ϕ(xn) = 0.

Moreover r = r1(ϕ) = r1(ϕ).
iv) The following diagram is commutative:

(?) k{x}
ϕ //

σ1
��

k{y}

σ2
��

k{x}
ϕ // k{y}

This result remains valid if we replace k{x} and k{y} by kVxW and kVyW where
the family (kVx1, ..., xlW)l∈N is a Weierstrass system over a field k.

Now we can sketch the proof of the equivalence of (i) and (ii) in Theorem
4.2.14.
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Let us prove (i)=⇒(ii). By replacing A by A/Ker(ϕ) we may assume that
ϕ is injective. There exists an injective and finite morphism k{x} −→ A. If
we compose ϕ with this morphism the ranks r1, r2 and r3 do not change (see
Lemma 2.4) [Ron09b]) and this new morphism satisfies (ii) if and only if ϕ
does (see Lemmas 4.4 and 4.5 [Ron09b]). Thus we may assume that A = k{x}
is regular and ϕ is injective.
The specific forms of σ1 and σ2 allow us to show easily that if there exist
constants a and b such that

(13) a ord(f) + b ≥ ord(ϕ(f))

for all f ∈ k{x}, then there exist constants a′ and b′ such that

a′ord(f) + b′ ≥ ord(ϕ(f))

for all f ∈ k{x} (see Lemma 3.3 [Ron09b]). If r1(ϕ) = n then r1(ϕ) = n and
the particular form of ϕ shows that ϕ satisfies an inequality of the form (13)
and thus ϕ satisfies (ii).

The reverse implication is shown as did Izumi in [Iz89] with the help of The-
orem 4.2.16 and the use of Hilbert-Samuel functions. We do not give more
details here.

Remark 4.2.17. — We can give an alternative proof of (i)=⇒(ii) in the more
general case where B is an integral domain. In this case we can define r1(ϕ)
as follows. There exist a finite number of divisorial valuations µ1,..., µp such
that

ordB(g) =
p

min
i=1

µi(g) ∀g ∈ B.

These valuation are the Rees valuations of mB (see [HuSw06]). Let νi be the
valuation defined on A/Ker(ϕ) by the formula νi = µi ◦ϕ. We define r1(ϕ) as
follows:

r1(ϕ) :=
p

min
i=1

tr.degkνi + 1.

Then r2(ϕ) and r3(ϕ) are defined as before. Once more Abhyankar’s inequal-
ity asserts that r1(ϕ) ≤ r2(ϕ). If r1(ϕ) = r2(ϕ) = dim

(
A

Ker(ϕ)

)
, then ν1,...,

νp are Abhyankar valuations, thus there exists a constant a > 0 such that
νi(f) ≤ a ordA/Ker(ϕ)(f) for 1 ≤ i ≤ p ([Sp90b] or Proposition 6.5 [Te13]).
Hence ordB(ϕ(f)) ≤ a ordA/Ker(ϕ)(f) for any f ∈ A.
Nevertheless Theorem 4.2.16 is interesting since it is used to prove (i)=⇒(iii).
Moreover it shows also that the fact that some morphisms do not satisfy the
equivalent properties of Theorem 4.2.14 comes from the use of quadratic trans-
forms in the monomialization process.
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Remark 4.2.18. — In Theorem 4.2.16, if we can construct ϕ without using
the morphism q : kJxK −→ kJxK, then we can see that ϕ satisfies (ii) and (iii)
of Theorem 4.2.14. The fact that some morphism do not satisfy the equivalent
properties of Theorem 4.2.14 comes from the use of q : kJxK −→ kJxK (see also
the proof of Theorem 4.2.22 for an example of this fact).
Let us consider the following situation:

kJxK
ϕ //

q

��

kJyK

kJxK

ϕ
<<

where ϕ is injective, r1(ϕ) = n−1 and q defined by q(x1) = x1x2 and q(xi) = xi
for i 6= 1. It may happen that ϕ it is not injective. In this case let z be
a generator of Ker(ϕ). Since ϕ is injective and ϕ is not injective, we can
prove that z is not algebraic over q(kJxK) = kJx1x2, x2, ..., xnK (see Part 4.2
[Ron09b]). Moreover the fact that the Chevalley function of ϕ is not bounded
by an affine function comes from the following transcendence property of z (see
Lemma 4.7 [Ron09b]):

Lemma 4.2.19. — There exists a decreasing function α : R+ −→ R+ such
that ∣∣∣∣fg − z

∣∣∣∣ ≥ α(|g|) ∀f ∈ kJx1x2, x2, ..., xnK, g ∈ kJx1x2, x2, ..., xnK[x1],

and if α is the greatest function satisfying the above inequality, then ln(α(u))
ln(u) −→

0 as u goes to 0.

4.2.6. Two "good" examples. — Now we can give two important examples
of regular morphisms: these are the analytic morphisms defined by algebraic
power series (Remark 4.2.18 already gave a flavor of this) and the morphisms
whose source is a domain of dimension less or equal to two.

4.2.6.1. Case of the algebraic morphims. — Let us denote by k〈x〉 := k〈x1, ..., xn〉
the subring of kJx1, ..., xnK of all power series which are algebraic over k[x1, ..., xn].
We clearly have k〈x〉 ⊂ k{x} for any n ∈ N when k is a valued field. We call
Henselian k-algebra any k-algebra which is isomorphic to a quotient k〈x〉/I
where n ∈ N and I is an ideal of k〈x〉. If ϕ : k〈x〉/I −→ k〈y〉/J is a mor-
phism of Henselian algebras, we denote by ϕ̃ : k{x}/Ik{x} −→ k{y}/Jk{y}
the induced analytic morphism. If ϕ : A −→ B is a morphism of Henselian
algebras we define r4(ϕ) := dim(A/Ker(ϕ)). We also denote ri(ϕ) := ri(ϕ̃) for
1 ≤ i ≤ 3. We obviously have r1(ϕ) ≤ r2(ϕ) ≤ r3(ϕ) ≤ r4(ϕ).
We remind that any polynomial P with coefficients in k〈x, y〉 satisfies the
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nested Artin approximation property (cf. Theorem 3.5.8). This means that
any solution (fi, gj) ∈ kJxKr × kJx, yKs of P (Fi, Gj) = 0 may be approxi-
mated by solutions in k〈x〉r×k〈x, y〉s. By using Proposition 4.2.7 that is valid
in the Henselian case, we see that any morphism ϕ : k〈x〉 −→ k〈y〉 satis-
fies ϕ̂(kJxK) ∩ k〈y〉 = ϕ(k〈x〉). In fact we can show more than that by using
only Theorem 4.2.16 which is valid for rings of algebraic power series and not
Theorem 3.5.8:

Theorem 4.2.20. — [Ron09b] Let ϕ : A −→ k〈y〉 be a morphism of Henselian
k-algebras. Then r1(ϕ) = r4(ϕ).

Proof. — We can easily reduce the problem to the case ϕ is injective and
A = k〈x〉.
Then we apply Theorem 4.2.16 which is still valid if we replace k{x} and k{y}
by k〈x〉 and k〈y〉 (since the rings of algebraic power series form a Weierstrass
system). Thus we have a commutative diagram:

k〈x〉
ϕ //

σ1
��

k〈y〉

σ2
��

k〈x〉
ϕ // k〈y〉

We see that σ2 ◦ ϕ is injective, thus ϕ ◦ σ1 is injective. Thus it is enough to
show the following: if ϕ : k〈x〉 −→ k〈y〉 is a non injective morphism satisfying
ϕ = ϕ ◦ σ, where σ is one of the three types of morphisms defined in Theorem
4.2.16 i), then ϕ is not injective. This is straightforward to check this for any
of these three morphisms.

Next result has been proven by Tougeron [To76], Becker [Be77a] and Milman
[Mi78a] in the case of complex analytic algebras which are the quotient of
the ring of convergent power series by an ideal generated by polynomials. We
extended this result for quotients of convergent power series rings by ideals
generated by algebraic power series in any characteristic.

Corollary 4.2.21. — [To76][Be77a][Mi78a][Ron06b] Let ϕ : k{x}/Ik{x} −→
k{y}/Jk{y} be a morphism of analytic k-algebras where I is an ideal of k〈x〉,
J a prime ideal of k〈y〉 and such that ϕ(xi) ∈ k〈y〉/J for any 1 ≤ i ≤ n. Let
us assume that char(k) = 0 or J = (0). Then r1(ϕ) = r3(ϕ).

Proof. — Let π : k{x} −→ k{x}/I be the quotient morphism. We can replace
ϕ by the composed morphism ϕ ◦ π : k{x} −→ k{y}/Jk{y} and we still de-
note this morphism by ϕ. We denote by ϕh : k〈x〉 −→ k〈y〉/J the associated
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morphism of Henselian algebras and we see that r1(ϕh) = r4(ϕh) by the pre-
vious theorem if J = (0). If char(k) = 0 we can use resolution of singularities
as explained in Remark 4.2.15. Hence r3(ϕ) = r3(ϕh) = r1(ϕh) = r1(ϕ).

4.2.6.2. The dimension 2 case. —

Theorem 4.2.22. — [Ron09b] Let ϕ : A −→ B be a morphism of analytic
k-algebras where A is an integral domain of dimension 2 and B is regular. Then
ϕ is injective if and only r1(ϕ) = 2. This result remains valid if A = kVxW

I and
B = kVyW where the family (kVx1, ..., xnW)n∈N is a Weierstrass system over
any field k.

Sketch of the proof. — If r1(ϕ) = 2 then r3(ϕ) = 2 and ϕ is injective. The
non trivial part of the theorem is the reverse implication.
First of all we may reduce to the case A = k{x1, x2} and B = k{y}. Then
we apply Theorem 4.2.16 for the morphism ϕ. Thus we have the following
commutative diagram:

k{x1, x2}
ϕ //

σ1
��

k{y}

σ2
��

k{x1, x2}
ϕ // k{y}

If σ1 is uniquely a composition of k-automorphisms and of morphisms χd
(d ∈ N∗ being a prime number) defined by χd(x1) = xd1, and χd(xi) = xi
∀i 6= 1, and if ϕ is injective then it is not too difficult to see that ϕ is still
injective and thus r1(ϕ) = 2.
Now the idea is to analyze the proof of Theorem 4.2.16 in order to see that,
if ϕ is injective, we can construct a commutative diagram similar to the pre-
vious one but where σ1 is uniquely a composition of k-automorphisms and of
morphism χd and where ϕ is defined by

ϕ(x1) = ya1y
b
2u

ϕ(x2) = yc1y
d
2v

such that the rank of the matrix
(
a b
c d

)
is equal to 2 and u and v are units.

Hence r1(ϕ) = 2, so r1(ϕ) = 2.

One corollary of this theorem is the fact that such an injective morphism
ϕ : A −→ B where dim(A) = 2 and B is regular satisfies ϕ(A) = ϕ̂(Â) ∩ B.
This corollary (in the case of morphisms between convergent power series rings)
has been proven before in [AvdP70].
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Corollary 4.2.23. — Let ϕ : A −→ B be a morphism of analytic k-algebras
where A is an integral domain of dimension ≤ 2 and B is regular. Then
r1(ϕ) = r2(ϕ) = r3(ϕ).

Proof. — If dim(A) = 0, this is trivial.
If dim(A) = 1 and r1(ϕ) = 0, then Ker(ϕ) = mA thus r3(ϕ) = 0. If r1(ϕ) = 1
then r3(ϕ) = 1.
If dim(A) = 2 and r1(ϕ) = 0, then Ker(ϕ) = mA so r3(ϕ) = 0. If r3(ϕ) = 2
then ϕ is injective and r1(ϕ) = 2 by the previous theorem. Finally if r1(ϕ) = 1
then r3(ϕ) = 1 since r3(ϕ) = 2 implies r1(ϕ) = 2.

Remark 4.2.24. — Remark 4.2.15 remains valid here and we may assume
that B is just an integral domain when char(k) = 0 in both results.

4.3. Algebraic closure of the field of power series in several variables
in characteristic zero

This work has been motivated by understanding the proof of Gabrielov The-
orem given by J.-C. Tougeron [To90] and by a question of A. Parusiński.
The last part of this thesis concerns the problem of "describing" the set of
solutions of polynomial equations with coefficients in the formal power series
ring kJx1, ..., xnK. Here we are interested by the set of roots of one polynomial
in one variable with coefficients in kJx1, ..., xnK. Let us begin by surveying the
case of polynomials with coefficients in the field of power series in one variable.
In the whole part we will assume that the characteristic of the base field k is
equal to zero.

When k is an algebraically closed field of characteristic zero, we can always
express the roots of a polynomial with coefficients in the field of power series
over k, denoted by k((t)), as formal Laurent series in t

1
k for some positive

integer k. This result was known by Newton (at least formally see [BK86]
p. 372) and had been rediscovered by Puiseux in the complex analytic case
[Pu50], [Pu51] (see [BK86] or [Cu04] for a presentation of this result). A
modern way to reformulate this fact is to say that an algebraic closure of k((t))
is the field of Puiseux power series P defined in the following way:

P :=
⋃
k∈N

k
((
t
1
k

))
.

The proof of this result, called the Newton-Puiseux method, consists essen-
tially in constructing the roots of a polynomial P (Z) ∈ kJtK[Z] by successive
approximations (see [BK86] or [Cu04] - see [BiMi90] for a slightly different
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method). These approximations converge since k
((
t
1
k

))
is a complete field

with respect to the Krull topology (see Remark 3.2.3 for a definition of this
topology).
The result is quite impressive since it gives also a description of the Galois
group of k((t)) −→ P. Indeed this one is generated by the multiplication of
the k-th roots of unity with t

1
k for any positive integer k. In particular the

conjugates of any convergent power series in C{t
1
k } are also in C{t

1
k }. This has

some important corollaries as the fact that if an irreducible polynomial with
coefficients in CJtK has a root which is a convergent power series in t

1
k the the

others roots are also convergent power series.
When k is a characteristic zero field (not necessarily algebraically closed), we
can prove in the same way that an algebraic closure of k((t)) is

(14) P :=
⋃
k′

⋃
k∈N

k′
((
t
1
k

))
.

where the first union runs over all finite field extensions k −→ k′.

It is tempting to find such a similar result for the algebraic closure of the
field of power series in n variables, k((x1, ..., xn)), for n ≥ 2. But it appears
easily that the algebraic closure of this field admits a really more complicated
description and considering only power series depending on x

1
k
1 ,..., x

1
k
n is not

sufficient. For instance it is easy to see that a root square of x1 + x2 can not
be expressed as such a power series.
Nevertheless there exist positive results in some specific cases, the more famous
one being the Abhyankar-Jung theorem:

4.3.1. Abyankar-Jung Theorem. —

Theorem 4.3.1 (Abhyankar-Jung Theorem). — If k is a field of char-
acteristic zero, then any monic polynomial with coefficients in kJx1, ..., xnK,
whose discriminant has the form uxα1

1 ...xαnn where u ∈ kJx1, ..., xnK is a unit

and α1,..., αn ∈ Z≥0, has its roots in k′Jx
1
k
1 , ..., x

1
k
n K where k ∈ N∗ and k −→ k′

is a finite field extension.

This result can be seen as a generalization of Newton-Puiseux Theorem since
any polynomial with coefficients in the ring of powers series in one variable sat-
isfies the hypothesis of Abhyankar-Jung Theorem. This result has first been
proven by Jung in the complex analytic case [Ju08] then by Abhyankar in the
general case. A polynomial satisfying the hypothesis of this theorem is called
a quasi-ordinary polynomial.
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Jung’s proof is very elementary but uses a topological argument. Here fol-
lows a sketch of this proof:

Sketch of the proof of the Abhyankar-Jung Theorem in the analytic case
Let U be the following polydisc:

U =
n∏
i=1

Dε = {x ∈ Cn; |xi| < ε, i = 1, . . . , n}

with ε small enough such that the coefficients of P (Z) are analytic in a neigh-
borhood of the closure of U . By hypothesis the projection of {(x1, ..., xn, Z) ∈
U × C;P (x, Z) = 0} over U is a finite covering which is ramified over the
hyperplanes of coordinates. By the lifting homotopical criterion there exists a
positive integer q such that the map

x(y) = (yq1, . . . , y
q
n) : U1 → U,

where U1 =
∏n
i=1Dε1/q , induces a trivial covering over U∗1 =

∏n
i=1D

∗
ε1/q

. This
is equivalent to say that the roots of P (x(y), Z) are analytic on U∗1 . Moreover
the polynomial P (Z) being monic its roots are bounded in a neighborhood of
the origin, thus they may be extended to an analytic function on U1.

Abhyankar’s proof is purely algebraic and it is not easy to understand. Thirty
years ago Luengo published a paper presenting a new proof of Abhyankar-Jung
Theorem in the general case which was more elementary. This proof used a
property of the Newton polyhedron satisfied by quasi-ordinary polynomials,
and the fact that quasi-ordinary polynomials satisfy this property is equiva-
lent to the Abhyankar-Jung Theorem. Unfortunately it appeared that there
was a serious gap in the proof. This motivated Kiyek and Vicente to give a new
proof, purely algebraic, of the Abhyankar-Jung Theorem based on the theory
of ramified morphisms between local rings [KiVi04].

With Adam Parusiński we gave an elementary proof of the result announced by
Luengo. In order to present this result we will first give a definition introduced
by Hironaka:

Definition 4.3.2. — [Hir74] Let P (Z) ∈ kJx1, ..., xnK[Z] be a monic poly-
nomial of degree d and let NP denote its Newton polyhedron. Let us write

P (Z) =
∑

(i1,....,in+1)∈Nn+1

Pi1,...,in+1x
i1
1 ....x

in
n Z

in+1 .

This polynomial is called ν-quasi-ordinary if there is a point R1 of the Newton
polyhedronNP , R1 6= R0 = (0, . . . , 0, d), such that if R′1 denotes the projection
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of R1 onto Rn × {0} from R0, and S = |R0, R
′
1| is the segment joining R0 and

R′1, then
NP ⊂ |S| :=

⋃
s∈S

(s+ Rn+1
≥0 ) and

PS =
∑

(i1,...,in+1)∈S

Pi1,...,in+1x
i1
1 · · ·x

in
n Z

in+1 is not a power of degree one polynomial in Z.

Last condition is automatically satisfied if the coeffcient of Zd−1 in P (Z) is
zero since k is a field of characteristic zero.

Here is a picture of the Newton polyhedron of a ν-quasi-ordinary polynomial
with n = 2 (thick lines represent the edges of the Newton-Polyhedron) :

x1

z

x2

R0

R1

R′1

Then the next result is equivalent to the Abhyankar-Jung Theorem:

Theorem 4.3.3. — [PaRo12] Let P (Z) ∈ kJx1, ..., xnK[Z] be a monic poly-
nomial of degree d. If P (Z) is quasi-ordinary and if the coefficient of Zd−1 in
P (Z) is zero then P (Z) is ν-quasi-ordinary.

Sketch of the proof. — In [PaRo12] we give two different proofs of this result.
Both are based on the complex analytic case of Abhyankar-Jung Theorem. We
present here one of these proofs which uses Artin approximation Theorem. We
write P (Z) = Zd + a2Z

d−2 + · · ·+ ad.
• First step: By using Jung’s proof sketched before we see that the Abhyankar-
Jung theorem is true for polynomials whose coefficients are convergent power
series over C.
• Second step: Then we show that if the discriminant of a polynomial P (Z)
has normal crossing and if its roots are Puiseux series in several variables and
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a1 = 0, then P (Z) is ν-quasi-ordinary. In fact these three facts imply that
the set of non-zero exponents appearing in the Taylor expansion of the roots
of P (Z) is totally ordered in Qn. This is not very difficult and is based on
a short combinatorial study of these exponents. Thus these roots are equal
to a monomial times a unit. For any k, ak is a homogeneous function of de-

gree k in the roots of P (Z), thus the ideal
(
ad!

1 , a
d!
2
2 , ..., a

d!
d
d

)
is a monomial

ideal generated by one these d monomials. This is equivalent to say that
NP ⊂ |S| :=

⋃
s∈S(s+ Rn+1

≥0 ). Thus Theorem 4.3.3 is proven for polynomials
with complex analytic coefficients.
• Last step : Now we prove Theorem 4.3.3 in the general case. Let us con-
sider a monic polynomial P (Z) ∈ kJx1, ..., xnK[Z] whose discriminant is normal
crossing (i.e. of the form uxα where u is a unit and α ∈ Nn) and where k is
a characteristic zero field. Since the coefficients of P (Z) depend only on a
countable number of elements of k we may assume that Q −→ k is an exten-
sion whose transcendence degree is at most countable. Such a field extension
embeds in C. Thus we may assume that the coefficients of P (Z) are power
series over C since this does not change the shape of its Newton polyhedron.
The discriminant of P (Z) is a polynomial ∆ = ∆(a2, ..., ad) depending on the
coefficients a2,..., ad. Now let us define the following polynomial:

Q(A2, ..., Ad, U) := ∆(A2, ..., Ad)− Uxα ∈ C{x}[A2, ..., Ad, U ].

Then Q(a2, ..., ad, u) = 0 and by Artin approximation Theorem we may find,
for any integer c, convergent power series a2,c,..., ad,c, uc solutions of Q = 0
and equal to a2,..., ad, u up to order c. In particular the polynomial Pc(Z) :=
Zd + a2,cZ

d−2 + · · ·+ ad,c ∈ C{x}[Z] is quasi-ordinary. Thus Pc(Z) is ν-quasi-
ordinary by the previous step. Since the coefficients of Pc(Z) coincide with
those of P (Z) up to order c, the Newton polyhedron of P (Z) is included in the
Newton polyhedron of Pc(Z) modulo high terms. But the Newton polyhedron
of Pc(Z) is included in |S| where S does not depends on c if c is large enough
(if c is larger than the size of the vertices of the Newton polyhedron of P (Z)).
Thus, at the limit, the Newton polyhedron of P (Z) is included in |S|. Hence
P (Z) is ν-quasi-ordinary.

We remark that the second step proves that the Abhyankar-Jung Theorem
implies Theorem 4.3.3. This was known before. The fact that Theorem 4.3.3
implies the Abhyankar-Jung Theorem comes from the fact that if the coefficient
of Zd−1 of the quasi-ordinary polynomial P (Z) is zero (we can always assume
this after Tschirnhaus transform Z 7−→ Z − a1

d ) then its Newton polyhedron
"begins" with one face of dimension 1 et this allows us to repeat the classical
Newton-Puiseux method for polynomials with coefficients in the field of power
series in one variables. Thus both theorems are equivalent.
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In particular this allows us to prove the following result that says that the roots
of a quasi-ordinary polynomial whose coefficients are in a "good" subring of
power series are still in this subring (after replacing the xi’s by some of their
powers):

Theorem 4.3.4. — [PaRo12] Let k be an algebraically closed field of char-
acteristic zero. Let us consider, for any n ∈ N, a subring k{{x}} of kJxK
containing the ring of polynomials, satisfying the Implicit function Theorem,
stable by division by the xi’s and stable par composition by powers of the xi’s.
Then any monic polynomial with coefficients in k{{x1, ..., xn}} whose discrim-
inant is equal to uxα1

1 ...xαnn , where u ∈ k{{x1, ..., xn}} is a unit and α1,...,

αn ∈ N, has its roots in k{{x
1
k
1 , ..., x

1
k
n }} for some k ∈ N∗.

This result is in particular valid for the rings of germs of quasi-analytic func-
tion that do not satisfy the Weierstrass preparation theorem.

Let us mention also that we can use the strong Artin approximation Theorem
(see Corollary 3.3.16) instead of the classical Artin approximation Theorem in
the last step. In this case we obtain the following result (saying that if P (Z)
is close to be quasi-ordinary then it is close to be ν-quasi-ordinary):

Theorem 4.3.5. — [PaRo12] Let d ∈ N and α ∈ Nn. Then there exists a
function β : N −→ N satisfying the following property:
For any integer c and any monic polynomial P (Z) ∈ kJx1, ..., xnK[Z] of degree d
in Z whose discriminant is equal to xα times a unit modulo (x)β(c), there exists
a compact face of dimension 1 of the Newton polyhedron of P (Z) containing
(0, ..., 0, d), denoted by S, such that

NP ⊂ |S|+ {j ∈ Nn/j1 + · · ·+ jn ≥ c}.

Finally let us mention that this method allows us to prove the Abhyankar-
Jung Theorem for polynomials with coefficients in kJx1,...,xnK

I where k is a char-
acteristic zero field and I is a binomial ideal (see Theorem 6.2 [PaRo12])).
This result generalizes a theorem proven by Gonzaléz Péréz in the case of
polynomials with coefficients in the ring of germs of holomorphic functions in
a point of toric variety [Go00].

4.3.2. Newton-Puiseux method for Abhyankar valuations and gen-
eralization of the Abhyankar-Jung Theorem. — The second work done
in relations with the description of the roots of polynomials with coefficients
in the ring of power series over a field of characteristic zero is the study of the
Newton-Puiseux method with respect to a rank one Abhyankar valuation.

The first natural idea to find the roots of a polynomial with coefficients in
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the ring of power series in n variables over a field of characteristic zero involves
the use of Newton-Puiseux theorem n times (i.e. the formula (14) for the al-
gebraic closure of k((t))). For example in the case n = 2, this means that the
algebraic closure of k((x1, x2)) is included in

L :=
⋃
k2∈N

⋃
k1∈N

k
((

x
1
k1
1

))((
x

1
k2
2

))
.

But this field, which is algebraically closed, is very much larger than the alge-
braic closure of k((x1, x2)) (see [Sa10] for some thoughs about this). Moreover
the action of the k1-th and k2-th roots of unity are not sufficient to generate the
Galois group of the algebraic closure since there exist elements of k((x1))((x2))
which are algebraic over k((x1, x2)) but are not in k((x1, x2)). For instance
consider

x1

√
1 +

x2

x1
=
∑
i≥0

(1
2

i

)
1

xi−1
1

xi2 ∈ Q((x1))((x2))\Q((x1, x2)).

Nevertheless a deeper analysis of the Newton-Puiseux method leads to the
fact that it is enough to consider the field of fractions of Puiseux power series
whose support is included in a rational strictly convex cone :

Theorem 4.3.6. — [McD95] Let P (Z) ∈ k((x1, ..., xn))[Z]. Then there exist
a rational strictly convex cone σ containing Rd≥0 and k ∈ N∗ such that the roots
of P (Z) are in the fraction field off =

∑
(l1,...,ln)∈Z2

al1,...,lnx
l1
k

1 ....x
ln
k
n / Supp(f) ⊂ σ

 .

We can also find a proof of this result and of some strengthened versions
of it in [Go00], [Aro04], [ArIl09], [SV11]. But once more, for any rational
strictly convex cone of R2, denoted by σ, R2

≥0 ( σ, there exist elements whose
support is in σ but that are not algebraic over k((x1, ..., xn)). On the other
hand if a power series with support in σ is algebraic over k((x1, ..., xn)) it is
not clear what are its conjugates.

Hence we see that two problems emerge:

• Characterize the power series with support in "large" cones that are al-
gebraic over k((x1, ..., xn)) (or at least give necessary conditions in order to
insure that such a series is algebraic over k((x1, ..., xn))).

• Find a description of the Galois group of a polynomial P (Z) with coeffi-
cients in kJx1, ..., xnK, or at least relate properties of one root of P (Z) with
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properties of the others.

The work done in [Ron13b] and presented here is strongly inspired by the
article [To90] where a similar study is done for the valuation ord when k = C
with analytic methods. Most of the results presented here have been stated by
Tougeron in the case of the valuation ord. Our work has essentially two parts.
First of all we study the Newton-Puiseux method for rank one Abhyankar val-
uations. The context is the following:

We denote by kJxK the ring of formal power series in n variables over a charac-
teristic zero field k. We consider a rank one valuation ν which is non-negative
on kJxK and centered at the maximal ideal of kJxK. Such valuation is called an
Abhyankar valuation if the Abhyankar inequality is an equality for it. This is
equivalent to say that it is a monomial valuation after a sequence of blowing-
ups. We denote by Vν the valuation ring of ν and by V̂ν its completion for
the Krull topology. We denote by Kn the faction field of kJxK and by K̂ν that
of V̂ν . We set GrνVν :=

⊕
i∈R+

pν,i
p+ν,i

, where pν,i := {f ∈ Vν/ ν(f) ≥ i} and

p+
ν,i := {f ∈ Vν / ν(f) > i}, the associated graded ring of Vν . Since ν is an

Abhyankar valuation we can show that we have an isomorphism

V̂ν ' ĜrνVν .

In particular we can see kJxK and Vν as subrings of ĜrνVν .

In order to apply the Newton-Puiseux method in kJxK, consisting essentially
to construct a root of a monic polynomial of kJxK[Z] by successive approxi-
mations, we need to work in the associated graded ring of Vν and define what
will be the equivalent of the fractional powers of t when we use the Newton-
Puiseux method in kJtK (the ring of power series in one variable). This is the
motivation of the following definition:

Definition 4.3.7. — [Ron13b] Let us fix d ∈ R+. A homogeneous element
(of degree d) with respect to the valuation ν, is an element γ belonging to a
finite extension of Vν whose minimal polynomial has the form

Zq + g1Z
q−1 + · · ·+ gq

where gk ∈ pν,dk for 1 ≤ k ≤ q. If gk is the image of an element of kJxK, for all
k, we say that γ is an integral homogeneous element with respect to ν.

In this case the valuation ν extends uniquely to ĜrνVν [γ] by defining ν(γ) =
d.
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Example 4.3.8. — If ν is a monomial valuation whose weights α1,..., αn are
Q-linearly independent, then the homogeneous elements with respect to ν are
the monomials of the form xβ11 ...x

βn
n where 〈α, β〉 ≥ 0 and βi ∈ Q.

Integral homogeneous elements are those for which the βi’s are non-negative.

Example 4.3.9. — If c is algebraic over k then c is an integral homogeneous
element of degree 0 with respect to any Abhyankar valuation.

Now we can apply Newton-Puiseux method and we obtain the following
result:

Theorem 4.3.10. — [Ron13b] Let k be a characteristic zero field and let ν
be an Abhyankar valuation. Set N := dimQΓ⊗Z Q. For any P (Z) ∈ k((x))[Z]
there exist integral homogeneous elements γ1,..., γN with respect to r ν such
that the roots of P (Z) are in K̂ν [γ1, ..., γN ].

The fact that we need only N homogeneous elements comes from the Prim-
itive Element Theorem.

This result asserts that the inductive limit of the fields K̂ν [γ1, ..., γN ] when
γ1,..., γN run over all integral homogeneous elements (we denote this limit by
Kν) contains an algebraic closure of k((x)) (in fact it is an algebraically closed
field). Thus we have two field extensions:

(15) k((x)) −→ K̂ν −→ Kν

and the Galois group of the second extension has a quite simple description
since it acts only on homogeneous elements. Thus it is very natural to study
irreducible monic polynomials of kJxK[Z] that remain irreducible in V̂ν [Z] since
their Galois group will act only on homogeneous elements.

Let us mention that we can also prove the following result that will be very
useful in the sequel (for a polynomial R(Z) ∈ V̂ν [Z], we say that ν(R(Z)) ≥ r
if all the coefficients ai of R(Z) satisfy ν(ai) ≥ r) :

Proposition 4.3.11. — [To90][Ron13b] Let P (Z) ∈ V̂ν [Z] be a monic poly-
nomial of degree d without no multiple factor. Let us write P (Z) = P1(Z)...Pr(Z)

where the Pi(Z) ∈ V̂ν [Z] are irreducible monic polynomials. Let Q(Z) ∈ V̂ν [Z]
be another monic polynomial of degree d. Let z1,..., zd be the roots of P (Z). If

ν(P (Z)−Q(Z)) > dmax
i 6=j
{ν(zi − zj)}
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then we may factor Q(Z) = Q1(Z)...Qr(Z) where the Qi(Z) ∈ V̂ν [Z] are irre-
ducible monic polynomials and

ν(Qi(Z)− Pi(Z)) ≥ ν(P (Z)−Q(Z))

d
.

Remark 4.3.12. — The hypothesis is satisfied if ν(P (Z)−Q(Z)) > d
2 ν(∆P )

where ∆P is the discriminant of P (Z).

Then we study the particular case of monomial valuations whose weights
are positive integers. We can prove that in the previous construction we can
replace K̂ν by a smaller field. First let us give a definition: we fix α ∈ Rn>0

and we denote by να the monomial valuation defined by να(xi) = αi for all i.
A (α)-homogeneous polynomial is a weighted homogeneous polynomial for the
weights α1,..., αn. Then we can define the following valuation ring:

Vα :=
{
A ∈ V̂να / ∃Λ a finitely generated sub-semigroup of R≥0,

∃θ ∈ k[x] (α)-homogeneous, ∀i ∈ Λ ∃ai ∈ k[x] (α)-homogeneous,

∃a ≥ 0, b ∈ R ∀i ∈ Λ ∃m(i) ∈ N s.t. m(i) ≤ ai+ b, να

( ai

θm(i)

)
= i and A =

∑
i∈Λ

ai

θm(i)

}
.

We denote by Kα its fraction field. Thus we have the following result whose
proof is inspired by a result of Gabrielov [Gab73] and is based on the Implicit
function Theorem of Tougeron (cf. Theorem 3.3.2).

Theorem 4.3.13. — [To90][Ron13b] Let k be a characteristic zero field and
let να be a monomial valuation. We set N := dimQΓ ⊗Z Q. For any P (Z) ∈
k((x))[Z] there exist integral homogeneous elements γ1,..., γN with respect to
ν such that the roots of P (Z) are in Kα[γ1, ..., γN ].

In the case the αi’s are Q-linearly independent this statement is exactly
Theorem 4.3.6 and the cone σ satisfies 〈β, α〉 > 0 for any β ∈ σ, β 6= 0 (this
comes essentially from Example 4.3.8).

In the case k = C, α ∈ Nn and the coefficients of P (Z) are in C{x}, we can
replace Vα by the following valuation ring VC{x}α (cf. Example 6.13 [Ron13b]):

VC{x}α :=

{
A =

∑
i∈Λ

ai

θm(i)
∈ Vα / ∃C, r > 0 t.q. |ai(ξ)| ≤ Cri||ξ||να(ai)

α ∀ξ ∈ Cn
}
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where ||ξ||α := max
j=1,...,n

∣∣∣∣ξ 1
αj

j

∣∣∣∣ for any ξ ∈ Cn.

We can prove easily that an element of VC{x}α defines an analytic function on

Da,C :=
⋃

K > 0, ε > 0
ε < KaC

CK,ε

where

CK,ε :=
{
x ∈ Cn / dα(x, θ−1(0)) > K||x||α and ||x||α < ε

}
.

Here is a picture showing an example of such domain (in grey) for n = 2 and
α = (1, 1):

x2

x1

θ−1(0)

θ−1(0)

This remark is the key point for proving the following theorem:

Theorem 4.3.14. — [To90][Ron13b] Let k be a characteristic zero field and
α ∈ Rn>0. Let P (Z) ∈ kJxK[Z] be a monic polynomial whose discriminant is
equal to δu where δ ∈ k[x] is (α)-homogeneous and u ∈ kJxK is a unit. If
P (Z) = P1(Z)...Ps(Z) where the Pi(Z)’s are irreducible monic polynomials of
kJxK[Z], then the Pi(Z)’s remain irreducible in Vα[Z].

Sketch of proof. — We prove the theorem in several steps:
• First step: Let us assume that k = C, α ∈ Nn and the coefficients of P (Z)
are convergent power series. Let Q(Z) be an irreducible monic factor of P (Z)
in Vα[Z]. By Theorem 4.3.13 and the remark that follows this theorem the
coefficients of Q(Z) are in VC{x}α . Thus the coefficients of Q(Z) define analytic
functions on a domain Da,C . We can shrink Da,C in order to assume that
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δ−1(0)∩Da,C = ∅. On the other hand the coefficients of Q(Z) are polynomials
depending on the roots of P (Z) which are locally analytic functions outside of
δ−1(0). Thus the coefficients of Q(Z) are analytic on Da,C and locally analytic
outside of δ−1(0). Since any point outside of δ−1(0) can be moved to a point
of Da,c along a curve parametrized as follows: t 7−→ (c1t

α1 , ..., cnt
αn), the

monodromy Theorem asserts that the coefficients of Q(Z) are in fact analytic
outside δ−1(0). Since P (Z) is monic, its roots are bounded near the origin,
hence the coefficients of Q(Z) also. Thus these may be extended to analytic
functions in a neighborhood of the origin. Thus the coefficients of Q(Z) are
analytic and Q(Z) = Pi(Z) for some i since the Pi(Z)’s are irreducible in
C{x}[Z].
• Second step: Now we prove the case k = C, α ∈ Rn>0 and the coefficients
of P (Z) are in C{x}. This can be done by approximating να by monomial
valuations whose weights are positive integers. This part is a bit technical, so
we do not give more details here, but this can be done thanks to the particular
form of the elements of Vα.
• Third step: The general case is proven in a similar way as the general case
of the proof of Theorem 4.3.3 (see last step of this proof): we embed k in C
and we use Artin approximation Theorem. Then we conclude by using the
following proposition that allows us to come back to kJxK (we skip the details
here):

Proposition 4.3.15. — [Ron13b] Let k −→ k′ be a field extension. Let
f ∈ k′JxK be a power series which is algebraic over kJxK and let L be the
extension of k generated by the coefficients of f . Then k −→ L is a finite field
extension.

This proposition is proven by using Theorem 4.3.13 and generalizes the main
theorem of [CuKa08] in characteristic zero.

Remark 4.3.16. — In fact we can show that if P (Z) ∈ kJxK[Z] is an irre-
ducible monic polynomial satisfying the hypothesis of the previous theorem
then its Galois group is isomorphic to the Galois group of the minimal poly-
nomial of one integral homogeneous element with respect to ν. In the case of
one monomial valuation whose weights are rational numbers this means that
the Galois group of P (Z) is isomorphic to the Galois group of one weighted-
homogeneous polynomial (cf. Remark 7.6 [Ron13b]).

We can push the previous proof a bit further in order to obtain the following
result:

Theorem 4.3.17. — [Ron13b] Let k be a characteristic zero field and α ∈
Rn>0. Let P (Z) ∈ kJxK[Z] be a monic polynomial whose discriminant is equal
to δu where δ ∈ k[x] is (α)-homogeneous and u ∈ kJxK is a unit. We set
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N := dimQ(Qα1 + · · ·+Qαn). Then there exist integral homogeneous elements
with respect to ν, γ1,..., γN , and a (α)-homogeneous polynomial c(x) ∈ k[x]
such that the roots of P (Z) are in 1

c(x)k
′JxK[γ1, ..., γN ] where k −→ k′ is a finite

field extension.

This result is a generalization of the Abhyankar-Jung Theorem. Indeed, if
the αi’s are Q-linearly independent then the only integral homogeneous ele-
ments are the fractional powers of the xi’s and their products. The Abhyankar-
Jung Theorem corresponds exactly to the statement of Theorem 4.3.17 in this
case (with the fact that c(x) may be chosen equal to one, which is quite easy
to prove in this case).

Let us finish this section by mentioning the following diophantine result that
gives a necessary condition for an element of K̂ν to be algebraic over k((x)).
This is an easy corollary of Corollary 3.3.31 stated in the first part of this
thesis.

Theorem 4.3.18. — [Ron13b] Let ν be an Abhyankar valuation and let z ∈
K̂ν be algebraic over k((x)). Then there exist two constants C > 0 and a ≥ 1
such that ∣∣∣∣z − f

g

∣∣∣∣
ν

≥ C|g|aν ∀f, g ∈ Fn.
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• (with H. Hauser) Let us consider the following equation where h(x) and the
fi(x) ∈ C{x1, ..., xn} are convergent power series,

p∑
i=1

fi(x)yi = h(x)

and let ŷi(x) ∈ CJxj , j ∈ JiK, 1 ≤ i ≤ p, be a solution of this equation where
the Ji’s are subsets of {1, ..., n} (i.e. ŷi(x) depends only on xj with j ∈ Ji).
The problem is to give conditions to insure that this kind of equations has
convergent power series solutions ỹ(x) satisfying ỹi(x) ∈ C{xj , j ∈ Ji} for all i
(this is a kind of Artin approximation property with constraints). The idea is
to show that this approximation property is satisfied if the diagram of initial
exponents of the C-vector space

∑p
i=1 kJxj , j ∈ JiK.fi(x) is finitely generated.

One application would be the following statement:

Statement. — Let k be a valued field. We set x′ := (x1, ..., xn−1) and x =

(x1, ..., xn). Let A := kJx′K and B :=
kJxK

(x1 − x2xn)
. Let f ∈ k{x} with f(0) = 0

be an element whose image in B is integral over A of degree d. Then f is
integral over k{x′}.

This statement is equivalent to Gabrielov Theorem (when char(k) = 0). Our
goal is to prove this result over any valued field k of any characteristic. In this
case we would have to use the finiteness of the sequence of key polynomials
associated to an extension of an Abhyankar valuation [Te13].

Another problem is to understand when a C-vector space E defined as above,
E =

∑p
i=1 kJxj , j ∈ JiK.fi(x), has a finitely generated diagram of initial expo-

nents. In particular what happens when the fi’s are polynomials or algebraic
power series?
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• (with H. Hauser) One problem is to describe the set of power series so-
lutions of a system of analytic equations. The Gringberg-Kazhdan-Drinfeld
Theorem asserts that the formal neighborhood of an arc on an algebraic va-
riety (i.e. a one variable power series solution of the equations defining the
variety) is isomorphic to the direct product of an (finite dimensional) algebraic
variety and a smooth infinite dimensional variety (cf. [GrKa00] and [Dr02]).
We would like to give a similar description in the case of power series in several
variables.

• We saw in Example 3.1.10 that the Galligo-Grauert-Hironaka division The-
orem applies to formal power series or convergent power series. For algebraic
power series, this division theorem is no more valid as shown by the Kashiwara-
Gabber Example (see Example 3.5.4). Hironaka raised the problem of charac-
terizing the smallest class of power series stable by division. Let us consider
the following statement:

Statement. — Let f , g1,..., gs ∈ k〈x〉 be algebraic power series over a field
k. There exists a constant C > 0 such that the following holds:
Let r be the remainder of the division of f by g1,..., gs. Let us write r =∑∞

k=1 rn(k) where rh is a non-zero homogeneous polynomial of degree h and
(n(k))k is an increasing sequence of integers. Then

n(k + 1) ≤ C n(k) ∀k.

We are able to prove this statement in the case the ideal generated by the
gi’s is a radical ideal or a principal ideal using a very nice result of Izumi [Iz98].
Our goal is to prove this result without assumption on the ideal (g1, ..., gs). In
particular this statement asserts that the example of Kashiwara-Gabber is the
worst example that we may obtain by dividing algebraic power series by alge-
braic power series.

• Theorem 3.3.31 and the fact that Theorem 3.3.1 corresponds to a Łojasiewicz
inequality as in Remark 3.3.6 are very nice examples of results valid in Dio-
phantine geometry over algebraic number fields. The problem in the Strong
Artin approximation Theorem is that we restrict to the mA-adic valuation of
the local ring A. But there is no canonical valuation on A := kJt1, ..., tmK when
n ≥ 2 and in the Strong Artin approximation Theorem it would be natural
to take into account others valuation than the mA-adic valuation. Exactly as
in Diophantine geometry where all the places are taken into account through
heights, we would like to find a way of defining an analogue of the Artin func-
tion which depends on all (Abhyankar?) valuations centered at the maximal
ideal of A. Let us consider the following statement:



CHAPTER 5. PERSPECTIVES 115

Statement. — Let f ∈ k[t1, ..., tm, X1, ..., Xn]. Then there exist two constants
K > 0 and a > 0 such that

sup
ν

{
|f(z)|ν

dν(z, f−1(0))a

}
≥ K, ∀z ∈ Am

where ν runs over all divisorial valuations centered at the maximal ideal of A.

We are able to prove this statement when k is an algebraically closed of char-
acteristic zero and m = 2 in the following two cases: either f ∈ k[X1, ..., Xn] is
a binomial, either f ∈ k[X1, X2] is irreducible (we can mention that the tools
used for proving this statement in both cases uses resolution of singularities
in a very similar way to [Ja00]. In particular it shows that, by taking into
account all the divisorial valuations, we get a kind of Łojasiewicz inequality
which is not valid if we consider only the mA-adic valuation. This statement
is not very satisfactory for several reasons but we would like to find a way of
taking into account all the divisorial valuations of A for defining a notion of
distance in An that would yield a kind of linear strong Artin approximation
Theorem.

• A question that seems to have relations with the previous one is the follow-
ing: how to give a valuative description of the Galois group of an irreducible
polynomial with coefficients in kJx1, ..., xnK where char(k) = 0? We saw how
to construct an algebraically closed field Kν containing k((x)) for any Ab-
hyankar valuation ν. Let us denote by K̂alg

ν the algebraic closure of k((x)) in
K̂ν and by Kalg

ν the algebraic closure of k((x)) in Kν . Thus the field extension
k((x)) −→ Kalg

ν of k((x)) in its algebraic closure splits into two extensions
k((x)) −→ K̂alg

ν −→ Kalg
ν (see 15). Since Kalg

ν is an algebraic closure of k((x))
for any ν, these fields are all isomorphic. The problem is to understand the
image of the Galois group Gal(Kalg

ν , K̂alg
ν ) in the Galois group Gal(Kalg

µ ,k((x)))
where ν and µ are two Abhyankar valuations. There are good hints for ex-
pecting that Gal(Kalg

µ ,k((x))) is generated by all the Gal(Kalg
ν , K̂alg

ν ) when ν
runs over all divisorial valuations centered at the maximal ideal in the case
n = 2. This would be a kind of Hasse principle for monic polynomials with
coefficients in kJx1, x2K.

• We would like to compute a sharp bound of the Artin function of a cusp
Xp

1 −X
q
2 seen as a polynomial with coefficients in CJt1, t2K (with p ∧ q = 1).

The situation is more clear by Theorem 4.1.5 since we know that the difficulty
occurs for approximating solutions whose order is large.
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