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0.1. Introduction 1

0.1 Introduction

These notes are intended to be an introduction to the use of diagrams to study
problems in the domain of finitely presented groups, in particular decision prob-
lems such as the word problem. The main topics are: van Kampen diagrams,
isoperimetric inequalities, small cancellation theory and hyperbolic groups. To il-
lustrate the ideas some examples will be studied in detail: a polynomial lower
bound for the isoperimetric inequality for free nilpotent groups (studied by Tim
Riley in his course), and a polynomial upper bound for the isoperimetric inequal-
ity for certain normal subgroups of hyperbolic groups. Details concering some of
the topics touched on during the course are given here : I would like to thank
Tim Riley, Noel Brady and all the others who have helped me to improve the
preliminary version of these notes. Many thanks are due to the Centre de Recerca
Matemàtica, and in particular to the organisers José Burillo and Enric Ventura,
for their invitation to give this course, and for ensuring the smooth running of the
event. And of course one is always grateful to the members of the audience for
making the workshop a lot of fun.

In the first chapter, we shall see how the Cayley graph of a finitely generated
group gives a geometric object providing a language in which to talk about many
of the properties of the group. Geometric group theory studies properties of the
Cayley graphs of groups.

In the second chapter we describe van Kampen’s diagrams which provide
a method for visualising relations in presentations of groups. We show how to
obtain such diagrams and their dual pictures. We shall give some generalisations
and applications to free products and HNN extensions.

Small cancellation theory gives a method of working with certain restricted
forms of finite presentations; this is studied in chapter 3. When a finite presenta-
tion satisfies certain easily verifiable conditions, the word problem is solvable in a
particularly simple way. This theory has its origins in Dehn’s original work, and
led to Gromov’s definition of word hyperbolic groups.

In chapter 4 we give some details about quasi–isometries and show that a
quasi–isometry of Cayley graphs preserves the property of being finitely presented,
the property of having a solvable word problem, and the type of isoperimetric
inequality satisfied. We shall describe some properties of word hyperbolic groups.

A certain method for obtaining lower bounds for isoperimetric inequalities
is described in chapter 5. This has an application to nilpotent groups, where this
polynomial (of degree c=nilpotency class) bound can be combined with the (c+1-
degree) polynomial upper bound (see chapter 4 of Tim Riley’s notes) in the case
of free nilpotent groups.

Finally we show how to obtain a polynomial isoperimetric inequality for
certain normal subgroups of hyperbolic groups which are cyclic extensions. This
applies to certain examples of Noel Brady.

Unfortunately time did not permit the covering of other topics, in partic-
ular Weinbaum’s proof [30] of the conjugacy problem for alternating knots and
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links, Gromov’s version of small cancellation theory (see Ollivier’s paper [26]), and
Klyachko’s [19] work on the Kervaire conjecture (see also [12]).



Chapter 1

Dehn’s problems and Cayley
graphs

We shall suppose known the basic definition and properties of a free group — some
of the many references available for this, in particular some favouring a geometric
approach, are the books by Magnus, Karrass and Solitar [21], Lyndon and Schupp
[LS], Bridson and Haefliger [6], Ghys and de la Harpe [14] and Hatcher [17].

We shall use F (A) to denote the free group on A. Let R ⊂ F (A), and let
〈〈R〉〉 denote the subgroup normally generated by R, i.e. the intersection of all
normal subgroups which contain R. This is of course a normal subgroup, and it is
not hard to see that it can be described as:

〈〈R 〉〉 = {
M∏
i=1

piri
εipi

−1 | ∀M ∈ N,∀pi ∈ F (A),∀ri ∈ R,∀εi = ±1}

Let Γ be a group, and A a generating set for Γ. In the usual näıve sense,
this means that A is a subset of Γ (In this sense, the trivial group could only
have one element in a generting set.) Here this will mean that there is a surjective
homomorphism Φ : F (A) →→ Γ. (Thus the trivial group can have a large generating
set.) Any word w in (i.e. finite product of) the generators and their inverses thus
represents an element of Γ; the length of w we write `(w), meaning the number of
generators and their inverses appearing in the product. The obvious shortenings
of this product, meaning the removal of subwords of the form aa−1 and a−1a for
a ∈ A are called reductions, and the word is reduced if none are possible.

The kernel kerΦ is a normal subgroup; if R ⊂ F (A) is a subset which nor-
mally generates kerΦ, i.e. 〈〈R〉〉 = kerΦ, then say that R is a set of relators for
Γ with respect to the generating set A. Such a set R always exists — it suffices
to take R = kerΦ. What is more interesting is to try to obtain, if possible, a
finite set R, or if not, some recursive or “systematic” set R. The corresponding
presentation of Γ is written 〈A | R〉 or 〈A;R〉, meaning that the map A → Γ
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4 Chapter 1. Dehn’s problems and Cayley graphs

induces an isomorphism F (A)/〈〈R 〉〉 → Γ. The group Γ is finitely generated if it
has a presentation with A finite, and is finitely presentable (or finitely presented)
if it has a presentation with both A and R finite. We shall always assume that the
words in R are cyclically reduced, as their cyclic reduction does not change the
normal subgroup that is generated.

In 1912, Max Dehn [10] (this is available in an English translation, thanks
to Stillwell) posed the three algorithmic problems for finitely presentable groups
at the base of combinatorial group theory. It is worth noting that he did this well
before Turing and Gödel’s work, though in the spirit of Hilbert’s problems. It was
not until the 1950’s that it was proved that in general such algorithms do not exist
(by Novikov and Boone). Here are the three problems in their original formulation
(Stillwell’s translation [10, pages 133-134]) (see Figure 1.1 for the original):

The Word Problem: An element of the group is given as a product of gen-
erators. One is required to give a method whereby it may be decided in a finite
number of steps whether this element is the identity or not.

The Conjugacy Problem: Any two elements S and T of the group are given. A
method is sought for deciding the question whether S and T can be transformed
into each other, i.e. whether there is an element U of this group satisfying the
relation S = UTU−1.

The Isomorphism Problem: Given two groups, one is to decide whether they
are isomorphic or not (and further whether a given correspondence between the
generators of one group and elements of the other group is an isomorphism or
not).

Figure 1.1: Dehn’s three decision problems
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An extremely efficient solution exists for certain finite presentations which
have a Dehn Algorithm. We say that a presentation has such an algorithm when
any word w ∈ 〈〈R〉〉 always contains more than half of some relator (considered
cyclically): i.e. w is a word in the generators of the form Ur′V and there is some
(cyclic conjugate of some) r ∈ R ∪ R−1 such that r = r′r′′ and `(r′′) < `(r′). If
this is the case, then the group element represented by the subword r′ is equal
in the group to the element represented by r′′−1, and replacing r′ by this shorter
word reduces the length of w. Continuing in this way, w is trivial if and only if this
procedure of looking for one of the finite number of long subwords of the cyclic
conjugates of the relators, and replacing it by shorter word to give an element equal
to w in the group, eventually leads to the empty word. If a finite presentation
has this property then the group presented is word hyperbolic, and any word
hyperbolic group has such a finite presentation [2] (this was originally pointed out
by Jim Cannon — in fact it has such a presentation with respect to any finite
generating set: it suffices to add enough relators, see for instance [2]).

The first two problems describe a property of a finitely presentable group: if
there is such an algorithm for the finite presentation P1 of Γ, and P2 is another
finite presentation of Γ, then there is algorithm to solve the problem over P2 (as
one can find an isomorphism between the presentations when one knows that one
exists, by simply enumerating all Tietze transformations).

The third problem is so badly unsolvable in general that it is impossible to
give an algorithm to recognize presentations of the trivial group. This is despite
the fact that there is a procedure to enumerate all presentations of the trivial
group (via Tietze transformations).

There is an obvious enumeration of 〈〈R〉〉 by using the usual diagonal method
on the lists of different numbers of conjugates of elements of R±1, ordered by the
list of conjugating elements pi ∈ F (A). The hard part of the word problem resides
in detecting words which represent non–trivial elements of Γ.

Given the enumeration procedure described above, if we know that the word
w does indeed represent the trivial element in the presentation, the expression for
w as a product of conjugates of relators w =

∏M
i=1 pir

εipi
−1 can be found, where

εi = ±1 and M ∈ N. The smallest such number M is called the area of w.
The function δP : N → N : δP(n) = max{w∈〈〈R〉〉,`(w)≤n}AreaP(w) is called the
Dehn function of the presentation P. An isoperimetric inequality for the presen-
tation is a function f : N → R such that for all n ∈ N, δP(n) ≤ f(n). We shall
study the dependence of these functions on the actual presentation later.

Theorem 1.1. A finite presentation satisfies a recursive isoperimetric inequality if
and only if it has a solvable word problem.

Proof. If the word problem is solvable, then for each n ∈ N, and each word w of
length n, it is possible to decide whether or not w lies in 〈〈R〉〉. If it does, then the
enumeration procedure above eventually gives some expression for w as a product
of conjugates of relators. In this way, examining all words of length at most n, this
gives an upper bound for the Dehn function δP(n) as required.
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If a recursive function f bounding the Dehn function is know, and w ∈ F (A)
of length n is given, then calculate f(n). It remains to calculate all products of at
most f(n) conjugates of the relators and their inverses. A priori the lengths of the
conjugating elements which need to be tried is not bounded, and so all elements
of F (A) must be tried. We shall see later 2.2, using van Kampen diagrams, that it
suffices to check conjugating elements of length at most f(n) maxr∈R `(r) + `(w),
so that there is a finite number of combinations which must be checked. This is
the only step which is not immediate and it is best seen from the diagrams which
are to be introduced in chapter 2. �

In the 1980’s Gromov introduced a class of groups generalising discrete groups
of isometries acting cocompactly on hyperbolic spaces. It is an interesting exercise
to read Gromov’s papers about hyperbolic groups alongside Dehn’s articles about
the conjugacy problem for surface groups (for instance in Stillwell’s translation,
see [10]). There are several equivalent definitions of the class of hyperbolic groups,
some of which we shall explore later. One definition is in terms of area functions:

Definition 1.2. A finitely presentable group Γ is word hyperbolic if it has a finite
presentation which satisfies a linear isoperimetric inequality.

In fact a group is word hyperbolic if and only if it satisfies a sub–quadratic
isoperimetric inequality [4],[27]. Also, as we noted earlier, a group is word hyper-
bolic if and only if it has a finite presentation which has a Dehn algorithm (see
for instance [2]). It is easy to solve the word and conjugacy problems for finitely
generated abelian groups, or free groups with respect to free generating sets. The
first case gives a quadratic isoperimetric inequality, the second a linear one.

The idea of representing a group by a graph goes back to Cayley, though he
only uses them in the context of finite groups. Dehn extends the ideas to infinite
groups and uses them (Gruppenbilder) intensively to study fundamental groups of
closed compact surfaces.

Definition 1.3 (Cayley graph). Let A be a generating set for the group Γ. The
Cayley graph of Γ with respect to A, written Cay1(Γ,A), has a vertex for each
element g ∈ Γ, and for each such vertex g1, and each a ∈ A, there is an oriented
labelled edge from the vertex g1 to the vertex g2 if and only if g2 = g1.a in Γ (which
we write g2 =Γ g1a). Notice that it may be that g1 =Γ g2 when the generator a
represents the identity element of Γ. The fact that A is a generating set means that
this graph is connected. Assign length 1 to each edge to consider Cay1(Γ,A) as a
metric space, where the distance dA(v, v′) between the points v, v′ is the length of
the shortest path between them.

On Γ this defines an integer–valued metric on Γ called the word–metric (it
depends on the choice of generating set). As is usual in the context of labelled
oriented graphs, to a path between vertices in the Cayley graph is associated a
word in the free group F (A) (this word may be unreduced). The word is obtained
by writing the letter corresponding to the label on each edge in the order traversed,
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Figure 1.2: From Cayley’s paper [7]: a Cayley graph the alternating group A4,
with presentation 〈x, y | x3, y3, (xy)3〉 (the vertices a, j, k are repeated).

with the exponent ±1 according to whether the direction of the path agrees with
(+1) or is opposite to (-1) the orientation of the edge.

Some elementary properties of Cayley graphs :
• The group Γ acts freely on the left on Cay1(Γ,A) by isometries with respect

to the distance dA, and transitively on the set of vertices.
• The Cayley graph Cay1(Γ,A) of a finitely generated group is a covering

space of the 1–complex K(A), with one vertex and |A| edges (each forming a
loop), whose fundamental group is F (A). We can regard K(A) as Cay1(1,A), a
Cayley graph of 1, the trivial group.

• The usual correspondence between covering spaces and subgroups of the
fundamental groups, says that when 〈A | R〉 is a presentation (finite or infinite)
of the group Γ, the Cayley graph Cay1(Γ,A) is the cover of K(A) corresponding
to the normal subgroup 〈〈R〉〉 of F (A), the fundamental group of K(A).

• In fact, if Γ′ is a normal subgroup of Γ, then the quotient space
Cay1(Γ,A)/Γ′ is a Cayley graph of Γ/Γ′.

Figure 1.3: Cayley’s description of the group acting on its graph.

• Fixing some vertex v of Cay1(Γ,A) as a base point (for instance the vertex
corresponding to the identity element 1), the word w ∈ F (A) defines a unique



8 Chapter 1. Dehn’s problems and Cayley graphs

path γw based at v. The word represents the identity element of Γ if and only if
the path γw is a loop (note Cayley’s remark on this, Fig. 1.3).

• To solve the word problem, it suffices to build the Cayley graph, or at least,
to give an algorithm which, given a word of length n, constructs the ball of radius
n/2 about the identity element in the Cayley graph, which is enough of it to see
whether or not the word w labels a loop or not (this is basically the Todd–Coxeter
algorithm).

Here are three essential, elementary, examples of cayley graphs. For more examples
of Cayley graphs of two generator groups, seen as covering spaces, see [17, p. 58].

Figure 1.4: Two Cayley graphs for Z with generating sets {1} and {3, 5}.

a b

Figure 1.5: The Cayley graph of a free group on two generators with respect to
a free basis; the a edges are horizontal, oriented from left to right, the b edges
vertical oriented upwards.



Chapter 2

van Kampen Diagrams and
Pictures

We now introduce the principal tool we shall use here for examining the word
problem. These are diagrams introduced by Egbert van Kampen in 1933 [29].

Definition 2.1 (van Kampen or Dehn diagram). Let P = 〈A | R〉 be a (usually
finite) presentation for the group Γ. As is usual, we shall suppose that the relations
in R are cyclically reduced. Let RC denote the cyclic closure of R, which is the
set of all cyclic conjugates of elements of R and their inverses:
RC = {(p−1rp)±1 | p an initial segment of r ∈ R}.

Let D be a finite, connected, oriented, based, labelled, planar graph where
each oriented edge is labelled by an element of A. The base point lies on the
boundary of the unbounded region of R2 −D. Suppose in addition that for each
bounded region (face) F of R2 − D, the boundary ∂F (of the closure of F ) is
labelled by a word in RC . This word is obtained by reading the labels on the
edges as they are traversed, starting from some vertex on the boundary of F , in
one of the two possible directions. Each label on the edge traversed is given a
±1 exponent according to whether the direction of traversal coincides with, or is
opposite to, the orientation of the edge. The choice of direction and starting point
alters the word read by inversion and/or cyclic conjugation. The boundary word
of the diagram D is the word w read on the boundary of the unbounded region
of R2 − D, starting from the base vertex. Then we say that D is a van Kampen
diagram for the boundary word w over the presentation P.

The diagram can also be viewed as a 2–complex, with a 2–cell attached to
the graph (viewed as a 1–complex) for each bounded region. This constructs a
combinatorial 2–complex, as we shall see below.

Usually we can suppose that w is a freely reduced word, though probably
not cyclically reduced.

9
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yyy
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x
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y

Figure 2.1: A diagram for w = x3yx−1y−1x−2y2x−2y−2x2 over the presenta-
tion 〈x, y | xyx−1y−1〉, and the same diagram for w deconstructed as w =
x2rx−2.yx−1rxy−1.yx−2rx2y−1.x−1rx.x−2rx2, where r = xyx−1y−1

In 1933, Egbert van Kampen [29] defined his diagrammatic method of con-
sidering which words represent the identity element in the group given by a finite
presentation. There he (essentially) stated the following result.

Theorem 2.2. Let P = 〈A | R〉 be a presentation of the group Γ = Γ(P).
1) If w ∈ 〈〈R 〉〉, i.e. w =P 1, then there is a van Kampen diagram for w over P.
2) If D is a van Kampen diagram for w over P, then w =P .

We shall in establish something stronger, where we may allow bounded re-
gions of the planar graph to have labels which are not freely (nor cyclically) re-
duced. This more general form will be useful when dealing with cancelling faces
in 2.7.
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Proposition 2.3. Let D be a finite, connected, oriented, based, labelled, planar graph
where each oriented edge is labelled by an element of A. Suppose in addition that
the bounded regions of R2 − D are labelled by words whose freely reduced forms
lie in 〈〈R〉〉, and that the boundary label is w. Then a finite, connected, oriented,
based, labelled, planar graph D′ can be obtained from D such that all bounded
regions are labelled by cyclically reduced words in 〈〈R〉〉, and the boundary label is
the reduced word corresponding to w.

Proof. 1) We shall assume that w is given as a freely reduced word. Write w =∏M
i=1 piri

εipi
−1, with ri ∈ R, εi = ±1, pi ∈ F (A). This is an equality in the free

group F (A).
If M = 1 then draw in the plane a circle subdivided into `(r1) segments (or

a regular polygon with `(r1) sides), and add an arc outside the circle at one of the
vertices; subdivide the arc into `(pi) segments. Orient and label each of the edges
appropriately. This is a van Kampen diagram for w (or rather for a word freely
equal to w). We show below how to alter the diagram to obtain a diagram such
that the boundary word is freely reduced.

base point

1p

1§
1r

Figure 2.2: The case M = 1 : w is the conjugate of a single relation

The general case: Draw M copies of the circle plus arc as before, all based at the
same base point in the plane. Subdivide the arcs and the circles, and orient and
label them appropriately.

When we assume that the relators in R are assumed to be cyclically reduced
words, we can also ensure that the labels on all the boundaries of the regions are
freely reduced words —a 1–dimensional reduction involving cancelling 1–cells.

If there is a vertex in the diagram other than the base vertex, which has
valency one, then removing this vertex and the incident edge changes the label on
the region having this edge on its boundary by a free reduction. If the valence one
vertex is the base vertex, then removing this edge and vertex would correspond to
a cyclic reduction of the boundary word w, which in general we do not allow, as
we regard this word is being fixed (up to free reduction).

Suppose that there are two edges e1 = (v, v1), e2 = (v, v2) emanating from
the same vertex v ∈ D, both edges labelled by the same letter x ∈ A, with the
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1
1
²r

2
2
²r

3
3
²
r

4

4
²

r

1
p

2
p

3
p

4p

Figure 2.3: First step in the construction of a van Kampen diagram: general case.

same orientation with respect to v, and such that e1 and e2 are adjacent edges
on the boundary of some face f of D (see figure 2.4). Identify the two edges e1
and e2, identifying the vertices v1 and v2. This changes the face f to the face f ′,
with two fewer edges, and in the label on the boundary of this face, the cancelling
letters x−1x are removed; all other face labels are unchanged.

Van Kampen says: the two 1–cells can be brought into coincidence by a de-
formation without any other change in the complex . There is however a problem,
as there are four cases to consider: case 1: v1 6= v 6= v2 and v1 6= v2;
case 2: v1 = v 6= v2; case 3: v1 = v = v2; case 4: v1 = v2 6= v.

2f

1f

2f

1f

fFace 

x

x

'fFace 

x

v

v

1v

2v

'v
1e

2e

Figure 2.4: Case 1: edge identification when v1 6= v 6= v2; here the face f is
bounded. The identification can be realised by a map of the plane to the plane
which essentially collapses a triangle onto an edge. Only one boundary label is
affected, and that by a free reduction.
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'fFace 

'D

x

x

fFace 
v

2
v

1
e

2
e

1
e

v

x

'D

Figure 2.5: Case 2: v1 = v 6= v2. Again the identification can be realised by a map
from the plane to the plane which collapses a triangle onto an edge, and only one
boundary label is affected, as before.

 

 

x

x fFace 

2
e

1
e

'D

''D

fFace 

v

Figure 2.6: Case 3: v1 = v = v2. Here the identification of e1 with e2 cannot be
realised while at the same time resting in the plane. However, we can realise the
identification as a graph in the plane, together with a graph in a 2–sphere, made
up of the two bounded regions D′, D′′ of the plane bounded by the edges e1 and e2.
This 2–sphere is attached to the rest of the diagram at the vertex v. The 2–sphere
is then discarded, leaving a diagram with fewer faces, and with the same labels
on the remaining faces, except the face f where a free reduction, cancelling the
adjacent letters x and x−1, has been performed.
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2
v=

1
v

v 'D

1
e

2
e

fFace 

fFace 

Figure 2.7: Case 4: v1 = v2 6= v. Here the entire subdiagram D′ enclosed by the two
edges e1 and e2 is removed. Identifying the edges e1 and e2 produces a 2–sphere
attached to the plane along the edge e1 = e2.

2) Suppose now that D is a van Kampen diagram, based at the vertex v, with
M bounded faces. Let f be a bounded face which meets the unbounded region of
the plane in a non-empty set B, containing an edge e, and let vf be the initial
vertex of e. Let r be the boundary label on f when read from vf . Let γ ⊂ ∂D be
a simple arc in the boundary ∂D from v to vf , with label p.

Removing the interior of the edge e from D gives a van Kampen diagram D′

with M − 1 bounded regions, possibly with some vertices of valence one. In the
unbounded region of the diagram D′, join to the base point v an arc labelled p
leading to a disk with subdivided boundary labelled r±1. Continuing in this way,
the whole diagram can be “deconstructed” to give a bouquet of circles describing
w as a product w =

∏M
i=1 piripi

−1 (as in figure 2.3). Again the equality here is
in the free group F (A). Notice that the length of the words pi is bounded by the
number of edges in D, which is bounded by `(w) + Mρ where ρ = maxr∈R `(r).
Alternatively, it is possible to find other words pi of length bounded by `(w)/2
plus the length of the shortest path in D from the i-th face to the boundary. �

It is important to underline the following aspects of the form of a van Kampen
diagram. Regarding the diagram as a planar 2–complex, it is a collection of disjoint
closed topological 2-cells joined by arcs (and vertices): removing the closures of
these 2–cells from the diagram leaves a collection of trees. There is a retraction of
the diagram onto a tree, realised by retracting each of the disc components to a
point.

In fact the first part of the above proof establishes something stronger, where
we may allow bounded regions of the planar graph to have labels which are not
freely (nor cyclically) reduced. This will be useful when describing reduction of
diagrams (see 2.7).

Proposition 2.4. Let D be a finite, connected, oriented, based, labelled, planar graph
where each oriented edge is labelled by an element of A. Suppose in addition that
the bounded regions of R2 − D are labelled by words whose freely reduced forms
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lie in 〈〈R〉〉, and that the boundary label is w. Then a finite, connected, oriented,
based, labelled, planar graph D′ can be obtained from D such that all bounded
regions are labelled by cyclically reduced words in 〈〈R〉〉, and the boundary label is
the reduced word corresponding to w.

Definition 2.5 (The presentation complex and the Cayley Complex). Let P = 〈A |
R〉 be a group presentation. The standard 2–complex K2(P) associated to the
presentation P, consists of:

a single vertex v, and an oriented 1–cell ei
(1) for each ai ∈ A, labelled ai;

a 2–cell ej
(2) for each rj ∈ R.

The 1–cells are attached to the 0–skeleton in the only way possible. Thus the
fundamental group of the 1–skeleton is the free group on the set A. The 2–cell
ej

(2) is attached to the 1–skeleton via a map identifying its boundary with a loop
in the 1–skeleton corresponding to the word rj . The resulting space is given the
quotient topology. Giving all 1–cells unit length, and viewing the 2–cell ej

(2) as a
regular euclidean polygon with `(rj) sides each of unit length, gives an additional
piecewise euclidean structure to the complex. (When there are relations of length
1 or 2, use a disk with circumference length 1 or 2; such relators can of course be
easily avoided.)

The Seifert–van Kampen theorem (in the simpler case when one component
is simply connected) tells us that π1(K2(P), v) = Γ(P).

The Cayley complex of the group Γ(P) with respect to the presentation P
is the universal covering space of K2(P). This is obtained from Cay1(Γ,A) by
adding 2–cells: for each g ∈ Γ, a 2–cell for each rj is added, based at the vertex
corresponding to g (i.e. a lift based at each vertex g of each attaching map).
Notice that for a relation r, which is a proper power, say r = sq, the vertex
g ∈ Cay2(Γ,A) is in the boundary of q attached 2–cells labelled r, as there are
q lifts of the attaching map which pass through this vertex, one based there, the
others based at gsq′ for 1 ≤ q′ < q.

Examples:
1) The presentation 〈x, y | xyx−1y−1〉 gives a standard complex homeomorphic to
the torus S1×S1, whose Cayley complex (as a P.E. complex) is (isometric to) the
plane R×R. The Cayley graph is the 1–skeleton, viewed as the set of points with
at least one integer coordinate, and the vertices are those points with two integer
coordinates.
2) The presentation P = 〈a, b | a2, b2〉 gives a standard complex homeomorphic to
two projective planes joined at a point. The Cayley complex Cay2(P) is homeo-
morphic to an infinite collection of spheres indexed by Z, where the north pole of
the i–th sphere is joined to the south pole of the (i+ 1)–st sphere.
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Using this complex, we can give a topological derivation of van Kampen dia-
grams. This leads to diagrams which are essentially dual to van Kampen diagrams,
and in their full generality are known as transversality diagrams. In this context
they were introduced by Colin Rourke (see also Fenn’s book [11]). As is customary,
we take for granted many results about transversality. The advantage of this al-
ternative treatment is that the diagrammatic method is based on topology rather
than combinatorics, though this is perhaps mostly a matter of taste.

Definition 2.6 (Pictures). Consider the presentation P = 〈A | R〉, the standard
complex K2(P) and w ∈ 〈〈R〉〉. Then w defines a path γw in the 1–skeleton
K2(P)(1) which is null–homotopic in K2(P). This means that there is a map
f : (D, ∂D) → (K2(P),K2(P)(1)) such that f |∂D = γw, and the homotopy lifting
property says that f lifts to a map (D, ∂D) → (Cay2(P), Cay1(P)).

• After a homotopy (relative to ∂D), we can suppose that, for each relator
rj , f is transverse to the centre êj of the corresponding 2–cell ej . This means that
f−1(êj) is a finite set of points in intD, and that there is a disjoint set of open
neighbourhoods V (αj,k) of the points αj,k ∈ f−1(êj) such that the restriction of f
to each neighbourhood is a homeomorphism into a neighbourhood of êj in int(ej).

• As f(D−∪j,kV (αj,k)) ⊂ K2(P)−∪j êj , and this latter space retracts onto
the 1–skeleton K2(P)(1), after a further homotopy of f (fixing the boundary ∂D),
we can suppose that f(D − ∪j,kV (αj,k)) ⊂ K2(P)(1).

• Now, by a further homotopy (fixing the boundary), we can make f :
D − ∪j,kV (αj,k) → K2(P)(1) transverse to the mid–points êi of the 1–cells ei

(1).
This means that f−1(êi) is a finite set of properly embedded arcs and loops in
D − ∪j,kV (αj,k). Moreover each arc/loop has a transverse orientation and label
coming from the orientation and label in a neighbourhood of êi in ei

(1). (Here
we should note that during the construction of the complex K(P), the attaching
maps of the 2–cells should have been made transverse to the points êi.)

The picture corresponding to f is the disc D together with the collection of
subdisks (or “fat vertices”) Vj,k and the embedded loops and arcs. Each arc and
loop is transversely oriented and labelled by some x ∈ A, inducing labels rj on the
boundary of each Vj,k, and a label w on ∂D, when read from appropriate points,
and in an appropriate direction.

The picture can be thought of as constructed from copies of small discs (“fat
vertices”) with protruding “legs”, each of which has a transverse orientation and
a label from A: each disc corresponds to some r ∈ R, and the labels on the edges,
read from some base point, with exponents ±1 according to the orientation spell
out the word r (Roger Fenn calls these “spiders and anti–spiders” in [11]).

Notice that there may be free loops in the picture: i.e. there may be a simple
loop in D which maps to a point ê(1)i . Such a loop, and all of the picture in the
subdisk of D bounded by it, can be removed to obtain a simpler picture. In fact
the interior of the subdisk corresponds to a picture on a 2–sphere.

It is easy to see that pictures are basically dual to diagrams: to obtain a
picture from a diagram: surround the diagram in the plane by a big circle. Insert
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Figure 2.8: A picture for w = x3yx−1y−1x−2y2x−2y−2x2, cfr 2.1

a small circle in the interior of each compact region. Dual to an edge separating
two faces of the diagram, insert an edge joining the added circles in each face.
Label and transversely orient these added edges according to the orientation of
the original edge.

Given a picture, remove all free loops. Around each small disc with n legs,
draw a polygon with n sides. The sides are labelled and oriented according to the
label and (transverse) orientation of the legs. For each arc in the picture, the sides
of polygons occurring at the two ends of the arc are identified: the danger here is
that this may lead to a non–planer diagram (thus the word “basically” above).

There is an obvious simplification that can performed on diagrams and on
pictures:

Definition 2.7. Let D be a van Kampen diagram. Let F1 and F2 be distinct com-
pact regions ofD, such that there is at least one edge e in the intersection ∂F1∩∂F2.

For i = 1, 2, let ri be the label read on the boundary ∂Fi starting from the
initial vertex of e, and reading in the direction induced by the orientation of e
(see the example figure 2.10 ). If r1 = r2 (i.e. identical as words in F (A)) then
the diagram is said to be unreduced , and if no such pair of faces exists then the
diagram is said to be reduced.

Removing the edge e from the unreduced diagram gives the possibility of
performing a series of foldings which identify the rest of the boundaries of F1 and
F2, while leaving unaffected the remainder of the diagram (as in the proposition
2.4). In this way a diagram with two fewer regions is obtained (maybe there are
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Figure 2.9: A spider and an anti–spider for the relation r = aba−1b−1cdc−1d−1

many fewer regions after the folding has finished). As an exercise in this dual
method, we now describe the reduction procedure in the world of pictures.
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Figure 2.10: A reduction in a van Kampen diagram; here the common edge e,
labelled d, is removed, then the other edges are in turn identified.

Translating into the world of pictures, let P be a picture in which two small
discs are joined by at least one arc, and such that the labels on the two small discs,
starting from the label on one particular arc joining them, and in the direction
induced by the transverse orientation on that arc, are the same. Then the picture
can be altered to remove these two small disks as indicated in figure 2.11.

We saw in the world of van Kampen diagrams that care has to be taken when
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Figure 2.11: A reduction of cancelling spider and anti–spider

there is more than one segment in the intersection of the boundaries of F1 and F2,
and in this case part of the diagram may have to be discarded in order to retain
planarity. This problem translates in the pictures world to two collections of arcs
joining the two small disks with possibly some subpicture trapped between them
as in figure 2.12. The reduction process can then lead to a subpicture unconnected
with the rest of the picture. This subpicture can be discarded without affecting
the boundary label, or the essential properties of the picture.

There is much which can be said about reduced diagrams and the relationship
with π2 and the various definitions of “aspherical”. In this topological version, it
is clear that a map of a sphere into the Cayley complex leads to a picture on a
sphere, using the same transversality and homotopy construction as was used for
the map of a disc into the complex. (See [8] for a detailed discussion of some of
the issues relating to this method of studying π2, including the problems with the
various definitions of aspherical used in [20]).

We have noted that when w =P 1 there is a diagram for w over P, and there
is clearly a reduced diagram, and in fact a smallest diagram, with the smallest
number of compact faces, i.e. a diagram D such that area(D) = area(w) is re-
duced. The area of a picture is naturally the number of small disks (fat vertices).
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Figure 2.12: Reduction produces a disconnected picture: the subpicture P ′ can
then be discarded.

There are certain presentations where for each word w representing the trivial
element, there is a unique reduced diagram.
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Britton’s Lemma and Collins’ Lemma for HNN extensions via pictures

As usual, let 〈A | R〉 be a presentation of a group Γ. Consider the HNN
extension :

H = Γ∗C = 〈Γ, t | tct−1 = φ(c), c ∈ C〉 = 〈A, t | R, tct−1 = φ(c), c ∈ C〉
for some subgroup C < Γ and some injective homomorphism φ : C → Γ. To ensure
that this group is finitely presented, we suppose that A, R are finite, and that C
is finitely generated.

Lemma 2.8 (Britton’s Lemma). Let w = b1t
α1b2t

α2 . . . bkt
αk be a non–empty re-

duced word in F (A, t), where bi ∈ F (A), such that αi 6= 0 for i < k .
If w =H 1 and α1 6= 1, then for some i = 2, . . . , k, either αi−1 > 0 > αi and

bi ∈ C, or αi−1 < 0 < αi and bi ∈ φ(C).

(There are two such subwords bi if sub–indices are considered modulo k .)

w

Q

jb

Figure 2.13: The proof of Britton’s Lemma: suppress all edges except those labelled
by t, and all relation disks except those labelled by tat−1φ(a)−1. If there are rings
formed by the t–edges then these can be removed as in the proof of 2.9 below.
There is some “outermost region” bounded by t edges (here labelled Q) which does
not contain the base point v, and this region meets the boundary in a segment
labelled by the subword bi of w. The labels on the two t–edges at either end of
the bj segment are opposite due to the consistency of the t orientation along the
chain of t edges and relation discs. Thus tεbit−ε is a subword of w.

Once this result has been established, we can assume that elements in H are
represented by words which do not contain “pinches”. A pinch in a word on the
generators for the HNN extension H is a subword of the form tbt−1 where b ∈ C,
or of the form t−1bt, where b ∈ φ(C) (a cyclic pinch is a pinch in the word viewed
cyclically). Detecting the existence of such pinches in w depends upon having an
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algorithm to decide whether or not a word in the generators for H represents an
element of C ∪φ(C). The problem of deciding, for a finite set of elements X in the
group G, whether or not a word w lies in the subgroup generated by X, is known
as the generalised word problem. A consequence of Britton’s lemma is thus:

Proposition 2.9 (The word problem for HNN extensions). The word problem is
solvable for H if the word problem is solvable for Γ and the generalised word
problem for C and for φ(C) in Γ is solvable.

Proof. Notice that the solution of word problem for Γ is included in the solution
of the generalised word problem for C. Let w = b1t

α1b2t
α2 . . . bkt

αk be a cyclically
reduced word in F (A, t).
Case 1: there are no occurrences of t in w.
If w =H 1, then there is a corresponding picture in which no t–edges meet the
boundary. If there are no t–edges in the picture, then w = 1 in Γ, and the algorithm
for the word problem in Γ tells us whether or not w = 1 in Γ. If there are t–edges
in the picture, then they are joined to relation discs in such a way as to form rings.
An innermost such ring has a label w′ in F (A), and the sub–picture enclosed is
a picture for w′ = 1 in Γ. The word on the outside of this ring is either φ(w′) or
φ−1(w), according to the orientation of the t-edges. In either case, w′ = 1 in Γ
if and only if w′ ∈ C and φ(w′) = 1 in Γ, or w′ ∈ φ(C) and φ−1(w′) = 1 in Γ.
In both cases, an innermost such ring can be removed and replaced by a picture
over Γ for the outside word (φ(w′) or φ−1(w′)) with no t–edges. In this way, after
repetitions, if w = 1 in H and there are no t occurrences in w, then there is a
picture for w over Γ (and thus the natural homomorphism of Γ into H induced by
the map on the generators is in fact injective).
Case 2: There are occurrences of t in w: proceed by induction on the number of
such t–occurrences.
Suppose there is an algorithm to decide triviality when a word has at most N
t–occurrences. Suppose that w is a word with N + 1 t–occurrences. If w = 1 in
H, then Britton’s Lemma says that there is a subword of w of the form tbjt

−1 or
t−1bjt for some j, such that bj ∈ C or bj ∈ φ(C) respectively. The algorithm to
decide membership of the subgroups C and φ(C) in Γ decides whether or not such
subwords exist in w, and when such a subword is found, it is replaced by φ(bj) or
φ−1(bj) respectively, giving a new word with fewer t–occurrences which is equal
to w in H. Notice that here φ(bj) is calculated via a semigroup homomorphism
when C is given as a finitely generated subgroup of Γ, and φ(ci) is given for each
generator of C. �
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The conjugacy problem for HNN extensions can be studied in a similar way.
This diagrammatic proof was given by Miller and Schupp [22]. Here the relevant
lemma concerns annular pictures:

Lemma 2.10 (Collins’ Lemma). Let u = b1t
β1b2t

β2 . . . bpt
βp , v = d1t

δ1d2t
δ2 . . . dqt

δq

be cyclically reduced words in F (A, t) such that bi, dj ∈ F (A) − {1}, and βi, δj ∈
Z − {0}, except when u = b1 or v = d1. Suppose in addition that there are no
pinches or cyclic pinches in u or v.
If u and v are conjugate in H = 〈Γ, t | tCt−1 = φ(C)〉, then one of the following
holds:
• u, v are words in F (A) which are conjugate in Γ;
• there is finite chain of words in F (A), u = v0, u1, v1, u2, v2, . . . , uk, vk, uk+1 such
that vi = φ±1(ui), as group elements, ui, vi ∈ C ∪ φ(C), and for each i = 0, . . . k,
vi is conjugate to ui+1 by an element of Γ.
• both u and v contain t occurrences, and p = q, u = b1t

β1b2t
β2 . . . bpt

βp is conju-
gate to some cyclic conjugate of v of the form dit

δid
δi+1
i+1 . . . dqt

δqd1t
δ1 . . . di−1t

δi−1

and the conjugation can be realised by an element of C ∪ φ(C).

v

u

u

v

Figure 2.14: The two possible non–trivial conjugacy pictures for Collins’ Lemma
are annular pictures where the boundary components are labelled u and v (the first
case of the statement corresponds to a picture without t–edges ). Again suppress
all edges except for t–edges, and suppose that there are some t–occurrences in u
and/or v. Remove closed loops of t–edges which bound discs in the annulus as
in the proof of 2.9 above. As there are no cyclic pinches, all chains of t–edges
and relations go from one boundary component to the other, or form closed loops
which are “parallel” to the boundary (i.e. go once round the annulus). These two
types cannot coexist, and this leads to the second two cases of the statement.

The conjugacy problem is in general not solvable for HNN extensions, even
when the conjugacy and word problems are solvable in Γ. The difficulty lies in the
estimation of the number of conjugations in the second case of Collins’ lemma.
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If the generalized word problem is solvable for C and φ(C) in Γ, then cyclic
pinches can be detected in words in F (A, t).

If after removal of these pinches from two words one of the words contains
t–occurrences, then the other word must also have t–occurrences, and case 3 of
Collins’ Lemma applies.



Chapter 3

Small cancellation conditions

Certain conditions on the form of the relators in a presentation, and how they
interact locally, can give strong restrictions on the properties of the group so
presented. The so–called “small cancellation conditions” developed in the sixties
by Lyndon, Greendlinger and others quickly give isoperimetric inequalities. A
full presentation is given in chapter V of Lyndon and Schupp’s book [20]. These
conditions are also sufficiently generic to give results about “random” presentations
(see for instance [25]). The idea is to use elementary properties of graphs in the
plane, in particular the Euler formula: V −E+F = 2. That is, given a non–empty
finite connected planar graph, the sum of V , the number of vertices, and F , the
number of components of the complement, minus E, the number of edges, is equal
to 2.

Notice that in a van Kampen diagram over a finite presentation P, when the
boundaries of two compact faces have a common arc of intersection, the corre-
sponding relators (read cyclically) contain a common subword. If these common
subwords are always very short, then a face of the diagram which does not meet
the boundary meets many other faces. Given an arc common to the boundaries
of two faces, vertices of degree 2 can be suppressed and the label changed to the
corresponding word in the generators. If all vertices of degree 2 are suppressed in
this way, the planar graph now has all vertices of degree at least 3. A consequence
of the Euler formula is that in a planar graph in which all vertices have degree at
least three, there are at least two compact regions with at most 5 sides, as can be
seen as follows:

If all vertices have degree at least 3, counting the edges at each vertex gives
2E ≥ 3V and V ≤ 2E/3 (as each vertex meets at least three edges, and each edge
is counted twice).

If all faces except two (for instance the unbounded region and one compact
region) have at least 6 sides (the other two having at least 1 side each), then
E ≥ 6(F − 2)/2 + 2/2 implies that F ≤ E/3 + 5/3 (as each of F − 2 faces meets
at least six edges, and each edge is counted twice).

25
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Thus V + F − E ≤ E − E + 5/3 = 5/3 and is therefore not 2.
Thus there at least three regions with 5 or fewer edges.
In order to apply this to van Kampen diagrams, we need to slightly alter our

view of the diagrams, and for this we need the following definitions.

Definition 3.1 (The small cancellation conditions). Let P = 〈A | R〉 be a finite
presentation. Let RC be the set of all reduced cyclic conjugates of elements of R
and their inverses.

A non–trivial word p = a1a2 . . . ak ∈ F (A) is a piece with respect to R if
there are two different relations r1, r2 ∈ RC such that r1 = ps1 and r2 = ps2 (and
of course s1 6= s2). That is, p occurs as a subword of two different relations in RC .
Notice that non–trivial subwords of pieces are also pieces.

The presentation satisfies the condition :
• C ′(1/λ) for λ ∈ R+ if for all pieces p, if p is a subword of r ∈ RC , then
`(p)/`(r) < 1/λ.

• C(k) if for all relations r ∈ RC , it is not possible to write r as a product of fewer
than k pieces.

Clearly the property C ′(1/λ) implies the property C ′(1/λ′) if λ ≥ λ′, and C(k)
implies C(k′) if k′ ≤ k.

The first non–trivial example to consider is the fundamental group of a
genus two closed orientable surface, with the standard presentation 〈a, b, c, d |
aba−1b−1cdc−1d−1〉. Here each generator is a piece, and no word of length 2 is a
piece. Thus the presentation satisfies the conditions C ′(1/7) and C(8).

Notice that for positive integers k, the metric condition C ′(1/k) implies the
condition C(k + 1). For a presentation which satisfies the condition C(k), in all
reduced van Kampen diagrams, each compact face not meeting the boundary has
at least k sides (when degree 2 vertices are suppressed). This is because, when
a long subword labels a segment separating two faces of a diagram, the relations
must be equal in F (and so the same element of RC), when read from the initial
point of the common segment. It follows that the diagram is not reduced.

Lemma 3.2 (The small cancellation lemma : non–metric version). Let ∆ be a van
Kampen diagram which is a topological disk, containing at least 2 regions, such
that all internal regions have ≥ 6 sides, and all vertices have degree ≥ 3. For
i = 1, . . . , 5, let bi be the number of regions meeting ∂∆ in exactly one connected
segment (and possibly some vertices) having exactly i internal edges, forming a
connected part of their (internal) boundary.

Then 3b1 + 2b2 + b3 ≥ 6.

One of the main applications of this important lemma is:

Theorem 3.3. If a finite presentation P satisfies the condition C ′(1/6), then Dehn’s
algorithm solves the word problem.
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First we prove the theorem, supposing that the lemma has been proved.

Proof of the theorem. First note that P also satisfies the non–metric C(7) (and
so the C(6)) condition, and that the metric condition implies that the sum of the
lengths of 3 pieces of a relator r is strictly less than half the length of r.

Let w be a cyclically reduced non–trivial word representing the identity ele-
ment of the group, and let D be a diagram for w over P. We show that w contains
a subword which is more than half of a relator.

The form of the diagram is that of a collection of topological discs in the plane
joined by trees, such that regarding the topological discs as fat vertices, the whole
is a tree. As w is supposed to be cyclically reduced, there are no vertices of degree
1 to be suppressed (removing them and the edges meeting them would change w
by a cyclic reduction). Either the diagram now consists of a single topological disc,
or there are at least two extremal topological discs which intersect the rest of the
diagram in just one vertex.
Case 1: D consists of a single topological disc. The lemma provides two faces F1, F2

meeting the boundary ∂D in segments of length > `(F1)/2 and > `(F2)/2. This
means that the segment corresponding to ∂D ∩ ∂F1 is labelled by a subword u
of some r, a cyclic conjugate of a relator (or its inverse) in R, of length greater
than `(r)/2, as it is all of r except for at most 3 pieces. Thus r = uv such that
`(u) > `(v), and so u =Γ v

−1 and w = w′uw′′ and w =Γ w
′vw′′, and `(w′vw′′) <

`(w′uw′′).

Case 2: D contains more than one topological disc. There are at least two disc
components which are extremal, i.e. which meet the rest of the diagram in a single
vertex. In each of these components, at least one of the two boundary segments
given by the lemma has an interior which does not contain this vertex. Thus the
diagram contains two faces meeting the boundary in the manner claimed.

�

Proof of the lemma. The following proof is given by L.I. Greendlinger and
M.D. Greendlinger in [16]. Let ∆ be a reduced van Kampen diagram over the
presentation P which is a topological disc, and suppose that ∆ satisfies the C(6)
condition.

Create a diagram G on S2 by doubling ∆ along ∂∆, after a twist by less than
half the length of the shortest edge on ∂∆. This gives a graph on S2.

The twist creates a new vertex in each edge of ∂∆. Each region in ∆ con-
tributing to bi has i+1 sides in its boundary, and the region intersects the interior
of ∆ in a consecutive series of i of these edges (and possibly some other vertices).
In this way, every region of ∆ contributing to b1, b2, b3 gives 2 regions in G, each
with 3,4, and 5 sides respectively.

All other bounded regions of ∆ give 2 regions in G each with at least 6 sides
(including regions meeting the boundary in more than one connected segment).

Let V,E, F denote the numbers of vertices, edges and regions of G.

E ≥ (6(F − 2b1 − 2b2 − 2b3) + 3.2b1 + 4.2b2 + 5.2b3)/2
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=⇒ E ≥ 3F − 3b1 − 2b2 − b3 =⇒ F ≤ E/3 + (3b1 + 2b2 + b3)/3
Also E ≥ 3V/2 implies V ≤ 2E/3, so
2 = V − E + F ≤ 2E/3− E + E/3 + (3b1 + 2b2 + b3)/3
which in turn implies that 3b1 + 2b2 + b3 ≥ 6. �

It is not hard to give a second condition on the combinatorics of a presentation
which guarantees that internal vertices have degree at least 4:

Definition 3.4. Let P = 〈A | R〉 be a finite presentation. Let RC be the set of all
reduced cyclic conjugates of elements of R and their inverses. The presentation
satisfies the condition T (q) if :
for all 3 ≤ k < q, for all r1, r2, . . . , rk ∈ RC , and for all pieces p1, . . . , pk, if
r1 = p1r1

′p2
−1, r2 = p2r2

′p3
−1 , . . . ,, and rk = pkrk

′p1
−1, then for some i mod k,

it is the case that ri = ri+1
−1.

This complicated looking definition just states that in a reduced diagram, all
internal vertices have degree at least q.

3
r

2r

1r

3p

2p

1p

Figure 3.1: The T (q) condition with k = 3.

With this definition, the same methods as above can be used to show :

Lemma 3.5 (The small cancellation lemma C(4)−T (4) version). Let P be a finite
presentation satisfying the conditions C(4)−T (4), and D be a reduced van Kampen
diagram over P which is a topological disc containing more than one face.

Then D contains two bounded faces ∂F1, ∂F2, such that for i = 1, 2, ∂Fi∩∂D
contains a connected segment containing all of ∂Fi except for at most 2 pieces.

Theorem 3.6. A presentation which satisfies C(6) or C(4) − T (4), satisfies a
quadratic isoperimetric inequality.
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Proof. We consider a van Kampen diagram ∆ satisfying the C(6) condition, where
vertices of degree 2 have been suppressed.

We first consider the case when ∆ is a topological disk.
Note that if F has a non–boundary edge, both of its endpoints lying on the

boundary, splitting ∆ into two subdiagrams ∆1, ∆2, each with δi ≥ 4 vertices of
degree at least 3 on its boundary, then δ1 + δ2 + 2 ≥ δ. The induction hypothesis,
that the number of faces is bounded by the square of the number of vertices on the
boundary of a topological disc diagram (when vertices of degree 2 are suppressed)
tells us that F = F1 + F2 ≤ δi

2 + δ2
2 ≤ (δ1 + δ2 − 2)2 if δ1, δ2 ≥ 4.

We now suppose that there are no such edges with both endpoints on the
boundary. Thus there any region of ∆ meeting ∂∆ in at least two segments has
at least 6 sides in ∆.

We use the notation of 3.2, and in addition we denote by b′5 the sum of∑
i>4 bi and the number of regions of ∆ meeting ∂∆ in at least one segment and

having at least 5 sides, and we denote by V ′ number of vertices in ∆ having degree
at least 4.
Notice that the regions contributing to b4 give rise to regions in G with 6 sides,
while those contributing to b′5 give rise to regions with at least 7 sides.

Counting the edges in G via the faces, we get

E ≥ 3(F − 2(b1 + b2 + b3 + b4 − b′5)) + 3b1 + 4b2 + 5b3 + 6b4 + 7b′5
≥ 3F − 3b1 − 2b2 − b3 + b′5

=⇒ F ≤ E/3− (3b1 + 2b2 + b3 − b′5)/3

Estimating the number of edges of G via the vertices, we get

E ≥ (3(V − 2V ′) + 4.2V ′)/2 = 3V/2 + V ′

=⇒ V ≤ (2E − 2V ′)/3

Applying these inequalities to the Euler characteristic of the graph G on the sphere,
we get

2 = V − E + F ≤ (2E − 2V ′)/3− E + E/3− (3b1 + 2b2 + b3 − b′5)/3
=⇒ 6 ≤ (3b1 + 2b2 + b3)− (2V ′ + b′5)

It follows that there are at least two more regions meeting the boundary of ∆
contributing to (3b1 + 2b2 + b3) than there are regions and vertices contributing
to (2V ′+ b′5). If, between each pair of vertices contributing to 3b1 +2b2 + b3, there
is a boundary vertex contributing to (2V ′ + b′5), then we would have 2V ′ + b′5 ≥
V ′ ≥ 3b1 +2b2 + b3. From this we deduce that there is a segment s on ∂∆ meeting
faces F1, F2, . . . , Fk in subsegments s1, s2, . . . , sk such that
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• ∂Fi ∩ S = si;

• si ∩ si+1 = vi, a vertex in s ∈ ∂∆ of degree 3;

• F1 and Fk contribute to 3b1 +2b2 +b3: have boundary consisting of one edge
in s ⊂ ∂∆ together with a sequence of at most 3 interior edges;

• for i = 2, . . . , k − 1, each region Fi contributes to b4, and it has a boundary
consisting of one edge in s ⊂ ∂∆ together with a sequence of at most 3
interior edges;

• for i = 2, . . . , k−1, each intersection Fi∩Fi+1 contains an edge which meets
the vertex vi, the other end being the vertex ui.

Also, if the first vertex v0 has degree 4, then it will contribute to 2V ′, though it
may be counted twice if it is also the final vertex of another chain. In any case,
we may assume that v0 and vk, the final vertex of Fk are of degree 3.

We show that for this (topological disk diagram) ∆, the number of faces is
bounded above by the square of δ, the number of vertices in ∂∆.

Consider the edge fi of the chain: the vertices of this edge are vi = fi ∩ s
and ui 6∈ ∂∆. Suppose that one of the other edges at ui, say e, has an endpoint
on ∂∆ (and so ui has degree at least 4). Then cutting ∆ along the edges fi and e
splits ∆ into two diagrams as before, each of which has at least 4 vertices on its
boundary, and as before the induction hypothesis applies to show that F ≤ δ2.

We can now suppose that none of the vertices ui associated to the chain s is
joined to ∂∆ (other than by fi). If in each such chain there were a vertex ui of
degree at least 4, then again V ′ > 3b1 + 2b2 + b3. Thus we can suppose that each
vertex ui has degree 3.

Removing the faces F1, . . . , Fk and the edges s1, . . . sk, f1, . . . , fk−1, from ∆
gives a diagram ∆′ which is a topological disc with k fewer faces. The vertices v0
and vk have degree 2, so that after their suppression, and the suppression of the
vertices ui, all now of degree 2, the number δ′ of vertices in boundary of ∆′ is at
most δ − 2. Thus F = F ′ + k ≤ (δ − 2)2 + k ≤ δ2 − 2δ + 4 + k. But k ≤ δ and
δ ≥ 4 so that F ≤ δ2.

Now that the quadratic inequality has been established for topological disk
diagrams without vertices of degree 2, it suffices to notice that a general van
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Kampen diagram without vertices of degree 2 satisfies the same inequality, as
such a diagram is made up of several disc diagrams, the area is the sum of the
areas of the disc components, and the length of the boundary is at least the sum
of the boundary lengths.

Finally, to recover the actual isoperimetric inequality for the presentation,
the vertices of degree 2 must be re–instated. But on any edge in the boundary of
a region corresponding to the relation r, there at most max `(r) vertices.
Thus Area(w) ≤ max `(r)`(w)2.

The result for C(4)− T (4) presentations follows in the same way. �

The same sort of proof can be used to solve conjugacy problems, using diagrams
on an annulus rather than a disk. One application of this is Weinbaum’s solution
[30] of the conjugacy problem for alternating knot groups (see also [20, Chapter
V]). The first step in the proof is to show that a prime tame alternating knot k
in S3 gives rise to a presentation for π1(S3 − k) ∗ Z which satisfies the conditions
C(4)− T (4).
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Chapter 4

Isoperimetric inequalities and
quasi–isometries

As we have stated earlier, solving the word problem for a presentation P = 〈A | R〉
involves showing that an expression for w as a product of conjugates of relators
w =

∏M
i=1 pir

εi
i pi

−1 can be found, with pi ∈ F (A), ri ∈ R, and εi = ±1. The
smallest such number M is called the area of w. The function δP : N → N :
δP(n) = max{Area(w) | w ∈ 〈〈R〉〉, `(w) ≤ n} is called the Dehn function of
the presentation. An isoperimetric inequality for the presentation is a function
f : N → R such that for all n ∈ N, δP(n) ≤ f(n).

Geometric group theory is concerned with properties of groups which are
invariant under quasi–isometries (this is almost a definition of the theory):

Definition 4.1. Let λ ≥ 1 and ε ≥ 0 be constants, and let X,Y be metric spaces.
A map f : X → Y is a (λ, ε)–quasi–isometry , or a (λ, ε)quasi–isometric

embedding, if for every pair of points x, x′ ∈ X we have

1
λ
dX(x, x′)− ε ≤ dY (f(x), f(x′)) ≤ λdX(x, x′) + ε.

If there is such a (λ, ε)–quasi–isometry and a constant C such that for all y ∈ Y ,
there is a point x(y) ∈ X such that dY (f(x(y)), y) < C (i.e. if f is ‘almost
surjective’) then we say that X and Y are quasi–isometric. The function Y →
X given by y → x(y) is a quasi–inverse of the function f . In general a map
g : Y → X is a quasi–inverse of the map f if there is a constant C such that
∀x ∈ X, dX(x, g · f(x)) < C and ∀y ∈ Y, dY (y, f · g(y)) < C.

Warning: care must be taken here as a quasi–isometry f : X → Y in general is far
from being a surjection: for instance the inclusion of R in R × R as a factor is a
quasi–isometry (a quasi–isometric embedding).
The standard examples are:

33
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Bounded spaces are quasi–isometric to a point;
The inclusion Z ↪→ R is a quasi–isometry, and in fact is almost onto, with

the function “integer part” providing a quasi–inverse.
The inclusion Z×Z ↪→ R×R, can be viewed as a quasi–isometric embedding

of a Cayley graph of the fundamental group of a torus in the universal covering
space, and this inclusion is almost onto.

In the same way, the tessellation of the hyperbolic plane H2 by regular oc-
tagons with corner angle π/4 describes the universal covering space of a surface
S2 of genus 2. The dual graph can be viewed as a quasi–isometric embedding of
the Cayley graph of the fundamental group π1(S2) in H2. This is a special case of
the result due to S̆varc [28] and to Milnor [23] that the universal covering space
of a closed compact Riemannian manifold is quasi–isometric to the Cayley graph
of the fundamental group. We shall prove a more general form of the statement,
following Bridson and Haefliger’s approach [6, p.140]. In order to state the result
in a little more generality, we introduce the following definitions: a metric space
(X, d) is proper if closed balls Br(x) are compact, and is a length space if for all
points x, y ∈ X, d(x, y) = inf `(γ), where the infimum is taken over all rectifiable
curves in X from x to y. Recall that a curve γ : [0, 1] → X is rectifiable of length
L if L = sup

∑M−1
i=0 dX(γ(ti, ti+1) is finite, where the supremum is taken over all

subdivisions 0 = t0 < t1 < · · · < tM = 1 of the interval [0, 1].
A group Γ acts properly on a metric space X if for all compact K ⊂ X, the

set {g ∈ Γ | K ∩ g ·K 6= ∅} is finite.

Proposition 4.2. Let (X, dX) be a proper length space, and suppose that Γ acts
properly and cocompactly on X. Then

• Γ is finitely generated;
• for any point z ∈ X, there is finite generating set A for Γ such that the

map Cay1(Γ,A) → X defined on the vertices by g → g · z is a quasi–isometry on
the 0–skeleton.

Remarks:
i) We shall see that the existence of a quasi–isometry between the Cayley graph
and the space X is independent of the choice of finite generating set.
ii) The quasi–isometry can be extended over the edges by defining arbitrarily the
images of the edges originating at the identity element, and then defining the
images of the other edges using the Γ action (or alternatively by mapping each
edge to the image of its initial vertex).
iii) Consider the standard hyperbolic structure on the surface S of genus two. That
is, consider S as the quotient of the hyperbolic plane H2 by the action of a discrete
group of hyperbolic isometries with fundamental domain a regular octagon with
corner angle π/4. The plane H2 is a length space: in fact the surface S obtained
in this way is a Riemannian manifold and between any pair of points there is a
unique geodesic whose length is the distance between the points.
iv) Generalising the surface example, if M is a closed compact manifold where the
distance between points is the infimum of the lengths of rectifiable curves between
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them (for instance when M has a Riemannian metric), then the universal covering
space (with the lift of the distance from M) provides the length space X upon
which π1(M) acts freely.

Proof. Let C ⊂ X be a compact fundamental domain for the action of Γ, i.e. such
that ∪g∈Γg · C = X. Choose z ∈ X and r ≥ 1 such that C ⊂ Br(z).

We shall show that the finite set A = {g ∈ Γ | B3r(z) ∩ g · B3r(z) 6= ∅}
generates Γ. Note that y ∈ g ·B3r(z)∩B3r(z) =⇒ g−1 ·y ∈ B3r(z)∩g−1 ·B3r(z),
so that A−1 = A.

To establish the quasi–isometry, we establish:
1) ∃λ1 > 0 and ε1 ≥ 0 s.t. dA(1, g) ≤ λ1dX(z, g · z) + ε1.
2) ∃λ2 such that ∀g, g′ ∈ Γ, dX(g · z, g′ · z) ≤ λ2dA(g, g′).

We begin by proving 1), and that A is a finite generating set.
As X is a length space, there is a rectifiable path γ : [0, 1] → X such that

`(γ) ≤ dX(z, g · z) + 1, and we can choose a subdivision 0 = t0 < t1 < . . . tM = 1
such that z = γ(0), g · z = γ(1), and dX(γ(ti), γ(ti + 1)) = r for i < M − 1 and
dX(γ(tM−1), γ(tM )) ≤ r. Thus Mr ≤ `(γ) ≤ (M + 1)r, and Mr ≤ dX(z, g · z) +
1 =⇒ M ≤ dX(z, g · z)/r + 1.

Put g0 = 1, gM = g, and for each 1 ≤ i ≤ M − 1, choose gi ∈ Γ such that
dX(gi · z, γ(ti)) ≤ r. This is possible as ∪gg ·Br(z) = X.

gz

z
)+1it(°)it(° r

r·r·

z +1igzig

Figure 4.1: Proving finite generation

It follows that dX(gi · z, gi+1 · z) ≤ 3r =⇒ dX(z, g−1
i gi+1 · z) ≤ 3r, and

so g−1
i gi+1 ∈ A. But g = gM = 1.g1.(g−1

1 g2). . . . (g−1
M−1gM ), and it follows that A

generates Γ, and dA(1, g) ≤M . Moreover dX(z, g ·z) ≥Mr−1 ≥ dA(1, g)r−1 =⇒
dA(1, g) ≤ (1/r)dX(z, g · z) + (1/r).

To conclude, it suffices to take λ1 = ε1 = 1/r.
We now procced to the proof of 2).
As dX(g · z, g′ · z) = dX(z, g−1g′ · z), it suffices to consider the case g′ = 1.

We know from 1) that A is a finite generating set. In terms of this generating
set, there is a shortest word a1a2 . . . an representing g in Γ; let gi = a1 . . . ai, for
i = 1, . . . , n− 1.
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Then dX(z, g · z) ≤ dX(z, g1 · z) + dX(g1 · z, g2 · z) + · · ·+ dX(gn−1 · z, g · z) ≤ λ2n
where λ2 = maxa∈A dX(z, a · z). But n = dA(1, g), and 2) holds.
Summing up, we see from 1) that dA(1, g) ≤ (1/r)dX(z, g · z) + (1/r), and from
2) that 1/λ1dX(z, g · z) ≤ dA(1, g). The inclusion of Cay1(Γ,A) → X is thus a
(max{1, λ1, λ2}, r)–quasi–isometry on the 0–skeleton.

�

The first (and perhaps the main) example of interest here concerns the maps
obtained between Cayley graphs by changing the (finite) generating set of a finitely
generated group. The above proof for good group actions apparently depends on
the generating set used. The whole point of studying the geometry of the Cayley
graph is to obtain properties of the group from the graph, so these properties must
be invariant under change of finite generating set.

Proposition 4.3. Let A and B be two finite generating sets for the group Γ.
Then the Cayley graphs Cay1(Γ,A) and Cay1(Γ,B) are quasi–isometric via

a map which is the identity on the vertices.

Proof. Let A = {x1, . . . , xp}, and B = {y1, . . . , yq}. For each xi (respectively yj),
there is a word ui(B) ∈ F (B) (resp. vj(A) ∈ F (A)) representing the same element
as xi (resp. yj) in the group Γ.

Consider two elements g, g′′ ∈ Γ, and suppose that dA(g, g′) = k. Then there
is a word w(X) = xε1

i1
. . . xεk

ik
in F (A), such that gw =Γ g

′. Translating into the B
generating set, gives the word w(B) = uε1

i1
(B) . . . uεk

ik
(B) such that w(B) =Γ w(A),

and the word w(B) labels a path in the Cayley graph Cay1(Γ,B) from the vertex
labelled g to the vertex labelled g′.

Let K = max{`B(ui(B)) | i = 1, . . . , p}; then `B(w(B)) ≤ Kk and so
dB(g, g′) ≤ KdA(g, g′).

In the same way, setting K ′ = max{`A(vj(A)) | j = 1, . . . , q}, we see that
dA(g, g′) ≤ K ′dB(g, g′).

Thus (1/K ′)dA(g, g′) ≤ dB(g, g′) ≤ KdA(g, g′).
In this way the identity map on the vertices is a quasi–isometry. To define

a quasi–isometry on the edges, it suffices to extend to the identity map on the
vertices to maps φ : Cay1(Γ,A) → Cay1(Γ,B) and ψ : Cay1(Γ,B) → Cay1(Γ,A)
taking the whole interior of each edge to either of its endpoints. Let t, t′ be points
in the interiors of two edges in Cay1(Γ,A), and consider φ(t), φ(t′) as elements
of Γ, which can be viewed as a subset of Cay1(Γ,A) or of Cay1(Γ,B). Then
dA(t, t′) ≤ 1, so that dB(φ(t), φ(t′)) ≤ KdA(t, t′) + 2K.

Also clearly dA(ψ · φ(t), t) ≤ 1 and dB(φ ·ψ(s), s) ≤ 1 for all s ∈ Cay1(Γ,B).
The maps φ and ψ are quasi–inverses, and the proof is complete. �

Definition 4.4. Two finitely generated groups are said to be quasi–isometric if they
have quasi–isometric Cayley graphs with respect to some (and hence all by 4.3)
finite generating sets. A group–theoretic property is said to be geometric if it is
invariant under quasi–isometry of groups.
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The first essential property is that of being finitely presented ([1]):

Proposition 4.5. Let A and B be finite generating sets for the groups Γ and Γ′.
If Cay1(Γ,A) and Cay1(Γ′,B) are quasi–isometric and Γ is finitely pre-

sentable, then Γ′ is also finitely presentable.

We shall in fact show something much stronger from which this proposition
can be deduced: we shall show that quasi–isometric groups have comparable Dehn
functions.

Definition 4.6. We say that two functions f, g : N → R are equivalent if there is
a positive constant A such that for all n ∈ N, f(n) ≤ Ag(An+ A) + An+ A and
g(n) ≤ Af(An+A) +An+A.

Notice that with this definition, linear functions are equivalent to constant
functions (even to the zero function) and that all polynomials of degree d > 1 form
an equivalence class, and all exponential functions form an equivalence class. It
thus makes sense to talk about groups satisfying a linear, quadratic or exponential
isoperimetric inequality, once we have shown the following result:

Theorem 4.7. [1] Let P = 〈A | R〉 be a finite presentation of the group Γ.
Let B be a finite generating set for the group Γ′ such that Cay1(Γ,A) and

Cay1(Γ′,B) are quasi–isometric. Then there is a finite set of relators S for Γ′ such
that Q = 〈B | S〉 is a finite presentation for Γ′, and the Dehn functions for the
presentations P and Q are equivalent.

An immediate consequence of this is that “having solvable word problem” is
a geometric property, and in particular:

Corollary 4.8. If P and Q are finite presentations of the group Γ and the word
problem is solvable for P, then the word problem is solvable for Q.

Proof of the theorem. Let φ : Cay1(Γ,A) → Cay1(Γ′,B) be a quasi–isometry and
let ψ : Cay1(Γ′,B) → Cay1(Γ,A) be a quasi–inverse, so that for all vertices g ∈
Cay1(Γ′,B), dB(φ ·ψ(g), g) ≤ C. Up to changing the quasi–isometry constants, we
can suppose that vertices are sent to vertices, and that the vertices corresponding
to the identity elements in each group are sent to each other.

Let w = yj1 . . . yjk
∈ F (B) be a word labelling a closed loop in Cay1(Γ′,B)

based at the vertex 1. For each initial segment wm = yj1 . . . yjm , for m = 1, . . . , k,
let vm ∈ Cay1(Γ′,B) be the vertex represented by the word wm. Consider the
sequence of points u0 = 1, u1 = ψ(v1), . . . , uk = ψ(vk) = 1 ∈ Cay1(Γ,A). As ψ is
a (λ, ε)–quasi–isometry, and dB(vi, vi+1) = 1, we have dA(ui, ui+1) ≤ λ+ ε.

There is therefore for each i = 0, . . . , k a word αi ∈ F (A) of length at most
λ+ ε, such that there is a path in Cay1(Γ,A) labelled αi from the vertex ui to the
vertex ui+1. The product w′ = α0α1 . . . αk labels a loop in Cay1(Γ,A). There is
therefore a van Kampen diagram D for w′ over P. The 1–skeleton of this diagram
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Figure 4.2: Part of the paths w and φ(ψ(w)) in Cay1(Γ′,B)

maps into the Cayley graph Cay1(Γ,A). Applying φ : D(1) → Cay1(Γ′,B), corre-
sponds to relabelling the diagram D, to get a diagram D′ where each edge which
was labelled by a generator in A, is now labelled by a word in F (B) of length at
most λ + ε. Each compact face of D was labelled by a word r ∈ R, and is now
labelled by a word of length at most λ`(r)+ ε in F (B). The boundary of D, which
was labelled by w′ is now labelled by w′′ = φ(α0)φ(α1) . . . φ(αk). Considering the
path labelled w′′ based at the vertex 1, the vertex reached by the initial segment
φ(α0)φ(α1) . . . φ(αm) is the vertex φ ·ψ(vm), and so is at distance at most C from
the vertex vm.

It follows that we can construct a van Kampen diagram for w over P ′ by
adding to the diagram D′ (the relabelled diagram D) for each m = 0, . . . , k a
diagram for the word φ(αm)y−1

jm
hm, where hm is a word of length at most C. In

this way we obtain a van Kampen diagram for w of area const.areaP(ψ(w)) +
const.`(w), and w is in the normal closure of set of relations in F (B) of length at
most max(C+1+λ+ ε, (λ+ ε) maxr∈R{`(r)}). As `(ψ(w)) ≤ const.`(w), this also
shows an isoperimetric inequality for Γ gives an equivalent isoperimetric inequality
for Γ′.

�

The special class of hyperbolic groups is the class of all finitely presented
groups satisfying a linear isoperimetric inequality. An alternative definition is via
the definition of “thin triangles”.

Definition 4.9. Let (X, d) be a geodesic metric space (length space) — i.e. where,
between any two points there is a path (a “geodesic”) whose length is equal to the
distance between the points.

For any three points x, y, z there is a “geodesic triangle” ∆(x, y, z) formed by
taking a geodesic between each pair of points. (There may be many such geodesics.)
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Because of the triangle inequality, for each such triangle, there is a Euclidean
triangle ∆(x′, y′, z′) with the same side lengths. The Euclidean triangle maps onto
a tripod Y (x′′, y′′, z′′), by collapsing the inscribed circle onto a point.

Let T∆ be the composite map from the (edges of the) triangle ∆ → Y . For a
positive real number δ, we say that the triangle ∆ is δ–thin if ∀p ∈ Y the diameter
Diam(T−1(p)) ≤ δ.

The space X is said to be δ–hyperbolic if every geodesic triangle is δ–thin.
A finitely generated group Γ is said to be hyperbolic if it has a finite generating

set A such that the Cayley graph Cay1(Γ,A) is δ–hyperbolic for some positive δ.
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Sometimes δ–thin triangles are called uniformly δ–thin triangles (see [2]). An
alternative definition is to say that a space is δ–hyperbolic space if for any geodesic
triangle, each side lies in a δ–neighbourhood of the union of the other two sides.
It is not to hard to show that the two definitions are equivalent (though it may
be necessary to change the value of the constant δ). In order to show that all
Cayley graphs (with respect to any finite generating sets) of a hyperbolic group
are hyperbolic one must show that quasi–geodesic triangles (i.e. images of geodesic
triangles under a quasi–isometry) are also thin, or some other equivalent result.

Before showing that hyperbolic groups satisfy a linear isoperimetric inequal-
ity, we shall first show that they satisfy a quadratic isoperimetric inequality, as this
proof is simple and illustrates well the ideas of geometric group theory. A proof
that they satisfy an isoperimetric inequality of type n log n is given in Section 6.2.
We finally give in Proposition 4.11 a proof that they satisfy a linear isoperimetric
inequality which is due to Noel Brady. It would suffice to show that geodesics in
a hyperbolic group fellow travel, and then use Theorem 5.2.2 of Riley’s notes to
oobtain a linear isoperimetric inequality. In fact this same theorem states that a
subquadratic isopermietric inequality implies a linear one (though this does use
asymptotic cones!).

Proposition 4.10. Let A be a finite generating set for the group Γ such that the
Cayley graph Cay1(Γ,A) is δ–hyperbolic.

Then Γ is finitely presentable and satisfies a quadratic isoperimetric inequal-
ity.
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Proof. We shall suppose that no generator in A is trivial in Γ.
Let w = a1 . . . an ∈ F (A) be a word which represents the identity element of

Γ. Then the word labels a closed loop based at the identity vertex of Cay1(Γ,A).
Let γi be a shortest word in F (A) representing the element a1 . . . ai in Γ.

Then the paths based at 1 in Cay1(Γ,A) with labels γi and γi+1 form a geodesic
triangle, together with the edge labelled ai+1 based at the vertex a1 . . . ai in
Cay1(Γ,A). The fact that geodesic triangles are δ–thin means that this trian-
gle can be decomposed as a collection of rectangles each of perimeter at most
2δ + 2 (the last is perhaps a triangle of perimeter at most 2δ + 1). There are at
most max{`(γi), `(γi+1)} ≤ n/2 of these rectangles.

ia
w

 

 

It follows that the set of relations R = {r ∈ F (A) | `(r) ≤ 2δ + 2, r =Γ 1}
gives a finite presentation for Γ, and in terms of these relations, area(w) ≤ n2/2.

�

After this first simple proof, let us now show that in fact the group satisfies
a linear isoperimetric inequality.

Proposition 4.11. Let A be a finite generating set for the group Γ. If all geodesic
triangles in Cay1(Γ,A) are δ–thin, then Γ is finitely presentable, has a Dehn
presentation and satisfies a linear isoperimetric inequality

Proof. The method used here (due to Noel Brady) is to show that “local geodesics”
are like geodesics, and so Dehn’s algorithm, with an appropriate set of relators
solves the word problem for Γ.

For k > 0, a word w ∈ F (A) in Cay1(Γ,A) is a k local geodesic if all subwords
of w of length at most k are geodesic. We shall show that 2δ + 2 local geodesics
do not label loops:
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If a word is not a 2δ+2 local geodesic, then it contains a subword v of length
at most 2δ + 2 such that there is a shorter word u such that v =Γ u. Take as
relators R = {r ∈ F (A) | `(r) ≤ 4δ + 3, r =Γ 1}. Dehn’s algorithm, using this set
of relators, can thus be used to convert any word into a 2δ+2 local geodesic word
representing the same element of the group (and in fact this can be done in time
depending linearly on the length of the original word [2, 2.18] — it can even be
done in real time, as has been shown by Holt and Röver [18]).

Claim: if w =Γ 1 (and so w labels a loop in Cay1(Γ,A), then w is not a 2δ+2
local geodesic (i.e. it contains a subsegment of length at most 2δ + 2 which is not
geodesic).
Proof of the claim:

We argue by contradiction: let w be a non–empty word in F (A) which rep-
resents the trivial element of Γ (labels a loop in Cay1(Γ,A)) and suppose that w
is a 2δ + 2 local geodesic: the length of w is then at least 4δ + 4.

1u

2v

 

1

w

1v

'v
2u

Let γ be a loop in Cay1(Γ,A) based at the vertex 1 and labelled by the 2δ+2
local geodesic word w. Let v′ be a vertex on γ furthest from the base point 1. This
point is at distance at least 2δ+ 1 from 1, else w is trivial (the letter in the 2δ+ 2
position of w labels an edge ending at distance 2δ + 2 from 1). Let v1, v2 be the
vertices on γ before and after v′ at distance 2δ + 1 from v′.

Consider a geodesic triangle ∆1 (resp. ∆2) with vertices 1, v′, v1 (resp.
1, v′, v2) with one side the segment γ1 (resp. γ2) of γ between v′ and v1 (resp.
v2) of length 2δ + 1. Let u1 (resp. u2) be the point on γ1 (resp. γ2) mapping
to the central point of the tripod under the tripod map T∆1 (resp. T∆2). Thus
|dX(1, v1)− dX(1, v′)| = |dX(v1, u1)− dX(u1, v

′)|.
If dX(u1, v

′) < δ + 1, then dX(v1, u1) ≥ 2δ + 1− (δ + 1) ≥ dX(u1, v
′) and so

dX(v1, 1) > dX(v′, 1) contradicting the choice of v′.
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In the same way, we see that dX(u2, v
′) ≥ δ + 1. It follows that the points

u′1, u
′
2 at distance δ + 1 before and after v′ on the segment of γ containing v′ lie

between u1 and u2. But u′1 lies at distance δ+1 from v′ on the geodesic from 1 to
v′, as does u′2, and so dX(u′1, u

′
2) ≤ 2δ, contradicting the fact that w is assumed

to be a 2δ + 1 local geodesic.
�

In this proof, if the path γ is not assumed to be a loop, what is proved is
that the furthest point v′ on γ from the initial point is within distance 2δ + 1 of
the end of γ (i.e. the point u2 cannot be constructed). Moreover, if one measures
distance from any point v ∈ Cay1(Γ,A), rather than from the initial point of γ,
one shows that the furthest point v′ on γ from the point v lies within 2δ+ 1 from
one of the endpoints.

Gromov pointed out that a group satisfying a subquadratic isoperimetric
inequality is in fact hyperbolic. Detailed proofs have been given by Papasoglu,
Ol’shanskii and by Bowditch [4] (see also [6, p.422] for another presentation of
Bowditch’s proof). Another proof, using asymptotic cones, is given in Theorem
5.2.2 of Tim Riley’s notes.



Chapter 5

Free nilpotent groups

The aim here is to give a lower bound for the isoperimetric inequality for free
nilpotent groups, following [3]. The basic idea is to use a different method of
estimating the area of a word in 〈〈R〉〉. The method used has connections with
group homology, but none of that theory is necessary in the constructions. Modulo
a couple of elementary properties of nilpotent groups, complete proofs are given
here.

When P = 〈A | R〉 is a finite presentation of the group Γ, and Cay1(Γ,A)
is the Cayley graph, R = 〈〈R〉〉 can be identified with the fundamental group of
Cay1(Γ,A). When Γ is not a finite group, this is an infinitely generated free group.
We are interested in words w ∈ F (A) such that w ∈ 〈〈R〉〉, and thus there are
conjugating elements pi and relators ri ∈ R±1 such that w =

∏M
i=1 pirip

−1
i . Recall

that the area of w is the minimum such M .
Perhaps R is too complicated to be usable in computations. If we were sim-

ply to abelianise R and consider R/[R,R], then we would still be dealing with an
infinitely generated group. If, however we consider R/[R, F ], then we are consid-
ering a finitely generated abelian group. In this quotient, r = prp−1 for all r ∈ R
and all p ∈ F , so the number of relators in R is an upper bound for the number
of generators of R/[R, F ].

In the world of group homology, the exact sequence 1 → R→ F (A) → Γ → 1
leads to an exact sequence

0 → R∩ [F, F ]/[R, F ] → R/[R, F ] → F/[F, F ] → F/R[F, F ] → 0
‖ ‖ ‖ ‖

0 → H2Γ → R/[R, F ] → H1F → H1Γ → 0

and noting that H1F is a free abelian group, we see that R/[R, F ] ∼= H2Γ⊕Zk for
some k. (In fact it is only the H2Γ part which is of interest to us, as is explained
in [3]).
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Now define a centralized isoperimetric inequality by measuring minimality
in R/[R, F ]. Define the centralized area of w to be areacent

P (w) = min{M | w ∈∏M
i=1 pir

εipi
−1[R,F ]}. Thus we count just the number of times, with sign, that

each relator occurs in a product of conjugates, ignoring the conjugating element
involved.

Lemma 5.1. Let B = {y1, . . . , ym} be any finite set of generators for the abelian
group R/[R, F ], and let `B(w) be the minimal length of a word in these generators
representing the element w[R, F ] of R/[R, F ], and let K = max{`B(r) | r ∈ R}.

(1) Then `B(w) ≤ K.areacent
P (w) ≤ K.areaP(w);

(2) There is a positive constant C such that if w[R, F ] = ym[R, F ] and
y[R, F ] (and w[R, F ]) has infinite order in R/[R, F ] then m ≤ C.areacent

P (w).

Proof. (1) Write w =
∏M

i=1 pir
εi
i pi

−1 for some appropriate choices pi ∈ F , εi = ±1
and ri ∈ R, with M = areaP(w). Removing the conjugating elements, we have
w[R, F ] =

∏M
i=1 r

εi
i [R, F ]. Also, if the centralized area is areacent

P (w) = m, then
there are qj ∈ F , βj = ±1, and sj ∈ R such that w[R, F ] =

∏m
j=1 qjs

βj

j qj
−1[R, F ],

and removing the conjugating elements we get w[R, F ] =
∏m

j=1 s
βj

j [R, F ]. Then
`B(w) ≤

∑m
j `B(sj) ≤ Km ≤ KM .

(2) As R/[R, F ] is a finitely generated abelian group, it is a direct sum of
its torsion subgroup T and a free abelian group Zk. Choose a generating set B for
R/[R, F ] consisting of a generating set for T and a basis for the Zk summand.
Mapping R/[R, F ] onto the Zk summand, w[R, F ] = ym[R, F ] maps onto an m–
th power, which is non–zero if y[R, F ] has infinite order. Thus m ≤ `B(ym) =
`B(w) ≤ K.areacent

P (w).
�

The point now is that in certain groups, it is possible to find words in F which
are very short, but represent elements of R which are large powers in R/[R, F ].
This is easy to do in nilpotent groups, as follows.

The lower central series of a group Γ is the sequence of groups Γ1 = Γ,Γ2 =
[Γ1,Γ], . . . ,Γk+1 = [Γk,Γ]. A group is nilpotent if for some k, Γk = 1 (of class c if
Γc 6= 1 and Γc+1 = 1). Thus an abelian group is nilpotent of class 1. The simple k–
fold commutators of Γ are those commutators of the form [[. . . [g1, g2], g3], . . . , gk],
which clearly lie in Γk. It is not hard to show by induction that if X = {x1, . . . , xt}
is a set of generators for Γ, then the classes of the simple k–fold generators of the
form [[. . . [ζ1, ζ2], ζ3], . . . , ζk] with ζj ∈ X generate Γk/Γk+1 (see [21, 5.4]).

The free nilpotent group of class c on n generators is F/Fc+1 where F is a
free group on n generators.

Consider Γ = F/R with R = Fc+1 = [Fc, F ]. Then [R, F ] = Fc+2, and
R/[R, F ] = Fc+1/Fc+2. According to the general result, this group is generated
by the simple commutators.

We need the following basic facts about free nilpotent groups:
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The c–fold simple commutator [[. . . [[a, b], a], a], . . . , a] is a non–trivial element
in Fc, and in Fc/Fc+1 the commutator identities give

[[. . . [[ak, bk], ak], . . . ], ak] = [[. . . [[a, b], a], a], . . . , a]k
c

mod Fc+1.
For instance, the case of ordinary commutators:

[ak, b] = akba−kb−1 = ak−1ba−(k−1)b−1(bak−1b−1aba−kb−1)

= ak−1ba−(k−1)b−1(bakb−1a−1(aba−1b−1)aba−kb−1)

= [ak−1, b][a, b] mod F3

By induction it follows that [ak, bk] = [a, bk]k = [a, b]k
2

mod F3. The general case
is similar.

Thus, returning to our example of Γ = F/R = F/Fc+1, we have the c +
1–fold commutator wk = [[. . . [[ak, bk], ak], . . . , ak] is an element of Fc+1 and in
Fc+1/Fc+2 = R/[R, F ] this is a kc+1 power.

Thus the above lemmas on centralized area functions, areacent(wk) ≥ Ckc+1,
while `(wk) ≤ 2(c+1)k. But area(wk) ≥ areacent(w) ≥ C ′`(wk)(c+1) and so we
have obtained a lower bound for the isoperimetric inequality which is polynomial
of degree c+ 1 for the free nilpotent group of class c.
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Chapter 6

Hyperbolic–by–free groups

As an example of how details of the structures of diagrams can help to give an
interesting result, we look at N. Brady’s result that there is a hyperbolic group
containing a finitely presented non–hyperbolic subgroup. This example is a cyclic
extension 1 → K → Γ → Z → 1. In this chapter we show that in examples of this
type the kernel group K satisfies a polynomial isoperimetric inequality, following
[15]. That is:

Theorem 6.1. Let Γ be a split extension of a finitely presented group K by a finitely
generated free group F , so one has the short exact sequence

1 → K → Γ → F → 1.

If Γ is a hyperbolic group, then K satisfies a polynomial isoperimetric inequality.

The proof generalises easily to give an analgous result for groups satisfying
a quadratic isoperimetric inequality — for details see [15]. The method of proof is
to carefully study the form of van Kampen diagrams, using the area and intrinsic
radius (see below) of a diagram over a presentation for Γ for a relation of K,
viewed a relation of Γ, to give a diagram of bounded area over a presentation of
K.

We need here the concept of radius of a diagram D, which is the maximum,
over all vertices of D, of the number of edges in a shortest path in the 1–skeleton
of D to the boundary δD. Properties of this function of diagrams are developed
in section 5.2 of Tim Riley’s notes. The important lemma we need is:

Lemma 6.2. Let P = 〈A;R〉 be a finite presentation of a hyperbolic group Γ.
Then there are constants A,B > 0 such that, for any relation w ∈ F (A)

with `(w) ≥ 1, there is a van Kampen diagram over P of area at most
A`(w)(log2(`(w)) + 1) and of radius at most B(log2(`(w)) + 1).

Proof. Consider a relation w = c1 . . . cM ∈ F (A) in Γ. Draw a circle in the plane,
and subdivide into M vertices labelled by integers i = 0, 1, . . . ,M − 1, which we
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0

4]M=[3

2]M=[

4]M=[

Figure 6.1: the first few subdivision triangles

consider as representatives for their equivalence classes mod n. Map this circle
to a loop in the Cayley graph Cay1(Γ,A) based at the identity vertex via the
word w. In the plane, join the vertices 0 and [M/2] (the integer part of M/2) by
a straight line, and extend the map to the Cayley graph over this arc by sending
this arc to a geodesic γ1 joining the appropriate vertices in Cay1(Γ,A).

For each integer j = 2, . . . , [log2(M) + 1], and for each i = 1, . . . , 2j , choose
geodesics in Cay1(Γ,A), the level j geodesics, to label the straight lines joining
the vertices [(i − 1)M/2j ] and [iM/2j ] (some of these geodesics may degenerate
to points for the last j). The level j triangles are then the geodesic triangles T k

j ,
for k = 1, . . . 2j−1, with vertices [2(i− 1)M/2j ], [(2i− 1)M/2j ] and [2iM/2j ], and
sides consisting of two level j geodesics γ2i−1

j , γ2i
j and a level j − 1 geodesic γi

j−1.
At the final level take the edges in the loop w for the geodesics; at this level some
of the triangles may degenerate. Notice that for each j, the sum of the lengths of
the level j geodesics is at most M .

Suppose that K is δ–hyperbolic with respect to this presentation, so that
each geodesic triangle can be decomposed into three triangles of area at most
δ + 2, a collection of rectangles of perimeter 2δ + 2, and a single central region of
perimeter at most 3δ+3. The number of these regions is at most half the perimeter
of the triangle.

Filling in each of the level j triangles with these small triangles, rectangles
and other central regions, construct a van Kampen diagram for the word w of area
at most A`(w)(log2(`(w)) + 1), where A is the maximum area of a minimal van
Kampen diagrams over P for the relations of length at most 3δ + 3. If B′ is the
maximum radius of the minimal van Kampen diagrams over P for the relations
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-ringtinnermost 
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v

Figure 6.2: A diagram over PΓ with some t–rings

of length at most 3δ + 3, then the radius of the constructed diagram is at most
δ(log2(`(w)) + 1) +B′ ≤ B(log2(`(w)) + 1) for some B.

�

In the same way, it is not hard to see how (see for instance Theorem 2.3.4
of Tim Riley’s notes) the fellow traveller property for synchronously (respectively
asynchronously) automatic groups gives constants A,B > 0 (resp. C > 1, D > 0)
such that each relation w has a van Kampen diagrams of area at most (A`(w)2

(resp. C`(w)) and radius at most B`(w) (resp. D`(w)).

Proof of the theorem. For simplicity we give the details for a cyclic extension. Fix
1 → K → Γ → Z → 1 a split extension, defined by the automorphism φ of K,
and let PK = 〈A | R〉 be a finite presentation for K, where A = {a1, . . . , an}. It
is clear that Γ has a presentation as an HNN extension with base group K and
stable letter t, PΓ = 〈a1, . . . , an, t | R, {t−1ait = wφ(ai)}〉. In the general case, Z
is replaced by a free group on k generators, and Γ is an HNN extension with k
stable letters and k associated homomorphisms.

Let Φ : A∗ → A∗ be the semigroup automorphism induced by φ restricted
to A. As φ is an automorphism, there is a semigroup homomorphism (acting as
an inverse at the group level) Ψ : A∗ → A∗ such that Ψ ·Φ(ai) =K ai. For each of
these, choose a van Kampen diagram Di, i = 1, . . . , n over PK . To complete the

proof of the main theorem, it remains to show how to obtain a diagram over P for
a relation w ∈ F (A) over PΓ from a diagram over PΓ. As in the proof of Collins’
Lemma (Lemma 2.10), the faces of the diagram over PΓ corresponding to relations
of the form t−1ait = wφ(ai) combine to form annuli which we call t–rings, and fat
arcs called t–corridors, meeting the boundary in t–edges.

Let w ∈ F (A) be a relation over the presentation PK for K. Then w is also
a relation over the presentation PΓ for Γ. Let D be a van Kampen diagram for w
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over PΓ. As there are no occurrences of t in w, the faces of D coming from the
relations of the form t−1ait = φ(ai) form rings: there are no t–corridors.

Consider an innermost t–ring: i.e. inside the diagram D, there is a t–ring, i.e.
an annulus A of adjacent faces all labelled by relators of the form t−1ait = φ(ai)
such that the component D′ of the complement which does not meet ∂D (the
inner component) contains no relators t−1ait = φ(ai). Then D′ is a diagram over
PK for the label u on the inner side of the annulus A. Let v be the label on the
outer side of this annulus (the words u and v may be unreduced). There are now
two cases to consider: either v = Φ(u) or u = Φ(v).

First note that applying the semigroup homomorphism Φ to the relator r ∈ R
gives a relator Φ(r). Let α be the maximum of the area of a mimimal diagram for
Φ(r). In the same way there is a diagram of area at most β for each relation Ψ(r).
Claim: there is a van Kampen diagram for v over PK of area ≤
max{α, β}areaPK

(u)
Case 1 : v = Φ(u). Subdivide each edge of the diagram D′ for u, such that

each edge which was originally labelled ai is now labelled φ(ai). Each face which
was labelled rj ∈ R is now relabelled Φ(rj), and each of these faces can be filled
in by a diagram over P of area at most α.

Case 2 : u = Φ(v). Then in Γ, we have v =Γ Ψ(u). Subdivide and relabel as
in case 1, but now each ai–edge is relabelled Ψ(ai). Each face which was originally
labelled rj is now labelled Ψ(rj), and each of these can be filled in by a diagram of
area at most β. This diagram for Ψ(u) can be made into a diagram for v as follows.
Noting that u = Φ(v), we have Ψ(u) = Ψ·Φ(v) and that if v = c1 . . . cp with cj ∈ A,
then Ψ ·Φ(v) = Ψ ·Φ(c1) . . .Ψ ·Φ(cp), it suffices to add diagrams for each relation
cj =K Ψ · Φ(cj) If γ is the maximum area of these diagrams, then there is a van
Kampen diagram for v over P of area at most βareaP(u) + γ`(u) ≤ γ′`(u).

To obtain a bound on the area of a PK diagram for w it suffices to note
that t–rings can be enclosed to a depth of at most the radius of D, and removing
innermost t–rings one after the other multiplies area by at most C = max{α, γ′}.

Thus, as the original diagram D over PΓ can be chosen of area at most
A`(w)(log2(`(w))+1), and of radius at mostB log2(`(w)+1), there is a PK diagram
for w of area at most CB log2(`(w)+1)A`(w)(log2(`(w)) + 1) which is bounded by a
polynomial function of `(w). �
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Mikhael Gromov, Birkhäuser, Progress in Mathematics series, vol. 83, 1990

[15] S. M. Gersten and H. Short, Some isoperimetric inequalities for kernels of
free extensions, Proceedings of the Congress in honour of John Stallings,
Geométrica Dedicata, 92, (2002), 63–72

[16] L. I. Greendlinger and M. D. Greendlinger, On three of Lyndon’s results about
maps, in Contributions to group theory, edited by K. I. Appel, P.E. Schupp
and J. Ratcliffe, Contemp. Math., 33, 212–213, A.M.S, 1984

[17] A. Hatcher, Algebraic Topology , C.U.P., 2002; also (legally) available at
http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.
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