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Abstract. We establish virtual surjection to pairs (VSP) as a
general criterion for the finite presentability of subdirect products
of groups: if Γ1, . . . ,Γn are finitely presented and S < Γ1×· · ·×Γn

projects to a subgroup of finite index in each Γi × Γj , then S is
finitely presentable, indeed there is an algorithm that will construct
a finite presentation for S.

We use the VSP criterion to characterise the finitely presented
residually free groups. We prove that the class of such groups
is recursively enumerable. We describe an algorithm that, given a
finite presentation of a residually free group, constructs a canonical
embedding into a direct product of finitely many limit groups. We
solve the (multiple) conjugacy problem and membership problem
for finitely presentable subgroups of residually free groups. We also
prove that there is an algorithm that, given a finite generating set
for such a subgroup, will construct a finite presentation.

New families of subdirect products of free groups are constructed,
including the first examples of finitely presented subgroups that are
neither FP∞ nor of Stallings-Bieri type.

1. Introduction

A very challenging problem is to determine which subgroups S <
G1×· · ·×Gn of a direct product of finitely presented groups are them-
selves finitely presented. Indeed this problem is subtle even when the
Gi are free groups.

Some terminology is useful for describing how a subgroup sits inside
a direct product. A subgroup of a direct product of groups is termed a
subdirect product if its projection to each factor is surjective. A subdi-
rect product is said to be full if it intersects each of the direct factors
non-trivially. A subgroup S < G1 × · · · × Gn is said to be virtually
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surjective on pairs (VSP) if for all i 6= j ∈ {1, . . . , n}, the projection
pij(S) ⊂ Gi ×Gj has finite index. (We implicitly assume that n ≥ 2.)

In [14] we showed that the full subdirect products of non-abelian
free and surface groups which are finitely presented must satisfy the
VSP condition, from which it follows that they contain a term of the
lower central series of a subgroup of finite index in the direct product.
The VSP condition also played an important role in our previous work
on subdirect products of limit groups [11]. The first purpose of this
article is to establish VSP as a criterion for the finite presentability of
subgroups of more general direct products of groups. We remind the
reader that a subgroup S < Γ is termed separable if for every γ ∈ ΓrS
there exists a normal subgroup K /Γ of finite index such that γ /∈ SK.

Theorem A (The VSP Criterion). Let S < G1 × · · · × Gn be a sub-
group of a direct product of finitely presented groups. If S is virtually
surjective on pairs (VSP), then it is finitely presented and separable.

Note that we do not assume,a priori, that the subgroup S is finitely
generated. The converse of Theorem A is false in general; even finitely
presented full subdirect products need not satisfy VSP. For example, if
N is a finitely-generated torsion-free nilpotent group that is not cyclic,
and if φ : N×N → Z is a homomorphism whose restriction to each fac-
tor is non-trivial, then the kernel of φ is a finitely presented, separable
full subdirect product without VSP.

An essential ingredient in the proof of Theorem A is the following
asymmetric version of the 1-2-3 Theorem of [2].

Theorem B (Asymmetric 1-2-3 Theorem). Let f1 : Γ1 → Q and
f2 : Γ2 → Q be surjective group homomorphisms. Suppose that Γ1 and
Γ2 are finitely presented, that Q is of type F3, and that at least one of
ker f1 and ker f2 is finitely generated. Then the fibre product of f1 and
f2,

P = {(g, h) | f1(g) = f2(h)} ⊂ Γ1 × Γ2,

is finitely presented.

We shall concentrate on the effective version of this result (Theorem
2.2) which yields an explicit finite presentation for P . (Proofs of the
non-effective version can be found in [12] and [22].) In Theorem 3.7
we use Theorem 2.2 to prove an effective version of Theorem A: there
is a uniform partial algorithm that, given finite presentations for the
factors Gi and a finite generating set for S satisfying VSP, will output
a finite presentation for S.

In this paper we describe a number of algorithmic processes. Often
they are partial algorithms meaning that when applied to an object
X which satisfies some condition C, the process will halt with some
appropriate information about X; but if X does not satisfy C either
the process will halt saying X /∈ C or the process will fail to halt.
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For instance in Theorem 3.7, which is our effective version of Theo-
rem A, we describe such a partial algorithm which, when given a direct
product of finitely presented groups and a finite set of generators for
a subgroup S, succeeds when S actually satisfies VSP and yields a fi-
nite presentation for S. The algorithm is uniform in the given data (a
direct product and a finite generating set for S) and so can be started
without knowing whether or not S satisfies VSP. If S does not satisfy
VSP, the algorithm of Theorem 3.7 does not halt. (In a direct product
of free groups for instance, there is no algorithm to determine whether
or not the subgroup generated by a finite set satisfies VSP nor whether
it is finitely presentable.)

Residually free groups. In the second half of this article we use
Theorem A and more specialised results to advance the understand-
ing of finitely presented residually free groups. Residually free groups
provide a context for a rich and powerful interplay among group the-
ory, topology and logic. By definition, a group G is residually free if,
for every 1 6= g ∈ G, there is a homomorphism φ from G to a free
group F such that 1 6= φ(g) in F . The prototypes for these groups are
the finitely presented subgroups of finite direct products of free and
surface groups. In general a finitely-presented residually-free group is
a full subdirect product of finitely many limit groups, i.e. it can be
embedded in a finite direct product of limit groups so that it intersects
each factor non-trivially and projects onto each factor (cf. Theorem C
below). In our earlier studies [14], [9], [10], [11], we proved that these
full subdirect products have finite index in the ambient product if they
are of type FP∞. We also proved that in general they virtually contain
a term of the lower central series of the product. These tight restric-
tions set the finitely presented subdirect products of limit groups apart
from those that are merely finitely generated, since the finitely gen-
erated subgroups of the direct product of two free groups are already
hopelessly complicated [35]. Nevertheless, a thorough understanding of
the finitely presented subdirect products of free and limit groups has
remained a distant prospect, with only a few types of examples known.

In this article we pursue such an understanding in a number of
ways. Using Theorem A, we characterize finitely-presented residually-
free groups among the full subdirect products of limit groups in terms
of their projections to the direct factors. A revealing family of finitely
presented full subdirect products of free groups is constructed; this
gives rise to a more constructive characterization of finitely presented
residually free groups. We give algorithms for finding finite presenta-
tions when they exist, for constructing certain canonical embeddings,
for enumerating finitely presented residually free groups, and for solv-
ing their conjugacy and membership problems.
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By definition, a group G is residually free if it is isomorphic to a
subgroup of an unrestricted direct product of free groups. In general,
one requires infinitely many factors in this direct product, even if G
is finitely generated. For example, the fundamental group of a closed
orientable surface Σ is residually free but it cannot be embedded in a
finite direct product if χ(Σ) < 0, since π1Σ does not contain Z2 and
is not a subgroup of a free group. However, Baumslag, Myasnikov
and Remeslennikov [3, Corollary 19] proved that one can force the
enveloping product to be finite at the cost of replacing free groups by
∃-free groups (see also [27, Corollary 2] and [37, Claim 7.5]). In [28]
Kharlampovich and Myasnikov describe an algorithm to find such an
embedding, based on the deep work of Makanin [34] and Razborov [36].
We shall describe a new algorithm that does not depend on [34] and
[36]; the embedding that we construct is canonical in a strong sense
(see Theorem C).

By definition, ∃-free groups have the same universal theory as a free
group; they are now more commonly known as limit groups, a term
coined by Sela [37]. They have been much studied in recent years in
connection with Tarski’s problems on the first order logic of free groups
[37], [27]. They have been shown to enjoy a rich geometric structure.
A useful characterisation of limit groups is that they are the finitely
generated groups G that are fully residually free: for every finite subset
A ⊂ G, there is a homomorphism from G to a free group that restricts
to an injection on A.

For the most part, we treat finitely generated residually free groups
S as subdirect products of limit groups. There are at least two obvious
drawbacks to this approach: the ambient product of limit groups is
not canonically associated to S; and given a direct product of limit
groups, it is difficult to determine which finitely generated subgroups
are finitely presented.

The first of these drawbacks is overcome by items (1), (3) and (4) of
the following theorem. Item (2) is based on Theorem 4.2 of [11].

Theorem C. There is an algorithm that, given a finite presentation of
a residually free group S, will construct an embedding ι : S ↪→ ∃Env(S),
so that

(1) ∃Env(S) = Γab × ∃Env0(S) where Γab = H1(S,Z)/(torsion)
and ∃Env0(S) = Γ1×· · ·×Γn is a direct product of non-abelian
limit groups Γi. The intersection of S with the kernel of the
projection ρ : ∃Env(S) → ∃Env0(S) is the centre Z(S) of S,
and ρ(S) is a full subdirect product.

(2) Li := Γi ∩ S contains a term of the lower central series of a
subgroup of finite index in Γi, for i = 1, . . . , n, and therefore
Nilp∃(S) := ∃Env(S)/(L1 × · · · × Ln) is virtually nilpotent.
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(3) [Universal Property] For every homomorphism φ : S → D =
Λ1× · · · ×Λm, with φ(S) subdirect and the Λi non-abelian limit

groups, there exists a unique homomorphism φ̂ : ∃Env0(S)→ D

with φ̂ ◦ ρ|S = φ;
(4) [Uniqueness] moreover, if φ : S ↪→ D embeds S as a full sub-

direct product, then φ̂ : ∃Env0(S)→ D is an isomorphism that
respects the direct sum decomposition.

The group ∃Env(S) in Theorem C is called the existential envelope of
S and the associated factor ∃Env0(S) is the reduced existential envelope.
The projection ρ embeds S/Z(S) in ∃Env0(S), and ρ(S) ⊂ ∃Env0(S) is
always a full subdirect product. The subgroup S ⊂ ∃Env(S) is always
a subdirect product but it is full if and only if S has a non-trivial centre.

Proceeding in the opposite direction, Guirardel and Levitt [26] prove
that, given a subdirect product S of limit groups, one can algorithmi-
cally construct a finitely presented group whose maximal centreless
residually free quotient is isomorphic to S/Z(S). They also show that
there is no algorithm to determine whether the maximal residually free
quotient of a finitely presentable group is finitely presentable. In a
similar vein, we note that there is no algorithm to determine whether
or not a finitely generated subdirect product of limit groups is finitely
presentable. Indeed, if F is a non-abelian free group, then there is no
algorithm to determine which finitely generated full subdirect products
of F × F are finitely presentable (cf. [14]).

The second of the drawbacks we identified in the discussion preceding
Theorem C is resolved by item (4) of the following theorem. In order
to state this theorem concisely we introduce the following temporary
definition: an embedding S ↪→ Γ0 × · · · × Γn of a residually free group
S as a full subdirect product of limit groups is said to be neat if Γ0

is abelian (possibly trivial), S ∩ Γ0 is of finite index in Γ0, and Γi is
non-abelian for i = 1, . . . , n.

Theorem D. Let S be a finitely generated residually free group. Then
the following conditions are equivalent:

(1) S is finitely presentable;
(2) S is of type FP2(Q);
(3) dimH2(S0;Q) <∞ for all subgroups S0 ⊂ S of finite index;
(4) [∃ neat VSP] there exists a neat embedding S ↪→ Γ0 × · · · × Γn

into a product of limit groups such that the image of S under
the projection to Γi × Γj has finite index for 1 ≤ i < j ≤ n;

(5) [neat =⇒ VSP] for every neat embedding S ↪→ Λ0 × · · · ×
Λn into a product of limit groups, the image of S under the
projection to Λi × Λj has finite index for 1 ≤ i < j ≤ n.

Corollary E. For all k ∈ N, a residually free group S is of type Fk if
and only if it is of type FPk(Q).
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In this context it is worth noting that D. Kochloukova [29] has ob-
tained results concerning the question of which subdirect products of
limit groups are FPk for 2 < k < n. In the pro-p category, the anal-
ogous question has been completely answered [30], but for discrete
groups it remains open in general.

It follows from Theorem D that any subgroup T ⊂ ∃Env(S) contain-
ing S is again finitely presented. More generally we prove:

Theorem F. Let k ≥ 2 be an integer, let S ⊂ D := Γ1× · · · × Γn be a
full subdirect product of limit groups, and let T ⊂ D be a subgroup that
contains S. If S is of type FPk(Q) then so is T .

The proof of Theorem D relies on our earlier work concerning the
finiteness properties of subgroups of direct products of limit groups [11]
as well as Theorem A (the VSP criterion).

In the final section of this paper we shall combine Theorem D with
the effective form of Theorem A to prove:

Theorem G. The class of finitely presented, residually free groups
is recursively enumerable. More explicitly, there exists a Turing ma-
chine that generates a list of finite group-presentations so that each
of the groups presented is residually free and every finitely-presented
residually-free group is isomorphic to at least one of the groups pre-
sented.

In Section 4 we turn our attention to the construction of new families
of finitely-presented residually-free groups.

Subdirect products of free groups hold a particular historical in-
terest, most notably in connection with Baumslag and Roseblade’s
groundbreaking work [4] on the (non)finite presentability of subgroups
of F × F , and the seminal constructions by Stallings [38] and Bieri
[5] of finitely presentable groups that are not of type FP∞(Q). Sub-
direct products of surface groups also have a special appeal: the work
of Delzant and Gromov [20] shows that such subgroups play an impor-
tant role in the problem of determining which finitely presented groups
arise as the fundamental groups of compact Kähler manifolds. In the
context of subdirect products of surface groups, Dimca, Papadima and
Suciu [21] have constructed analogues of the Bieri-Stallings examples
that are fundamental groups of smooth complex projective varieties
(and hence Kähler). These are currently the only known examples of
subdirect products of surface groups that are Kähler but not of type
FP∞(Q).

We construct the first examples of finitely presented subgroups of
direct products of free groups that are neither FP∞(Q) nor of Stallings-
Bieri type, thus answering a question raised in [14]. (We use the stan-
dard notation γn(G) to denote the n-th term of the lower central series
of a group.)
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Theorem H. If c and n are positive integers with n ≥ c + 2, and
D = F1 × · · · × Fn is a direct product of free groups of rank 2, then
there exists a finitely presented subgroup S ⊂ D with S ∩Fi = γc+1(Fi)
for i = 1, . . . , n.

Nilp∃(S) was defined in Theorem C(2).

Corollary I. For all positive integers c and n ≥ c + 2, there exists a
finitely-presented residually-free group S for which Nilp∃(S) is a direct
product of n copies of the 2-generator free nilpotent group of class c.

The proof that the group S in Theorem H is finitely presented relies
on our earlier structural results. Our proof of the equality S ∩ Fi =
γc+1(Fi) exploits the Magnus embedding of the free group of rank 2
into the group of units of Q[[α, β]], the algebra of power series in two
non-commuting variables with rational coefficients.

Theorem D describes the finitely-presented residually-free groups. A
description of a quite different nature is given in Theorem 5.6: us-
ing a template inspired by the examples in Section 4 we prove that
every finitely-presented residually-free group is commensurable with a
particular type of subdirect product of limit groups.

In Section 7 we apply Theorem C to elucidate the algorithmic struc-
ture of finitely presented residually free groups. The restriction to
finitely presented groups is essential since decision problems for arbi-
trary finitely generated residually free groups are hopelessly difficult.
For example, there are finitely generated subgroups of a direct product
of two free groups for which the conjugacy problem and membership
problem are unsolvable; and the isomorphism problem is unsolvable
amongst such subgroups [35].

The following statement includes the statement that the conjugacy
problem is solvable in every finitely-presented residually-free group.

Theorem J. Let S be a finitely-presented residually-free group. There
exists an algorithm that, given an integer n and two n-tuples of words
in the generators of S, say (u1, . . . , un) and (v1, . . . , vn), will determine
whether or not there exists an element s ∈ S such that suis

−1 = vi in
S for i = 1, . . . , n.

As previously noted, in a direct product of non-abelian free groups
there is no algorithm to determine whether a finitely generated sub-
group can be finitely presented. Nevertheless in a finitely presented
residually free group, if we are given a finite set of generators for a
subgroup which is in fact finitely presentable, then we can effectively
find a presentation it. The method is uniform in the given data. Here
is a more formal statement.

Theorem K. There is a uniform partial algorithm for finding presen-
tations of finitely presentable subgroups of finitely-presented residually-
free groups. More precisely, there is a partial algorithm that, given a
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finite presentation for a residually free group G and a finite set of words
generating a subgroup H, will output a finite presentation for H if it
exists.

In the direct product of non-abelian free groups there are finitely
generated subgroups for which the membership problem is unsolvable,
but the subgroups in question are not finitely presented. We establish
a uniform solution to the membership problem for finitely-presentable
subgroups of finitely-presented residually-free groups.

Theorem L. There is a uniform partial algorithm that, given a finite
presentation of a residually free group S, a finite generating set for a
finitely presentable subgroup H ⊂ S and a word w in the generators of
S, can determine whether or not w defines an element of H.

Following our work, alternative approaches to the conjugacy and
membership problems were developed in [15] and [18].

In the final section of this paper we make a few remarks about the
isomorphism problem for finitely presented residually free groups, tak-
ing account of the canonical embeddings S ↪→ ∃Env(S).

This paper is organised as follows. Our first goal is to prove an
effective version of the Asymmetric 1-2-3 Theorem; this is achieved
in Section 2. In Section 3 we establish Theorem A. In Section 4 we
construct the groups described in Theorem H. In Section 5 we establish
the two characterisations of finitely presented residually free groups
promised earlier: we prove Theorem D and Theorem 5.6. Section 6 is
devoted to the proof of Theorem C and other aspects of the canonical
embedding S ↪→ ∃Env(S). Finally, in Section 7, we turn our attention
to decidability and enumeration problems, proving Theorems G, J, K
and L.

Most of the results in this paper were proved in our preprint [12],
posted in 2008. In the intervening period there have been a number
of related developments by various authors [15, 18, 21, 26, 29, 30]. In
presenting the current article, we have tried to strike a balance between
the sometimes competing goals of presenting a single coherent account
of our original material, and of taking these later developments into
account.

We thank G. Baumslag, W. Dison, D. Kochloukova, A. Myasnikov,
Z. Sela, H. Wilton and, most particularly, M. Vaughan-Lee for helpful
comments and suggestions relating to this work. We are also grateful
to an anonymous referee for a careful reading of an earlier version of the
paper, and insightful comments that led to significant improvements.

2. The Effective Asymmetric 1-2-3 Theorem

In this section we prove the following effective version of Theorem B.
The basic Asymmetric 1-2-3 Theorem states that a certain type of fi-
bre product is finitely presented, whereas the effective version provides



FINITE PRESENTATION AND RESIDUALLY FREE GROUPS 9

an algorithm that, given natural input data, constructs a finite pre-
sentation for the fibre product. This enhanced version of the theorem
will play a crucial role in our proof that the class of finitely presented
residually free groups is recursively enumerable.

In order to gain a full understanding of the proof that we are going to
present, the reader should be familiar with the original proof of the 1-
2-3 Theorem as presented in [2, §§1.4–1.5]. In particular, we shall not
rehearse the reasons why considerations of π2Q enter naturally into
the proof (cf. remark 2.4). We remind the reader that, given a finite
presentation Q ≡ 〈X | R〉 for a group Q, one can define the second
homotopy group of π2Q to be π2 of the standard 2-complex K of the
presentation, regarded as a module over ZQ via the identification Q =
π1K. In the present context, though, it is better to regard elements of
π2Q as equivalence classes of identity sequences [(w1, r1), . . . , (wm, rm)],
where the wi are elements of the free group F (X), the ri ∈ R±1, and
where

∏m
i=1w

−1
i riwi is equal to the empty word in F (X); equivalence is

defined by Peiffer moves, and the action of Q is induced by the obvious
conjugation action of F (X); see [39].

We shall also need the following observations, which are addressed
in a more pedestrian manner in [2].

Remark 2.1. Let f : Γ→ Q be an epimorphism where Q = 〈X | R〉.
Then

(1) Γ can be presented as Γ = 〈X,C | R̂, S〉, so that f is given by
f(x) = x for all x ∈ X and f(c) = 1 for all c ∈ C; there is

relation r̂ ∈ R̂ of the form r(X) = u(C) for each r ∈ R; and
S consists of words that are products of subwords drawn from
C∗, the set of conjugates of the symbols c ∈ C by words in the
free group on X.

(2) If ker f is finitely generated, then one can further assume that C
generates ker f , and that S consists of two sets of relations: the
first set expresses the fact that ker f is normal, with a relation
of the form x−εcxε = w(C) for each x ∈ X, c ∈ C and ε = ±1;
the second set consists of words in the free group on C.

Theorem 2.2. There exists a Turing machine that, given the following
data describing group homomorphisms fi : Γi → Q (i = 1, 2), will
output a finite presentation of the fibre product of these maps provided
that both the fi are surjective and at least one of the kernels ker fi is
finitely generated. (If either of these conditions fails, the machine will
not halt.)

Input Data:

(1) A finite presentation Q ≡ 〈X | R〉 for Q.
(2) A finite presentation 〈a(i) | r(i)〉 for Γi (i = 1, 2).
(3) ∀a ∈ a(i), a word â ∈ F (X) such that â = fi(a) in Q.
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(4) A finite set of identity sequences that generates π2Q as a ZQ-
module.

Proof. We associate to a fixed finite group-presentation Q ≡ 〈X | R〉
of a group Q the class C(Q) of finite group-presentations that have the
form

〈X t A tB | S1, S2, S3, S4, S5〉,
where

• S1 consists of a relator r(X)ur(A)vr(B
∗) for each relator r =

r(X) ∈ R, where B∗ is the set of formal conjugates of the letters
b ∈ B by words in the free monoid on X ∪X−1 and vr(B

∗) is a
word in the free group on this set, while ur(A) is a word in the
free group on A;
• S2 consists of a relator axεwa,x,ε(A)x−ε for each a ∈ A, x ∈ X

and ε = ±1, with the wa,x,ε(A) words in the free group on A;
• S3 = {aba−1b−1 | a ∈ A, b ∈ B};
• S4 is a finite set of words in the free group on A;
• S5 is a finite set of words in the free group on B∗.

It is clear the class C(Q) is recursively enumerable. Moreover, each
group G given by a presentation P ∈ C(Q) comes naturally equipped
with an epimorphism π onto Q, namely the map that at the level of
generators restricts to the identity on X and sends each element of A
and B to 1. We write GA (resp. GB) to denote the quotient of G by
the normal closure NA of A (resp. the normal closure NB of B) and
regard π as the canonical map G → G/NANB

∼= Q. Note that the
diagonal map ∆ : G→ GA×GB sends G onto the fibre-product of the
epimorphisms GA → Q and GB → Q. Note also that NA is generated
by A as a group (not just a normal subgroup) and that NA commutes
with NB.

Remark 2.1(1) assures us that any finitely presented group Γ1 ad-
mitting an epimorphism f1 : Γ1 → Q is isomorphic to GA for some
(indeed infinitely many) G given by a presentation from C(Q), via an
isomorphism φA : GA → Γ1 such that f1◦φA is the natural epimorphism

πA : GA = G/NA → G/NANB.

Moreover, if one has a finitely presented group Γ2 admitting an epi-
morphism f2 : Γ2 → Q with ker f2 finitely generated, then Remark
2.1(2) assures us Γ2 is also isomorphic to GB for some G given by a
presentation in C(Q), via an isomorphism φB : GB → Γ2 such that

f ◦ φB = πB : GB = G/NB → G/NANB.

When one constructs a presentation in C(Q), the choice of words
involving A and those involving B can be made entirely independently
of one another; so the construction of maps φA and φB in the preceding
paragraph can be carried out simultaneously, i.e. using the same G.
In other words, for any pair of finitely presented groups Γ1 and Γ2 and
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epimorphisms f1 : Γ1 → Q, f2 : Γ2 → Q with ker f2 finitely generated,
there is a group G given by a presentation from C(Q) and isomorphisms
φA : GA → Γ1, φB : GB → Γ2 such that f1 ◦φA = πA and f2 ◦φB = πB.

We now have sufficient notation to describe the algorithm that we
seek. Given input data (1), (2) and (3), the algorithm works systemat-
ically through an enumeration of C(Q), searching diagonally for pairs
φA : GA → Γi, φB : GB → Γj as above, with {i, j} = {1, 2}. By hy-
pothesis Γ1 and Γ2 are finitely presented, and at least one of the kernels
of Γk → Q (k = 1, 2) is finitely generated. So our search procedure will
eventually terminate successfully.

Let P ∈ C(Q) be the presentation found by the procedure, let G
be the group given by P , and let NA, NB, GA, GB be as defined above.
Then, (φA × φB) ◦ ∆ maps G onto the fibre product P < Γ1 × Γ2

of f1 and f2, and the kernel of this map is NA ∩ NB. Since NA and
NB commute, it follows that NA ∩ NB is central in NANB, and that
conjugation in G gives it the structure of a ZQ-module. To complete
our proof, it suffices to show that we can find algorithmically a finite
generating set Z for NA ∩ NB as a ZQ-module; adjoining Z to the
relators of P will then present P , as required.

To obtain Z, we follow the construction of [2, §§1.4,1.5]. Killing the
generators B in P gives a presentation of GB of the form 〈X tA | S ′1∪
S2∪S4〉 with S ′1 = {rur(A) : r ∈ R}, as in [2, §1.4]. By [2, Theorem 1.2],
the normal closure NA/(NA∩NB) of A in GB has a presentation on the
generators A with relators all the F (X,A)-conjugates of S2∪S4∪S6∪Z,
where S6 = {[rur, a] : r ∈ R, a ∈ A} and where Z is a finite set of
words in A±1 derived by a simple algorithm from a finite set of identity
sequences that generate π2(Q) as a ZQ-module. (Note: this is where
input datum (4) enters.) Now the relators S2 and S4 are already relators
of P , while the relators S6 can readily be derived from the relators
S1 ∪ S2 ∪ S3 of P . It follows that the elements of NA represented by
the words in Z generate NA ∩NB as a normal subgroup of G (in other
words as a ZQ-module), as required. �

Remark 2.3. The algorithm in the preceding proof does not just pro-
duce a finite presentation P ≡ 〈T | Σ〉 of the fibre product P < Γ1×Γ2,
it also produces an explicit isomorphism Φ : |P| → P (induced by
(φA × φB) ◦∆ in the notation of the proof). It follows that if one has
a preferred finite generating set Y for P , then one can construct a fi-
nite presentation for P with generators Y . Indeed, a naive search will
identify, for each generator t ∈ T , a word ut so that Φ(t) = ut(Y ) in
P . Then P = 〈T t Y | Σ, t−1ut(Y ) (t ∈ T )〉, and obvious Tietze moves
remove the generators T .

Remark 2.4. There does not exist an algorithm that, on input a fi-
nite presentation of a group of type FP∞ can output a finite set of
module generators for π2 of the presentation, so the last piece of input
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data in the above theorem cannot easily be dispensed with. In fact,
Bridson and Wilton [16] have proved that it is essential: there exists
a recursive sequence of maps φn : Γn → Qn, with Γn and Qn given by
finite presentations, such that each Qn is of type FP∞ and each kernel
kerφn is finitely generated, but the first Betti number of the associated
(finitely presentable) fibre product Pn < Γn×Γn cannot be determined
algorithmically (whereas it could be if one had a finite presentation in
hand).

3. Subdirect products and VSP

Throughout this section we consider subdirect products of arbitrary
finitely presentable groups. In later sections we restrict attention to
the case where the direct factors are limit groups.

Given a direct product D := G1 × · · · × Gn, we shall consistently
write pi and pij for the projection homomorphisms pi : D → Gi and
pij : D → Gi ×Gj (i, j = 1, . . . , n). We implicitly assume that n ≥ 2.

We remind the reader that a subgroup S < D is said to be VSP
(virtually surjective on pairs) if for all i, j ∈ {1, . . . , n}, i 6= j, the
projection pij(S) < Gi ×Gj has finite index.

Theorem 3.1 (= Theorem A). Let S < G1 × · · · × Gn be a subgroup
of a direct product of finitely presented groups. If S is VSP, then S is
finitely presentable.

We will deduce this theorem from the Asymmetric 1-2-3 Theorem
by combining some well-known facts about virtually nilpotent groups
with the following proposition, which generalises similar results in [14]
and [11].

Proposition 3.2. Let G1, . . . , Gn be groups and let S < G1× · · ·×Gn

be a subgroup. If S is VSP then

(1) there exist finite-index subgroups G0
i ⊂ Gi such that γn−1(G0

i ) ⊂
S.

If, in addition, the groups Gi are all finitely generated, then

(2) Li := S ∩Gi is finitely generated as a normal subgroup of S,
(3) Ni := S ∩ ker(pi) is finitely generated, and
(4) S is itself finitely generated.

Proof. The conditions imply that pi(S) is a finite index subgroup of Gi,
and by passing to subgroups of finite index we may assume without loss
that S is subdirect.

Let

G0
1 = {g ∈ G1 | ∀j 6= 1∃(g, ∗, . . . , ∗, 1, ∗ . . . ) ∈ Nj} =

n⋂
j=2

(p1j(S) ∩G1)

and define G0
i similarly. As pij(S) ⊂ Gi ×Gj is of finite index, G0

i has
finite index in Gi for i = 1, . . . , n.
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For notational convenience we focus on i = 1 and explain why
γn−1(G0

1) ⊂ S. The key point to observe is that for all x1, . . . , xn−1 ∈ G0
1

the commutator ([x1, x2, . . . , xn−1], 1, . . . , 1) can be expressed as the
commutator of elements from the subgroups Nj ⊂ S; explicitly it is

[ (x1, 1, ∗, . . . , ∗), (x2, ∗, 1, ∗, . . . , ∗), . . . , (xn−1, ∗, . . . , ∗, 1) ].

This proves the first assertion.
For (2), note that since S is subdirect, S∩Gi is normal in Gi and the

normal closure in Gi of any set T ⊂ S ∩ Gi is the same as its normal
closure in S. Since Gi is finitely generated, Gi/(S ∩ Gi) is a finitely
generated virtually nilpotent group; hence it is finitely presented and
S ∩Gi is the normal closure in Gi (hence S) of a finite subset.

Towards proving (3), note that the image of N1 = S ∩ ker(p1) in Gi

under the projection pi has finite index for 2 ≤ i ≤ n, since p1i(S) has
finite index in G1 × Gi and N1 is the kernel of the restriction to S of
p1 = p1 ◦ p1i. In particular pi(N1) is finitely generated.

Note also that Li = S ∩Gi is the normal closure of a finite subset of
pi(N1) by (2).

Now let L := L2× · · · ×Ln. Then N1/L is a subgroup of the finitely
generated virtually nilpotent group

G2 × · · · ×Gn

L
∼=
G2

L2

× · · · × Gn

Ln
,

and hence is also finitely generated (and virtually nilpotent).
Putting all these facts together, we see that we can choose a finite

subset X of N1 such that:

• pi(X) generates pi(N1) for each i = 2, . . . , n;
• X ∩ Li generates Li as a normal subgroup of pi(N1), for each
i = 2, . . . , n;
• {xL : x ∈ X} generates N1/L.

These three properties ensure that X generates N1, and the proof of
(3) is complete.

We can express S as an extension of N1 by G1 which are both finitely
generated (using (3)), and (4) follows immediately. �

Remarks 3.3. (1) A slight variation on the above proof of (3) shows
that if G1, . . . , Gn are finitely generated groups and H < G1×· · ·×Gn

is a subdirect product whose intersection with each of the factors Gi

contains some term of the lower central series of a subgroup of finite
index in Gi, then H is finitely generated.

(2) Finitely generated virtually nilpotent groups are F∞, i.e. have
classifying spaces with finitely many cells in each dimension. Indeed
this is true of virtually polycyclic groups P , because such a group has
a torsion-free subgroup of finite index that is poly-Z, and hence is the
fundamental group of a closed aspherical manifold. If B has type F∞
(e.g. a finite group) and A has type F∞ (e.g. the fundamental group of
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an aspherical manifold), then any extension of A by B is also of type
F∞ (see [23] Theorem 7.1.10).

3.1. Proof of Theorem A. The hypothesis on pij(S) implies that the
image of S in each factor Gi is of finite index. Replacing the Gi and S
with subgroups of finite index does not alter their finiteness properties.
Thus we may assume that S is a subdirect product. Let Li = Gi ∩ S
and note that Li is normal in both S and Gi. Proposition 3.2 tells us
that Qi := Gi/Li is virtually nilpotent; in particular it is of type F3

(see Remark 3.3).
Assuming that S is a subdirect product, we proceed by induction on

n. The base case, n = 2, is trivial.
Let q : G1 × · · · × Gn → G1 × · · · × Gn−1 be the projection with

kernel Gn and let T = q(S). By the inductive hypothesis, T is finitely
presented. We may regard S as a subdirect product of T ×Gn. Equiv-
alently, writing Nn = T ∩ S and noting that

T

Nn

∼=
S

Nn × Ln
∼=
Gn

Ln
= Qn,

we see that S is the fibre product associated to the short exact se-
quences 1 → Nn → T → Qn → 1 and 1 → Ln → Gn → Qn → 1.
Thus, by the Asymmetric 1-2-3 Theorem, our induction is complete
because according to Proposition 3.2(3), Nn is finitely generated. �

3.2. Separability. It remains to prove the assertion in the last phrase
of Theorem A.

Lemma 3.4. Let D = G1×· · ·×Gn where the Gi are finitely generated.
If a subgroup H < D is such that, for each i, H∩Gi contains a subgroup
Ni that is normal in Gi with virtually nilpotent quotient, then H is
separable in D.

Proof. Let N = N1 × · · · × Nn. Then D/N is virtually nilpotent,
hence subgroup separable. So given g ∈ D r H we can find a finite-
index subgroup K in D/N that contains H/N but not gN (noting that
N ⊂ H). Then KN has finite index in D and separates H from g. �

The following corollary completes the proof of Theorem A.

Corollary 3.5. If H < D has the VSP property, then it is separable.

Proof. We replace the subgroup G0
i < Gi of Proposition 3.2(1) with

the intersection of all of its conjugates; it is then normal in Gi, as is
each term of its lower central series. Thus it suffices to take Ni =
γn−1(G0

i ). �

In our solution to the membership problem for finitely presented
subgroups of residually free groups, we shall need a further consequence
of Lemma 3.4.
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Corollary 3.6. If G1, . . . , Gn are limit groups, then every finitely pre-
sented full subdirect product of D = G1 × · · · ×Gn is separable in D.

Proof. We proved in Theorem 4.2 of [11] that finitely presented full
subdirect products of non-abelian limit groups have the VSP property,
so it only remains to deal with the abelian factors. By collecting these
factors, we may assume that precisely one factor (Gn say) is abelian. If
S < D is a finitely presented, full subdirect product, then its projection
qn(S) in G1×· · ·×Gn−1 is also finitely presentable, full and subdirect,
and hence satisfies VSP.

The proof of Proposition 3.2(1) applies to S < D, even if it is not
VSP: given a1, . . . , an−2 ∈ G0

i , that proof gives s1, . . . , sn−2 ∈ S such
that pi([s1, . . . , sn−2]) = [a1, . . . , an−2] in Gi, and pj([s1, . . . , sn−2]) = 1
inGj for 1 ≤ j ≤ n−1, j 6= i. But it is also true that pn([s1, . . . , sn−2]) =
1 in Gn, since Gn is abelian. Hence γn−2(G0

i ) ⊂ γn−2(S).
As in the proof of Corollary 3.5 above, we arrange that G0

i is normal
and define Ni = γn−2(G0

i ). (When i = n this gives Nn = 1.) Lemma
3.4 now completes the proof. �

3.3. The effective version. The following theorem will play a key
part in our proof that the class of finitely-presentable residually-free
groups is recursively enumerable.

Theorem 3.7. There exists a Turing machine that, given a finite col-
lection G1, . . . , Gn of finitely presentable groups (each given by an ex-
plicit finite presentation) and a finite subset Y ⊂ G1 × · · · ×Gn (given
as a set of n-tuples of words in the generators of the Gi) such that
each projection pij(Y ) generates a finite-index subgroup of Gi × Gj

(1 ≤ i < j ≤ n), will output a finite presentation 〈Y | R〉 for S := 〈Y 〉.

Proof. With the effective Asymmetric 1-2-3 Theorem (Theorem 2.2)
in hand, we follow the proof of Theorem A. As in Theorem A we
first replace each Gi by the finite-index subgroup pi(S) to get to a
situation where S is subdirect. Here we use the Todd-Coxeter and
Reidemeister-Schreier processes to replace the given presentations of
the Gi by presentations of the appropriate finite-index subgroups. By
using Tietze transformations we may take pi(Y ) to be the generators
of this presentation. Thus we express the revised Gi as quotients of the
free group on Y .

We argue by induction on n. The initial case n = 2 is easily handled
by the Todd-Coxeter and Reidemeister-Schreier processes, since then
S has finite index in the direct product. So we may assume that n ≥ 3.

By Theorem 2.2 and Remark 2.3 it is sufficient to find finite presen-
tations for

(1) T = q(S), where q is the natural projection from G1× · · · ×Gn

to G1 × · · · ×Gn−1,
(2) Gn, and
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(3) Q = Gn/(Gn ∩ S),

together with

(4) explicit epimorphisms T → Q and Gn → Q, and
(5) a finite set of generators for π2 of the presentation for Q, as a

ZQ-module.

A finite presentation Gn = 〈Y | Rn〉 is part of the input.

We may assume inductively that we have found a finite presen-
tation for T , with generators q(Y ). We write this presentation as
〈Y | r1(Y ), . . . , rm(Y )〉.

To obtain a finite presentation for Q, we proceed as follows. The
image in Gn of the words rj(Y ) normally generate Gn∩S. Thus adding
these words as relations to the existing presentation of Gn gives a finite
presentation of Q, together with the natural quotient map Gn → Q.

The epimorphism T → Q is induced by the identity map on Y .

We would now be done if we could compute a finite set of π2-
generators for our chosen finite presentation P of the virtually nilpotent
group Q. But it is more convenient to proceed in a slightly different
manner, modifying P .

First, we search among finite-index normal subgroups Q′ of Q for an
isomorphism Q′ → P , for some group P given by a poly-Z presentation
P ′. The latter presentation defines an explicit construction for a finite
K(P, 1)-complex X, and in particular a finite set B of generators of
π2(X(2)) as a ZP -module (the attaching maps of the 3-cells).

We next replace our initial presentation P for Q by a new presenta-
tion Q that contains P ′ as a sub-presentation. Indeed, we know that
such presentations exist, so we can find one, together with an explicit
isomorphism that extends the given isomorphism P → Q′, by a naive
search procedure.

Let K denote the presentation 2-complex associated to the presenta-

tion Q, K̂ the regular cover of K corresponding to the normal subgroup

P = Q′, and Z the preimage of X(2) ⊂ K in K̂. Then Z consists of one

copy of X(2) at each vertex of K̂; these are indexed by the elements of
the finite quotient group H = Q/Q′.

We then have an exact homotopy sequence

· · · → ZQ⊗ZQ′ π2(X(2))→ π2(K̂)→ π2(K̂, Z)→ 0

(since the map P → Q is injective by hypothesis), together with a finite
set B of generators for π2(X(2)) as a ZQ′-module (via our isomorphism

Q′ → P ). But π2(K̂, Z) ∼= H2(K̂/Z), since the quotient complex

K̂/Z is simply connected. Hence π2(K) = π2(K̂) is generated as a ZQ-
module by B together with any finite set C that maps onto a generating

set for the finitely generated abelian group H2(K̂/Z). Such a set C can
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be found by a naive search over finite sets of identity sequences over
Q. �

Addendum 3.8. The Turing machine in Theorem 3.7 will not halt on
input of a subset Y such that pij(Y ) generates a subgroup of infinite
index in Gi ×Gj i 6= j.

Proof. The Todd-Coxeter process invoked in the preceding proof will
not halt. �

4. Novel Examples

From [11] (or [14] in the case of surface groups) we know that a
finitely presented full subdirect product S of n limit groups Γi must
virtually contain the term γn−1 of the lower central series of the product.
So the quotient groups Γi/(S ∩ Γi) are virtually nilpotent of class at
most n − 2. In particular for n = 3 the quotients Γi/(S ∩ Γi) are
virtually abelian.

A question left unresolved in [14] is whether a finitely presented sub-
direct product S of n free groups Φi can have Φi/(S ∩ Φi) nilpotent
strictly of class 2 or more (necessarily n ≥ 4 for this to happen). The-
orem 4.2 below settles this question and shows that the bounds on the
nilpotency class given in [11] and [14] are optimal.

4.1. The groups S(E, c). The first part of our discussion applies to
groups of a rather general nature, but since our main interest lies with
subgroups of direct products of free groups, we fix the suggestive no-
tation F for a finitely presentable group with a fixed generating set
{a, b}. (The restriction to the 2-generator case is just for notational
convenience.) Let Φ = F Z denote the unrestricted direct product of
a countably infinite collection of copies of F , thought of as the set of
functions f : Z→ F endowed with pointwise multiplication.

Let Γ = 〈w, x, y, z〉 be a free group of rank 4, and define a homo-
morphism φ : Γ → Φ by φ(w)(n) = a, φ(x)(n) = b, φ(y)(n) = an,
φ(z)(n) = bn for all n ∈ Z.

Given a finite subset E ⊂ Z, we may regard the direct product of
|E| copies of F as the set FE of functions E → F . We then obtain a
projection pE : Φ→ FE by restriction: pE(f) = f |E : E → F .

Notice that when E = {n} is a singleton pE ◦ φ is surjective. It will
be convenient to write Φn for F {n}, pn for the projection p{n} : Φ→ Φn,
and an, bn for the copy of a, b respectively in Φn. The surjectivity of
pn ◦ φ means that, for any finite subset E ⊂ Z, the image of pE ◦ φ is
a finitely generated subdirect product of the groups Φn (n ∈ E).

This subdirect product is not in general finitely presented.
Now let c be a positive integer. We may choose a finite set R =

R(a, b) of normal generators for the c’th term γc(F ) of the lower central
series of F . We then define S(E, c) to be the subgroup of FE that is



18 BRIDSON, HOWIE, MILLER, AND SHORT

generated by (pE ◦φ)(Γ) together with the sets R(an, bn) ⊂ Φn for each
n ∈ E.

As a concrete example we note that S({1, 2, 3, 4}, 3) is the subgroup
of Φ1 ×Φ2 ×Φ3 ×Φ4 generated by the following 12 elements: the four
images of the generators of Γ

(a1, a2, a3, a4) , (b1, b2, b3, b4)

(a1, a
2
2, a

3
3, a

4
4) , (b1, b

2
2, b

3
3, b

4
4)

together with the eight elements

([[a1, b1], a1], 1, 1, 1) , ([[a1, b1], b1], 1, 1, 1) , (1, [[a2, b2], a2], 1, 1) , . . .

. . . , (1, 1, 1, [[a4, b4], a4]) , (1, 1, 1, [[a4, b4], b4])

which are normal generators for the subgroups γ3(Φi) for 1 ≤ i ≤ 4.

Proposition 4.1. The groups S(E, c) have the following properties.

(1) S(E, c) contains γc(F
E).

(2) S(E, c) is finitely presentable.
(3) If E ′ = E + t = {e+ t; e ∈ E} is a translate of E in Z, then

S(−E, c) ∼= S(E, c) ∼= S(E ′, c).

(4) If E ⊂ E ′, then the projection FE′ → FE induces an epimor-
phism S(E ′, c)→ S(E, c).

Proof.
(1) Since R(an, bn) ⊂ S(E, c) ∩ Φn by construction, and since pn ◦ φ

is surjective for all n ∈ E, it follows that S(E, c) ⊃ γc(Φn) for each
n ∈ E, and hence S(E, c) ⊃ γc(F

E).
(2) Clearly S(E, c) is finitely generated. For any 2-element subset

T = {m,n} of E, the image of the projection of S(E, c) to F T =
Φm × Φn is precisely S(T, c). Since S(T, c) contains the elements
pT (φ(w)) = (am, an), pT (φ(x)) = (bm, bn), pT (φ(yw−m)) = (1, an−mn )
and pT (φ(zx−m)) = (1, bn−mn ), together with γc(Φm × Φn), we see that
the quotient of each of the direct factors Φm

∼= F ∼= Φn by its intersec-
tion with S(T, c) is a nilpotent group of class at most c, generated by
two elements of finite order, and hence is finite. Thus S(T, c) has finite
index in F T . In other words, the projection of the subdirect product
S(E, c) < FE to each product of two factors F T has finite index. Hence
by Theorem A, S(E, c) is finitely presentable.

(3) It is clear that S(−E, c) ∼= S(E, c) via the isomorphism FE →
F−E defined by an 7→ a−n, bn 7→ b−n.

To show that S(E, c) ∼= S(E ′, c), it is clearly enough to consider the
case t = 1. The isomorphism θ : FE → FE′

defined by an 7→ an+1,
bn 7→ bn+1 is induced by the shift automorphism θ : Φ→ Φ defined by
θ(f)(k) := f(k − 1), in the sense that pE′ ◦ θ = θ ◦ pE.

Similarly, θ commutes with the automorphism θ̂ of Γ defined by

w 7→ w, x 7→ x, y 7→ yw−1, z 7→ zx−1, in the sense that θ ◦ φ = φ ◦ θ̂.
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It follows immediately from the definitions that θ maps S(E, c) onto
S(E ′, c).

(4) This is immediate from the definitions. �

We can now state and prove the main result of this section. We thank
Mike Vaughan-Lee for several helpful suggestions concerning this proof.

Henceforth we assume that F = 〈a, b〉 is a free group of rank 2.
(As above, this is purely for notatonal convenience; analogues of our
examples can be constructed in the same way using non-abelian free
groups of arbitrary rank.)

Theorem 4.2 (= Theorem H). For any positive integer c, and any
finite subset E ⊂ Z of cardinality at least c+ 1, the group S(E, c) is a
finitely presentable subdirect product of the non-abelian free groups Φn

(n ∈ E) and S(E, c) ∩ Φn = γc(Φn) for each n ∈ E.

Proof. By construction, S(E, c) is a subdirect product of the Φn for n ∈
E, and by Proposition 4.1(2) it is finitely presentable. By Proposition
4.1(1) we have

S(E, c) ∩ Φn ⊃ γc(Φn)

for each n ∈ E, so it only remains to prove the reverse inclusion.
LetA = Q[[α, β]] be the algebra of power series in two non-commuting

variables α, β with rational coefficients, and for each n let ηn : Φn →
U(A) be the Magnus embedding of Φn into the group of units U(A)
of A, defined by ηn(an) = 1 + α, ηn(bn) = 1 + β. By Magnus’ The-
orem [32] (or [33, Chapter 5]), η−1

n (1 + J c) = γc(Φn). Here J is the
ideal generated by the elements with 0 constant term and J c is its c-th
power.

Now define η : Γ → U(Q[t] ⊗Q A) by η(w) = 1 + α, η(x) = 1 + β,
η(y) = (1 +α)t, η(z) = (1 + β)t, where for example (1 +α)t means the
power series

(1 + α)t =
∞∑
k=0

(
t
k

)
αk =

∞∑
k=0

t(t− 1) · · · (t− k + 1)

k!
αk.

Note that ηn ◦ φn = ψn ◦ η, where ψn : Q[t]⊗Q A→ A is defined by
f(t)⊗ a 7→ f(n)a and where φn = pn ◦ φ.

Note also that, for any g ∈ Γ, η(g) has the form

η(g) =
∑
W∈Ω

πW (t) ·W (α, β),

where Ω is the free monoid on {α, β} and πW (t) ∈ Q[t] has degree at
most equal to the length of W . Hence, for each n ∈ Z, we have

ηn(φn(g)) = ψn(η(g)) =
∑
W∈Ω

pW (n) ·W (α, β).
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Suppose now that E ⊂ Z is a finite set of integers of cardinality at
least c+ 1, and that g ∈ Γ such that pE(φ(g)) ∈ S(E, c)∩Φn for some
n ∈ E. Then, for each m ∈ E r {n}, we have

ψm(η(g)) = ηm(φm(g)) = ηm(1) = 1.

It follows that, in the expression η(g) =
∑

W∈Ω πW (t) ·W (α, β) for
η(g), the elements of E r {n}, of which there are at least c, are roots
of all the polynomials πW (t). In particular, for words W of length less
than c, the polynomials πW are identically zero. Hence ψm(η(g)) ∈ 1 +
J c for all m ∈ Z, in particular for m = n. Hence φn(g) ∈ η−1

n (1+J c) =
γc(Φn).

Thus
S(E, c) ∩ Φn ⊂ γc(Φn),

completing the proof that

S(E, c) ∩ Φn = γc(Φn).

�

4.2. Sample calculations. We use the explicit form of the map η :
Γ→ U(Q[t]⊗QA) from the proof of Theorem 4.2 to make some calcu-
lations that illuminate the preceding proof. Recall that Γ = 〈w, x, y, z〉
is free of rank 4.

Remark 4.3. Suppose that U, V ∈ Γ, k, ` ≥ 1 and α ∈ Jk, β ∈ J `

are such that η(U) = 1 + α mod Jk+1, η(V ) = 1 + β mod J `+1. Then
η(UV )− η(V U) = αβ− βα mod Jk+`+1, while η(U−1V −1) = 1 mod J ,
so

η([U, V ])− 1 = η(U−1V −1)(η(UV )− η(V U)) = αβ − βα mod Jk+`+1 .

Example 4.4. For each integer k, we calculate that

η(zx−k) = 1 + (t− k)β mod J2.

Also
η(y) = 1 + tα mod J2.

Repeatedly applying Remark 4.3, we see that

η([y, zx−1, zx−2, . . . , zx−m]) = 1+t(t−1) · · · (t−m)Vm(α, β) mod Jm+2,

where

Vm :=
m∑
k=1

(
m

k

)
βkαβm−k

is a non-trivial Z-linear combination of homogeneous monomials of
degree m+ 1.

Notice that the coefficient of Vm(α, β) is a polynomial of degree m+
1 in t with roots 0, 1, . . . ,m. In particular this gives an example of
an element in S({0, . . . ,m + 1},m + 2) ∩ γm+1(Φm+1) which is not in
γm+2(Φm+1).
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Example 4.5. As another application of Remark 4.3, we see induc-
tively that, for any basic commutator C of weight c in the generators
of Γ,

η(C) ∈ Z[t][[α, β]] + J c+1,

and hence
η(γc(Γ)) ⊂ Z[t][[α, β]] + J c+1.

On the other hand, if we put U = [w, z][x, y] ∈ γ2(Γ), then

η(U) = 1 +

(
t

2

)
(αβ2 + β2α + βα2 + α2β − 2αβα− 2βαβ) mod J4.

Thus φ(U) is an element of γ3(S(E, c)) for any E, c. On the other
hand, since

(
t
2

)
/∈ Z[t], η(U) /∈ η(γ3(Γ)), so for sufficiently large E, c

the element φ(U) ∈ γ3(S(E, c)) does not belong to φ(γ3(Γ)).

5. Characterizations

In this section we discuss the structure of finitely presentable residu-
ally free groups, and prove some results concerning their classification.

5.1. Subdirect products and homological finiteness properties.
We remind the reader of the shorthand we introduced in order to state
Theorem D concisely: an embedding S ↪→ Γ0× · · · ×Γn of a residually
free group S as a full subdirect product of limit groups is said to be
neat if Γ0 is abelian, S∩Γ0 is of finite index in Γ0, and Γi is non-abelian
for i = 1, . . . , n.

Theorem 5.1 (=Theorem D). Let S be a finitely generated residually
free group. Then the following conditions are equivalent:

(1) S is finitely presentable;
(2) S is of type FP2(Q);
(3) dimH2(S0;Q) <∞ for all subgroups S0 ⊂ S of finite index;
(4) there exists a neat embedding of S as a full subdirect of finitely

many limit groups so that the image is VSP;
(5) the image of every neat embedding of S as a full subdirect of

finitely many limit groups is VSP.

Proof. The implications (1) implies (2) implies (3) are clear. Theorem
A shows that (4) implies (1).

In order to establish the remaining implications, we first argue that
every finitely generated residually free group has a neat embedding.
Now [3, Corollary 19] tells us that S embeds into the direct product of
a finite collection of limit groups. Since finitely generated subgroups
of limit groups are limit groups, we may assume that S is a subdirect
product of finitely many limit groups. Moreover, by projecting away
from any factor with which S has trivial intersection, we may assume
that S is a full subdirect product of limit groups, say S < Γ0×· · ·×Γn.
Moreover, if two or more of the factors Γi are abelian, we may regard
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their direct product as a single direct factor, so we may assume that
Γ0 is abelian (possibly trivial), and that Γi is non-abelian for i > 0.
Finally, the intersection S∩Γ0 has finite index in some direct summand
of Γ0, and by projecting away from a complement of such a direct
summand, we may assume that S ∩ Γ0 has finite index in Γ0. Thus we
obtain a neat embedding of S. With this existence result in hand, it is
clear that (5) implies (4). To complete the proof we shall argue that
(3) implies (5).

Given a neat embedding S ↪→ Λ0 × · · · × Λm, the image of the
projection of S to Λ0×Λi has finite index for any i > 0, and the quotient
S of S by Z(S) = S ∩Λ0 is a full subdirect product of the non-abelian
limit groups Λ1, . . . ,Λn. Moreover, since S∩Λ0 is finitely generated, (3)
implies that H2(S0;Q) is finite dimensional for all subgroups S0 < S
of finite index in S. It then follows from Theorem 4.2 of [11] that the
image of the projection of S to Λi×Λj has finite index for any i, j with
0 < i < j ≤ m. Thus (3) implies (5). �

It follows easily from Theorem 5.1 that any subdirect product of
limit groups that contains a finitely presentable full subdirect product
is again finitely presentable. More generally we prove:

Theorem 5.2 (= Theorem F). Let k ≥ 2 be an integer, let S ⊂ D :=
Γ1× · · · × Γn be a full subdirect product of limit groups, and let T ⊂ D
be a subgroup that contains S. If S is of type FPk(Q) then so is T .

Proof. We have S < T < D = Γ1 × · · · × Γn where the Γi are limit
groups and S is a full subdirect product of type FPk(Q) with k ≥ 2.

In particular, S is of type FP2(Q), so by [11, Theorem 4.2] the quo-
tient group D/L is virtually nilpotent, where L = (S ∩Γ1)×· · ·× (S ∩
Γn).

By [11, Corollary 8.2], applied to T/L, there is a finite index sub-
group S0 < S, and a subnormal chain S0 / S1 / · · · / S` = T such that
each quotient Si+1/Si is either finite or infinite cyclic.

Since S is of type FPk(Q), so is S0, and by the obvious induction so
are S1, . . . , S` = T . �

Note that the condition k ≥ 2 in Theorem 5.2 is essential. For ex-
ample, if G = 〈x, y|r1, r2, . . .〉 is a 2-generator group that is not finitely
presentable, then the subgroup T of F (x, y) × F (x, y) generated by
{(x, x), (y, y), (1, r1), (1, r2), . . . } is a full subdirect product that is not
finitely generated, while the finitely generated subgroup S of T gener-
ated by {(x, x), (y, y), (1, r1)} is also a full subdirect product (provided
r1 6= 1 in F (x, y)). This is another example of the notable divergence in
behaviour between finitely presentable residually free groups and more
general finitely generated residually free groups.

5.2. The three factor case. Theorem D tells us which full subdirect
products of non-abelian limit groups are finitely presentable. In the
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case of two factors, the criterion is particularly simple: the subgroup
must have finite index in the direct product. Our next result, which
extends Theorem A of [14], shows that the criterion also takes a par-
ticularly simple form in the case of a full subdirect product of three
non-abelian limit groups. Our results in Section 4 show that the situ-
ation is noticeably more subtle for subdirect products of four or more
factors.

Theorem 5.3. Let Γ1,Γ2,Γ3 be non-abelian limit groups, and let S <
Γ1 × Γ2 × Γ3 be a full subdirect product. Then S is finitely presentable
if and only if there are subgroups Λi < Γi of finite index, an abelian
group Q, and epimorphisms φi : Λi → Q, such that

S ∩ (Λ1 × Λ2 × Λ3) = ker(φ),

where

φ : Λ1 × Λ2 × Λ3 → Q, φ(λ1, λ2, λ3) := φ1(λ1) + φ2(λ2) + φ3(λ3).

Proof. First we argue that the criterion in the statement is sufficient.
Each φi is an epimorphism, so given λ1 ∈ Λ1 and λ2 ∈ Λ2, there exists
λ3 ∈ Λ3 such that φ3(λ3) = −φ1(λ1) − φ2(λ2). Thus (λ1, λ2, λ3) ∈
ker(φ), and the projection p12 : Γ1 × Γ2 × Γ3 → Γ1 × Γ2 maps ker(φ)
onto the finite-index subgroup Λ1 × Λ2 of Γ1 × Γ2. Similar arguments
apply to the projections p13 and p23, so the finite-index subgroup ker(φ)
of S is finitely presentable, by Theorem A, and hence S is also finitely
presentable.

Conversely, suppose that S is finitely presentable. By [11, Theorem
4.2] the image of each of the projections pij : S → Γi × Γj (1 ≤
i < j ≤ 3) has finite index. The images of p12 and p13 intersect in a
finite-index subgroup K1 < Γ1. For each a ∈ K1 there are elements
(a, 1, xa), (a, ya, 1) ∈ S. So given a, b ∈ K1, we have ([a, b], 1, 1) =
[(a, 1, xa), (b, yb, 1)] ∈ [S, S]. Thus [K1, K1] < ([S, S] ∩ Γ1). Similarly
there are finite-index subgroups K2 < Γ2 and K3 < Γ3 such that
[Ki, Ki] < ([S, S] ∩ Γi) for i = 2, 3. Let A denote the abelian group

A =
K1 ×K2 ×K3

S ∩ (K1 ×K2 ×K3)
,

let φ : K1×K2×K3 → A be the canonical epimorphism, and let φi be
the restriction of φ to Ki for i = 1, 2, 3. Since p23(S) has finite index in
Γ2×Γ3, the same is true of p23(S ∩ (K1×K2×K3)) in K2×K3. Now
let α = (x, y, z) · (S ∩ (K1 ×K2 ×K3)) ∈ A. For some positive integer
N we have (yN , zN) ∈ p23(S ∩ (K1 × K2 × K3)), so (w, yN , zN) ∈ S
for some w ∈ K1. But then αN = φ1(xNw−1), so φ1(K1) has finite
index in A. Similarly, φ2(K2) and φ3(K3) have finite index in A. Let
Q be the finite-index subgroup φ1(K1) ∩ φ2(K2) ∩ φ3(K3) of A, and
define Λi = φ−1

i (Q) for i = 1, 2, 3. Then Λi has finite index in Γi,
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S∩ (Λ1×Λ2×Λ3) is the kernel of the restriction φ : Λ1×Λ2×Λ3 → Q,
and each φi : Λi → Q is an epimorphism. �

5.3. Classification up to commensurability. We construct a col-
lection of examples of finitely presentable residually free groups which
is complete up to commensurability. Our proof makes use of the fol-
lowing observation on subgroups of finitely generated nilpotent groups.

Lemma 5.4. Let G be a finitely generated nilpotent group and let H
be a subgroup of G. If the image of H in the abelianisation of G has
finite index, then H has finite index in G.

Proof. We argue by induction on the nilpotency class c of G. If c = 1
then G is abelian and there is nothing to prove. By induction, we
may assume that the image of H in G/γcG has finite index. Thus it
suffices to show that H ∩ γcG has finite index in γcG. Now γcG is an
abelian group generated by finitely many commutators w = [x1, . . . , xc]
of weight c, so it in fact suffices to show that each has a power that lies
in γcG ∩H. If |G : Hγ2G| = n then we can write xni = hiyi for some
hi ∈ H and some yi ∈ γ2G. An elementary commutator calculation
using the fact that γcG is central in G yields the equality

wn
c

= [xn1 , . . . , x
n
c ] = [h1, . . . , hc] ∈ H,

which completes the proof. �

Definition 5.5. Let G = {Γ1, . . . ,Γn} be a finite collection of 2 or more
limit groups, let c ≥ 2 be an integer, and let g = {(gk,1, . . . , gk,n), 1 ≤
k ≤ m} be a finite subset of Γ := Γ1 × · · · × Γn.

Define T = T (G, g, c) to be the subgroup of Γ generated by g together
with the c’th term γc(Γ) of the lower central series of Γ.

Theorem 5.6. Let T (G, g, c) be defined as above.

(1) If, for all 1 ≤ i < j ≤ n, the images in H1Γi × H1Γj of the
ordered pairs (gk,i, gk,j) generate a subgroup of finite index, then
the residually free group T (G, g, c) is finitely presentable.

(2) Every finitely presentable residually free group is either a limit
group or else is commensurable with one of the groups T (G, g, c).

Proof. To see that T = T (G, g, c) is finitely presentable, it is sufficient
in the light of Theorem A to know that the projection of T to Γi × Γj
is virtually surjective for each i < j, and this follows from Lemma 5.4

Conversely, suppose that S is a finitely presentable residually free
group. If S is not itself a limit group, then Theorem D tells us that S
may be expressed as a full subdirect product of limit groups ∆1, . . . ,∆n

such that the projection of S to ∆i×∆j is virtually surjective for each
i < j. By Proposition 3.2(1), each ∆i contains a finite-index subgroup
Γi such that γn−1(Γi) ⊂ S. Set G = {Γ1, . . . ,Γn}, and c = n − 1.
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We choose any finite set g = {(g1,1, . . . , g1,n), . . . , (gm,1, . . . , gm,n)} in
the direct product D := Γ1 × · · · × Γn whose image in D/γn−1(D)
generates (S ∩ D)/γn−1(D). Then T = T (G, g, n − 1) = S ∩ D is a
finite-index subgroup of S. �

6. The Canonical Embedding Theorem

The purpose of this section is to prove Theorem C: we shall describe
an effective construction for ∃Env(S), hence ∃Env0(S), then establish
the universal property of the latter. We shall see that the direct factors
of ∃Env(S) are the maximal limit group quotients of S: the maximal
free abelian quotient H1(S,Z)/(torsion) is one of these, and the remain-
ing (non-abelian) quotients form ∃Env0(S). At the end of the section
we shall discuss how ∃Env(S) is related to the Makanin-Razborov di-
agram for S.

Our first goal is to prove Theorem C(1).

Theorem 6.1. There is an algorithm that, given a finite presentation
of a residually free group S, will construct an embedding

S ↪→ ∃Env(S) = Γab × ∃Env0(S)

where Γab = H1(S,Z)/(torsion) and ∃Env0(S) = Γ1 × · · · × Γn with
each Γi (i ≥ 1) a non-abelian limit group. The intersection of S with
the kernel of the projection ρ : ∃Env(S)→ ∃Env0(S) is the centre Z(S)
of S.

In outline, our proof of this theorem proceeds as follows. First we
define a finite set of data — a maximal centralizer system — which
encodes a canonical system of subgroups in S. Then, in Lemma 6.7,
we prove that every finitely presented residually free group possesses
such a system; the proof, which is not effective, relies on Proposition
3.2 and results from [11]. In Lemma 6.9 we establish the existence
of a simple algorithm that, given a maximal centralizer system, will
construct S ↪→ ∃Env(S). Finally, in Subsection 6.3, we describe an
algorithm that, given a finite presentation of a residually free group,
will construct a maximal centralizer system for that group (termination
of the algorithm is guaranteed by Lemma 6.7).

The description of Z(S) given in Theorem 6.1 is covered by the
following lemma.

Lemma 6.2. Let S be a residually free group and let Z(S) be its centre.

(1) The restriction of S → H1(S,Z)/(torsion) to Z(S) is injective.
(2) If Γ is a non-abelian limit group and ψ : S → Γ has non-abelian

image, then ψ(Z(S)) = {1}.

Proof. Let γ ∈ Z(S). Since S is residually free, there is an epimorphism
ψ from S to a free group such that ψ(γ) 6= 1. But the only free group
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with a non-trivial centre is Z, so ψ([S, S]) = 1 and hence γ 6∈ [S, S].
This observation, together with the fact that residually free groups are
torsion-free, proves (1).

Item (2) follows easily from the fact that limit groups are commutative-
transitive. �

6.1. Centralizer systems. Before pursuing the strategy of proof out-
lined above, we present an auxiliary result that motivates the definition
of a maximal centralizer system. Recall that a set of subgroups of a
group H is said to be characteristic if any automorphism of H permutes
the subgroups in the set.

Proposition 6.3. Let D = Γ1 × · · · × Γn be a direct product of non-
abelian limit groups, let S ⊂ D be a full subdirect product, let Li = S∩Γi
and let

Mi = S ∩ (Γ1 × · · · × Γi−1 × 1× Γi+1 × · · · × Γn).

The sets of subgroups {L1, . . . , Ln} and {M1, . . . ,Mn} are characteris-
tic in S.

Proof. If Γ is a non-abelian limit group, and if γ1 and γ2 are two non-
commuting elements of Γ, then the centralizer CΓ(γ1, γ2) of the pair is
trivial, by commutative-transitivity.

The collection of centralizers of non-commuting pairs of elements
of S has a finite set of maximal elements, namely the centralizers of
pairs xi and yi which are non-commuting pairs in Li. These maximal
elements are exactly the Mi, which therefore form a characteristic set.
Moreover the Li are the centralizers of the Mi and hence the set of
these is also characteristic (cf. [13]). �

Remark 6.4. Applying the proposition with S = D one sees that if
D = Γ1 × · · · × Γn is the direct product of non-abelian limit groups,
then the set of subgroups Γi is characteristic. In particular, the decom-
position of D as a direct product of limit groups is unique.

The example D = Z× F2 shows that this uniqueness fails if abelian
factors are allowed.

Definition 6.5. Let S be a finitely presented, non-abelian residually
free group. A finite list (Yi;Zi) = (Y1, . . . , Yn;Z1, . . . , Zn) of finite sub-
sets of S will be called a maximal centralizer structure (MCS) for S if
it has the following properties.

MCS(1) Each Yi contains at least two elements xi and yi which do not
commute.

MCS(2) Each Zi contains all of the Yj with j 6= i.
MCS(3) For each i, the elements of Zi commute with the elements of

Yi. (Hence the elements in Yi commute with those in Yj for all
i 6= j.)

MCS(4) Each Zi generates a normal subgroup of S.
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MCS(5) For each i, the quotient group S/〈Zi〉 admits a splitting (as an
amalgamated free product or HNN extension) either over the
trivial subgroup or over a non-normal, infinite cyclic subgroup.

MCS(6) There is a subgroup S0 of finite index in S such that each Yi ⊂
S0 and S0/〈〈Y1, . . . , Yn〉〉 is nilpotent of class at most n− 2.

For the case n = 1 we require that 〈Z1〉 = Z(S) and that Y1 be the
given generating set for S.

Remark 6.6. One of the basic properties of non-abelian limit groups
is that they split as in MCS(5). Conversely, we shall see in Lemma
6.9 that, in the presence of the other conditions, MCS(5) implies the
following condition:

MCS(5)′ For each i, the quotient S/〈Zi〉 is a non-abelian limit group.

Lemma 6.7. Every finitely presented non-abelian residually free group
possesses a maximal centralizer structure.

Proof. Let S be a finitely presented non-abelian residually free group,
and define H = S/Z(S). We shall first construct an MCS for H.

As in the proof of Theorem D, H can be embedded as a full subdirect
product in some D = Γ1 × · · · × Γn where the Γi are non-abelian limit
groups. Let pi : D → Γi denote the projection.

If n = 1, then H itself is a non-abelian limit group. In this case,
we follow the directions in the definition of MCS: Y1 is the given set
of generators for H, Z1 = {1}, and H0 = H. Then MCS(1-4) and
MCS(6) are trivially satisfied, as is MCS(5)′, hence MCS(5).

From now on we assume that n > 1. Then H < D is VSP and
Γi/(H ∩ Γi) is virtually nilpotent, by [11, Theorem 4.2], so (H ∩ Γi) is
finitely generated as a normal subgroup of Γi. Choose a finite set Yi of
normal generators for H ∩ Γi containing at least two elements that do
not commute.

Let Mi denote the centralizer of Yi in H (this is consistent with the
notation in Proposition 6.3). Note that Mi = H ∩ ker(pi), which by
Proposition 3.2(3) is a finitely generated subgroup of H. Note that
Γi ∼= H/Mi. Choose Zi to be a finite generating set for Mi containing
Yj for all j 6= i.

This provides an MCS (Yi;Zi) for H: each of the properties MCS(1-
4) is explicit in the construction, as are MCS(5)′ and MCS(6).

It remains to construct an MCS for S from the one just constructed
for H = S/Z(S). We know from Lemma 6.2 that Z(S) is a finitely

generated free abelian group. To obtain an MCS (Ŷi; Ẑi) for S, we lift

each Yi ⊂ H to a finite subset Ŷi of S, and take a finite subset Ẑi in
the preimage of each Zi containing (i) Ŷj for all j 6= i, and (ii) a finite
generating set for Z(S).
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To see that (Ŷi; Ẑi) satisfies MCS(1), note that Z(S) ∩ [S, S] = 1.

Modulo this observation, it is clear that (Ŷi; Ẑi) inherits the properties
MCS(1-6) from (Yi;Zi). �

6.2. Two useful lemmata. The following are the two principal lem-
mata used in the proof of Theorem C. We first prove a technical lemma
about splittings which allows us to detect when a given quotient of S
is a non-abelian limit group rather than a direct product.

Lemma 6.8. Let Γ be a torsion–free group, H a group, and G ↪→ Γ×H
a subdirect product such that G∩Γ contains a free group of rank 2. Let
N be a normal subgroup of G with N < K = G ∩ H. If G/N admits
a cyclic splitting and N 6= K, then K/N is cyclic and the splitting is
over K/N .

Proof. The quotient G/N ↪→ Γ×H/N is a subdirect product.
The cyclic splitting gives a G/N action on a tree T which is edge-

transitive and has cyclic edge-stabilisers. A free subgroup F = 〈x, y〉
of G ∩ Γ either fixes a vertex v or contains an element w acting hy-
perbolically (with axis A, say). In the first case v is unique (since F
cannot fix an edge), so v is K/N -invariant since K/N commutes with
F . But K/N is normal so K/N also fixes g(v) for all g ∈ G. Pick g
with g(v) 6= v, then K/N fixes more than one vertex, and hence fixes
an edge.

In the second case, the axis A is K/N -invariant since K/N commutes
with w. If the action of K/N on A is non-trivial, then A is the (unique)
minimal K/N–invariant subtree of T . But then T is F -invariant since
F commutes with K/N . Thus F acts non–trivially on A with cyclic
edge-stabilisers, which is impossible. Hence K/N fixes an edge.

In both cases, K/N fixes an edge, hence fixes all edges since K/N is
normal and the action is edge-transitive. Thus K/N is a cyclic group
acting trivially on T . Moreover, since K/N 6= 1, it has finite index in
every (cyclic) edge stabiliser. Therefore, the action of Γ = G/K on
T has finite cyclic edge stabilisers of the form StabG(e)/K. But Γ is
torsion-free so these stabilisers are all trivial. �

Lemma 6.9. Suppose S is a finitely presented residually free group
and that (Y1, . . . , Yn;Z1, . . . , Zn) is an MCS for S. Then:

(0) each of the groups Si/〈Zi〉 is a non-abelian limit group;
(1) the natural homomorphism S → S/〈Z1〉 × · · · × S/〈Zn〉 has

kernel Z(S) and so embeds S/Z(S) as a full subdirect product
of n non-abelian limit groups;

(2) the natural homomorphism S → Γab×S/〈Z1〉× · · ·×S/〈Zn〉 is
an embedding, where Γab = H1(S,Z)/(torsion).

Definition 6.10. To obtain the reduced existential envelope of S we fix
an MCS (Y1, . . . , Yn;Z1, . . . , Zn) and define ∃Env0(S) := S/〈Z1〉×· · ·×
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S/〈Zn〉. The existential envelope of S is then defined to be ∃Env(S) =
Γab × ∃Env0(S), where Γab = H1(S,Z)/(torsion).

Remark 6.11. The above definition makes sense in the light of Lemma
6.9 and Lemma 6.7. In the proof of Lemma 6.7, we chose the Zi so that
Mi = 〈Zi〉, in the notation of Proposition 6.3, and we shall see in a
moment that this equality is forced by the definition of an MCS alone.
The canonical nature of the Mi makes envelopes more canonical than
they appear in the definition — Theorem C(4-5) makes this assertion
precise.

Proof of Lemma 6.9 Suppose that (Y1, . . . , Yn;Z1, . . . , Zn) is an MCS
for the finitely presented residually free group S. Then by MCS(3) we
know 〈Zi〉 ⊆ CS(Yi). Now there are xi, yi ∈ Yi such that [xi, yi] 6=S 1.
Moreover [xi, yi] /∈ CS(Yi) because S is residually free. Hence the
images of xi and yi in S/〈Zi〉 form a non-commuting pair. Writing
S as a subdirect product of some collection Γ1, . . . ,Γn of limit groups,
the projections of xi and yi into one of the factors Γj, say, do not
commute. Now we see that S is a subdirect product of Γ ×H, where
Γ = Γj is a non-abelian limit group, H is a subdirect product of the Γi
(i 6= j), and Zi ⊂ H (by commutative transitivity in Γ).

Now put N = 〈Zi〉/S (by MCS(4)), and note that N ⊂ K := S∩H.
It follows from MCS(5) that S/N admits a splitting either over the
trivial subgroup or a non-normal, infinite cyclic subgroup. Then by
Lemma 6.8, if K 6= N , then the splitting is over K/N - a contradiction
since K/N is normal in S/N .

Hence 〈Zi〉 = N = K = S ∩H, so S/〈Zi〉 ∼= Γ is a non-abelian limit
group, which proves (0).

Since limit groups are fully residually free, the centralizer of any
non-commuting pair of elements in S/〈Zi〉 is trivial. Thus 〈Zi〉 is
maximal among the centralizers of non-commuting pairs of elements
of S (cf. Proposition 6.3). In particular 〈Zi〉 = CS(Yi) and 〈〈Yi〉〉 ⊆
CS(〈Zi〉). Clearly each 〈Zi〉 ⊇ Z(S).

Suppose now that 1 6= u ∈ 〈Z1〉 ∩ · · · ∩ 〈Zn〉 but u /∈ Z(S). Then
there is some other element v with [u, v] 6= 1. Since S is residually free,
u and v freely generate a free subgroup of rank 2. Thus u and v−1uv
freely generate a free subgroup of 〈Z1〉 ∩ · · · ∩ 〈Zn〉 which centralizes
each 〈〈Yi〉〉. So their images in S/〈〈Y1, . . . , Yn〉〉 freely generate a free
subgroup which contradicts MCS(6). Thus 〈Z1〉 ∩ · · · ∩ 〈Zn〉 = Z(S).
This proves (1).

The existence of the embedding in (2) follows immediately from (1),
in the light of Lemma 6.2. �

6.3. Proofs of Theorem C(1) and C(2). We are given a finite pre-
sentation 〈A | R〉 for a residually free group S. In order to prove
Theorem 6.1, we must describe an algorithm that will construct an
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MCS for S from this presentation: we know by Lemma 6.7 that S has
an MCS and we know from Lemma 6.9 (and Definition 6.10) how to
embed S in its envelopes once an MCS is constructed.

We shall repeatedly use the fact that one can use the given pre-
sentation of S to solve the word problem explicitly: one enumerates
homomorphisms from S to the free group of rank 2 by choosing puta-
tive images for the generators a ∈ A, checking that each of the relations
r ∈ R is mapped to a word that freely reduces to the empty word; if
a word w in the letters A±1 is non-trivial is S, one will be able to see
this in one of the free quotients enumerated, since S is residually free.
(Implementing a naive search that verifies if w does equal the identity
is a triviality in any recursively presented group.)

Using this solution to the word problem, we can recursively enumer-
ate all finite collections ∆ = (Y1, . . . , Yn;Z1, . . . , Zn) of finite subsets of
S satisfying conditions MCS(1), MCS(2) and MCS(3). Next we enu-
merate all equations in S and look for those of the form a−1za =S w(Zi)
where z ∈ Zi and a±1 is a generator of S (and w any word on Zi). If a
given ∆ satisfies MCS(4), we will eventually discover this by checking
the list of equations. (As ever with such processes, one runs through the
finite diagonals of an array, checking all equations against all choices of
∆.) Thus we obtain an enumeration of those ∆ satisfying MCS(1-4).

Next, we must describe a process that, given

∆ = (Y1, . . . , Yn;Z1, . . . , Zn),

can determine if it satisfies MCS(5), i.e. if each of the groups S/〈Zi〉
has a splitting of the required form. Again we only need a process that
will terminate if ∆ does indeed satisfy MCS(5) — we are content for
it not to terminate if MCS(5) is not satisfied.

We have a finite presentation 〈A | R,Zi〉 for S/〈Zi〉. By applying
Tietze moves (or searching naively for inverse pairs of isomorphisms)
we can enumerate finite presentations of S/〈Zi〉 that have one of the
following two forms

〈A1, A2 | R1, R2, u1u2〉, 〈A1, t | R1, tu1t
−1v〉,

where A1, A2 and {t} are disjoint sets, Ri ∪ {ui} is a set of words
in the letters A±1

i , and v is a word in the letters A±1
1 . These are

the standard forms of presentation for groups that split over (possibly
trivial or finite) cyclic groups. When we find such a presentation, we
can use the solution to the word problem in S to determine if at least
one of the generators from A1 and (for the first form) one from A2 are
non-trivial in S. We proceed to the next stage of the argument only if
non-trivial elements are found. In the next stage, we use the solution
to the word problem to check if u1 = u2 = 1 in S (or u1 = v = 1). If
these equalities hold, we have found the desired splitting over the trivial
group. If not, then we have a splitting over a non-trivial cyclic group,
and since S is torsion-free, this cyclic group C = 〈u1〉 must be infinite.
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In a residually free group, each 2-generator subgroup is free of rank 1
or 2 (consider the image of [x, y] in a free group). Thus C is normal
if and only if it is central, and this can be determined by applying the
solution of the word problem to all commutators [u, a] with a ∈ A1∪A2

(resp. a ∈ A1). In the case of amalgamated free products, we require
that there be a generator in each of A1 and A2 that does not commute
with C, in order that the splitting be non-degenerate. This concludes
the description of the process that will correctly determine if a given
∆ = (Y1, . . . , Yn;Z1, . . . , Zn) satisfies MCS(5), halting if it does (but
not necessarily halting if it does not).

Finally, we use coset enumeration to get presentations 〈A′ | R′〉 of
subgroups of finite index S0 ⊂ S with Yi ⊂ S0, and we enumerate
equations in the quotients 〈A′ | R′, Y1, . . . , Yn〉 to see if the generators
satisfy the defining relations of the free nilpotent group of class n − 2
on |A′| generators (and we need only look for a positive answer). As an
MCS for S exists (Lemma 6.7) this process will eventually terminate,
yielding an explicit ∆ satisfying MCS(1-6).

Part (2) of Theorem C follows immediately from part 1 in the light
of Proposition 3.2. �

6.4. Proof of Theorem C(3) [the universal property of ∃Env0(S)].
We first record the following general result which is also used implicitly
in our discussion of how ∃Env(S) is related to the Makanin-Razborov
diagram of S.

Proposition 6.12. Let G be a subdirect product of a finite collection
of groups: G < G1 × · · · ×Gn. Then any homomorphism from G onto
a non-abelian limit group Γ factors through one of the projection maps
pi : G→ Gi (i = 1, . . . , n).

Proof. An easy induction reduces us to the case where n = 2.
Define Li := G ∩ Gi for i = 1, 2. Then Li is normal in G for each

i. Suppose that Γ is a non-abelian limit group and φ : G → Γ is an
epimorphism. Then φ(L1) and φ(L2) are mutually commuting normal
subgroups of φ(G) = Γ. If (say) φ(L1) is non-trivial in Γ, then com-
mutative transitivity in Γ implies that φ(L2) is abelian. But Γ has no
non-trivial abelian normal subgroups, so φ(L2) is trivial.

Hence one or both of φ(Li) (i = 1, 2) is trivial. But if φ(L1) is
trivial, then φ factors through p2, while if φ(L2) is trivial, then φ factors
through p1. �

To prove Theorem C(3), let S be a finitely presented, non-abelian,
residually free group with MCS (Y1, . . . , Yn;Z1, . . . , Zn). We have ρ :
S → ∃Env0(S) = S/〈Z1〉 × · · · × S/〈Zn〉, and we are given a homo-
morphism φ : S → D = Λ1 × · · · × Λm with the Λi non-abelian limit
groups and φ(S) subdirect. We must prove that there is a unique

homomorphism φ̂ : ∃Env0(S)→ D with φ̂ ◦ ρ = φ.
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For k = 1, . . . ,m let φk denote the composition of φ with the pro-
jection D → Λk. Since Λk is a non-abelian limit group, Proposition
6.12 says that the surjective map φk : S → Λk factors through the
projection S → S/〈Zi〉 for some i. In particular, φk(Yj) = 1 for each
j 6= i, since Yj ⊂ Zi. However, we must have φk(Yi) 6= {1} by MCS(6)
(else Λ is virtually nilpotent). Thus i = i(k) is uniquely determined by
k.

Applying the above in turn to each φk yields a unique i(k) such that
φk factors through a map ζk : S/〈Zi(k)〉 → Λk. Putting all these maps

together produces the required φ̂ : ∃Env0(S)→ Λ1 × · · · × Λm. �

6.5. Proof of Theorem C(4) [the uniqueness of ∃Env0(S)]. We
are assuming that φ : S ↪→ D = Λ1×· · ·×Λm is a full subdirect product
of non-abelian limit groups, and we must prove that φ̂ : ∃Env0(S)→ D
is an isomorphism.

As in the proof of Lemma 6.7, we can construct an MCS for S from
the embedding φ : S ↪→ D, say (Y ′1 , . . . , Y

′
m;Z ′1, . . . , Z

′
m). Here, Y ′i ⊂ S

generates φ(S)∩Λi as a normal subgroup, Z ′i generates the centralizer
of Y ′i in S, and φ induces an isomorphism φi : S/〈Z ′i〉 → Λi for i =
1, . . . ,m.

By using (Y ′i ;Z
′
i) in place of (Yi;Zi) in Definition 6.10 we obtain an

alternative model ∃Env0(S)′ = S/〈Z ′1〉 × · · · × S/〈Z ′m〉 for ∃Env0(S),
and we have an isomorphism Φ = (φ1, . . . , φm) : ∃Env0(S)′ → D that
restricts to φ on the canonical image of S in ∃Env0(S)′.

In proving Theorem C(3) we established the universal property for
∃Env0(S)′. We apply this to obtain a unique homomorphism α :
∃Env0(S)′ → ∃Env0(S) extending the inclusion S ↪→ ∃Env0(S). Thus
we obtain a homomorphism α ◦ Φ−1 : D → ∃Env0(S) such that

α ◦ Φ−1 ◦ φ is the identity on S. But this means that α ◦ Φ−1 ◦ φ̂ :
∃Env0(S) → ∃Env0(S) extends id : S → S. The identity map of
∃Env0(S) is also such an extension, so by the uniqueness assertion in

C(3) we have that α ◦Φ−1 is a left-inverse to φ̃. By reversing the roles
of ∃Env0(S) and ∃Env0(S)′ we see that it is also a right-inverse. �

6.6. Makanin-Razborov Diagrams. We explain how existential en-
velopes are related to Makanin-Razborov diagrams.

The Makanin-Razborov diagram (or MR diagram) of a finitely gen-
erated group G is a method of encoding the collection of all epimor-
phisms from G to free groups. The name arises from the fact that
these diagrams originate from the fundamental work of Makanin [34]
and later Razborov [36] on the solution sets of systems of equations in
free groups.

The MR diagram of G consists of a finite rooted tree, where the root
is labelled by G and the other vertices are labelled by limit groups,
with the leaves being labelled by free groups. The edges are labelled by
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proper epimorphisms – the epimorphism labelling e = (u, v) mapping
the group labeling u onto the group labelling v.

The basic property of this diagram is that each epimorphism from
G onto a free group can be described using a directed path in this
graph from the root to some leaf, the epimorphism in question being
a composite of all the labelling epimorphisms of edges on this path,
interspersed with suitable choices of ‘modular’ automorphisms of the
intermediate limit groups that label the vertices. Details can be found
in [37, Section 7] and, in different language, [28, Section 8].

An immediate observation is that any epimorphism from G onto
a free group factors through the canonical quotient G/FR(G), where
FR(G) is the free residual of G, namely the intersection of the kernels
of all epimorphisms from G to free groups. Thus the MR diagrams of
G and of G/FR(G) are identical.

Observe that FR(G/FR(G)) = 1; in other words G/FR(G) is resid-
ually free. Thus, when studying MR diagrams for finitely generated
groups, it is sufficient to restrict attention to the case of residually free
groups.

For finitely generated residually free G, the top layer of the Makanin-
Razborov diagram consists of the set of maximal limit-group quotients
of G. These are the factors of our existential envelope ∃Env(G), namely
the maximal free abelian quotient Γab(G) and the non-abelian quotients
Γ1, . . . ,Γn. The fact that one can construct this effectively was proved
by Kharlampovich and Myasnikov in [28, Corollary 3.3]. Indeed, their
construction will construct for any finitely presented G, the embedding
of G/FR(G) into its envelope. Our construction of the embedding
G ↪→ ∃Env(G) is of a quite different nature, and it works only when
G is residually free. Nevertheless we feel that there is considerable
benefit in its explicit description. It is also worth noting that neither
the construction of our algorithm nor the proof that it terminates relies
on the original results of Makanin and Razborov.

7. Decision problems

Theorem C provides considerable effective control over the finitely
presented residually free groups. In this section we use this effectiveness
to solve the multiple conjugacy problem for these groups and the mem-
bership problem for their finitely presented subgroups. Both of these
problems are unsolvable in the finitely generated case, indeed there ex-
ist finitely generated subgroups of a direct product of two free groups
for which the conjugacy and membership problems are unsolvable [35].

7.1. The conjugacy problem. Instead of considering the conjugacy
problem for individual elements, we consider the multiple conjugacy
problem, since the proof that this is solvable is no harder. The multiple
conjugacy problem for a finitely generated group G asks if there is an
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algorithm that, given an integer l and two l-tuples of elements of G
(as words in the generators), say x = (x1, . . . , xl) and y = (y1, . . . , yl),
can determine if there exists g ∈ G such that gxig

−1 = yi in G, for
i = 1, . . . , l. There exist groups in which the conjugacy problem is
solvable but the multiple conjugacy problem is not [8].

The scheme of our solution to the conjugacy problem uses an argu-
ment from [14] that is based on Theorem 3.1 of [6]. This is phrased in
terms of bicombable groups. Recall that a group G with finite gener-
ating set A is said to be bicombable if there is a constant K and choice
of words {σ(g) | g ∈ G} in the letters A±1 such that

d(a.σ(a−1ga′)t, σ(g)t) ≤ K

for all a, a′ ∈ A and g ∈ G, where wt denotes the image in G of the
prefix of length t in w, and d is the word metric associated to A.

We shall only use three facts about bicombable groups. First, the
fundamental groups of compact non-positively curved spaces are the
prototypical bicombable groups, and limit groups are such fundamen-
tal groups [1]. Secondly, there is an algorithm that given any finite
set X ⊂ Γ as words in the generators of G will calculate a finite gen-
erating set for the centralizer of X. (This is proved in [6] using an
argument from [24].) Finally, we need the fact that the multiple con-
jugacy problem is solvable in bicombable groups. The proof of this is
a mild variation on the standard proof that bicombable groups have a
solvable conjugacy problem. The key point to observe is that, given
words u and v in the generators, if g ∈ G is such that g−1ug = v,
then as t varies, the distance from 1 to σ(g)−1

t uσ(g)t never exceeds
K max{|u|, |v|}. It follows that in order to check if two (u1, . . . , uk)
and (v1, . . . , vk) are conjugate in G, one need only check if they are
conjugated by an element g with d(1, g) ≤ |2A|K max{|ui|, |vi|} (cf. Algo-
rithm 1.11 on p. 446 of [7]).

Proposition 7.1. Let Γ be a bicombable group, let H ⊂ Γ be a sub-
group, and suppose that there exists a subgroup L ⊂ H normal in Γ
such that Γ/L is nilpotent. Then H has a solvable multiple conjugacy
problem.

Proof. Given a positive integer l and two l-tuples x, y from H (as lists
of words in the generators of Γ) we use the positive solution to the
multiple conjugacy problem in Γ to determine if there exists γ ∈ Γ
such that γxiγ

−1 = yi for i = 1, . . . , l. If no such γ exists, we stop and
declare that x and y are not conjugate in H. If γ does exist then we
find it and consider

γC = {g ∈ Γ | gxig−1 = yi for i = 1, . . . , l},

where C is the centralizer of x in Γ. Note that x is conjugate to y in
H if and only if γC ∩H is non-empty.
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We noted above that there is an algorithm that computes a finite gen-
erating set for C. This enables us to employ Lo’s algorithm (Lemma
7.3) in the nilpotent group Γ/L to determine if the image of γC inter-
sects the image of H. Since L ⊂ H, this intersection is non-trivial (and
hence x is conjugate to y) if and only if γC ∩H is non-empty. �

A group G is said to have unique roots if for all x, y ∈ G and n 6= 0
one has x = y ⇐⇒ xn = yn. It is easy to see that residually free
groups have this property. As in Lemma 5.3 of [14] we have:

Lemma 7.2. Suppose G is a group in which roots are unique and
H ⊂ G is a subgroup of finite index. If the multiple conjugacy problem
for H is solvable, then the multiple conjugacy problem for G is solvable.

The final lemma that we need can be proved by a straightforward
induction on the nilpotency class, but there is a more elegant argument
due to Lo (Algorithm 6.1 of [31]) that provides an algorithm which is
practical for computer implementation.

Lemma 7.3. If Q is a finitely generated nilpotent group, then there is
an algorithm that, given finite sets S, T ⊂ Q and q ∈ Q, will decide if
q〈S〉 intersects 〈T 〉 non-trivially. �

Theorem 7.4 (=Theorem J). The multiple conjugacy problem is solv-
able in every finitely presented residually free group.

Proof. Let Γ be a finitely presented residually free group. Theorem C
allows us to embed Γ as a subdirect product in D = Λ1×· · ·×Λn, where
Λi are limit groups, each Li = Λi ∩ Γ is non-trivial, L = L1 × · · · × Ln
is normal in D, and D/L is virtually nilpotent. Let N be a nilpotent
subgroup of finite index in D/L, let D0 be its inverse image in D and
let Γ0 = D0 ∩ Γ.

We are now in the situation of Proposition 7.1 with Γ = D0 and
H = Γ0. Thus Γ0 has a solvable multiple conjugacy problem. Lemma
7.2 applies to residually free groups, so the multiple conjugacy problem
for Γ is also solvable. �

7.2. The finite presentation problem. We will need the following
technical observation. This was first proved in [28], Theorem 3.21. It
admits a short proof based on Wilton’s theorem that finitely generated
subgroups of limit groups are virtual retracts (see [25] Theorem 2.4).

Lemma 7.5. There is an algorithm that, given a finite presentation of
a limit group Λ and a finite set X ⊂ Λ, will output a finite presentation
for the subgroup generated by X.

Unlike limit groups, finitely generated subgroups of a finitely-presented
residually-free group need not be finitely presentable. Our next result
says that if such a finitely generated subgroup is finitely presentable,
then we can effectively find a presentation.
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Theorem 7.6 (=Theorem K). There is a uniform partial algorithm
for finding presentations of finitely presentable subgroups of finitely-
presented residually-free groups. More precisely, there is a partial al-
gorithm that, given a finite presentation for a residually free group G
and a finite set of words generating a subgroup H, will output a finite
presentation for H if it exists.

To prove this theorem we begin by applying the algorithm of The-
orem C to find the existential envelope D of G and the images of the
generators of H in D. So it suffices to consider the case in which H is
given by a finite set of generators in a specified direct product of limit
groups. The theorem then follows from Proposition 7.9 below.

Remark 7.7. We pause to record the following observation. The algo-
rithm in [25] provides an enumeration of non-abelian limit groups. An
obvious modification of this enumeration produces a recursively enu-
merable sequence of finite presentations for direct products Γ1×· · ·×Γn
of limit groups. So if we are given any finite presentation of a group D
and told that D is a direct product limit groups, then a naive search
identifies a presentation for D on this list. Thus we may effectively
replace the given presentation for D with one in which such a direct
product decomposition and the coordinate projections pi : D → Γi and
qi : D → D/Γi are manifest.

Lemma 7.8. Suppose that H is a subgroup of a direct product D =
Γ1 × · · · × Γn of limit groups Γi. If H is finitely presented and

ρ : D → Γi1 × · · · × Γik where i1 < · · · < ik

is the projection onto the product of any subset of k of the factors, then
ρ(H) is finitely presented.

Proof. If pi denotes the projection onto the factor Γi, then each pi(H)
is a finitely generated subgroup of a limit group and so is again a limit
group. Hence we may assume from the outset that Γi = pi(H), that
is, H is a subdirect product. Then every such ρ(H) is also subdirect
in the direct product ρ(D).

If n = 1 or n = k there is nothing to prove. Suppose that H∩Γj = 1
where Γj ⊆ ker ρ. Then the projection

qj : D → Γ1 × · · · × Γj−1 × Γj+1 × · · · × Γn

is injective on H. So by induction on n, it follows that ρ(H) = ρ(qj(H))
is finitely presented as required.

Next suppose that ρ(H) ∩ Γij = 1. Then H ∩ Γij = 1 and the
projection

qij : D → Γ1 × · · · × Γij−1 × Γij+1 × · · · × Γn

is injective on both H and ρ(H). Now qij(D) is a product of n−1 limit
groups and qij ◦ ρ = ρ ◦ qij is projection onto k − 1 factors, and hence
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by induction qij(ρ(H)) is finitely presented. But since ρ(H) ∩ Γij = 1,
it follows that ρ(H) is finitely presented.

So we may now assume that both H and ρ(H) are full subdirect
products. Next we observe generally that if K is a full subdirect prod-
uct of D and Γj is an abelian limit group, then qj(K) ⊆ D/Γj is finitely
presented if and only if K is finitely presented, because Γj is a finitely-
generated central subgroup. Hence it suffices to consider the case all
of the Γi are non-abelian.

But a full subdirect product of non-abelian limit groups is finitely
presented if and only if it satisfies VSP. Since H has VSP, either ρ(H)
is a limit group or it also has VSP. Hence ρ(H) is finitely presented as
desired. �

Making use of this lemma we can now complete the proof of Theorem
7.6 by showing the following.

Proposition 7.9. There is a partial algorithm that, given a direct prod-
uct D of limit groups presented as D = Γ1 × · · · × Γn and a finite set
of words X generating a subgroup H < D,

(1) in case H is finitely presentable, will output a finite presentation
for H on the given generating set X; or

(2) in case H is not finitely presentable, will either halt saying that
H is not finitely presentable, or will fail to halt.

Moreover, in the case H is finitely presentable, the algorithm will also

• determine for each i whether or not H ∩ Γi = 1; and
• determine a finite generating set for the centre of H.

Proof. Note that there is a uniform solution to the word problem for
all such Γi and D since they are residually finite and given by finite
presentations. Hence, as a finitely generated subgroup of D, H also
has a solvable word problem.

If n = 1 then we apply the algorithm of Lemma 7.5 (in this case H is
finitely presentable). We now proceed by induction on n. Let qj be the
projection of D onto all the factors other than Γj, so qj : D → D/Γj.
By Lemma 7.8, if H is finitely presented then each Qj = qj(H) is also
finitely presented and lies in a direct product of fewer limit groups, so
we have (by our inductive assumption) a partial algorithm to find a
presentation for Qj.

So we now launch n versions of this partial algorithm attempting
to find a presentation for each qi(H) in case it is finitely presented
(i = 1, . . . , n). If some process finds a Qj is not finitely presented, we
are done since H cannot be finitely presented and we halt with this
information.

So we may assume each of our n processes finds that its corresponding
Qi = 〈qi(X)〉 is finitely presented, say as 〈x1, ..., xs | r1 = 1, ..., rt = 1〉
where X = {x1, . . . , xs} and the normal subgroup generated by the rj
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is the kernel of the surjection x 7→ qi(x) to Q from the free group on
X. Then qi is an isomorphism from H onto Qi if and only if all of
the rj =H 1. And these equalities can be tested using the solution to
the word problem for D. Of course H ∩ Γi = 1 if and only if qi is an
isomorphism.

So if H is finitely presentable, each of these n processes will (eventu-
ally) have halted and we have decided whether or not each H ∩Γi = 1.
If some H ∩ Γi = 1, then Qi

∼= H and we have a presentation for H
and our inductive algorithm also provides a set of generators for the
centre of H and we are done.

So we may now assume that we have a finite presentation for each
Qi and that H ∩ Γi 6= 1, thus H is a full subdirect product.

Observe that using the solution to the word problem we can easily
determine which of the Γi are abelian (and then they must be free
abelian). So next suppose that none of the Γi is abelian. In this case,
we know H is finitely presentable if and only if it satisfies VSP. Also,
the centre of H is trivial in this case.

If n = 2, this is true if and only if H has finite index in Γ1 × Γ2. So
if n = 2, we start trying to find a presentation for H using the classic
Todd-Coxeter algorithm. If H is finitely presentable, it will terminate
and give us a presentation for H. If H is not finitely presentable,
the process will fail to terminate. (Note: whether this process will
terminate is an unsolvable problem.)

If n > 2, then since each Qi is full and finitely presented, each Qi has
VSP and hence H has VSP. Thus applying the algorithm of Theorem
3.7 we can effectively find a finite presentation P of H on the generators
X.

Now suppose that at least one of the Γi is abelian, and recall it is
a finitely generated free abelian group. Group all the abelian factors
together as one factor and revise the notation so that Γn is the only
abelian direct factor. Then, applying our algorithm inductively, we can
assume we have a finite presentation for qn(H) = Qn = 〈qn(X)〉, say
as 〈x1, ..., xs | r1 = 1, ..., rt = 1〉. We also know that qn(H) ∼= H/Z(H).
Lifting the generators of this presentation back up to the correspond-
ing generators of H, the same words rj, which are relators of Qi, are
elements in D such that rj ∈ Γn. Further, they generate the centre
Z(H) of H. Using standard algorithms for finitely generated abelian
groups, we can find a set of defining relations, say z1 = 1, . . . , zk = 1
for the subgroup of Γn generated by the ri. Finally, expressing the zj
as words ẑj in the xi, we can then write down a presentation for H as

H = 〈x1, ..., xs | [xi, rj] = 1 for i = 1, . . . , s, j = 1, . . . , t,

ẑ1 = 1, . . . , ẑk = 1〉.

This complete the proof. �
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As previously explained this also completes the proof of Theorem
7.6.

7.3. The membership problem. Let G be a recursively presented
group, and H the subgroup generated by a set of words in the gen-
erators of G. The membership problem for H in G is the algorithmic
problem of deciding, given a word w in the generators of G, whether
or not the element g ∈ G represented by w belongs to H.

Remark 7.10. There is an obvious (uniform) algorithm to solve the
membership problem for separable subgroups of finitely presented groups:
one runs a naive search to express the given element as a word in the
generators of the subgroup while, in parallel, enumerating the finite
quotients of the ambient group, checking to see if the element is sepa-
rated from the subgroup in any of them.

We prove that there is a uniform partial algorithm to solve the mem-
bership problem for finitely presentable subgroups of finitely presented
residually free groups.

Theorem 7.11 (=Theorem L). There is a uniform partial algorithm
that, given a finite presentation of a residually free group G, a finite
generating set for a subgroup H ⊂ G and a word g in the generators
defining G, will determine whether or not g lies in H, provided that H
is finitely presentable.

Proof. The algorithm given by Theorem C embeds G in a direct prod-
uct ∆ of limit groups. A solution to the membership problem for
H ⊂ ∆ provides a solution for H ⊂ G. Thus there is no loss of
generality in assuming that G is a direct product of limit groups, say
G = Λ1 × · · · × Λn.

To complete the proof, we argue by induction on n. The case n = 1
is covered by the fact that limit groups are subgroup separable [40].

We first employ the algorithm of Proposition 7.9: if H is not finitely
presentable then this algorithm will either fail to halt or else halt and
inform us that H is not finitely presentable; if H is finitely presentable
then it will halt and list the indices i such that Li := H ∩ Λi = 1.

There is no loss of generality in assuming that elements g ∈ G are
given as words in the generators of the factors, and thus we write
g = (g1, . . . , gn). We assume that the generators ofH are given likewise.

We first deal with the case where some Li is trivial, say L1. The
projection of H to Λ2×· · ·×Λn is then isomorphic to H, so in particular
it is finitely presented and our induction provides an algorithm that
determines if (g2, . . . , gn) lies in this projection. If it does not, then
g /∈ H. If it does, then naively enumerating equalities g−1w = 1 we
eventually find a word w in the generators of H so that g−1w projects
to 1 ∈ Λ2× · · · ×Λn. Since L1 = H ∩Λ1 = {1}, we deduce that in this
case g ∈ H if and only if g−1w = 1, and the validity of this equality
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can be checked using the uniform solution to the word in residually free
groups.

It remains to consider the case where H intersects each factor non-
trivially. Again we are given g = (g1, . . . , gn). The projection Hi of H
to Λi is finitely generated and Wilton’s theorem [40] tells us that Λi is
subgroup separable, so we can determine algorithmically if gi ∈ Hi. If
gi /∈ Hi for some i then g /∈ H and we stop. Otherwise, we replace G
by the direct product D of the Hi. Lemma 7.5 allows us to compute a
finite presentation for Hi and hence D.

We are now reduced to the case where H is a full subdirect product
of G(= D). Such subgroups are separable, by Corollary 3.6, so remark
7.10 completes the proof. �

Remark 7.12. Following our work, Bridson and Wilton [15] proved
that in the profinite topology on any finitely generated residually free
group, all finitely presentable subgroups are closed. Using the results of
[15] and [11], Chagas and Zalesski [18] proved that all finitely presented
residually free groups are conjugacy separable.

7.4. Recursive enumerability. In view of the insights we have gained
into the structure of finitely presentable residually free groups, it seems
reasonable to conjecture that the isomorphism problem for this class
of groups is solvable. We have not yet succeeded in constructing an
algorithm to determine isomorphism, but we are nevertheless able to
prove the following partial result in this direction.

Theorem 7.13 (= Theorem G). The class of finitely presentable resid-
ually free groups is recursively enumerable. More precisely, there is
a Turing machine that will output a list of finite group-presentations
P1,P2, . . . such that:

(1) the group Gi presented by each Pi is residually free; and
(2) every finitely presented residually free group is isomorphic to at

least one of the groups Gi.

Proof. First we enumerate the limit groups, using the algorithm in [25].
This leads in a standard way to an enumeration of finite subsets Y of
finite direct products thereof: Y ⊂ D := Γ1 × · · · × Γn.

For each such Y and each pair i, j, the Todd-Coxeter procedure will
tell us if pij(Y ) generates a finite-index subgroup of Γi × Γj (but will
not terminate if it does not).

Whenever we encounter a finite collection of limit groups Γ1, . . . ,Γn
and a finite subset Y ⊂ D such that pij(Y ) generates a finite-index
subgroup of Γi × Γj for all i, j, we set about constructing a finite pre-
sentation for the subgroup generated by Y , using Theorem 3.7.

Thus a list can be constructed of all finitely-presented full subdirect
products of limit groups, together with a finite presentation for each
one. By Theorem D this list contains (at least one isomorphic copy of)
every finitely presentable residually free group. �
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The facts we have proved or mentioned in this paper provide recur-
sive enumerations of various other classes of groups:

(1) There is a recursive enumeration of the finitely generated resid-
ually free groups: each is given by a finite set X that generates
a full subdirect product in a finite direct product of limit groups
Γ1 × · · · × Γn.

(2) One can extract from (1) a recursive enumeration of the finitely
generated residually free groups with trivial centre (those for
which each Γi is non-abelian), and a complementary enumera-
tion of those with non-trivial centre.

(3) The subsequence of (1) consisting of those groups that are
finitely presentable is recursively enumerable (Theorem 7.13).

(4) The subsequence of (3) consisting of those finitely presented
residually free groups with trivial (resp. non-trivial) centre is
recursively enumerable.

7.5. Partial results on the isomorphism problem. Suppose we
are given two finite presentations of residually free groups G and H.
Can we decide algorithmically whether or not G ∼= H?

There is a partial algorithm that will search for a mutually inverse
pair of isomorphisms, expressed in terms of the given finite generating
sets for G and H. This will terminate if and only if G ∼= H, giving us
the desired isomorphism in the process.

The difficult part of the problem is therefore to recognise, via invari-
ants or otherwise, when G 6∼= H.

Our earlier results have provided computations of an important in-
variant, namely the set of maximal limit group quotients of G. Using
the solution to the isomorphism problem for limit groups ([17, 19]), we
can distinguish G from H unless these agree for G and H. The problem
is thus effectively reduced to the case where G and H are specifically
given to us as full subdirect products of limit groups Γ1, . . . ,Γn.

Moreover, by Proposition 7.9 we can effectively determine whether
or not Z(G) ∼= Z(H). So we may assume that Z(G) ∼= Z(H) = Z, say,
and that the Γi are all non-abelian if Z is trivial. In the case where Z
is non-trivial, then precisely one of the Γi is abelian. We make the con-
vention that in this case Γ1 is abelian. Then Γ1

∼= H1(G,Z)/(torsion) ∼=
H1(H,Z)/(torsion), and Z(G) = G∩Γ1, Z(H) = H ∩Γ1. Under these
circumstances, as a special case of Theorem C(4) we have:

Proposition 7.14. Any isomorphism θ : G → H is the restriction of
an ambient automorphism of the direct product Γ1 × · · · × Γn. This in
turn restricts to a set of isomorphisms Γi → Γσ(i) (i = 1, . . . , n) for
some permutation σ of {1, . . . , n}.

Since there are only finitely many candidate permutations σ, this
proposition effectively reduces the isomorphism problem to the case
where σ is the identity, in other words to the following:
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Question: Given finitely presented full subdirect products G,H of a
collection of limit groups Γ1, . . . ,Γn (at most one of which is abelian),
can we find automorphisms θi of Γi for each i, such that

(θ1, . . . , θn)(G) = H?

Recall that the automorphism groups of limit groups can be effec-
tively described [17]; in particular one can find finite generating sets
Xi for each Aut(Γi).

Proposition 7.15. There is a solution to the isomorphism problem in
the case when at most 2 of the Γi are non-abelian.

Proof. By Proposition 7.9 we can effectively find neat embeddings for
G and H. Hence there is no loss of generality in assuming that the
given embeddings G,H ↪→ D := Γ1 × · · · × Γn are neat. In particular,
at most two of the Γi are non-abelian, at most one is abelian, and G,H
intersect any abelian direct factor in a subgroup that has finite index
in that factor. The VSP property then ensures that each of G,H has
finite index in D.

The index can be computed in each case using the Todd-Coxeter
algorithm, and we may assume that the two indices are equal (to k,
say). Now by [17] we can find a finite set X = X1 × · · · × Xn of
generators for Θ = Aut(Γ1)× · · · × Aut(Γn).

It is straightforward to construct the permutation graph for the ac-
tion of Θ on the finite set of index k subgroups, and then to check
whether or not G and H lie in the same component of this graph. This
happens if and only if G is isomorphic to H via an automorphism of
D that preserves the direct factors. By Proposition 7.14, this suffices
to solve the problem.

�

One possible approach to the more general case is to proceed by
induction on the number of direct factors. Projecting a finitely pre-
sentable subdirect product to the product of fewer factors again gives
a finitely presentable group, so by induction we can assume that the
corresponding projections of our two subgroups are isomorphic. But
for the moment we do not see how this information might be used to
complete a proof that the isomorphism problem is solvable.
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