UNIFORM NON-AMENABILITY
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AND E. VENTURA

ABsTRACT. For any finitely generated group G an invariant Fgl G
> 01s introduced which measures the “amount of non-amenability”
of G. If G is amenable, then FglG = 0. If FglG > 0, we call G
uniformly non-amenable. We study the basic properties of this in-
variant; for example, its behaviour when passing to subgroups and
quotients of GG. We prove that the following classes of groups are
uniformly non-amenable: non-abelian free groups, non-elementary
word-hyperbolic groups, large groups, free Burnside groups of large
enough odd exponent, and groups acting acylindrically on a tree.
Uniform non-amenability implies uniform exponential growth. We
also exhibit a family of non-amenable groups (in particular in-
cluding all non-solvable Baumslag-Solitar groups) which are not
uniformly non-amenable, that is, they satisfy Fgl G = 0. Finally,
we derive a relation between our uniform Fglner constant and the
uniform Kazhdan constant with respect to the left regular repre-
sentation of G.

INTRODUCTION

Amenability is a fundamental concept with many apparently un-
related but logically equivalent formulations in different branches of
mathematics, such as measure theory, representation theory, geometry,
and algebra. Following the work of Fglner, the geometric notion of
amenability can be paraphrased as follows:

A space is amenable if it can be exhausted by a family of sets A,, of
finite volume, with boundaries Bdy A, also of finite volume, such that
the ratio Volume (BdyA,)/Volume (A,,) tends to 0 as n — oc.

For a finitely generated group G the volume of a subset A of G is
simply set to be its cardinality #A. The boundary dA of A can be
defined in several different manners, each of them usually dependent
on the choice of a finite generating set X of . In this paper, we use
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the inner boundary of A (we will simply say “boundary”)
OxA={a€ Alaxd A for some z € X'},

This seems to be the most natural definition from the viewpoint of
geometric group theory (as it measures nicely the isoperimetric quality
of the set A), and is used in this and related contexts by many au-
thors. For the purpose of deciding whether a group is amenable, that
is, whether there exists a family of Fglner sets A, C G with

#0A, o

A EA,
all the competing definitions for the boundary dA, turn out to be
equivalent: one can consider the so-called Cheeger boundary, the ex-
terior boundary, the above defined interior boundary, etc. One of
these alternative boundary notions determines the Kazhdan constant
K (A, G, X) of G with respect to the left regular representation A of
(G, which will be defined in Section 2.

This paper, however, focuses on non-amenable groups, and more
precisely, on the amount of non-amenability a group possesses. In
order to measure non-amenability, one quickly realizes that knowledge
of any lower bound on #iiA for all finite A C G is worthless, unless it

is uniform with respect to all finite generating systems X of G. Thus
we define the uniform Folner constant

e o FOXA
Fol G = 151(f 1%f Yyt

where A ranges over all non—empty finite subsets of G and X ranges
over all finite generating sets of G. Note that Fgl G is, in a rather subtle
way, sensitive to the choice made among the competing definitions for
the boundary of A.

In this paper, we prove in particular that, if GG is a group generated
by n elements, then one has:

M — 2
0<FolG < 2”

n—1

The lower bound is achieved if (G is amenable; correspondingly we call
groups (G with non-zero Fglner invariant, Fol G > 0, uniformly non-
amenable.

In Section 13 we show that there exist non-amenable groups which
are not uniformly non-amenable. They deserve special interest, as, by a
result of Osin [23], the much sought for examples of groups with expo-
nential but not uniform exponential growth must be either amenable
but not elementary amenable, or else non-amenable, while we show
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in Section 1 that the uniform growth rate w(() is bounded below by
ﬁ. Together with the above mentioned Kazhdan constant, also
uniformized over all finite generating systems, the situation can be sum-
marized as follows (compare Propositions 1.4 and 2.4): Every finitely
generated group G satisfies

1. 5 1
0< 5 K(Ag,G)* <FolG <1 o)

The maximal value, Fol G = (2n —2)/(2n — 1), is achieved for G
free of rank n, and by no other group generated by n elements, see
Section 5. For surface groups S, we give fairly close lower and upper
bounds for Fgl S, in Section 6. A less precise lower bound is computed
in Section 8 for virtually free groups. While the computation for free
groups follows directly from geometric arguments in the Cayley graph,
our proof for surface groups is the model for a much larger class of
groups, for which uniform non-amenability is summarized in Theorem
below.

It relies on two basic good properties of the uniform Fglner constant
(see Sections 4 and 7):

(1) Fol G > Fol G/N for any normal subgroup N of (G, and
(2) Folx G > £ Foly H for any subgroup I of G,

where the constant C' depends only on the cardinality of the generating
system Y of H and the maximal length of the elements of Y with
respect to the generating system X*! of G (the terminology is given in
Section 1 below).

With these tools we can establish the following theorem. Our proofs
are inspired by the previously known results on uniform growth.

Theorem
The following classes of groups GG are uniformly non-amenable:

(1) non-elementary word-hyperbolic groups;

(2) large groups (i.e. groups containing a finite index subgroup that
surjects onto a non-abelian free group);

(3) free Burnside groups of large enough odd exponent;

(4) groups which act acylindrically on a simplicial tree without
global fixed points.

Finally, we would like to direct the readers attention to recent work
of [24] by Osin, which, in a late state of our work, was communicated
to us by de la Harpe. The last section of our paper has been influenced
by looking at this paper and at its “predecessor” by Meier [20]. We
would also like to thank the referees for their helpful remarks.
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1. DEFINITIONS

Let GG be a group and let A be a non-empty finite subset of G.

Definition 1.1. The boundary of A C G with respect to the finite
subset X C G is defined as:

OxA = {a € A|ax ¢ A for some x € X*'}.

Usually X will be a finite generating set for (G. The boundary of
A is the set of group elements which are at distance one from the
complement of A in the word metric relative to X. The boundary can
be defined a priori for any subset of G, but it will be used mostly for
finite sets.

Definition 1.2. We define the Folner constant of G with respect to
the generating set X as the number

. . H#HOxA
FolyG = inf
where A runs over all non—empty finite subsets of G. The uniform
Folner constant for (G is defined as

Fel G = igl(f Folx G,
where X runs over all finite generating sets of G.

Our definitions are motivated by the well-known Foalner condition
on a group which is equivalent to the amenability of the group. Using
the above introduced notation this characterisation can be stated as
follows: a finitely generated group G is amenable if and only if Folx G =
0 for some (and hence for every) generating set X, see for instance [30,
13]. Clearly then, every amenable group has uniform Fglner constant
zero. Following [14] (for instance), we will use the following term:

Definition 1.3. A finitely generated group G is said to be uniformly
non-amenable if Fol G > 0.

Amenability originates from a more general context which will be
indicated in the next section. It is worth noticing that in Section 13 we
give examples of non-amenable groups with uniform Fglner constant
zZ€ero.

Recall that associated naturally to a group GG and a finite generating
set X there is a locally finite connected graph, the Cayley graph, which
can be considered as a metric space by associating length 1 to every
edge. It realizes on its vertex set (G the word metric relative to X. A
family of Fglner sets can be viewed as an analogue of the sequence of



UNIFORM NON-AMENABILITY 5

balls Bx(n) of radius n around the origin 1 € G, and Fglx G measures
in some sense the growth of these “generalized balls”.

On the other hand, the growth rate of G with respect to X is defined
to be

wx (G) = lim {/##Bx(n)

(the existence of this limit follows from the submultiplicativity property
of the function #Bx(n): #Bx(m +n) < #Bx(m)#Bx(n) for n,m >
0, see for example [11]). The uniform growth rate of i is defined as

w(G) = i%f wx (G).

where the infimum is taken over all finite generating sets X for G.

It is not hard to show that the growth rate of a free group Fj of
rank k, with respect to a free basis Xy, is wx, (Fr) = 2k — 1. In fact
this is the uniform growth rate of the free group of rank £, see for
instance [11].

An important open problem on uniform growth rates, posed by Gro-
mov in [12, remarque 5.12], is the question whether there exist groups
of exponential growth (i.e. wx(G) > 1 for all generating sets X') but
with uniform growth rate equal to w(G) = 1. (Wilson [31] has recently
produced a non—amenable example of such a group.) In view of the
following result such groups must have uniform Fglner constant zero.

Proposition 1.4. Let G be a finitely generated group, and let X be a
finite generating set. Then

FolyG <1 — ——+
and hence,
1
FolG<1———.
e L@

Proof. The Fglner constant is an infimum taken over all non-empty
finite subsets of GG. Since dxBx(n) C Bx(n) — Bx(n — 1), we have

#8XBX(n) . #BX(TL — 1)
FBx(n) ' #Bx(n)

for all n > 1. And, since

FQﬂXG <

#Bx(n)

. <
i i =1y = “x (@)
we deduce
Foly G <1 — )
N
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Note that the inequalities in Proposition 1.4 may very well be strict.
However, in a preprint [2] which has appeared while this paper was
in final revision, Arzhantseva, Guba and Guyot have shown that there
are k generator amenable groups with growth rates arbitrarily close to
ﬁ, and thus with uniform Fglner constant 0, but such that the upper
bound of the inequality is arbitrarily close to g’;—j The Baumslag-
Solitar group BS(1,2) (see Section 13 for the definition) provides an
example of an amenable group, hence with the Fglner constant zero,
whose the uniform growth rate is different from 1 [4]. In general, for
amenable groups with exponential growth, the inequalities involving
a fixed generating set are always strict. We also see that w(G) > 1

whenever Fgl G > 0:

Corollary 1.5. Uniformly non-amenable groups have uniform expo-
nential growth different from one.

2. AMENABILITY AND KKAZHDAN’S CONSTANTS

A locally compact group I' is called amenable if there exists a left-
invariant, finitely additive measure p defined on all Borel subsets of
I' and satisfying p(I') = 1. For more information and background
on amenability, see for instance [9, 13, 30] and the references therein.
The characterization of amenability which we shall use throughout this
paper is the existence of a family of Fglner sets, that is, a sequence { A, }
of subsets of I' of finite Haar measure such that for all ¢ € I' we have

L #(ADgA)
(2.1) fm = =0
(We use # to denote Haar measure; later we shall simply consider
cardinality of finite sets.)

Amenability can also be characterized from the point of view of rep-
resentations. Let Ap be the left regular representation of I' on the
Hilbert space H = L*(T'), that is, Ar(g)u(f) = u(g™'f) for v € L*(T)
and f,g el

Definition 2.1. Let I' be a locally compact group, and let Ap be the
left regular representation of I'. We say that the trivial representation
is weakly contained in Ar if, for any € > 0 and any compact subset
S C T, there exists u € L*(T") with ||u]| = 1 such that

(2.2) |(u, Ap(s)u) — 1| < e
for any s € 5.
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Theorem 2.2 ([16]). A group I' is amenable if and only if the left
reqular representation of I' weakly contains the trivial representation.

Related to Fglner constants are the well-known Kazhdan constants,
which are defined in terms of unitary representations.

Let I' be a locally compact group, H a separable Hilbert space, and
S C I' a compact set. For a unitary representation (m,H) of I' we
define the number

K(m,I',S) = inf maxM.
0£uEH s€S |||

Then the Kazhdan constant with respect to the set S is defined as
K(I',S)=inf K(=,I',5),

where the infimum is taken over unitary representations m having no
invariant vectors. We also define the uniform Kazhdan constant (with
respect to ) as

K(m, 1) = i%f K(m,1,9)

where the infimum is taken over all generating sets S.

A group I is said to have Kazhdan property (T) (or to be a Kazhdan
group) if there exists a compact set S C I' with K(I',.S) > 0. There
are explicit computations or estimates of Kazhdan constants in the
literature 3, 5, 6, 8, 21, 27, 28, 32].

Observe that according to the Definition 2.1 and Theorem 2.2, the
group I' is amenable if and only if K(Ar,I',.S) = 0 for all compact
Scr.

Let us now return to finitely generated groups, i.e. I'is replaced by G,
S by a finite generating system X, and L*(I') by *(G). We can rewrite
condition (2.1) in terms of the boundaries of finite sets {A,} forming
a Fglner family, see for instance [9]. Thus, using the notations above
and results already mentioned, we can summarize several equivalent
characterizations of amenability as follows:

Proposition 2.3. Let G be a finitely generated group. The following
conditions on G are equivalent.

(i) G is amenable;
(i1) There exist a finite generating set X of G' and a sequence of
non—empty finite subsets {A,} of G satisfying

#aXAn .

lim = 0;

i #A,
(iii) Folx G = 0 for every finite generating set X ;
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(iv) K(Aa, G, X) =0 for every finite generating set X .
The uniform Kazhdan constant of the left regular representation is
related to the Fglner constant as follows:

Proposition 2.4. Let G be a finitely generated group. Then one has
1
Fol G > 5 K(\a, G)*.

In particular, if Fol G =0 then K(Ag,G) = 0.

Proof. For any ¢ > Fgl G there exist a finite generating set X for &
#OxA

and a non—-empty finite subset A C G so that < e. Let x4-1 be

the characteristic function of A~!. Then for z € X and u = XA of

5

norm ||u|| =1 we obtain
1 OxA
A (2)u — ul]* = ﬂ; (XA_l(:z;_lg) — XA—I(g)>2 < 2##2 < 2.
This implies K(Ag, G, X) < V/2¢, s0o K(Ag, () < V2Fgl G. O

It is a subtle question whether the implication in the last sentence
of Proposition 2.4 can be reversed. In particular, it would be in-
teresting to know whether the 2-generator infinite periodic groups G
with K (Ag, ) = 0 exhibited in [24], which are not amenable, satisfy
FolG = 0: If so, they would be examples of non-amenable but not
uniformly non-amenable groups which do not contain non-abelian free
subgroups. !

It follows from Proposition 2.4 and Proposition 1.4 that K(A¢, G) >
0 implies that G has uniform exponential growth. In [28], Shalom
shows that K(Ag,G) > 0 for non-elementary residually finite word
hyperbolic groups. In [17], Koubi proves that non-elementary word
hyperbolic groups have uniform exponential growth, a result that we
will use later.

IThe referee has pointed out that the 2-generator infinite periodic group @ con-
structed in [24] actually does have zero Fglner constant. This is because @ is
a quotient of all non-elementary word hyperbolic groups, and the infinum of their
uniform Felner constants is zero since the closure of the set of non-elementary word
hyperbolic groups in the space of marked groups contains an amenable group [25].
Applying Lemma 13.2 and Theorem 4.1, it follows that Fgl Q) = 0.
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3. SUBGROUPS

Before beginning with the computation of the Fglner constants of free
groups, we establish some results which relate the Fglner constants of
a group to those of its subgroups and quotients.

Lemma 3.1. Let GG be a finitely generated group, X a finite generating
system, and g € G. Let Y = X U{qg}. Then

FQlXG < FQlY G.

Proof. The Cayley graph of G with respect to Y is the same as the one
with respect to X, but at each vertex v there is an extra edge labelled
g leaving v and an extra edge labelled ¢ arriving at v. Consider a
non—empty finite subset A. Obviously, adding edges to a Cayley graph
cannot move a boundary point of A to the interior. The only thing that
can happen is that an interior point now becomes a boundary point if
its corresponding edge g or g~! has its other endpoint outside A. So
the boundary with respect to Y is at least as large as the boundary
with respect to X. O

The following result gives lower bounds on the Fglner constants of a
group in terms of those of certain subgroups:

Theorem 3.2 (First Subgroup Theorem). Let G be a group, and let
X =A{xq,...,2,} be a finite generating set of G. Let m < n, and let
H be the subgroup of G generated by the set Y = {xq,...,x,}. Then,

FQlXG > FQlyH.

Proof. Let A be a non—empty finite subset of G, and choose yq,.... yx
elements of GG in such a way that y,HNy; H = @ if 1 # 7, and ANy, H #
@. Namely, the y; are representatives of the cosets of H which intersect
A. Let AZ == AﬂyiH.

The Cayley graph of H with respect to Y sits inside the Cayley graph
of GG with respect to X. Considering only the edges labelled in Y, the
cosets for H form disjoint “parallel” copies of the Cayley graph of H.
Note that A; is a finite subgraph of the component corresponding to
the coset y;H. Clearly, by the definition of the Fglner constant, we

have .
#ovAi _ #owly; A
#A FHy A
Now, using the argument of the lemma above, it is clear that the bound-
ary for A using only elements of Y is smaller than the X-boundary of

A. Then,
#FOxA S #IA Y #OvA
#A T #A > #A;

> FQlyH.

> FQlyH,
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which concludes the proof. O

This result has many interesting applications. For instance, it allows
us to prove the following proposition, which is a special case of the
main result of the next section.

Proposition 3.3. Suppose that G is a finitely generated group, and
that there is a surjective homomorphism ¢ : G — Fy. Then

Fol G > Fol F3.

Proof. Let X = {ay,...,2,} be a finite set of generators for G. For
1 < i < j < n, the subgroup (¢(x;),P(x;)) of Fy generated by the
images o(x;), p(x;) is either free of rank 2, or cyclic. As ¢(G) = Fy,
there are generators x;,x; such that (¢(x;), d(x;)) is free of rank 2,
and hence (x;,x;) is a free non-abelian subgroup of G. The result now
follows from the First Subgroup Theorem. O

4. QUOTIENTS

The Fglner constant of a group is bounded below by the constants
of its quotients as follows:

Theorem 4.1. Let GG be a finitely generated group and let X be a
finite generating system for G. Let N be a normal subgroup of G, w
the canonical homomorphism of G onto G/N and X' = n(X). Then,

FolyG > Fol x.G/N,

and hence,

Fol G > Fol G/N.

Proof. 1t is clear that the second inequality follows from the first, be-
cause the first inequality is valid for any finite generating system of G.
We have

FQIXG > FQlX/G/N > Fgl G/N,

so the infimum of Fgl vy G has the same lower bound.

To prove the theorem, consider a finite set A C (7, and let B = w(A).
By definition,
#0x/ B

#B
For all ¢« > 1, we define the i-level subset of B as

B;={be G/N|# (=" (b))nA) >} C B.
Note that B; = B and that B; = () whenever i > #A.

We need the following lemma:
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Lemma 4.2. Let b,c € G/N such that there exvists * € X with image
@' = mw(x) satisfying bx’ = ¢ (i.e. b and ¢ are at distance at most one in
G/N). Suppose b € B; and ¢ € Bj — Bjt1, for some 1 > j > 0. Then,
there exist at least i — j points in the set dxA N7~ (b).

Proof. Let ay,...,a; be i different points in 771(b) N A and consider
the elements a;, ..., a;x. These points are all in 77(¢), but at most
J of them are in A, since 77'(¢) N A has exactly j elements. Hence,
there are at least ¢ — j points in 77(b) N A which are in the boundary
of A. This completes the proof of the lemma. O

We have the inequality

#0x:B;
Fol vG/N < ————
Pl GIN < #D;

for all non-empty B;, so

D1 #OxBi Y #0x/Bi
22'21 # B #A '

The proof will conclude when we prove that

> #0xB; < F#0xA .

i>1

FQIX/G/N <

So let now b be a point in some dx/B;, and let ig = #(7~1(b) N A) > i.
We want to consider the neighbour of b which has the least number of
preimages: let

31 ;/Tél)?,{J| T € B 1)

Then, since b has 7y preimages in A, and it has a neighbour with exactly
11 preimages, the contribution of b to

Z #0x/B;
i>1

is exactly zero if 19 < 77 and 1g — 77 otherwise, since b appears in all the
sets dxsB; for all 7 =14, +1,...,7. But now, according to Lemma 4.2,
in the preimage of b there must be at least 19—, points in the boundary
OxA. So the conclusion is that

> #0xi B < #0xA,

i>1

as desired. O
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5. FREE GROUPS

The quintessential examples of nonamenable groups are free non-
abelian groups. So it is reasonable to start our computations by calcu-
lating their Fglner constants. However, all computations below depend
only on the combinatorial properties of Cayley graphs of free groups
with respect to free bases. Such Cayley graphs are always regular trees.
It is remarkable to observe that the computations agree with the sit-
uation for a free group of rank one, that is, the group of integers. All
results will be stated including this special case.

Let £}, be the free group on k& > 1 generators, and let Xy, = {xy,..., x4}
be a basis for Fi. The growth rate of a free group F}y with respect to
a free basis is 2k — 1. From Proposition 1.4 we immediately obtain:

Lemma 5.1. Let F, be a free group of rank k. Then

2k —2
2k —1°

Fol Fy, < Folx, Fi, <

We will devote the rest of this section to proving that these two
inequalities are indeed equalities, i.e. the uniform Fglner constant for
free groups is achieved by considering balls and free bases.

Recall that the Cayley graph of the free group of rank k& with respect
to a free basis is a 2k-regular tree. A subset A C [} can also be
considered as a subgraph of this Cayley graph; in this way, A is a
forest.

Proposition 5.2. Let A be any non—emply finite subset of Iy, with
k>1. Then,

#ox A _ 2k =2
HA T 2%k 1

Proof. We can assume that the graph A (i.e. the vertices in A together
with all edges with both ends in A) is connected, because if the result
is satisfied by all the connected components, then it is clearly satisfied
by their union.

Let V; denote the number of vertices of valence ¢ in A, 1 =1,...,2k.
Since A is a tree its Euler characteristic must be zero,

Vit 2Vy + - 2KV
L= (Vi Vo) + ———— % =0

So, Vi = 24+ 2% (i — 2)Vi. Now,



UNIFORM NON-AMENABILITY 13

#ox A Vi+- Vi

HA VitV
Vak

Vit Vi

B Vak

24+ Vo 4+ Y- 1)V
1

2k —1

2%k -2

2%k -1

=1 —

> 1

g

This last result, together with the upper bound obtained from the
growth rate, completes the proof of the calculation of the Fglner con-
stant for free groups with respect to free bases:

Proposition 5.3. If X} is a basis for the free group F}, then
2k — 2
Fol x = —— .
ol x, Ik ok — 1
O

To conclude the computation of the uniform Fglner constant of the
free groups, we only need to use the first subgroup theorem.
Proposition 5.4. One has
2k — 2
2k —1°
Proof. Let Y be any finite generating system for Fj%. Let m be the
abelianization map

FQle =

R J—— L
and let Y2 = 7(Y). Since Y generates Z*, we can find y;,...,yx € Y
such that 7(y1),...,m(yx) € Y are linearly independent, and hence,
they generate a subgroup of Z* which is isomorphic to Z*. Then,
H = (y1,...,yx) is a subgroup of Fj which is also isomorphic to a free
group of rank k since it maps onto Z* which cannot be generated by
less than k elements (note that, in general, H is not necessarily equal
to the original F). Thus, using the First Subgroup Theorem, we can
deduce that
2k — 2

Foly Iy, > Fol g,y H = %1
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and since Y is any finite generating system of Fj, we conclude the

desired result, by using Proposition 5.3. O
The above result can be improved to say that the free group of
rank k is the unique group with Fglner constant gz—j, among groups

admitting a system of generators with k elements. This follows from
the analogous result about the growth rate proved by Koubi in [18].

Proposition 5.5. Let G be a group generated by a set X such that
| X| =k >2. Then FolxG < gz—j, and the equality holds if and only
if G is free with basis X.

Proof. As (i has k generators, it is clear that wy(G) < 2k — 1. From
Proposition 1.4, we have the upper bound

2k — 2
gl <1l-1 < .
oG < 1= 1wx(6) < 50
IfFelyG = 3’;—:?, we see that wy (G) > 2k—1, and thuswy (G) = 2k—1.

Koubi’s Proposition 1.2 in [18] states that wx (G') < 2k—1 with equality

if and only if (7 is free with basis X. In our case wx(G) = 2k — 1 and
so, by Koubi’s result, GG is free with basis X.

Conversely, if G is free on X, the equality holds by Proposition 5.3.

O

Analogously, the same can be said with the uniform Fglner constant.

Theorem 5.6. Let GG be a k-generated group, k > 2. Then, Fol G <

gz—j, and the equality holds if and only if G' is free of rank k. O

Now that Fglner constants for free groups have been calculated ex-
actly, using the quotient theorem, we see that knowledge of the Fglner
constant of a group gives information about its rank and about the
rank of its free quotients.

Corollary 5.7. Let GG be a finitely generated group. If k is a positive
integer such that

2k — 2

2k — 1
then the rank of GG is at least k. O

< FolG

Corollary 5.8. Let G be a finitely generated group. If k is a positive
integer such that
2k — 2
Fol G <
Y
and G admits a free quotient of rank (, then { < k. O
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6. SURFACE GROUPS

Let S, be the fundamental group of a closed orientable surface of
genus g. The rank of 5, is 2¢g, so that (49 — 2)/(4g — 1) is an upper
bound for its uniform Fglner constant.

A lower bound for the Fglner constants for S, can be obtained as
follows. Let X be the usual set of 2¢g generators for S,. By Magnus’
Freiheitssatz, any subset of 2g — 1 elements of X generates a free group
of rank 2¢g — 1, and the first subgroup theorem applies to conclude that
the Fglner constant for S, with respect to X has a lower bound given
by the constant for Fy, ;. In fact this bound is uniform.

Theorem 6.1. Let S, be the fundamental group of a closed orientable
surface of genus g. Then

4q9 — 2

4g — 3

Proof. Let Y be any finite set of generators for S,. Since the abelian-
ization of S, is Z*, there is a subset Y’ consisting of 2¢g elements of
Y whose images in the abelianization are linearly independent. Let
Y"” be a subset of Y’ with 2¢g — 1 elements. Since every subgroup of a
surface group is either free or else a surface group of higher rank, (V")
is necessarily free. And since (Y”’) maps onto Z*~!, which cannot be
generated by less than 2g—1 elements, we see that (Y”) has rank 2¢g—1.
Now, the First Subgroup Theorem and Proposition 5.3, tell us that

49 — 4
4g — 3

= FQIY”(<Y”>) S FQIYSg,

which is valid for every Y.

Finally, the second inequality is consequence of the fact that S, has
rank 2g, and it is strict because S, is not free (and equality would
therefore contradict Theorem 5.6). O

Notice that the subset Y’ in the above proof generates a subgroup
which is either free of rank 2¢g, or 5, itself. The First Subgroup Theorem
implies that either Fgly S, > iz—j or Y’ is a minimal set of generators
for 5;. In the first case, Fgly S, is bounded away from the uniform
Fglner constant. Thus to obtain a Fglner constant close to the uniform
one, 1t suffices to consider minimal sets of generators. The definition of
the Fglner constants and the First Subgroup Theorem already suggest
that this should be true in general, as larger sets of generators will
apparently provide larger boundaries. The examples of the free groups,

together with this behaviour for surface groups, appear to confirm this.
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The calculation of the exact uniform Fglner constant as well as the
exact uniform growth rate of surface groups is an open problem.

7. SUBGROUPS REVISITED

The subgroup theorem obtained in Section 3 only applies to those
subgroups which were generated by a subsystem of the system of gener-
ators for the group. In this section we will state a general result which
can be used for any subgroup and any system of generators, but which
will give worse bounds for the Fglner constants.

Theorem 7.1 (Second Subgroup Theorem). Let G be a finitely gen-
erated group and let X = {xq,...,2,} be a system of generators for
G. Let H < G be a subgroup, generated itself by a system Y =
{Y1,.- -, ym}. Choose expressions w; for the y; as words on X, and
let L be the maximum among their lengths. Then,

1
FolxG > ——— Foly H .
olxG =~ Tl oly
Proof. Let A be a non—empty finite subset of G. As in Theorem 3.2, we
consider A as a finite union of intersections A; of A with right cosets
of H, and we write OyA = U;0vA;, viewing each A; as existing inside
a copy of the Cayley graph of H with respect to Y. With the same

#iZA, even if A is not

argument as in Theorem 3.2, we have Foly H <
a subset of H.

By definition, every element ¢ € dyA; can be joined with a point
outside A;, and so outside A, by multiplication by some y;, which we
think of as a path labelled w; in the generators X. If ( € dxA, then
this path begins at (. If ( € JxA, then the path must necessarily pass
through a vertex in dxA, which is not the final vertex of the path, just
before leaving A. Consider a vertex z € dxA; it may be that z € Oy A.
Otherwise, there are at most /(w;) — 1 < L — 1 ways in which a path
labelled w; may pass through z in such a way that z is neither the
initial nor the final vertex.

Thus a vertex z € dxA corresponds to at most 1+ E;n:l(ﬁ(wj) —1) <
1 + mL different vertices in dyA (and each vertex in dyA has at least
one corresponding vertex in dxA). It follows that

m

HOA < (1+ ) (U(w;) — 1))#0xA < (1 + mL)#0xA .

=1

Since the previous inequality is valid for any non—empty finite subset
of GG, we deduce the result. O
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Remark 7.2. Observe that the only obstacle to the Second Subgroup
Theorem providing a lower bound for the uniform Fglner constant for
(7 is the fact that, for different generating systems of G, the lengths of
the generators of H, and their number, can grow arbitrarily. So, for
all those examples where one can find bounds on these numbers, the
Second Subgroup Theorem can be used to estimate the uniform Fglner
constant, as we shall see in the next three sections, where we find such
bounds for virtually free groups, large groups and hyperbolic groups.

8. VIRTUALLY FREE GROUPS

Shalen and Wagreich [26] showed that, for a subgroup H of finite
index k in a group G, the uniform growth rates are related by w(G') >
w(H)" k=1 This bound can be improved to w(G) > w(H)Y*+D
using Lemma 8.1 below.

The Second Subgroup Theorem 7.1 can be used to give a lower bound
for the uniform Fglner constant for virtually free groups. This is a
special case of Theorem 10.1, but is treated here separately: the proof
below is much more direct, the method employed is interesting in itself,

and 1t is also used again in Section 9.

Let G be a finitely generated group, and let H be a finite index
subgroup, of index k = [G : H|. The length of the generators is
controlled by the following lemma, which is a direct consequence of the
fact that a subgroup of index k is %—quasiconvex:

Lemma 8.1. Let GG be a group and H be a subgroup of index k. Given
a generating set X for G, there exists a generating system Y for H
where all the generators have length at most k41 with respect to X. O

Theorem 8.2. Fvery virtually free group G is uniformly non-amenable.
More precisely, if G contains a non—abelian free subgroup H of index

k, then
1 2 1
Fel G > 5> .
ST kT )3 3kt 2)
Proof. Let X be a generating system for GG and let H be a free subgroup
of rank p and index k. Using the lemma above, we know that there
exists a system of generators Y for H whose elements have length at
most k + 1 with respect to X.
As H is non-abelian and free, there is a pair of generators Y’ C Y
which freely generate a free subgroup H’ of rank two. The Second
Subgroup Theorem applies to H and we have

> L
T 142(k+1)

21
37 3(k+2)°

FolxG > Foly H'

1
L+2(k+1)
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9. LARGE GROUPS

We can now use our results concerning subgroups to prove that cer-
tain classes of well-known groups are uniformly non-amenable.

Definition 9.1. A group is said to be large (or as large as Fy) if it
contains a finite index subgroup which has a quotient isomorphic to
Fy, the free group of rank two.

Many classes of groups are known to be large: groups with deficiency
2 presentations, not virtually abelian Coxeter groups [19], torsion-free
one-relator groups, deficiency 1 presentations where no relator is a
proper power and most generalized triangle groups, see [15] for bib-
liography and more such classes.

Proposition 9.2. Large groups are uniformly non-amenable.

Proof. Let GG be a large group and H a subgroup of index k£ which
admits a quotient isomorphic to F,. Let X be a generating system
for . From Lemma 8.1, we can construct a set of generators Y for H
whose elements all have length at most k+1. We have no control on the
size of Y but, because of the existence of a quotient of H isomorphic
to £y, we can choose two elements of Y which are a basis of a free
subgroup of H. Since the length of these two elements is bounded by
k + 1, the Second Subgroup Theorem can be used to obtain a uniform

lower bound for FalxG. This implies Fgl G > m% > m > 0.
d

10. HYPERBOLIC GROUPS

A result of Koubi [17] proves that a non-elementary hyperbolic group
has uniform exponential growth. The precise statement used here is as
follows:

Theorem 10.1 ([17]). Let GG be a non-elementary word hyperbolic
group. Then there exvists a constant N(G') > 0 such that for any gener-
ating set X of G there are two elements [ and g of lengths |f|x,|g|x <
N(G) freely generating a nonabelian free subgroup.

This result establishes the necessary upper bound on the number of
generators (two) and their lengths, so that Remark 7.2 enables to use
the Second Subgroup Theorem 7.1 to give a lower bound on Fglner

constants: Fgl G > 1+2]1V(G)% > 3(1_|_]1\,(G)).

Corollary 10.2. Let GG be a non-elementary word hyperbolic group.
Then G is uniformly non-amenable. O
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11. BURNSIDE GROUPS

In [1] Adian proved that for any m > 2 and n > 665 odd the free
Burnside group B(m,n) = F,,/F” is non-amenable. The following
results follow from Theorem 41 (page 303) of [22]:

Given integers n > 0 odd and large enough and m > 2, there exist
words u(x,y),v(x,y) in the alphabet {x,y} such that, if a,b are two
non—commuting elements of B(m,n), then the subgroup H generated by
Y =A{ula,b),v(a,b)} is isomorphic to the free Burnside group B(2,n).

In particular one has Fgly H > 0. As any generating system X of
B(m,n) must contain at least two non-commuting elements x;, x;, we
consider H for a = z;, b = z; and apply Remark 7.2 to obtain directly
from the Second Subgroup Theorem 7.1 the following:

Corollary 11.1. For m > 2 and n odd large enough the free Burnside
group B(m,n) is uniformly non-amenable. O

12. GROUPS ACTING ON TREES

Recall that in [4], Bucher and de la Harpe studied uniform exponen-
tial growth of HNN-extensions and amalgamated products of groups.
The next result provides, in some sense, a generalization of their work
by asserting that a group which acts in a proper way on a tree is uni-
formly non-amenable. Let us point out, however, that some attention
should be given to the hypotheses: Among the groups acting on trees
for which uniform exponential growth was shown in [4] there are in
particular non—amenable Baumslag-Solitar groups. Those, however, do
not satisfy the acylindricity condition in the proposition below. The
fact, proved in Section 13, that they give examples of non-amenable
groups G that satisfy Fgl G = 0, shows that our conditions on the tree
action are sharp, although they are more restrictive than the ones in

[4].

Proposition 12.1. Let G be a finitely generated group which is not
virtually cyclic, and assume that G acts on a simplicial tree T without
a global fixed point, and such that, for some k > 0, the action is k-
acylindrical in the sense of Sela (i.e. for any g € G — {1} the set of
fized points Fix(g) C T has diameter < k, with respect to the simplicial
metric).

Then, for every finite generating system X of G, there exist two
elements a,b € G which generate a free subgroup of rank 2 and satisfy
la|x, [b]x < max(8k,16). In particular, the group G is uniformly non-
amenable.
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Proof. Notice first that, given any two elements a,b € G which act
hyperbolically on T, such that their axes are disjoint or intersect in a
segment J which is shorter than the translation length of both, then
it follows from a standard ping-pong argument that the subgroup gen-
erated by a and b is isomorphic to F,. Hence our goal is to produce
such elements which are of bounded length with respect to an arbitrary
fixed generating system X = {xy,...,2,} of G.

If one of the x; defines a hyperbolic action on T', we set ¢ = x;. If
all of the x; act as elliptic elements on T', and any two of them have a
common fixed point, then, as X is finite (and 7" a tree), there would be
a common fixed point for all the x;, which contradicts the hypothesis
that G has no global fixed point on T'. Thus we can assume that
Fix(xz1) NFix(xq) is empty, which implies that ¢ = x125 is a hyperbolic
element, whose axis will be denoted by ax(g).

If one of the z; fixes one end of ax(g), then the commutator :I;jg:zj;lg_l
fixes pointwise an infinite subarc of ax(g) which defines that end. Hence
from our hypothesis of k-acylindricity of the action, this commutator
must be trivial, and in particular ; leaves ax(g) invariant.

Thus, if each of the z; fixes an end of ax(g) or interchanges its ends,
then all of G acts on ax(g), which means that either GG is virtually
cyclic, or else the commutator subgroup contains elements of infinite
order which fix all of ax(g), so that the action of G would again not be
k-acylindrical.

Thus we find an element h = :z:jg:zj;l which is also hyperbolic and
has the property that J = ax(g)Nax(h) is empty or has finite diameter
d > 0. Without loss of generality we can assume that, if J is non-
empty, then g and h shift their axes along J in the same direction. If
% is greater than or equal to the translation length of both ¢ and h,
then ¢g~'h~1gh fixes pointwise a final segment of J of length > %, and
the acylindricity hypothesis implies that 2k > d. It follows that the
elements @ = ¢?f and b = h** have the desired properties, since every
edge in T has length 1.

It % is smaller than the translation length of ¢ (or of &), then we can
define a = ¢* and b = hg*h™! to find the desired elements.

If J is empty, then one can take a = ¢ and b = h. O

13. NON-AMENABLE GROUPS WITH FOLNER CONSTANT ZERO

Let Q,, denote the set of marked m-generated groups, that is, the
set of all quotients of the free group F(X) where X is a fixed free
generating set containing m > 2 elements. The set Q,, can also be
considered as the set of all normal subgroups of F/(X) or, geometrically,
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as the set of all corresponding Cayley graphs C(F'(X)/N, X) (where,
abusing notation, X denotes also the generating set of the quotient
F(X)/N).

We define a metric (hence a topology, known as the Cayley topology)
on Q,, as follows. Given two normal subgroups Ny, Ny < F(X), let
Ci, for i = 1,2, be the Cayley graph for F(X)/N;. Then, the distance
between N, and N, is defined as

D(Ny, Ng) = inf {n;—l—l’ Be,(n) is isometric to BCQ(n)}
where Be(n) is the ball of radius n in the Cayley graph C centered at
the identity, and the isometry preserves the edge labels. This topology
was introduced in [10], see also [29, 7] for background and interesting
applications.

For a sequence of normal subgroups { Ny }72,, we say that N is the
limit normal subgroup of the sequence if

lim D(N, Ny,) = 0.

k—oc0

The corresponding quotient G = F(X)/N is called the limit group
of the sequence {G}32, with Gy = F(X)/Ng. In particular, if Ny >
Ny > N3 > ... form a chain of normal subgroups, then the limit normal
subgroup is N = (;—, Nj. Similarly, if Ny < Ny < N3 < ... is now an
ascending chain, then the limit is the union N = J;—, Ni.

Proposition 13.1. Let G = F(X)/N be the limit group of a sequence
{G}52, with Gy = F(X)/Ng, for k> 1. Then

Folx G > limsup Folx Gy.

k—o0

Proof. We denote by C and Cj the Cayley graph relative to X of G and
Gy, respectively. For an arbitrary € > 0, by definition of Fglx G, there
exists a finite set A C G satisfying FolyG < #iflA < FglxG 4+ ¢. Since
A is finite, it is contained in some ball Be(n) of radius n = n(A) in C.
By definition of the limit normal subgroup, there exists K = K(n) > 0
such that for any & > K(n) we have D(Ny, N) < ——. That is, for

such indices k, the balls Be(n+ 1) and Be, (n + 1) arg—li—gometric via an
isometry . Putting Ay = pr(A) C G we obtain Folx G < % <
FolyG + . It implies that Folx Gy < FolxG + € for any k > K(n).
Hence limsup,_,. Folx G < FglxG. O

Corollary 13.2. (cf. [25]) If the limit group G' = F'(X)/N is amenable
then

k—oo
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We recall that the Baumslag-Solitar groups are given by the presen-
tations

BS(p,q) = (a,t,| t""a"t = a"), p,q€N.
Using Britton’s lemma for HNN-extensions, it’s easy to see that, if

p,q > 1, then the elements ¢ and a~'ta generate a free subgroup of
rank 2 in BS(p,q). It follows that the group is non-amenable.

Proposition 13.3. For relatively prime p # 1,q # 1 the group BS(p, q)
is a non-amenable group with Fel BS(p,q) = 0.

Proof. We have to show that Fgl G = 0 for G = BS(p, ¢) with relatively
prime p # 1,q # 1. We define a homomorphism ¢ : G — G as follows:

aw— a’,
t— 1.

Since p and ¢ are relatively prime, we have that ¢ is surjective. We
denote by Nj its iterated kernel, i.e. N; = ker ¢',i > 1. Note that
Ny < Ny <.... Let L denote the corresponding limit group, that is,
L = G/Uj—; Ni. Then this group is amenable. Indeed, the kernel of
the homomorphism L — Z defined by @ +— 1 and ¢ — ¢ is abelian,
since it is generated by {t "at", n € Z}. Any two such generators are
conjugate to elements t~“at’ and a, for some / € N. These elements
commute in ¢*(G) and hence in L. Thus L is an extension of an abelian
group by a cyclic one, so it is solvable and hence amenable. By the
previous corollary, limy_,., Foly F3/Ny = 0 where X = {a,t}. But for
all £ > 1 there is an isomorphism between the quotient F3/Ny and the
group G. It follows that Fgl G = 0, which completes the proof. O

The previous result can be extended to a more general class of groups.

Theorem 13.4. Let A = (x1,...,2, | R) be an amenable group with
a set of defining relations R. Let v : A — A be injective homomor-
phisms satisfying

(i) pov=voy;

(ii) u(A) U (A) generate A.
Then for the group G = (t, A | t ' p(x)t = v(z;)) we have Fol G = 0.
If in addition,

(i) 1(A) U p(4) £ A,
then G is a non-amenable group with Fgl G = 0.
Proof. Let ® : ¢ — G be defined by ®(t) = ¢, ®(x;) = p(xi),1 =

L,...,m. Condition (i) implies that @ is homomorphism, (ii) that & is
surjective. Considering the iterated kernels of ®, we obtain the limit
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group L = G/J;2, Ker ®" which is amenable by the hypothesis on
A. Indeed, as above, we consider the kernel K of the homomorphism
L — 7Z defined by z; — 1,: =1,...,m, and ¢ — t. We claim that it is
amenable. Then L is amenable as an extension of an amenable group
by a cyclic group. Hence, as in Proposition 13.3, we have Fgl G = 0.

In order to prove our claim we recall that a countable group is
amenable if and only if every finitely generated subgroup of this group
is amenable. FEvery finitely generated subgroup H of K is generated
by finitely many products of finitely many conjugates t~"z;t" with
i =1,...,m and n € Z. Taking a conjugate of H (if necessary) by
an appropriate power of ¢, we assume that n € N in these conjugates.
Then using the defining relation ¢~'u(x;)t = v(z;) of G we find a num-
ber ( € N such that ®‘(h) € A for each generator h of H. Hence
®‘(H) < A. This image is amenable because it is a finitely generated
subgroup of the amenable group A. Since ® is an isomorphism of L
we obtain the amenability of H and hence that of K. This proves the
claim.

Condition (iii) provides a free subgroup of rank 2 in (G and hence non-
amenability of (G. Namely, using Britton’s lemma for HNN-extensions,

one can check that it is a subgroup freely generated by b and b=1tb, for
any b€ A— (u(A)Ur(A)). O

Remark 13.5. Groups satisfying conditions (i), (ii), and (almost) (iii)
above with A being abelian or a direct product were introduced by Meier
in order to construct non-hopfian HNN-extensions [20]. In particular,
such groups are non-hopfian.

As an immediate corollary of Theorem 2.4 and Theorem 13.4 we
see that K(Ag,G) = 0 for a group G satisfying (i) and (ii) above
(i.e. the left regular representation is not uniformly isolated from the
trivial representation for these groups). If in addition (iii) holds we
obtain such a non-amenable group. This provides further examples of
a negative answer to a question of Shalom [28], solved first by Osin [24],
where groups with similar conditions and an abelian group A were
considered.
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