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Abstract. We give a criterion for fibre products to be finitely presented
and use it as the basis of a construction that encodes the pathologies of
finite group presentations into pairs of groups P ⊂ G where G is a product
of hyperbolic groups and P is a finitely presented subgroup. This enables
us to prove that there is a finitely presented subgroup P in a biautomatic
group G such that the generalized word problem for P ⊂ G is unsolvable
and P has an unsolvable conjugacy problem. An additional construction
shows that there exists a compact non-positively curved polyhedron X such
that π1X is biautomatic and there is no algorithm to decide isomorphism
among the finitely presented subgroups of π1X.

Introduction

It is rather straightforward to construct finitely generated subgroups with
unsolvable decision problems inside apparently well-behaved groups (see [18],
[17], [20], [4]); constructing finitely presented subgroups with unsolvable de-
cision problems is a much more delicate matter. In [3] we showed that the
finitely presented subgroups of products of hyperbolic groups can be rather
complicated by concentrating on the complexity of the word problem: the op-
timal isoperimetric inequality satisfied by finitely presented subgroups may be
significantly worse than the quadratic isoperimetric inequality satisfied by the
ambient group. In the present article we turn our attention to the other basic
decision problems: the conjugacy problem, the isomorphism problem and the
generalized word problem. We show that all of these problems are unsolvable
for certain finitely presented subgroups of semihyperbolic groups.

Theorem A. There exists a torsion–free word hyperbolic group Γ and a
finitely presented subgroup P ⊂ Γ × Γ such that there is no algorithm to de-
cide membership of P , and the conjugacy problem for P is unsolvable. (One
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can arrange for Γ to be the fundamental group of a compact negatively curved
2-complex.)

Theorem B. There exists a non–positively curved 4–dimensional cubical com-
plex K with biautomatic fundamental group G, and a recursive class of finitely
presented subgroups Hn ⊂ G (n ∈ N) such that there is no algorithm to deter-
mine whether or not Hn is (abstractly) isomorphic to H1.

With regard to Theorem A, note that Γ × Γ itself does have a solvable
conjugacy problem [12].

Any compact piecewise euclidean complex of dimension n can be isometri-
cally embedded in a closed manifold of dimension 2n+1 that has a polyhedral
metric of non–positive curvature. The universal cover of a complete non–
positively curved space is contractible, and therefore the homotopy type of its
covering spaces are determined by the isomorphism classes of the correspond-
ing subgroups. Thus we have:

Corollary C. There exists a closed non-positively curved manifold of dimen-
sion 9 and a recursive class of finitely presented subgroups of π1M such that
there is no algorithm to determine homotopy equivalence between the covering
spaces corresponding to these subgroups.

The group G in Theorem B is a direct product Γ̂× Γ, where Γ is a torsion–
free word hyperbolic group and Γ̂ is an HNN-extension of Γ given by 〈Γ, τ |
τ−1a1τ = a1〉 where a1 ∈ Γ generates a maximal cyclic subgroup.

We shall make extensive use of the following fibre product construction.

Associated to any short exact sequence 1 → N → Γ → Q
ρ
→1 one has the

fibre product P ⊂ Γ × Γ where P = {(γ1, γ2) | ρ(γ1) = ρ(γ2)}. If Q is
finitely presented and Γ is finitely generated then P is finitely generated. P is
essentially the graph of the equality relation =Q in the quotient Q, and hence
questions about equality in Q translate into questions about membership in
P .

In the special case when Γ is free and Q is a finitely presented group with
undecidable word problem, the corresponding P will have a number of unde-
cidable problems (see [18]). In that case, however, P is almost never finitely
presented (see [5], [14]). To achieve results concerning undecidable properties
of finitely presented subgroups, we exploit an enhanced version of a construc-
tion due to Rips. In this construction one gets a short exact sequence with N
finitely generated and Γ word hyperbolic, and if Q is given by an aspherical
presentation, the associated fibre product P is finitely presented. This is im-
plied by the next result. Recall that a group is said to be of type Fn if it has
an Eilenberg-Maclane space with only finitely many k-cells for k ≤ n.
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1-2-3 Theorem. Suppose that 1→ N → Γ
p
→ Q→ 1 is exact, and consider

the fibre product:

P := {(γ1, γ2) | p(γ1) = p(γ2)} ⊂ Γ× Γ.

If N is finitely generated, Γ is finitely presented and Q is of type F3, then P
is finitely presented.

The name of this theorem comes from the fact that the groups N,Γ and Q
are assumed to be of type F1, F2 and F3 respectively.

According to one’s taste and background, one might wish to view our results
as being about hyperbolic groups, (bi)automatic groups, or spaces of non-
positive curvature. These different perspectives are connected by the following
facts:

(1) if X is a compact space that is negatively curved in the sense of Alexan-
drov [6], then π1X is torsion–free and hyperbolic in the sense of Gromov
[13];

(2) hyperbolic groups are biautomatic [11];
(3) the Cartesian product of two negatively (or non-positively) curved spaces

is non-positively curved [6];
(4) the direct product of finitely many biautomatic groups is biautomatic

[11];
(5) the fundamental groups of many (but not all) compact non-positively

curved complexes are known to be biautomatic (see [12],[16]);
(6) biautomatic groups are semihyperbolic [1];
(7) semihyperbolic groups are bicombable [22].

This paper is organised as follows: In the first section we consider Peiffer
sequences and the second homotopy module of a presentation, prior to proving
the 1–2–3 theorem in section 2.

In section 3 we discuss the enhanced Rips theorem, and use it to prove
Theorem A.

In section 4, several results are established about the structure of centralizers
in direct products and certain HNN extensions, and these results together with
Theorem A are used to prove Theorem B.

In biautomatic groups, most problems concerning centralizers of finitely gen-
erated subgroups are algorithmically solvable. In contrast, in section 5 we use
results from earlier sections to show that basic questions concerning normaliz-
ers in biautomatic groups are algorithmically unsolvable.

The discussions leading to this paper began while the authors were visiting
the ANU at Canberra in July 1996, and were continued at the University of
Melbourne in August 1996 and the Université de Provence in August 1997. We
wish to thank these three universities for their financial support and hospitality.
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1. π2 and relations in finitely generated kernels

In the course of this section and the next we shall prove the 1-2-3 Theorem.
It turns out that the key to understanding finite presentability of our fibre prod-
ucts lies with an understanding of the relations that hold among the generators
of the kernel in the corresponding short exact sequence 1→ N → Γ→ Q→ 1.
The assumption that Q is of type F3 plays a central role in this understanding;
in order to see why, we need an algebraic reformulation of the condition F3.

1.1. Type F3 and π2. Let Y be an Eilenberg-Maclane space forQ with a finite
3-skeleton. Contracting a maximal tree if necessary, we may assume that Y has
a single vertex, and thus the 2-skeleton Y (2) corresponds to a finite presentation
PY ofQ, with generators given by the 1-cells and relators given by the attaching
maps of the 2-cells. Because Y (3) is finite, π2PY := π2Y

(2) is finitely generated
as a Q-module (the attaching maps of the finitely many 3-cells of Y give a
generating set). This finite generation property is useful because it admits the
following algebraic interpretation. (Basic references include [15], [7], [2].)

1.2. Identity sequences and Peiffer moves. Let P = 〈X | R〉 be a pre-
sentation of the group G. We consider finite sequences σ = (c1, . . . , cm) with
ci = wiriw

−1
i for some ri ∈ R±1 and wi in the free monoid (X ∪ X−1)∗, and

ε = ±1. If the product
∏
ci is freely equal to the empty word in F (X ), then

σ is called an identity sequence over P. We consider the equivalence relation
on identity sequences generated by the following operations (Peiffer moves).

(P1) Replace some wi be a word freely equal to it.
(P2) Delete or insert consecutive terms where one is identically equal to the

(formal) inverse of the other.
(P3) Replace two consecutive terms (ci, ci+1) by either (ci+1, c

−1
i+1cici+1) or

(cici+1c
−1
i , ci).

Juxtaposition of sequences induces a group structure on the set of equiv-
alence classes; one checks that this is an abelian group. The free group
F (X ) acts on equivalence classes of identity sequences: u.(c1, . . . , cm) =
(uc1u

−1, . . . , ucmu
−1). This induces an action of G on the set of equivalence

classes. The resulting G-module is naturally isomorphic to π2P, the second
homotopy module of the standard 2-complex associated to the presentation P.

The class of the empty sequence is the neutral element of this group. Thus
the condition π2P = 0 means that any identity sequence can be reduced to the
empty sequence by a finite number of Peiffer moves. And the condition that
we are interested in, π2P being finitely generated as a G-module, is equivalent
to the statement that there is a finite set of identity sequences such that any
identity sequence over P can be reduced by Peiffer moves to the juxtaposition
of finitely many conjugates of sequences from this set.
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1.3. Words as maps. In what follows it is useful to adopt the viewpoint that
words are functions that assign to ordered alphabets A of a fixed cardinality
elements of the free monoid on A∪A−1. Thus if A = {a, b} and A′ = {a′, b′},
and one defines a word V by V (A) := aba, then V (A′) denotes the word a′b′a′.

An advantage of this viewpoint is that it provides a language in which to
express the fact that if, for instance, the left side of a free equality involves
only a proper subset of the generators, then the equality remains valid if one
replaces the symbols that appear only on the right side by any other symbols.
Thus, if U1(A) = U2(A,X ) freely, then U1(A) = U2(A,X ′) for any alphabet
in 1-1 correspondence with X .

(We shall continue to use the term ‘word’ in the more traditional sense of an
evaluation of V on a specific alphabet when this is unlikely to cause confusion.)

1.4. Presentations coming from short exact sequences. Consider a

short exact sequence 1 → N → Γ
p
→ Q → 1; suppose that Γ and Q are

finitely presentable and that N is finitely generated. Let a = {a1, . . . , an} be
a finite generating set for N , and let 〈X | R〉 be a finite presentation for Q.
We shall define a finite presentation

Γ ∼= 〈a, x | S1, S2, S3〉,

where the generators x = {x1, . . . , xm} are lifts of X (so the natural map
F (X ) � Q factors as F (X ) ∼= F (x) � Γ � Q).

The first set of relations S1 arise from the fact that N is normal. For each
xj ∈ x, ai ∈ a, and ε = ±1 we choose a word Vi,j,ε so that in Γ the following
words represent the identity:

xεjaix
−ε
j Vi,j,ε(a).(S1)

The second set of relations S2 are obtained by lifting the defining relations of
Q. For each r ∈ R we choose a word Ur so that the following words represent
1 ∈ Γ:

r(x)Ur(a).(S2)

In the quotient of the free group F (a, x) by these two sets of relations, any
word w(a, x) is equal to a word of the form wa(a)wx(x). If w(a, x) = 1 in Γ,
then wx(x) = 1 in Q, and hence there is an equality of the form wx =

∏
ziriz

−1
i

(with ri ∈ R±1) in the free group on x. Modulo the relations S1 and S2, this
product is equal to a word over a. It follows that Γ is the quotient of F (a, x)
by the relations S1 and S2 together with some additional relations of the form

w(a) = 1.(S3)

Because Γ is assumed to be finitely presented, a finite number of these extra
relations suffice; S3 is a fixed choice of such a finite sufficient set. Note that in
general 〈a | S3〉 is not a presentation of N ; other (in general infinitely many)
consequences of S1, S2, S3 are usually required to present N .
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1.5. Relations in N coming from identity sequences. We explain how
identity sequences σ = (c1, . . . , cm) over our fixed presentation 〈X | R〉 for Q
give rise to relations among the generators a of N .

If cj = w−1
j rjwj then we first associate to σ the product

ζσ :=
m∏

j=1

w−1
j (x)rj(x)Urj(a)wj(x),(*)

where the words Ur are as in S2 (so r(x)Ur(a) = 1 in Γ). Because the word
obtained by deleting all occurrences of the letters a ∪ a−1 from this word is
freely equal to the empty word, we can use relations of type S1 to reduce ζσ to a
word involving only the letters a±1: one simply follows a pattern of pinches by
which the redacted word is reduced to the empty word; at each stage instead
of simply cancelling xx−1 one applies relations from S1 to replace a subword
of the form xU(a)x−1 by a word U ′(a).

Let Zσ(a) ∈ F (a) be the word obtained by this reduction process.

Lemma 1.1. Zσ(a) = 1 in N .

Proof. ζσ is obviously equal to 1 in Γ, and Zσ is obtained from ζσ by applying
defining relations of Γ.

We continue to work with the short exact sequence 1 → N → Γ → Q → 1
and the presentation of Γ defined in (1.4). In addition, we now suppose that
π2 of the finite presentation 〈X | R〉 of Q with which we are working is finitely
generated as a Q-module. We fix a finite set of identity sequences σ1, . . . , σM
whose Peiffer equivalence classes form a Q-generating set for π2, and choose
words Zσi as above.

The following is the main result of this section (related results concerning
presentations and extensions, expressed in the language of pictures, can be
found in [2]).

Theorem 1.2 (Relations in N). Let W be a word. W (a) = 1 in Γ if and only
if W (a) is freely equal (in F (a, x)) to a product of conjugates of:

1. s(a, x), where s ∈ S1 ∪ S3,
2. Zσ1(a), . . . , ZσM (a), and
3. commutators [s(a, x), b], with s ∈ S±1

2 , b ∈ a±1.

Proof. The “if”direction is obvious, in the light of Lemma 1.1. The point of
the theorem, then, is that instead of needing the full force of the relators S2

in order to show that W (a) = 1 in Γ (and hence in N), one only needs to use
the fact that these relators commute with the generators a.

Let Γ̃ be the quotient of the free group F (a, x) by the stated relations. We

must show that if W (a) = 1 in Γ then W (a) = 1 in Γ̃. But if W (a) = 1 in Γ
then modulo relators of type S1 and S3, it is equal to a product of conjugates of
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relators of type S2, so it suffices to consider the case where W (a) =
∏
p−1
i sipi

in the free group F (a, x), where each si ∈ S2.
This is the point at which we see why it is important to have the relators

[s(a, x), b]: these relations mean that the action of gp{a} by conjugation on

the images in Γ̃ of each s ∈ S2 is trivial, and hence the above product de-

composition of W shows that W (a) =
∏
p−1
i sipi in Γ̃, where pi is the word

obtained from pi by deleting all occurrences of letters from a. More precisely,
one achieves the desired deletion of the a letters by making repeated use of the
following calculation:

Take the free identity

a−1v(x)−1s(a, x)v(x)a = v(x)−1 [v(x)av(x)−1]−1 s(a, x) [v(x)av(x)−1] v(x)

and use relations of type S1 to replace the terms in square brackets by words
over a, then use the relations [s, b] to pass these new words through s and
cancel them.

At this stage we have reduced to the problem of showing that any product

W ′(a) :=
m∏

i=1

ti(x)−1si(a, x)ti(x), with si ∈ S2(**)

is trivial in Γ̃. It is for this purpose that we need the relators Zi. The key
observation is that W ′(a) = ζσ (notation of (*)), where σ is the identity se-
quence (t−1

1 r1t1, . . . , t
−1
m rmtm), and si(a, x) = ri(x)Uri(a). The key to showing

that W ′(a) = ζσ = 1 in Γ̃ is:

Lemma 1.3. If σ and σ′ are Peiffer equivalent identity sequences over 〈X | R〉
then ζσ(a, x) = ζσ′(a, x) in Γ̃.

Proof. For Peiffer moves of type (P1) and (P2), the claim if obvious. For
(P3), we need to show that the products (*) associated to identity sequences
(c1, c2) and (c1c2c

−1
1 , c1), with ci = w−1

i riwi, are equal modulo S1. Writing
si = ri(x)Uri(a) and τi = w−1

i (x)si(a, x)wi(x), what we must show is:

τ1(a, x) τ2(a, x) =

[w−1
1 (x)r1(x)w1(x)] [w−1

2 (x)s2(a, x)w2(x)] [w−1
1 (x)r1(x)w1(x)]−1 τ1(a, x),

in Γ̃.
If in the square brackets we had s1(a, x) instead of r1(x), then these ex-

pressions would be freely equal. But r1(x) is simply the word obtained by
deleting all occurrences of a from s1(a, x), so by applying the argument of
the third and fourth paragraphs of the proof to the conjugating element

p = [w−1
1 (x)r1(x)w1(x)]w−1

2 (x), we see that the above equality is valid in Γ̃.

Returning to the proof of the theorem, since any identity sequence σ over
〈X | R〉 is Peiffer equivalent to a product of conjugates of the generating
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sequences σi, we have that ζσ is equal to a product of conjugates of the ζσi in

Γ̃. But ζσi = Zi in Γ̃, and we have included the relations Zi = 1 in the defining

relations of Γ̃.

2. The 1-2-3 Theorem

Associated to the short exact sequence 1 → N → Γ
p
→ Q → 1 one has the

fibre product:
P := {(γ1, γ2) | p(γ1) = p(γ2)} ⊂ Γ× Γ.

We are concerned with the finite presentability of P .
We maintain the notations of the previous section; these include 〈X | R〉, a

fixed finite presentation of Q for which π2 is finitely generated as a Q-module;
a and x, the generators of Γ; the relations S1, S2 and S3 of Γ; and the words
Zσi(a) considered in Lemma 1.1.

The following is easily verified:

Lemma 2.1. P is generated by

1. X = {X = (x, x) | x ∈ x},
2. aL = {aL = (a, 1) | a ∈ a}, and
3. aR = {aR = (1, a) | a ∈ a}.

We add to the above list superfluous generators A := {A = aLaR | a ∈ a}.
The following is a more precise statement of the 1–2–3 Theorem.

Theorem 2.2. P has finite presentation 〈X ∪ A ∪ aL ∪ aR | R〉, where R
consists of:

1. A−1(aLaR) and [aR, aL] for all a ∈ a,
2. s(A,X) for all s ∈ S1 ∪ S2,
3. s(aL) and s(aR) for all s ∈ S3,
4. Zσi(a

L) and Zσi(a
R) for i = 1, . . . ,M ,

5. s(aL, X) and s(aR, X) for all s ∈ S1, and
6. the commutators [s(aL, X), bL] and [s(aR, X), bR], with s ∈ S2, b ∈ a.

In fact the relators (6) can be deduced from (1), (2), and (5); we include
them as they play a crucial role in our proof.

Proof. It is easily verified that these relations are valid in Γ × Γ and hence
P . The relations of type (1) are rather obvious. The relations of type (2),
together with the relations s(A), s ∈ S3 that one deduces from (1) and (3),
are the defining relations of the diagonal of Γ × Γ (which is contained in P ).
Relations of type (3) and (4) come from Theorem 1.2, as do the relations of
type (6). Actually, in order to see that (6) really corresponds to the relations
stated in Theorem 1.2 one needs the relations in (5), which encode the fact
that the action by conjugation of X ∈ X on aL (resp. aR) is the same as the
action of (x, 1) (resp. (1, x)).
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It remains to show that if a word W in the free group on X ∪ A ∪ aL ∪ aR

represents the identity in P , then it is a consequence of the stated relations.

Case 1: If W consists only of letters from one of aL or aR, then Theorem
1.2 enables us to express W as a product of conjugates of relations of type (3),
(4), (5) and (6).

Case 2: If W consists only of letters from A∪aL∪aR, then modulo relations
of type (1), W is equal to a word of the form wL(aL)wR(aR). If W = 1 in P
then wL(aL) = wR(aR) = 1 in P , and we are back in Case 1.

Case 3: In the general case, one can replace all occurrences of the letters
A ∈ A by aLaR using (1), and then use the relators of type (5) to replace W by
a word W ′ of the form W1(X)W2(aL, aR). Projecting to the right-hand factor
of Γ × Γ and then to Q, one sees that W1(X ) = 1 in Q, and hence W1(X)
is freely equal to a product of the form

∏
p−1
i (X)ri(X)pi(X), with ri ∈ R.

Modulo relations of type (2), this product is equal to a word in the generators
A. Thus we have reduced to Case 2.

3. The proof of Theorem A

As we noted in the introduction, this is the second article in which the
authors have sought to demonstrate the diverse nature of finitely presented
subgroups in products of hyperbolic groups by examining the nature of their
decision problems. In the case of the word problem [3] our discussion focused
on the complexity of solutions because existence was a trivial matter (any
finitely presented subgroup of a group with a solvable word problem obviously
has a solvable word problem). In contrast, solvability of the conjugacy problem
is not inherited by finitely presented subgroups in general (see [18] — for an
example of such a finite index subgroup see [8]). Thus, although products of
biautomatic and related groups have a solvable conjugacy problem [11], it is
possible that their finitely presented subgroups may not. This opens up the
possibility of using the (un)solvability of the conjugacy problem as an invariant
for identifying finitely presented subgroups of various classes of biautomatic
groups that are not themselves biautomatic (or more generally bicombable [1],
[21]).

Rips [20] associates to any finite presentation of a group Q a short exact
sequence 1→ N → Γ→ Q→ 1, where Γ is hyperbolic and N is finitely gener-
ated. By performing the Rips construction more carefully, one can arrange for
Γ to be the fundamental group of a compact negatively curved 2-complex in
which the 2-cells are regular right-angled hyperbolic pentagons. This modified
Rips construction, described in [6] and [23], yields the following:

Theorem 3.1. (Enhanced Rips Construction)
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There is an algorithm that associates to any finite group presentation Q a
compact, negatively curved, piecewise hyperbolic 2-dimensional complex K and
a short exact sequence

1→ N → Γ→ Q→ 1,

such that

1. Q is the group given by the presentation Q,
2. K has a single vertex x0,
3. the 2-cells of K are right-angled hyperbolic pentagons (each side of which

crosses several 1-cells),
4. Γ = π1(K,x0),
5. N has a finite generating set a, of cardinality at least 2 ,
6. each of the 1-cells in K is the unique closed geodesic in its homotopy

class,
7. the homotopy class of each a ∈ a is represented by one of the 1-cells of
K,

8. Γ is torsion-free,
9. each a ∈ a generates its centralizer.

The first seven items of this theorem are immediate from the constructions
in [23] and [6]. Item (8) is a special case of the fact that the fundamental group
of any compact non-positively curved space is torsion-free (see [6]). Because K
is strictly negatively curved, Γ is hyperbolic in the sense of Gromov. Since Γ is
torsion-free, it follows that the centralizer of every non-trivial element in Γ is
cyclic. If a ∈ a were a proper power then the homotopy class that it represents
would not be represented by a simple closed geodesic, thus (9) follows from
(7).

Corollary 3.2. Let K,Γ and a be as above and let a ∈ a. Then Γ̂ = 〈Γ, t |
t−1at = a〉 is the fundamental group of a compact non-positively curved squared
complex, and hence it is biautomatic.

Proof. First we re-metrize K as a squared complex by subdividing each of its
pentagonal faces into five hyperbolic quadrilaterals by introducing a new vertex
in the middle of each face and a new vertex in the middle of each side. We then
replace each of these hyperbolic quadrilaterals with a Euclidean square without
changing the length of the perimeter of the pentagon. The resulting piecewise
Euclidean squared complex is still non-positively curved and the original 1-
cells are still closed geodesics. We further subdivide each of the squares into
smaller squares whose sides have length half that of the original 1-cells in K.
We now attach to this remetrized version of K an annulus which is the union of
two Euclidean squares: the boundary circles of the annulus are each attached
by an isometry to the loop (original 1-cell) representing a ∈ a. The resulting
2-complex is again a non-positively curved squared 2-complex (see [6, II.11]),
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and if the orientations are chosen correctly then the fundamental group is Γ̂.
By [12] or [16], Γ̂ is biautomatic.

Theorem A is an immediate consequence of the following:

Theorem A′. There exists a compact negatively curved 2-complex K and a
finitely presented subgroup P ⊂ π1(K ×K) = Γ× Γ such that:

1. the membership problem for P is unsolvable;
2. P has an unsolvable conjugacy problem.

Proof As input for this theorem we need the fact that there exist groups
of type F3 with unsolvable word problem. Collins and Miller [9] have
proved something considerably stronger: there exist groups Q with a finite
2-dimensional K(Q, 1) and unsolvable word problem. By applying the con-
struction of Theorem 3.1 to such examples we obtain a short exact sequence

1→ N → π1K = Γ
p
→ Q→ 1,

where K is a compact, negatively curved 2-complex and N is generated by the
finite set a. Let X = K ×K.

We choose generators {x1, . . . , xn, a1, . . . , aM} for π1K, where a =
{a1, . . . , aM} and, via p, the x = {x1, . . . , xn} are generators for Q, as in
Theorem 3.1. Take the associated generators (xi, 1), (1, xi), (aj, 1), (1, aj) for
π1X. According to the 1-2-3 Theorem, the subgroup P = {(γ1, γ2) | p(γ1) =
p(γ2)} ⊂ π1X is finitely presented. Given a word w in the generators (xi, 1), we
ask if this word defines an element of P . The answer is “yes” if and only if the
same word in the generators xi represents the identity in Q. Thus membership
of P is undecidable, and (1) is proved.

We use the standard notation CG(g) for the centralizer of the element g in
the groupG. BecauseK is a negatively curved complex, the centralizer of every
γ ∈ π1K is cyclic. By Theorem 3.1(9), the centralizer of α := (ai, ai) in π1X is
simply gp{(1, ai), (ai, 1)}, which is contained in P . Thus (2) follows from (1)
and the following rather general observation, applied with H = N ×N ⊂ P .

Lemma 3.3. Let H ⊂ P ⊂ G be finitely generated groups. Suppose that H
is normal in G and that there exists a ∈ H such that CG(a) ⊂ P . If there is
no algorithm to decide membership of P , then P has an unsolvable conjugacy
problem.

Proof. We fix finite sets of generators B for G and A for H. For each b ∈ B
and ε = ±1, let ub,ε be a word in the generators A so that bεab−ε = ub,ε in H.

Given an arbitrary word w in the generators B, we can use the relations
bεab−ε = ub,ε to rewrite waw−1 as a word w′ in the generators A. (The length
of w′ is bounded by an exponential function of the length of w and the process
of passing from w to w′ is entirely algorithmic.)
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Now ask if w′ is conjugate to a in P . Well, if there exists h ∈ P such that
h−1ah = w′ then hw ∈ CG(a) ⊂ P , whence w ∈ P . Thus w′ is conjugate to a
in P if and only if w ∈ P . But there is no algorithm to decide membership of
P .

We note another consequence of Lemma 3.3 (cfr. [20]):

Proposition 3.4. There exist compact negatively curved 2-complexes K and
finitely generated normal subgroups N ⊂ π1K such that the conjugacy problem
for N is unsolvable.

Proof. Apply Theorem 3.1 to a group Q with an unsolvable word problem.
There is no algorithm to decide if a word w in the generators of π1K lies in
the normal subgroup N (since membership of N is equivalent to deciding if
w = 1 in Q). The centralizer of each ai (notation of Theorem 3.1) lies in N ,
so Lemma 3.3 implies that N has an unsolvable conjugacy problem.

4. The Isomorphism Problem

Whenever one is trying to prove that the isomorphism problem is undecid-
able in a certain class of groups, one is invariably faced with the difficulty
of ruling out ‘accidental’ isomorphisms – one needs invariants that allow one
to deduce that if some obvious map is not an isomorphism then the groups
in question are not isomorphic. The invariants that we shall use in proving
Theorem B involve abelian subgroups and centralizers.

Throughout this section, N,Γ, Q = Γ/N and P will be as in the 1–2–3
Theorem. (Further restrictions will be imposed on them as we go along.)

Lemma 4.1. Let H be a group. For every a, h ∈ H,

〈H, t | t−1at = h−1ah〉 ∼= 〈H, τ | τ−1aτ = a〉.

Proof. The desired isomorphism sends H to itself by the identity and sends t
to τh. The inverse sends τ to th−1.

We need a bit of technical notation. Take the finite presentation of Γ con-
structed in 1.4. The relations (S1) imply that for each generator xεj of Q and

ai of N we have xεjaix
−ε
j = Vi,j,ε in Γ where each Vi,j,ε is a specific word in a.

These words describe the action on N of any word w in the generators x of Q.
As in the proof of Lemma 3.3, we can use these relations to rewrite waiw

−1 as
a word φw(ai) in the generators a of N . (Note that φw(ai) is generally a very
complicated word which is not freely conjugate to ai.) Using this notation we
define the HNN-extensions

Γ̂w := 〈Γ, tw | t
−1
w a1tw = φw(a1)〉.

According to Lemma 4.1, the map Γ̂w → Γ̂1 that sends tw to t1w
−1 and restricts

to the identity on N is an isomorphism. Extending this map by the identity
on the second factor we obtain an isomorphism Φw : Γ̂w × Γ→ Γ̂1 × Γ.
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Let P̂w be the subgroup of Γ̂w × Γ generated by P ⊂ Γ × Γ and (tw, 1).

We shall prove that each of the groups P̂w is finitely presented. We shall then
prove that if Γ is as in Theorem 3.1 and Q has unsolvable word problem, then
there is no algorithm to decide which of the subgroups Φw(P̂w) ⊂ Γ̂1 × Γ are
isomorphic. This will prove Theorem B, in the light of Corollary 3.2.

First we prove that P̂w is finitely presented.

Lemma 4.2. The group P̂w is finitely presented as an HNN-extension by:

〈P, τ | τ−1aL1 τ = φw(aL1 ), τ−1bRτ = bR, b ∈ a〉.

Proof. We already know a finite presentation for P given by Theorem 2.2. We
work with that presentation augmented by τ and the relations displayed above.
It is clear that, putting τ = (tw, 1), all of the displayed relations involving τ

hold in P̂w; what we must show is that the stated relations are sufficient to
present P̂w.

Suppose that u is a word on the given generators of P̂w which is equal to
the identity. If u does not involve τ , then u is a consequence of the relations of
P as desired. Thus it suffices to show that if u does involve τ , one can reduce
the number of occurences of τ by applying the stated relations.

Γ̂w × Γ can be presented as an HNN-extension of Γ× Γ by:

〈Γ× Γ, τ | τ−1(a1, 1)τ = (φw(a1), 1), τ−1(1, g)τ = (1, g), g ∈ a ∪ x〉

of Γ× Γ. Applying Britton’s Lemma to this relative presentation, we see that
u must contain a subword τ−εvτ ε where either ε = 1 and v ∈ 〈a1〉 × Γ or
ε = −1 and v ∈ 〈φw(a1)〉 × Γ. In either case v ∈ N × Γ.

Now since v is an element of P , we may use the relations of types (1) and
(5) from Theorem 3.2 to express v in the form v = v1(aL)v2(aR)v3(X). Since
v ∈ N × Γ, it follows that v3(x) ∈ N and so using relations of type (2) we
deduce that v3(X) is equal in P to a word of the form v4(A). Then, using
relations of type (1), we deduce that v = v4(aL)v4(aR). Thus in the case
ε = 1 we can use the relations of P to deduce v4(aL) = (aL1 )m for some integer
m, which allows us to apply the listed τ relations to reduce the number of τ
symbols in u. Likewise, in the case ε = −1 we deduce v4(aL) = φw(aL1 )m and
then apply the listed τ relations. In either case we reduce the number of τ
symbols in u. This completes the proof.

Theorem B is an immediate consequence of the following result.

Theorem 4.3. Let Q be a group of type F3 with an unsolvable word problem.
Let Γ be as in Theorem 3.1 and let Γ̂1 and P̂w be constructed as above. Then:

(i) Γ̂1×Γ is the fundamental group of a non–positively curved cubical complex
and hence is bi–automatic;

(ii) there exist explicit finite presentations of P̂w and explicit embeddings

Φw : P̂w ↪→ Γ̂1 × Γ;
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(iii) P̂w ∼= P̂1 if and only if w = 1 in Q, and therefore the problem of deciding

whether or not P̂w is isomorphic to P̂1 is recursively undecidable.

If w = 1 in Q, then the restriction of Φw to P̂w sends it isomorphically onto
P̂1. (The inverse map is the identity on P and sends (t1, 1) to (tww, 1).)

In the light of our previous results, what remains to be proved is that if
w 6= 1 in Q then P̂w 6∼= P̂1. The way in which we shall distinguish between
these groups is by analysing the structures of centralizers of elements. As a
first step towards doing so, we need a technical lemma.

Lemma 4.4. Let G be a group, and let a ∈ G be an element of infinite order

such that γ−1amγ = an implies that γ ∈ 〈a〉 and m = n. Let Ĝ be the HNN
extension 〈G, t | t−1at = a〉.

If g ∈ Ĝ is non-trivial, then either

1. g is conjugate to an element of G but g is not conjugate to any element
of the subgroup 〈a, t〉, and in this case C bG(g) = CG(g); or

2. g is not conjugate to an element of G, nor is it conjugate to any element
of the subgroup 〈a, t〉, in which case the centralizer C bG(g) is isomorphic
to Z; or

3. g is conjugate to an element of the subgroup 〈a, t〉, in which case the
centralizer C bG(g) is conjugate to 〈a, t〉 ∼= Z

2.

Proof. Ĝ is the fundamental group of a graph of groups with a single vertex
at which the vertex group is G. There is a single edge, with an infinite cylic
edge group identified with 〈a〉 at each end; the corresponding stable letter is t
and t−1at = a. We now apply the subgroup theory for graphs of groups to the

subgroup C = C bG(g) of Ĝ.
Thus C is the fundamental group of a minimal graph of groups whose vertex

groups are conjugate to subgroups of G and whose edge groups are conjugate
to subgroups of 〈a〉.

There are three cases to consider, corresponding to the three cases of the
statement of the lemma:

Case (i): the graph has no edges;
Case (ii): the edge groups are all trivial;
Case (iii): there is a non–trivial edge group.

(i) If there are no edges, then (after conjugation) C = C∩G, and C ∼= CG(g).
(ii) In this case C must be infinite cyclic. Otherwise, C would be a non–

trivial free product, which the centrality of g renders impossible.
(iii) This is the case C 6= C∩G 6= 1 (after conjugation). We show that if two

non–trivial elements γ ∈ C ∩G and v ∈ C rG commute, then γ is a power of
a and v is in the subgroup 〈a, t〉. Write v as a t–reduced word v0t

ε1v1 · · · tεnvn
where vi ∈ G, and vi 6∈ 〈a〉 for i > 0.
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Applying Britton’s Lemma to the relation

1 = v−1γvγ−1 = v−1
n t−εn · · · v−1

1 t−ε1v−1
0 γv0t

ε1v1 · · · t
εnvnγ

−1

it follows that v−1
0 γv0 = am for some m ∈ Z. If v1 6= 1 then v−1

1 am1 v1 = ak1,
which by the conditions if the Lemma, contradicts i the assumption that v is
t–reduced. So v = v0t

ε1 .
By the above, conjugating γ by v0, we get 1 = [g, γ]v0 = [gv0 , am], so that

gv0 ∈ C(am) = 〈a, t〉.
Thus g is conjugate to an element gv0 of 〈a, t〉 and hence C(g) = 〈a, t〉.

In the following lemma Γ is a torsion-free hyperbolic group as constructed
in Theorem 3.1 and Q = Γ/N . The element a1 ∈ N satisfies the hypotheses
of the previous lemma. For each word w in the generators of Q we have the
subgroup P̂w ⊆ Γ̂w×Γ generated by P and (tw, 1). Our goal now is to calculate

the centralizers of elements in P̂w. In the course of the proof we shall need the
observation that the centralizer of N ⊂ Γ is trivial. (Indeed the centralizer of
any non-cyclic subgroup in a torsion-free hyperbolic group is trivial.)

Lemma 4.5. The centralizer in P̂w of h = (u1, u2) ∈ P̂w can be described as
follows:

1. Case (1), u1 6= 1 and u2 6= 1: CP̂w(h) is isomorphic to a subgroup of Z
3.

2. Case (2),u1 = 1 and u2 6= 1: CP̂w(h) contains ((Γ̂w × 1) ∩ P̂w)× Z as a
subgroup of finite index.

3. Case (3), u1 6= 1 and u2 = 1:

(a) If u1 is not conjugate in Γ̂w to an element of 〈a1, tww
−1〉, then CP̂w(h)

is isomorphic to a subgroup of Z× Γ.
(b) If u1 is conjugate in Γ̂w to an element of 〈a1, tww

−1〉, then there is a
short exact sequence

1→ N → CP̂w(h)→ Z
2 → 1.

If w ∈ N , then this sequence splits and CP̂w(h) ∼= Z
2 ×N . If w /∈ N ,

then the centre of CP̂w(h) is cyclic.

Proof. Recall that in any direct product CG1×G2((u1, u2)) = CG1(u1)×CG2(u2).
Assume H ⊆ G1 × G2 is a subgroup. If (u1, u2) ∈ H then CH((u1, u2)) =
H ∩ CG1×G2((u1, u2)). Also, projecting onto the second factor G2, we obtain
an exact sequence

1→ H ∩
(
CG1(u1)× 1

)
→ CH((u1, u2))

p2→ CG2(u2).(#)

If 1× CΓ2(u2) ⊆ H then

H ∩ CΓ1×Γ2((u1, u2)) = [H ∩ (1× CΓ1(u1)))]× CΓ2(u2).
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Case (1), u1 6= 1 and u2 6= 1: As Γ is torsion–free hyperbolic, CΓ(u2) is infinite
cyclic. And according to Lemma 4.4, CΓ̂w

(u1) is free abelian of rank 1 or 2.
Thus CP̂w(h) = CΓ̂w

(u1)× CΓ(u2) is isomorphic to a subgroup of Z
3.

Case (2), u1 = 1 and u2 6= 1: In this case u2 ∈ N , since (1, u2) ∈ P̂w ∩ (1×Γ).
And CΓ(u2) is infinite cyclic, so from (#) we have

1→ P̂w ∩
(
CΓw(u1)× 1

)
→ CP̂w(h)

p2→ Z→ 1.

〈u2〉 has finite index in the quotient Z, so p−1
2 〈u2〉 = [P̂w∩

(
CΓw(u1)]×1

))
×〈u2〉

has finite index in CP̂w(h).

Case (3), u1 6= 1 and u2 = 1: First assume that u1 is not conjugate in Γ̂w to
an element of 〈a1, tww

−1〉. Then, by Lemma 4.4, CΓ̂w
(u1) is infinite cyclic, say

with generator v ∈ Γ̂w where u1 = vm. In this case CΓ̂w×Γ(h) = 〈v〉 × Γ, and
hence CP̂w(h) is isomorphic to a subgroup of Z× Γ.

Now assume that there is a word v(a, x, t) which conjugates u1 (in Γ̂w) to

a non-trivial element of 〈a1, tww
−1〉. Then v(A,X, τ) ∈ P̂w conjugates (u1, 1)

into 〈(a1, 1), (tww
−1, 1)〉. Thus it suffices to determine the centralizer in P̂w of

an element of the form h = (ad1(tww
−1)e, 1). As in (#), projecting onto the Γ̂w

factor of Γ̂w × Γ we get an exact sequence

1→ 1×N → CP̂w(h)
p1→ CΓ̂w

(ad1(tww
−1)e).

By Lemma 4.4, CΓ̂w
(ad1(tww

−1)e) is free abelian with generators a1 and tww
−1.

Therefore, since (a1, 1) and (tww
−1, w−1) lie in CP̂w(h), the map p1 is surjective.

If w ∈ N , then we can split p1 by sending a1 to (a1, 1) and tww
−1 to (tww

−1, 1).
Thus, in this case, CP̂w(h) ∼= N × Z

2.
Because the centre Z(N) of N is trivial, the restriction of p1 to Z(CP̂w(h))

is injective. It follows that either Z(CP̂w(h)) is cyclic, or else some element of

p−1
1 〈tww

−1〉 is central. The centralizer in Γ̂w × Γ of 1 × N is Γ̂w × 1, and if

w /∈ N then no element of p−1
1 〈tww

−1〉 lies in Γ̂w×1. Thus, in the case w /∈ N ,
the centre of CP̂w(h) is cyclic (generated by 〈a1〉).

In case (2) of the preceding lemma, if Q is torsion-free then any root of u2

must lie in N and one can avoid the need to pass to a subgroup of finite index,
i.e. CP̂w(h) ∼= ((Γ̂w × 1) ∩ P̂w)× Z.

The following lemma shows that if Q = Γ/N is infinite (in the construction

of Theorem 3.1), then the centralizer in P̂w of any non-trivial element of the
form (1, u2) is not finitely generated (Case (2) above).

Lemma 4.6. Let Σ be a set of coset representatives for N in Γ obtained by
choosing (non-constructively) a word in x that represents each element of Q =

Γ/N . (The empty word is chosen to represent 1.) Then (Γ̂w × 1) ∩ P̂w can be
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presented as the following HNN-extension of N :

〈N, sσ(σ ∈ Σ) | s−1
σ φσ(a1)sσ = φσ(φw(a1)), (σ ∈ Σ)〉.

In particular, since Q is infinite, (Γ̂w×1)∩ P̂w is not finitely generated (indeed
its first homology is not finitely generated).

Proof. Let τ = (tw, 1). We shall show that the map Θ sending N to N ×1 and

sσ to σ(X)τσ(X)−1 is an isomorphism onto (Γ̂w × 1) ∩ P̂w.
First, in order to show that Θ is surjective, we shall express a typical element

v of P̂w in a convenient form. Let v = v0τ
ε1v1 · · · τ εnvn where vi ∈ P is a word

in the generators of P̂w which is τ -reduced. Using the relations of P we can
express v0 in the form v0 = u0σ0(X) where σ0 ∈ Σ and u0 is a word in
aL ∪ aR. Thus v = u0σ0τ

ε1σ−1
0 σ0v1 · · · τ εnvn. Next express σ0v1 in the form

σ0v1 = u1σ1(X) where σ1 ∈ Σ and u1 is a word in aL ∪ aR. Continuing in this
way we obtain

v = u0σ0τ
ε1σ−1

0 u1 · · ·σn−1τ
εnσ−1

n−1unσn

where σi ∈ Σ and each ui is a word in aL ∪ aR. Setting sσ = σ(X)τσ(X)−1,
this can be written as v = u0s

ε1
σ0
u1 · · · sεnσn−1

unσn.

Next observe that sσ = (σ(x)twσ(x)−1, 1) and so sσ commutes with any
word in aR. Hence we can move all of the aR symbols to the right and thus
express v in the form

v = uL0 σ0τ
ε1σ−1

0 uL1 · · ·σn−1τ
εnσ−1

n−1u
L
nu

Rσn(∗)

where the uLi are words in aL and uR is a word in aR and σn = σn(X).

Now, if v ∈ Γ̂w × 1 then uRσn(xR) = 1 in Γ. But uR ∈ 1 × N , therefore
σn(x) ∈ N and since σn is one of the chosen coset representatives σn is the

empty word and uR = 1 in Γ. Thus (Γ̂w × 1) ∩ P̂w is generated by the aL

together with the sσ(σ ∈ Σ) and so Θ is surjective.
It remains to show that Θ is injective. Let v = u0(a)sε1

σ1
u1(a) · · · sεnσnun(a)

be an element of ker Θ. It suffices to show that v contains an “sσi–pinch”.

The image of this word in Γ̂w = Γ̂w × 1 (dropping the superscript L) is:
v = u0σ1τ

ε1
w σ

−1
1 u1 · · ·σnτ εnw σ

−1
n un.

Applying Britton’s Lemma to Ĝw, we see that there exists a tw–pinch, that
is, for some i there is a subword tεiwσ

−1
i−1uiσit

−εi
w where either εi = −1 and

σ−1
i−1uiσi = am1 in Γ, or εi = +1 and σ−1

i−1uiσi = φw(a1)m in Γ. In either case
we must have σi−1 = σi since N is normal in Γ and σj ∈ Σ are the chosen
representatives. Thus sσi = sσi−1

and εi = −εi−1 and we have an sσi–pinch in
v.

The proof of Theorem 4.3 When w = 1 in Q (i.e. w ∈ N), we proved in
Case 3(b) of Lemma 4.5 that Z

2×N arises as the centralizer of some element

in P̂w. We claim that if w 6= 1 in Q, then C1 := Z
2 × N is not isomorphic to

the centralizer of any element of P̂w.
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We refer to the numbering in Lemma 4.5. Since N is not abelian, C1 cannot
arise in Case (1). Since N is finitely generated, C1 cannot arise in Case (2).
Since abelian subgroups of Γ are cyclic, Z×Γ does not contain Z

3 whereas C1

does; this eliminates Case 3(a). Finally, the two cases in 3(b) are distinguished
by the rank of the centres.

5. Normalizers of subgroups

It is now well-known that the centralizer of a finitely generated subgroup of a
bi–automatic group G is a rational subgroup, and given a finite set of elements
of G, the membership problem for their centralizer is recursively solvable (see
for instance [11]).

We show now that the same is not true for normalizers. Let P ⊂ Γ× Γ be
the fibre product associated to Γ→ Q. First notice that:

Lemma 5.1. The normalizer of P in Γ × Γ consists of the preimage of the
centre of Q, i.e. NΓ×Γ(P ) = {(n1, n2) | n1n

−1
2 ∈ Z(Q)}. In particular, P is its

own normalizer if and only if the centre of Q is trivial.

Proof. Let (g1, g2) ∈ Γ× Γ. Then, for all (p1, p2) ∈ P , we have

(g1, g2)−1(p1, p2)(g1, g2) ∈ P ⇔ (g−1
1 p1g1, g

−1
2 p2g2) ∈ P

⇔ g−1
1 p1g1g

−1
2 p−1

2 g2 = 1 in Q

⇔ g2g
−1
1 p1g1g

−1
2 = p2 in Q

⇔ g1g
−1
2 ∈ CQ(p1)

since p1 = p2 in Q. As (x, x) ∈ P for each generator x of Q, it follows that
g1g
−1
2 ∈ Z(Q), the centre of Q, if and only if (g1, g2) ∈ NΓ×Γ(P ).

Let Q = 〈X | R〉 be a group with an unsolvable word problem, and sup-
pose that the presentation is aspherical. We may assume the group Q has a
trivial centre. (The group constructed in [9] actually has trivial centre, but
we could also just replace Q by its free product with an infinite cycle.) The
corresponding fibre product P constructed in Theorem A then has unsolvable
membership problem and coincides with its normalizer. Thus:

Corollary 5.2. There exists a torsion–free word hyperbolic group Γ and a
finitely presented subgroup P ⊂ Γ×Γ such that membership in the normalizer
NΓ×Γ(P ) is recursively undecidable.

For each w ∈ F (X), let Uw denote the group Uw = (Q×Z)∗Z (Z×Z), where
the generator of the cyclic amalgamated subgroup is identified with (w, 1) on
the left, and with (0, 1) on the right. The centre of Q × Z is the infinite
cycle generated by (1, 1), where Q is written multiplicatively and Z is written
additively (with identity 0). The centre of the amalgamated free product Uw is
the intersection of the centres of the factors with the amalgamated subgroup.
Thus
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Lemma 5.3. The centre of Uw is non–trivial if and only if w = 1 in Q.

Since the presentation for Q = 〈X | R〉 is aspherical, it follows that Q×Z is
an F3 group, indeed one obtains an Eilenberg-Maclane space for it by forming
the product of a circle with the standard 2-complex for 〈X | R〉. The usual
presentation for Z × Z is aspherical and Uw is formed by amalgamating an
infinite cyclic subgroup, so Uw is also an F3 group.

Let 1 → Nw → Γw → Uw → 1 be the exact sequence constructed as in 3.1.
Let Vw be the associated fibre product. From 5.1 and 5.3 we have:

Corollary 5.4. The normalizer of Vw in Γw × Γw is equal to Vw if and only
if w 6= 1 in Q.

By the 1-2-3 Theorem, each Vw is finitely presented and we can explicitly
write down a presentation. It follows that:

Theorem 5.5. There is an explicit, recursive class of finite presentations of
bi–automatic groups Γw × Γw together with finite presentations of subgroups
Vw and explicit embeddings Vw → Γw × Γw such that there is no algorithm to
decide whether or not the normalizer of Vw in Γw × Γw is equal to Vw.
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