CHAPITRE V :

INSOLUBILITE EN TOPOLOGIE

Etant donnée une présentation finie $\Pi = \langle S \times R \rangle$, on dispose d'une construction standard pour construire un 2-complexe abstrait ayant pour groupe fondamental gp(Π). Ce complexe est constituée d'une 0 cellule ,d'une 1 cellule pour chaque générateur et d'un disque pour chaque relateur .On identifie le bord des 1-cellules avec la 0-cellule de façon à former un bouquet . Chaque 1 cellule (orientée) est alors étiquetée par un générateur .Etant donné un relateur R on identifie un lacet fermé ayant pour label sur son bord R; avec le bord d'un disque .D'après le théorème de Seifert Van-Kampen le 2 complexe ainsi construit a pour groupe fondamental gp(Π) , on le note $S(\Pi)$.Il admet une réalisation géométrique dans \mathbb{R}^5 . On peut alors prendre dans \mathbb{R}^5 un ε -voisinage .Pour ε suffisament petit ; on construit ainsi une 5 variété topologique homéomorphe à $S(\Pi) \times \{1;1\}$ que l'on note $M_{\varepsilon}(\Pi)$.

 $\Pi_1(M_{\mathfrak{C}}(\Pi))\cong\Pi_1(S(\Pi))\times\Pi_1(\Pi;1))\cong\Pi_1(S(\Pi))$. C'est une variété à bord , et l'on peut montrer que son bord est une variété topologique fermée ayant pour groupe fondamental gp(Π). Ainsi pour tout problème de décision insoluble dans la classe des groupes f.p., il existe un complexe simplicial fini de dimension 2 ; une 4-variété ; et une 5-variété ; ayant un groupe fondamental pour lequel le problème est insoluble .

Nous allons utiliser l'insolubilité du problème de l'isomorphisme pour établir une classe de variétés de dimension 5 et une classe de variétés fermées de dimension 4 ayant un problème de l'homéomorphisme insoluble . Nous considérons la classe des groupes finiment présentés ,et construisons comme indiqué précedemment une classe de 5 variété ,ou pour tout élément on a : $\Pi(M_{\mathcal{E}}(\Pi)) \cong \operatorname{gp}(\Pi)$,et de même la classe de variété fermé de diumension ,qui sont les bords des $M_{\mathcal{E}}(\Pi)$. Une variété d'une telle classe ,peut alors se donner explicitement par Π . Pour obtenir le résultat escompté il suffirait d'avoir :

M_C(\Pi) est homéomorphes à M_C(\Pi') ssi gp(\Pi) \cong gp(\Pi'). Malheureusement deux variétés peuvent avoir même groupe fondamental sans être isomorphes .Ainsi ,si l'on considère S(\Pi) et Π' une autre présentation de Π obtenu en ajoutant à la présentation de Π ,le relateur trivial (le mot vide) . $\Pi'\cong\Pi$,mais S(Π) et S(Π') ne sont pas homéomorphes ;En effet nous avons incrémenté le 3ème nombre de Betti de 1 .Markov contourne ce problème en remarquant ,que dans les changements de tietze seul l'adjonction de relateurs triviaux (T_i) change la classe d'homéomorphisme de M_C(Π) .

Dans la suite nous noterons Π * n , la présentation obtenue à partir de celle de Π , en ajoutant n relateurs triviaux .

Définition: On considère une présentation $(a_1,...,a_m / r_1,...,r_n)$ On appelle transformations spéciales de Tietze ,les opérations suivantes:

 T_2 : ajouter à la présentation le générateur a_{m+1} et le relateur $a_{m+1} = \omega (a_1 \dots a_m)$

T : remplacer r par a a r ou a a r .

T : remplacer r = uvw par vwu (conjugaison cyclique) .

 T_{i3} : Remplacer r_i par r_i^{-1} .

T : remplacer r par r r où j = i .

Ainsi que toutes les transformations inverses .

Il est clair que si une présentation Π' est obtenue à partir d'une présentation Π par une suite de transformations spéciales de Tietze ; alors gp(Π) \cong gp(Π').

Lemme V.1 : Si $\Pi = \langle a_1 \dots a_m/r_1 \dots r_n \rangle$ et $\Pi' = \langle a_1 \dots a_m/r_1 \dots r_n; s \rangle$ ou s est une conséquence de r_1, \dots, r_n , alors $\Pi * 2$ peut être transformé en $\Pi' * 1$ par une suite finie de tranformations spéciales de Tietze .

Démonstration : Prenons $s = p_i r_{ii}^{\mathcal{E}_i} p_i^{-i} \dots p_k r_{ik}^{\mathcal{E}_k} p_k^{-i}$.

On applique à Π une suite de transformations spéciales de Tietze :

On effectue alors le même procédé

$$\dots p_{\mathbf{i}} \mathbf{r}_{\mathbf{j}\mathbf{i}}^{\mathcal{E}\mathbf{i}} \mathbf{r}_{\mathbf{i}}^{-\mathbf{i}} ; \ \mathbf{p}_{\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}}^{-\mathbf{i}} \\ \dots \mathbf{p}_{\mathbf{i}} \mathbf{r}_{\mathbf{j}\mathbf{i}}^{\mathcal{E}\mathbf{i}} \mathbf{r}_{\mathbf{i}}^{-\mathbf{i}} \mathbf{p}_{\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{-\mathbf{i}} \\ \dots \mathbf{p}_{\mathbf{i}} \mathbf{r}_{\mathbf{j}\mathbf{i}}^{\mathbf{i}} \mathbf{r}_{\mathbf{i}}^{\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{j}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{-\mathbf{i}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}}^{\mathcal{E}\mathbf{z}} \mathbf{r}_{\mathbf{i}\mathbf{z}}^{\mathcal{E$$

Lemme V.2: si $\Pi = (a_1 \dots a_m; r_1 \dots r_n)$ et $\Pi' = (a' \dots a'; r' \dots r')$ sont tels que gp(Π) \cong gp(Π') alors $\Pi \times (n + n' + 1)$ se transforme en $\Pi' \times (n + n' + 1)$ par une suite fini de transformations spéciales de Tietze

Démonstration : On note α_i l'écriture de a_i sur les générateurs $a_1'\ldots a_m'$.On note α_i' l'écriture de a_i' sur les générateurs $a_1\ldots a_m$.On note $r_i(\alpha_i)$ le mot obtenu à partir de r_i en remplaçant les occurences de a_i par α_i .Cet de même on note $r_i'(\alpha_i')$.

$$a_i / r_j(a_i) * (n+n'+1)$$

 $a_i / r_j(a_i) ; r'_j(\alpha'_i) * (n+1)$ (lemme V.1 appliqué n'fois)

 $\begin{array}{lll} a_i,a_i' & / r_j(a_i) \ ; \ r_j'(\alpha_i') \ ; \ a_i' = \alpha_i' \ * \ (n+1) & (T_2) \ n' \ fois \\ \\ a_i,a_i' & / r_j(a_i) \ ; \ r_j'(a_i') \ ; \ a_i' = \alpha_i' \ * \ (n+1) \ (lemme \ V.1 \ n' \ fois) \\ \\ a_i,a_i' & / r_j(a_i) \ ; \ r_j'(a_i') \ ; \ a_i' = \alpha_i' \ ; a_i = \alpha_i \ * \ 1 \ (V.1 \ n \ fois) \\ \\ de \ meme \ on \ peut \ changer \ \Pi' \ . \ En \ cette \ meme \ presentation \ , et \ donc \\ \\ par \ symétrie \ des \ transformations \ . \ \Pi \ * \ (n+n'+1) \ \longrightarrow \ \Pi' \ * \ (n+n'+1) \end{array}$

Proposition V.1 : Si Π' est obtenu à partir de Π par une suite de transformations spéciales de Tietze , alors $M_{\mathcal{E}}(\Pi')$ est homéomorphe à $M_{\mathcal{E}}(\Pi)$.

Démonstration : Les transformations T_{12} (permutation cyclique d'un relateur) et T_{13} (inversion d'un relateur) , et leurs inverses ne changent pa $S(\Pi)$; et donc si Π' est obtenu à partir de Π par une suite de telles transformations ; $M_{g}(\Pi)$ et $M_{g}(\Pi')$ sont homéomorphes . Considérons les transformations T_{2} apliquées à Π (ajouter un générateur a $= \omega(a_{1}, \ldots; a_{m})$ $S(\Pi')$ est obtenu en ajoutant à $S(\Pi)$ un lacet fermé , et un disque dont le bord est identifié avec le lacet . Dans $M_{g}(\Pi')$. Le générateur a_{m+1} ajoute une anse à $M_{g}(\Pi)$. Supposons que le disque rencontre le bord de $M_{g}(\Pi)$ (et alors aussi la anse) , en une courbe simple cc' où c est l'intersection du disque avec la anse . Alors $M_{g}(\Pi')$ est formé en attachant un voisinage du disque bordé par cc' . On peut alors contracter ce disque pour écraser la anse sur $M_{g}(\Pi)$ et ainsi $M_{g}(\Pi)$ $\cong M_{g}(\Pi')$.

Considérons la transformation T_{ii} (remplacer r_i avec $a_j a_j^{-1} r_i$).

On considère la présentation Π^- qui est la relation Π dans laquelle on a retiré le relateur r_i .

Alors $S(\Pi)$ est obtenu à partir de $S(\Pi^-)$ en identifiant le bord d'un disque avec le lacet de label r_i ; alors que $S(\Pi^+)$ est obtenu en identifiant sur le bord d'un disque sur le lacet de label $a_j a_j^{-1} r_i$. Ces disques coupent la bord de $M_{\mathcal{E}}(\Pi^-)$ en une courbe simple C car les disques sont identiques uniquement sur leur bords D; respectivement d et d'. Ils sont très proches sauf en $a_i a_i^{-1} qui$ est une courbe simple . Mais si l'on considère un voisinage de ces disques , on peut alors glisser d'; dans ce voisinage , pour arriver à d et donc $M_{\mathcal{E}}(\Pi)$ et $M_{\mathcal{E}}(\Pi^+)$ sont homéomorphes .

Considérons la transformation T_{14} (remplacer r_i par $r_i r_j$). $M_{\mathcal{C}}(\Pi')$ est obtenu à partir de $M_{\mathcal{C}}(\Pi')$ en prenant un voisinage d'un disque ayant pour bord d' de label $r_i r_j$ et $M_{\mathcal{C}}(\Pi)$ est obtenu en prenant le voisinage d'un disque ayant pour bord d. Mais puisque r_j est le label du bord d'un disque ; on peut glisser d' sur ce disque pour obtenir d.

Le résultat est alors immédiat .

Théorème V.1: Le problème de l'homéomorphisme est insoluble pour les variétés de dimension 4 et 5 .Il existe une classe de variétés fermées de dimension 4 ,ainsi qu'une classe de variétés de dimension 5 ,données de façon explicites pour lesquelles ,on ne peut décider si deux variétés données sont homéomorphes .

Dans [18] ,Haken ,Boone et Poénaru ,utilisent une construction ameliorée ,pour démontrer que pour tout degré D ,et pour tout n ≥ 4 ,il existe une classe récursive de présentations de variétés de dimension n , pour laquelle le problème de l'homéomorphisme de l'équivalence combinatoire ,du difféomorphisme sont de degré D .La difficulté provient essentiellement de l'établissement de présentation de variétés ,c'est à dire d'une suite de de symbôles ,établissant les structures combinatoires topologiques et différentielles d'une variété .