Chapitre 19 Dérivabilité

http://www.i2m.univ-amu.fr/perso/jean-philippe.preaux/

Dans ce chapitre toutes les applications sont réelles.

1. Dérivabilité

On rappelle qu'une partie $D \subset \mathbb{R}$ est un voisinage du réel x_0 si il existe r > 0 tel que $]x_0-r,x_0+r[\subset D.$

1.1. Dérivabilité en un point.

Définition 1.

Soient D un voisinage de $x_0 \in \mathbb{R}$ et $f:D \longrightarrow \mathbb{R}$ une application. On dit que f est dérivable en x_0 si l'application (appelée "taux d'accroissement de f en x_0 ") :

$$T_{x_0}f: D \setminus \{x_0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

a une limite finie en x_0 ; c'est-à-dire :

$$\exists \ell \in \mathbb{R}, \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

ou encore:

$$\exists \ell \in \mathbb{R}, \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \ell.$$

Dans ce cas, la limite ℓ est appelée le nombre dérivé de f en x_0 et noté :

$$\ell = f'(x_0) = \frac{df}{dx}(x_0).$$

Remarque. (Motivation Physique).

En physique, si un mobile se déplace le long d'un axe, en notant $x:t\longrightarrow x(t)$ sa position en fonction du temps, alors $T_{t_0}(t)$ est la vitesse moyenne mesurée entre les temps t_0 et t, tandis que $x'(t_0)$ est la <u>vitesse instantanée</u> du mobile au temps t_0 . Les physiciens la notent aussi:

$$\dot{x}(t_0) = x'(t_0) = \frac{dx}{dt}(t_0).$$

En considérant les applications :

$$dx(t_0): \mathbb{R} \longrightarrow \mathbb{R}$$
 $h \longmapsto x'(t_0) \times h$
et
 $dt: \mathbb{R} \longrightarrow \mathbb{R}$
 $h \longmapsto h$
frontielle de x en t "différentielle de l'ide

"différentielle de x en t_0 "

"différentielle de l'identité"

on peut écrire l'équation fonctionnelle :

$$dx(t_0) = x'(t_0) \times dt$$

c'est-à-dire:

$$\forall h \in \mathbb{R}, \ dx(t_0)(h) = x'(t_0) \times h$$

1.2. Exemples.

• Soit $(a, b) \in \mathbb{R}^2$; l'application affine :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto ax + b$$

est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

$$T_{x_0}f(x) = \frac{f(x) - f(x_0)}{x - x_0} = \frac{ax + b - (ax_0 + b)}{x - x_0} = \frac{a(x - x_0)}{x - x_0} = a \xrightarrow[x_0]{} a$$

Ainsi f est dérivable en tout réel x_0 , de nombre dérivé $f'(x_0) = a$.

• Soit $n \in \mathbb{N}$; l'application

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^n$$

est dérivable en tout point $x_0 \in \mathbb{R}$. En effet :

– Si n=0; ça découle du point précédent avec (a,b)=(0,1). Dans ce cas $f'(x_0)=a=0$.

– Si $n \in \mathbb{N}^*$:

$$T_{x_0}f(x) = \frac{f(x) - f(x_0)}{x - x_0} = \frac{x^n - x_0^n}{x - x_0} = \frac{x - x_0}{x - x_0} \times \sum_{k=0}^{n-1} x^k x_0^{n-1-k}$$

Ainsi:

$$\lim_{x \to x_0} T_{x_0} f(x) = \sum_{k=0}^{n-1} x_0^{n-1} = n x_0^{n-1}$$

Donc f est dérivable en tout $x_0 \in \mathbb{R}$ et $f'(x_0) = nx_0^{n-1}$

• L'application cos est dérivable en tout $x_0 \in \mathbb{R}$. En effet :

$$T_{x_0} \cos(x_0 + h) = \frac{\cos(x_0 + h) - \cos(x_0)}{h}$$

$$= \frac{\cos(x_0) \cos(h) - \sin(x_0) \sin(h) - \cos(x_0)}{h}$$

$$= \cos(x_0) \times \underbrace{\frac{\cos(h) - 1}{h}}_{\sim 0} - \sin(x_0) \times \underbrace{\frac{\sin(h)}{h}}_{\sim 0}$$

Donc

$$\lim_{h \to 0} T_{x_0} \cos(x_0 + h) = -\sin(x_0).$$

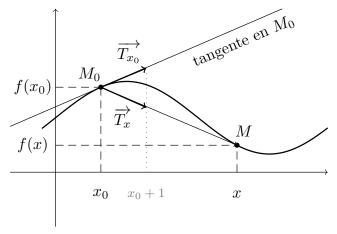
Ainsi cos est dérivable en tout $x_0 \in \mathbb{R}$ et $\cos'(x_0) = -\sin(x_0)$.

1.3. Interprétation graphique.

Soit $f: D \longrightarrow \mathbb{R}$, x_0, x deux réels distincts dans D et $M_0(x_0, f(x_0))$, M(x, f(x)) les points correspondants sur la courbe \mathscr{C}_f . Les vecteurs :

$$\overrightarrow{M_0M} \begin{pmatrix} x - x_0 \\ f(x) - f(x_0) \end{pmatrix} \qquad ; \qquad \overrightarrow{T_x} \begin{pmatrix} 1 \\ \frac{f(x) - f(x_0)}{x - x_0} \end{pmatrix}$$

sont colinéaires : $\overrightarrow{T_x} = \frac{1}{x - x_0} . \overrightarrow{M_0 M}$.



L'application f est dérivable en x_0 si et seulement si le vecteur $\overrightarrow{T_x}$ "tend" lorsque $x \longrightarrow x_0$ vers le vecteur :

$$\overrightarrow{T_{x_0}} = \begin{pmatrix} 1 \\ f'(x_0) \end{pmatrix}.$$

C'est un vecteur tangent à la courbe représentative \mathscr{C}_f de f au point $M_0(x_0; f(x_0))$.

Dans ce cas, on appelle droite tangente à \mathscr{C}_f en M_0 la droite passant par M_0 et de vecteur directeur $\overrightarrow{T_{x_0}}$.

Le nombre dérivé $f'(x_0)$ est la pente de la droite tangente à \mathscr{C}_f en $M_0(x_0, f(x_0))$. L'équation de cette tangente est :

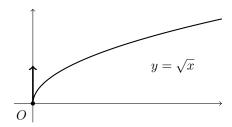
$$y = f(x_0) + f'(x_0)(x - x_0)$$

Remarques.

• Si $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \pm \infty$, alors f n'est pas dérivable en x_0 , mais \mathscr{C}_f admet une tangente verticale en $M_0(x_0, f(x_0))$: le vecteur \overrightarrow{T}_x tend vers une vecteur vertical.

Exemple. la fonction racine carrée $x \longmapsto \sqrt{x}$: sa courbe admet une tangente verticale orientée vers le haut au point O(0,0) :

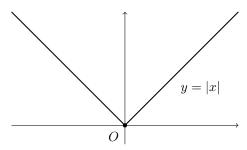
$$\frac{\sqrt{x} - \sqrt{0}}{x - 0} = \frac{1}{\sqrt{x}} \xrightarrow[0^+]{} + \infty$$



• Lorsque le taux d'accroissement n'a pas de limite en x_0 , la courbe de f n'admet pas de tangente au point de coordonnées $(x_0, f(x_0))$.

Exemple. La courbe de $x \mapsto |x|$ n'admet pas de tangente en l'origine O(0,0). En effet :

$$\lim_{x \to 0^+} \frac{|x| - |0|}{x - 0} \underset{x > 0}{=} \frac{x}{x} = 1 \xrightarrow[0^+]{} 1 \qquad ; \qquad \lim_{x \to 0^-} \frac{|x| - |0|}{x - 0} \underset{x < 0}{=} \frac{-x}{x} = -1 \xrightarrow[0^-]{} -1$$



1.4. Dérivabilité à droite, ou à gauche, en un point.

Définition 2.

Soient D une sous-ensemble de \mathbb{R} et $x_0 \in D$ tel que $\exists r > 0$, $[x_0, x_0 + r] \subset D$. Une application $f: D \longrightarrow \mathbb{R}$ est dite dérivable à droite en x_0 , si l'application

$$T_{x_0}f: D \setminus \{\overline{x_0}\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

a une limite finie à droite en x_0 ; c'est-à-dire :

$$\exists \ell \in \mathbb{R}, \ \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

ou encore:

$$\exists \ell \in \mathbb{R}, \lim_{h \longrightarrow 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \ell.$$

Dans ce cas, la limite ℓ est appelée le nombre dérivé à droite de f en x_0 et noté :

$$\ell = f_d'(x_0)$$

Il y a une définition analogue pour la dérivabilité à gauche :

Définition 3.

De même, si $\exists r > 0$, $]x_0 - r, x_0] \subset D$, on dit que $f: D \longrightarrow \mathbb{R}$ est <u>dérivable</u> à gauche en x_0 , si l'application

$$T_{x_0}f: D \setminus \{x_0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

a une limite finie à gauche en x_0 ; c'est-à-dire :

$$\exists \ell \in \mathbb{R}, \ \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

ou encore:

$$\exists \ell \in \mathbb{R}, \lim_{h \longrightarrow 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = \ell.$$

Dans ce cas, la limite ℓ est appelée le nombre dérivé à gauche de f en x_0 et noté :

$$\ell = f_g'(x_0).$$

L'utilité des notions de dérivabilité à droite et à gauche provient de la propriété suivante :

Propriété 1.

Soit $f: D \longrightarrow \mathbb{R}$ une application sur un voisinage de x_0 . Alors f est dérivable en x_0 si et seulement si f est dérivable à droite et à gauche en x_0 et $f'_g(x_0) = f'_d(x_0)$. De plus dans ce cas $f'(x_0) = f'_g(x_0) = f'_d(x_0)$.

Démonstration. On montre deux implications.

 \Longrightarrow Si f est dérivable en x_0 alors son taux d'accroissement a une limite finie $f'(x_0)$ en x_0 égale à ses limites à gauche et à droite en x_0 :

$$\lim_{x \to x_0^-} T_{x_0} f(x) = \lim_{x \to x_0^+} T_{x_0} f(x) = f'(x_0).$$

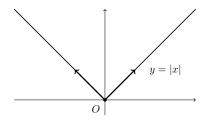
Ainsi f est dérivable à gauche et à droite en x_0 et $f'(x_0) = f'_q(x_0) = f'_d(x_0)$.

 \subseteq Si f est dérivable à droite et à gauche en x_0 , et si $f'_g(x_0) = f'_d(x_0)$, alors par définition :

$$\lim_{x \to x_0^-} T_{x_0} f(x) = f'_g(x_0) = f'_d(x_0) = \lim_{x \to x_0^+} T_{x_0} f(x).$$

Puisque $T_{x_0}f$ n'est pas défini en x_0 , mais y admet des limites à droite et à gauche égales, $T_{x_0}f$ a une limite en x_0 égale au réel $f'_g(x_0) = f'_d(x_0)$. Ainsi f est dérivable en x_0 et de plus $f'(x_0) = f'_g(x_0) = f'_d(x_0)$.

Exemple. La fonction $f: x \longmapsto |x|$ n'est pas dérivable en 0; elle y est cependant dérivable à gauche et dérivable à droite :



$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{|x| - |0|}{x - 0} \stackrel{=}{=} \frac{x}{x} = 1 \xrightarrow{0^{+}} 1 = f'_{d}(0)$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x| - |0|}{x - 0} \stackrel{=}{=} \frac{-x}{x} = -1 \xrightarrow{0^{-}} -1 = f'_{g}(0)$$

Étant dérivable à droite et à gauche en 0 sans y être dérivable, on dit que sa courbe admet un point anguleux en O(0,0).

Exemple. soit f l'application définie sur \mathbb{R} par :

$$f(x) = \begin{cases} x & \text{si } x \le 0\\ \ln(1+x) & \text{si } x > 0 \end{cases}$$

Étudier la dérivabilité de f en 0.

– Dérivabilité en gauche en 0; si x < 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{x - 0}{x - 0} = 1 \xrightarrow[0^{-}]{} 1$$

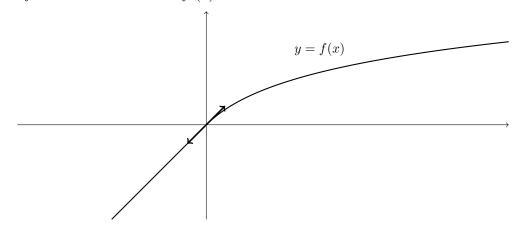
Donc f est dérivable à gauche en 0 et $f'_q(0) = 1$.

– Dérivabilité à droite en 0; si x > 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{\ln(1 + x) - 0}{x - 0} = \frac{\ln(1 + x)}{x} \xrightarrow{0^+} 1$$

Donc f est dérivable à droite en 0 et $f'_d(0) = 1$.

Ainsi f est dérivable en 0 et f'(0) = 1.



1.5. La dérivabilité entraîne la continuité.

Nous l'avons déjà noté (cf. chapitre "Continuité"), la dérivabilité entraı̂ne la continuité :

Propriété 2. Si f est dérivable en x_0 alors f est continue en x_0 .

Démonstration. Si f est dérivable en x_0 , alors $\exists \ell \in \mathbb{R}$ tel que :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell.$$

Or $\forall x \in \mathscr{D}_f \setminus \{x_0\}$:

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0).$$

Par passage à la limite :

$$\lim_{x \to x_0} f(x) - f(x_0) = \ell \times 0 = 0.$$

donc: $\lim_{x \to x_0} f(x) = f(x_0)$ i.e. f est continue en x_0 .

Remarques.

- La réciproque est fausse; exemple, la fonction valeur absolue $x \mapsto |x|$ est continue en 0 et non-dérivable en 0.
- De même si f est dérivable à droite (respectivement à gauche) en 0 alors f est continue à droite (respectivement à gauche) en 0.

1.6. Équivalent pour une fonction dérivable à dérivée non-nulle.

Propriété 3. Si f est dérivable en x_0 et si $f'(x_0)$ est non-nul, alors on a l'équivalent :

$$f(x) - f(x_0) \underset{x_0}{\sim} f'(x_0)(x - x_0)$$
.

Démonstration. Par hypothèse :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \neq 0$$

donc:

$$\frac{f(x) - f(x_0)}{x - x_0} \sim_{x_0} f'(x_0)$$

$$\Longrightarrow f(x) - f(x_0) \sim_{x_0} f'(x_0)(x - x_0)$$
 par produit

Remarques. On se souvient que

$$\lim_{x \to x_0} f(x) = \ell \neq 0 \implies f(x) \underset{x_0}{\sim} \ell$$

(comme on vient de l'utiliser dans la preuve).

Puisque la dérivabilité entraı̂ne la continuité, lorsque f est dérivable en x_0 :

$$f(x) \sim \begin{cases} f(x_0) & \text{si } f(x_0) \neq 0 \\ f'(x_0) \times (x - x_0) & \text{si } f(x_0) = 0 \text{ et } f'(x_0) \neq 0 \end{cases}$$

Exemple. Donner un équivalent simple de cos(x) en $\frac{\pi}{2}$.

(Remarquons que $\lim_{x\to\frac{\pi}{2}}\cos x=0$ ne permet pas d'obtenir un équivalent en $\frac{\pi}{2}.)$

La fonction cos est dérivable en $\frac{\pi}{2}$ et $\cos'\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$ (cf. exemple plus haut) qui est non-nul. Donc :

$$\cos(x) - \cos\left(\frac{\pi}{2}\right) \underset{\frac{\pi}{2}}{\sim} (-1) \times \left(x - \frac{\pi}{2}\right)$$

$$\implies \cos(x) \underset{\frac{\pi}{2}}{\sim} \left(\frac{\pi}{2} - x\right)$$

Exercice 1. En appliquant cette propriété en 0 à $x \mapsto \sin x$, $x \mapsto \tan x$, $x \mapsto \sqrt{1+x}$, $x \mapsto \ln(1+x)$ et $x \mapsto e^x - 1$ retrouver les équivalents usuels. (On admettra pour l'instant leur dérivabilité et nombre dérivée en tout point).

Résolution.		

1.7. Dérivabilité et fonction dérivée.

Définition 4.

- On dit que f est dérivable sur un intervalle]a,b[lorsque f est dérivable en tout $x_0 \in]a,b[$.
- On dit que f est dérivable sur un intervalle [a,b] lorsque f est dérivable en tout $x_0 \in]a,b[$ et f est dérivable à droite en a et dérivable à gauche en b.
- On dit que f est dérivable sur un intervalle [a,b[lorsque f est dérivable en tout $x_0 \in]a,b[$ et f est dérivable à droite en a.
- On dit que f est dérivable sur un intervalle]a,b] lorsque f est dérivable en tout $x_0 \in]a,b[$ et f est dérivable à gauche en b.
- Soit f une application et $D \subset \mathcal{D}_f$ où D est une réunion d'intervalles. On dit que f est dérivable sur D si f est dérivable sur tout intervalle $I \subset D$.

Exemples.

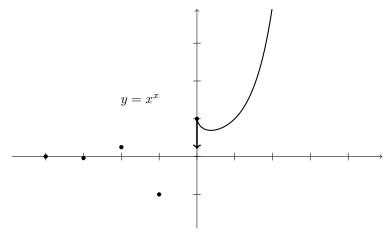
- Les fonctions $x \mapsto ax + b$, $x \mapsto x^n$ (avec $n \in \mathbb{N}$) et cos sont définies et dérivables sur \mathbb{R} .
- La fonction valeur absolue : $x \mapsto |x|$ est définie sur \mathbb{R} . Elle est dérivable sur \mathbb{R}_+ , sur \mathbb{R}_- mais pas sur \mathbb{R} .

• Soit $f(x) = x^x$; f est définie sur $\mathbb{Z}_- \cup \mathbb{R}_+$, mais dérivable seulement sur \mathbb{R}_+^* .

En effet, sur \mathbb{R}_+^* , $f(x) = \exp(x \ln(x))$ est une composée d'applications dérivables, donc dérivable (admis pour l'instant). Étudions la dérivabilité à droite en 0; soit x > 0:

$$\frac{f(x)-f(0)}{x-0} \underset{x>0}{=} \frac{e^{x\ln x}-0^0}{x-0} = \frac{e^{x\ln x}-1}{x} \underset{0}{\sim} \frac{x\ln x}{x} \underset{0}{\sim} \ln x \xrightarrow[0^+]{} -\infty$$

Ainsi f n'est pas dérivable à droite en 0. D'autre part sur \mathbb{Z}_{-}^{*} , f n'est définie sur aucun intervalle, et donc n'y est pas dérivable.



Remarque. La courbe représentative d'une application dérivable sur un intervalle ouvert I admet en chacun de ses points d'abscisse dans I une tangente non verticale.

Définition 5. Fonction dérivée

Si f est dérivable sur D, on définit sa <u>dérivée</u> : f' : $D \longrightarrow \mathbb{R}$ comme la fonction dont l'image de tout $x \in D$ est le nombre dérivé f'(x).

Exemple. La dérivée de cos est $-\sin : \cos' = -\sin$

Pour tout $n \in \mathbb{N}^*$ la dérivée de $X^n : x \longmapsto x^n$ est $: nX^{n-1} : x \longmapsto nx^{n-1} : (X^n)' = nX^{n-1}$.

- 2. Opérations sur les fonctions dérivables : dérivées usuelles
- 2.1. Dérivée d'une combinaison linéaire.

Propriété 4. Linéarité de la dérivation

- Soit $(\lambda, \mu) \in \mathbb{R}^2$; si f et g sont dérivables en $x_0 \in \mathbb{R}$ alors $(\lambda f + \mu g)$ est dérivable en x_0 et $(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0)$.
- Si f et g sont dérivables sur $D \subset \mathbb{R}$ alors $(\lambda f + \mu g)$ est dérivable sur D et :

$$(\lambda f + \mu g)' = \lambda f' + \mu g'.$$

Démonstration. On applique la définition; supposons f et g dérivables en x_0 (respectivement, à droite, à gauche):

$$\frac{(\lambda f + \mu g)(x) - (\lambda f + \mu g)(x_0)}{x - x_0} = \frac{\lambda f(x) + \mu g(x) - \lambda f(x_0) - \mu g(x_0)}{x - x_0}$$
$$= \lambda \times \frac{f(x) - f(x_0)}{x - x_0} + \mu \times \frac{g(x) - g(x_0)}{x - x_0}$$
$$\xrightarrow{T_0} \lambda f'(x_0) + \mu g'(x_0)$$

Donc $(\lambda f + \mu g)$ est dérivable en x_0 (respectivement à droite, à gauche) et $(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0)$.

Si f et g sont dérivables en tout point de D (respectivement à droite à gauche), alors d'après ce qui précède il en est de même de $(\lambda f + \mu g)$, qui est donc dérivable sur D et $(\lambda f + \mu g)' = \lambda f' + \mu g'$.

2.2. Dérivée d'un produit.

Propriété 5.

- Si f et g sont dérivables en $x_0 \in \mathbb{R}$ alors $f \times g$ est dérivable en x_0 et $(f \times g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- Si f et g sont dérivables sur $D \subset \mathbb{R}$ alors $f \times g$ est dérivable sur D et :

$$f(f \times g)' = f'g + fg'.$$

Démonstration. Supposons f et g dérivables en x_0 (respectivement à droite, à gauche).

$$\frac{(f \times g)(x) - (f \times g)(x_0)}{x - x_0} = \frac{f(x) \times g(x) - f(x_0) \times g(x_0)}{x - x_0}$$

$$= \frac{f(x) \times g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0) \times g(x_0)}{x - x_0}$$

$$= \frac{(f(x) - f(x_0)) \times g(x) + f(x_0) \times (g(x) - g(x_0))}{x - x_0}$$

$$= \frac{f(x) - f(x_0)}{x - x_0} \times g(x) + f(x_0) \times \frac{g(x) - g(x_0)}{x - x_0}$$

$$\xrightarrow{x_0} f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

en passant à la limite, puisque g étant dérivable en x_0 , g est aussi continue en x_0 (cf. propriété 2). Ainsi par définition $f \times g$ est dérivable en x_0 (respectivement à droite, à gauche) et $(f \times g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.

La deuxième propriété découle de ce que l'on vient d'établir et de la définition.

2.3. Dérivée d'un quotient.

Propriété 6.

• Si f et g sont dérivables en $x_0 \in \mathbb{R}$ et si $g(x_0) \neq 0$ alors $\frac{f}{g}$ est dérivable en x_0 et

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

• Si f et g sont dérivables sur $D \subset \mathbb{R}$ et si $\forall x \in D, g(x) \neq 0$ alors $\frac{f}{g}$ est dérivable sur D et :

$$\left| \left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2} \right|.$$

Démonstration. Supposons f et g dérivables en x_0 (respectivement à droite, à gauche). En particulier (propriété 2) g est continue en x_0 .

Puisque g est continue en x_0 et $g(x_0) \neq 0$, d'après le lemme suivant, $\exists r > 0$ tel que $\forall x \in D \cap]x_0 - r, x_0 + r[$, $g(x) \neq 0$. Ainsi $\frac{f}{g}$ est définie sur un voisinage de x_0 (respectivement à droite, à gauche).

Lemme. Soit $g: D \longrightarrow \mathbb{R}$ et $x_0 \in \mathbb{R}$. Si g est continue en $x_0 \in D$ et si $g(x_0) \neq 0$ alors $\exists r > 0, \forall x \in D \cap]x_0 - r, x_0 + r[, g(x) \neq 0.$

Preuve du lemme. Par l'absurde : supposons que $\forall r > 0$, $\exists x \in D \cap]x_0 - r, x_0 + r[$ tel que g(x) = 0. Posons $r_n = \frac{1}{n} > 0$. En particulier $\forall n \in \mathbb{N}^*$, $\exists x_n \in D \cap]x_0 - r_n, x_0 + r_n[$ tel que $g(x_n) = 0$. Ainsi :

$$\forall n \in \mathbb{N}^*, \ x_0 - \frac{1}{n} < x_n < x_0 + \frac{1}{n}$$

et donc d'après le théorème des gendarmes $x_n \longrightarrow x_0$. Par continuité la suite $(g(x_n))_{n>0}$ tend vers $g(x_0)$ (cf. Chapitre "Continuité"). Mais c'est impossible puisque $g(x_n)$ reste constant égal à 0 tandis que $g(x_0) \neq 0$.

Revenons à la preuve de la propriété. On a :

$$\frac{\frac{f}{g}(x) - \frac{f}{g}(x_0)}{x - x_0} = \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0}$$

$$= \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)}$$

$$= \frac{1}{g(x)g(x_0)} \times \left(\frac{f(x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x)}{x - x_0}\right)$$

$$= \frac{1}{g(x)g(x_0)} \times \left(\frac{f(x) - f(x_0)}{x - x_0} \times g(x_0) + f(x_0) \times \frac{g(x_0) - g(x)}{x - x_0}\right)$$

$$\xrightarrow{x_0} \frac{1}{g(x_0)g(x_0)} \times (f'(x_0) \times g(x_0) - f(x_0) \times g'(x_0))$$

en passant à la limite, et puisque g est continue en x_0 . Ainsi $\frac{f}{g}$ est dérivable en x_0 (respectivement à droite, à gauche) et :

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \times g(x_0) - f(x_0) \times g'(x_0)}{g(x_0)^2}$$

La deuxième propriété découle alors de ce qui précède par définition.

2.4. Dérivée d'une composée.

Propriété 7.

Soient f définie sur l'intervalle I et g définie sur l'intervalle J, tel que $f(I) \subset J$.

• Si f est dérivable en $x_0 \in I$ et si g est dérivable en $f(x_0) \in J$, alors $g \circ f$ est dérivable $en x_0 et$:

$$(g \circ f)'(x_0) = g'(f(x_0)) \times f'(x_0)$$

$$g \circ f)' = (g' \circ f) \times f'$$

Démonstration. Considérons l'application $\phi: J \longrightarrow \mathbb{R}$ définie par :

$$\forall y \in J, \ \phi(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & \text{si } y \neq f(x_0) \\ g'(f(x_0)) & \text{si } y = f(x_0) \end{cases}$$

Puisque g est dérivable en $f(x_0)$ (respectivement à droite, à gauche), alors par définition : $\lim_{f(x_0)} \phi(y) = \phi(f(x_0))$, i.e. ϕ est continue en $f(x_0)$.

Par ailleurs, $\forall x \in I \setminus \{x_0\}$:

$$\frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \frac{g \circ f(x) - g \circ f(x_0)}{f(x) - f(x_0)} \times \frac{f(x) - f(x_0)}{x - x_0} = \phi(f(x)) \times \frac{f(x) - f(x_0)}{x - x_0}$$
(1)

Lorsque $x \longrightarrow x_0$:

$$\frac{f(x) - f(x_0)}{x - x_0} \xrightarrow[x_0]{} f'(x_0) \tag{2}$$

par dérivabilité de f en x_0 (respectivement à droite, à gauche), et :

$$\begin{cases} f(x) \xrightarrow{x_0} f(x_0) & \text{car } f \text{ continue en } x_0 \\ \phi(y) \xrightarrow{x_0} \phi(f(x_0)) & \text{car } \phi \text{ continue en } f(x_0) & \Longrightarrow \lim_{x \to x_0} \phi(f(x)) = \phi(f(x_0)) \end{cases}$$
 (3)

par composition des limites.

Ainsi d'après (1), (2) et (3), et par produit des limites :

$$\lim_{x \to x_0} \frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \phi(f(x_0)) \times f'(x_0) = g'(f(x_0)) \times f'(x_0)$$

donc par définition, $q \circ f$ est dérivable en x_0 (respectivement à droite, à gauche) et :

$$(g \circ f)'(x_0) = g'(f(x_0)) \times f'(x_0).$$

La deuxième assertion découle de ce que l'on vient d'établir et de la définition.

2.5. Dérivée d'une application réciproque.

Soit f une application continue et strictement monotone sur un intervalle $I \subset \mathbb{R}$. Alors d'après le théorème de la bijection, f réalise une bijection de I sur f(I) et son application réciproque f^{-1} est continue sur J = f(I).

Lorsque f est dérivable sur I, qu'en est-il de la dérivabilité de son application réciproque f^{-1} ? C'est le résultat suivant :

Propriété 8.

• Sous ces hypothèses, si f est dérivable en $x_0 \in I$, et si $f'(x_0) \neq 0$ alors f^{-1} est dérivable en $y_0 = f(x_0)$ et :

$$f'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{(f' \circ f^{-1})(y_0)}.$$

• Si f est dérivable en tout point de I et si $\forall x \in I$, $f'(x_0) \neq 0$, alors f^{-1} est dérivable en tout point de J et :

$$\left| \left(f^{-1} \right)' = \frac{1}{f' \circ f^{-1}} \right|.$$

Démonstration. On suppose f dérivable en $x_0 \in I$ (respectivement à droite ou à gauche). Soit $y_0 = f(x_0) \in J$ où J = f(I).

Soit $y \in J \setminus \{y_0\}$; le taux d'accroissement de f^{-1} en y_0 est :

$$T_{y_0}f^{-1}(y) = \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$

Or puisque $f: I \longrightarrow J$ est bijective, $\forall y \in J, \exists ! x \in I, y = f(x)$; soit alors $(x, x_0) \in I^2$ et $(y, y_0) \in J^2$ tels que:

$$y = f(x)$$
 et $y_0 = f(x_0)$
 $x = f^{-1}(y)$ et $x_0 = f^{-1}(y_0)$

Ainsi avec ces notations:

$$T_{y_0}f^{-1}(y) = \frac{x - x_0}{f(x) - f(x_0)}$$

Puisque f est continue (car dérivable) sur I (propriété 2), d'après le théorème de la bijection f^{-1} est continue sur J. En particulier : $\lim_{y_0} f^{-1}(y) = f^{-1}(y_0) = x_0$. Ainsi :

$$\lim_{\substack{y \to y_0 \\ x \to x_0}} \frac{x = x_0}{\frac{f(x) - f(x_0)}{x - x_0}} = f'(x_0)$$
 $\Longrightarrow \lim_{\substack{y \to y_0 \\ x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$

d'après le théorème des composition des limites.

Puisque $f'(x_0) \neq 0$ par inverse de la limite :

$$T_{y_0}f^{-1}(y) = \frac{x - x_0}{f(x) - f(x_0)} \xrightarrow{y \longrightarrow y_0} \frac{1}{f'(x_0)}.$$

Ainsi f^{-1} est dérivable en y_0 (respectivement à droite ou à gauche) et :

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{(f' \circ f^{-1})(y_0)}$$

La deuxième assertion en découle avec la définition.

2.6. Application : dérivées des fonctions usuelles.

• Fonctions polynômes

Nous avons déjà montré que $\forall n \in \mathbb{N}^*$, une fonction puissance $x \longmapsto x^n$ est dérivable sur \mathbb{R} et de dérivée $x \longmapsto nx^{n-1}$, et qu'une fonction constante est dérivable sur \mathbb{R} de dérivée identiquement nulle.

Par linéarité de la dérivation (propriété 4) :

Toute fonction polynôme:

$$P: x \longmapsto \sum_{k=0}^{n} a_k \times x^k$$

est dérivable sur $\mathbb R$ et a pour dérivée la fonction polynôme :

$$P': x \longmapsto \sum_{k=1}^{n} k \times a_k \times x^{k-1}.$$

• Fonctions rationnelles

Une fraction rationnelle est le quotient de deux polynômes. Par dérivabilité d'un quotient :

Toute fonction rationnelle est dérivable sur son domaine de définition. Si $P,Q\in\mathbb{R}[X]$:

$$\left(\frac{P}{Q}\right)' = \frac{P'Q - PQ'}{Q^2}$$

• Fonctions circulaires

On a déjà démontré que les fonctions cos et $x \longmapsto ax + b$ sont dérivable sur \mathbb{R} de dérivée respective $(-\sin)$ et $x \longmapsto a$.

Puisque $\sin(x) = \cos(\frac{\pi}{2} - x)$, par composition sin est dérivable sur \mathbb{R} (propriété 7) et :

$$\sin'(x) = \cos'\left(\frac{\pi}{2} - x\right) \times (-1)$$

$$= -\sin\left(\frac{\pi}{2} - x\right) \times (-1)$$

$$= \sin\left(\frac{\pi}{2} - x\right)$$

$$= \cos(x)$$

Par quotient (propriété 6), $\tan = \frac{\sin}{\cos}$ est dérivable sur son domaine de définition $\mathcal{D}_{\tan} = \mathbb{R} \setminus (\frac{\pi}{2} + \pi \mathbb{Z})$ et :

$$(\tan)' = \frac{\sin' \times \cos - \sin \times \cos'}{\cos^2} = \frac{\cos^2 + \sin^2}{\cos^2} = \frac{1}{\cos^2} = 1 + \tan^2.$$

En résumé:

cos, sin et tan sont dérivables sur leur domaine de définition et :

$$\cos' = -\sin$$
 ; $\sin' = \cos$; $\tan' = \frac{1}{\cos^2} = 1 + \tan^2$

• Logarithme néperien, exponentielles, puissances réelles

La fonction ln est définie comme la primitive de $x \mapsto \frac{1}{x}$ valant 0 en 1. Ainsi par définition ln est dérivable sur \mathbb{R}_+^* et $\ln'(x) = \frac{1}{x}$.

Pour tout a > 0, la fonction $f_a : x \mapsto \ln(ax)$ est dérivable sur \mathbb{R}_+^* en tant que composée (propriété 7) et $f'_a(x) = \ln'(ax) \times a = \frac{a}{ax} = \frac{1}{x}$.

Ainsi f_a est la primitive de $x \longmapsto \frac{1}{x}$ valant $\ln(a)$ en 1; en particulier les primitives de $x \longmapsto \frac{1}{x}$ sont toutes les fonctions $f_a: x \longmapsto \ln(ax)$ avec $a \in \mathbb{R}_+^*$.

In est dérivable sur \mathbb{R}_+^* et $\forall (x, a) \in (\mathbb{R}_+^*)^2$,

$$\ln'(x) = \frac{1}{x} = \ln'(ax).$$

Pour tout x > 0, $\ln'(x) = \frac{1}{x} > 0$ donc ln est strictement croissante (sera démontré plus loin), et puisque (cf. Chapitre "Limites") :

$$\lim_{n^{+}} \ln = -\infty \quad ; \quad \lim_{+\infty} \ln = +\infty$$

ln réalise une bijection de \mathbb{R}_+^* sur \mathbb{R} . Son application réciproque est $\exp: \mathbb{R} \longrightarrow \mathbb{R}_+^*$; puisque $\forall x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x} \neq 0$, d'après la propriété 8, exp est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$:

$$\exp'(x) = \frac{1}{\ln' \circ \exp(x)} = \frac{1}{\frac{1}{\exp(x)}} = \exp(x)$$

Soit $a \in \mathbb{R}$, par composition (propriété 7) :

$$(\exp(ax))' = a \times \exp(ax).$$

exp est dérivable sur \mathbb{R} et $\forall (x, a) \in \mathbb{R}^2$,

$$\exp' = \exp$$
$$\exp(ax)' = a \times \exp(ax).$$

Soit a > 0 et $f(x) = a^x = e^{x \ln a}$ la fonction exponentielle en base a, définie sur \mathbb{R} . Par composition (propriété 7), f est dérivable sur \mathbb{R} , et :

$$f'(x) = \ln(a) \times e^{x \ln a} = \ln(a) \times a^x.$$

Les fonctions exponentielles de base a > 0 sont dérivables sur \mathbb{R} et $\forall a > 0, \forall x \in \mathbb{R}$, $(a^x)' = \ln(a) \times a^x$.

Soit $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ et $f_{\alpha} : x \longmapsto x^{\alpha}$ une fonction puissance réelle, définie sur \mathbb{R}_{+}^{*} . Par composition (propriété 7) et dérivabilité de ln, exp et $x \longmapsto \alpha x$, f_{α} est dérivable sur \mathbb{R}_{+}^{*} et :

$$f'_{\alpha}(x) = (e^{\alpha \ln x})' = \frac{\alpha}{x} \times e^{\alpha \ln x}$$
$$= \frac{\alpha \times e^{\alpha \ln x}}{e^{\ln x}}$$
$$= \alpha \times e^{(\alpha - 1) \ln x}$$
$$= \alpha \times x^{\alpha - 1}$$

Les fonctions puissances réelles sont dérivables sur \mathbb{R}_+^* et $\forall \alpha \in \mathbb{R} \setminus \mathbb{Z}, \forall x \in \mathbb{R}_+^*$, $(x^{\alpha})' = \alpha \times x^{\alpha-1}$.

• Fonction arctan

La fonction tan est continue, dérivable, et à dérivée $\tan' = 1 + \tan^2$ strictement positive. Elle est donc strictement croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ (sera démontré plus loin); de plus (cf. Chapitre "Limites")

$$\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty \quad ; \quad \lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$$

Ainsi sa restriction $\tan_{\left|\right| - \frac{\pi}{2}, \frac{\pi}{2}\left[}$ réalise une bijection de $\left] - \frac{\pi}{2}, \frac{\pi}{2}\left[$ sur \mathbb{R} , dont l'application réciproque est :

$$\arctan: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

De plus $\tan' = 1 + \tan^2$ ne s'annule pas sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Ainsi par dérivabilité d'une application réciproque (propriété 8), $\forall x \in \mathbb{R}$:

$$\arctan'(x) = \frac{1}{\tan'(\arctan(x))}$$
$$= \frac{1}{1 + \left[\tan(\arctan(x))\right]^2} = \frac{1}{1 + x^2}$$

arctan est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$,

$$\arctan'(x) = \frac{1}{1+x^2}$$

• Fonctions racines n-ièmes

Pour tout $n \in \mathbb{N}^*$, la fonction puissance n-ième $x \longmapsto x^n$ est dérivable sur \mathbb{R} de dérivée $x \longmapsto nx^{n-1}$. En particulier (sera démontré plus loin) :

$$x \longmapsto x^n$$
 est strictement croissante :
$$\begin{cases} \sup \mathbb{R}_+ & \text{si } n \text{ est pair} \\ \sup \mathbb{R} & \text{si } n \text{ est impair} \end{cases}$$

elle réalise donc une bijection :

$$\begin{cases} \operatorname{de} \mathbb{R}_+ & \operatorname{si} n \text{ est pair} \\ \operatorname{de} \mathbb{R} & \operatorname{si} n \text{ est impair} \end{cases}$$

(voir Chapitre "Continuité" pour les détails). Elle admet donc une application réciproque :

$$x \longmapsto \sqrt[n]{x} \qquad \begin{cases} \operatorname{de} \mathbb{R}_+ & \operatorname{si} n \text{ est pair} \\ \operatorname{de} \mathbb{R} & \operatorname{sur} \mathbb{R} \end{cases} \quad \text{si } n \text{ est impair}$$

La dérivée $x \longmapsto nx^{n-1}$ de $x \longmapsto x^n$ est $\neq 0$ si et seulement si $x \neq 0$. Ainsi d'après la propriété 8:

$$x \longmapsto \sqrt[n]{x}$$
 est dérivable
$$\begin{cases} \sup \mathbb{R}_+^* & \text{si } n \text{ est pair} \\ \sup \mathbb{R}^* & \text{si } n \text{ est impair} \end{cases}$$

et sa dérivée est pour tout x dans $\begin{cases} \mathbb{R}_+^* & \text{si } n \text{ est pair} \\ \mathbb{R}^* & \text{si } n \text{ est impair} \end{cases}$:

$$\left(\sqrt[n]{x}\right)' = \frac{1}{n \times \left(\sqrt[n]{x}\right)^{n-1}} = \frac{\sqrt[n]{x}}{n \times \left(\sqrt[n]{x}\right)^n} = \frac{\sqrt[n]{x}}{n \times x}$$

En résumé :

$$\forall n \in \mathbb{N}^*, \ x \longmapsto \sqrt[n]{x}$$
 est définie
$$\begin{cases} \sup \mathbb{R}_+ & \text{si } n \text{ est pair} \\ \sup \mathbb{R} & \text{si } n \text{ est impair} \end{cases}$$
 et dérivable
$$\begin{cases} \sup \mathbb{R}_+^* & \text{si } n \text{ est pair} \\ \sup \mathbb{R}^* & \text{si } n \text{ est impair} \end{cases}$$
 et
$$\left(\sqrt[n]{x}\right)' = \frac{\sqrt[n]{x}}{n \times x}.$$

• On en déduit le formulaire des dérivées usuelles :

Ensemble de définition	Ensemble de dérivabilité	f(x)	f'(x)	avec
$\begin{cases} \mathbb{R} & \text{si } \alpha \in \mathbb{N}^* \\ \mathbb{R}^* & \text{si } \alpha \in \mathbb{Z} \setminus \mathbb{N} \\ \mathbb{R}^*_+ & \text{si } \alpha \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$	$\begin{cases} \mathbb{R} & \text{si } \alpha \in \mathbb{N}^* \\ \mathbb{R}^* & \text{si } \alpha \in \mathbb{Z} \setminus \mathbb{N} \\ \mathbb{R}^*_+ & \text{si } \alpha \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$	x^{α}	$\alpha \times x^{\alpha-1}$	$\alpha \in \mathbb{R}^*$
$\begin{cases} \mathbb{R}_+ & \text{si } n \text{ pair} \\ \mathbb{R} & \text{si } n \text{ impair} \end{cases}$	$\begin{cases} \mathbb{R}_+^* & \text{si } n \text{ pair} \\ \mathbb{R}^* & \text{si } n \text{ impair} \end{cases}$	$\sqrt[n]{x}$	$\frac{\sqrt[n]{x}}{n \times x}$	$n \in \mathbb{N}^*$
\mathbb{R}_+^*	\mathbb{R}_+^*	$\ln(ax)$	$\frac{1}{x}$	$a \in \mathbb{R}_+^*$
\mathbb{R}	\mathbb{R}	e^{ax}	$a \times e^{ax}$	$a \in \mathbb{R}$
\mathbb{R}	\mathbb{R}	a^x	$\ln(a) \times a^x$	$a \in \mathbb{R}_+^*$
\mathbb{R}	\mathbb{R}	$\sin(x)$	$\cos(x)$	
\mathbb{R}	\mathbb{R}	$\cos(x)$	$-\sin(x)$	
$\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	tan(x)	$1 + \tan^2(x)$	
			$= \frac{1}{\cos^2(x)}$	
\mathbb{R}	\mathbb{R}	$\arctan(x)$	$\frac{1}{1+x^2}$	

3. Applications de la dérivée

3.1. Dérivée et extremum.

La première application des fonctions dérivées concerne la recherche d'extremum d'une fonction.

Définition 6. Soit $f:D \longrightarrow \mathbb{R}$; un réel $c \in D$ est un <u>minimum</u> (respectivement maximum) de f sur D si :

$$\forall x \in D, f(x) \ge f(c)$$
 (respectivement $f(x) \le f(c)$).

Dans ce cas f(c) est appelé <u>valeur minimale</u> (respectivement <u>maximale</u>) de f sur D et le réel c est un <u>extremum</u> de f sur D.

Remarque. Ainsi (cf. Chapitre "Continuité") une fonction $f : [a, b] \longrightarrow \mathbb{R}$ continue admet sur [a, b] (au moins) un minimum et (au moins) un maximum.

Théorème 9.

Soit f une fonction dérivable sur un intervalle <u>ouvert</u>]a,b[(avec $(a,b) \in \mathbb{R}^2$); si f admet en $c \in]a,b[$ un extremum, alors f'(c) = 0.

Démonstration.

Soit $c \in]a, b[$ un extremum de f; alors $\exists r > 0$ tel que $]c - r, c + r[\subset]a, b[$ (il suffit de prendre $r = \min(c - a, b - c)$); autrement dit]a, b[est un voisinage de c.

Supposons d'abord que c est un minimum de f, i.e. $\forall x \in \,]a,b[,f(x)\geqslant f(c),$ c'est-àdire :

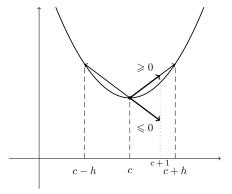
$$\forall x \in]a, b[, f(x) - f(c) \ge 0 \tag{1}$$

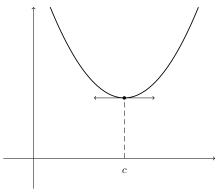
Puisque f est dérivable en c, f est aussi dérivable à droite et à gauche en c. Son taux d'accroissement en c est :

$$T_c f(x) :]a, b[\setminus \{c\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{f(x) - f(c)}{x - c}$$

qui admet des limites à droite et à gauche égales en c. Étudions le signe de ces limites.





– Limite à droite en c: Soit x > c, alors x - c > 0 et $f(x) - f(c) \ge 0$ (d'après (1)) donc $T_c f(x) \ge 0$ et par passage à la limite $f'_d(c) \ge 0$.

– Limite à gauche en c: Soit x < c, alors x - c < 0 et $f(x) - f(c) \ge 0$ (d'après (1)) donc $T_c f(x) \le 0$ et par passage à la limite $f'_g(c) \le 0$.

Ainsi $f'(c) = f'_d(c) = f'_d(c)$ est à la fois positif et négatif. Donc f'(c) = 0.

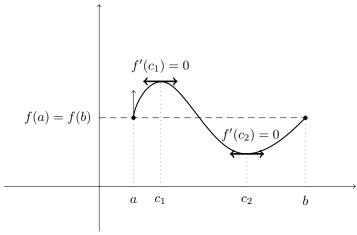
Supposons maintenant que c est un maximum : $\forall x \in]a, b[, f(x) \leq f(c)]$; mais alors $\forall x \in]a, b[, -f(x) \geq -f(c)]$ et donc c est un minimum de (-f). Puisque -f est dérivable et (-f)' = -f', on déduit du cas précédent que dans ce cas aussi, f'(c) = 0.

3.2. Théorème de Rolle.

Théorème 10. Théorème de Rolle

Si f est continue sur [a,b], dérivable sur]a,b[et si f(a)=f(b) alors $\exists c\in]a,b[$ tel que f'(c)=0.

Graphiquement:



(Ici, on a choisi f non dérivable en a.)

Intuitivement : si l'on effectue un parcours entre deux points à mêmes altitudes, on passera tôt ou tard par un col ou une cuvette (vecteur vitesse horizontal).

Démonstration. Puisque f est continue sur [a,b], f est bornée et atteint ses bornes. Notons :

$$m = \min_{[a,b]} f \quad ; \quad M = \max_{[a,b]} f$$

On considère plusieurs cas:

• 1^{er} cas. Si m = M.

Alors f est constante sur [a, b], donc sa dérivée est nulle en tout $x \in [a, b]$. En particulier $\exists c \in [a, b]$ tel que f'(c) = 0.

- 2^{eme} cas. Si $m \neq M$; alors f est non constante.
 - 1^{er} sous-cas. Si $f(a) = f(b) \neq M$. Alors $\exists c \in]a, b[$ tel que f(c) = M; ainsi c est un maximum de f sur]a, b[, et d'après le théorème 9, f'(c) = 0.
 - -2^{eme} sous-cas. Si f(a) = f(b) = M. Alors $\exists c \in]a, b[$ tel que f(c) = m; ainsi c est un minimum de f sur [a, b[, et d'après le théorème 9, f'(c) = 0.

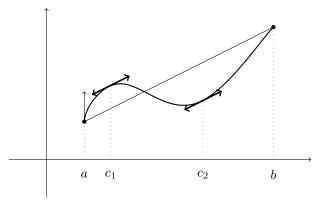
3.3. Théorème des accroissements finis.

Théorème 11. Théorème des accroissements finis

Si f est continue sur [a,b] et dérivable sur]a,b[alors $\exists c \in]a,b[$ tel que

$$f(b) - f(a) = f'(c) \times (b - a).$$

Graphiquement:



(Ici f est non dérivable en a). Il y a des points (ici 2) en lesquels le vecteur tangent a même direction que la corde reliant les points d'abscisses a et b.

Intuitivement : sur un trajet reliant deux points A et B, tôt ou tard le vecteur vitesse sera colinéaire à \overrightarrow{AB} .

C'est graphiquement une retransciption "oblique" du théorème de Rolle; d'ailleurs, si l'on ajoute l'hypothèse f(a) = f(b) on retombe sur le théorème de Rolle.

Démonstration. On applique le théorème de Rolle à l'application ϕ définie sur [a,b] par $\forall x \in [a,b]$:

$$\phi(x) = f(x) - \frac{f(b) - f(a)}{b - a} \times (x - a)$$

Par combinaison linéaire de f et de $x \mapsto x-a, \phi$ (tout comme f) est continue sur [a,b] et dérivable sur [a,b[. De plus :

$$\phi(a) = f(a) - 0 \qquad \phi(b) = f(b) - \frac{f(b) - f(a)}{b - a} \times (b - a)$$

$$= f(a) \qquad \text{et} \qquad = f(b) - (f(b) - f(a))$$

$$= f(a)$$

Donc $\phi(a) = \phi(b)$; on peut donc appliquer le théorème de Rolle : $\exists c \in [a, b[$ tel que :

$$\phi'(c) = 0$$

$$\implies f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$\implies f(b) - f(a) = f'(c) \times (b - a)$$

Exercice 2. Montrer que $\forall x \in \mathbb{R}_+$:

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

en appliquant le théorème des accroissements finis à $f(t) = \ln(1+t)$ sur [0,x] pour x>0 quelconque.

Résolution.		

3.4. Sens de variation.

On applique ici le théorème des accroissements finis pour établir les résultats liant le sens de variation d'une application dérivable et le signe de sa dérivée ; c'est l'application la plus commune de la fonction dérivée.

Théorème 12. Monotonie et signe de la dérivée

Soit f une application continue sur [a,b] et dérivable sur [a,b]; alors :

- f est croissante sur $[a,b] \iff \forall x \in]a,b[, f'(x) \ge 0,$
- f est décroissante sur $[a,b] \iff \forall x \in]a,b[, f'(x) \leq 0,$
- f est constante sur $[a,b] \iff \forall x \in]a,b[, f'(x)=0.$

Démonstration. On prouve la première assertion. La deuxième s'en déduit en l'appliquant à (-f). La troisième découle des deux premières puisqu'une fonction constante est une fonction à la fois croissante et décroissante.

 \Longrightarrow Si f est croissante sur [a,b], i.e. $\forall (x_0,x) \in [a,b]^2, x_0 \leqslant x \Longrightarrow f(x_0) \leqslant f(x)$. Soit $x_0 \in]a,b[$ et $x \in [a,b]$ avec $x_0 < x$. Ainsi $x-x_0 > 0$ et par croissance de f, $f(x)-f(x_0) \geqslant 0$. En particulier:

$$\forall x \in]x_0, b], \ \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$$

Par passage à la limite :

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = f'_d(x_0) = f'(x_0) \ge 0$$

Ainsi, $\forall x_0 \in [a, b[, f'(x_0)] \ge 0$.

 \subseteq Supposons que $\forall x \in]a, b[, f'(x) \ge 0$. Soient $(x_0, x) \in [a, b]^2$ tels que $x_0 \le x$. Montrons que $f(x_0) \le f(x)$.

Si
$$x_0 = x$$
 alors $f(x_0) = f(x)$ et donc $f(x_0) \leq f(x)$.

Si $x_0 < x$: par hypothèse f est continue sur $[x_0, x]$ et dérivable sur $]x_0, x[$. Appliquons le théorème des accroissements finis :

$$\exists c \in]x_0, x[, f(x) - f(x_0) = \underbrace{f'(c)}_{\geq 0} \times \underbrace{(x - x_0)}_{\geq 0} \geq 0$$

Ainsi, on a montré que pour tout $(x_0, x) \in [a, b]^2$, $x_0 \le x \implies f(x_0) \le f(x)$. Autrement dit f est croissante sur [a, b].

Corollaire 13. Soit f une application dérivable sur [a, b]; alors :

- f est croissante sur $[a,b] \iff \forall x \in [a,b], f'(x) \ge 0$,
- f est décroissante sur $[a,b] \iff \forall x \in [a,b], f'(x) \leq 0$,
- f est constante sur $[a,b] \iff \forall x \in]a,b[, f'(x)=0.$

Démonstration. Comme dans preuve précédente, il suffit de montrer la première assertion.

Avec le théorème 12, le sens \Leftarrow découle immédiatement, et quant à la réciproque il suffit de prouver que f croissante $\Longrightarrow f'(a) \ge 0$ et $f'(b) \ge 0$.

Soit $x \in [a, b]$; x - a > 0 et par croissance de f, $f(x) - f(a) \ge 0$. Ainsi :

$$\frac{f(x) - f(a)}{x - a} \ge 0 \implies \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = f'_{d}(a) = f'(a) \ge 0$$

Soit $x \in [a, b[; x - b < 0 \text{ et par croissance de } f, f(x) - f(b) \le 0.$ Ainsi :

$$\frac{f(x) - f(b)}{x - b} \ge 0 \implies \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} = f'_g(b) = f'(b) \ge 0$$

Pour la stricte monotonie, on n'a plus équivalence mais seulement une implication :

Théorème 14. Stricte monotonie et signe de la dérivée

Soit f continue sur [a, b] et dérivable sur [a, b].

- $Si \ \forall x \in]a, b[, f'(x) > 0 \ alors \ f \ est \ strictement \ croissante \ sur \ [a, b].$
- $Si \ \forall x \in]a, b[, f'(x) < 0 \ alors \ f \ est \ strictement \ décroissante \ sur \ [a, b].$

Démonstration. La preuve est analogue au sens réciproque du théorème 12 en changeant les inégalités larges par des inégalités strictes. Il suffit encore de prouver la première assertion.

Supposons que $\forall x \in]a, b[, f'(x) > 0$. Soient $(x_0, x) \in [a, b]^2$ tels que $x_0 < x$. Montrons que $f(x_0) < f(x)$.

Par hypothèse f est continue sur $[x_0, x]$ et dérivable sur $]x_0, x[$. Appliquons le théorème des accroissements finis :

$$\exists c \in]x_0, x[, f(x) - f(x_0) = \underbrace{f'(c)}_{>0} \times \underbrace{(x - x_0)}_{>0} > 0$$

Ainsi, on a montré que pour tout $(x_0, x) \in [a, b]^2$, $x_0 < x \implies f(x_0) < f(x)$. Autrement dit f est strictement croissante sur [a, b].

Remarques.

• Attention la réciproque est fausse : par exemple $f: x \longmapsto x^3$ est strictement croissante sur [-1,1] (par exemple) mais sa dérivée n'est pas strictement positive sur]-1,1[: en 0 elle s'annule. En effet sa dérivée $(x^3)'=3x^2$ s'annule en 0 et reste strictement positive sur \mathbb{R}^* .

Montrons la stricte monotonie; d'après le théorème f est strictement croissante sur [0,1] et sur [-1,0]. Soient $(a,b) \in [-1,1]^2$ avec a < b.

- Si $a < b \le 0$ alors f(a) < f(b) puisque f est strictement croissante sur [-1; 0].
- Si $0 \le a < b$ alors f(a) < f(b) puisque f est strictement croissante sur [0; 1].
- Si a < 0 < b alors f(a) < f(0) < f(b) puisque f est strictement croissante sur [-1, 0] et sur [0, 1].

Ainsi f est strictement croissante sur [-1, 1].

• Cet argument que nous venons d'appliquer est vrai en général. On pourra l'appliquer sans autre justification :

Lemme de recollement

Soit f une application (dé)croissante (respectivement strictement (dé)croissante) sur les intervalles (a,b] ainsi que [b,c) (où $(a,c) \in \mathbb{R}^2$, $b \in \mathbb{R}$ et les parenthèses (,) désignent un crochet ouvert ou fermé).

Alors f est (dé)croissante (respectivement strictement (dé)croissante) sur l'intervalle (a, c).

3.5. Généralisation à des intervalles quelconques.

On a finalement les résultats suivant qui généralisent à des intervalles quelconques les résultats de la section précédente :

3.5.1. Monotonie.

Théorème 15.

Soient I un intervalle et $f: I \longrightarrow \mathbb{R}$ continue.

Soit \mathscr{F} un ensemble fini de réels dans I. Si pour tout $x \in I \setminus \mathscr{F}$, f est dérivable alors :

- f est croissante sur $I \iff \forall x \in I \setminus \mathscr{F}, \ f'(x) \ge 0$,
- f est décroissante sur $I \iff \forall x \in I \setminus \mathscr{F}, \ f'(x) \leq 0$,
- f est constante sur $I \iff \forall x \in I \setminus \mathscr{F}, \ f'(x) = 0.$

Démonstration. (Esquisse). Considérer une suite (a_n) (finie ou infinie) d'éléments de I prenant toutes les valeurs dans \mathscr{F} de telle sorte que f soit continue sur $[a_n, a_{n+1}]$, dérivable sur $]a_n, a_{n+1}[$ et $I = \bigcup_n [a_n, a_{n+1}]$. Appliquer le théorème 12 sur chaque intervalle $[a_n, a_{n+1}]$ puis procéder par récurrence en appliquant le lemme de recollement.

Il admet le corollaire immédiat :

Corollaire 16.

Soient I un intervalle et $f: I \longrightarrow \mathbb{R}$ dérivable.

- f est croissante sur $I \iff \forall x \in I, f'(x) \ge 0$,
- f est décroissante sur $I \iff \forall x \in I, f'(x) \leq 0$,
- f est constante sur $I \iff \forall x \in I, f'(x) = 0.$

3.5.2. Stricte monotonie.

Théorème 17.

Soient I un intervalle et $f: I \longrightarrow \mathbb{R}$ continue.

Soit \mathscr{F} un ensemble fini de réels dans I. Si pour tout $x \in I \setminus \mathscr{F}$, f est dérivable :

- $Si \ \forall x \in I \setminus \mathscr{F}, f'(x) > 0 \ alors \ f \ est \ strictement \ croissante \ sur \ I.$
- $Si \ \forall x \in I \setminus \mathscr{F}, f'(x) < 0 \ alors \ f \ est \ strictement \ décroissante \ sur \ I.$

Démonstration. (Esquisse). Considérer une suite (a_n) (finie ou infinie) d'éléments de I prenant toutes les valeurs dans \mathscr{F} de telle sorte que f soit continue sur $[a_n, a_n + 1]$, dérivable sur $]a_n, a_{n+1}[$ et $I = \bigcup_n [a_n, a_n + 1]$. Appliquer le théorème 14 sur chaque intervalle $[a_n, a_{n+1}]$ puis procéder par récurrence en appliquant le lemme de recollement.

Il admet le corollaire immédiat :

Corollaire 18.

Soient I un intervalle et $f: I \longrightarrow \mathbb{R}$ dérivable.

- $Si \ \forall x \in I, f'(x) > 0 \ alors \ f \ est \ strictement \ croissante \ sur \ I.$
- $Si \ \forall x \in I, f'(x) < 0 \ alors \ f \ est \ strictement \ décroissante \ sur \ I.$

4. Dérivées d'ordre supérieur ; fonctions de classe \mathscr{C}^n

4.1. Définitions.

Définition 7. (Dérivées successives)

Soit $f: D \longrightarrow \mathbb{R}$ et $x_0 \in D$. Pour tout entier $n \in \mathbb{N}$, la <u>dérivée n-ième</u> de f en x_0 , $f^{[n]}(x_0)$, est définie lorsqu'elle existe par :

$$-f^{[0]}(x_0) = f(x_0), \text{ et } f^{[0]} = f,$$

- pour $n \ge 1$, on dit que f est n fois dérivable en x_0 si $f^{[n-1]}$ existe et est dérivable en x_0 ; on a alors :

$$f^{[n]}(x_0) = (f^{[n-1]})'(x_0) = \lim_{x \to x_0} \frac{f^{[n-1]}(x) - f^{[n-1]}(x_0)}{x - x_0}$$

- Lorsque f est n-fois dérivable en tout $x_0 \in D$, on dit que f est n-fois dérivable sur D et on définit sa <u>dérivée n-ième</u>, notée $f^{[n]}$ ou $\frac{d^n f}{dx^n}$, sur D comme l'application :

$$f^{[n]}: D \longrightarrow \mathbb{R}$$

$$x \longmapsto f^{[n]}(x) = \frac{d^n f}{dx^n}(x)$$

Exemples.

• Pour $n = 0, 1, 2 : f^{[0]} = f$, $f^{[1]} = f'$, $f^{[2]} = f''$. Le nombre dérivée seconde en $x_0 : f''(x_0) = f^{[2]}(x_0)$ est défini dès que f est dérivable sur un voisinage de x_0 et f' est dérivable en x_0 .

• Soit $n \in \mathbb{N}^*$ et $f(x) = x^n$; alors pour tout $k \in [0, n]$:

$$f^{[k]}(x) = \frac{n!}{(n-k)!} x^{n-k}$$
 $\frac{d^k}{dx^k} X^n = \frac{n!}{(n-k)!} X^{n-k}$

En effet : par récurrence sur $k \in [\![0,n]\!]$:

(I) Pour k = 0: $f^{[0]}(x) = x^n = \frac{n!}{(n-0)!}x^{n-0}$; l'assertion est vraie.

(H) Supposons que pour $k \in \llbracket 0, n-1 \rrbracket$, $f^{[k]}(x) = \frac{n!}{(n-k)!} x^{n-k}$; alors :

$$f^{[k+1]}(x) = (f^{[k]})'(x) = \frac{d}{dx} \left(\frac{n!}{(n-k)!} x^{n-k} \right) = \frac{n!}{(n-k)!} \times (n-k) x^{n-k-1}$$
$$= \frac{n!}{(n-k) \times (n-k-1)!} \times (n-k) x^{n-k-1}$$
$$= \frac{n!}{(n-(k+1))!} x^{n-(k+1)}$$

L'assertion demeure vraie au rang k+1.

On conclut à l'aide du principe de récurrence.

Définissons maintenant les applications de classe \mathscr{C}^n .

Définition 8. (Applications de classe \mathscr{C}^n)

Une application $f: D \longrightarrow \mathbb{R}$ est dite:

 $-\underline{de\ classe\ \mathscr{C}^0}\ sur\ D\ si\ f\ est\ continue\ sur\ D,$

- de classe \mathscr{C}^n sur D (avec $n\in\mathbb{N}^*)$ si f est n fois dérivable sur D et $f^{[n]}$ est continue sur D.

On note $\mathscr{C}^n(D,\mathbb{R})$ l'ensemble des applications de classe \mathscr{C}^n sur D (à valeurs dans \mathbb{R}).

Finissons par définir les applications de classe \mathscr{C}^{∞} .

Définition 9. (Applications de classe \mathscr{C}^{∞})

Une application $f:D\longrightarrow \mathbb{R}$ qui est n fois dérivable sur D pour tout $n\in \mathbb{N}$ est dite de classe \mathscr{C}^{∞} sur D.

On note $\mathscr{C}^{\infty}(D,\mathbb{R})$ l'ensemble des applications de classe \mathscr{C}^{∞} sur D (à valeurs dans \mathbb{R}).

Exemple. Tout polynôme est dérivable et de dérivée un polynômes. Donc les polynômes sont infiniment dérivables, autrement dit de classe \mathscr{C}^{∞} sur \mathbb{R} .

Les fonctions rationnelles sont dérivables et à dérivée une fonction rationnelle ayant même domaine de définition. Donc les fonctions rationnelles sont de classe \mathscr{C}^{∞} sur leur domaine de définition.

Toutes les fonctions usuelles sont de classe \mathscr{C}^{∞} sur leur domaine de dérivabilité (cf. "Dérivées des fonctions usuelles").

4.2. Premières propriétés.

Les propriétés suivantes découlent immédiatement de la définition et du fait que la dérivabilité implique la continuité (propriété 2).

Propriété 19. Soit $f: D \longrightarrow \mathbb{R}$.

- Si f est de classe \mathscr{C}^n sur D alors pour tout $k \in [0, n]$, f est de classe \mathscr{C}^k sur D.
- Si f est de classe \mathscr{C}^{∞} sur D alors pour tout $n \in \mathbb{N}$, f est de classe \mathscr{C}^n sur D. Autrement dit:

$$\mathscr{C}^{\infty}(D,\mathbb{R})\subset\cdots\subset\mathscr{C}^{n+1}(D,\mathbb{R})\subset\mathscr{C}^{n}(D,\mathbb{R})\subset\cdots\subset\mathscr{C}^{1}(D,\mathbb{R})\subset\mathscr{C}^{0}(D,\mathbb{R}).$$

Propriété 20. Soit $f: D \longrightarrow \mathbb{R}$.

- Pour tout entier $n \in \mathbb{N}^*$, f est de classe \mathscr{C}^n sur D si et seulement si f est dérivable et f' est de classe \mathscr{C}^{n-1} sur D.
- ullet f est de classe \mathscr{C}^{∞} sur D si et seulement si f est dérivable et f' est de classe \mathscr{C}^{∞} sur D.

4.3. Opérations sur les fonctions de classe \mathscr{C}^n .

4.3.1. Combinaison linéaire.

Propriété 21. Une combinaison linéaire d'applications de classe \mathscr{C}^n sur D est aussi de classe \mathscr{C}^n sur D. Autrement dit :

$$\forall (f,g) \in \mathscr{C}^n(D,\mathbb{R})^2, \forall (\lambda,\mu) \in \mathbb{R}^2, (\lambda f + \mu g) \in \mathscr{C}^n(D,\mathbb{R}).$$

De plus:

$$(\lambda f + \mu g)^{[n]} = \lambda f^{[n]} + \mu g^{[n]}.$$

Démonstration. Par récurrence sur n:

(I) Si n=0 l'assertion est vraie puisqu'un combinaison linéaires d'applications continue

est continue (cf. Chapitre "Continuité").

(H) Supposons l'assertion vraie au rang n. Soient f et g de classe \mathscr{C}^{n+1} sur D. Alors f et g sont dérivable et f', g' de classe \mathscr{C}^n sur D (propriété 20).

Par hypothèse de récurrence, $\lambda f' + \mu g'$ est de classe \mathscr{C}^n sur D et $(\lambda f' + \mu g')^{[n]} = \lambda (f')^{[n]} + \mu (g')^{[n]}$.

Mais puisque $(\lambda f + \mu g)' = \lambda f' + \mu g'$ (propriete 4), $(\lambda f + \mu g)$ est de classe \mathscr{C}^{n+1} (propriété 20) et :

$$(\lambda f + \mu g)^{[n+1]} = (\lambda f' + \mu g')^{[n]} = \lambda (f')^{[n]} + \mu (g')^{[n]} = \lambda f^{[n+1]} + \mu g^{[n+1]}$$

L'assertion reste donc vraie au rang n + 1.

4.3.2. Produit.

Propriété 22. Si f et g sont de classe \mathscr{C}^n sur D alors leur produit $f \times g$ est aussi de classe \mathscr{C}^n sur D.

Démonstration. Par récurrence sur $n \in \mathbb{N}$.

- (I) Pour n=0 : si f et g sont continues sur D alors $f\times g$ est continue sur D (cf. Chapitre "Continuité").
- (H) Supposons l'assertion vraie au rang $n \in \mathbb{N}$. Soient f et g de classe \mathscr{C}^{n+1} sur D; alors f' et g' sont de classe \mathscr{C}^n sur D (propriété 20) et donc (propriétés 19, 21) :

$$(f \times g)' = f'g + fg' \in \mathscr{C}^n(D, \mathbb{R}).$$

Ainsi $(f \times g)$ est de classe \mathscr{C}^{n+1} sur D (propriété 20). La propriété reste vraie au rang n+1.

4.3.3. Composition.

Propriété 23. Si $f \in \mathscr{C}^n(I,\mathbb{R})$ et $g \in \mathscr{C}^n(J,\mathbb{R})$ avec $f(I) \subset J$ alors $g \circ f \in \mathscr{C}^n(I,\mathbb{R})$.

Démonstration. Par récurrence sur $n \in \mathbb{N}$.

- (I) Si f, g sont continues et $f(I) \subset J$ alors $g \circ f$ est continue sur I (cf. Chapitre "Continuité").
- (H) Supposons l'assertion vraie au rang $n \in \mathbb{N}$. Soient $f \in \mathscr{C}^{n+1}(I,\mathbb{R})$ et $g \in \mathscr{C}^{n+1}(J,\mathbb{R})$. Par composition, $g \circ f$ est dérivable et $(g \circ f)' = (g' \circ f) \times f'$. Or f, f', g' sont de classe \mathscr{C}^n sur D (propriétés 19, 20) et donc par hypothèse de récurrence et produit, $(g \circ f)'$ est de classe \mathscr{C}^n sur D, ainsi $g \circ f$ est de classe \mathscr{C}^{n+1} sur D (propriété 19). Ainsi l'assertion reste vraie au rang (n+1).

4.3.4. Quotient.

Propriété 24. Si $f, g \in \mathscr{C}^n(D, \mathbb{R})$ et si $\forall x \in D, g(x) \neq 0$ alors $\left(\frac{f}{g}\right) \in \mathscr{C}^n(D, \mathbb{R})$.

Démonstration. L'application $x \mapsto \frac{1}{x}$ est de classe \mathscr{C}^{∞} sur \mathbb{R}^* et donc aussi de classe \mathscr{C}^n (propriété 19). Par hypothèse $g(D) \subset \mathbb{R}^*$, donc par composition, son inverse $\left(\frac{1}{g}\right)$

est de classe \mathscr{C}^n sur D, et par produit $\left(\frac{f}{g}\right) \in \mathscr{C}^n(D,\mathbb{R})$.

4.3.5. Difféomorphisme.

Propriété 25. Soit I un intervalle de \mathbb{R} .

Si $f \in \mathcal{C}^n(I,\mathbb{R})$ et si f' est strictement positive (respectivement strictement négative) sur I alors f réalise une bijection de I sur J = f(I) et son application réciproque f^{-1} est de classe \mathscr{C}^n sur J.

On dit alors que f est un \mathscr{C}^n -difféomorphisme de I sur J.

Démonstration. Par récurrence sur $n \in \mathbb{N}$.

- (I) C'est vrai d'après le théorème de la bijection.
- (H) Supposons l'assertion vraie au rang $n \in \mathbb{N}$. Soit $f \in \mathscr{C}^{n+1}(I,\mathbb{R})$ avec f' > 0 sur I(sans perte de généralité). Par dérivation de l'application réciproque, puisque $f' \neq 0$ sur I, f^{-1} est dérivable sur J de dérivée :

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Or $f' \in \mathcal{C}^n(I,\mathbb{R})$ (propriété 19), et par hypothèse de récurrence f^{-1} est de classe \mathcal{C}^n sur J. Par composition, puisque $f^{-1}(J) = I \subset I$, $f' \circ f^{-1}$ est de classe \mathscr{C}^n sur J, et par quotient $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$ est de classe \mathscr{C}^n sur J.

Donc (propriété 19), f^{-1} est de classe \mathscr{C}^{n+1} sur J. L'assertion reste ainsi vraie au

rang n+1.

4.4. Être de classe \mathscr{C}^n est plus fort qu'être n-fois dérivable.

Par définition si f est de classe \mathscr{C}^n sur D alors f est n fois dérivable sur D. Puisque la dérivabilité entraı̂ne la continuité, si f est (n+1) fois dérivable alors f est aussi de classe \mathscr{C}^n sur D.

Ainsi en notant pour tout $n \in \mathbb{N}^*$:

$$\mathscr{D}^n(D,\mathbb{R}) = \left\{ f : D \longrightarrow \mathbb{R} \mid f \text{ est } n \text{ fois dérivable sur } D \right\}$$

on a les inclusions:

$$\forall n \in \mathbb{N}, \ \mathscr{C}^{n+1}(D,\mathbb{R}) \subset \mathscr{D}^{n+1}(D,\mathbb{R}) \subset \mathscr{C}^n(D,\mathbb{R})$$

Ces deux inclusions sont strictes :

Être de classe \mathscr{C}^{n+1} est strictement plus fort qu'être (n+1) fois dérivable, qui lui-même est strictement plus fort qu'être de classe \mathscr{C}^n .

Vérifions-le sur deux exemples.

Exemples.

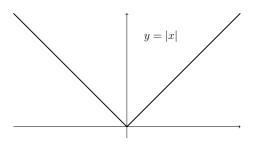
• L'application $x \mapsto |x|$ est continue et non dérivable. Ainsi une application dérivable est continue, mais la réciproque est fausse : autrement dit l'inclusion $\mathcal{D}^1(\mathbb{R},\mathbb{R}) \subset$ $\mathscr{C}^0(\mathbb{R},\mathbb{R})$ est stricte.

Puisque l'application valeur absolue est continue elle admet des primitives. En considérant sa primitive sur $\mathbb R$:

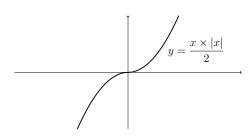
$$f: x \longmapsto \frac{x \times |x|}{2} = \begin{cases} \frac{x^2}{2} & \text{si } x \geqslant 0\\ -\frac{x^2}{2} & \text{si } x < 0 \end{cases}$$

on obtient une application dérivable à dérivée continue (i.e de classe \mathscr{C}^1) qui n'est pas deux fois dérivable. Ainsi l'inclusion $\mathscr{D}^2(\mathbb{R},\mathbb{R}) \subset \mathscr{C}^1(\mathbb{R},\mathbb{R})$ est stricte.

En prenant des primitives successives, on obtient des exemples montrant que l'inclusion $\mathcal{D}^{n+1}(\mathbb{R},\mathbb{R}) \subset \mathcal{E}^n(\mathbb{R},\mathbb{R})$ est stricte pour tout $n \in \mathbb{R}$.



 $x \longmapsto |x| \text{ est } \mathscr{C}^0 \text{ et non } \mathscr{D}^1.$



Sa primitive est \mathscr{C}^1 et non \mathscr{D}^2 .

• Soit:

$$f: x \longmapsto \begin{cases} 0 & \text{si } x = 0 \\ x^2 \sin \frac{1}{x} & \text{si } x \neq 0 \end{cases}$$

D'après le théorème des gendarmes f est continue. Vérifions qu'elle est dérivable sur \mathbb{R} . Elle est dérivable sur \mathbb{R}^* comme produit et composée d'applications dérivables. De plus :

$$\forall x \in \mathbb{R}^*, \ f'(x) = 2x \sin \frac{1}{x} + x^2 \times \frac{-1}{x^2} \times \cos \frac{1}{x} = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

Etudions sa dérivabilité en 0 :

$$T_0 f(x) = \frac{x^2 \sin \frac{1}{x} - 0}{x - 0} = x \sin \frac{1}{x} \xrightarrow{0} 0 = f'(0)$$

d'après le théorème des gendarmes. Ainsi f est dérivable sur $\mathbb R$ et :

$$f': x \longmapsto \begin{cases} 0 & \text{si } x = 0\\ 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{si } x \neq 0 \end{cases}$$

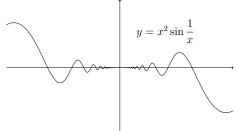
Mais f' n'est pas continue en 0. En effet :

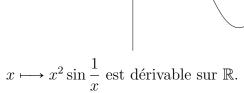
$$2x\sin\frac{1}{x} \xrightarrow{0} 0$$
 et $\cos\frac{1}{x}$ n'a pas de limite en 0

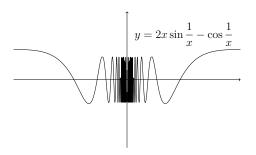
(autrement cos aurait une limite en $\pm \infty$ ce qui est absurde), ainsi f'(x) n'admet pas de limite en 0.

Ainsi f est un exemple d'application dérivable sur \mathbb{R} qui n'est pas de classe \mathscr{C}^1 . Donc l'inclusion $\mathscr{C}^1(\mathbb{R},\mathbb{R}) \subset \mathscr{D}^1(\mathbb{R},\mathbb{R})$ est stricte.

En prenant des primitives successives (puisque f est continue), on en déduirait des exemples d'applications n fois dérivables qui ne sont pas de classe \mathscr{C}^n , pour tout $n \in \mathbb{N}^*$. Autrement dit, pour tout $n \in \mathbb{N}^*$, l'inclusion $\mathscr{C}^n(\mathbb{R}, \mathbb{R}) \subset \mathscr{D}^n(\mathbb{R}, \mathbb{R})$ est stricte.







Sa dérivée n'est pas continue en 0.