Chapitre 8

Dérivées, primitives, intégrales

http://www.i2m.univ-amu.fr/perso/jean-philippe.preaux/

Nous revoyons dans ce chapitre les dérivées et primitives usuelles. Nous revoyons ensuite la notion d'intégrale vue au Lycée.

La plupart des résultats seront admis pour l'instant. Leur démonstration est repoussée à des chapitres ultérieurs au second semestre, celui sur la dérivation, ainsi que celui sur l'intégration.

Dans ce chapitre toutes les fonctions sont à valeurs réelles, et sauf précision contraire, d'une seule variable réelle.

1. CALCUL DE DÉRIVÉE D'UNE FONCTION D'UNE VARIABLE RÉELLE.

1.1. Rappel.

Définition 1. Soit f une fonction, et $\mathcal{D}_f \subset \mathbb{R}$ son domaine de définition.

• On dit que f est dérivable en $x_0 \in \mathcal{D}_f$ si x_0 appartient à un intervalle $I \subset \mathcal{D}_f$ et si le taux d'accroissement de f en x_0 :

$$\frac{f(x) - f(x_0)}{x - x_0}$$

a une limite finie lorsque x tend vers x_0 ; c'est le nombre dérivé de f en x_0 ; il est noté :

$$f'(x_0)$$
 ou $\frac{df}{dx}(x_0)$

- Le sous-ensemble de \mathcal{D}_f des réels x_0 en lesquels f est dérivable, s'appelle le domaine de dérivabilité de f.
- La fonction dérivée de f est définie sur le domaine de dérivabilité de f ; elle est notée :

$$f'$$
 ou $\frac{df}{dx}$

Elle associe à x_0 le nombre dérivée $f'(x_0)$ (ou $\frac{df}{dx}(x_0)$.)

Exemple. La fonction racine carrée $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* . Sa dérivée est :

$$x \longmapsto \frac{1}{2\sqrt{x}}$$

En effet:

$$\frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} \times \underbrace{\frac{\sqrt{x} + \sqrt{x_0}}{\sqrt{x} + \sqrt{x_0}}}_{=1} = \underbrace{\frac{x - x_0}{x - x_0}}_{=1} \times \frac{1}{\sqrt{x} + \sqrt{x_0}} \xrightarrow{x \to x_0} \frac{1}{2\sqrt{x_0}}$$

1.2. Dérivées des fonctions usuelles.

Les valeurs des dérivées suivantes sont à connaître.

Formulaire de dérivation

	Fonction	Fonctio	Fonction dérivée	Condition
f(x)	Domaine de définition	f'(x)	Domaine de dérivabilité	Avec
ax + b	出	a	出	$(a,b) \in \mathbb{R}^2$
\neg x	*出	$-\frac{1}{x^2}$	*#	
\sqrt{x}	\mathbb{R}_+	$rac{1}{2\sqrt{x}}$	₩*+	
	\mathbb{R} si $\alpha \in \mathbb{N}$			
x^{α}	$\mathscr{D} = \left\{ \mathbb{R}^* \text{si } \alpha \in \mathbb{Z} \setminus \mathbb{N} \right.$	$\alpha x^{\alpha-1}$	<i>®</i> =	$\alpha \in \mathbb{R}$
	\mathbb{R}^*_+ si $\alpha \in \mathbb{R} \setminus \mathbb{Z}$			
$\ln x$	*+	. ⊢ <i>w</i>	* ⁺ Ľ	
$\ln x $	₩*	$\frac{1}{x}$	冺*	
$\log_a(x) = \frac{\ln x}{\ln a}$	*+	$\frac{1}{x \ln a}$	**# ###	$a \in \mathbb{R}_+^* \setminus \{1\}$
e^{ax}	出	ae^{ax}	R	$a \in \mathbb{R}$
a^x	出	$\ln(a)a^x$	24	a > 0
$\sin(ax+b)$	黑	$a\cos(ax+b)$	R	$(a,b) \in \mathbb{R}^2$
$\cos(ax+b)$	出	$-a\sin(ax+b)$	丝	$(a,b) \in \mathbb{R}^2$
$\tan(x)$	$\mathbb{R} \smallsetminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$	$\mathbb{R} \smallsetminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	
$\arctan(x)$	出	$\frac{1}{1+x^2}$	껊	

1.3. Dérivées de somme, produit ou quotient.

Propriété 1.

Si les fonctions f et g sont dérivables sur un intervalle I, alors les fonctions f+g, λf (où λ est un réel) et $f \times g$ sont dérivables sur I et :

$$(f+g)' = f' + g'$$
 ; $(\lambda f)' = \lambda f'$; $(f \times g)' = f'g + fg'$

Si de plus g ne s'annule pas sur I, alors les fonctions $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables et :

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$
 ; $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

Exemple. Soit $f(x) = x \ln(x)$; alors f est dérivable sur \mathbb{R}_+^* et :

$$f'(x) = \ln(x) + x \times \frac{1}{x} = \ln(x) + 1$$

Ainsi en posant $g(x) = x \ln(x) - x$:

$$g'(x) = \ln(x)$$

Autrement dit g est une primitive de ln.

1.4. Dérivée d'une composée.

On connait de ja certaines formules permettant de calculer la dérivée de certaines fonctions composées : soit $n \in \mathbb{N}^*$:

f(x)	$\ln(u)$	$\frac{1}{u}$	\sqrt{u}	u^n	e^u	$\cos(u)$	$\sin(u)$	$\tan(u)$
f'(x)	$\frac{u'}{u}$	$\frac{-u'}{u^2}$	$\frac{u'}{2\sqrt{u}}$	$u'nu^{n-1}$	$u'e^u$	$-u'\sin(u)$	$u'\cos(u)$	$\frac{u'}{\cos(u)^2}$

Elles se généralisent par la formule de dérivation d'une composée :

Théorème 2.

Soient I et J deux intervalles, $f:I\longrightarrow \mathbb{R}$ et $g:J\longrightarrow \mathbb{R}$ avec $f(I)\subset J$. Si f est dérivable sur I et g est dérivable sur I est g est dérivable sur I est g est dérivable sur I est g e

$$(g \circ f)' = (g' \circ f) \times f'$$

Démonstration. Voir Chapitre "Dérivation".

Remarque. Avec les notations $\frac{d}{dx}$, la formule s'écrit :

$$\frac{d(g \circ f)}{dx}(x) = \frac{dg}{dx}(f(x)) \times \frac{df}{dx}(x).$$

Exercice 1.

Déterminer le domaine de dérivabilité et la dérivée de :

$$f: x \longmapsto \ln(x^2 + x + 1)$$
 ; $g: x \longmapsto \ln\left(\frac{2x+1}{2x-1}\right)$; $h: x \longmapsto \sqrt{x^2 + 3x + 2}$

BCPST1	Dérivées, primitives, intégrales	Lycée Fénelon

2. Dérivées partielles d'une fonction de 2 variables réelles

Définition 2.

- Une fonction f de deux variables réelles associe à tout couple de réel $(x, y) \in \mathbb{R}^2$ au plus un réel, noté f(x, y), appelé image de (x, y) par f.
- L'ensemble des couples $(x,y) \in \mathbb{R}^2$ admettant une image par f, ou autrement dit en lesquels f(x,y) existe, est appelé <u>domaine de définition de f</u>; c'est une partie de \mathbb{R}^2 , notée :

$$\mathscr{D}_f = \left\{ (x, y) \in \mathbb{R}^2 \mid f(x, y) \text{ existe} \right\}$$

Exemple. La fonction $f:(x,y) \longrightarrow \frac{\ln(xy)}{x+y}$ est définie lorsque :

$$\begin{cases} xy > 0 & \text{et} \\ x + y \neq 0 \end{cases}$$

C'est à dire lorsque x et y sont de même signe et non nuls. Ainsi :

$$\mathscr{D}_f = \left(\mathbb{R}_-^* \times \mathbb{R}_-^*\right) \cup \left(\mathbb{R}_+^* \times \mathbb{R}_+^*\right) \subset \mathbb{R}^2$$

Par exemple:

$$f(1,1) = 0 = f(-1,-1), \quad f(1,e) = f(e,1) = \frac{1}{e+1}, \quad f(1,2) = \frac{1}{3}\ln(2)$$

Définition 3.

Donnée $f:(x,y) \longmapsto f(x,y)$ une fonction de deux variables reélles, on définit en tout $(x_0,y_0) \in \mathbb{R}^2$:

• La première fonction partielle :

$$f_{y_0}^x: x \longmapsto f(x, y_0)$$

• La <u>seconde</u> fonction partielle :

$$f_{x_0}^y: y \longmapsto f(x_0, y)$$

Ce sont deux fonctions réelles d'une variable réelle.

Exemple. $f:(x,y)\longrightarrow \frac{\ln(xy)}{x+y}$ a pour fonctions partielles en tout point $(x_0,y_0)\in \mathscr{D}_f$:

$$f_{y_0}^x : x \longmapsto \frac{\ln(x \times y_0)}{x + y_0}$$

 $f_{x_0}^y : y \longmapsto \frac{\ln(x_0 \times y)}{x_0 + y}$

Bien sur:

$$f_{y_0}^x(x_0) = f_{x_0}^y(y_0) = f(x_0, y_0).$$

Définition 4.

Soit $f:(x,y) \longmapsto f(x,y)$ et $(x_0,y_0) \in \mathcal{D}_f$; on dit que:

• f admet une dérivée partielle par rapport à x en (x_0, y_0) si la première fonction partielle $f_{y_0}^x$ est dérivable en x_0 ; dans ce cas on note :

$$\frac{\partial f}{\partial x}(x_0, y_0) = \left(f_{y_0}^x\right)'(x_0)$$

• f admet une dérivée partielle par rapport à y en (x_0, y_0) si la seconde fonction partielle $f_{x_0}^y$ est dérivable en y_0 ; dans ce cas on note :

$$\frac{\partial f}{\partial y}(x_0, y_0) = \left(f_{x_0}^y\right)'(y_0)$$

Exemple. Soit $f:(x,y) \longmapsto \frac{\ln(xy)}{x+y}$; f est définie sur $\mathscr{D}_f = (\mathbb{R}_+^* \times \mathbb{R}_+^*) \cup (\mathbb{R}_+^* \times \mathbb{R}_+^*)$ et admet des dérivées partielles en tout $(x,y) \in \mathscr{D}_f$:

$$\frac{\partial f}{\partial x}(x,y) = \frac{\frac{y}{xy} \times (x+y) - \ln(xy) \times 1}{(x+y)^2} = \frac{x+y-x\ln(xy)}{x(x+y)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{\frac{x}{xy} \times (x+y) - \ln(xy) \times 1}{(x+y)^2} = \frac{x+y-y\ln(xy)}{y(x+y)^2}$$

Méthode. Dans la pratique :

- Pour calculer une dérivée partielle par rapport à x:
 On dérive par rapport à x en traitant y comme une constante.
- Pour calculer une dérivée partielle par rapport à y : On dérive par rapport à y en traitant x comme une constante.

Exercice 2. Déterminer le domaine de définition et les dérivées partielles là où elles existent pour :

$$f:(x,y)\longmapsto \sqrt{1-x^2-y^2}$$

3. Calcul de primitives

Dans toute cette partie I désigne un intervalle non réduit à un point, et f une fonction une fonction réelle d'une variable réelle définie sur I.

3.1. Rappels.

Définition 5.

• On appelle <u>primitive de f sur I</u> toute fonction F dérivable sur I et vérifiant F' = f. On note :

$$F = \int f(t)dt \quad ou \quad F = \int f.$$

et

et
$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 ou $F(x) = \int_{-\infty}^{\infty} f(x)dx$

• Le <u>domaine de validité</u> est le plus grand sous-ensemble de $\mathbb R$ où f et F sont définies, F est dérivable et F'=f.

Remarques.

- ullet La variable t est muette : F n'en dépend pas, et on peut l'échanger contre toute autre. Toutes ces notations sont en fait un peu abusives mais tolérées.
- ullet Ne pas oublier l'élément différentiel dt. Il sera particulièrement important pour la méthode de changement de variable.

On rappelle les résultats fondamentaux suivants :

Propriété 3. Si f admet une primitive F sur I alors elle en admet une infinité, toutes égales à une constante additive près. Plus précisément :

Soit F une primitive de f; G est une primitive de f ssi $\exists c \in \mathbb{R}, G = F + c$.

Démonstration.

 \implies Si F est primitive de f sur I alors $\forall x \in I$:

$$F'(x) = f(x)$$

et donc:

$$(F + c)'(x) = F'(x) = f(x)$$

ainsi la fonction $F + c : x \longmapsto F(x) + c$ est aussi une primitive de f sur I.

 \subseteq Soient F et G deux primitives de f sur I. Alors leur différence G-F est dérivable sur l'intervalle I et :

$$(G-F)' = f - f = 0$$

Donc la fonction G-F est constante sur l'intervalle I:

$$\exists c \in \mathbb{R}, G - F = c$$

et donc G = F + c.

Exemple. La fonction $x \mapsto x \ln(x) - x$ est une primitive de $\ln \sup \mathbb{R}_+^*$; les primitives de $\ln \operatorname{sont}$ toutes les fonctions de la forme $x \mapsto x \ln(x) - x + c$ avec $c \in \mathbb{R}$.

Remarque. Attention, l'abus de notation cité ci-dessus s'illustre ici par :

$$F = \int f$$
 et $G = \int f \implies \exists c \in \mathbb{R}, F = G + c$

Théorème 4.

 $Toute\ fonction\ continue\ sur\ I\ y\ admet\ des\ primitives.$

Démonstration. Dans le chapitre "Intégration".

3.2. Calcul de primitives.

3.2.1. Primitives des fonctions usuelles.

	Fonction	Une fonc	Une fonction primitive	Condition
f(x)	Domaine de définition	$\int^x f(t)dt$	Domaine de validité	Avec
a	出	ax	图	$a \in \mathbb{R}$
	\mathbb{R} si $\alpha \in \mathbb{N}$			É
x^{α}	$\mathscr{D} = \left\{ \mathbb{R}^* \text{si } \alpha \in \mathbb{Z} \setminus \mathbb{N} \right.$	$\frac{1}{\alpha+1} x^{\alpha+1}$	Ø =	ガーン フー・ フー・ フー・ フー・ フー・ フー・ フー・ フー・ フー・ フー・
	$\mathbb{R}_+^* \text{si } \alpha \in \mathbb{R} \setminus \mathbb{Z}$	i -		$\alpha \neq -1$
\sqrt{x}	吊+	$\frac{2}{3}x^{\frac{3}{2}} = \frac{2}{3}x\sqrt{x}$		
T X	*4	$\ln x $	服*	
$\frac{1}{ax+b}$	$\mathbb{R} \smallsetminus \big\{ - \frac{b}{a} \big\}$	$\frac{1}{a} \ln ax + b $	$\mathbb{R} \smallsetminus \big\{ -\frac{b}{a} \big\}$	$(a,b) \in \mathbb{R}^* \times \mathbb{R}$
$\ln(x)$	₩##	$x \ln(x) - x$	R* +	
e^{ax}	出	$\frac{1}{a}e^{ax}$	R	$a \in \mathbb{R}^*$
a^x	黑	$\frac{1}{\ln(a)}a^x$	R	$a \in \mathbb{R}_+^* \setminus \{1\}$
$\cos(ax+b)$	黑	$\frac{1}{a}\sin(ax+b)$	R	$(a,b) \in \mathbb{R}^* \times \mathbb{R}$
$\sin(ax+b)$	M	$-\frac{1}{a}\cos(ax+b)$	邕	$(a,b) \in \mathbb{R}^* \times \mathbb{R}$
$\frac{1}{\cos^2(x)}$	$\mathbb{R} \smallsetminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$\tan(x)$	$\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	
tan(x)	$\mathbb{R} \smallsetminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	$-\ln \cos(x) $	$\mathbb{R} \smallsetminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$	
$\frac{1}{1+x^2}$	出	$\arctan(x)$	出	

Démonstration. Beaucoup s'obtiennent facilement par lecture inversée du tableau de dérivation et par linéarité de la dérivation ou dérivation d'une composée. Pour les

autres:

$$\text{si } x>0: \int \sqrt{x} dx = \int x^{\frac{1}{2}} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} x^{\frac{3}{2}} = \frac{2}{3} x \sqrt{x} \text{ et } \lim_{x\to 0} \frac{\frac{2}{3} x \sqrt{x} - 0}{x - 0} = 0 = \sqrt{0}$$

La fonction $x \longmapsto \ln |x|$ est définie sur \mathbb{R}^* .

Sa restriction à \mathbb{R}_+^* est $x \longmapsto \ln(x)$ qui est dérivable de dérivée $x \longmapsto \frac{1}{x}$.

Sa restriction à \mathbb{R}_{-}^{*} est $x \longmapsto \ln(-x)$ qui est dérivable de dérivée $x \longmapsto (-1) \times \frac{1}{-x} = \frac{1}{x}$. Ainsi :

$$\int \frac{1}{x} = \ln|x|$$

La fonction $x \mapsto \ln |ax + b|$ composée de $x \mapsto ax + b$ suivie de $x \mapsto \ln |x|$ est donc dérivable partout où elle est définie et :

$$(\ln|ax + b|)' = a \times \frac{1}{ax + b}$$

Par linéarité de la dérivation, on a donc :

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|$$

La fonction $\tan(x) = \frac{\sin(x)}{\cos(x)} = -\frac{\cos'(x)}{\cos(x)}$ a par linéarité de la dérivation pour primitive :

$$\int \tan(x)dx = -\ln|\cos(x)|$$

Exercice 3. Calculer:

$$\int \frac{1}{\sqrt{x}} dx =$$

$$\int x\sqrt{x} dx =$$

$$\int \frac{1}{x\sqrt{x}} dx =$$

3.3. Reconnaissance de primitive. Le tableau des primitives usuelles sera appliqué pour le calcul de primitives avec certaines propriétés des primitives.

La plus importante et la plus simple et la linéarité de la primitivation; elle découle de la linéarité de la dérivation.

Propriété 5. Linéarité de la primitivation.

Pour toutes fonctions f et g admettant des primitives sur I, et pour tout scalaire $\lambda \in \mathbb{R}$:

$$\int f + g = \int f + \int g$$
$$\int \lambda f = \lambda \int f$$

Démonstration. Cela découle de la linéarité de la dérivation. En effet, soient F et G des primitives respectives de f et g:

$$(F+G)' = F' + G' = f + g \implies \int f + g = \int f + \int g$$
$$(\lambda F)' = \lambda F' = \lambda f \implies \int \lambda f = \lambda \int f$$

Exercice 4. Déterminer une primitive de $x \mapsto \sin^3(x)$. (Principe : linéariser $\sin^3(x)$ pour appliquer la linéarité de la primitivation.)

L'autre propriété essentielle pour calculer une primitive est la suivante; elle découle de la dérivée d'une composée.

Propriété 6.

Soient f une fonction continue sur un intervalle J, et u une fonction dérivable sur un intervalle I avec $u(I) \subset J$.

Soit F une primitive de f, alors :

$$f(u) \times u'$$
 a pour primitive $F(u)$

Démonstration. Par hypothèse, la fonction $F\circ u$ est bien définie et dérivable sur I. Sa dérivée est :

$$(F\circ u)'=(F'\circ u)\times u'=f(u)\times u'$$

Ainsi:

$$\int f(u) \times u' = F \circ u = F(u)$$

En appliquant cette propriété avec des fonctions usuelles, on obtient le tableau suivant des primitives à savoir reconnaître, pour u une fonction dérivable sur un domaine à déterminer :

Fonction	$\frac{u'}{u}$	$\frac{u'}{u^2}$	$\frac{u'}{\sqrt{u}}$	$u^n \times u'$	$u'e^u$	$(\sin u) \times u'$	$(\cos u) \times u'$	$\begin{array}{ c c }\hline u'\\\hline 1+u^2\end{array}$
Primitive	$\ln u $	$-\frac{1}{u}$	$2\sqrt{u}$	$\frac{1}{n+1}u^{n+1}$	e^u	$-\cos u$	$\sin u$	$\arctan u$

Exercice 5. Calculer les primitives suivantes :

$$\int xe^{-x^2}dx =$$

$$\int \frac{x}{\sqrt{x^2 + 1}}dx =$$

$$\int \frac{1}{\tan(x)\cos^2(x)}dx =$$

$$\int \frac{x + 1}{1 + x^2}dx =$$

$$\int \frac{\sin(x)\cos(x)}{1 + \cos^4(x)}dx =$$

3.4. Primitivation par partie.

Le calcul de primitive découlant de la formule de dérivation d'un produit s'appelle la primitivation par partie. Pour énoncer le résultat nous aurons besoin de la définition suivante :

Définition 6. Une fonction f dérivable sur un intervalle I et dont la dérivée f' est continue sur I est dite de classe \mathscr{C}^1 .

Théorème 7.

Si u et v sont deux fonctions de classe \mathscr{C}^1 sur un intervalle I, alors :

$$\int u'v = uv - \int uv'$$

Démonstration. Puisque u et v sont de classe \mathscr{C} sur I, les quatre fonctions u, v, u', v' sont continues sur I. Ainsi u'v et uv' étant continues sur I, comme produits de fonctions continues, elles y admettent des primitives.

Par dérivation d'un produit :

$$(uv)' = u'v + uv'$$

En primitivant terme à terme :

$$uv = \int (uv)' = \int (u'v + uv') = \int u'v + \int uv'$$

(à une constante additive près). Donc :

$$\int u'v = uv - \int uv'$$

11

Exemples.

Exercice 6. Calculer à l'aide de primitivations par partie :

$$\int x \ln(x) dx =$$

$$\int \arctan(x)dx =$$

$$\int x \arctan(x) dx =$$

4. Calcul intégral

Une des motivations au calcul de primitive est le calcul d'intégrale. Nous rappelons ici succinctement les notions sur l'intégrale abordés en Terminale. Nous les étudierons plus en détail dans le chapitre "Intégration".

4.1. Définition et interprétation.

Proposition-Définition 7.

Soit $f: I \longrightarrow \mathbb{R}$ une application continue et soient $(a,b) \in I^2$. Si F et G sont deux primitives de f alors :

$$F(b) - F(a) = G(b) - G(a)$$

Le réel F(b) - F(a) est appelé intégrale de f de a à b et noté :

$$\int_{a}^{b} f(t)dt.$$

Démonstration. Sous ces hypothèses, $\exists c \in \mathbb{R}$ tel que F = G + c et donc :

$$F(b) - F(a) = G(b) + c - (G(a) + c) = G(b) + c - G(a) - c = G(b) - G(a)$$

On note : $[F]_a^b = F(b) - F(a)$.

Comme conséquence immédiate :

Propriété 8.

$$\int_{a}^{b} f(t)dt = -\int_{b}^{a} f(t)dt \qquad ; \qquad \int_{a}^{a} f(t)dt = 0.$$

Exercice 7. Calculer les intégrales :

$$\int_{0}^{1} \frac{1}{1+x} dx = \int_{-1}^{1} \frac{x}{1+x^{2}} dx = 0$$

On a aussi la propriété fondamentale :

Propriété 9. Sous ces mêmes hypothèses, l'unique primitive de f s'annulant en a est :

$$F(x) = \int_{a}^{x} f(t)dt.$$

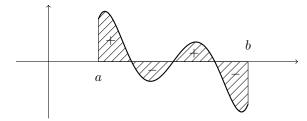
Démonstration. Par définition, F(x) = G(x) - G(a) où G est une primitive de f. Alors d'une part F'(x) = G'(x) = f(x) donc F est une primitive de f et d'autre part F(a) = G(a) - G(a) = 0.

• Interprétation géométrique

Nous démontrerons au chapitre "Intégration" :

Géométriquement, $\int_a^b f(t)dt$ est l'aire algébrique délimitée par \mathcal{C}_f , (Ox), et les droites verticales x = a et x = b.

Où "aire algébrique" signifie que les aires des domaines au-dessus de l'axe des abscisses sont comptées positivement, et celles en dessous le sont négativement.



4.2. **Propriétés.** Soient f et g deux applications continues sur un intervalle I et a,b,c trois réels dans I.

Propriété 10. (Relation de Chasles)

$$\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt.$$

Démonstration. Soit F une primitive de f:

$$\int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt = F(b) - F(a) + F(c) - F(b) = F(c) - F(a) = \int_{a}^{c} f(t)dt.$$

Propriété 11. (Linéarité de l'intégrale)

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \quad \int_a^b (\lambda f(t) + \mu g(t)) dt = \lambda \int_a^b f(t) dt + \mu \int_a^b g(t) dt.$$

Démonstration. Soient F et G des primitives de f et g. Alors $\lambda F + \mu G$ est une primitive de $\lambda f + \mu g$ et donc :

$$\int_{a}^{b} (\lambda f(t) + \mu g(t))dt = (\lambda F + \mu G)(b) - (\lambda F + \mu G)(a)$$

$$= \lambda F(b) + \mu G(b) - (\lambda F(a) + \mu G(a))$$

$$= \lambda (F(b) - F(a)) + \mu (G(b) - G(a))$$

$$= \lambda \int_{a}^{b} f(t)dt + \mu \int_{a}^{b} g(t)dt.$$

Propriété 12. (Positivité)

Si $a \le b$ et si $\forall x \in [a, b], f(x) \ge 0$, alors:

$$\int_{a}^{b} f(t)dt \geqslant 0.$$

Démonstration. Une primitive F de f est croissante sur [a,b] et donc $\int_a^b f(t)dt = F(b) - F(a) \ge 0$.

4.3. Intégration par partie.

Théorème 13.

Si u et v sont deux fonctions de classe \mathscr{C}^1 sur un intervalle I, alors $\forall (a,b) \in I^2$,

$$\int_a^b u'(t)v(t)dt = \left[u \times v\right]_a^b - \int_a^b u(t)v'(t)dt$$

Démonstration. Puisque u et v sont de classe \mathscr{C}^1 , u, v, u', v' sont continues et donc u'v et uv' admettent des primitives sur I.

Puisque $(u \times v)' = u' \times v' + u \times v'$, par linéarité

$$\int u' \times v = \int ((u \times v)' - u \times v') = \int (u \times v)' - \int u \times v' = u \times v - \int u \times v'$$

à une constante additive près. Ainsi :

$$\int_a^b u'(t)v(t)dt = \left[u \times v\right]_a^b - \int_a^b u(t)v'(t)dt$$

Exemple. Calculer $\int_0^1 \arctan(t) dt$.

On pose:

$$u(t) = \arctan(t)$$
 $u'(t) = \frac{1}{1+t^2}$ $v(t) = t$ $v'(t) = 1$

u et v sont de classe \mathscr{C}^1 sur \mathbb{R} ;

$$\int_{0}^{1} \arctan(t)dt = \int_{0}^{1} u \times v'(t)dt$$

$$= [u(t) \times v(t)]_{0}^{1} - \int_{0}^{1} u' \times v(t)dt$$

$$= [t \times \arctan(t)]_{0}^{1} - \int_{0}^{1} \frac{t}{1+t^{2}}dt$$

$$= \arctan(1) - \frac{1}{2} \times \left[\ln(1+t^{2})\right]_{0}^{1} = \boxed{\frac{\pi}{4} - \frac{\ln 2}{2}}$$