Fonctions récursives II Exemples élaborés d'usage de la récursivité

BCPST - Lycée Fénelon

Le problème des tours d'Hanoï

Enoncé du problème Résolution récursive Code

Exemples fractals

Flocon de Von Koch Graphiques avec le module turtle Triangle de Sierpinsky

Limitations

Suite de Fibonacci Usage de la mémoire Résolution efficace

Le problème des tours de Hanoï est un jeu de réflexion inventé par le Mathématicien français Edouard Lucas en 1883 :

Des disque percés de diamètre décroissants sont empilés sur une colonne. Il y a trois colonnes.

Le problème des tours de Hanoï est un jeu de réflexion inventé par le Mathématicien français Edouard Lucas en 1883 :

Des disque percés de diamètre décroissants sont empilés sur une colonne. Il y a trois colonnes. Il s'agit de déplacer les disques de la colonne de gauche à la colonne de droite —en un minimum de coût— et en respectant les règles suivantes :

- 1. On ne peut déplacer qu'un disque à la fois, et sur la colonne de son choix.
- 2. On ne peut empiler un disque que sur une colonne vide ou sur un disque plus grand.

ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.

- ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.
- Pour le résoudre simplement et élégamment nous allons procéder par récursivité, en remarquant :

- ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.
- Pour le résoudre simplement et élégamment nous allons procéder par récursivité, en remarquant :
- Si l'on sait résoudre le problème pour n-1 disques alors il n'est pas difficile de le résoudre pour n disques :

- ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.
- Pour le résoudre simplement et élégamment nous allons procéder par récursivité, en remarquant :
- Si l'on sait résoudre le problème pour n-1 disques alors il n'est pas difficile de le résoudre pour n disques :
 - 1. Procéder aux mouvements permettant de résoudre avec les n-1 disques de plus petits diamètres pour que la position d'arrivée soit la colonne du milieu.

- ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.
- Pour le résoudre simplement et élégamment nous allons procéder par récursivité, en remarquant :
- Si l'on sait résoudre le problème pour n-1 disques alors il n'est pas difficile de le résoudre pour n disques :
 - 1. Procéder aux mouvements permettant de résoudre avec les n-1 disques de plus petits diamètres pour que la position d'arrivée soit la colonne du milieu.
 - 2. Déplacer le disque de plus gros diamètre sur la colonne de droite.

- ullet Ecrivons un programme qui résout le problèmes des tours de Hanoï pour n disques.
- Pour le résoudre simplement et élégamment nous allons procéder par récursivité, en remarquant :
- Si l'on sait résoudre le problème pour n-1 disques alors il n'est pas difficile de le résoudre pour n disques :
 - 1. Procéder aux mouvements permettant de résoudre avec les n-1 disques de plus petits diamètres pour que la position d'arrivée soit la colonne du milieu.
 - 2. Déplacer le disque de plus gros diamètre sur la colonne de droite.
 - 3. Procéder aux mouvements de résolution avec les n-1 disques de la colonne du milieu pour les déplacer sur la colonne de droite.

• On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)

- On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)
- Schéma récursif de résolution (en pseudo-code) :

```
def hanoi(n, D, I, A):
    if n != 0:
        hanoi(n-1, D, A, I)
        déplacer le disque restant de D à A
        hanoi(n-1, I, D, A)
```

- On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)
- Schéma récursif de résolution (en pseudo-code) :

```
def hanoi(n, D, I, A):
   if n != 0:
     hanoi(n-1, D, A, I)
     déplacer le disque restant de D à A
     hanoi(n-1, I, D, A)
```

• Pour l'implémenter : on utilisera 3 piles pour D, L, A, de capacités illimités (c'est à dire 3 listes en python),

- On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)
- Schéma récursif de résolution (en pseudo-code) :

```
def hanoi(n, D, I, A):
   if n != 0:
     hanoi(n-1, D, A, I)
     déplacer le disque restant de D à A
     hanoi(n-1, I, D, A)
```

- Pour l'implémenter : on utilisera 3 piles pour D, L, A, de capacités illimités (c'est à dire 3 listes en python),
 - l'empilement s'obtient alors par Pile.append(e),
 - 2. le dépilement par Pile.pop()

- On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)
- Schéma récursif de résolution (en pseudo-code) :

```
def hanoi(n, D, I, A):
   if n != 0:
     hanoi(n-1, D, A, I)
     déplacer le disque restant de D à A
     hanoi(n-1, I, D, A)
```

- Pour l'implémenter : on utilisera 3 piles pour D, L, A, de capacités illimités (c'est à dire 3 listes en python),
 - 1. l'empilement s'obtient alors par Pile.append(e),
 - 2. le dépilement par Pile.pop()
 - 3. le peek par Pile[-1], la taille par len(Pile), et "est vide?" par len(Pile) == 0 (que l'on n'utilisera pas ici).

- On constitue une fonction : hanoi(n, Colonne_départ, Colonne_intermédiaire, Colonne_arrivée)
- Schéma récursif de résolution (en pseudo-code) :

```
def hanoi(n, D, I, A):
    if n != 0:
        hanoi(n-1, D, A, I)
        déplacer le disque restant de D à A
        hanoi(n-1, I, D, A)
```

- Pour l'implémenter : on utilisera 3 piles pour D, L, A, de capacités illimités (c'est à dire 3 listes en python),
 - l'empilement s'obtient alors par Pile.append(e),
 - le dépilement par Pile.pop()
 - 3. le peek par Pile[-1], la taille par len(Pile), et "est vide?" par len(Pile) == 0 (que l'on n'utilisera pas ici).
- Initialement :

```
D = [ n-k for k in range(n) ] # D = [ n, n-1, ..., 2, 1]
I = [ ]
A = [ ]
```

```
def hanoi(n, D, I, A):  # Partie récursive
  if n!=0:
    hanoi(n-1,D,A,I)
    A.append(D.pop())  # empiler(A, depiler(D))
    hanoi(n-1,I,D,A)
```

```
def hanoi(n, D, I, A):
                           # Partie récursive
    if n!=0.
        hanoi(n-1,D,A,I)
        A.append(D.pop())
                             # empiler(A, depiler(D))
        hanoi(n-1,I,D,A)
def resoudreHanoi(n):
                         # Fonction à appeler pour initialiser
   D = [ n-i for i in range(n)]
                                    # Initialisation Tours
    I = []
    A = []
    print(D,I,A)
                    # Affichage état au départ
    hanoi(n,D,I,A)
   print(D,I,A)
                    # Affichage état à l'arrivée
```

```
def hanoi(n. D. I. A):
                          # Partie récursive
   if n!=0.
       hanoi(n-1,D,A,I)
       A.append(D.pop())
                            # empiler(A, depiler(D))
       hanoi(n-1,I,D,A)
def resoudreHanoi(n): # Fonction à appeler pour initialiser
   D = [ n-i for i in range(n)]
                                   # Initialisation Tours
   I = []
   A = []
   print(D,I,A)
                   # Affichage état au départ
   hanoi(n,D,I,A)
   print(D,I,A)
                   # Affichage état à l'arrivée
```

```
>>> resoudreHanoi(4)
[4, 3, 2, 1] [ ] [ ]
[ ] [ ] [4, 3, 2, 1]
```

• Deuxième tentative : pour afficher les états successifs.

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

C'est à dire avant l'appel initial (départ) et après chaque instruction A.append(D.pop()).

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

C'est à dire avant l'appel initial (départ) et après chaque instruction A.append(D.pop()).

Le problème est que chaque appel récursif permute l'ordre des 3 tours.

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

C'est à dire avant l'appel initial (départ) et après chaque instruction A.append(D.pop()).

Le problème est que chaque appel récursif permute l'ordre des 3 tours.

Si l'on se contente de l'instruction print(D,I,A) les 3 tours ne seront pas affichées dans l'ordre exact.

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

C'est à dire avant l'appel initial (départ) et après chaque instruction A.append(D.pop()).

Le problème est que chaque appel récursif permute l'ordre des 3 tours.

Si l'on se contente de l'instruction print(D,I,A) les 3 tours ne seront pas affichées dans l'ordre exact.

 $\mathbf{1}^{\textit{ere}}$ **méthode.** Pour cela on prend en quatrième argument la liste :

$$T = [D, I, A]$$

qui permet de mémoriser l'ordre des tours; c'est T que l'on affiche par l'instruction print(T).

• Deuxième tentative : pour afficher les états successifs.

L'affichage doit se faire au départ, puis après chaque changement.

C'est à dire avant l'appel initial (départ) et après chaque instruction A.append(D.pop()).

Le problème est que chaque appel récursif permute l'ordre des 3 tours.

Si l'on se contente de l'instruction print(D,I,A) les 3 tours ne seront pas affichées dans l'ordre exact.

 $1^{\it ere}$ **méthode.** Pour cela on prend en quatrième argument la liste :

$$T = [D, I, A]$$

qui permet de mémoriser l'ordre des tours; c'est T que l'on affiche par l'instruction print(T).

Chaque appel crée une copie de T; mais cette copie contient chaque fois les 3 adresses mémoires où sont stockées les données des 3 tours, dans le bon ordre.

```
def hanoi(n,D,I,A,T):
    if n!=0:
        hanoi(n-1,D,A,I,T)
        A.append(D.pop())
        print(T)
                               # Affichage des 3 tours
        hanoi(n-1,I,D,A,T)
def resoudreHanoi(n):
    D = [n-i \text{ for } i \text{ in } range(n)]
    T = \Gamma
    A = \Gamma
    T = [D, I, A]
    print(T)
                     # Affichage de l'état initial
    hanoi(n,D,I,A,T)
```

 2^{eme} méthode. Déclarer la liste T = [D, I, A] comme une variable globale. On n'a plus besoin de la passer en quatrième argument à la fonction Hanoi():

 2^{eme} méthode. Déclarer la liste T = [D, I, A] comme une variable globale. On n'a plus besoin de la passer en quatrième argument à la fonction Hanoi():

```
def hanoi(n,D,I,A):
    if n!=0:
       hanoi(n-1,D,A,I)
        A.append(D.pop())
        print(T) # Affichage des trois tours
        hanoi(n-1,I,D,A)
def resoudreHanoi(n):
   D = [ n-i for i in range(n)]
    T = \Gamma 1
   A = \Gamma 1
    # La variable T est déclarée globale,
    # on peut accéder à son contenu de partout :
   global T
                         # D'abord déclarer T comme globale
   T = [D, I, A] # Puis lui affecter une valeur
   print(T)
   hanoi(n,D,I,A)
```

```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

• Remarque. L'algorithme résout bien le problème des Tours d'Hanoï en un minimum de déplacements.

```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

• Remarque. L'algorithme résout bien le problème des Tours d'Hanoï en un minimum de déplacements.

Indication : Par récurrence sur n.

```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

• Remarque. L'algorithme résout bien le problème des Tours d'Hanoï en un minimum de déplacements.

Indication : Par récurrence sur n.

Pour résoudre le problème : tôt ou tard il faudra déplacer le disque de plus gros diamètre n.

```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[1], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

• Remarque. L'algorithme résout bien le problème des Tours d'Hanoï en un minimum de déplacements.

Indication : Par récurrence sur n.

Pour résoudre le problème : tôt ou tard il faudra déplacer le disque de plus gros diamètre n. Pour cela nécessairement les n-1 premiers disques devront être tous empilés dans le bon ordre sur une même colonne.

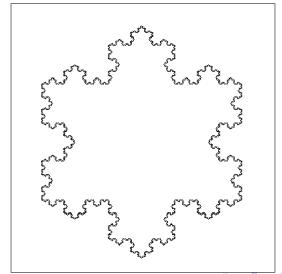
```
>>> resoudreHanoi(3)
[[3, 2, 1], [], []]
[[3, 2], [], [1]]
[[3], [2], [1]]
[[3], [2, 1], []]
[[1], [2, 1], [3]]
[[1], [2], [3]]
[[1], [], [3, 2]]
[[], [], [3, 2, 1]]
```

• Remarque. L'algorithme résout bien le problème des Tours d'Hanoï en un minimum de déplacements.

Indication : Par récurrence sur n.

Pour résoudre le problème : tôt ou tard il faudra déplacer le disque de plus gros diamètre n. Pour cela nécessairement les n-1 premiers disques devront être tous empilés dans le bon ordre sur une même colonne. Pour que le nombre de déplacements soit minimal il faut que le disque n soit déplacé d'entrée sur la colonne de droite.

Flocon de Von Koch



• Cette courbe est construite en partant d'un triangle équilatéral.

• Cette courbe est construite en partant d'un triangle équilatéral.

• Sur chaque segment :

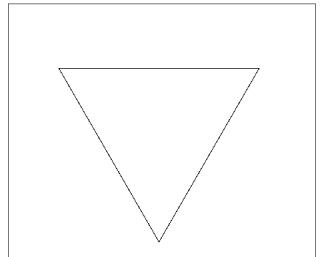
- 1. Diviser en 3 segments de mêmes longueurs.
- Considérer le triangle équilatéral extérieur construit sur le segment du milieu.
- 3. Remplacer ce segment par les 2 autres côtés du triangle équilatéral.

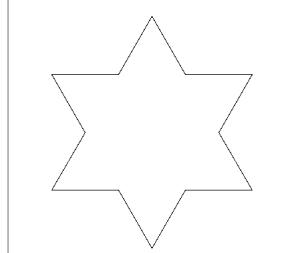
• Cette courbe est construite en partant d'un triangle équilatéral.

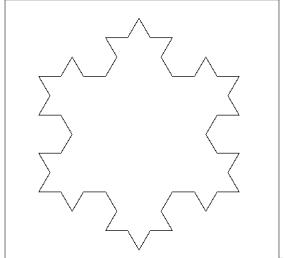
- Sur chaque segment :
 - 1. Diviser en 3 segments de mêmes longueurs.
 - Considérer le triangle équilatéral extérieur construit sur le segment du milieu.
 - 3. Remplacer ce segment par les 2 autres côtés du triangle équilatéral.

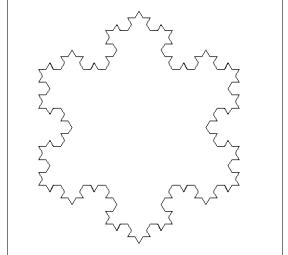
• Cette courbe est construite en partant d'un triangle équilatéral.

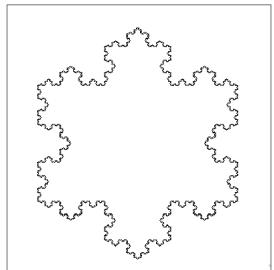
- Sur chaque segment :
 - 1. Diviser en 3 segments de mêmes longueurs.
 - Considérer le triangle équilatéral extérieur construit sur le segment du milieu.
 - 3. Remplacer ce segment par les 2 autres côtés du triangle équilatéral.
- Recommencer avec chaque segment obtenu.











• Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
<pre>forward(d), backward(d)</pre>	Avancer, reculer d'une distance d
left(a), right(a)	Tourner à gauche, droite, d'une angle a en degrés

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
forward(d), backward(d)	Avancer, reculer d'une distance d
left(a), right(a)	Tourner à gauche, droite, d'une angle a en degrés
goto(x,y)	Se déplace au point de coordonnées (x,y)
position()	Retourne la position courante

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
<pre>forward(d), backward(d)</pre>	Avancer, reculer d'une distance d
<pre>left(a), right(a)</pre>	Tourner à gauche, droite, d'une angle a en degrés
<pre>goto(x,y)</pre>	Se déplace au point de coordonnées (x,y)
<pre>position()</pre>	Retourne la position courante
color(couleur)	Détermine la couleur = 'black', 'blue', 'red',
width(1)	Détermine l'épaisseur du trait 1

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
forward(d), backward(d)	Avancer, reculer d'une distance d
left(a), right(a)	Tourner à gauche, droite, d'une angle a en degrés
goto(x,y)	Se déplace au point de coordonnées (x,y)
position()	Retourne la position courante
color(couleur)	Détermine la couleur = 'black', 'blue', 'red',
width(1)	Détermine l'épaisseur du trait 1
fill(p)	Remplir un contour fermé : p=True et p=False
	Pour délimiter la figure à remplir
circle(r)	Trace un cercle de rayon r

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
<pre>forward(d), backward(d)</pre>	Avancer, reculer d'une distance d
<pre>left(a), right(a)</pre>	Tourner à gauche, droite, d'une angle a en degrés
goto(x,y)	Se déplace au point de coordonnées (x,y)
<pre>position()</pre>	Retourne la position courante
color(couleur)	Détermine la couleur = 'black', 'blue', 'red',
width(1)	Détermine l'épaisseur du trait 1
fill(p)	Remplir un contour fermé : p=True et p=False
	Pour délimiter la figure à remplir
circle(r)	Trace un cercle de rayon r
undo()	Annule la dernière commande

- Pour le tracé on utilise le module turtle (inspiré du logo, (80's)). On déplace une tortue dans le plan (rapporté à un repère orthonormé direct), qui peut tracer sur son passage.
- Principales instructions :

reset()	Efface la fenêtre graphique, réinitialisation
up(), down()	Relève, abaisse le crayon
<pre>forward(d), backward(d)</pre>	Avancer, reculer d'une distance d
<pre>left(a), right(a)</pre>	Tourner à gauche, droite, d'une angle a en degrés
<pre>goto(x,y)</pre>	Se déplace au point de coordonnées (x,y)
<pre>position()</pre>	Retourne la position courante
color(couleur)	Détermine la couleur = 'black', 'blue', 'red',
width(1)	Détermine l'épaisseur du trait 1
fill(p)	Remplir un contour fermé : p=True et p=False
	Pour délimiter la figure à remplir
circle(r)	Trace un cercle de rayon r
undo()	Annule la dernière commande

• Voir l'aide en ligne :

https://docs.python.org/3.4/library/turtle.html

• Fonction traçant un polygône :

• Fonction traçant un polygône :

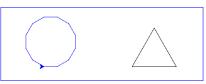
```
import turtle as tt
def polygone(n=3, l=100, clr='black'):
    tt.color(clr)
    tt.down()
    for i in range(n):
        tt.forward(1)
        tt.left(360/n)
```

• Fonction traçant un polygône :

```
import turtle as tt

def polygone(n=3, l=100, clr='black'):
    tt.color(clr)
    tt.down()
    for i in range(n):
        tt.forward(1)
        tt.left(360/n)
```

```
>>> tt.reset()
>>> polygone()
>>> tt.up()
>>> tt.goto(-200,0)
>>> polygone(12,30,'blue')
```



• Pour le tracer, on peut procéder par récursivité sur chacun des 3 segments du triangle initial :

• Pour le tracer, on peut procéder par récursivité sur chacun des 3 segments du triangle initial :

- 1. appeler vonKoch(longueur /3, n-1)
- 2. Tourner à gauche de 60°: tt.left(60)

• Pour le tracer, on peut procéder par récursivité sur chacun des 3 segments du triangle initial :

- 1. appeler vonKoch(longueur /3, n-1)
- 2. Tourner à gauche de 60° : tt.left(60)
- 3. appeler vonKoch(longueur / 3, n-1)
- 4. Tourner à droite de 120° : tt.right(120)

• Pour le tracer, on peut procéder par récursivité sur chacun des 3 segments du triangle initial :

- 1. appeler vonKoch(longueur /3, n-1)
- 2. Tourner à gauche de 60° : tt.left(60)
- 3. appeler vonKoch(longueur / 3, n-1)
- 4. Tourner à droite de 120° : tt.right(120)
- 5. appeler vonKoch(longueur / 3, n-1)
- 6. Tourner à gauche de 60° : tt.left(60)
- 7. appeler vonKoch(longueur / 3, n-1)


```
def vonkoch(longueur,n):
    if n == 1:
        tt.forward(longueur)
    else:
        1 = longueur / 3
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1); tt.right(120)
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1)
```

```
def vonkoch(longueur,n):
    if n == 1:
        tt.forward(longueur)
    else:
        1 = longueur / 3
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1); tt.right(120)
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1); tt.left(60)
        vonkoch(l, n - 1);
```

```
def floconVonKoch(longueur, n):
    tt.pen(speed = 0)  # Accélération du mouvement
    tt.hideturtle()  # Pour ne pas tracer la tortue
```

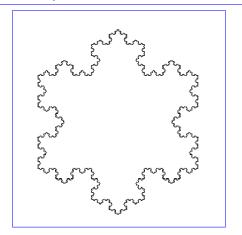
tt.down()

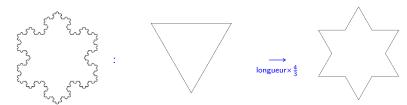
```
def vonkoch(longueur,n):
    if n == 1
       tt.forward(longueur)
    else:
        1 = longueur / 3
        vonkoch(1, n - 1); tt.left(60)
        vonkoch(1, n - 1); tt.right(120)
        vonkoch(1, n - 1); tt.left(60)
        vonkoch(1, n - 1)
def floconVonKoch(longueur, n):
   tt.pen(speed = 0) # Accélération du mouvement
   tt.hideturtle()
                           # Pour ne pas tracer la tortue
   tt.up()
```

tt.goto(-longueur/2, longueur/3) # Départ en haut à gauche

```
def vonkoch(longueur,n):
    if n == 1
       tt.forward(longueur)
    else:
        1 = longueur / 3
        vonkoch(1, n - 1); tt.left(60)
        vonkoch(1, n - 1); tt.right(120)
        vonkoch(1, n - 1); tt.left(60)
        vonkoch(1, n - 1)
def floconVonKoch(longueur, n):
   tt.pen(speed = 0) # Accélération du mouvement
   tt.hideturtle()
                           # Pour ne pas tracer la tortue
   tt.up()
    tt.goto(-longueur/2, longueur/3) # Départ en haut à gauche
   tt.down()
    for i in range(3):
        vonkoch(longueur,n); tt.right(120)
```

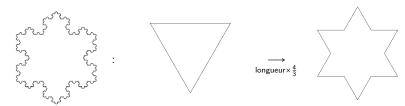
>>> floconVonKoch(300,6)





- Le flocon de Von Koch est la 'courbe fractale' obtenue à la limite.
- Toutes les courbes intermédiaires ont une longueur finie, terme de la suite géométrique :

$$L_n = (3 \times \text{longueur}) \times \left(\frac{4}{3}\right)^{n-1}$$

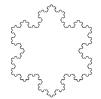


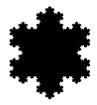
- Le flocon de Von Koch est la 'courbe fractale' obtenue à la limite.
- Toutes les courbes intermédiaires ont une longueur finie, terme de la suite géométrique :

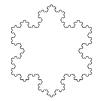
$$L_n = (3 \times \text{longueur}) \times \left(\frac{4}{3}\right)^{n-1}$$

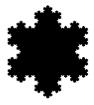
Le flocon est de longueur infinie : $\lim L_n = +\infty$.

C'est la limite d'une suite géométrique de raison $\frac{4}{3} > 1$.

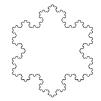


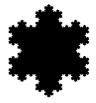






C'est une courbe de longueur infinie qui pourtant délimite un domaine d'aire finie :

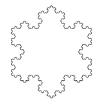


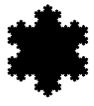


C'est une courbe de longueur infinie qui pourtant délimite un domaine d'aire finie :

En effet : en posant L = longueur (paramètre initial) :

$$Aire_1 = \underbrace{\frac{\sqrt{3}}{4} \times L^2}_{\text{aire triangle}} \qquad Aire_{n+1} = Aire_n + \underbrace{3 \times 4^{n-1}}_{\text{Nbre petits triangle}} \times \underbrace{\frac{\sqrt{3}}{4} \times \left(\underbrace{\frac{L}{3^{n-1}}}\right)^2}_{\text{de côté}}$$





Longueur infinie

Aire finie.

C'est une courbe de longueur infinie qui pourtant délimite un domaine d'aire finie :

En effet : en posant L = longueur (paramètre initial) :

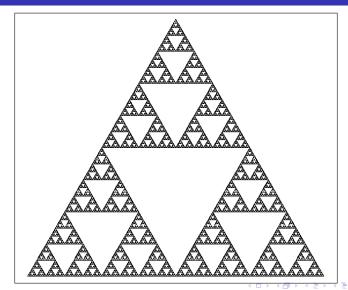
$$Aire_1 = \underbrace{\frac{\sqrt{3}}{4} \times L^2}_{\text{aire triangle}} \qquad Aire_{n+1} = Aire_n + \underbrace{\frac{3 \times 4^{n-1}}{1000} \times \frac{\sqrt{3}}{4} \times \left(\underbrace{\frac{L}{3^{n-1}}}_{\text{de côt\'e}}\right)^2}_{\text{de côt\'e}}$$

$$Aire_{n+1} = Aire_n + \left(\frac{4}{9}\right)^{n-1} \times \frac{3\sqrt{3}}{4} \times L^2$$

Airen: somme des termes d'une suite géométrique de raison

1: converge.

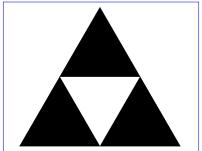
Triangle de Sierpinsky



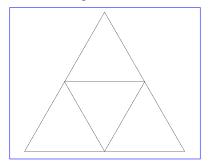
Triangle de Sierpinsky

• Construction:

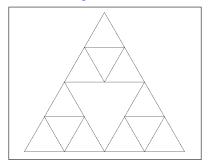
- 1. A partir d'un triangle équilatéral plein de côtés de longueur 1.
- Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
- 3. Supprimer le triangle au centre.
- 4. Recommencer avec les 3 triangles extérieurs.



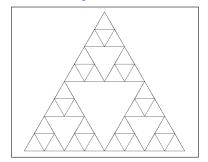
- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



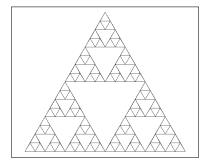
- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



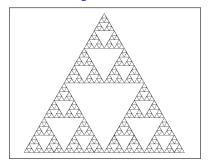
- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



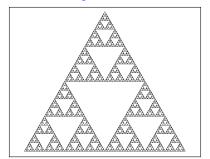
- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



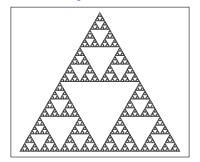
- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



- On programmera plutôt :
 - 1. Construire un triangle équilatéral de côtés de longueur 1.
 - Tracer ses 3 médianes : elles découpent 4 triangles équilatéraux de côtés de longueur I/2.
 - 3. Recommencer avec les 3 triangles extérieurs.



• Programmation récursive : pour chacun des 3 triangles extérieurs :

• Programmation récursive : pour chacun des 3 triangles extérieurs :

```
Si n > 0 : Effectuer 3 fois :
    sierp(longueur, n) :
```

- 1. Tracé d'un triangle fils :
 - 1.1 Appeler sierp(longueur/2, n-1)
 - 1.2 Tourner à gauche de 120° : tt.left(120)
 - 1.3 Appeler sierp(longueur/2, n-1)
 - 1.4 Tourner à gauche de 120° : tt.left(120)
 - 1.5 Appeler sierp(longueur/2, n-1)
- 2. Passer au triangle fils suivant en traçant un côté du triangle père :
 - 2.1 Tourner à gauche de 120° : tt.left(120)
 - 2.2 Avancer de longueur : tt.forward(longueur)

Tourner à gauche de 120°.

Un triangle "père" ses trois triangles "fils" sont les 3 "petits" triangles extérieurs.

• Programmation récursive : pour chacun des 3 triangles extérieurs : sierp(longueur, n): Sin > 0:

```
1. Tracé d'un triangle fils :
```

- 1.1 Appeler sierp(longueur/2., n-1)
- 1.2 Tourner à gauche de 120° : tt.left(120)
- 1.3 Appeler sierp(longueur/2., n-1)
- 1.4 Tourner à gauche de 120° : tt.left(120)
- 1.5 Appeler sierp(longueur/2., n-1)
- 2. Passer au triangle fils suivant en traçant un côté du triangle père :
 - 2.1 Tourner à gauche de 120° : tt.left(120)
 - 2.2 Avancer de longueur : tt.forward(longueur)

```
Si n == 0 : (cas terminal)
```

1. Avancer de longueur : tt.forward(longueur)

• Programmation récursive : pour chacun des 3 triangles extérieurs :

```
sierp(longueur, n) :
Si n > 0 :
```

- 1. Tracé d'un triangle fils :
 - 1.1 Appeler sierp(longueur/2., n-1)
 - 1.2 Tourner à gauche de 120° : tt.left(120)
 - 1.3 Appeler sierp(longueur/2., n-1)
 - 1.4 Tourner à gauche de 120° : tt.left(120)
 - 1.5 Appeler sierp(longueur/2., n-1)
- 2. Passer au triangle fils suivant en traçant un côté du triangle père :
 - 2.1 Tourner à gauche de 120° : tt.left(120)
 - 2.2 Avancer de longueur : tt.forward(longueur)

```
Sin == 0 : (cas terminal)
```

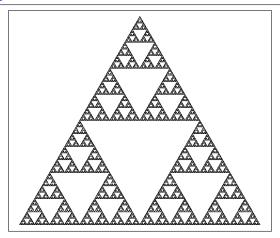
- Avancer de longueur : tt.forward(longueur)
- Remarque : on trace <u>séparément</u> chacun des 3 <u>premiers</u> triangles fils pour éviter l'étape 2 (qui causerait un trait de trop : tt.forward(longueur)). On pourrait aussi ne pas effectuer l'étape 2 au premier appel.

```
def sierp(longueur, n):
    if n==0:
        tt.forward(longueur)
    else:
        sierp(longueur/2, n-1); tt.left(120)
        sierp(longueur/2, n-1); tt.left(120)
        sierp(longueur/2, n-1); tt.left(120)
        tt.forward(longueur)
```

```
def sierp(longueur, n):
    if n==0:
        tt.forward(longueur)
    else:
        sierp(longueur/2, n-1); tt.left(120)
        sierp(longueur/2, n-1); tt.left(120)
        sierp(longueur/2, n-1); tt.left(120)
        tt.forward(longueur)
```

```
def triangle(longueur, n):
    tt.pen(speed=0)
    tt.hideturtle()
    tt.up()
    tt.goto(-longueur/2, -longueur/3)  # sommet bas/gauche
    tt.down()
    for i in range(3):
        sierp(longueur, n); tt.left(120)
```

>>> triangle(600,7)



Limitations de la programmation par récursivité

 \bullet Ecrivons deux versions, l'une itérative, l'autre récursive, d'une fonction retournant le terme de rang n de la suite de Fibonacci :

$$u_0 = 0$$
, $u_1 = 1$, $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$

Limitations de la programmation par récursivité

ullet Ecrivons deux versions, l'une itérative, l'autre récursive, d'une fonction retournant le terme de rang n de la suite de Fibonacci :

$$u_0 = 0, \quad u_1 = 1, \quad \forall \ n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n$$

```
def fibo_iter(n):  # Version iterative
  if n==0:
    return 0
  u, v = 0, 1
  for i in range(n-1):
    u, v = v, u+v
  return v
```

Limitations de la programmation par récursivité

 \bullet Ecrivons deux versions, l'une itérative, l'autre récursive, d'une fonction retournant le terme de rang n de la suite de Fibonacci :

```
u_0 = 0, u_1 = 1, \forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n
```

```
def fibo_iter(n):  # Version iterative
   if n==0:
     return 0
   u, v = 0, 1
   for i in range(n-1):
     u, v = v, u+v
   return v
```

```
def fibo_rec(n):  # Version récursive
   if n==0:
      return 0
   if n==1:
      return 1
   return fibo_rec(n-1) + fibo_rec(n-2)
```

```
Comparons leurs temps d'éxécution :
```

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
```

Comparons leurs temps d'éxécution :

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
In [2]: %timeit fibo_rec(20)
100 loops, best of 3: 4.6 ms per loop
```

Pour n = 20 La version itérative est plus de 2000 fois plus rapide!

Comparons leurs temps d'éxécution :

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
In [2]: %timeit fibo_rec(20)
100 loops, best of 3: 4.6 ms per loop
```

Pour n = 20 La version itérative est plus de 2000 fois plus rapide!

```
In [3]: %timeit fibo_iter(30)
100000 loops, best of 3: 2.84 µs per loop
In [4]: %timeit fibo_rec(30)
1 loops, best of 3: 565 ms per loop
```

Comparons leurs temps d'éxécution :

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
In [2]: %timeit fibo_rec(20)
100 loops, best of 3: 4.6 ms per loop

Pour n = 20 La version itérative est plus de 2000 fois plus repidel
```

Pour n = 20 La version itérative est plus de 2000 fois plus rapide!

```
In [3]: %timeit fibo_iter(30)
100000 loops, best of 3: 2.84 µs per loop
In [4]: %timeit fibo_rec(30)
1 loops, best of 3: 565 ms per loop
```

Pour n = 30 La version itérative est près de 200 000 fois plus rapide!

Comparons leurs temps d'éxécution :

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
In [2]: %timeit fibo_rec(20)
100 loops, best of 3: 4.6 ms per loop
```

Pour n = 20 La version itérative est plus de 2000 fois plus rapide!

```
In [3]: %timeit fibo_iter(30)
100000 loops, best of 3: 2.84 µs per loop
In [4]: %timeit fibo_rec(30)
1 loops, best of 3: 565 ms per loop
```

Pour n = 30 La version itérative est près de 200 000 fois plus rapide!

```
In [9]: %timeit fibo_iter(40)
100000 loops, best of 3: 3.68 µs per loop
In [8]: %timeit fibo_rec(40)
1 loops, best of 3: 1min 9s per loop
```

Comparons leurs temps d'éxécution :

```
In [1]: %timeit fibo_iter(20)
100000 loops, best of 3: 1.98 µs per loop
In [2]: %timeit fibo_rec(20)
100 loops, best of 3: 4.6 ms per loop
```

Pour n = 20 La version itérative est plus de 2000 fois plus rapide!

```
In [3]: %timeit fibo_iter(30)
100000 loops, best of 3: 2.84 µs per loop
In [4]: %timeit fibo_rec(30)
1 loops, best of 3: 565 ms per loop
```

Pour n = 30 La version itérative est près de 200 000 fois plus rapide!

```
In [9]: %timeit fibo_iter(40)
100000 loops, best of 3: 3.68 µs per loop
In [8]: %timeit fibo_rec(40)
1 loops, best of 3: 1min 9s per loop
```

Pour n = 40 La version itérative est près de 20 millions de fois plus rapide! Pour des valeurs de n plus grandes la version récursive ne répond plus!

Limitations. Explication.

def fiborec(n):

Explication : Modifions le code pour qu'il affiche les rangs calculés :

```
if n==0:
        print('rang 0')
        return 0
    if n==1:
        print('rang 1')
    return 1
    print('rang',n)
    return fiborec(n-1) + fiborec(n-2)
In [19]: fiborec(4)
rang 4
rang 3
rang 2
rang 1
rang 0
rang 1
rang 2
rang 1
rang 0
```

Pile d'exécution
fibo(4) = fibo(3) + fibo(2)

Appels: 4

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

Appels : 4 - 3

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(2) = fibo(1) + fibo(0)
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

Appels : 4 - 3 - 2

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(1) = 1
fibo(2) = fibo(1) + fibo(0)
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

Appels : 4 - 3 - 2 - 1

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(2) = 1 + fibo(0)
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(0) = 0
fibo(2) = 1 + fibo(0)
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

Appels : 4 - 3 - 2 - 1 - 0

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(2) = 1
fibo(3) = fibo(2) + fibo(1)
fibo(4) = fibo(3) + fibo(2)

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(3) = 1 + fibo(1)
fibo(4) = fibo(3) + fibo(2)

```
>>> fiborec(4) rangs: 4 - 3 - 2 - 1 - 0 - 1 - 2 - 1 - 0
```

Pile d'exécution
fibo(1) = 1
fibo(3) = 1 + fibo(1)
fibo(4) = fibo(3) + fibo(2)

Pile d'exécution
fibo(3) = 2
fibo(4) = fibo(3) + fibo(2)

Pile d'exécution
fibo(4) = 2 + fibo(2)

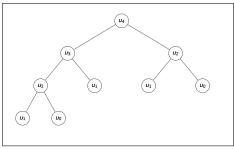
Pile d'exécution
fibo(2) = fibo(1) + fibo(0)
fibo(4) = 2 + fibo(2)

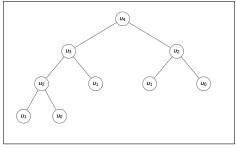
Pile d'exécution
fibo(1) = 1
fibo(2) = fibo(1) + fibo(0)
fibo(4) = 2 + fibo(2)

Pile d'exécution
fibo(0) = 0
fibo(2) = 1 + fibo(0)
fibo(4) = 2 + fibo(2)

Pile d'exécution
fibo(2) = 1
fibo(4) = 2 + fibo(2)

Pile d'exécution
fibo(4) = 3



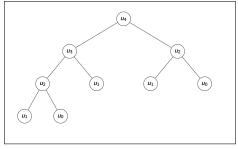


Complexité: C_0 , $C_1 = 1$, C(k+2) = C(k+1) + C(k) + O(1).

$$\implies C(k+2) \ge C(k+1) + C(k)$$

$$\implies C(k) \geqslant \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right) \underset{+\infty}{\sim} \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k+1}.$$

La complexité est exponentielle en temps.

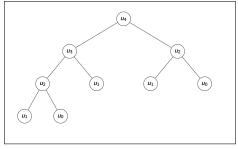


Complexité: C_0 , $C_1 = 1$, C(k+2) = C(k+1) + C(k) + O(1).

$$\implies C(k+2) \geqslant C(k+1) + C(k)$$

$$\implies C(k) \geqslant \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right) \underset{+\infty}{\sim} \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k+1}.$$

La complexité est exponentielle en temps.

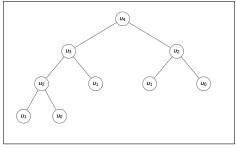


Complexité: C_0 , $C_1 = 1$, C(k+2) = C(k+1) + C(k) + O(1).

$$\implies C(k+2) \geqslant C(k+1) + C(k)$$

$$\implies C(k) \geqslant \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right) \underset{+\infty}{\sim} \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k+1}.$$

La complexité est exponentielle en temps.



Complexité: C_0 , $C_1 = 1$, C(k+2) = C(k+1) + C(k) + O(1).

$$\implies C(k+2) \geqslant C(k+1) + C(k)$$

$$\implies C(k) \geqslant \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right) \underset{+\infty}{\sim} \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{k+1}.$$

La complexité est exponentielle en temps.

La **complexité est linéaire en espace** (le pile d'exécution atteint, mais ne dépasse jamais, n).

Pour résoudre efficacement par récursivité le calcul de la suite de Fibonacci : Réserver un tableau L de capacité n+1 pour stocker les termes u_0, u_1, \ldots, u_n de la suite. On le passera aussi en paramètre lors des appels récursifs :

Pour résoudre efficacement par récursivité le calcul de la suite de Fibonacci : Réserver un tableau L de capacité n+1 pour stocker les termes u_0,u_1,\ldots,u_n de la suite. On le passera aussi en paramètre lors des appels récursifs :

```
def fiborecursif(n,L): # Partie récursive
   print(n, end = ', ')  # Pour l'affichage
   if L[n] != None: # Si déjà calculé pas d'appel récursif
       return L[n] # et retour de sa valeur
                  # Sinon, appels récursifs et enregistrement :
   else :
       L[n] = fiborecursif(n-1,L) + fiborecursif(n-2,L)
       return L[n]
def fibonacci(n): # Partie Principale (Main)
   L = [0, 1] + [None]*(n-1)
                               # Création du tableau
   print('rangs : ', end = '')
                                 # Pour l'affichage
   return fiborecursif(n,L)
                               # Appel de la partie récursive.
```

```
In[9]: fibonacci(4)
rangs : 4 3 2 1 0 1 2
In [10]: fibonacci(5)
rangs : 5 4 3 2 1 0 1 2 3
In[11]: fibonacci(6)
rangs : 6 5 4 3 2 1 0 1 2 3 4
```

```
In[9]: fibonacci(4)
rangs : 4 3 2 1 0 1 2
In [10]: fibonacci(5)
rangs : 5 4 3 2 1 0 1 2 3
In[11]: fibonacci(6)
rangs : 6 5 4 3 2 1 0 1 2 3 4
```

COMPLEXITE LINEAIRE EN TEMPS (ET ESPACE)!...

```
In [12]: %timeit fibonacci(40)
10000 loops, best of 3: 24.2 µs per loop
```