Lycée Fénelon BCPST1

Année 2021-22 Applications linéaires

TD nº 23: Exercices sur les applications linéaires.

Exercice 1 Soit les applications :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 et $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ $(x,y) \longmapsto (2x-3y,x+4y)$ $(x,y,z) \longmapsto (x+y,x+z,x+y)$

- 1. Démontrer que les applications f et g sont linéaires.
- 2. Calculer leur noyau et leur image respectifs.
- 3. Préciser si f (resp. g) est injective, surjective, bijective. Dans ce dernier cas, calculer sa bijection réciproque.

Exercice 2 Les applications suivantes de \mathbb{R}^2 dans \mathbb{R}^2 sont-elles linéaires?

- 1. $f_1((x,y)) = (1, x + y)$
- 2. $f_2((x,y)) = (|x|, |y|)$
- 3. $f_3((x,y)) = (0, x y)$
- 4. $f_4((x,y)) = (x^2, y^2)$

Exercice 3 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique \mathcal{B} de \mathbb{R}^3 est :

$$\operatorname{mat}_{\mathcal{B}}(f) = M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Calculer $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Exercice 4 Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice relativement aux bases canoniques de \mathbb{R}^3 et de \mathbb{R}^2 (notées respectivement $\mathcal{B} = (e_1, e_2, e_3)$ et $\mathcal{B}' = (f_1, f_2)$) est :

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f) = A = \left(\begin{array}{ccc} 1 & -1 & 1 \\ -1 & 1 & -1 \end{array} \right)$$

- 1. Calculer $\operatorname{Ker} f$ et $\operatorname{Im} f$.
- 2. Calculer la matrice de f relativement aux bases suivantes :
 - (a) $\mathcal{B}_1 = (e_2, e_3, e_1)$ et \mathcal{B}' .
 - (b) $\mathcal{B}_2 = (e_3, e_1, e_2)$ et \mathcal{B}' .
 - (c) \mathcal{B} et $\mathcal{B}'_1 = (f_2, f_1)$

2 BCPST1 2021-2022

Exercice 5 Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique \mathcal{B} de \mathbb{R}^3 est :

$$\operatorname{mat}_{\mathcal{B}}(f) = A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{array}\right)$$

- 1. Montrer que f est bijective.
- 2. Calculer la matrice de f^{-1} relativement à la base canonique \mathcal{B} de \mathbb{R}^3 .

Dans les exercices suivants, p désigne un entier naturel non nul.

Exercice 6 Soient f et g deux endomorphismes de \mathbb{K}^p .

Montrer que $g \circ f = 0_{\mathcal{L}(K^p)}$ (endomorphisme nul) si et seulement si $\mathrm{Im} f \subset \mathrm{Ker} g$.

Exercice 7 Soit f un endomorphisme de \mathbb{K}^3 tel que $f^3 = 0_{\mathcal{L}(K^3)}$ et $f^2 \neq 0_{\mathcal{L}(K^3)}$ (ie f endomrphisme nilpotent d'indice de nilpotence 3)

- 1. Soit u un vecteur de \mathbb{K}^3 tel que $f^2(u) \neq 0_{\mathbb{K}^3}$. Montrer que la famille $(u, f(u), f^2(u))$ est une base de \mathbb{K}^3 , puis donner la matrice de f relativement à cette base.
- 2. Déterminer $\operatorname{Ker} f$, $\operatorname{Ker} f^2$. Donner le rang de f.

Exercice 8 Soient f et g deux endomorphismes de \mathbb{K}^p tel que $f \circ g = g \circ f$. Démontrer que $g(\operatorname{Ker} f) \subset \operatorname{Ker} f$ et que $g(\operatorname{Im} f) \subset \operatorname{Im} f$.

Exercice 9 Soient f un endomorphisme de \mathbb{K}^p .

- 1. Ecrire les endomorphismes $f^3 \mathrm{id}_{\mathbb{K}^p}$ et $f^3 + \mathrm{id}_{\mathbb{K}^p}$ sous forme d'un produit d'endomorphismes.
- 2. On suppose que $f^3 = 0_{\mathcal{L}(K^3)}$. Montrer que $f \mathrm{id}_{\mathbb{K}^p}$ et $f + \mathrm{id}_{\mathbb{K}^p}$ sont bijectifs et donner leur bijection réciproque.
- 3. Reprendre l'exercice dans le cas d'un entier non nul m quelconque (remplacer partout 3 par m)

Exercice 10 On appelle projecteur de \mathbb{K}^n tout endomorphisme p de \mathbb{K}^n tel que : $p \circ p = p$.

- 1. Établir : $\operatorname{Ker} p \cap \operatorname{Im} p = \{0_{\mathbb{K}^n}\}.$
- 2. Soit $\mathcal{B}_1 = (e_1, \dots, e_k)$ une base du noyau de f et $\mathcal{B}_2 = (e'_1, \dots, e'_i)$ une base de l'image de f. On note $\mathcal{B} = (e_1, \dots, e_k, e'_1, \dots, e'_i)$ la famille obtenue en réunissant les familles \mathcal{B}_1 et \mathcal{B}_2 .
 - (a) Montrer que la famille \mathcal{B} est libre (on pourra utiliser la question 1).
 - (b) En déduire que \mathcal{B} est une base de \mathbb{K}^n .
- 3. Montrer que : $\forall y \in \text{Im} p, \quad p(y) = y$
- 4. Donner la forme de la matrice représentative de p dans la base \mathcal{B} .