TD 4 (feuille d'exo 3) -Boucles for et while

Informatique MPSI-PCSI - Lycée Thiers

Exercice 1.

Enoncé

Correction

Exercice 2.

Enoncé

Correction

Exercice 3.

Enoncé

Correction

Exercice 4.

Enoncé

Correction

Exercice 5.

Enoncé

Correction

Exercice 6.

Enoncé

Correction

Exercice 1.

Soit la suite $(u_n)_n$ définie par :

$$u_0 = 0 \quad \forall \ n \in \mathbb{N}, \ u_{n+1} = u_n^2 + 1$$

Ecrire une fonction u(n) prenant en paramètre un entier positif n et qui retourne la valeur numérique du terme u_n de rang n de la suite $(u_n)_n$.

Exercice 1. Corrigé

```
def u(n):
    u = 0
    for k in range(n):
        u = u**2+1
    return u
```

À retenir : méthode générale pour obtenir le terme u_n d'une suite (u_n) définie à l'aide d'une relation de récurrence à 1 pas.

Exercice 2.

Écrire une fonction somme(n,k) prenant en paramètres deux entiers positifs n et k et qui retourne la valeur de la somme :

$$\sum_{a=1}^{n} a^{k}$$

Pour k = 1, 2, 3 comparer le résultat obtenu pour certaines valeurs de n que l'on choisira avec ce qu'on obtient par les formules connues :

$$\sum_{a=1}^{n} a = \frac{n(n+1)}{2} \quad ; \quad \sum_{a=1}^{n} a^{2} = \frac{n(n+1)(2n+1)}{6} \quad ; \quad \sum_{a=1}^{n} a^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Exercice 2. Corrigé

```
def somme(n,k):
    S = 0
    for a in range(1,n+1):
        S += a**k
    return S
```

À retenir : méthode générale pour calculer une somme.

Exercice 3.

Exercice 1. On admet (le démontrer?) que :

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}=+\infty$$

Déterminer le plus petit entier n tel que $\sum_{k=1}^{n} \frac{1}{k} \ge 10$.

Exercice 3. Enoncé

Corrigé. Tout d'abord la suite $(u_n)_n$ définie par $u_n = \sum_{k=1}^n \frac{1}{k}$ est strictement croissante : en effet $\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = \frac{1}{n+1} > 0$,

et la suite (u_n) diverge vers $+\infty$. En effet puisque $x\mapsto \frac{1}{x}$ est strictement décroissante sur \mathbb{R}_+^* et admet ln pour primitive, $\forall \ k\in\mathbb{N}^*$:

$$\int_{k}^{k+1} \frac{1}{x} dx = \ln(k+1) - \ln(k) \leqslant \frac{1}{k} ((k+1) - k) = \frac{1}{k}$$

En sommant l'inégalité pour k variant de 1 à n :

$$\sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{1}^{n+1} \frac{1}{x} dx = \boxed{\ln(n+1) \leq \sum_{k=1}^{n} \frac{1}{k}}$$

Puisque $\lim_{n\to\infty} \ln(n+1) = +\infty$, alors $\lim_{n\to\infty} u_n = +\infty$.

Exercice 3. Enoncé

```
S = 0

k = 0

while S < 10:

    k += 1

    S += 1/k

print(k)
```

On obtient n = 12367. Vérifions-le :

```
S1 = 0

for k in range(1,12367):

    S1 += 1/k

print("Somme jusqu'à 12366 :", S1)

print("Somme jusqu'à 12367 :", S1+1/12367)
```

```
Somme jusqu'à 12366 : 9.99996214792161
Somme jusqu'à 12367 : 10.000043008275778
```

Exercice 4.

Exercice 2. Ecrire une fonction sommeDouble(n) qui retourne la valeur numérique du résultat de la somme double :

$$\sum_{k=0}^{n} \sum_{i=0}^{k} (i+k)$$

Comparer pour certaines valeurs de n avec le résultat obtenu par le calcul.

Exercice 4. Corrigé

```
def sommeDouble(n):
    S = 0
    for k in range(n+1):
        for i in range(k+1):
            S += i+k
    return S
```

À retenir : méthode générale pour calculer une somme double.

On peut comparer ce que retourne la fonction pour quelques valeurs de n avec ce qu'on obtient par le calcul en exprimant cette somme en fonction de n; le calcul donne $\frac{n(n+1)(n+2)}{2}$.

Exercice 5.

Exercice 3.

1. Ecrire une <u>fonction</u> syracuse(u,n) qui prend en paramètre deux entiers positifs u et n et qui <u>retourne la liste</u> des n+1 premiers termes u_0, u_1, \ldots, u_n de la suite $(u_n)_n$ de premier terme u_0 =u et définie par la relation de récurrence :

$$u_0 = u$$
 $\forall n \in \mathbb{N}, u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair} \\ 3u_n + 1 & \text{si } u_n \text{ est impair} \end{cases}$

2. Vérifier sur quelques essais la conjecture de Syracuse : "Quel que soit son premier terme $u_0 \in \mathbb{N}^*$, la suite de Syracuse est périodique à partir d'un certain rang".

Exercice 5. Corrigé

2. Dès que 1 apparaît la suite devient périodique 1,4,2,1,4,2,1, etc...:

```
In [1]: 1 in syracuse(7,100)
Out[1]: True
In[2]: 1 in syracuse(71,100)
Out[2]: False
In[2]: 1 in syracuse(71,1000)
Out[2]: True
```

Exercice 6.

Exercice 4.

- Soit a une variable de type entier; quelle expression renvoie son chiffre des unités? Comment obtenir son chiffre des dizaines? des centaines?
- Écrire une fonction sommeCube(n) qui prend en paramètre un entier positif n et qui renvoie la somme des cubes de ses chiffres.
- 3. Écrire un script qui permettra d'obtenir tous les entiers entre 1 et 10 000 qui sont égaux à la somme des cubes de leurs chiffres. Par exemple :

153 :
$$1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153$$

Exercice 6. Corrigé

```
1. réponses :
a%10
(a//10)%10
(a//100)%10
2.

def sommeCube(n):
    S = 0
    while n > 0:
        S += (n%10)**3
        n = n//10
    return S
```

Exercice 6. Corrigé

3) Le mieux est de constituer une liste.

```
L = []
for n in range(1001):
    if n == somCube(n):
        L.append(n)
print(L)
```

ou par compréhension de liste :

```
L = [n for n in range(1001) if n == somCube(n)]
```

```
On obtient : [0, 1, 153, 370, 371, 407]
```