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Abstract. In this short preliminary note we study the homological
and analytic torsion of arithmetic three–orbifolds defined by division
quaternion algebras as the commensurability class varies.

1. Introduction

The aim of this note is to prove the following result (see 2 for the defini-
tions regarding arithmetic subgroups).

Theorem A. Let Γn be a sequence of congruence or maximal torsion-free
uniform arithmetic subgroups of SL2(C) defined over imaginary quadratic
number fields (resp. cubic fields with one complex place). Then there exists
a sequence of Z-lattices Ln in sl2(C) (resp. sl2(C)3) preserved by Γn and we
have the limit:

lim
n→+∞

log |Hp(Γn;Ln)|
vol Γn\H3

=

{
0 if p = 0, 2;
13
6π (resp. 132π ) if p = 1.

A short argument for the existence statement in the quadratic case is
as follows (we prove a more general result in 3 below; see also [6]): let
An be the quaternion algebra used to define Γn, On an order in An such
that Γn normalizes On. Let Un be the subspace of An ⊗ C of quaternions
having null trace; then Un ∩On is isomorphic as a Γn-module to a lattice in
sl2(C) ∼= Un ⊗ C.

The main content of this theorem is the case p = 1; the growth rates for
degrees 0 and 2 are established using simple algebraic manipulations, but to
prove the exponential growth rate of the size of H1 we use:

• Analytic torsion and the Cheeger–Müller theorem [7];
• The approximation results for L2-torsion established in [2],[1];
• The convergence results for arithmetic orbifolds from [9].

In fact the proof of Theorem A is little more than a concatenation of these
results, and the bulk of this note is dedicated to introduce objects and
notation and to prove the statements in degrees 0 and 2.

1



2 JEAN RAIMBAULT

2. Quaternion algebras and arithmetic lattices in SL2(C)

We record a few results and definitions from [5]; our terminology and
notation may differ from those in this reference.

2.1. Generalities. A quaternion algebra over a field F is a four-dimensional
algebra over F which is simple and whose center is F . Such algebras are
constructed as follows: let E be a quadratic extension of F with nontrivial
Galois automorphism x 7→ x, and fix a nonzero θ ∈ F . Then the algebra

(2.1) A = E ⊕ Ej
where j is a symbol such that j2 = θ, with the multiplication law defined by

(x′ + y′j)(x+ yj) = (x′x+ θy′y) + (x′y + y′x)j

is a quaternion algebra over F , and all such are obtined in this manner. It is
said to be split if θ is actually a square in E, in which case it is isomorphic
to the matrix algebra M2(F ); otherwise it is a division algebra.

The algebra A is endowed with an involution z = x + yj 7→ z = x − yj
and natural morphisms to F defined as follows:

|z|A = zz = |x|E/F + θ|y|E/F , trA(z) = z + z = trE/F (x).

When A ∼= M2(F ) these are identified with the usual determinant and trace.
We shall denote by SL1(A) the F -algebraic group defined by the kernel of
the norm | · |A: it is an almost simple, simply connected group.

If F is a number field or a local non-Archimedean field and OF its ring of
integers, an order in A is a subring (containing 1) of A which is also a OF -
submodule of rank four (in the matrix case an example is given by M2(OF );
we will usually denote such orders by OA in the sequel.

2.2. Local results. If F is a number field, v a finite place of F and Fv the
completion of F at v then there is a unique unramified quadratic extension
Ev of Fv (obtained by adjoining the square root of a unit). We let moreover
Pv be the prime ideal of OF corresponding to v and πv a ggenerator for
PvOFv ; then there is a unique division quaternion algebra over Fv, obtained
by setting E = Ev and θ = πv in the definition (2.1).

Suppose that Av is equal to this division algebra; then there is a unique
maximal order OAv in Av, which is given by:

OAv = OEv ⊕OEvj.

The subgroup Kv = O1
Av

of the Fv-points of the algebraic group SL1(Av) is
its unique maximal compact subgroup. If K ′v is a compact-open subgroup it
is thus contained in Kv and there is a m ≥ 1 such that it contains Kv(m) =
1 + πmv OAv . If K ′v ( Kv and m0 is the maximal such integer we say that
K ′v has level Pm0

v at v; we define the level of Kv to be OFv .
In the case where Av = M2(Fv) there are infinitely many maximal or-

ders, but they are all conjugated by an inner automorphism of Av to OAv =
M2(OFv). Likewise, every maximal compact subgroup is conjugated by an



HOMOLOGICAL TORSION OF ARITHMETIC THREE–MANIFOLDS 3

inner automorphism to Kv = SL2(OFv), and a basis of compact-open neigh-
bourhoods of the identity is given by the subgroups 1 + πmv OAv ,m ≥ 1 of
the latter. We define the level of an open subgroup of Kv as above, and
extend the definition to all compact open subgroups in the natural way.

2.3. Global orders and arithmetic lattices. Let F be a number field of
degree r with r2 complex places and r1 real ones, and let A a quaternion
algebra over F . We shall denote by G the F -algebraic group SL1(A) and by
G∞ be the real Lie group

G∞ =
∏
v∈V∞

G(Fv) ∼= SL2(C)r2 × SL2(R)r1−a × SU(2)a

where a is the number of real places of F where A is ramified. We also
choose for each v a maximal compact subgroup Kv in G(Fv) and let Gf be
the locally compact group defined by taking the restricted product of all
G(Fv) with respect to those subgroups.

The choice of the quaternion algebra A defines a commensurability class
of arithmetic lattices in G∞. A congruence group in G(F ) is by definition a
subgroup Γ ⊂ G(F ) such that there exists a compact-open subgroup Kf of
Gf with the property that Γ = G(F )∩Kf : in other words the closure of Γ in
Gf is equal to Γ itself. Any such congruence group is a lattice in G∞ under
the diagonal embedding G(F ) in the latter, and the subgroups in G∞ which
are commensurable to one (or any) such lattice form a commensurability
class of lattices in G∞. We will say that such arithmetic subgroups of G∞
are defined over F , or that their field of definition is F .

If Γ′ belongs to this commensurability class then Γ = Γ′ ∩ G(F ) does as
well, and for each finite place v the closure K ′v of Γ in G(Fv) is a compact-
open subgroup, which therefore has a well-defined level Pmv

v for some mv ≥
1. If moreover Γ is a congruence group in G(F ), then we define the level of Γ′

to be the ideal
∏
v∈Vf P

mv
v . In particular, the level is defined for congruence

or maximal lattices in the commensurability class.
According to the local picture described above, if Γ ⊂ G(F ) is an arith-

metic group in the commensurability class defined by A then at each finite
place v there is an order OAv in Av = A⊗Fv which is normalized by Γ; thus
the global order OA of A defined by OA = A ∩

∏
vOAv is normalized by Γ.

Since any arithmetic lattice in the commensurability class normalizes a Γ as
above it is not necessary to suppose that Γ′ ⊂ G(F ) for Γ′ to normalize an
order.

In the sequel we will restrict (though until 5 we do not need to) to the case
where G∞ = SL2(C) × K ′∞ where K ′∞ is compact (in the notation above,
this means that r2 = 1 and r1 = a). A. Borel’s formula for the volume of
congruence lattices [5, Theorem 11.1.3] together with the upper bounds for
the index [Γ : Γ ∩ G(F )] when Γ is a maximal lattice, yield the following
lower bound for the covolume: let Γ be a congruence or maximal lattice of
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level I, then:

(2.2) vol(Γ\H3)� 2−s · |I| ·D
where s is the number of primes dividing I and D =

∏
v∈S(qv + 1) where S

is the set of finite places at which A ramifies.

3. Local systems

As was explained briefly in the notes to Theorem A, arithmetic lattices in
SL2(C) defined over quadratic fields always preserve a lattice in the adjoint
representation. More generally, if we let V2m, ρ2m denote the representation
of SL2(C) on the complex vector space Symm(sl2(C)) then it remains true
that the image by ρ2m of such an arithmetic group preserves a lattice in V2m
(see also [6, Proposition 3.3] for a more conceptual proof). On the other
hand, if Γ is an arithmetic lattice defined over a non-quadratic field there
may not be any ρ2m(Γ)-invariant lattice in V2m. One has to take multiples
of the representation to ensure their existence.

Proposition 3.1. If Γ is an arithmetic lattice in SL2(C) defined over a
number field F of degree r over Q then for all m ≥ 1 there is a Γ-invariant

lattice L in the representation (km,rρ2m, V
km,r

2m ), where

km,r =

(
3(r − 2) +m− 1

m

)
is the dimension of the mth symmetric power of R3(r−2)).

Proof. We note for future use that we shall prove below a more explicit
(albeit also more cumbersomely stated) result, which goes as follows: let A
be the F -quaternion algebra defining the commensurability class of Γ and
let OA be an OF -order in A normalized by Γ; then as a Γ-module the lattice
L is isomorphic to the mth symmetric power of the elements of trace 0 in
OA.

First we prove this for m = 1; moreover, since the representations ρ2m fac-
tor through {±1} we shall deal with lattices in the adjoint group PSL2(C) =
PGL2(C). Notation as above, let W denote the F -vector space of elements
of trace 0 in A, and let G be the Weil restriction from F to Q of the group
PGL1(A). The latter acts on W by conjugation, and the subgroup Γ of
G(F ) preserves the submodule L = (O ∩W ). Now on the complex vector
space W∞ = W ⊗Q R there is a representation ρ∞ of G∞ = G(R), and
ρ∞(Γ) preserves the lattice L ⊂W∞. Let σ1 be a complex embedding of F ,
and let

Wc = W σ1 ⊗F C, Wr =
⊗
σ

W σ ⊗F R

where the tensor product is over all real embeddings of F . Let ρ be the
restriction of ρ∞ to the subgroup Gc = PGL1(A

σ1 ⊗F C) ∼= PGL2(C). It
is isomorphic to ρc ⊗R 1Wr where ρc is the natural representation of Gc on
Wc and 1V denotes the trivial representation on a vector space V . Since as
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a representation of PGL2(C), ρc is isomorphic to the adjoint representation
and dimRWr = 3(r− 2) this finishes the proof of the proposition for m = 1.

The case of any k ≥ 1 follows, since we have a map of SL2(C)-modules

from Symm(V
k2,r
2 ) to V

km,r

2m which is rational. �

4. Growth of homology in degrees 0 and 2

We will give here upper bounds for the order of the torsion subgroups of
H0, H2 for arithmetic lattices, in terms of the level and discriminant. They
are sufficient to deduce the part of Theorem A dealing with these degrees.

4.1. Bounds for the order of co-invariants.

Proposition 4.1. Let A be a quaternion algebra over a number field of
degree r and OA an order of level I in A. Let L be the lattice in k2,rV2 pre-
served by ρ(O1

A) given by Proposition 3.1; then there is a N ∈ Z depending
only on m, r such that:

NIDAL ⊂ (O1
A − 1) · L.

The proof occcupies the rest of the section. Since the algebraic group
SL1(A) satisfies absolute strong approximation it suffices to prove the corre-
sponding statement at each finite place of F ; this is done for ramified places
in Lemma 4.2 and for split ones in Lemma 4.3. We will use the notation of
2

Lemma 4.2. If A ramifies at a finite place v which does not divide 2 we
have πvLv ⊂ (O1

Av
− 1) · Lv; in fact it is equal to πvLv +OEvj.

Proof. We first deal with the case m = 1. Then Lv is isomorphic as a
O1
Av

-module to the set of trace 0 elements in OAv on which O1
Av

acts by

conjugation. Let a = x+ yj ∈ O1
Av

and u = v+wj ∈ Lv. A straightforward
computation yields:

aua−1 = (|x|Ev/Fv
+ |y|Ev/Fv

πv)v + πv(xyw − xyw)

+ (x2w − 2xyv − πvw)j.

Setting y = 0 we get that (O1
Av
− 1)Lv contains (x2− 1)OEvj for any x with

|x|Ev/Fv
= 1. Now since v 6 |2 there exists such a x which is not congruent

to 1 modulo πvOEv ; hence we end up with OEvj ⊂ (O1
Av
− 1)Lv.

On the other hand, when w = 0 the summand of aua−1 − u on OEv

becomes 2(|x|Ev/Fv
− 1)v. Fixing some x ∈ 1 + πvOEv , x 6∈ 1 + π2OEv and

letting v range among all possibilities we get that (O1
Av
− 1)Lv a submodule

of πvLv whose projection on OEv is the same as that of πvLv. As we have
proven above that (O1

Av
− 1)Lv contains OEvj it follows that the former

contain πvLv (and in fact equals πvLv +OEvj). �
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The proof of the following lemma is essentially contained in [8, Lemma
6.5], and could possibly also be deduced along the lines of the proof of [6,
Proposition 4.2]

Lemma 4.3. There is a set S of finite places of F such that if v is a
finite place not in S where A is split, and OA has level Pa

v then we have
πavLv ⊂ (O1

Av
− 1) · Lv. Moreover, for all v ∈ S there is an integer mv such

that if A is split at v and OAv has level Pa
v then πa+mv

v Lv ⊂ (O1
Av
− 1) ·Lv

Proof. We let S be the set of all finite places of F which divide a rational
prime smaller than 2m. In particular, for any finite place v 6∈ S the binomial
coefficient

(
k
l

)
is a unit in OFv for all k = 0, . . . , 2m, l = 0, . . . , k.

Suppose that v 6∈ S, and that the order OA has level Pa
v at v. Then up to

conjugating OAv by an element of the adjoint group PGL2(Fv) (which does
not affect the quotient Lv/(O1

Av
− 1)Lv) we may suppose that

O1
Av

=

{(
a b
c d

)
∈ SL2(OFv) : a, d ∈ 1 + πavOFv , b, c ∈ πavOFv

}
.

In particular, O1
Av

contains the subgroups

U =

{
ux =

(
1 x

1

)
: x ∈ πavOFv

}
and L =

{
ly =

(
1
y 1

)
: y ∈ πavOFv

}
.

Now we have Lv = Sym2mOFv , which has a basis ek1e
2m−k
2 , k = 0, . . . , 2m

on which the action of L,U is given by:

ux · ek1e2m−k2 =
k∑
l=0

(
k

l

)
xlel1e

2m−l
2

ly · ek1e2m−k2 =

2m∑
l=k

(
2m− k
2m− l

)
ylel1e

2m−l
2 .

By using the first formula and the fact that the binomial coefficients are
units (since v 6∈ S) we get by an easy inductive argument on k that

(4.1) ∀k = 1, . . . , 2m : πave
k
1e

2m−k
2 ∈ (U − 1)Lv;

similarly, we have

(4.2) ∀k = 0, . . . , 2m− 1 : πave
k
1e

2m−k
2 ∈ (L− 1)Lv.

Since U,L ⊂ O1
Av

we can conclude that πav lv ⊂ (O1
Av
− 1)Lv.

Now if v ∈ S and Av is split we can apply exactly the same argument,
taking into account the fact that the binomial coefficients are not units.
Letting mv be the maximal valuation at v of all

(
k
l

)
for k = 0, . . . , 2m, l =

0, . . . , k we can establish that (4.1) and (4.2) hold with a replaced by a+mv,
from which we conclude that πa+mv

v Lv ⊂ (O1
Av
− 1)Lv. �
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4.2. Conclusion. It follows from Proposition 4.1 that there are an exponent
c ≥ 1 and a rational integer N > 0 depending only on m, r such that: if
Γ is a congruence lattice in SL2(C) defined over a field F of degree r, with

discriminant and level DA, I ⊂ OF , and L is the lattice in V
k2,r
2 preserved

by Γ; we have

|L/(Γ− 1)L| ≤ N · (|DA| · |I|)c.
By the lower bound (2.2) for the covolume of congruence lattices, if Γn is
any sequence of congruence lattices which only satisfy the condition that
the degrees of their fields of definition be bounded, we get:

(4.3) lim
n→+∞

log |H0(Γn;Ln)|
volMn

= 0.

Now suppose that the lattices Γn are moreover uniform and torsion free.
Then we can use Poincaré duality and [4, Corollary 3.3 in Chapter 3] to
deduce that the torsion subgroups of Hp(Γn;Ln) are isomorphic for p = 0, 2,
hence it follows from (4.3) that we have also:

(4.4) lim
n→+∞

log |H2(Γn;Ln)|
volMn

= 0.

Remark Since the degree of the fields of definition of the lattices we
consider are bounded, and the homology H∗(Γ;V2) = 0 the arguments of [3]
can be applied to prove (4.4) also for lattices containing torsion elements.

5. Analytic torsion, Cheeger–Müller theorem and exponential
growth for H1

We conclude here the proof of Theorem A. For m, k ≥ 1 there is a repre-
sentation of SL2(C) on the space V k

2m = Symm(sl2(C))k and we denote by Eρ
the associated vector bundle on any Γ\H3 whose total space is Γ\(H3×V k

2m).
By Theorem A in [9] any sequence of manifolds Mn as in the statement

of the theorem is BS-convergent to H3. It then follows from Theorem 10.9
in [1] for all ρ as above we have the limit

(5.1) lim
n→+∞

log T (Mn;Eρ)

volMn
= kt

(2)
2m

where (see [2, 5.9.3, Example (3)]):

t
(2)
2m =

−1

48π

(
(2m+ 2)3 − 8m3 + 24m(m+ 1)

)
and T (Mn;Eρ) is the Ray–Singer analytic torsion with coefficients in the
bundle Eρ. For the definition of the latter we refer to [7], where it is also
proven that

(5.2) T (Mn;Eρ) =
|H0(Mn;Ln)| · |H2(Mn;Ln)|

|H1(Mn;Ln)|
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where Ln is the lattice in V k
2m preserved by Γn (we suppose that all Γn are

defined over fields of the same degree r and that k = km,r). In the case
m = 1, putting together (5.2),(5.1),(4.3) and (4.4) we finally obtain:

lim
n→+∞

log |H1(Γn;Ln)

volMn
= −k2,rt(2)2 .
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