HOMOLOGICAL TORSION OF ARITHMETIC THREE-MANIFOLDS

JEAN RAIMBAULT

Abstract

In this short preliminary note we study the homological and analytic torsion of arithmetic three-orbifolds defined by division quaternion algebras as the commensurability class varies.

1. Introduction

The aim of this note is to prove the following result (see 2 for the definitions regarding arithmetic subgroups).

Theorem A. Let Γ_{n} be a sequence of congruence or maximal torsion-free uniform arithmetic subgroups of $\mathrm{SL}_{2}(\mathbb{C})$ defined over imaginary quadratic number fields (resp. cubic fields with one complex place). Then there exists a sequence of \mathbb{Z}-lattices L_{n} in $\mathfrak{s l}_{2}(\mathbb{C})\left(\right.$ resp. $\left.\mathfrak{s l}_{2}(\mathbb{C})^{3}\right)$ preserved by Γ_{n} and we have the limit:

$$
\lim _{n \rightarrow+\infty} \frac{\log \left|H_{p}\left(\Gamma_{n} ; L_{n}\right)\right|}{\operatorname{vol} \Gamma_{n} \backslash \mathbb{H}^{3}}= \begin{cases}0 & \text { if } p=0,2 ; \\ \frac{13}{6 \pi}\left(\text { resp } \cdot \frac{13}{2 \pi}\right) & \text { if } p=1 .\end{cases}
$$

A short argument for the existence statement in the quadratic case is as follows (we prove a more general result in 3 below; see also [6]): let A_{n} be the quaternion algebra used to define $\Gamma_{n}, \mathcal{O}_{n}$ an order in A_{n} such that Γ_{n} normalizes \mathcal{O}_{n}. Let U_{n} be the subspace of $A_{n} \otimes \mathbb{C}$ of quaternions having null trace; then $U_{n} \cap \mathcal{O}_{n}$ is isomorphic as a Γ_{n}-module to a lattice in $\mathfrak{s l}_{2}(\mathbb{C}) \cong U_{n} \otimes \mathbb{C}$.

The main content of this theorem is the case $p=1$; the growth rates for degrees 0 and 2 are established using simple algebraic manipulations, but to prove the exponential growth rate of the size of H_{1} we use:

- Analytic torsion and the Cheeger-Müller theorem [7];
- The approximation results for L^{2}-torsion established in [2, [1;
- The convergence results for arithmetic orbifolds from 9.

In fact the proof of Theorem A is little more than a concatenation of these results, and the bulk of this note is dedicated to introduce objects and notation and to prove the statements in degrees 0 and 2 .

2. Quaternion algebras and arithmetic lattices in $\mathrm{SL}_{2}(\mathbb{C})$

We record a few results and definitions from [5]; our terminology and notation may differ from those in this reference.
2.1. Generalities. A quaternion algebra over a field F is a four-dimensional algebra over F which is simple and whose center is F. Such algebras are constructed as follows: let E be a quadratic extension of F with nontrivial Galois automorphism $x \mapsto \bar{x}$, and fix a nonzero $\theta \in F$. Then the algebra

$$
\begin{equation*}
A=E \oplus E j \tag{2.1}
\end{equation*}
$$

where j is a symbol such that $j^{2}=\theta$, with the multiplication law defined by

$$
\left(x^{\prime}+y^{\prime} j\right)(x+y j)=\left(x^{\prime} x+\theta y^{\prime} \bar{y}\right)+\left(x^{\prime} y+y^{\prime} \bar{x}\right) j
$$

is a quaternion algebra over F, and all such are obtined in this manner. It is said to be split if θ is actually a square in E, in which case it is isomorphic to the matrix algebra $M_{2}(F)$; otherwise it is a division algebra.

The algebra A is endowed with an involution $z=x+y j \mapsto \bar{z}=\bar{x}-y j$ and natural morphisms to F defined as follows:

$$
|z|_{A}=z \bar{z}=|x|_{E / F}+\theta|y|_{E / F}, \quad \operatorname{tr}_{A}(z)=z+\bar{z}=\operatorname{tr}_{E / F}(x)
$$

When $A \cong M_{2}(F)$ these are identified with the usual determinant and trace. We shall denote by $\mathrm{SL}_{1}(A)$ the F-algebraic group defined by the kernel of the norm $|\cdot|_{A}$: it is an almost simple, simply connected group.

If F is a number field or a local non-Archimedean field and \mathcal{O}_{F} its ring of integers, an order in A is a subring (containing 1) of A which is also a $\mathcal{O}_{F^{-}}$ submodule of rank four (in the matrix case an example is given by $M_{2}\left(\mathcal{O}_{F}\right)$; we will usually denote such orders by \mathcal{O}_{A} in the sequel.
2.2. Local results. If F is a number field, v a finite place of F and F_{v} the completion of F at v then there is a unique unramified quadratic extension E_{v} of F_{v} (obtained by adjoining the square root of a unit). We let moreover \mathfrak{P}_{v} be the prime ideal of \mathcal{O}_{F} corresponding to v and π_{v} a ggenerator for $\mathfrak{P}_{v} \mathcal{O}_{F_{v}}$; then there is a unique division quaternion algebra over F_{v}, obtained by setting $E=E_{v}$ and $\theta=\pi_{v}$ in the definition (2.1).

Suppose that A_{v} is equal to this division algebra; then there is a unique maximal order $\mathcal{O}_{A_{v}}$ in A_{v}, which is given by:

$$
\mathcal{O}_{A_{v}}=\mathcal{O}_{E_{v}} \oplus \mathcal{O}_{E_{v}} j
$$

The subgroup $K_{v}=\mathcal{O}_{A_{v}}^{1}$ of the F_{v}-points of the algebraic group $\mathrm{SL}_{1}\left(A_{v}\right)$ is its unique maximal compact subgroup. If K_{v}^{\prime} is a compact-open subgroup it is thus contained in K_{v} and there is a $m \geq 1$ such that it contains $K_{v}(m)=$ $1+\pi_{v}^{m} \mathcal{O}_{A_{v}}$. If $K_{v}^{\prime} \subsetneq K_{v}$ and m_{0} is the maximal such integer we say that K_{v}^{\prime} has level $\mathfrak{P}_{v}^{m_{0}}$ at v; we define the level of K_{v} to be $\mathcal{O}_{F_{v}}$.

In the case where $A_{v}=M_{2}\left(F_{v}\right)$ there are infinitely many maximal orders, but they are all conjugated by an inner automorphism of A_{v} to $\mathcal{O}_{A_{v}}=$ $M_{2}\left(\mathcal{O}_{F_{v}}\right)$. Likewise, every maximal compact subgroup is conjugated by an
inner automorphism to $K_{v}=\mathrm{SL}_{2}\left(\mathcal{O}_{F_{v}}\right)$, and a basis of compact-open neighbourhoods of the identity is given by the subgroups $1+\pi_{v}^{m} \mathcal{O}_{A_{v}}, m \geq 1$ of the latter. We define the level of an open subgroup of K_{v} as above, and extend the definition to all compact open subgroups in the natural way.
2.3. Global orders and arithmetic lattices. Let F be a number field of degree r with r_{2} complex places and r_{1} real ones, and let A a quaternion algebra over F. We shall denote by G the F-algebraic group $\mathrm{SL}_{1}(A)$ and by G_{∞} be the real Lie group

$$
G_{\infty}=\prod_{v \in V_{\infty}} \mathrm{G}\left(F_{v}\right) \cong \mathrm{SL}_{2}(\mathbb{C})^{r_{2}} \times \mathrm{SL}_{2}(\mathbb{R})^{r_{1}-a} \times \mathrm{SU}(2)^{a}
$$

where a is the number of real places of F where A is ramified. We also choose for each v a maximal compact subgroup K_{v} in $\mathrm{G}\left(F_{v}\right)$ and let G_{f} be the locally compact group defined by taking the restricted product of all $\mathrm{G}\left(F_{v}\right)$ with respect to those subgroups.

The choice of the quaternion algebra A defines a commensurability class of arithmetic lattices in G_{∞}. A congruence group in $\mathrm{G}(F)$ is by definition a subgroup $\Gamma \subset \mathrm{G}(F)$ such that there exists a compact-open subgroup K_{f} of G_{f} with the property that $\Gamma=\mathrm{G}(F) \cap K_{f}$: in other words the closure of Γ in G_{f} is equal to Γ itself. Any such congruence group is a lattice in G_{∞} under the diagonal embedding $\mathrm{G}(F)$ in the latter, and the subgroups in G_{∞} which are commensurable to one (or any) such lattice form a commensurability class of lattices in G_{∞}. We will say that such arithmetic subgroups of G_{∞} are defined over F, or that their field of definition is F.

If Γ^{\prime} belongs to this commensurability class then $\Gamma=\Gamma^{\prime} \cap \mathrm{G}(F)$ does as well, and for each finite place v the closure K_{v}^{\prime} of Γ in $\mathrm{G}\left(F_{v}\right)$ is a compactopen subgroup, which therefore has a well-defined level $\mathfrak{P}_{v}^{m_{v}}$ for some $m_{v} \geq$ 1. If moreover Γ is a congruence group in $\mathrm{G}(F)$, then we define the level of Γ^{\prime} to be the ideal $\prod_{v \in V_{f}} \mathfrak{P}_{v}^{m_{v}}$. In particular, the level is defined for congruence or maximal lattices in the commensurability class.

According to the local picture described above, if $\Gamma \subset \mathrm{G}(F)$ is an arithmetic group in the commensurability class defined by A then at each finite place v there is an order $\mathcal{O}_{A_{v}}$ in $A_{v}=A \otimes F_{v}$ which is normalized by Γ; thus the global order \mathcal{O}_{A} of A defined by $\mathcal{O}_{A}=A \cap \prod_{v} \mathcal{O}_{A_{v}}$ is normalized by Γ. Since any arithmetic lattice in the commensurability class normalizes a Γ as above it is not necessary to suppose that $\Gamma^{\prime} \subset \mathrm{G}(F)$ for Γ^{\prime} to normalize an order.

In the sequel we will restrict (though until 5 we do not need to) to the case where $G_{\infty}=\mathrm{SL}_{2}(\mathbb{C}) \times K_{\infty}^{\prime}$ where K_{∞}^{\prime} is compact (in the notation above, this means that $r_{2}=1$ and $r_{1}=a$). A. Borel's formula for the volume of congruence lattices [5, Theorem 11.1.3] together with the upper bounds for the index $[\Gamma: \Gamma \cap \mathrm{G}(F)]$ when Γ is a maximal lattice, yield the following lower bound for the covolume: let Γ be a congruence or maximal lattice of
level \mathfrak{I}, then:

$$
\begin{equation*}
\operatorname{vol}\left(\Gamma \backslash \mathbb{H}^{3}\right) \gg 2^{-s} \cdot|\mathfrak{I}| \cdot D \tag{2.2}
\end{equation*}
$$

where s is the number of primes dividing \mathfrak{I} and $D=\prod_{v \in S}\left(q_{v}+1\right)$ where S is the set of finite places at which A ramifies.

3. Local systems

As was explained briefly in the notes to Theorem A, arithmetic lattices in $\mathrm{SL}_{2}(\mathbb{C})$ defined over quadratic fields always preserve a lattice in the adjoint representation. More generally, if we let $V_{2 m}, \rho_{2 m}$ denote the representation of $\mathrm{SL}_{2}(\mathbb{C})$ on the complex vector space $\operatorname{Sym}^{m}\left(\mathfrak{s l}_{2}(\mathbb{C})\right)$ then it remains true that the image by $\rho_{2 m}$ of such an arithmetic group preserves a lattice in $V_{2 m}$ (see also [6, Proposition 3.3] for a more conceptual proof). On the other hand, if Γ is an arithmetic lattice defined over a non-quadratic field there may not be any $\rho_{2 m}(\Gamma)$-invariant lattice in $V_{2 m}$. One has to take multiples of the representation to ensure their existence.

Proposition 3.1. If Γ is an arithmetic lattice in $\mathrm{SL}_{2}(\mathbb{C})$ defined over a number field F of degree r over \mathbb{Q} then for all $m \geq 1$ there is a Γ-invariant lattice L in the representation $\left(k_{m, r} \rho_{2 m}, V_{2 m}^{k_{m, r}}\right)$, where

$$
k_{m, r}=\binom{3(r-2)+m-1}{m}
$$

is the dimension of the mth symmetric power of $\left.\mathbb{R}^{3(r-2)}\right)$.
Proof. We note for future use that we shall prove below a more explicit (albeit also more cumbersomely stated) result, which goes as follows: let A be the F-quaternion algebra defining the commensurability class of Γ and let \mathcal{O}_{A} be an \mathcal{O}_{F}-order in A normalized by Γ; then as a Γ-module the lattice L is isomorphic to the m th symmetric power of the elements of trace 0 in \mathcal{O}_{A}.

First we prove this for $m=1$; moreover, since the representations $\rho_{2 m}$ factor through $\{ \pm 1\}$ we shall deal with lattices in the adjoint group $\mathrm{PSL}_{2}(\mathbb{C})=$ $\mathrm{PGL}_{2}(\mathbb{C})$. Notation as above, let W denote the F-vector space of elements of trace 0 in A, and let $\overline{\mathrm{G}}$ be the Weil restriction from F to \mathbb{Q} of the group $\mathrm{PGL}_{1}(A)$. The latter acts on W by conjugation, and the subgroup $\bar{\Gamma}$ of $\overline{\mathrm{G}}(F)$ preserves the submodule $L=(\mathcal{O} \cap W)$. Now on the complex vector space $W_{\infty}=W \otimes_{\mathbb{Q}} \mathbb{R}$ there is a representation ρ_{∞} of $G_{\infty}=\overline{\mathrm{G}}(\mathbb{R})$, and $\rho_{\infty}(\Gamma)$ preserves the lattice $L \subset W_{\infty}$. Let σ_{1} be a complex embedding of F, and let

$$
W_{\mathrm{c}}=W^{\sigma_{1}} \otimes_{F} \mathbb{C}, \quad W_{\mathrm{r}}=\bigotimes_{\sigma} W^{\sigma} \otimes_{F} \mathbb{R}
$$

where the tensor product is over all real embeddings of F. Let ρ be the restriction of ρ_{∞} to the subgroup $G_{\mathrm{c}}=\operatorname{PGL}_{1}\left(A^{\sigma_{1}} \otimes_{F} \mathbb{C}\right) \cong \mathrm{PGL}_{2}(\mathbb{C})$. It is isomorphic to $\rho_{\mathrm{c}} \otimes_{\mathbb{R}} 1_{W_{\mathrm{r}}}$ where ρ_{c} is the natural representation of G_{c} on W_{c} and 1_{V} denotes the trivial representation on a vector space V. Since as
a representation of $\mathrm{PGL}_{2}(\mathbb{C}), \rho_{\mathrm{c}}$ is isomorphic to the adjoint representation and $\operatorname{dim}_{\mathbb{R}} W_{\mathrm{r}}=3(r-2)$ this finishes the proof of the proposition for $m=1$.

The case of any $k \geq 1$ follows, since we have a map of $\mathrm{SL}_{2}(\mathbb{C})$-modules from $\operatorname{Sym}^{m}\left(V_{2}^{k_{2, r}}\right)$ to $V_{2 m}^{k_{m, r}}$ which is rational.

4. Growth of homology in degrees 0 and 2

We will give here upper bounds for the order of the torsion subgroups of H_{0}, H_{2} for arithmetic lattices, in terms of the level and discriminant. They are sufficient to deduce the part of Theorem A dealing with these degrees.

4.1. Bounds for the order of co-invariants.

Proposition 4.1. Let A be a quaternion algebra over a number field of degree r and \mathcal{O}_{A} an order of level \mathfrak{I} in A. Let L be the lattice in $k_{2, r} V_{2}$ preserved by $\rho\left(\mathcal{O}_{A}^{1}\right)$ given by Proposition 3.1; then there is a $N \in \mathbb{Z}$ depending only on m, r such that:

$$
N \Im D_{A} L \subset\left(\mathcal{O}_{A}^{1}-1\right) \cdot L
$$

The proof occcupies the rest of the section. Since the algebraic group $\mathrm{SL}_{1}(A)$ satisfies absolute strong approximation it suffices to prove the corresponding statement at each finite place of F; this is done for ramified places in Lemma 4.2 and for split ones in Lemma 4.3. We will use the notation of 2

Lemma 4.2. If A ramifies at a finite place v which does not divide 2 we have $\pi_{v} L_{v} \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) \cdot L_{v}$; in fact it is equal to $\pi_{v} L_{v}+\mathcal{O}_{E_{v}} j$.

Proof. We first deal with the case $m=1$. Then L_{v} is isomorphic as a $\mathcal{O}_{A_{v}}^{1}$-module to the set of trace 0 elements in $\mathcal{O}_{A_{v}}$ on which $\mathcal{O}_{A_{v}}^{1}$ acts by conjugation. Let $a=x+y j \in \mathcal{O}_{A_{v}}^{1}$ and $u=v+w j \in L_{v}$. A straightforward computation yields:

$$
\begin{aligned}
a u a^{-1}= & \left(|x|_{E_{v} / F_{v}}+|y|_{E_{v} / F_{v}} \pi_{v}\right) v+\pi_{v}(\bar{x} y \bar{w}-x \bar{y} w) \\
& +\left(x^{2} w-2 x y v-\pi_{v} \bar{w}\right) j
\end{aligned}
$$

Setting $y=0$ we get that $\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$ contains $\left(x^{2}-1\right) \mathcal{O}_{E_{v}} j$ for any x with $|x|_{E_{v} / F_{v}}=1$. Now since $v \nmid 2$ there exists such a x which is not congruent to 1 modulo $\pi_{v} \mathcal{O}_{E_{v}}$; hence we end up with $\mathcal{O}_{E_{v}} j \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$.

On the other hand, when $w=0$ the summand of $a u a^{-1}-u$ on $\mathcal{O}_{E_{v}}$ becomes $2\left(|x|_{E_{v} / F_{v}}-1\right) v$. Fixing some $x \in 1+\pi_{v} \mathcal{O}_{E_{v}}, x \notin 1+\pi^{2} \mathcal{O}_{E_{v}}$ and letting v range among all possibilities we get that $\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$ a submodule of $\pi_{v} L_{v}$ whose projection on $\mathcal{O}_{E_{v}}$ is the same as that of $\pi_{v} L_{v}$. As we have proven above that $\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$ contains $\mathcal{O}_{E_{v}} j$ it follows that the former contain $\pi_{v} L_{v}$ (and in fact equals $\pi_{v} L_{v}+\mathcal{O}_{E_{v}} j$).

The proof of the following lemma is essentially contained in [8, Lemma 6.5], and could possibly also be deduced along the lines of the proof of [6, Proposition 4.2]

Lemma 4.3. There is a set S of finite places of F such that if v is a finite place not in S where A is split, and \mathcal{O}_{A} has level \mathfrak{P}_{v}^{a} then we have $\pi_{v}^{a} L_{v} \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) \cdot L_{v}$. Moreover, for all $v \in S$ there is an integer m_{v} such that if A is split at v and $\mathcal{O}_{A_{v}}$ has level \mathfrak{P}_{v}^{a} then $\pi_{v}^{a+m_{v}} L_{v} \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) \cdot L_{v}$

Proof. We let S be the set of all finite places of F which divide a rational prime smaller than $2 m$. In particular, for any finite place $v \notin S$ the binomial coefficient $\binom{k}{l}$ is a unit in $\mathcal{O}_{F_{v}}$ for all $k=0, \ldots, 2 m, l=0, \ldots, k$.

Suppose that $v \notin S$, and that the order \mathcal{O}_{A} has level \mathfrak{P}_{v}^{a} at v. Then up to conjugating $\mathcal{O}_{A_{v}}$ by an element of the adjoint group $\mathrm{PGL}_{2}\left(F_{v}\right)$ (which does not affect the quotient $\left.L_{v} /\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}\right)$ we may suppose that

$$
\mathcal{O}_{A_{v}}^{1}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathcal{O}_{F_{v}}\right): a, d \in 1+\pi_{v}^{a} \mathcal{O}_{F_{v}}, b, c \in \pi_{v}^{a} \mathcal{O}_{F_{v}}\right\}
$$

In particular, $\mathcal{O}_{A_{v}}^{1}$ contains the subgroups

$$
U=\left\{u_{x}=\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right): x \in \pi_{v}^{a} \mathcal{O}_{F_{v}}\right\} \text { and } L=\left\{l_{y}=\left(\begin{array}{ll}
1 & \\
y & 1
\end{array}\right): y \in \pi_{v}^{a} \mathcal{O}_{F_{v}}\right\}
$$

Now we have $L_{v}=\operatorname{Sym}^{2 m} \mathcal{O}_{F_{v}}$, which has a basis $e_{1}^{k} e_{2}^{2 m-k}, k=0, \ldots, 2 m$ on which the action of L, U is given by:

$$
\begin{aligned}
& u_{x} \cdot e_{1}^{k} e_{2}^{2 m-k}=\sum_{l=0}^{k}\binom{k}{l} x^{l} e_{1}^{l} e_{2}^{2 m-l} \\
& l_{y} \cdot e_{1}^{k} e_{2}^{2 m-k}=\sum_{l=k}^{2 m}\binom{2 m-k}{2 m-l} y^{l} e_{1}^{l} e_{2}^{2 m-l}
\end{aligned}
$$

By using the first formula and the fact that the binomial coefficients are units (since $v \notin S$) we get by an easy inductive argument on k that

$$
\begin{equation*}
\forall k=1, \ldots, 2 m: \pi_{v}^{a} e_{1}^{k} e_{2}^{2 m-k} \in(U-1) L_{v} \tag{4.1}
\end{equation*}
$$

similarly, we have

$$
\begin{equation*}
\forall k=0, \ldots, 2 m-1: \pi_{v}^{a} e_{1}^{k} e_{2}^{2 m-k} \in(L-1) L_{v} \tag{4.2}
\end{equation*}
$$

Since $U, L \subset \mathcal{O}_{A_{v}}^{1}$ we can conclude that $\pi_{v}^{a} l_{v} \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$.
Now if $v \in S$ and A_{v} is split we can apply exactly the same argument, taking into account the fact that the binomial coefficients are not units. Letting m_{v} be the maximal valuation at v of all $\binom{k}{l}$ for $k=0, \ldots, 2 m, l=$ $0, \ldots, k$ we can establish that (4.1) and (4.2) hold with a replaced by $a+m_{v}$, from which we conclude that $\pi_{v}^{a+m_{v}} L_{v} \subset\left(\mathcal{O}_{A_{v}}^{1}-1\right) L_{v}$.
4.2. Conclusion. It follows from Proposition4.1 that there are an exponent $c \geq 1$ and a rational integer $N>0$ depending only on m, r such that: if Γ is a congruence lattice in $\mathrm{SL}_{2}(\mathbb{C})$ defined over a field F of degree r, with discriminant and level $D_{A}, \mathfrak{I} \subset \mathcal{O}_{F}$, and L is the lattice in $V_{2}^{k_{2, r}}$ preserved by Γ; we have

$$
|L /(\Gamma-1) L| \leq N \cdot\left(\left|D_{A}\right| \cdot|\Im|\right)^{c} .
$$

By the lower bound 2.2 for the covolume of congruence lattices, if Γ_{n} is any sequence of congruence lattices which only satisfy the condition that the degrees of their fields of definition be bounded, we get:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log \left|H_{0}\left(\Gamma_{n} ; L_{n}\right)\right|}{\operatorname{vol} M_{n}}=0 \tag{4.3}
\end{equation*}
$$

Now suppose that the lattices Γ_{n} are moreover uniform and torsion free. Then we can use Poincaré duality and [4, Corollary 3.3 in Chapter 3] to deduce that the torsion subgroups of $H_{p}\left(\Gamma_{n} ; L_{n}\right)$ are isomorphic for $p=0,2$, hence it follows from (4.3) that we have also:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log \left|H_{2}\left(\Gamma_{n} ; L_{n}\right)\right|}{\operatorname{vol} M_{n}}=0 \tag{4.4}
\end{equation*}
$$

Remark Since the degree of the fields of definition of the lattices we consider are bounded, and the homology $H_{*}\left(\Gamma ; V_{2}\right)=0$ the arguments of [3] can be applied to prove (4.4) also for lattices containing torsion elements.

5. Analytic torsion, Cheeger-Müller theorem and exponential GROWTH FOR H_{1}

We conclude here the proof of Theorem A. For $m, k \geq 1$ there is a representation of $\mathrm{SL}_{2}(\mathbb{C})$ on the space $V_{2 m}^{k}=\operatorname{Sym}^{m}\left(\mathfrak{s l}_{2}(\mathbb{C})\right)^{k}$ and we denote by E_{ρ} the associated vector bundle on any $\Gamma \backslash \mathbb{H}^{3}$ whose total space is $\Gamma \backslash\left(\mathbb{H}^{3} \times V_{2 m}^{k}\right)$.

By Theorem A in [9] any sequence of manifolds M_{n} as in the statement of the theorem is BS-convergent to \mathbb{H}^{3}. It then follows from Theorem 10.9 in [1] for all ρ as above we have the limit

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\log T\left(M_{n} ; E_{\rho}\right)}{\operatorname{vol} M_{n}}=k t_{2 m}^{(2)} \tag{5.1}
\end{equation*}
$$

where (see [2, 5.9.3, Example (3)]):

$$
t_{2 m}^{(2)}=\frac{-1}{48 \pi}\left((2 m+2)^{3}-8 m^{3}+24 m(m+1)\right)
$$

and $T\left(M_{n} ; E_{\rho}\right)$ is the Ray-Singer analytic torsion with coefficients in the bundle E_{ρ}. For the definition of the latter we refer to [7], where it is also proven that

$$
\begin{equation*}
T\left(M_{n} ; E_{\rho}\right)=\frac{\left|H_{0}\left(M_{n} ; L_{n}\right)\right| \cdot\left|H_{2}\left(M_{n} ; L_{n}\right)\right|}{\left|H_{1}\left(M_{n} ; L_{n}\right)\right|} \tag{5.2}
\end{equation*}
$$

where L_{n} is the lattice in $V_{2 m}^{k}$ preserved by Γ_{n} (we suppose that all Γ_{n} are defined over fields of the same degree r and that $k=k_{m, r}$). In the case $m=1$, putting together (5.2), (5.1), (4.3) and (4.4) we finally obtain:

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \frac{\log \mid H_{1}\left(\Gamma_{n} ; L_{n}\right)}{\operatorname{vol} M_{n}}=-k_{2, r} t_{2}^{(2)} . \\
\text { REFERENCES }
\end{gathered}
$$

[1] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet. On the growth of L^{2}-invariants for sequences of lattices in Lie groups. ArXiv e-prints, October 2012, 1210.2961.
[2] Nicolas Bergeron and Akshay Venkatesh. The asymptotic growth of torsion homology for arithmetic groups. Journal de l'Institut de Math. de Jussieu, 12(2):391-447, 2013.
[3] V. Emery. Torsion homology of arithmetic lattices and K2 of imaginary fields. ArXiv e-prints, March 2013, 1303.6132.
[4] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[5] Colin Maclachlan and Alan W. Reid. The arithmetic of hyperbolic 3-manifolds, volume 219 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.
[6] Simon Marshall and Werner Müller. On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J., 162(5):863-888, 2013.
[7] Werner Müller. Analytic torsion and R-torsion for unimodular representations. J. Amer. Math. Soc., 6(3):721-753, 1993.
[8] J. Raimbault. Analytic, Reidemeister and homological torsion for congruence threemanifolds. ArXiv e-prints, July 2013, 1307.2845.
[9] J. Raimbault. On the convergence of arithmetic orbifolds. ArXiv e-prints, November 2013, 1311.5375.

